

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

2023

REGULATIONS

CURRICULAM & SYLLABI

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

M.E. VLSI DESIGN – FULL TIME

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

VISION AND MISSION OF THE ELECTRONICS AND COMMUNICATION ENGINEERING DEPARTMENT

VISION

The vision of ECE department is to become pioneer in higher

learning and research and to produce creative solution to societal needs.

MISSION

- 1. To provide excellence in education, research and public service.
- 2. To provide quality education and to make the students entrepreneur and employable.
- 3. Continuous up gradation of techniques for reaching heights of excellence in a Global Perspective.

CHOICE BASED CREDIT SYSTEM

BRANCH: M.E. VLSI DESIGN- FULL TIME

PROGRAMME EDUCATIONAL OBJECTIVES:

- **PEO 1:** Acquire in depth knowledge in the field of VLSI design to meet the current challenges using advanced technology.
- **PEO 2:** Apply the acquired research skills using modern CAD tools in the field of VLSI Design through reflective, independent, innovative and continuous learning ideas.
- **PEO 3:** Apply the learnt engineering ideas for social issues by maintaining professional values and ethical attitude.

PROGRAM OUTCOMES

- PO1: To acquire an in-depth knowledge in the field of VLSI Design including wider and global perspective with an ability to evaluate and analyse the existing methods for enhancement.
- PO2: To design, analyse and develop complex VLSI circuits using appropriate analytical methods and modern tools towards industry standards with an understanding of its limitations.
- PO3: To acquire professional code and conduct, ethics of research and scholarship by considering the research outcomes to the community for sustainable development goals.
- PO4: An ability to independently carryout research/investigation and development work to solve practical problems.
- PO5: An ability to write and present a substantial technical report / document.
- PO6: Students should be able to demonstrate a degree of mastery in VLSI Design through engineering ideas for social issues and industrial problems.

CHOICE BASED CREDIT SYSTEM CURRICULUM FOR CANDIDATES ADMITTED DURING 2023 ONWARDS

FIRST SEMESTER

SI. No.	Course Code	Course Code Course Title Category	Category	CA Marks	End Sem	Total Marks	Hours/Week /Credits				
NO.				Marks	Marks	Marks	L	Т	Р	C	
	THEORY										
1	23VLFCZ1	Research Methodology and IPR(Common to all branches)	FC	40	60	100	3	0	0	3	
2	23VLFC02	Advanced Applied Mathematics (Common to Applied Electronics and VLSI Design)	FC	40	60	100	3	1	0	4	
3	23VLPC01	Advanced Digital System Design(Common to Applied Electronics and VLSI Design)	РС	40	60	100	3	0	0	3	
4	23VLPC02	Digital IC Design(Common to Applied Electronics and VLSI Design)	РС	40	60	100	3	0	0	3	
5	23VLPC03	Device Modeling	РС	40	60	100	3	0	0	3	
6	23VLPEXX	Professional Elective – I	PE	40	60	100	3	0	0	3	
7	23VLACXX	Audit Course-I	AC	40	60	100	2	0	0	0	
	1	PRA	CTICAL	Som.		1					
8	23VLPC04	Digital IC and System Design Laboratory	PC	60	40	100	0	0	4	2	
		Total	And and a second se	340	460	800	20	1	4	21	

SECOND SEMESTER

SI.	Course Code	Course Name	Category	CA	End Sem	Total	Hours/Week/ Credits					
No.		8		Marks	Marks	Marks	L	Т	Р	C		
		X B	THEORY		•	•						
1	23VLPC05	Analog IC Design (Common to Applied Electronics and VLSI Design)	РС	40	60	100	3	0	0	3		
2	23VLPC06	System on Chip Design	РС	40	60	100	3	0	0	3		
3	23VLPEXX	Professional Elective - II	PE	40	60	100	3	0	0	3		
4	23VLPEXX	Professional Elective - III	PE	40	60	100	3	0	0	3		
5	23VLACXX	Audit Course-II	AC	40	60	100	2	0	0	0		
		THEORY WITH	PRACTICAL (COMPONE	NT							
6	23VLPC07	Scripting Languages and Verification	PC	50	50	100	3	0	2	4		
		I	PRACTICAL									
7	23VLPC08	Analog and Mixed Signal Laboratory	PC	60	40	100	0	0	4	2		
8	23VLEE01	Mini Project	EEC	40	60	100	0	0	4	2		
		Total		350	450	800	17	0	10	20		

THIRD SEMESTER

CI							TT		1 11/0	1- /
Sl. No	Course	Course Name	Category	CA	End Sem	Total	H		/ Wee edits	ek/
	Code			Marks	Marks	Marks	L	Т	Р	С
			THEORY							
1	23VLPEXX	Professional Elective - IV	PE	40	60	100	3	0	0	3
2	23VLOEXX	Open Elective	OE	40	60	100	3	0	0	3
			PRACTICA	L						
3	23VLEE02	Internship/Industrial Training	EEC	100	-	100	-	-	**	2
4	23VLEE03	Project Phase I	EEC	100	100	200	0	0	12	6
		Total	•	280	220	500	6	0	12	14

** 4 Weeks Internship/Industrial Training

			FOURTH	SEMESTER						
Sl.No	Course	Course Name	Category	CA	End Sem	Total	Н		' Weel dits	۲/
	Code			Marks	Marks	Marks	L	Т	Р	С
		1	PRAC	TICAL						
1	23VLEE04	Project Phase II	EEC	200	200	400	0	0	24	12
		Total	1 8	200	200	400	0	0	24	12
					9.8%:	•		•		

Total Credits: 67

PROFESSIONAL ELECTIVE (PE)

Sl.No.	Course Code	Course Title	Category	CA Marks	End Sem	Total Marks		Hou We Cre	ek/	
	Goue				Marks		L	T	Р	C
		PROFESSION	AL ELECT	IVE I						
1	23VLPE01	VLSI DESIGN AUTOMATION	PE	40	60	100	3	0	0	3
2	23VLPE02	VLSI INTERCONNECTS AND ITS DESIGN TECHNIQUES	PE	40	60	100	3	0	0	3
3	23VLPE03	ANALYSIS AND DESIGN OF ANALOG INTEGRATED CIRCUITS (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3
4	23VLPE04	MIXED SIGNAL CIRCUITS	PE	40	60	100	3	0	0	3
5	23VLPE05	QUANTUM CIRCUIT DESIGN	PE	40	60	100	3	0	0	3
		PROFESSION	AL ELECTI	VE II						
6	23VLPE06	LOW POWER IC DESIGN (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3
7	23VLPE07	VLSI ARCHITECTURE FOR IMAGE AND VIDEO PROCESSING	PE	40	60	100	3	0	0	3
8	23VLPE08	SIGNAL INTEGRITY FOR HIGH SPEED DESIGN	PE	40	60	100	3	0	0	3
9	23VLPE09	POWER MANAGEMENT AND CLOCK DISTRIBUTION	PE	40	60	100	3	0	0	3
10	23VLPE10	QUANTUM DOT CELLULAR AUTOMATA NANOTECHNOLOGY	PE	40	60	100	3	0	0	3
		PROFESSION	AL ELECTI	VE III						
11	23VLPE11	EMBEDDED SYSTEMS DESIGN AND IOT	PE	40	60	100	3	0	0	3
12	23VLPE12	TESTING AND TESTABILITY	PE	40	60	100	3	0	0	3
13	23VLPE13	HARDWARE SECURITY	PE	40	60	100	3	0	0	3
14	23VLPE14	RECONFIGURABLE ARCHITECTURE FOR VLSI	PE	40	60	100	3	0	0	3
15	23VLPE15	VLSI RF CIRCUIT DESIGN	PE	40	60	100	3	0	0	3

	PROFESSIONAL ELECTIVE IV											
Sl.No.	Course	Course Title	Category	CA Marks	End Sem	Total	Но	ours/	'We	ek		
51.140.	Code	course mile	Category	CA Marks	Marks	Marks	L	Т	Р	C		
16	23VLPE16	VLSI SIGNAL PROCESSING (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3		
17	23VLPE17	DESIGN OF SEMICONDUCTOR MEMORIES	PE	40	60	100	3	0	0	3		
18	23VLPE18	VLSI FOR WIRELESS COMMUNICATION	PE	40	60	100	3	0	0	3		
19	23VLPE19	ASIC DESIGN (Common to Applied Electronics & VLSI Design)	PE	40	60	100	3	0	0	3		
20	23VLPE20	VLSI FOR IOT SYSTEMS	PE	40	60	100	3	0	0	3		

LIST OF OPEN ELECTIVES

SI.	Course	Course Title	Catagory	СА	End	Total	Н	ours	/Wee	k
No	Code	Course fille	Category	Marks	Sem Marks	Marks	L	Т	Р	С
1	23SEOE01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3
2	23SEOE02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3
3	23SEOE03	GREEN BUILDING	OE	40	60	100	3	0	0	3
4	23EEOE04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3
5	23EEOE05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3
6	23EEOE06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3
7	23GEOE07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3
8	23GEOE08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3
9	23GEOE09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3
10	23EDOE10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3
11	23EDOE11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3
12	23EDOE12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3
13	23MFOE13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3
14	23MF0E14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3
15	23MFOE15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3
16	23TEOE16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3
17	23TEOE17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3
18	23TEOE18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3
19	23PSOE19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3
20	23PS0E20	ELECTRICITY TRADING AND ELECTRICITY ACTS	OE	40	60	100	3	0	0	3
21	23PSOE21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3

SI.	Course	Course Title	Catagoria	CA	End Sem	Total	Н	ours/	Wee	k
No	Code	course ride	Category	Marks	Marks	Marks	L	Т	Р	C
22	23PEOE22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PEOE23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PEOE24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AE0E25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AE0E26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3
27	23AE0E27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3
31	23CS0E31	ARTIFICIAL INTELLIGENCE	OE	40	60	100	3	0	0	3
32	23CSOE32	COMPUTER NETWORK MANAGEMENT	OE	40	60	100	3	0	0	3
33	23CSOE33	BLOCKCHAIN TECHNOLOGIES	OE	40	60	100	3	0	0	3

AUDIT COURSES

(Common to all branches)

SI. No	Course Code	Course Title	Category	CA Marks	End Sem	Total Marks	Но	urs/ Cre		ek/
-	Coue				Marks	Marks	L	Т	Р	С
1	23VLACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0
2	23VLACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0
3	23VLACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0
4	23VLACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0
5	23VLACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0
6	23VLACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0
7	23VLACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	AC	40	60	100	2	0	0	0
8	23VLACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0

SUMMARY OF CREDIT DISTRIBUTION

	Course		Credits per	Semester		Total	Total
S.NO.	Category	I	II	III	IV	Credits	Credits in %
1	FC	7				7	10.45
2	РС	11	12			23	34.33
3	PE	3	6	3		12	17.91
4	OE			3		3	4.48
5	AC	0	0				
6	EEC		2	8	12	22	32.83
Т	otal	21	20	14	12	67	100

CATEGORY WISE CREDIT DISTRIBUTION

FUNDAMENTAL COURSE (FC)

SI.	Course	Course Title	Cate	CA Marks	End Sem	Total	Но		/ W edit	eek/ s
No.	Code		gory		Marks	Marks	L	Т	Р	С
1	23VLFCZ1	Research Methodology and IPR(Common to all branches)	FC	40	60	100	3	0	0	3
2	23VLFC02	Advanced Applied Mathematics(Common to Applied Electronics & VLSI Design)	FC	40	60	100	3	1	0	4
		Total		80	120	200	6	1	0	7

PROFESSIONAL CORE (PC)

Sl.	Course Code	Course Title	Cate	CA Marks	End Sem	Total Marks	Hours/Week/ Credits					
No.	Coue		gory		Marks	Marks	L	Т	Р	C		
1	23VLPC01	Advanced Digital System Design(Common to Applied Electronics & VLSI Design)	РС	40	60	100	3	0	0	3		
2	23VLPC02	Digital IC Design(Common to Applied Electronics & VLSI Design)	РС	40	60	100	3	0	0	3		
3	23VLPC03	Device Modeling	РС	40	60	100	3	0	0	3		
4	23VLPC04	Digital IC and System Design Laboratory(Common to Applied Electronics & VLSI Design)	PC	60	40	100	0	0	4	2		
5	23VLPC05	Analog IC Design (Common to Applied Electronics & VLSI Design)	РС	40	60	100	3	0	0	3		
6	23VLPC06	System on Chip Design	РС	40	60	100	3	0	0	3		
7	23VLPC07	Scripting Languages and Verification	PC	50	50	100	3	0	2	4		
8	23VLPC08	Analog and Mixed Signal Laboratory	РС	60	40	100	0	0	4	2		
		Total		370	430	800	18	0	10	23		

PROFESSIONAL ELECTIVE (PE)

SI.	Course Code Course Title Category CA Marks	End Sem	Total	He		s/We edits				
No.				Marks N	Marks	Marks	L	Т	Р	С
1	23VLPEXX	Professional Elective – I	PE	40	60	100	3	0	0	3
2	23VLPEXX	Professional Elective - II	PE	40	60	100	3	0	0	3
3	23VLPEXX	Professional Elective - III	PE	40	60	100	3	0	0	3
4	23VLPEXX	Professional Elective - IV	PE	40	60	100	3	0	0	3
	Total			160	240	400	12	0	0	12

OPEN ELECTIVE (OE)

SI. No	Course Code	Course Title	Category	CA Marks	Marks	End Sem	Total Marks	Но		s/ Wo edit	eek/ s
NO	Goue				Marks	nui its	L	Т	Р	С	
1	23VLOEXX	Open Elective	OE	40	60	100	3	0	0	3	
	Total			40	60	100	3	0	0	3	

AUDIT COURSE (AC)

SI. No	Course Code	Course Title	Category	Marks	End Sem	Total Marks	Но		s/ W edit	eek/ s
NU	Loue				Marks	Marks	L	Т	Р	С
1	23VLACXX	Audit Course-I	AC	40	60	100	2	0	0	0
2	23VLACXX	Audit Course-II	AC	40	60	100	2	0	0	0
		Total	Control of the D	80	120	200	4	0	0	0
		19	法可以回去							

EMPLOYABILITY ENHANCEMENT COURSE (EEC)

Sl.	Course	Course Title Category Marks Sem	tegory Marks Sem Total	Total	Hours/Week/Credits					
No.	Code	course mile	Category	Maiks	Marks	Marks	L	Т	Р	С
1	23VLEE01	Mini Project	EEC	40	60	100	0	0	4	2
2	23VLEE02	Internship/Industrial Training	EEC	100	- -	100	-	-	**	2
3	23VLEE03	Project Phase-I	EEC	100	100	200	0	0	12	6
4	23VLEE04	Project Phase-II	EEC	200	200	400	0	0	24	12
		Total		440	360	800	0	0	40	22

** 4 Weeks Internship/Industrial Training

23VLFCZ1

RESEARCH METHODOLOGY AND IPR (Common to all branches)

SEMESTER I

 PREREQUISITES:
 CATEGORY
 L
 T
 P
 C

 NIL
 FC
 3
 0
 0
 3

Course	To impart knowledge on research methodology, Quantitativ	ve methods for			
Objectives	problem solving, data interpretation and report writing	oblem solving, data interpretation and report writing			
	• To know the importance of IPR and patent rights.				
UNIT – I	INTRODUCTION	9 Periods			

Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question-Choice of a problem, Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code.

UNIT – II	QUANTITATIVE METHODS FOR PROBLEM SOLVING	9 Periods			
Statistical Modelin	ng and Analysis, Time Series Analysis Probability Distributions	s, Fundamentals of			
Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression,					
Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral					
Analysis.					
UNIT – III	DATA DESCRIPTION AND REPORT WRITING	9 Periods			
Tabular and graph	cal description of data: Tables and graphs of frequency data of one va	riable, Tables and			
graphs that show t	he relationship between two variables , Relation between frequency o	listributions and			
other graphs, prep	aring data for analysis.				
Structure and Com	ponents of Research Report, Types of Report, Layout of Research Rep	ort, Mechanism of			
writing a research	report, referencing in academic writing.				
UNIT – IV	INTELLECTUAL PROPERTY	9 Periods			
Nature of Intellec	ctual Property: Patents, Designs, Trade and Copyright. Process	of Patenting and			
Development: technological research, innovation, patenting, development.					
Development: tech	nological research, innovation, patenting, development.				
-	nological research, innovation, patenting, development. ario: International cooperation on Intellectual Property. Procedure f	or grants of patents,			
-	ario: International cooperation on Intellectual Property. Procedure f	or grants of patents,			
International Scena	ario: International cooperation on Intellectual Property. Procedure f				
International Scena Patenting under PC UNIT – V	ario: International cooperation on Intellectual Property. Procedure fo T.	9 Periods			
International Scena Patenting under PC UNIT – V	ario: International cooperation on Intellectual Property. Procedure for CT. PATENT RIGHTS ope of Patent Rights. Licensing and transfer of technology. Pate	9 Periods			
International Scena Patenting under PC UNIT - V Patent Rights: Sco	ario: International cooperation on Intellectual Property. Procedure for CT. PATENT RIGHTS ope of Patent Rights. Licensing and transfer of technology. Pate	9 Periods			
International Scena Patenting under PC UNIT – V Patent Rights: Sco databases. Geograp	ario: International cooperation on Intellectual Property. Procedure for T. PATENT RIGHTS ope of Patent Rights. Licensing and transfer of technology. Pate phical Indications.	9 Periods nt information and			

REFERENCES:

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction", Juta Academic, 2nd
	edition, 2014.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, CengageLearning, 2013
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2019
4	Dr. C. R. Kothari and GauravGarg, "Research Methodology: Methods and Trends", New age
	international publishers, 4th Edition, 2018

COURSE OU	UTCOMES:	Bloom's				
Upon comp	Mapped					
CO1	Formulate research question for conducting research.	К3				
CO2	Analyze qualitative and quantitative data.	K4				
CO3	Interpret research findings and give appropriate conclusions.	К2				
CO4	Develop a structured content to write technical report.	К3				
CO5	Summarize the importance of IPR and protect their research work through	К2				
	intellectual property.					

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	2	1	3	3	1	3		
CO2	2	3	1	3	3	3		
CO3	2	3	3	3	3	3		
CO4	2	3	1	3	3	3		
C05	-	-	2	-	1	3		
23VLFCZ1	2	3	3	3	3	3		
– Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT	PATTERN- TH	EORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual							
Assessment							
1 /Case		50%	30%	20%	-	-	100%
Study 1/	-	50%		20%			100%
Seminar 1 /							
Project1							
Individual							
Assessment							
2 /Case		50%	30%	20%			100%
Study 2/	-	50%	50%	20%	-	-	100%
Seminar 2 /							
Project 2							
ESE	30%	30%	20%	20%	-	-	100%

23VLFC02

ADVANCED APPLIED MATHEMATICS

(Common to Applied Electronics and VLSI Design)

SEMESTER I

PREREQUISITES :	CATEGORY	L	Т	Р	C
NIL	FC	3	1	0	4

Course Objective	• To acquire knowledge with the foundation of ve	stor spaces inner product				
course objective		· · ·				
	space, linear transformation, graph theory and lin					
	mostly used in various applications in engineering					
UNIT – I	VECTOR SPACE	9+3 Periods				
Vector spaces – Subspaces – Linear combinations - Linear Span – Linear dependence - Linear						
independence – Basis and Dimensions.						
UNIT – II	INNER PRODUCT SPACE	9+3 Periods				
Inner Products Space	e: Norms-Orthonormal basis, Gram Schmidt orthogona	lization Process- Orthogonal				
complement and Least square Approximations for linear system of equations. Hilbert spaces: Riesz Bases.						
UNIT – III	LINEAR TRANSFORMATIONS	9+3 Periods				
Linear Transformation	n – Null space, Range space - dimension theorem - Matrix	and representation of Linear				
Transformation – Eig	en values Eigen vectors of linear transformation - Dia	agonalization by orthogonal				
transformation.						
UNIT – IV	GRAPH THEORY	9+3 Periods				
Graphs and simple g	raphs,Incidence and Adjacency Matrices, Sub graphs-Ve	ertex degrees and graphical				
sequences, walks, tra	ils, paths, cycles - Trees: Characterizations of trees, Cay	ley's formula, Shortest path				
algorithms and proble	ms.					
UNIT – V	LINEARPROGRAMMING PROBLEM	9+3 Periods				
Formulation – Graphic	cal solution – Simplex method –Big-M method- Transporta	tion and Assignment Models.				
Contact Periods:						
Lecture: 45Periods	Tutorial: 15 Periods Practical: 0 Periods Total: 6	0 Periods				

REFERENCES

1	Bronson,R., "Matrix Operation", Schaum 'soutlineseries,McGrawHill, Newyork, 2011.
2	T. Veerarajan, "Discrete Mathematics", McGraw Hill Education (India) Pvt. Ltd., 2019.
3	Taha H.A., "Operations Research: An introduction", Ninth Edition, Pearson Education, Asia, New
	Delhi, 2012.
4	Andrews, L.C. and Philips. R. L., "Mathematical Techniques for engineering and scientists",
	PrenticeHallof India,2006.
5	O'Neil P.V., "Advanced Engineering Mathematics", Cengage learning India private limited, (Thomson
	Asia pvt ltd, Singapore) 2007.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:			
C01	Obtain the knowledge of vector spaces and matrices	K3	
CO2	Explain the fallouts of inner product space for linear system of equations	К3	
CO3	Understand the concept of linear transformation	КЗ	
CO4	Understand the basic concept of graph theory and algorithm to solve network problems	КЗ	
C05	Develop the knowledge of finding solutions of Linear Programming problems	К3	

Course Articulation Ma	trix					
COs/POs	P01	P02	P03	P04	PO5	P06
C01	2	1	-	1	-	-
CO2	2	1	-	1	-	-
CO3	2	1	-	1	-	-
CO4	2	1	-	1	-	-
C05	2	1	-	1	-	-
23VLFC02	2	1	-	1	-	-
1 – Slight, 2 – Moderate,	3 – Substantial	•	•	•		•

ASSESSMEN	ASSESSMENT PATTERN- THEORY						
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual	20%	50%	30%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	20%	50%	30%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	20%	50%	30%	-	-	-	100%

23VLPC01

ADVANCED DIGITAL SYSTEM DESIGN (Common to Applied Electronics and VLSI Design)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	PC	3	0	0	3

Course Objective	• To understand the design and modeling of digital circuit	•				
	of synchronous and asynchronous sequential Circuit	s and architectures of				
	programmable devices and communication controllers.					
UNIT – I	SYSTEM DESIGN USING VERILOG HDL	9 Periods				
Overview of Digital	Design with Verilog HDL - Hierarchical Modeling Concepts - Ba	sic Concepts - Modules				
	ge Constructs and Conventions - Gate Level Modeling - Dataflow	e				
Modeling - Switch	Level Modeling - System Tasks - Functions and Compiler Direction	ectives - Realization of				
combinational circu	its using Verilog.					
UNIT – II	MODELING AND DESIGN	9 Periods				
Sequential Models	- Feedback Model, Capacitive Model, Implicit Model, Basic	Memory Components,				
Functional Register	, Static Machine Coding, Sequential Synthesis. Design of memories	s - ROM, single and dual				
port RAM - synchros	nous and asynchronous read - arithmetic circuit design - serial/pa	rallel adder, subtractor,				
	/subtractor multiplier - sequential multiplier, array multiplier, si	gned multiplier – ALU –				
Hardwired Control	Design – Micro programmed Control Design.					
UNIT – III	SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN	9 Periods				
Analysis of clocked	d synchronous sequential circuits and modeling - State diag	ram, state table, state				
assignment and rec	luction - Design of synchronous sequential circuits - Design of	Iterative circuits - ASM				
chart and realization	n using ASM - Realization of synchronous sequential circuits using	g Verilog.				
UNIT – IV	ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN	9 Periods				
Analysis of asynchro	onous sequential circuit – flow table reduction – Races - state assi	gnment-transition table				
and problems in tra	ansition table- Design of asynchronous sequential circuit - Static	, dynamic and essential				
	chronizers – Mixed operating mode asynchronous circuits - Reali	zation of asynchronous				
sequential circuits u	ising Verilog.					
UNIT – V	PROGRAMMABLE DEVICES AND CONTROLLER	9 Periods				
	device families – Designing a synchronous sequential circuit using					
	ine using PLD - FPGA -Memory controller - Processor control	unit – Communication				
	² C – VGA Controllers – USB.					
Contact Periods :						
Lecture:45 Periods	s Tutorial: 0 Periods Practical: 0 Periods Total: 45 Peri	iods				
REFERENCES :						
	h Jr, "Fundamentals of Logic Design" , Thomson Learning, 7 th editi	ion, 2014.				
2 Nripendra N E	Nripendra N Biswas, "Logic Design Theory", Prentice Hall of India, 2010.					
3 Parag K. Lala,	Parag K. Lala, "Digital system Design using PLD" , B S Publications, 2003.					
4 Morris Mano I	Morris Mano M, Charles R Kime, "Logic and Computer Design Fundamentals", Pearson Education, 2015.					
5 M. Morris R. M	lano and Michael D. Ciletti, "Digital Design: With an Introduction	to the Verilog HDL", 5th				
edition. Pears	on Education, 2013.					
<i>culturent)</i> i <i>culture</i>	· · · · · · · · · · · · · · · · · · ·					

COURS	COURSE OUTCOMES:		
Upon co	Upon completion of the course, the students will be able to:		
		Mapped	
C01	Explain the design of digital circuits in various abstraction level using Verilog HDL	K2	
	programming.		
CO2	Gain knowledge on sequential modeling and design of digital systems.	K2	
CO3	Design and analyse of synchronous sequential Circuits	K4	
C04	Design and analyse of asynchronous sequential Circuits	K4	
CO5	Understand the architectures of programmable devices and communication	K4	
	controllers		

Course Articulation	n Matrix					
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	3	-	1	-	2
CO2	3	3	-	1	-	2
CO3	3	3	-	2	-	2
CO4	3	3	-	2	-	2
C05	3	3	-	1	-	2
23VLPC01	3	3	-	1	-	2
1 – Slight, 2 – Moder	ate, 3 – Substa	ntial				

ASSESSMENT		r				a	
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	30%	20%	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	30%	20%	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	30%	30%	20%	20%	-	-	100%

DIGITAL IC DESIGN (Common to Applied Electronics and VLSI Design)

SEMESTER I

PREREQUISITES		CATEGORY	L	Т	Р	С	
NIL		РС	3	0	0	3	
						<u> </u>	
Course Objective	• To learn VLSI design methodology, MOS	transistor prine	ciples,	combi	nation	al and	
	sequential logic circuit design with FET	devices, arithm	netic b	uilding	g block	<s and<="" th=""></s>	
	memory architectures	memory architectures					
UNIT - I	OVERVIEW OF VLSI DESIGN METHODOLOGY						
VLSI Design Proces	s - Architectural design - Logical design-Physic	cal design - Lav	out sty	zles -	Full ci	ustom.	
•	iches, layout design rules: Need for design rules	• •	-				
	- Design rule backgrounder-Layer assignments-SO					,	
UNIT – II	MOS TRANSISTOR PRINCIPLES AND ADVANCE	D FET DEVICES	5		9 Pe	eriods	
MOSFET Transistor	Characteristic under Static and Dynamic Condit	tions, MOS Tran	sistor	Secon	dary E	Effects,	
CMOS Inverter - Sta	atic Characteristic, Dynamic Characteristic, Powe	r, Energy, and E	nergy	Delay	paran	ieters.	
FinFETs – VI Charac	teristics – SuperFin Technology.						
UNIT – III	COMBINATIONAL LOGIC CIRCUITS				9 Pe	eriods	
Static CMOS Design	– Complementary CMOS, Ratioed Logic, Pass-Tr	ansistor Logic.	Dynan	nic CM	IOS De	sign –	
Dynamic Logic: Bas	sic Principles, Speed and Power Dissipation of D	ynamic Logic, Is	sues in	n Dyna	amic D)esign,	
Cascading Dynamic	Gates.						
UNIT – IV	SEQUENTIAL LOGIC CIRCUITS				9 Pe	eriods	
Timing metrics for	sequential circuits, Static Latches and Registers, D	ynamic Latches	and Re	egister	rs, Cloc	k tree	
synthesis, Pipelines	, Pulse and sense amplifier based Registers, Non-B	istable Sequenti	al Circi	uits.			
UNIT – V	ARITHMETIC BUILDING BLOCKS AND MEMORY ARCHITECTURES9 Pc				9 Pe	eriods	
Data path circuits, A	Data path circuits, Architectures for Adders, Multipliers, Shifters, Speed and Area Tradeoffs, Array Subsystems						
based on CMOS and FinFET design: SRAM, DRAM, ROM.							
Contact Periods:							
Lecture: 45 Period	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

REFERENCE :

1	Jan M Rabaey, AnanthaChandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective",
	2 nd Edition, Prentice Hall of India, 2016.
2	Niel H.E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design- A circuits and SystemsPerspective",
	3 rd Edition, Pearson education, 2015.
3	Niraj K. Jha l Deming Chen , "Nanoelectronic Circuit Design", Springers, 2021.
4	Wayne Wolf, "Modern VLSI Design", PHI Learning Private Limited, New Delhi, 2011.
5	Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits", McGraw Hill, 3 rd Edition, 2016.

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon con	pletion of the course, the students will be able to:	Mapped
C01	Explain design methodology and layout design rules	K2
CO2	Discuss the MOS transistor principles	К2
CO3	Design CMOS combinational logic circuits with FET devices	K4
CO4	Design CMOS sequential logic circuits with FET devices	КЗ
CO5	Design the architectures for arithmetic building blocks and memory	КЗ

Course Articulation Matrix										
COs/POs	P01	P02	P03	P04	P05	P06				
C01	3	2	-	1	-	1				
CO2	3	2	-	1	-	1				
CO3	3	2	-	1	-	2				
C04	3	2	-	1	-	2				
C05	3	2	-	1	-	2				
23VLPC02	3	2	-	1	-	2				
1 – Slight, 2 – Moderat	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT P	ATTERN – THEO	RY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	30%	20%	-	-	100%
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	30%	20%	-	-	100%
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	30%	30%	20%	20%	-	-	100%

23VLPC03

DEVICE MODELING

SEMESTER I

PRE REQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	0	0	3

• To gain knowledge about the basic concepts of MOSFET and its characteristics and noise modeling.						
UNIT – I	MOSFET DEVICE PHYSICS	9 Periods				
Band theory of solid	s, carrier transport mechanism, MOS capacitor - surface potentia	al accumulation,				
depletion, inversion, electrostatic potential and charge distribution, threshold voltage, polysilicon work						
function, interface stat	es and oxide traps, drain current model, sub- threshold characteristics					
UNIT – II	MOSFET MODELING	9 Periods				
Basic modeling, SPICE	E Level-1, 2 and 3 models, Short channel effects, Advanced MOSF	ET modeling, RF				
modeling of MOS trans	sistors, Equivalent circuit representation of MOS transistor, High frequ	ency behavior of				
MOS transistor and AC	small signal modeling.					
UNIT – III	NOISE MODELING	9 Periods				
Noise sources in MOS	FET, Flicker noise modeling, Thermal noise modeling, model for acc	curate distortion				
analysis, nonlinearities	s in CMOS devices and modeling, calculation of distortion in analog CM	OS circuit.				
UNIT – IV	BSIM MOSFET MODELING	9 Periods				
Gate dielectric model,	Enhanced model for effective DC and AC channel length and width, T	hreshold voltage				
model, Channel charg	e model, Mobility model, Source/drain resistance model, I-V mode	, gate tunneling				
current model, substr	ate current models, Capacitance models, High speed model, RF mod	el, Noise model,				
Junction diode models,	Layout-dependent parasitics model.					
UNIT – V	FinFET and GAA FET MODEL	9 Periods				
Fin Field Effect Transistor : I-V characteristics of FinFET, device capacitances, parasitic effects of extension						
regions, performance of simple combinational gates and amplifiers, novel circuits using FinFETs and Gate-All-						
Around FET(GAA FET)	device.					
Contact Periods:						
Lecture: 45 Periods	Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

REFERENCES:

1	Trond Ytterdal, Yuhua Cheng, Tor A. Fjeldly and Wayne Wolf, "Device Modeling for Analog and RF CMOS
	Circuit Design", John Wiley & Sons Ltd., 2003.
2	B. G. Streetman and S. Banarjee, "Solid State Electronic Devices", Prentice-Hall of India Pvt. Ltd, New
	Delhi, India, 2005.
3	A. B. Bhattacharya, "Compact MOSFET Models for VLSI Design", John Wiley & Sons Inc.,
	2009.
4	P. Colinge, "FinFETs and Other Multi-Gate Transistors", Springer, 2009.

	COURSE OUTCOMES:				
Upon com	Upon completion of the course, the students will be able to:				
C01	Explain the concept of MOSFET and its characteristics.	Mapped K2			
CO2	Understand MOSFET modeling and analyze its characteristics.	К3			
CO3	Discuss on Noise modeling in MOSFET and CMOS devices.	К3			
CO4	Understand BSIM MOSFET models.	К3			
CO5	Explain the characteristics of Fin FET and GAA FET modeling.	K2			

Course Articulation Matrix										
COs/POs	P01	P02	P03	P04	P05	P06				
C01	3	2	-	2	-	1				
CO2	3	3	-	2	-	2				
CO3	3	3	-	1	-	2				
CO4	3	3	-	1	-	2				
CO5	3	3	-	2	-	2				
23VLPC03	3	3	-	2	-	2				
1 – Slight, 2 – Mode	rate, 3 – Substanti	al	-							

ASSESSMENT PATTERN – THEORY											
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %				
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %					
Category*											
CAT1	40%	40%	20%	-	-	-	100%				
CAT2	40%	40%	20%	-	-	-	100%				
Individual	-	50%	50%	-	-	-	100%				
Assessment											
1 /Case											
Study 1/											
Seminar 1 /											
Project1											
Individual	-	50%	50%	-	-	-	100%				
Assessment											
2 /Case											
Study 2/											
Seminar 2 /											
Project 2											
ESE	30%	40%	30%	-	-	-	100%				

PREREQUISITES				CATEGORY	L	Т	Р	С	
NIL		РС	0	0	4	2			
Course Objective	•	-	-	e the digital C ign on FPGAs a	MOS circuits and nd ASIC.	l fami	liariz	e witł	n th
LIST OF EXPERIM	ENTS:								
Digital IC Laborator	ry:								
1. Performance a	-	of CMOS i	inverter						
i. Plot VTC curve	and pl	ot dV _{out} vs	s. dV _{in} . Determ	nine transition v	voltage and gain.				
	-		I, NM _H , NM _L .						
ii. Plot VTC with v	varying	V_{DD} and v	varying device	ratio.					
0	Perfor	m transie:	nt analysis wi	th no load and	with load and dete	ermin	e t _{pHL} ,	, t _{plH} , 2	20%
			80%-to-20% t						
0	Perfor	m AC anal	lysis with fand	out 0 and fanou	t 1.				
Design the follo	owing u	using MOS	S/FinFET devi	ces and analyse	e the performance	:			
2. Combinational	and see	quential lo	ogic circuit(s)						
3. SRAM and DRA	М								
Layout and ana	alysis:								
4. Layout for any	archite	cture and	find the RC d	elay.					
5. Design the high	-		-	-	es.				
Design, simulat		-							
6. Combinational		=	-	-				-	
7. Arithmetic circu	uits like	e serial/pa	arallel adder/	subtractor and	multiplier - with	and w	ithou	t	
pipelining									
8. ALU architectu			-	control path cir	cuits.				
9. LCD Interfacing			acing						
10. MIPS 32-bit RIS	-	essor							
11. Reconfigurable	filter								
ASIC Design:									
	al desig	gn on com	ibinational an	d sequential log	gic circuits from R	TL to	GDS		
Contact Periods: Lecture: 0 Periods									

REFERENCE :

1	Jan M Rabaey, Anantha Chandrakasan, B Nikolic, "Digital Integrated Circuits: A Design Perspective",
	2 nd Edition, Prentice Hall of India, 2016.
2	Niel H.E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design- A circuits and Systems
	Perspective ", 3 rd Edition, Pearson education, 2015.
3	Altera Corporation- "Standard Cell ASIC to FPGA Design Methodology and Guidelines", April 2009.
4	Charles Roth Jr.H., "Fundamentals of Logic Design", Australia cengage learning, 7th edition, 2014.
5.	Charles Roth Jr.H., "Fundamentals of Logic Design", Australia cengage learning, 7th edition, 2014.
6.	Samir Palnitkar, "Verilog HDL-A guide to Digital Design and synthesis" 2 nd edition Pearson,
	Education in South Asia 2013.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
C01	Design and analyze the digital circuits	K4
CO2	Hands on experience on VLSI based experiments using simulation and synthesis	К3
	tools	
CO3	Work on the layout of the digital circuits	К3
C04	Implement the design on FPGAs	КЗ
C05	Explore on ASIC design flow	КЗ

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	3	2	-	3	2	2			
CO2	3	3	-	3	1	2			
CO3	3	2	-	3	2	2			
CO4	3	2	-	3	2	2			
CO5	3	2	-	3	2	2			
23VLPC04	3	2	-	3	2	2			
1 – Slight, 2 – Moderat	1 – Slight, 2 – Moderate, 3 – Substantial								

ANALOG IC DESIGN

(Common to Applied Electronics and VLSI Design)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	0	0	3

Course	• To develop the skills to design analog VLSI circuits for a given sp	pecification.
Objective		
UNIT – I	MOS DEVICE PHYSICS	9 Periods
General Conside	rations, MOS I/V Characteristics, Second Order effects, MOS Device r	nodels- Long channe
versus short cha	nnel devices. Single Stage Amplifiers – General considerations, Com	mon Source Stage: CS
stage with resis	tive load, CS stage with diode connected load, CS stage with curren	t source load, Source
Follower stage,	Common Gate Stage, Cascode Stage.	
UNIT – II	MOS AMPLIFIERS AND CURRENT MIRRORS	9 Periods
Differential Amp	lifiers –single Ended and Differential Operation, Basic Differential Pa	ir, Common
mode response,	Differential Pair with MOS loads, Gilbert Cell. Basic Current Mirror	rs, Cascode Curren
Mirrors, Active	Current Mirrors.	
UNIT – III	FREQUENCY AND NOISE CHARACTERISTICS OF MOS	9 Periods
	AMPLIFIERS	
Frequency Resp	onse of Amplifiers: Miller's effect, Common Source Stage, Source Foll	owers, Common Gate
Stage, Cascode	StageNoise: Types of Noise, Representation of Noise in circuits,	Noise in single stage
amplifiers, Nois	e in cascade stage, Noise in current mirrors, Noise power trade-off, No	oise bandwidth.
UNIT – IV	CMOS OPERATIONAL AMPLIFIERS	9 Periods
Properties of f	eedback circuits – Effect of feedback on noise -Operational A	Amplifiers – General
Considerations,	One Stage Op Amps- design procedure, Two Stage Op Amps, Com	mon-Mode Feedback
Input Range lim	itations, Slew Rate, Power Supply Rejection, Noise in Op Amps. Con	ncept of Stability and
Frequency Com	pensation in Op. Amps- Basic PLL Topology- Dynamics of Simple P	LL - Problem of Lock
Acquisition- Cha	rge Pump- Basic Charge-Pump PLL.	
UNIT – V	D/A AND A/D CONVERTERS	9 Periods
Ideal A/D and I	D/A converters, Quantization noise, Signed codes, Performance limi	tations. Nyquist Rate
	Decider based Dinerry seeled Current mode and hybrid D /A serve	erters – Nyquist A/E
	Decoder based Binary scaled, Current mode and hybrid D /A conv	51 /
D/A converters	grating type, Successive approximation type, Algorithmic type, Int	• • •
D/A converters: Converters: Inte		• • •
D/A converters: Converters: Inte	egrating type, Successive approximation type, Algorithmic type, Int d A/D converters, High performance A/D converters.	• • •

REFERENCES:

1	Behzad Razavi, " Design of Analog CMOS Integrated circuits" , McGraw Hill Education, 2 nd edition,
	2016.
2	David Johns, Ken Martin, "Analog Integrated circuit design", Wiley, 2 nd edition, 2013.
3	Paul R. Gray, Paul J.Hurst, Stephen H.Lewis, and Robert G. Meyer, "Analysis and Design of Analog
	Integrated circuits", Wiley, 5th edition, 2009.
4	R. Jacob Baker, "CMOS Circuit Design, Layout, and Simulation", Wiley, 3rd edition, 2010.

COURSE	E OUTCOMES:	Bloom's	
Upon co	Upon completion of the course, the students will be able to:		
		Mapped	
C01	Explain and analyze the MOS device models for different configurations.	КЗ	
CO2	Design various MOS amplifiers and Current mirror circuits,	K4	
CO3	Discuss and analyze the effects of frequency on MOS amplifier characteristics	КЗ	
CO4	Discuss the effects of feedback and noise in CMOS Operation amplifiers and	K2	
	explain the operation of PLL		
CO5	Reproduce and explain the operation of various Nyquist rate data converters	K2	

Course Articulation	Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06				
C01	3	2	-	1	-	1				
CO2	3	2	-	1	-	1				
CO3	3	1	-	1	-	1				
CO4	3	2	-	1	-	1				
CO5	3	2	-	1	-	1				
23VLPC05	3	2	-	1	-	1				
1 – Slight, 2 – Mode	erate, 3 – Subs	tantial			•					

ASSESSMENT PA	TTERN – THEOR	Y					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	30%	20%	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	30%	20%	-	-	100%
ESE	30%	30%	20%	20%	-	-	100%

SYSTEM ON CHIP DESIGN

PREREQUISITES	CATEGORY	L	Τ	Р	C
DIGITAL ELECTRONICS	РС	3	0	0	3

Course Objective							
UNIT – I	LOGIC GATES	9 Periods					
	Combinational logic functions - Static complementary gates - Switch power gates - Delay through resistive interconnect - Delay through inc	•					
UNIT – II	COMBINATIONAL LOGIC NETWORKS	9 Periods					
Introduction - Standard cell - Based layout – Simulation - Combinational network delay - Logic and interconnect design - Power optimization - Switch logic networks - Combinational logic testing.							
UNIT – III	SEQUENTIAL MAC	9 Periods					
Introduction -	Latches and Flip-Flops - Sequential systems and Clocking disciplin	es - Sequential system					
design - Powe	r optimization - Design validation - Sequential testing.						
UNIT – IV	SUBSYSTEM DESIGN	9 Periods					
Introduction -	- Subsystem design principles - Combinational shifters – Adders, A	LUs, Multipliers. High-					
-	ory. Field Programmable Gate Arrays – Role of FPGA, Types of FPGA, ystem design - Programmable Logic Arrays.	FPGA vs Custom VLSI,					
UNIT – V	FLOOR-PLANNING	9 Periods					
Introduction	– Floor planning methods – Block Placement and Channel Defin	nition, Global Routing,					
Switchbox Ro	uting, Power Distribution, Clock Distributions, Floor-planning tips,	Design Validation – Off					
Chip Connecti	ons – Packages, I/O Architecture, PAD Design.						
Contact Perio	ods:						
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	riods					

REFERENCES:

1	Wayne Wolf, " Modern VLSI Design – System – on – Chip Design", Prentice Hall, 3rd Edition 2008.
2	Wayne Wolf, " Modern VLSI Design – IP based Design", Prentice Hall, 4th Edition, 2015.
3	Joseph Yiu, "System-on-Chip Design with Arm Cortex-M Processors", ARM Education Media, 2019.
4	Youn-Long Steve Lin, "Essential Issues in SOC Design: Designing complex systems-on-chip", Springer, 2006.

COUR	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Mapped	
C01	Learn the fundamental factors of System On Chip.	K2	
CO2	Impart knowledge on optimization of power in combinational logic machines	КЗ	
CO3	Impart knowledge on optimization of power in sequential logic machines	КЗ	
CO4	Design subsystem design, FPGA and PLA network.	K4	
C05	To acquire knowledge on floor planning methods for system design	К3	

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	2	2		2	1				
C01	2	2	-	2	1	-			
C03	2	1	-	3	1	-			
C04	2	3	-	3	1	-			
CO5	2	3	-	3	1	-			
23VLPC06	2	3	-	3	1	-			
1 – Slight, 2 – Moder	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT	PATTERN – THI	EORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	30%	20%	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	30%	20%	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	30%	30%	20%	20%	-	-	100%

	L	Т	Р	С					
NIL		РС	3	0	2	4			
Course Objective• To introduce the basics of various scripting languages such as PERL, TCL, SYSTEM VERILOG and verification techniques, Universal Verification Methodology (UVM) test bench environment and write scripts for automation.									
UNIT – I	PERL BASICS	PERL BASICS 9 Periods							
I/O - Regular	oncepts of PERL - Scalar Data - Arrays and List D • Expressions - Functions - Miscellaneous contro ess - File and Directory manipulation - Process Ma	ol structures - F	Format	s-Adva	anced	PERL-			
UNIT – II	TCL BASICS				9 P	eriods			
An Overview of TCL and Tk -Tcl Language syntax - Variables – Expressions -Lists - Control flow – procedures - Errors and exceptions - String manipulations-Advanced TCL-Accessing files- Basics of Tk.									
UNIT – III	SYSTEM VERILOG				-				
Introduction	to System Verilog – Literal values-data Types - xpressions - procedural statements and control f	•			s-attri				
Introduction operators – e	to System Verilog – Literal values-data Types - xpressions - procedural statements and control f	•			s-attri erilog	butes- – Task			
Introduction operators – e and functions UNIT – IV Introduction Verification- (to System Verilog – Literal values-data Types - xpressions - procedural statements and control f - assertions. VERIFICATION TECHNIQUES to Verification - Testing Vs Verification - V Code coverage -Functional coverage. Linear Test bench - Linear Random Test bench -	low. Processes	in Syst	tem Ve	s-attri erilog 9 P o Fund	butes- – Task eriods ctional			
Introduction operators – e and functions UNIT – IV Introduction Verification- (Test bench –	to System Verilog – Literal values-data Types - xpressions - procedural statements and control f - assertions. VERIFICATION TECHNIQUES to Verification - Testing Vs Verification - V Code coverage -Functional coverage. Linear Test bench - Linear Random Test bench -	low. Processes	in Syst	tem Ve	s-attri erilog 9 Po Funo Regre	butes- – Task eriods ctional			

LIST OF EXPERIMENTS: Practical: 30 Periods

- 1. Test Bench generation using HDL based Simulators
- 2. Test Pattern generation
- 3. Scan Chain insertion
- 4. Test Bench generation for Combinational and Sequential circuits using PERL script
- 5. Compilation and Simulation of design modules and test bench modules using TCL script
- 6. Verification of DUT by developing a system Verilog test bench

REFERENCES:

1	Larry Wall, Tom Christiansen, John Orwant, "Programming PERL", Oreilly Publications, Fourth
	Edition, 2012.
2	Christian B Spear, "SystemVerilog for Verification: A guide to learning the Test bench language
	features", Springer publications, Third Edition, 2012.
3	John K. Ousterhout, Ken Jones, "Tcl and the Tk Toolkit", Pearson Education, Second Edition, 2010.
4	Ray Salmei, "The UVM Primer:A Step-by-Step Introduction to the Universal Verification
	Methodology", First Edition, Boston Light Press, 2013.
5	Vanessa R. Copper, "Getting started with UVM: A Beginner's Guide", Verilab Publishing, First Edition,
	2013.
6	B.Razavi, "Design of Analog CMOS Integrated Circuits", McGraw Hill, 2nd edition, 2011.
7	David A. Johns and Ken Martin, "Analog Integrated Circuit Design", Wiley India, 2nd edition, 2013

	SE OUTCOMES:	Bloom's Taxonomy	
Upon	Upon completion of the course, the students will be able to:		
		Mapped	
C01	Develop PERL scripts for VLSI design automation	K2	
CO2	Develop TCL scripts for VLSI design automation	K2	
CO3	Develop SYSTEM VERILOG scripts for VLSI design automation	K2	
C04	Understand the verification methodology of VLSI circuits.	K2	
C05	Design UVM test bench.	КЗ	

Course Articulation Matrix

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	3	1	2	2	2	-			
C02	3	-	2	-	-	-			
C03	3	-	2	-	-	-			
CO4	3	3	1	-	2	-			
CO5	3	3	1	-	2	-			
23VLPC07	3	3	2	2	2	-			
1 – Slight, 2 – Moderate, 3 – 9	1 – Slight, 2 – Moderate, 3 – Substantial								

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessme							
nt 1 /Case							
Study 1/							
Seminar 1							
/ Project1							
Individual	-	50%	50%	-	-	-	100%
Assessme							
nt 2 /Case							
Study 2/							
Seminar 2							
/ Project 2							
ESE	30%	40%	30%	-	-	-	100%

ANALOG AND MIXED SIGNAL LABORATORY

SEMESTER II

PREREQUISIT	TES	CATEGORY	L	Т	Р	С
NIL		PC	0	0	4	2
Course Objective	• To design and analyze the analog ci hardware-software co-design	rcuits, mixed s	igna	l circ	cuits	and
LIST OF EXP	ERIMENTS:					
ANALOG IC L	ABORATORY:					
Design and cl	naracterization of the following analog circuits					
• Comm	on source amplifier with Resistive/diode/curr	ent source load	& Co	omm	on ga	ate
ampli	îier:					
0	Transfer Characteristics (Vin vs Vout)					
0	Frequency Response (Vin vs Frequency)					
0	Layout analysis					
• Differe	ential amplifier & differential to single-ended c	ircuit :				
0	Transfer Characteristics (Vin vs Vout)					
0	Frequency Response (Vin vs Frequency)					
• Basic/	cascode current mirror					
 Voltag 	e mode buffer :					
0	Transfer Characteristics (Vin vs Vout)					
0	Frequency Response (Vin vs Frequency)					
 Design 	n of operational amplifier					
Mixed Signal	Circuits:					
0	A/D&D/ACircuits					
0	Sample and Hold					
0	PLL					
	wareco-design					
MAC ui						
-	enhancement/sharpening					
0	etection					
• CORDI						
Software/Tool	ls Required: HDL simulation software, HDL synthes	is and implemen	tatio	n tool		
,	signal design simulator	is and implement	lucio		,	
Contact Perio	ds:					
Lecture: 0 Per	riods Tutorial: 0 Periods Practical: 60 Per	riods Total: 60	Peri	iods		

REFERENCE :

1	Behzad Razavi, "Design of Analog CMOS Integrated circuits", McGraw Hill Education, 2 nd
	edition, 2016.
2	Luciano Lavagno, Igor L. Markov, Grant Martin, Louis K. Scheffer "Electronic Design
	Automation for IC Implementation, Circuit Design, and Process Technology: Circuit Design,
	and Process Technology", CRC Press; 2nd edition, 2016
3	Paul R. Gray and Robert G. Meyer, "Analysis and Design of Analog Integrated circuits", Wiley,
	5th edition, 2009.
4	Giovanni De Micheli , Rolf Ernst Morgon,"Reading in Hardware/Software Co-Design" Kaufmann
	Publishers,2001

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Design analog circuit using CMOS for a given design specification	K4
CO2	Study the mixed signal circuits	K4
CO3	Acquire practical knowledge on hardware-software co-design	К3
CO4	Use EDA tools for analog design	К3
C05	Measure and analyze various parameters in the design	K4

Course Articulation Matrix										
COs/POs	P01	PO2	P03	P04	P05	P06				
C01	3	3	1	2	1	2				
C02	3	3		1	1	2				
CO3	3	3	1	2	1	2				
CO4	3	3	1	2	1	2				
C05	3	3	1	2	1	2				
23VLPC08	3	3	1	2	1	2				
1 – Slight, 2 – Moderate, 3 -	- Substantia	al								

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	4	2

COURSEOBJECTIVE:

• To identify, analyze, formulate and handle programming projects with a comprehensive and systematic approach. In particular acquire practical knowledge within the chosen area of technology for technical project development.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COURSE OUTCOMES:		
Upon co	ompletion of the course, the students will be able to:	Mapped
C01	An exposure to take up real time problems and challenges.	K6
CO2	Hands-on experience on the technical topics	K4
CO3	Confidence to work on projects independently.	K4
CO4	Better presentation and communication skills	K5
CO5	An understanding of technical dissertation presentation and writing.	K5

Course Articulation Matrix							
COs/POs	P01	PO2	P03	P04	PO5	P06	
C01	3	3	2	3	1	2	
CO2	3	3	2	3	2	3	
CO3	1	3	2	3	3	3	
C04	1	3	2	3	3	3	
CO5	1	3	2	3	3	3	
23VLEE01	3	3	2	3	3	3	
1 – Slight, 2 – Moder	1 – Slight, 2 – Moderate, 3 – Substantial						

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	-	2

COURSEOBJECTIVE:

• To expose the students to work on real time challenges independently in industry and present their technical dissertation and writing.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 160 Periods Total: 160 Periods

	COURSE OUTCOMES: Upon completion of the course, the students will have:		
C01	An exposure to the processes of VLSI or other related industries	Mapped K6	
CO2	An ability to take up real time challenges.	K4	
CO3	Confidence to work on the project independently.	K4	
CO4	Team work experience	К3	
CO5	An understanding of technical dissertation presentation and writing.	K5	

Course Articulation	Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	PO5	P06		
C01	3	3	2	3	1	2		
CO2	1	3	2	3	3	3		
CO3	3	3	2	3	2	3		
CO4	2	2	3	3	1	2		
CO5	3	3	2	3	2	3		
23VLEE02	3	3	2	3	2	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

PRE REQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	12	6

COURSE OBJECTIVE:

• To expose the students to work on real time challenges independently and to present the technical dissertation and writing.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 180 Periods Total: 180 Periods

COURSE (DUTCOMES:	Bloom's
		Taxonomy
Upon com	pletion of the course, the students will have:	Mapped
C01	An exposure to take up real time problems and challenges.	K6
CO2	Hands-on experience on the technical topics	K4
CO3	Confidence to work on projects independently.	K4
C04	Better presentation and communication skills	K5
CO5	An understanding of technical dissertation presentation and writing.	K5

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	3	3	2	3	1	2			
CO2	1	3	2	3	3	3			
CO3	3	3	2	3	2	3			
CO4	1	1	1	1	3	3			
CO5	3	3	2	3	2	3			
23VLEE03	3	3	2	3	2	3			
1 – Slight, 2 – Mod	lerate, 3 – Sul	ostantial							

23VLEE04	PROJECT PHASE II	SEMESTER IV
----------	------------------	-------------

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	EEC	0	0	24	12

COURSE OBJECTIVE:

• To expose the students to work on real time challenges independently to provide solution and present the technical dissertation and writing

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will have:	Mapped
C01	An exposure to take up real time problems and challenges and provide solution	K6
CO2	Hands-on experience on the technical topics	K4
CO3	Confidence to work on projects independently.	K4
C04	Better presentation and communication skills	К5
C05	An understanding of technical dissertation presentation and writing.	К5

Course Articulation Matrix						
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	3	2	3	1	2
CO2	1	3	2	3	3	3
CO3	3	3	2	3	2	3
CO4	1	1	1	1	3	3
CO5	3	3	2	3	2	3
23VLEE04	3	3	2	3	2	3
1 – Slight, 2 – Mode	erate, 3 – Subs	stantial	-		-	•

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Objective partitioning, p	partitioning, placement and floor planning in VLSI Design Automation and the							
different globa	different global routing Algorithm.							
UNIT – I VLSI DESIGN METHO	DOLOGIES	9 Periods						
Introduction - VLSI Design Cycle - New trends in VLSI design Cycle- Physical Design - New trends in								
physical design cycle - Design styles -	VLSI Design Automation Tools - Algorit	thmic graph theory and						
computational complexity - Tractable ar	id intractable problems.							
UNIT – II PARTITIONING AND	PLACEMENT	9 Periods						
Partitioning – Problem formulation –	Group migration Algorithms – KL,FM A	Algorithms, Placement –						
Simulation based algorithm – Simulated	annealing, Force directed algorithm, Part	tition based algorithms –						
Breuer's Algorithm, Terminal propagat	ion Algorithm, Floor planning – Slicing	floor plan, Constrained						
Based Floor planning – Pin assignment.								
UNIT – III ROUTING		9 Periods						
Routing - Grid routing – Maze routing Al	gorithms, Global routing – Shortest path l	based Algorithm, Steiner						
free based Algorithm, Detailed routing	– Left edge Algorithm, Greedy channel	Routing – Over the cell						
routing, clock routing.								
UNIT – IV SIMULATION		9 Periods						
Simulation – Gate level modeling and S	imulation – Switch level modeling and si	imulation – Switch level						
modeling and simulation - Combination	al Logic Synthesis – Binary decision dia	grams – Two level logic						
Synthesis.								
UNIT – V MODELING AND SYN	THESIS	9 Periods						
High level synthesis - Hardware models - Internal representation - Allocation assignment and								
scheduling – High level transformation.								
Contact Periods:								
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								

N.A Sherwani, "Algorithms for VLSI Physical Design Automation", Kluwer Academic Publishers, 2007.
S.H. Gerez, "Algorithms for VLSI Design Automation", John Wiley & Sons, 2008.
S. K. Lim, "Practical Problems in VLSI Physical Design Automation", Springer, 2008.
A. B. Kahng, J. Lienig, I. L. Markov, J. Hu, "VLSI Physical Design: From Graph Partitioning to Timing
Closure", Springer 2011.
C. J. Alpert, D. P. Mehta, S. S. Sapatnekar, "Handbook of Algorithms for Physical Design Automation",
Auerbach Publications, 2008.
Sait.S.M. and Youssef.H., "VLSI Physical Design Automation", World Scientific, 2004.
Micheli.G.D., "Synthesis and Optimization of Digital Circuits", Tata McGraw Hill, 2003.
-

	SE OUTCOMES: completion of the course, the students will have	Bloom's Taxonomy Mapped
C01	Understand VLSI Design methodologies & CAD tools	K2
CO2	Analyze the design trade off in various partitioning, placement and floor planning in VLSI Design Automation	K4
CO3	Analyze the different global routing Algorithms	K4
CO4	Demonstrate simulation in Gate level modeling, Switch level modeling and examine logical synthesis	КЗ
C05	Understand modeling and synthesis	K2

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05	P06	
C01	3	3	-	1	-	1	
CO2	3	3	-	1	-	1	
CO3	3	3	-	1	-	1	
CO4	3	3	-	1	-	1	
C05	3	3	-	1	-	1	
23VLPE01	3	3	-	1	-	1	
1 – Slight, 2 – Moder	ate, 3 – Substan	tial					

ASSESSMENT P.	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	40%	40%	20%	-	-	-	100%			
CAT2	40%	40%	20%	-	-	-	100%			
Individual	-	50%	25%	25%	-	-	100%			
Assessment 1										
/Case Study 1/										
Seminar 1 /										
Project1										
Individual	-	50%	25%	25%	-	-	100%			
Assessment 2										
/Case Study 2/										
Seminar 2 /										
Project 2										
ESE	30%	40%	20%	10%	-	-	100%			

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	• To gain knowledge on VLSI Interconnects, Transmission line param	neters of VLSI					
Objective							
	interconnects						
UNIT – I	PRELIMINARYCONCEPTS OF VLSI INTERCONNECTS 9 Periods						
Interconnects for	VLSI applications-Copper interconnections –Method of images- Method of r	noments- Even					
and Odd capacita	nces- Transmission line equations- Miller's theorem- Resistive interconn	ects as Ladder					
network Propagat	ion modes in Micro strip interconnects- Slow wave propagations - Propagati	on delay.					
UNIT – II	PARASITICRESISTANCES, CAPACITANCE AND INDUCTANCES	9 Periods					
Parasitic resistanc	es, capacitances and inductances- Approximate formulas for inductances- G	reen's function					
method: using m	ethod of images and Fourier integral approach- Network Analog metho	od- Inductance					
extraction using fa	st Henry- Copper interconnections for Resistance modeling.						
UNIT – III	INTERCONNECTION DELAYS	9 Periods					
Metal insulator se	miconductor Micro strip line- Transmission line analysis for single level int	erconnections-					
Transmission line	analysis for parallel multilevel interconnections- Analysis of crossing int	erconnections-					
Parallel interconn	ection models for Micro strip line- modeling of lossy parallel and crossing	interconnects-					
High frequency los	sses in Micro strip line- Expressions for interconnection delays- Active interc	onnects.					
UNIT – IV	CROSS TALK ANALYSIS	9 Periods					
Lumped capacitar	nce approximation- Coupled multi conductor MIS Micro strip line model	for single level					
interconnects- Fre	equency domain level for single level interconnects- Transmission line le	vel analysis of					
parallel multi leve	l interconnections.						
UNIT – V	NOVEL SOLUTIONS FOR PROBLEMS IN INTERCONNECTS	9 Periods					
Optical interconne	cts – Carbon Nano tubes, Graphenes, Copper wires.						
Contact Periods:							
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

1	H B Bakog Lu, Circuits, "Interconnections and packaging for VLSI", Addison Wesley publishing
	company.
2	J A Davis, J D Meindl, "Interconnect technology and design for Gigascale integration", Kluwer
	academic publishers.
3	Nurmi J, Tenhumen H, Isoaho J, Jantsch A, "Interconnect Centric design for advanced SOC and NOC",
	Springer.
4	C K Cheng, J Lillis, S Lin, N Chang, "Interconnect analysis and synthesis", Wiley inter-science.
5	Askok K Goel, "High speed VLSI interconnections", Wiley inter science, second edition, 2007.
6	Askok K Goel, "High speed VLSI interconnections", Wiley interscience, second edition, 2007.

COURSE O	Bloom's	
	Taxonomy	
Upon com	Mapped	
C01	Gain Basic knowledge on VLSI Interconnects	К2
CO2	Examine Transmission line parameters of VLSI interconnects	КЗ
CO3	Examine interconnection delays	КЗ
C04	Explain cross talk analysis in Interconnects	К2
C05	Understand the novel solutions in Interconnects	К2

Course Articulation Matrix

COs/POs	P01	P02	P03	P04	PO5	P06
C01	2	2	-	1	-	1
CO2	2	2	-	1	-	1
CO3	2	2	-	1	-	1
CO4	2	2	-	1	-	1
C05	2	2	-	1	-	1
23VLPE02	2	2	-	1	-	1
1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	30%	40%	30%	-	-	-	100%

SEMESTER I

ILPE300Course Objective• To explain, analyse and construct various analog integrated circuits.NIT - ICIRCUIT CONFIGURATION FOR BIPOLAR IC9 Perpolar Current Mirrors-General Properties-Simple Current Mirror with beta helper-Simple current mith degeneration-Cascode Current Mirror-Wilson Current mirror-Bipolar Widlar Current Source-Bieaking Current Source-Supply Insensitive Biasing- Band-Gap-Referenced Bias Circuits in BiBiechnology. Output Stages: Transfer Characteristics, Power Output and Efficiency of Emitter Followeass B Push-Pull stage.9 PerNIT - IICIRCUIT CONFIGURATION FOR MOS IC9 PerOS Current Mirrors-General Properties-Simple Current Mirror with beta helper-Simple current m9 PerOS Current Mirrors-General Properties-Simple Current Mirror with beta helper-Simple current m9 Perth degeneration-Cascode Current Mirror-Wilson Current Mirror With beta helper-Simple current m9 Perth degeneration-Cascode Current Mirror-Wilson Current Mirror With beta helper-Simple current m9 Perth degeneration-Cascode Current Mirror-Wilson Current mirror-MOS Widlar Current Source9 Pereaking Current Source- Band-Gap-Referenced Bias Circuits in CMOS Technology. Output Stages: Tra9 Perth degeneration-Cascode Current Mirror-CMOS Class AB Output Stage9 Per	L	Т	Р	C		
PE	3	0	0	3		
ous analog integrated	circuit	S.				
		9 Perio				
nirror-Bipolar Widlar d-Gap-Referenced Bi	Curre as Cir	nt Sou cuits	rce-Bi in Bi	polar polar		
			9 Poi	rinds		
t mirror-MOS Widla n CMOS Technology.	ar Cur	rent S	ource	-MOS		
			9 Pei	riods		
de Rejection Ratio-I	Power-	Supply	Reje	ction		
Two-Stage MOS Oper	rationa	l Amp	ifiers	with		
MOS Folded-Cascode	Operat	ional A	mplif	iers -		
rational Amplifiers-	Freque	ncy R	espon	se of		
			9 Pei	riods		
Simple PLL - Charge	-Pump	PLLs:	Proble	em of		
1-ideal Effects in PLLs	s - Jitte	r in PL	Ls - D	elay-		
er. Noise: Sources of N	Noise-N of Fe	loise M edback	lodels c on l	of IC		
	lirror with beta helpen nirror-Bipolar Widlar d-Gap-Referenced Bi utput and Efficiency fror with beta helpen t mirror-MOS Widla n CMOS Technology. ge ode Rejection Ratio-1 Fwo-Stage MOS Open MOS Folded-Cascode rational Amplifiers- Simple PLL - Charge n-ideal Effects in PLLs Cell as Multiplier-Corr er. Noise: Sources of N	lirror with beta helper-Simp nirror-Bipolar Widlar Curren d-Gap-Referenced Bias Cir utput and Efficiency of Emir cror with beta helper-Simple t mirror-MOS Widlar Curren cMOS Technology. Output ge ode Rejection Ratio-Power- Two-Stage MOS Operationa MOS Folded-Cascode Operat rational Amplifiers- Freque Simple PLL - Charge-Pump n-ideal Effects in PLLs - Jitte Cell as Multiplier-Complete A	lirror with beta helper-Simple curr hirror-Bipolar Widlar Current Sound d-Gap-Referenced Bias Circuits utput and Efficiency of Emitter Fo rror with beta helper-Simple curr t mirror-MOS Widlar Current S n CMOS Technology. Output Stage de Rejection Ratio-Power-Supply Two-Stage MOS Operational Ampl MOS Folded-Cascode Operational A rational Amplifiers- Frequency Re Simple PLL - Charge-Pump PLLs: h-ideal Effects in PLLs - Jitter in PL Cell as Multiplier-Complete Analog er. Noise: Sources of Noise-Noise M	9 Per 9		

1	Paul R. Gray, Paul J.Hurst, Stephen H.Lewis, and Robert G. Meyer, "Analysis and Design of Analog
	Integrated circuits", Wiley, 5th Edition, 2009.
2	Behzad Razavi, " Design of Analog CMOS Integrated circuits" , McGraw Hill Education, 2 nd Edition, 2016.
3	David Johns, Ken Martin, "Analog Integrated circuit design", Wiley, 2 nd Edition, 2013.
4	Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits" McGraw Hill
	Education, 4 th Edition, 2015.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy
		Mapped
C01	Analyse the basic circuits required to build up Bipolar IC	K4
C02	Analyse the basic circuits required to build up MOS IC	K4
CO3	Design and describe the characteristics of two stage Bipolar and MOS Operation amplifiers	K4
C04	Analyse the various types of PLL circuit and explain their applications	K4
C05	Discuss the construction and working of non-linear analog circuits and describe noise characteristics in analog circuits	K2

Course Articulati	Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06				
C01	3	2	-	1	-	1				
CO2	3	2	-	1	-	1				
CO3	3	2	-	1	-	1				
CO4	3	2	-	1	-	1				
C05	3	2	-	1	-	1				
23VLPE03	3	2	-	1	-	1				
1 – Slight, 2 – Mode	erate, 3 – Sub	stantial								

ASSESSMENT	ASSESSMENT PATTERN – THEORY											
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total					
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%					
Category*												
CAT1	40%	40%	20%	-	-	-	100%					
CAT2	40%	40%	20%	-	-	-	100%					
Individual	-	50%	25%	25%	-	-	100%					
Assessment												
1 /Case												
Study 1/												
Seminar 1 /												
Project1												
Individual	-	50%	25%	25%	-	-	100%					
Assessment												
2 /Case												
Study 2/												
Seminar 2 /												
Project 2												
ESE	30%	40%	20%	10%	-	-	100%					

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	• To gain knowledge on sampling circuits, sample and hold architectures, D-A and A-D converter architectures							
UNIT – I	SAMPLE-AND-HOLD ARCHITECTURES	9 Periods						
Introduction to D	Data conversion and Processing- Sampling Switches-MOS, Diode Switches	-Improvements in						
MOS Switch Perf	ormance-Conventional Open-Loop and Closed-Loop Architecture, Open-	Loop Architecture						
with Miller Cap	acitance, Multiplexed-Input Architectures, Recycling Architecture, S	witched-Capacitor						
Architecture, Cur	rent-Mode Architecture.							
UNIT – II	DIGITAL-TO-ANALOG CONVERTER ARCHITECTURES	9 Periods						
Resistor-Ladder	Basic principles-General Considerations-Performance Metrics-Reference Multiplication and Division, Resistor-Ladder DAC Architectures-Ladder architecture with switched subdivider, Intermeshed ladder architecture, Current-Steering Architectures, R2R network based architectures, Segmented Architectures.							
UNIT – III	ANALOG-TO-DIGITAL CONVERTER ARCHITECTURES	9 Periods						
General Consider	rations- Performance Metrics- Flash Architectures, Two-Step Architectu	res, Interpolative						
and Folding Arc Architectures.	hitectures, Pipelined Architectures, Successive Approximation Architec	tures, Interleaved						
UNIT – IV	DATA CONVERSION SYSTEMS	9 Periods						
Amplifiers- Ope	n-Loop Amplifiers, Closed-Loop Amplifiers, Operational Amplifiers	s, Gain Boosting						
Techniques. Com	parators- Bipolar Comparators, CMOS Comparators, BiCMOS Comparator	S.						
UNIT – V	OFFSET CANCELLATION AND CALIBRATION TECHNIQUES	9 Periods						
Comparator Offs	et Cancellation- Input, Output and multistage Offset Storage, Compara	tors using Offset-						
Cancelled Latch Techniques.	es, OpAmp Offset Cancellation. Calibration Techniques- DAC and	ADC Calibration						
Contact Periods Lecture: 45 Peri								

1	BehzadRazavi, "PrinciplesofDataConversionSystemDesign", JohnWiley&Sons,2011.
2	SundaramNatarajan,"MicroelectronicsAnalysis&design",McGrawHill2006
3	R.Jbaker," CMOSmixedsignalcircuitdesign ",Wileyinterscience,2 nd edition,2009.
4	B.Razavi," DesignofAnalogCMOSIntegratedCircuits ",McGrawHill,2 nd edition,2011.
5	DavidA. Johns and Ken Martin, " Analog Integrated Circuit Design ",WileyIndia,2 nd edition,2013

	E OUTCOMES: ompletion of the course, the students will have a/an:	Bloom's Taxonomy Mapped
C01	Basic knowledge of sampling circuits and Sample & Hold architectures	К2
CO2	In-depth knowledge in digital to analog converter architectures	К3
CO3	In-depth knowledge in analog to digital converter architectures	К3
CO4	Knowledge on various blocks of data conversion systems	К2
C05	Knowledge in various offset cancellation techniques and Calibration techniques	К2

Course Articulation Matrix									
COs/POs	P01	PO2	P03	P04	PO5	P06			
C01	3	3	-	2	-	2			
CO2	3	3	-	2	-	2			
CO3	3	3	-	2	-	2			
CO4	3	3	-	2	-	2			
C05	3	3	-	2	-	2			
23VLPE04	3	3	-	2	-	2			

ASSESSMEN	T PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessmen t 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	-	-	100%
Individual Assessmen t 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%
ESE	30%	40%	30%	-	-	-	100%

SEMESTER I

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	To gain knowledge on Quantum Computation, Quantum Informati Circuits and Quantum cryptography	ion, Quantum
UNIT – I	INTRODUCTION	9 Periods
Quantum Compu	Itation vs Classical Computation - Mathematics and Quantum Mechanics	s Preliminaries -
Linear Algebra -	Unitary Matrices - Tensor Product - Pauli Matrices - Notions of Quantu	Im Information -
Quantum state	- Dirac Notation - Superpostition - Entanglement - Bell State - P	robabilities and
Measurements.		
UNIT – II	QUANTUM GATES AND CIRCUITS	9 Periods
Qubits - Quantur	n Gates - Single Qubit Gates - Multiple Qubit Gates - Quantum GatesActin	g on One Qubit -
Bloch sphere Rep	presentation - Circuit Models - Design of Quantum Circuits.	
UNIT – III	QUANTUM ALGORITHM AND IMPLEMENTATION	9 Periods
Deutsch's Algor	ithm - Deutsch-Jozsa Algorithm - Bernstein-Vazirani Algorithm - Q	uantum Fourier
Transform - Show	's Factoring Algorithm - Grover's Search Algorithm.	
UNIT – IV	QUANTUM ERROR CORRECTION AND SIMULATION	9 Periods
-	orrection - Fault-tolerant Computation - Computational Complexity. Analy	ysis of Error
Correction Simul	ation.	
UNIT – V	QUANTUM CRYPTOGRAPHY	9 Periods
No Cloning The	orem - Private Key Cryptography - Quantum Key Distribution - BB84	protocol - B92
protocol - EPR pr	otocol - Secured Quantum Key Distribution - Post Quantum Cryptography	у.
Contract Devi 1		
Contact Periods		
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	Michael A Nielsen and Isaac L Chuang, "Quantum Computation and Quantum Information",
	Cambridge University Press, 2010.
2	Phillip Kaye, Raymond Laflamme and Michele Mosca, "An Introduction to Quantum Computing",
	Oxford University Press, 2007.
3	Eleanor Rieffel and Wolfgang Polak, "Quantum Computing A Gentle Introduction", The MIT Press,
	2011.
4	George F Viamontes, Igor L Markov and John P Hayes, "Quantum Circuit Simulation", Springer,
	2009.
5	Chris Bernhardt, "Quantum Computing for Everyone", The MIT Press, 2019.

	COURSE OUTCOMES: Upon completion of this course, students will be able to			
C01	Understand Quantum Computation and Quantum Information	K2		
CO2	Explain the Quantum gates and design of Quantum circuits	КЗ		
CO3	Develop and simulate Quantum algorithms	K3		
CO4	Explain Quantum error correction and Fault-tolerant computation	K2		
CO5	Explain Quantum Cryptography and Key distribution	K2		

Course Articulation Matrix								
COs/POs	P01	PO2	P03	P04	P05	P06		
C01	3	2	-	1	-	1		
CO2	3	2	-	1	-	1		
CO3	3	2	-	1	-	1		
CO4	3	2	-	1	-	1		
CO5	3	2	-	1	-	1		
23VLPE05	3	2	-	1	-	1		

ASSESSME	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
Category*											
CAT1	40%	40%	20%	-	-	-	100%				
CAT2	40%	40%	20%	-	-	-	100%				
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	-	-	100%				
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%				
ESE	30%	40%	30%	-	-	-	100%				

LOW POWER IC DESIGN

(Common to Applied Electronics and VLSI Design)

SEMESTER II

PREREQUISITES		CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
Course Objective	• To acquire knowledge in low power CMOS	design and optim	iizati	on.		
UNIT – I	INTRODUCTION TO LOW POWER DESIGN				9 P	eriods
Physics of Power Dis	ssipation in CMOS FET Devices-Sources of power c	onsumptionBas	sic Pr	inci	ples	of Lov
Power Design. Source	ces of Power dissipation in Ultra Deep Submicron	CMOS Circuits -	Stati	c, D	ynan	nic and
Short circuit compo	nents Effects of scaling on power consumption- l	Low power desig	gn flo	w-	Norr	nalizeo
Figure of Merit – PDI	P& EDP.					
UNIT – II	POWER DISSIPATION IN CMOS				9 P	eriods
SPICE circuit simula	tion-Gate level Analysis, Architecture level Analys	is, Data Correlati	ion A	naly	vsis,	Monte
Carlo Simulation, P	robabilistic Power Analysis. Statistical Technique	s - Estimation o	of Gli	tchiı	ng P	ower
Sensitivity Analysis -	- Circuit Reliability - Power Estimation at the circuit	: level - High leve	l Pov	ver I	Estin	nation
Information Theory	based approaches - Estimation of maximum power.					
UNIT – III	POWER OPTIMIZATION TECHNIQUES				9 P	eriods
Circuit Level - Tr	ransistor and Gate Sizing, Equivalent Pin Ord	ering, Network	Res	truc	turir	ng and
Reorganization, Spec	cial Latches and Flip Flops, Low Power Digital Cell	Library, Adjustał	ole De	evice	e Th	resholo
	rent in deep sub micrometer transistors.					
UNIT – IV	SPECIAL TECHNIQUES				-	
UNIT – IV Gate Reorganization	SPECIAL TECHNIQUES n, Signal Gating, Logic Encoding, State Machine				onal	Logic
UNIT – IV Gate Reorganization Architectural and S	SPECIAL TECHNIQUES n, Signal Gating, Logic Encoding, State Machine System Level – Power and Performance Manage	ment, Switching	Acti	vity	onal Rec	Logic luction
UNIT – IV Gate Reorganization Architectural and S Parallel Architecture	SPECIAL TECHNIQUES n, Signal Gating, Logic Encoding, State Machine system Level – Power and Performance Manage with Voltage Reduction, Flow Graph Transformat	ment, Switching ion. Advanced Te	Acti echni	vity ques	onal Rec 5- Ac	Logic luction liabatio
UNIT – IV Gate Reorganization Architectural and S Parallel Architecture Computation, Pass 7	SPECIAL TECHNIQUES n, Signal Gating, Logic Encoding, State Machine System Level – Power and Performance Manage with Voltage Reduction, Flow Graph Transformat Transistor Logic Synthesis, Asynchronous Circuits	ment, Switching ion. Advanced Te	Acti echni	vity ques	onal Rec 5- Ac	Logic luction liabatio
UNIT – IV Gate Reorganization Architectural and S Parallel Architecture Computation, Pass ' charge recycling bus	SPECIAL TECHNIQUES n, Signal Gating, Logic Encoding, State Machine System Level – Power and Performance Manage with Voltage Reduction, Flow Graph Transformat Transistor Logic Synthesis, Asynchronous Circuits	ment, Switching ion. Advanced Te	Acti echni	vity ques	onal Rec 5- Ac	luction liabatio
UNIT – IV Gate Reorganization Architectural and S Parallel Architecture Computation, Pass ' charge recycling bus UNIT – V	SPECIAL TECHNIQUES n, Signal Gating, Logic Encoding, State Machine System Level – Power and Performance Manage e with Voltage Reduction, Flow Graph Transformat Transistor Logic Synthesis, Asynchronous Circuits , delay balancing. LOW POWER MEMORIES:	ment, Switching ion. Advanced Te s, Low power bu	Acti echni 1s –	vity ques low	onal Rec s- Ac swin	Logic luction liabation ng bus Periods
UNIT – IV Gate Reorganization Architectural and S Parallel Architecture Computation, Pass ' charge recycling bus UNIT – V Basics of ROM, Low	SPECIAL TECHNIQUES n, Signal Gating, Logic Encoding, State Machine ystem Level – Power and Performance Manage with Voltage Reduction, Flow Graph Transformat Transistor Logic Synthesis, Asynchronous Circuits , delay balancing. LOW POWER MEMORIES: power ROM Technology, Basics of SRAM-Memory	ment, Switching ion. Advanced Te s, Low power bu v Cell-Low Power	Acti echni IS –	vity ques low	onal Rec s- Ac swin 9 P Sechn	Logic luction liabation ng bus Period s
UNIT – IV Gate Reorganization Architectural and S Parallel Architecture Computation, Pass ' charge recycling bus UNIT – V Basics of ROM, Low Precharge and Equa	SPECIAL TECHNIQUES n, Signal Gating, Logic Encoding, State Machine System Level – Power and Performance Manage e with Voltage Reduction, Flow Graph Transformat Transistor Logic Synthesis, Asynchronous Circuits , delay balancing. LOW POWER MEMORIES: power ROM Technology, Basics of SRAM-Memory alization Circuit-Basics of DRAM-Low Power DRAM	ment, Switching ion. Advanced Te s, Low power bu v Cell-Low Power M Technology. Co	Acti echni is – SRA	vity ques low M T	onal Rec s- Ac swin 9 P Sechn	Logic luction liabation ng bus Period s
UNIT – IV Gate Reorganization Architectural and S Parallel Architecture Computation, Pass ' charge recycling bus UNIT – V Basics of ROM, Low Precharge and Equa	SPECIAL TECHNIQUES n, Signal Gating, Logic Encoding, State Machine ystem Level – Power and Performance Manage with Voltage Reduction, Flow Graph Transformat Transistor Logic Synthesis, Asynchronous Circuits , delay balancing. LOW POWER MEMORIES: power ROM Technology, Basics of SRAM-Memory	ment, Switching ion. Advanced Te s, Low power bu v Cell-Low Power M Technology. Co	Acti echni is – SRA	vity ques low M T	onal Rec s- Ac swin 9 P Sechn	Logic luction liabation ng bus Periods
UNIT – IV Gate Reorganization Architectural and S Parallel Architecture Computation, Pass ' charge recycling bus UNIT – V Basics of ROM, Low Precharge and Equa	SPECIAL TECHNIQUES n, Signal Gating, Logic Encoding, State Machine system Level – Power and Performance Manage with Voltage Reduction, Flow Graph Transformat Transistor Logic Synthesis, Asynchronous Circuits , delay balancing. LOW POWER MEMORIES: power ROM Technology, Basics of SRAM-Memory alization Circuit-Basics of DRAM-Low Power DRAI Family-Low Voltage BiCMOS Logic family-Low Volta	ment, Switching ion. Advanced Te s, Low power bu v Cell-Low Power M Technology. Co age BiCMOS Appli	Acti echni is – SRA onver	vity ques low M T	onal Rec s- Ac swin 9 P Sechn	Logic luction liabation ng bus Periods

1	Kaushik Roy and Sharat C Prasad ," Low Power CMOS VLSI circuit Design ", John Wiley and Sons, 2010.
2	Soudris, Dimitrios, Christrian Pignet, Goutis, Costas, "Designing CMOS circuits for low power", Springer
	US, First Edition, 2011.
3	Gary B Yeap K, "Practical Low Power Digital VLSI Design", Springer US, First Edition 2010.
4	AjitPal , "Low Power VLSI circuits and Systems", Springer India, First Edition, 2014.
5	Jan M.Rabaey, Massoud Pedram, "Low power Design methodologies", SpringerUS, First Edition, 2014.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Understand low power design in CMOS	K2
CO2	Analyze various sources of power dissipation in CMOS circuits	K2
CO3	Reduce the power consumption by optimizing the circuit structures	КЗ
C04	Design CMOS low power circuits using various special techniques.	K3
C05	Understand low power memories	K2

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	3	1	3	-	-	1			
C02	3	1	3	-	-	1			
CO3	3	1	1	-	-	1			
CO4	3	1	1	-	-	1			
C05	3	1	1	-	-	1			
23VLPE06	3	1	3	-	-	1			
1 – Slight, 2 – Moderate, 3	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT I	PATTERN – THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	40%	40%	20%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40%	40%	20%	-	-	-	100%
ESE	40%	40%	20%	-	-	-	100%

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	To acquire knowledge on image and video processing algorithms and design VLSI architectures.					
UNIT – I	IMAGE PROCESSING ALGORITHMS AND ARCHITECTURES	9 Periods				
Image Processing Tas	ks - Low level Image Processing Operations - intermediate l	evel operations Image				
processor architecture	: Requirements and Classification - Uni and Multi processors -	MIMD systems - SIMD				
systems - Pipelines - I	Design aspects of real time low level image processors - Desi	gn method for special				
architectures.						
UNIT – II	3D IMAGE PROCESSING	9 Periods				
Overview of 3D image	- Types and characteristics of 3D image processing - Examples o	of 3D image processing,				
Continuous and digitiz	ed images, Models of image operations, Algorithm of image o	perations - Smoothing				
filter - Difference filter	- Differential features of a curved surface - Region growing.					
UNIT – III	PIPELINED, 2D AND 3D IMAGE PROCESSING	9 Periods				
	ARCHITECTURES					
Architecture of a cellula	ar logic processing element - Second decomposition in data path	and control -Real time				
pipeline for low level i	mage processing - Design aspects of Image Processing architec	tures -Implementation				
of Low level 2D and 3D	and Intermediate level algorithms.					
UNIT – IV	VIDEO PROCESSING ALGORITHMS	9 Periods				
Introduction to Video	Processing, Video Sampling and Interpolation, Motion Dete	ection and Estimation				
Algorithms, Video Enh	ancement and Restoration, Video Stabilization and Mosaicing	-Video Segmentation -				
MPEG-4 Visual and Fas	t Motion Estimation Algorithms.					
UNIT – V	VIDEO PROCESSING ARCHITECTURES	9 Periods				
General design space	evaluation - Design space motion estimation architectures	- Motion estimation				
architectures for MPEG	-4 - Design Tradeoffs - VLSI Implementation search engine I and	l Search engine II.				
Contact Periods: Lecture: 45 Periods	Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ods				

1	Peter M. Kuhn, "Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion
	Estimation", Springer, 2010.
2	Pieter Jonker, "Morphological Image Processing: Architecture and VLSI design", Springer, First
	Edition,1992.
3	Sid Ahmed M.A., "Image Processing - Theory, Algorithm and Architectures", McGraw Hill, 2009.
4	A.MuratTekalp, "Digital Video Processing", Pearson Education, Noida, 2010.
5	Junichiro Toriwaki · Hiroyuki Yoshida, "Fundamentals of Three-Dimensional Digital Image

	COURSE OUTCOMES: Upon completion of the course, the students will have an ability to	
C01	Analyze various architectures to realize Image processing algorithms	K2
CO2	Explain the 3D image processing algorithms	K2
CO3	Explain the Pipelined image processing algorithms	K2
CO4	Explore various processing techniques of Image and Video signals and design different architectures for Image and Video signal processing.	K3
C05	Discuss on Video processing architectures.	К3

Course Articulation Matrix

COs/POs	P01	P02	PO3	P04	PO5	P06		
C01	2	2	1	1		1		
C02	2	2	1	1		1		
C03	2	2	1	1		1		
C04	2	2	1	1		1		
C05	2	2	1	1		1		
23VLPE07	2	2	1	1		1		
1 – Slight, 2 – Moderate, 3	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT P	ATTERN – THEO	RY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	40%	40%	20%	-	-	-	100%
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual	40%	40%	20%	-	-	-	100%
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	To understand signal propagation, transmission line	issues, power
	considerations, clock distribution and system design	, p
UNIT – I	SIGNAL PROPAGATION ON TRANSMISSION LINES	9 Periods
	quations-wave solution- wave vs. Circuits-Characteristic impedance	
	ce diagrams. Reactive terminations – L, C , static field maps of micro	
	layer stack ups and layer/Cu thicknesses- cross-sectional analysis	
•	strip and stripline. Reflection and terminations for logic gates, fan-o	ut-logic switching-
	- skin-effect-dispersion	-
UNIT – II	MULTI-CONDUCTOR TRANSMISSION LINES AND	9 Periods
	CROSS-TALK	
	nsmission-lines-coupling physics- per unit length parameters -Near	
talk- minimizing cro	ss-talk (stripline and microstrip) Differential signaling- termination-b	alanced circuits -S-
parameters-Lossy an	nd Lossles models.	
UNIT – III	NON-IDEAL EFFECTS	9 Periods
Non-ideal signal ret	curn paths – gaps -BGA fields- via transitions - Parasitic inductance	and capacitance-
Transmission line lo	osses –Rs-tan δ - Routing parasitic- Common-mode current- Different	ial-mode current -
Connectors.		
UNIT – IV	POWER CONSIDERATIONS AND SYSTEM DESIGN	9 Periods
SSN/SSO -DC powe	r bus design-layer stack up- SMT decoupling-Logic families-power	consumption and
system power deliv	very-Logic families and speed Package types and parasitic-SPICE-	IBIS models -Bit
streams- PRBS and	l filtering functions of link-path components - Eye diagrams -jitt	er - inter-symbol
interference Bit-erro	or rate -Timing analysis.	
UNIT – V	CLOCK DISTRIBUTION AND CLOCK OSCILLATORS	9 Periods
Timing margin- Clo	ck slew- low impedance drivers- terminations-Delay Adjustments- C	ancelling parasitic
capacitance-Clock jit	ter.	
Contact Periods:		
Lecture: 45 Period	Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	H. W. Johnson and M. Graham, " High-Speed Digital Design" : A Handbook of Black Magic, Prentice Hall, 1993.
2	Douglas Brooks, "Signal Integrity Issues and Printed Circuit Board Design", Prentice Hall PTR, 2003.
3	S. Hall, G. Hall, and J. McCall, "High-Speed Digital System Design": A Handbook of Interconnect Theory
	and Design Practices, Wiley-Interscience, 2000.
4	Eric Bogatin , " Signal Integrity – Simplified" , Prentice Hall PTR, 2003.

	DUTCOMES: pletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand signal propagation on transmission lines and cross talk	K1
CO2	Understand multi-conductor transmission lines and cross talk	К2
CO3	Explain non ideal effects in transmission lines	КЗ
CO4	Understand power considerations and system design	К2
C05	Explain clock distributions	K1

Course Articulation Matrix

COs/POs	P01	PO2	P03	P04	P05	P06			
C01	2	1		1					
C02	2	1	-	1	-	-			
C03	2	1	-	1	-	-			
CO4	2	1	-	1	-	-			
C05	2	1	-	1	-	-			
23VLPE08	2	1	-	1	-	-			
1 – Slight, 2 – Modera	1 – Slight, 2 – Moderate, 3 – Substantial								

m · /	D 1 '						
Test /	Rememberin	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	g (K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual	30%	40%	30%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	30%	40%	30%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	20%	50%	30%	-	-	-	100%

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	• To learn and design various circuits related to power management and clock
	distribution.

UNIT – I	VOLTAGE AND CURRENT REFERENCES	9 Periods			
Current Mirrors, Se	lf Biased Current Reference, startup circuits, VBE based Current Refer	ence, VT Based			
Current Reference, H	Band Gap Reference, Supply Independent Biasing, Temperature Independer	nt Biasing, PTAT			
Current Generation,	Constant Gm Biasing.				
U <mark>NIT – II</mark>	LOW DROP OUT REGULATORS	9 Periods			
Analog Building Blo	cks, Negative Feedback, Performance Metrics, AC Design, Stability, Intern	nal and External			
Compensation, PSRR – Internal and External compensation circuits.					
UNIT – III	OSCILLATOR FUNDAMENTALS	9 Periods			
General considerati	ons, Ring oscillators, LC oscillators, Colpitts Oscillator, Jitter and Phas	e noise in Ring			
Oscillators, Impulse	Sensitivity Function for LC & Ring Oscillators, Phase Noise in Differential L	C Oscillators.			
UNIT – IV	CLOCK DISTRIBUTION CIRCUITS	9 Periods			
PLL Fundamental, P	LL stability, Noise Performance, Charge-Pump PLL Topology, CPPLL Build	ing blocks, Jitter			
and Phase Noise per	formance, DLL fundamentals.				
UNIT – V	CLOCK AND DATA RECOVERY CIRCUITS	9 Periods			
CDR Architectures,	Trans Impedance Amplifiers and Limiters, CMOS Interface, Linear Half	Rate CMOS CDR			
Circuits, Wide captu	re Range CDR Circuits.				
Contact Periods:					
Lecture: 45 Period	s Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

1	Narsingh Deo, "Graph Theory with Applications to Engineering and Computer Science", Dover
	Publication Inc., First Edition, 2016.
2	Rao S.S., "Engineering Optimizations: Theory and Practice", John Wiley & Sons Inc., 5th Edition, 2019.
3	Douglas B. West, "Introduction to Graph Theory", Pearson, 2 nd Edition, 2018.
4	Robin J. Wilson, "Introduction to Graph Theory", Prentice Hall, 5th Edition, 2010.
5	Kalyanmoy Deb, " Optimization for Engineering Design – Algorithms and Design", PHI 2 nd Edition, 2012.

Bloom's	COURSE OUTCOMES:
<mark>axonomy</mark>	
Mapped	Upon completion of the course, the students will be able to:
K3	CO1 Design voltage and current reference circuits for a given specification.
K2	CO2 Recognize the concepts of low drop out regulators.
K3	CO3 Choose oscillator topology and handle noises in oscillator circuits.
K3	CO4 Design clock distribution circuits.
K3	CO5 Design clock generation circuits in the context of high speed I/Os, High speed Broad
_ _ _	CO2Recognize the concepts of low drop out regulators.CO3Choose oscillator topology and handle noises in oscillator circuits.CO4Design clock distribution circuits.

Course Articulation Matrix									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	1	2	2	1				
CO2	3	1	2	2	1				
CO3	3	1	2	2	1				
CO4	3	1	2	2	1				
CO5	3	1	2	2	1				
23VLPE09	3	1	2	2	1				
1 – Slight, 2 – Moderate, 3 –	L – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PA	TTERN – THEOF	RY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	<mark>30%</mark>	<mark>30%</mark>	<mark>40%</mark>	-	-	-	100%
CAT2	<mark>30%</mark>	<mark>30%</mark>	40 %	-	-	-	100 %
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	20%	30%	50 %	•	•	-	<mark>100%</mark>
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20%	30%	50%	-	-	-	100 %
ESE	<mark>30%</mark>	<mark>30%</mark>	<mark>40%</mark>	-	-	-	<mark>100%</mark>

23VLPE10

QUANTUM DOT CELLULAR AUTOMATA NANOTECHNOLOGY

SEMESTER II

DDEDEQUICITEC		CATECODY	T	T	D	C
PREREQUISITES NIL		CATEGORY PE	L 3	Т 0	P	<u>С</u> 3
NIL		PE	3	U	0	3
Course	• To understand quantum dot cellular aut	omata nanotech	nology	basics	. term	inology.
Objective	design of digital circuits and transforms.		05		,	857
UNIT – I	INTRODUCTION				9]	Periods
Emerging Nanote	chnologies-Electronics beyond Moore's law – Lim	itations of CMOS	Techn	ology	– Alte	rnatives
to MOSFET and C	hallenges – Emerging Transistor based Devices –	IC Technology be	eyond (CMOS	Era-US	DM and
Quantum Comput	ing – QCA modeling approach.					
UNIT – II			9	Periods		
states – Spherical to pyramidal dots	rrÖdinger's equation in quantum wires – Quant quantum dots – Tiny quantum dots – Cuboidal d s – Matrix approaches – Transport through dot a - Tool for QCA Simulation.	lots - Dots of art	oitrary	shape	– App	roaches
UNIT – III	DESIGN OF BASIC DIGITAL CIRCUITS IN QCA				9	Periods
	n QCA – Clocking in QCA – Role and Types – Desi it Full-Adder – Flip-Flop in QCA.	ign of Logic Gate	s and N	Multip	lexer i	n QCA –
UNIT – IV	DESIGN OF ADDERS AND MULTIPLIERS IN QC	A		9 Periods		
Design of Ripple (Carry Adder (RCA) and Prefix Adders in QCA – De	sign of 16-bit Hy	brid Ad	lder in	QCA -	- Layout
Level Implementa	ation of adders and comparisons. Introduction to	Multipliers – De	sign of	Multi	plier i	n QCA –
The Baugh-Woole	y Multiplier for 2's Complement Numbers – Desig	n of Baugh-Wool	ey Mul	tiplier	in QCA	4.
UNIT – V	TRANSFORM IN QCA				9	Periods
Formulation of D	rd Transform Computation in QCA – Basics of Dis PHT Computation – QCA Realization – Performa Jantum Dot Cellular Automata Technology.					
Contact Periods:						
Lecture: 45 Perio	ods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Peri	ods			

1	Paul Harrison, Alex Valavanis, " Quantum Wells, Wires and Dots: Theoretical and Computational
	Physics of Semiconductor Nanostructures" 4th Edition, Wiley, 2016.
2	K.Sridharan, Vikramkumar Pudi, "Design of Arithmetic Circuits in Quantum Dot Cellular Automata
	Nanotechnology – Studies on Computational Intelligence", Springer International Publishing, 2015.
3	Fabrizio Lombardi, Jing Huang, "Design and Test of Digital cirucits by Quantum-Dot Cellular
	Automata", Artech House, 2007.
4	Kasper.E and Paul. D, "Silicon Quantum Integrated circuits-Silicon-Germanium Heterostructure
	Devices: Basics and Realizations", Springer-Verlag Berlin Heidelberg, 2005.

COURS	SE OUTCOMES:	Bloom's Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
C01	Explain the basics of QCA	K2
CO2	Describe the QCA terminology	K2
CO3	Design basic Digital Circuits in QCA	K3
C04	Design of adders and multipliers in QCA	K3
CO5	Discuss the transform in QCA	K2

Course Articulation M	Course Articulation Matrix										
COs/POs	P01	P02	P03	P04	P05	P06					
C01	3	1	-	-	2	-					
CO2	3	1	-	-	2	-					
CO3	3	3	-	3	2	2					
CO4	3	3	-	3	2	2					
CO5	3	1	-	-	2	-					
23VLPE10	3	3	-	3	2	2					
1 – Slight, 2 – Moderate	e, 3 – Substantial										

ASSESSMENT P	ATTERN- THEOF	RY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	30%	20%	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	30%	20%	-	-	100%
ESE	30%	30%	20%	20%	-	-	100%

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

• To learn the basic concepts of ARM CORTEX processor and I	ОТ.
Objective	
UNIT – I ARM CORTEX M4	9 Periods
Introduction to Cortex -M Processor family – Cortex M4 – Features - Architecture – Bloch	k Diagram –
Operation modes and states – Registers - Memory System – Exceptions and Interrupts –	Instruction Set – Low
power characteristics.	
UNIT – II INTERFACING WITH ARM CORTEX	9 Periods
ARM Cortex STM32F controller – Configuring GPIO Ports – Switches and LEDs - LCD disp	olay Seven Segment
LED Display – Matrix Keypad – ADC – DAC – Pulse Width Modulation – DMA - Serial Com	munication USART.
UNIT – III APPLICATIONS AND CASE STUDIES	9 Periods
Applications of Embedded systems - Case study of embedded system (using ARM/cortes	x) for monitoring,
controlling and industrial automation-Smart Card-Engine Control Unit - Digital still cam	iera -Video
accelerator.	
UNIT – IV IOT DESIGN METHODOLOGY	9 Periods
Overview of Internet of Things – Physical Design - IoT System Management with NETCO	NF-YANG, SNMP - IoT
design methodology - Specifications - Integration and Application Development.	
UNIT – V IIOT AND CASE STUDIES OF IOT	9 Periods
IIOT Architecture – IIOT Requirements - IIoT Business Model: Categorization- Business	opportunities -
Reference Architecture of IIoT – Case Studies illustrating IOT design- Home Automation	– Smart Cities -
Environment – Agriculture.	
Contact Periods:	
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	Joseph Yiu, "The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors", Newnes Third
	Edition, 2013.
2	Andrew N. Sloss Dominic Symes Chris Wright, "ARM System Developer's Guide Designing and
	Optimizing System Software", 1st edition Elsevier Inc 2010.
3	Dr. Mark Fisher , ARM Cortex M4 Cook Book , Packt Publishing, 2016.
4	ArshdeepBahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015.
5	Sudip Misra, Chandana Roy, Anandarup Mukherjee, "Introduction to Industrial Internet of Tings and
	Industry 4.0", CRC Press, 1st edition, 2021

COURSE O	UTCOMES:	Bloom's Taxonomy
Unon comp	letion of the course, the students will be able to:	Mapped
opon comp	the course, the students will be able to.	Mappeu
CO1	Interpret the Architecture and features of ARM CORTEX processor.	K2
CO2	Apply programming skill for interfacing with ARM CORTEX processor.	К3
CO3	Relate the applications and case studies of embedded system.	К2
CO4	Discuss the advanced IOT design specifications.	K2
CO5	Analyze and apply IOT to real time applications.	К2

Course Articulation Mat	rix					
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	1	2	2	1	
CO2	3	1	2	2	1	
CO3	3	1	2	2	1	
C04	3	1	2	2	1	
C05	3	1	2	2	1	
23VLPE11	3	1	2	2	1	
1 – Slight, 2 – Moderate, 3	– Substantial	•	•	·		•

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	30%	30%	40%	-	-	-	100%
CAT2	30%	30%	40%	-	-	-	100%
Individual	20%	30%	50%	-	-	-	100%
Assessment 1/							
Case Study 1/							
Seminar 1/							
Project 1							
Individual	20%	30%	50%	-	-	-	100%
Assessment 2/							
Case Study 2/							
Seminar 2/							
Project 2							
ESE	30%	30%	40%	-	-	-	100%

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	PE	3	0	0	3

Course Objective	• To gain knowledge on fault modeling, testing and test vecto combinational and sequential logic circuits and get exposur approaches, various fault diagnosis methods in logic circuits.	0
UNIT – I	FAULT MODELING AND SIMULATION IN COMBINATIONAL AND	9 Periods
	SEQUENTIAL CIRCUITS	
Basics of Testing: Fa	ault models, Combinational logic and fault simulation - Test generation fo	or Combinational
Circuits - Classificati	on of sequential ATPG methods - Fault collapsing and simulation.	
UNIT – II	FUNCTIONAL TESTING AND DELAY FAULT TESTING	9 Periods
Universal test sets:	Pseudo-exhaustive and iterative logic array testing - Clocking scheme	s for delay fault
testing - Testability	classifications for path delay faults - Test generation and fault simulation	for path and gate
delay faults.		
UNIT – III	CMOS TESTING	9 Periods
Testing of static and	dynamic circuits - Fault diagnosis: Fault models for diagnosis, Cause-effec	t diagnosis -
Effect-cause diagnos	sis.	
UNIT – IV	DESIGN FOR TESTABILITY	9 Periods
Scan design - Partial	scan - Use of scan chains - Boundary scan - DFT for other test objectives -	Memory Testing
– SOC testing – Core	level test – Core test access – Core test wrapper.	
UNIT – V	BUILT-IN SELF-TEST	9 Periods
Pattern Generators	- Estimation of test length - Test points to improve testability - Analysis of	aliasing in linear
compression - BIST	methodologies - BIST for delay fault testing.	
Contact Periods:		
Lecture: 45 Period	s Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	N. Jha& S.D. Gupta, " Testing of Digital Systems ", Cambridge, 2003.					
2	W. W. Wen, "VLSI Test Principles and Architectures Design for Testability", Morgan					
	Kaufmann Publishers. 2006.					
3	Michael L. Bushnell &Vishwani D. Agrawal," Essentials of Electronic Testing for					
	Digital,memory & Mixed signal VLSI Circuits", Kluwar Academic Publishers, 2000.					
4	P. K. Lala," Digital circuit Testing and Testability", Academic Press, 1997.					
5	M. Abramovici, M. A. Breuer, & A.D. Friedman, "Digital System Testing and Testable					
	Design", Computer Science Press, 1990.					
6	A.L.Crouch, "Design Test for Digital IC's and Embedded Core systems", Beijing China Electric Power					
	Press, 2010.					

	OUTCOMES: etion of the course, the students will have	Bloom's Taxonomy Mapped
C01	Basic knowledge on fault modeling, testing and test generation in	КЗ
	combinational & sequential .logic circuits	
CO2	Exposure to functional testing and delay fault testing	K4
CO3	Understanding of various test generation methods for static & dynamic CMOS circuits and the various fault diagnosis methods in logic systems	К2
C04	Identify the Design for Testability methods for combinational & sequential circuits.	К2
CO5	Recognize the BIST techniques for improving testability.	K2

COs/POs	P01	P02	P03	P04	PO5	P06
C01	3	1	2	2	2	-
C02	3	-	2	-	-	-
C03	3	-	2	-	-	-
C04	3	3	1	-	2	-
C05	3	3	1	-	2	-
23VLPE12	3	3	2	2	2	-
1 – Slight, 2 – Moderate, 1	3 – Substantial					

ASSESSMENT PA	ATTERN						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	25%	25%	-	-	100%
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	25%	25%	-	-	100%
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	30%	40%	20%	10%	-	-	100%

HARDWARE SECURITY

SEMESTER III

PREREQUISITES		CATEGORY	L	Τ	Р	С
Nil		PE	3	0	0	3
Course Objective	• To acquire knowledge about the broader as understand the different hardware attack	s and chipper tech				-
UNIT – I	side channel analysis and physical unclonal INTRODUCTION	ble functions		0 0	erio	de
	d of Hardware security - Security vs Hardware '	Truet Attacks V	ulna			
Countermeasures	- Conflict between security and Test/Debug-C otanalysis - Modular Arithmetic and more Historical (verview of Cryp	tolog	gy-Sy		
UNIT – II		9 P	erio	ds		
51	ndard (DES) - Internal structure of DES - Security of ES Alternatives - Advanced Encryption Standard	-				
UNIT – III	HARDWARE ATTACKS			9 P	erio	ds
Circuit Reliability	Hardware Trojans in FPGA Designs - Trojan taxon – Countermeasures against Hardware Trojans jan detection – Challenges in Trojan detection.					
UNIT – IV	SIDE CHANNEL ANALYSIS			9 P	erio	ds
Introduction to Sid	e Channel Analysis - Types of Side Channel Attac	ks - Power Attack	s - S	imp	le Po	wer
Analysis - Timing At	tack - Fault Attacks - Cache Attacks - Scan Chain Base	ed Attacks.				
UNIT – V	PHYSICAL UNCLONABLE FUNCTIONS			9 P	erio	ds
	ification – Properties - Practical Realization – Delay curity Analysis - Applications - Introduction to Hardy	•				
Contact Periods: Lecture: 45 Period	s Tutorial: 0 Periods Practical: 0 Periods 1	fotal: 45 Periods				
REFERENCES :						
	d Jan Pelz, Springer-Verlag Berlin Heidelberg, "Under s	standina Crvptoar	aphy	<i>: A</i> 1	Texth	book

1	C. Paar, and Jan Pelz, Springer-Verlag Berlin Heidelberg,"Understanding Cryptography: A Textbook
	for Students and Practitioners", Springer, 2010.
2	Debdeep Mukhopadhyay and Rajat Subhra Chakraborty, "Hardware Security: Design, Threats, and
	Safeguards", CRC Press,2015
3	Swarup Bhunia and Mark Tehranipoor, "Hardware security: a hands-on learning approach"
	Morgan Kaufmann, 2018.
4	Mohammad Tehranipoor and Cliff Wang, "Introduction to Hardware Security and Trust", Springer,
	2012.

		Bloom's
COURSE O	UTCOMES:	Taxonomy
Upon comp	letion of the course, the students will be able to:	Mapped
C01	Explain the scope and significance of various security mechanisms and	К2
	services applicable hardware security	
CO2	Interpret hardware attacks and techniques.	К2
CO3	Explain about different techniques of block and Stream ciphers.	К2
C04	Discuss the different side channel analysis.	КЗ
C05	Identify and reproduce the different classifications of physical unclonable	КЗ
	functions.	

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	PO5	P06	
C01	2	1	1	-	-	1	
CO2	2	1	1	-	-	1	
CO3	2	1	1	-	-	1	
CO4	2	1	1	-	-	1	
CO5	2	1	1	-	-	1	
23VLPE13	2	1	1	-	-	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT P	ASSESSMENT PATTERN- THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %	
CAT1	40%	40%	20%	-	-	-	100%	
CAT2	40%	40%	20%	-	-	-	100%	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	-	-	100%	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%	
ESE	30%	40%	30%	-	-	-	100%	

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	• To understand the concepts of reconfigurable architectures,	management and					
course objective	apply optimization techniques to increase the performance of the processor for different						
	applications.						
UNIT – I	RECONFIGURABLE ARCHITECTURES AND SYSTEMS	9 Periods					
Computational Fabr	ic, Array and Interconnects, Extending logic, Configuration, Architecture	s- Fine and Coarse					
grained with and wi	ithout processors. Systems PAM, VC, Splash, Prism, CAL, Cloning, Acceler	ating Technology-					
Teramac, Reconfigu	rable Supercomputing- Cray, SRC, Silicon Graphics, CMX.						
UNIT – II	RECONFIGURATION MANAGEMENT	9 Periods					
Configuration Archi	itectures, Managing the Reconfiguration Process, Reducing Configurati	on Transfer time					
Computing Models	and System Architectures- Computing C for Spatial Computing, Operatir	ng System Support					
for Reconfigurable (Computing- Flexible Binding, Scheduling, Preemption Communication, Syn	nchronization.					
UNIT – III	IMPLEMENTATION ISSUES ON RECONFIGURABLE PLATFORMS	9 Periods					
Structural Mapping	Algorithms, Integrated Mapping Algorithms, Mapping Algorithms f	or Heterogeneous					
Resources. FPGA F	Placement- FPGA Placement Problem, Clustering Simulated Annealir	ng for Placement					
Partition-based Pla	cement, Analytic Placement. Data path Composition- Fundamentals,	Impact of Device					
Architecture, Interfa	ace to Module Generators, Mapping, Placement, Compaction.						
UNIT – IV	APPLICATION DEVELOPMENT	9 Periods					
Retiming, Re-pipel	ining, and C-slow Retiming- Configuration Bit stream Generation	on- Downloading					
Mechanisms, Instar	nce-specific Design, Partial Evaluation, Precision Analysis for Fixed-p	oint Computation,					
Hardware/Software	Partitioning.						
UNIT – V	CASE STUDIES OF FPGA APPLICATIONS	9 Periods					
SPIHT Image Comp	pression, Automatic Target Recognition Systems on Reconfigurable De	vices, Multi-FPGA					
Systems, Network	Packet Processing in Reconfigurable Hardware Bioinformatics Applic	ations - Dynamic					
-	ithms- Seed-Based Heuristics. Profiles, HMMs and Language Models. Bio	-					

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Hauck & DeHon . "Reconfigurable Computing, 1st Edition-The Theory and Practice of FPGA-Based
	Computation", Elsevier India Private Limited, New Delhi, 2011.
2	Gokhale, Maya B., Graham, Paul S., "Reconfigurable Computing -Accelerating Computation with
	FieldProgrammable Gate Arrays" Springer Publications, 2007.
3	Joao Cardoso and Michael Hübner, "Reconfigurable Computing: From FPGAs to Hardware/Software
	Codesign", Springer Publications, 2011.
4	CliveMaxfield, "The Design Warrior's Guide to FPGAs: Devices, Tools and Flows", Newnes, Elsevier,
	2006.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:		
C01	Explain the concepts of architecture reconfigure ability, programmable logic devices and optimization of the RCS architecture	К2	
CO2	Study the redundant functionality of the management and implementation.	K2	
CO3	Design various algorithms for FPGA placement and Data Composition.	К3	
CO4	Apply optimization techniques to increase the performance of the processor.	КЗ	
CO5	Develop the different applications with reconfigurable devices	КЗ	

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05	P06	
C01	3		2			3	
CO2	2		2			3	
CO3	3		2			3	
C04	3		2			3	
CO5	3		2			3	
23VLPE14	3		2			3	
1 – Slight, 2 – Moderate	, 3 – Substanti	al					

ASSESSMENT	' PATTERN – THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%
ESE	30%	40%	30%	-	-	-	100%

23VLPE15

SEMESTER III

PREREQUISITES :		REREQUISITES : CATEGORY L '						
NIL		PE 3			0	3		
Course Objective	To gain knowledge in designing RFIC, IC designed at the set of the set o	n using Pas	sive comp	non	te RI			
course objective	Amplifiers and RF Mixers designs.	ii usiiig i as.		JIICH	ι <i>σ</i> , π			
UNIT – I	RFIC DESIGN							
	nalog design and microwave design versus radio frequ	ency integr	ated circu					
	or microwave and low-Frequency analog design- Noise				•			
=	ange – Filtering issue.	Lincarity	und distor	cion		•		
UNIT – II	REVIEW OF TECHNOLOGY			9	Perio	ode		
	l of bipolar transistor -High frequency effects - Noise in	hinolar tra	ansistors -					
•	in the transistor model - Bipolar transistor design c	-						
	ng - Tapped capacitors and inductors - Concept of							
•	vidth of an impedance transformation network- Quality					u		
UNIT – III	DESIGN OF PASSIVE CIRCUIT ELEMENTS IN IC				Peri	ods		
	TECHNOLOGIES							
Technology backer	nd and metallization in IC technologies - Sheet resist	ance and s	kin effect	-Pai	asiti	С		
	nductance-Current handling in metal lines-Design o							
=	of inductor-Layout of spiral inductors-On-chip tran							
	n-chip passives and common De-Embedding techniques-		U			,		
UNIT – IV	LNAAND POWER AMPLIFIER			9	Peri	ods		
Basic amplifiers - A	mplifiers with feedback - Noise in amplifiers - Linearity	/ in amplifie	ers - Differ	entia	l pai	r		
and other different	ial amplifiers-Low-voltage topologies for LNAs and the	use of on-ch	nip transfo	rmei	rs -D	С		
bias networks - Ter	nperature effects - Broad band LNA design. Power ampli	fier: Power	capability	-Effi	cienc	y		
calculations - Match	ning considerations - Class A,B,C.D.E.F,G,H and S amplifie	rs -Summary	y of amplif	ìer c	lasse	S		
for RF Integrated	circuits- AC load line-Matching to achieve desired	power-Pac	kaging -e	ffects	s an	d		
implications of non-	linearity - Linearization techniques - CMOS power ampli	fier example	2.					
UNIT – V	MIXERS			9	Peri	ods		
Mixing with nonline	earity-Basic mixer operation-Controlled trans conductan	ce mixer-Do	uble-balar	nced	mixe	r		
- Mixer with switch	ing of upper quad - Analysis of switching modulator-Mi	xer noise -L	inearity –	Impr	ovin	g		
isolation - Image re	eject and single -Sideband mixers-Alternative mixer desi	igns –Genera	al design o	comn	nents	3-		
CMOS mixers.								
Contact Periods:								

1	John Rogers and Calvin Plett, "Radio Frequency Integrated Circuit Design", Artech House, 2002.
2	Stephan A Mass, "Non-Linear Microwave and RF circuits", Artech House, 2003.
3	FerriLosee, "RFSystems, Components and Circuits handbook", Artechhouse,2002.
4	Larson LE , " RF and Microwave Circuit for Wireless Applications", Artech House, 1997

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
C01	Detailed Knowledge in designing RF IC	K2
CO2	Understand the concepts of transistors	K2
CO3	An ability to design integrated circuits using Passive components	К3
CO4	Detailed Knowledge on RF Amplifiers Designs.	КЗ
C05	Ability to design RF Mixers	K2

Course Articulation	Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06				
C01	3	2	-	-	-	1				
CO2	3	2	-	-	-	1				
CO3	3	2	-	-	-	1				
CO4	3	2	-	-	-	1				
C05	3	2	-	-	-	1				
23VLPE15	3	2	-	-	-	1				
1 – Slight, 2 – Moderat	te, 3 – Substant	ial								

ASSESSMENT PA	ATTERN – THEO	RY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%
ESE	30%	40%	30%	-	-	-	100%

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	PE	3	0	0	3

Course	• To increase the performance of the DSP systems in terms of power	r consumption,
Objective	speed and area	
UNIT – I	INTRODUCTION TO DSP SYSTEMS, PIPELINING AND PARALLEL PROCESSING OF FIRFILTERS	9 Periods
Introduction to DS	P systems – Typical DSP algorithms, Data flow and Dependence graphs - critic	cal path, Loop
bound, iteration b	bound, Longest path matrix algorithm, Pipelining and Parallel processing	of FIR filters,
Pipelining and Para	allel processing for low power.	
UNIT – II	RETIMING, ALGORITHMIC STRENGTH REDUCTION, RANK ORDER FILTERS	9 Periods
Retiming – definiti	ions and properties, Unfolding – an algorithm for unfolding, properties of unf	folding, sample
period reduction	and parallel processing application, Systolic Architecture Design-Algorit	hmic strength
reduction in filters	and transforms – 2-parallel FIR filter, 2-parallel fast FIR filter, DCT architectu	ure, rank-order
filters, Odd-Even m	nerge-sort architecture, parallel rank-order filters	
UNIT – III	FAST CONVOLUTION, PIPELINING AND PARALLEL PROCESSING OF	9 Periods
	IIR FILTERS	
Fast convolution-	Cook-Toom algorithm, modified Cook-Toom algorithm, Pipelined and par	allel recursive
filters – Look-Ahea	d pipelining in first-order IIR filters, Look-Ahead pipelining with power-of-2 o	decomposition,
Clustered look-ahe	ead pipelining, Parallel processing of IIR filters, combined pipelining and para	allel processing
of IIR filters, Low-	power IIR Filter design using pipelining and parallel processing, Pipelined A	daptive digital
filters.		
UNIT – IV		
	BIT-LEVEL ARITHMETIC ARCHITECTURES	9 Periods
Scaling and Round	BIT-LEVEL ARITHMETIC ARCHITECTURES	
-		liers with sign
extension, paralle	l off Noise Computations -Bit-level arithmetic architectures – parallel multip	oliers with sign Iltipliers using
extension, paralle Horner's rule, bit-	l off Noise Computations -Bit-level arithmetic architectures – parallel multip l carry-ripple and carry-save multipliers, Design of Lyon's bit-serial mu	oliers with sign ultipliers using
extension, paralle Horner's rule, bit- improvement, Dist	l off Noise Computations -Bit-level arithmetic architectures – parallel multip l carry-ripple and carry-save multipliers, Design of Lyon's bit-serial mu serial FIR filter, CSD representation, CSD multiplication using Horner's rule	oliers with sign ultipliers using e for precision
extension, paralle Horner's rule, bit- improvement, Dist	l off Noise Computations -Bit-level arithmetic architectures – parallel multip l carry-ripple and carry-save multipliers, Design of Lyon's bit-serial mu serial FIR filter, CSD representation, CSD multiplication using Horner's rule ributed Arithmetic fundamentals and FIR filters.	oliers with sign ultipliers using e for precision
extension, paralle Horner's rule, bit- improvement, Dist UNIT – V	d off Noise Computations -Bit-level arithmetic architectures – parallel multip l carry-ripple and carry-save multipliers, Design of Lyon's bit-serial mu serial FIR filter, CSD representation, CSD multiplication using Horner's rule rributed Arithmetic fundamentals and FIR filters.	oliers with sign ultipliers using e for precision 9 Periods
extension, paralle Horner's rule, bit- improvement, Dist UNIT – V Numerical strength	d off Noise Computations -Bit-level arithmetic architectures – parallel multip l carry-ripple and carry-save multipliers, Design of Lyon's bit-serial mu serial FIR filter, CSD representation, CSD multiplication using Horner's rule ributed Arithmetic fundamentals and FIR filters. NUMERICAL STRENGTH REDUCTION, SYNCHRONOUS, WAVE AND ASYNCHRONOUSPIPELINING	oliers with sign altipliers using e for precision 9 Periods ative matching,
extension, paralle Horner's rule, bit- improvement, Dist UNIT – V Numerical strength synchronous pipel	l off Noise Computations -Bit-level arithmetic architectures – parallel multip l carry-ripple and carry-save multipliers, Design of Lyon's bit-serial mu serial FIR filter, CSD representation, CSD multiplication using Horner's rule ributed Arithmetic fundamentals and FIR filters. NUMERICAL STRENGTH REDUCTION, SYNCHRONOUS, WAVE AND ASYNCHRONOUSPIPELINING h reduction– subexpression elimination, multiple constant multiplication, itera	oliers with sign altipliers using e for precision 9 Periods ative matching,
extension, paralle Horner's rule, bit- improvement, Dist UNIT – V Numerical strength synchronous pipel	l off Noise Computations -Bit-level arithmetic architectures – parallel multip l carry-ripple and carry-save multipliers, Design of Lyon's bit-serial mu serial FIR filter, CSD representation, CSD multiplication using Horner's rule rributed Arithmetic fundamentals and FIR filters. NUMERICAL STRENGTH REDUCTION, SYNCHRONOUS, WAVE AND ASYNCHRONOUSPIPELINING h reduction– subexpression elimination, multiple constant multiplication, itera- lining and clocking styles, clock skew in edge-triggered single phase clock elining, Asynchronous pipelining, Programmable Digital signal processors.	oliers with sign altipliers using e for precision 9 Periods ative matching,
extension, paralle Horner's rule, bit- improvement, Dist UNIT – V Numerical strength synchronous pipel clocking, wave pipe	l off Noise Computations -Bit-level arithmetic architectures – parallel multip l carry-ripple and carry-save multipliers, Design of Lyon's bit-serial mu serial FIR filter, CSD representation, CSD multiplication using Horner's rule ributed Arithmetic fundamentals and FIR filters. NUMERICAL STRENGTH REDUCTION, SYNCHRONOUS, WAVE AND ASYNCHRONOUSPIPELINING h reduction– subexpression elimination, multiple constant multiplication, itera lining and clocking styles, clock skew in edge-triggered single phase clock elining, Asynchronous pipelining, Programmable Digital signal processors.	altipliers using e for precision 9 Periods ative matching,
extension, paralle Horner's rule, bit- improvement, Dist UNIT – V Numerical strength synchronous pipel clocking, wave pipel Contact Periods	l off Noise Computations -Bit-level arithmetic architectures – parallel multip l carry-ripple and carry-save multipliers, Design of Lyon's bit-serial mu serial FIR filter, CSD representation, CSD multiplication using Horner's rule ributed Arithmetic fundamentals and FIR filters. NUMERICAL STRENGTH REDUCTION, SYNCHRONOUS, WAVE AND ASYNCHRONOUSPIPELINING h reduction– subexpression elimination, multiple constant multiplication, itera lining and clocking styles, clock skew in edge-triggered single phase clock elining, Asynchronous pipelining, Programmable Digital signal processors.	oliers with sign altipliers using e for precision 9 Periods ative matching,

Keshab K. Parhi, "VLSI Digital Signal Processing Systems, Design and implementation", Wiley, Interscience, 2007. U.Meyer-Baese, "Digital Signal Processing with Field Programmable Gate Arrays", Springer, Second Edition, 2004. KungS.Y,H.J.While House, T. Kailath, "VLSI and Modern Signal Processing", PrenticeHall,1985. Jose E. France, Yannis Tsividis "Design of Analog – Digital VLSI Circuits for Telecommunications and

5 MedisettiV.K, "**VLSI Digital Signal Processing**", IEEEPress (NY), USA, 1995.

Signal Processing", Prentice Hall, 1994.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:		
C01	Increase the performance of the FIR filter structures in terms of power consumption, speed and area.	КЗ	
CO2	Reduce the complexity of DSP algorithms in VLSI hardware.	КЗ	
CO3	Increase the performance of the IIR filter structures in terms of power consumption, speed and area.	КЗ	
C04	Improve the performance of bit level architectures in DSP systems.	К2	
C05	Understand clocking styles, wave pipelining and complexity reduction in computations.	K1	

Course Articulation Matrix

COs/POs	P01	P02	P03	P04	P05	P06				
C01	2	3	-	1	-	-				
CO2	2	3	-	1	-	-				
CO3	2	3	-	1	-	-				
CO4	2	3	-	1	-	-				
C05	2	1	-	-	-	-				
23VLPE16	2	3	-	1	-	-				

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understandin	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	g (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	20%	40%	40%	-	-	-	100%			
CAT2	20%	40%	40%	-	-	-	100%			
Individual	20%	40%	40%	-	-	-	100%			
Assessment 1										
/Case Study 1/										
Seminar 1 /										
Project1										
Individual	20%	40%	40%	-	-	-	100%			
Assessment 2										
/Case Study 2/										
Seminar 2 /										
Project 2										
ESE	20%	40%	40%	-	-	-	100%			

DESIGN OF SEMICONDUCTOR MEMORIES

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To acquire knowledge about architecture and op	perations of different
Objective	semiconductor memories, VLSI Testing techniques and pac	king technologies.
UNIT – I	RANDOM ACCESS MEMORY TECHNOLOGIES	9 Period
Static Random A	Access Memory(SRAMs):SRAM cell structure - MOS SRAM architectur	re - MOS SRAM cell and
Peripheral Circu	it Operation - Bipolar SRAM technologies - Silicon On Insulator (SOI)) technology - Advance
SRAM architecto	ares and technologies - Application specific SRAMs - CMOS DRAM - I	DRAMs Cell Theory and
Advanced cell s	tructures - BiCMOS DRAMs - Soft error failure in DRAMs - Advan	ced DRAM designs and
Architecture - A	pplication specific DRAMs.	
UNIT – II	NON VOLATILE MEMORIES	9 Period
Masked Read O	nly Memories (ROMs): High density ROMs - Programmable Read On	ly Memories (PROMs)
Bipolar PROMs -	CMOS PROMs - Erasable (UV) Programmable Read Only Memories (I	EPROMs) - Floating Gat
EPROM cell - Or	ne Time Programmable (OTP) EPROMs - Electrically Erasable PROMs	s (EEPROMs) - EEPRON
technology and	architecture - Nonvolatile SRAM - Flash memories (EPROMs or EEF	ROM) - Advanced flas
memory archite	cture.	
UNIT – III	ADVANCED MEMORY AND HIGH-DENSITY MEMORY	9 Period
	PACKAGING TECHNOLOGIES	
Ferroelectric Ra	ndom Access Memories (FRAMs) - Gallium Arsenide (GaAs) FRAM	Is - Analog Memories
Magneto Resisti	ve Random Access Memories (MRAMs) - Experimental memory devic	es. Memory hybrids an
MCMs (2D) - Me	emory stacks and MCMs (3D) - Memory MCM testing and Reliability	issues - Memory cards
High density me	mory packaging future directions.	
UNIT – IV	SEMICONDUCTOR MEMORY RELIABILITY AND RADIATION EFFECTS	9 Period
Conoral Poliabil	ity issues - RAM failure modes and mechanism - Nonvolatile Memory	y Doliability Doliabilit
	ailure rate prediction - Design for reliability - Reliability test structure	· · ·
•	n. Radiation effects - Single Event Phenomenon (SEP).	es - Reliability screening
UNIT – V	MEMORY FAULT MODELING, TESTING AND MEMORY DESIGN	9 Period
UNIT - V	FOR TESTABILITY AND FAULT TOLERANCE	9 1 01100
RAM fault mod	elling, Electrical testing, Pseudo random testing – Megabit DRAM	– Nonvolatile memor
	esting - IDDQ fault modelling and testing - Application specific memo	
for fault modelli		if y testing and the tool
Contact Period		
Lecture: 45 Per		iods
Lecture. 45 rei		1005
REFERENC		
1 Ashok K. 2002.	Sharma, "Semiconductor Memories Technology, Testing and Reliab	ility", Wiley-IEEE Press,
2 Betty Pri	nce, "Emerging Memories: Technologies and Trends ", Kluwer Acade	mic publishers, 2002.
	nce, "Emerging Memories: Technologies and Trends ", Kluwer Acade Sharma, "Advanced Semiconductor Memories Architecture Design c	•

Wiley, 2002.

4 Hai Li, "Nonvolatile Memory Design: Magnetic, Resistive and Phase Change", CRC Press, 2011.

COURSE C	COURSE OUTCOMES:		
		Taxonomy	
Upon com	pletion of the course, the students will be able to:	Mapped	
C01	Explain the different types of memories and their architecture.	К2	
CO2	Analyse Volatile and Non Volatile Memories.	КЗ	
CO3	Reproduce the concepts of advanced memory packaging technologies.	К2	
C04	Explain the features of semiconductor memory reliability.	K2	
C05	Discuss the advanced VLSI Testing and the Fault Tolerant Detection procedures.	К2	

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	3	1	-	-	1	2			
CO2	3	1	-	-	1	2			
CO3	3	1	-	-	1	2			
CO4	3	1	-	-	1	2			
C05	3	1	-	-	1	2			
23VLPE17	3	1	-	-	1	2			
1 – Slight, 2 – Moderate,	3 – Substantial	·	-	-	•	•			

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creatin	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	g (K6) %	%		
CAT1	40%	40%	20%	-	-	-	100%		
CAT2	40%	40%	20%	-	-	-	100%		
Individual	-	50%	50%	-	-	-	100%		
Assessment 1									
/Case Study 1/									
Seminar 1 /									
Project1									
Individual	-	50%	50%	-	-	-	100%		
Assessment 2									
/Case Study 2/									
Seminar 2 /									
Project 2									
ESE	30%	40%	30%	-	-	-	100%		

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	• To discuss and design various components of a typical communication system.						
UNIT – I	COMMUNICATION SYSTEM DESIGN COMPONENTS 9 Perio						
modulation schem architecture – Filte	mmunication Standards – Integrated Inductors, Resistors and MOSFE es – Wireless channel description – Path loss – Multipath fading er Design –Band Selection Filter – Image Rejection Filter – Channel ters – Derivation of NF, IIP ₃ .	- Receiver front end					
UNIT - IILOW NOISE AMPLIFIER DESIGN9 PeriodsMatching Networks - Wideband LNA Design - Impedance matching of Narrowband LNA -Narrowband LNADesign - Nose Figure - Trade-off between Noise Figure and Power.							
UNIT – III	ACTIVE AND PASSIVE MIXERS	9 Periods					
high frequency ar	lance Mixer – Single Balanced Mixer – Gilbert Mixer – Conversion gair nalysis of Gilbert Mixer – Complete Active Mixer – Passive Mixer rsion gain and Noise in unbalanced Switching Mixer – Practical U	: Switching Mixer –					
UNIT – IV	DATA CONVERTER SUB SYSTEMS	9 Periods					
	DC used in Receivers – Low pass Sigma Delta Modulators – Ban ementation of Low pass and Band pass Sigma Delta Modulators – Lo						
UNIT – V	FREQUENCY SYSTHESIZER SYSTEM DESIGN	9 Periods					
-	ncy Synthesizer – Phase Detector – Divider – Voltage Controlled Oscill pop Filter Design – Complete Synthesizer design- VLSI Architecture fo	•					
Contact Periods: Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 45 Period	s					

1	Bosco H Leung, "VLSI for Wireless Communication", Pearson Education, 2012.
2	B.Razavi, "RF Microelectronics" , Prentice-Hall of India Pvt Ltd , 2 nd Edition, 2011.
3	Thomas H.Lee, "The Design of CMOS Radio -Frequency Integrated Circuits", Cambridge University
	Press, 2013.
4	Emad N Farag and Mohamed I Elmasry, "Mixed Signal VLSI Wireless Design - Circuits and Systems",
	Kluwer Academic Publishers, 2010.

	UTCOMES:	Bloom's Taxonomy Mapped			
Upon completion of the course, the students will be able to:					
C01	Explain the concepts and components required to design wireless communication systems.	K2			
CO2	Perform design steps of low noise amplifiers and mention its importance in VLSI systems	К3			
CO3	Explain the role and importance of Mixers in wireless systems	К2			
C04	Discuss the working of data converters as subsystem in wireless systems	K2			
C05	Design frequency synthesizer used wireless communication systems	КЗ			

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05	P06	
C01	3	2		1		2	
CO2	3	2		1		2	
CO3	3	2		1		2	
CO4	3	2		1		2	
C05	3	2		1		2	
23VLPE18	3	2		1		2	
1 – Slight, 2 – Moderate	3 – Substantia	ıl				•	

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %	
CAT1	40%	40%	20%	-	-	-	100%	
CAT2	40%	40%	20%	-	-	-	100%	
Individual	-	50%	50%	-	-	-	100%	
Assessment 1								
/Case Study 1/								
Seminar 1 /								
Project1								
Individual	-	50%	50%	-	-	-	100%	
Assessment 2								
/Case Study 2/								
Seminar 2 /								
Project 2								
ESE	30%	40%	30%	-	-	-	100%	

23VLPE19

ASIC DESIGN (Common to Applied Electronics and VLSI Design)

SEMESTER IV

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	PE	3	0	0	3

Course Objective	• To acquire knowledge on principles of ASIC design flow, fu and concepts of various programming technology, high le and ASIC Construction	•
UNIT – I	FUNDAMENTALS OF ASICs, CMOS LOGIC AND ASIC LIBRARY	9 Periods
	DESIGN	

Types of ASICs - Design flow-CMOS Transistors CMOS Design Rules - Combinational Logic Cell - Sequential Logic cell - Data path Logic Cell - Transistors as Resistors - Transistor Parasitic Capacitance - Logical effort - Library Cell Design-Library Architecture.

UNIT – II	PROGRAMMABLE ASICs	9 Periods
Anti fuse - Static R	AM - EPROM and EEPROM technology - PREP benchmarks - Actel	ACT - Xilinx LCA - Altera
FLEX - Altera MAX	DC and AC inputs and outputs - Clock and Power inputs - Xilinx I/O	blocks.

UNIT – III	PROGRAMMABLE ASIC INTERCONNECT, DESIGN SOFTWARE	9 Periods
	AND LOW LEVEL DESIGN ENTRY	

Actel ACT - Xilinx LCA - Xilinx EPLD - Altera MAX 5000 and 7000 - Altera MAX 9000 - Altera FLEX - Design Systems - Logic Synthesis - Half gate ASIC - Schematic entry - Low level design language - PLA tools - EDIF-CFI design representation.

UNIT – IV	LOGIC SYNTHESIS - SIMULATION AND TESTING	9 Periods
Verilog and Logic	Synthesis -VHDL and Logic Synthesis - Types of Simulation - Bo	undary Scan Test - Fault
simulation - Autom	atic Test Pattern Generation.	

UNIT - VASIC CONSTRUCTION9 PeriodsSystem partition - FPGA partitioning - Partitioning methods - Floor planning - placement - Physical DesignFlow - Global Routing - Detailed Routing - Special Routing - Circuit extraction - DRC.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Smith M.J.S., "Application Specific Integrated Circuits", Pearson Education Reprint, 2006.
2	FarzadNekoogar and FaranakNekoogar, "From ASICs to SoCs - A Practical Approach", Prentice
	Hall,2003.
3	Wayne Wolf, "FPGA-Based System Design", Prentice Hall, 2004.
4	Rajsuman R., "System-on-a-Chip Design and Test", Santa Clara, CA, Artech House Publishers, 2000.
5	NekoogarF.,"Timing Verification of Application-Specific Integrated Circuits", Prentice Hall, 1999

	OUTCOMES: apletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Design sequential and combinational logic cells and analyze Programmable ASICs	K2
CO2	Explain the memory technologies and architecture of Programmable ASICs	K2
CO3	Discuss the ASIC interconnects and design entry	К3
CO4	Explain and execute the Logic synthesis of ASIC	К3
C05	Construct an ASIC using the described methods	К3

Course Articulation M	latrix

COs/POs	P01	P02	P03	P04	P05	P06
C01	3	1	3	1	-	2
CO2	3	-	1	1	-	2
CO3	3	1	1	2	-	2
CO4	3	1	1	2	-	2
C05	3	1	1	1	-	2
23VLPE19	3	1	1	2	-	2
1 – Slight, 2 – Moderate	e, 3 – Substanti	al		•	·	•

ASSESSMENT PA	TTERN – THEORY	Y					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	40%	40%	20%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40%	40%	20%	-	-	-	100%
ESE	40%	40%	20%	-	-	-	100%

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	• To learn the fundamentals and recent trends of Internet of	of Things, various
	techniques that enable IoT solution, security aspects and cloud o	computing.
UNIT – I	INTRODUCTION	9 Periods
Concept of connect	ed world – Need, Legacy systems for connected world - Features ar	nd limitations, IoT
architecture – Chara	acteristics – Physical design-Logical design - Enabling technologies- Meri	its and Demerits of
IoT technology, IoT	levels-Domain specific IoT.	
UNIT – II	COMPONENTS OF IOT	9 Periods
Basic building block	s of an IoT system –Sensors, Actuators, Computing nodes and Connectivi	ty. Sensors used in
IoT systems – Chara	acteristics and requirements, Types of sensors for IoT systems, Connectiv	vity technologies in
IoT – 802.15.4, Zigb	ee, LoWPAN, Z wave, Wi-Fi, RFID.	
UNIT – III	IC TECHNOLOGY FOR IOT	9 Periods
SoC architecture	for IoT Devices– Application Processors, Microcontrollers, Smart	Analog; Memory
architecture for IoT	' – Non Volatile Memories (NVM), Embedded Non-Volatile Memories, A	nti-Fuse One Time
n 11 / /		ind i use one i inite
Programmable (OT	P) memories, Power Management - Low Drop Out Regulators, DC-to-DC C	
	P) memories, Power Management - Low Drop Out Regulators, DC-to-DC C Management Units (PMUs) in IC's and Systems, FPGA in IoT systems.	
		Converters, Voltage
References, Power I UNIT – IV	Management Units (PMUs) in IC's and Systems, FPGA in IoT systems.	Converters, Voltage 9 Periods
References, Power I UNIT – IV Introduction to IIo7	Management Units (PMUs) in IC's and Systems, FPGA in IoT systems. IOT ANALYTICS	Converters, Voltage 9 Periods
References, Power I UNIT – IV Introduction to IIo7	Management Units (PMUs) in IC's and Systems, FPGA in IoT systems. IoT ANALYTICS -IIoT Analytics - Big Data Analytics - Software Defined Networks- Mac	Converters, Voltage 9 Periods
References, Power I UNIT – IV Introduction to IIoT Data Science in Indu UNIT – V	Management Units (PMUs) in IC's and Systems, FPGA in IoT systems. IoT ANALYTICS - IIoT Analytics - Big Data Analytics - Software Defined Networks- Mac Istries - Cloud and FOG Computing- Industrial IoT: Security.	Converters, Voltage 9 Periods Chine Learning and 9 Periods
References, Power I UNIT – IV Introduction to IIo7 Data Science in Indu UNIT – V Various real time a	Management Units (PMUs) in IC's and Systems, FPGA in IoT systems. IoT ANALYTICS C -IIoT Analytics - Big Data Analytics - Software Defined Networks- Macustries - Cloud and FOG Computing- Industrial IoT: Security. APPLICATION	Converters, Voltage 9 Periods Chine Learning and 9 Periods ustries - Inventory
References, Power I UNIT – IV Introduction to IIo7 Data Science in Indu UNIT – V Various real time a	Management Units (PMUs) in IC's and Systems, FPGA in IoT systems. IoT ANALYTICS - IIoT Analytics - Big Data Analytics - Software Defined Networks- Mac astries - Cloud and FOG Computing- Industrial IoT: Security. APPLICATION pplication of IoT- Application Domains: Healthcare Applications in Indu	Converters, Voltage 9 Periods Chine Learning and 9 Periods ustries - Inventory
References, Power I UNIT – IV Introduction to IIoT Data Science in Indu UNIT – V Various real time a Management and Q	Management Units (PMUs) in IC's and Systems, FPGA in IoT systems. IoT ANALYTICS - IIoT Analytics - Big Data Analytics - Software Defined Networks- Mac astries - Cloud and FOG Computing- Industrial IoT: Security. APPLICATION pplication of IoT- Application Domains: Healthcare Applications in Indu	Converters, Voltage 9 Periods Chine Learning and 9 Periods ustries - Inventory

REFERENCES

1	Alioto, "Enabling the Internet of Things- From Integrated Circuits to Integrated Systems ", Springer
	Publications, First Edition, 2017.
2	Sudip Misra, Chandana Roy, Anandarup Mukherjee, "Introduction to Industrial Internet of Tings and
	Industry 4.0", CRC Press, 1st edition, 2021
3	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 2017.
4	ArshdeepBahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press,2015.
5	Jim Lipman, Sidense Corp, "NVM memory: A Critical Design Consideration for IoT Applications"-
	https://www.designreuse.com/articles/32614/nvm-memory-iot-applications.html.

COURSE O	COURSE OUTCOMES:		
Upon comp	letion of the course, the students will be able to:	Mapped	
C01	Explain the concepts of advanced IOT technology.	K2	
CO2	Discuss various components of IOT technologies.	K2	
CO3	Illustrate the different memory architectures employed in IOT.	K2	
CO4	Describe various IOT Analytics platforms.	КЗ	
C05	Develop IOT system for real time application.	K3	

Course Articulation Mat	rix					
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	1		1	1	2
CO2	3	1		1	1	2
CO3	3	1		1	1	2
CO4	3	1		1	1	2
C05	3	1		1	1	2
23VLPE20	3	1		1	1	2
1 – Slight, 2 – Moderate, 3	– Substantial	-				•

ASSESSMENT PA	TTERN – THEOP	RY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%	-	_	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%
ESE	30%	40%	30%	-	-	-	100%

23SEOE01

BUILDING BYE-LAWS AND CODES OF PRACTICE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course	• To impart knowledge on the building bye –laws and to empha	size the
Objective	significance of codes of practice in construction sector.	
UNIT – I	INTRODUCTION TO BUILDING BYE-LAWS	9 Periods
Introduction t	o Building Bye Laws and regulation, their need and relevance, General	definitions such
as building he	eight, building line, FAR, Ground Coverage, set back line. Introduction	n to Master Plar
and understan	nding various land uses like institutional, residential etc Terminolo	gies of Building
bye-laws.		
UNIT – II	ROLE OF STATUTORY BODIES	9 Periods
Role of variou	s statutory bodies governing building works like development author	rities, municipa
corporations	etc. Local Planning Authority, Town and Country planning organisat	tion, Ministry o
urban develop	oment.	
UNIT – III	APPLICATION OF BUILDING BYE-LAWS	9 Periods
Interpretation	of information given in bye laws including ongoing changes as sh	nown in various
annexure and	appendices. Application of Bye-laws like structural safety, fire saf	fety, earthquak
safety, baseme	ent, electricity, water, and communication lines in various building type	es.
UNIT – IV	INTRODUCTION TO CODES OF PRACTICE	9 Periods
_	INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations t	
Introduction t		to protect public
Introduction t	o various building codes in professional practice - Codes, regulations t	to protect public
Introduction t health, safety UNIT – V	o various building codes in professional practice - Codes, regulations t and welfare - Codes , regulations to ensure compliance with the local at	to protect public uthority. 9 Periods
Introduction t health, safety UNIT – V Applications c	o various building codes in professional practice - Codes, regulations t and welfare - Codes , regulations to ensure compliance with the local au APPLICATION OF CODES OF PRACTICE	to protect public uthority. 9 Periods
Introduction t health, safety UNIT – V Applications c	o various building codes in professional practice - Codes, regulations t and welfare - Codes , regulations to ensure compliance with the local au APPLICATION OF CODES OF PRACTICE of various codes as per various building types. Bureau of Indian Standa o other international codes.	to protect public uthority. 9 Periods

1	"National Building Code of India 2016 - SP 7", NBC 2016, Bureau of Indian Standards.
2	"Model Building Bye-Laws (MBBL) – 2016", Town and Country Planning Organization, Ministry
	of Housing and Urban Affairs, Government of India.
3	"Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
4	Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COUR	SE OUTCOMES:	Bloom's			
Upon	completion of the course, the students will be able to:	Mapped			
CO1	Apply the building bye-laws in planning, design and construction works.	КЗ			
CO2	CO2 Familiarize with the role of various statutory bodies.				
CO3	CO3 Execute safety related work practices in the construction sector.				
CO4	4 Ensure compliance with the rules and regulations in design and construction				
	practices.				
CO5	Perform design and construction practices based on national and	КЗ			
	international codal provisions.				

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	PO3	P04	P05	P06							
C01	1	3	1	1	2	3							
CO2	1	3	1	1	2	3							
CO3	1	3	1	1	2	3							
CO4	2	3	1	1	2	3							
C05	2	3	1	1	2	3							
23SEOE01	2	3	1	1	2	3							
1 – Slight, 2 – Moderate, 3	3 – Substantial			1 – Slight, 2 – Moderate, 3 – Substantial									

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual	40	40	20	-	-	-	100
Assessment 1 /							
Case Study 1/							
Seminar 1 /							
Project1							
Individual	40	40	20	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20				100

23SEOE02

PLANNING OF SMART CITIES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course	• To have an exposure on planning of smart cities with consid	leration of the				
Objective	recent challenges and to address the importance o					
Objective	development of urban area.	i sustaillable				
UNIT – I	SMART CITIES DEVELOPMENT POTENTIALS AND CHALLENGES	9 Periods				
-	Smart Cities: Introduction and Overview - Implementation	0				
	ssues - Spatial distribution of startup cities – Re imagining postind					
	Challenges for Establishing Smart Urban Information and Knowledge	e Management				
System.						
UNIT – II	SUSTAINABLE URBAN PLANNING	9 Periods				
Optimising Gree	n Spaces for Sustainable Urban Planning - 3D City Models for Ext	racting Urban				
Environmental Q	Quality Indicators - Assessing the Rainwater Harvesting Potential - The	Strategic Role				
of Green Spaces ·	- Monitoring Urban Expansion.					
UNIT – III	ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT	9 Periods				
Alternatives for	Energy Stressed Cities - Social Acceptability of Energy - Efficient Lig	hting - Energy				
Management - U	rban Dynamics and Resource Consumption - Issues and Challenges	of Sustainable				
Tourism - Green	Buildings: Eco-friendly Technique for Modern Cities.					
UNIT – IV	MULTIFARIOUS MANAGEMENT FOR SMART CITIES	9 Periods				
Assessment of I	Domestic Water Use Practices - Issue of Governance in Urban W	ater Supply -				
Assessment of	Water Consumption at Urban Household Level - Water Sustainal	oility - Socio-				
	ninants and Reproductive Healthcare System - Problems and Developm					
UNIT – V	INTELLIGENT TRANSPORT SYSTEM	9 Periods				
Introduction to	Intelligent Transport Systems (ITS) - The Range of ITS Applicati	ons -Network				
	Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route					
information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The						
Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic						
Development.						
Contact Periods	······					
	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods				
	rious rutoriai, o rerious rrattitai, o rerious rotal, 45	i ci ious				

REFERENCES

	1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
		Perspectives", Springer 2017 Co.(P) Ltd. 2013.
	2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva" , 2016.
	3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
		Standards", and Driving Factors-Springer International Publishing, 2018.
	4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems
		And Smart Cities", Springer, 2015.
F	-	

5 Pradip Kumar Sarkar and Amit Kumar Jain **"Intelligent Transport Systems"**, PHI Learning, 2018.

COUR	SE OUTCOMES:	Bloom's			
		Taxonomy			
Upon	Upon completion of the course, the students will be able to:				
C01	Indicate the potential challenges in smart city development.	K2			
CO2	Select the different tools for sustainable urban planning.	КЗ			
CO3	Choose appropriate energy conservation system for smart cities.	K3			
CO4	Identify the proper method of water management system.	КЗ			
CO5	Apply Intelligent Transport System concepts in planning of smart city.	K3			

COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	P04	P05	P06				
C01	1	-	2	3	1	1				
CO2	1	1	1	3	2	1				
CO3	1	1		2	2	1				
CO4	1	-	1	2	1	1				
C05	1	-	1	3	1	-				
23SEOE02	1	1	2	3	2	1				
1 – Slight, 2 – Moderate, 3	– Substantia	al								

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	45	30	-	-	-	100
CAT2	25	45	30	-	-	-	100
Individual	15	40	45	-	-	-	100
Assessment 1 /							
Case Study 1/							
Seminar 1 /							
Project1							
Individual	10	45	45	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20	40	40	-	-	-	100

23SEOE03	GREEN BUILDING
233E0E03	(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To introduce the different concepts of energy efficient b	uildings_indoor							
Objective	environmental quality management, green buildings and its d								
UNIT – I	INTRODUCTION	9 Periods							
Life cycle impacts	of materials and products – sustainable design concepts – strategies	of design for the							
· ·	e sun-earth relationship and the energy balance on the earth's surface								
	Solar radiation and solar temperature – Sun shading and solar radiation on surfaces – Energy impact on								
the shape and orientation of buildings – Thermal properties of building materials.									
UNIT – II ENERGY EFFICIENT BUILDINGS 9 Periods									
Passive cooling a	nd day lighting – Active solar and photovoltaic- Building energy a	nalysis methods-							
Building energy	simulation- Building energy efficiency standards-Lighting system	design- Lighting							
economics and aesthetics- Impacts of lighting efficiency – Energy audit and energy targeting-									
Technological opt	ions for energy management.								
UNIT – III	INDOOR ENVIRONMENTAL QUALITY MANAGEMENT	9 Periods							
Psychrometry- Co	omfort conditions- Thermal comfort- Ventilation and air quality-	Air conditioning							
requirement- Visu	al perception- Illumination requirement- Auditory requirement- Ene	rgy management							
options- Air cond	litioning systems- Energy conservation in pumps- Fans and blowe	rs- Refrigerating							
machines- Heat re	jection equipment- Energy efficient motors- Insulation.								
UNIT – IV	GREEN BUILDING CONCEPTS	9 Periods							
Green building c	oncept- Green building rating tools- Leeds and IGBC codes. – M	laterial selection							
Embodied energy	v- Operating energy- Façade systems- Ventilation systems-Transp	ortation- Water							
treatment systems	s- Water efficiency- Building economics								
UNIT – V	GREEN BUILDING DESIGN - CASE STUDY	9 Periods							
Case studies - B	uilding form, orientation and site considerations; conservation m	neasures; energy							
modeling; heating	system and fuel choices; renewable energy systems; material choic	es - construction							
budget									
Contact Periods :									
Lecture: 45 Perio	ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods							

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", , Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
C01	Apply the concepts of sustainable design in building construction.	К3
CO2	Execute green building techniques including energy efficiency management in	КЗ
	the building design.	
CO3	Establish indoor environmental quality in green building.	КЗ
CO4	Perform the green building rating using various tools.	К3
CO5	Create drawings and models of green buildings.	К3

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	P06				
C01	3	3	2	3	3	3				
CO2	3	3	2	3	3	3				
CO3	2	2	2	2	3	3				
CO4	2	3	1	3	3	3				
CO5	3	3	1	3	3	3				
23SEOE03	3	3	2	3	3	3				
1 – Slight, 2 – Moderate, 3	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSME	NT PATTERN – T	HEORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual	40	40	20	-	-	-	100
Assessment 1 /							
Case Study 1/							
Seminar 1 /							
Project1							
Individual	40	40	20	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

23EEOE04

ENVIRONMENT HEALTH AND SAFETY MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To impart knowledge on occupational health hazards, safe	ty measures at								
Objective	work place, accident prevention, safety management and sa	afety measures								
	in industries.									
UNIT – I	OCCUPATIONAL HEALTH HAZARDS	9 Periods								
-	lealth and Hazards - Safety Health and Management: Occupational H									
- Ergonomics	- Ergonomics - Importance of Industrial Safety - Radiation and Industrial Hazards: Types and									
	ation - Industrial Hygiene - Different air pollutants in industries and	d their effects -								
	and Other Hazards.									
UNIT – II	SAFETY AT WORKPLACE	9 Periods								
5	rkplace - Safe use of Machines and Tools: Safety in use of differen									
-	Ergonomics of Machine guarding - working in different workplace	-								
-	d maintenance - Housekeeping, Industrial lighting, Vibration and No									
UNIT – III	ACCIDENT PREVENTION	9 Periods								
	vention Techniques - Principles of accident prevention - Hazard ide									
-	nt tree analysis, Hazop studies, Job safety analysis - Theories and	-								
Accident caus	ation - First Aid: Body structure and functions - Fracture and Dislo	cation, Injuries								
to various bo										
UNIT – IV	SAFETY MANAGEMENT	9 Periods								
	ement System and Law - Legislative measures in Industrial Safety	-								
	and Environment Management, Bureau of Indian Standards on Hea									
	indards - OSHA, Process safety management (PSM) and its pri	inciples - EPA								
standards										
UNIT – V	GENERAL SAFETY MEASURES	9 Periods								
Plant Layout	for Safety - design and location, distance between hazardous units, I	lighting, colour								
Plant Layout coding, pilot	for Safety - design and location, distance between hazardous units, l plant studies, Housekeeping - Accidents Related with Maintenance	lighting, colour e of Machines -								
Plant Layout coding, pilot Work Permit	for Safety - design and location, distance between hazardous units, l plant studies, Housekeeping - Accidents Related with Maintenance System - Significance of Documentation - Case studies involving imp	lighting, colour e of Machines -								
Plant Layout coding, pilot Work Permit health and sa	for Safety - design and location, distance between hazardous units, l plant studies, Housekeeping - Accidents Related with Maintenance System - Significance of Documentation - Case studies involving imp fety measures in Industries.	lighting, colour e of Machines -								
Plant Layout coding, pilot Work Permit	for Safety - design and location, distance between hazardous units, I plant studies, Housekeeping - Accidents Related with Maintenance System - Significance of Documentation - Case studies involving imp fety measures in Industries. ods:	lighting, colour e of Machines -								

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications, 2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao
	PharmaMed Press, 1st edition, 2021.

COURS	SE OUTCOMES:	Bloom's		
		Taxonomy		
Upon c	Upon completion of the course, the students will be able to:			
C01	Identify the occupational health hazards.	К3		
CO2	Execute various safety measures at workplace.	К3		
CO3	Analyze and execute accident prevention techniques.	К3		
C04	Implement safety management as per various standards.	К3		
C05	Develop awareness on safety measures in Industries.	КЗ		

Course Articulation Matrix										
COs/POs	P01	P02	P03	P04	P05	P06				
C01	1	2	2	2	3	2				
CO2	2	2	2	1	2	2				
CO3	2	3	2	1	2	2				
CO4	1	1	1	2	2	2				
CO5	1	1	1	1	1	2				
23EEOE04	1	2	2	1	2	2				
1 – Slight, 2 – Moderate, 3 – Sub	stantial				•					

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Rememberin	Understandin	Applyin	Analyzin	Evaluatin	Creatin	Total				
Category*	g (K1) %	g (K2) %	g (K3) %	g (K4) %	g (K5) %	g (K6) %	%				
CAT1	25	35	20	10	5	5	100				
CAT2	25	35	20	10	5	5	100				
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100				
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100				
ESE	25	35	20	10	5	5	100				

23EE0E05

CLIMATE CHANGE AND ADAPTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To understand the Earth's climate system, changes and their effect									
Objective	identifying the impacts, adaptation, mitigation of climate change a									
	knowledge on clean technology, carbon trading and alternate energy	sources.								
UNIT – I	EARTH'S CLIMATE SYSTEM	9 Periods								
Introduction-0	Climate in the spotlight - The Earth's Climate Machine – Climate Class	ification- Globa								
Wind Systems	Wind Systems – Trade Winds and the Hadley Cell – The Westerlies – Cloud Formation and Monsoon									
Rains – Storms and Hurricanes - The Hydrological Cycle – Global Ocean Circulation – El Nino and its										
Effect - Solar	Radiation – The Earth's Natural Green House Effect – Green House G	ases and Globa								
Warming – Ca	rbon Cycle.									
UNIT – II	OBSERVED CHANGES AND ITS CAUSES	9 Periods								
Observation o	f Climate Change – Changes in patterns of temperature, precipitation a	nd sea level rise								
- Observed e	ffects of Climate Changes – Patterns of Large-Scale Variability –Dri	vers of Climate								
Change – Clim	ate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPC	C – Evidences o								
Changes in Cli	mate and Environment – on a Global Scale and in India – climate change	e modeling.								
UNIT – III	IMPACTS OF CLIMATE CHANGE	9 Periods								
Impacts of Cl	imate Change on various sectors – Agriculture, Forestry and Ecos	ystem – Water								
Resources – H	uman Health – Industry, Settlement and Society – Methods and Scena	arios –Projectec								
Impacts for D	ifferent Regions – Uncertainties in the Projected Impacts of Climate C	hange – Risk o								
Irreversible C	nanges.									
UNIT – IV	CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES	9 Periods								
-	trategy/Options in various sectors – Water – Agriculture –- Infr									
	cluding coastal zones – Human Health – Tourism – Transport – Energy -									
	and Practices – Energy Supply – Transport – Buildings – Industry	•								
•	bon sequestration – Carbon capture and storage (CCS) – Waste (MS	W & BIO Waste								
	dustrial waste – International and Regional cooperation.	0.0.1								
UNIT – V	CLEAN TECHNOLOGY AND ENERGY	9 Periods								
-	ment Mechanism – Carbon Trading - examples of future Clean Technolo	00								
Natural Comp	ost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Biofuels-	- Solar Energy -								
1 A 7 1 1 1 1	electric Power – Mitigation Efforts in India and Adaptation funding.									
Wind – Hydro Contact Perio Lecture: 45 P	ods:	:45 Periods								

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report –Working Group I Report, "The physical sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability", 2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007

6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate
	Change, Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
C01	Classify the Earths climatic system and factors causing climate change and	K2
	global warming.	
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise	К2
	and Observed effects of Climate Changes	
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible	КЗ
	changes.	
C04	Articulate the strategies for adaptation and mitigation of climatic changes.	КЗ
C05	Discover clean technologies and alternate energy source for sustainable growth.	КЗ

Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	2	2	3	2	3	1		
CO2	3	2	2	2	3	2		
CO3	2	2	2	2	3	2		
CO4	3	2	2	2	2	2		
C05	3	3	2	3	3	3		
23EEOE05	3	3	3	3	3	3		
1 – Slight, 2 – Moderat	e, 3 – Substan	tial			•	•		

ASSESSMEN	T PATTERN – TH	EORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	25	30	35	10	-	-	100
CAT2	25	30	35	10	-	-	100
Individual							
Assessment	Case 20	30	40	10	-	-	100
1/ Case							
Study 1/							
Seminar 1 /							
Project 1							
Individual							
Assessment							
2/ Case	20	30	40	10			100
Study 2/	20	30	40	10	-	-	100
Seminar 2/							
Project 2							
ESE	25	30	35	10	-	-	100

WASTE TO ENERGY

(Common to all Branches)

PREREQUISIT	YES	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
Course Objective	• To classify waste as fuel, introduce converse Biomass Pyrolysis, demonstrate methods, fa	actors for biomass			0			
	acquire knowledge about biogas and its deve	lopment in India.	-	<u> </u>	erioo			
UNIT – I								
	to Energy from Waste: Classification of waste as f te - MSW – Conversion devices – Incinerators, Gasifiers	•	, FO	rest	resi	due,		
UNIT – II	BIOMASS PYROLYSIS			9 Pe	eriod	ls		
•	ysis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis – oplications – Manufacture of Pyrolytic oils and gases, Y				Metl	iods		
UNIT – III	BIOMASS GASIFICATION			9 Pe	eriod	ls		
	and Operation – Gasifier burner arrangement for nd electrical power – Equilibrium and Kinetic Conside					gine		
UNIT – IV	BIOMASS COMBUSTION			9 Pe	erioo	ls		
Biomass Com	oustion – Biomass Stoves – Improved Chullahs, type	es, some exotic de	esigr	ıs, F	ixed	bed		
	/pes – Inclined grate combustors – Fluidized bed co l the above biomass combustors.	mbustors, design,	con	struc	tion	and		
UNIT – V	BIOENERGY SYSTEM			9 Pe	erioo	ls		
energy system Biomass conv gasification – biogas plants	ties of biogas (Calorific value and composition) – Biog – Design and constructional features – Biomass resion processes – Thermo chemical conversion pyrolysis and liquefaction – biochemical conversion – Applications – Alcohol production from biomass – Bression – Biomass energy programme in India.	resources and the – Direct combu – anaerobic dige	ir cl stioi estio	assii 1 – n –	ficati bior Type	on · nass es of		
Contact Perio Lecture: 45 P		iods Total: 45	5 Pe	riod	S			
REFERENCE	S:							
	Recovery from Municipal Solid Waste by Thermal Co	onversion Technol	logi	es",	Р			
Jayaram	Reddy, Taylor and Francis Publications, 2016.		-					
2 <i>"Waste -</i>	- to – Energy: Technologies and project Implementat	tions" Marc I Road	ff Fi	ranci	nis			

2	"Waste – to – Energy: Technologies and project Implementations", Marc J Rogoff, Francois
	Screve, ELSEVIER Publications, Third Edition, 2019.

- 3 **"Biogas Technology and Principles"**, Brad Hill, NY RESEARCH PRESS Publications, Illustrated Edition, 2015.
- 4 **"Biomass Gasification and Pyrolysis Practical Design and Theory"**, PrabirELSEVIER Publications, 2010.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	КЗ
CO3	Demonstrate methods and factors considered for biomass gasification.	КЗ
CO4	Identify the features of different facilities available for biomass combustion.	K4
C05	Analyze the potential of different Bioenergy systems with respect to Indian condition.	K2

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	PO5	P06	
C01	2	3	3	2	3	1	
C02	3	2	2	2	3	1	
C03	3	3	2	3	2	1	
C04	3	2	2	3	3	1	
C05	2	3	3	3	2	1	
23EEOE06	3	3	3	3	3	1	
1 – Slight, 2 – Moderate, 3 – Sub	1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMEN	ASSESSMENT PATTERN – THEORY											
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total					
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%					
Category*												
CAT1	10	20	20	25	15	10	100					
CAT2	10	25	20	10	25	10	100					
Individual												
Assessment												
1/ Case		15	35	50			100					
Study 1/	-	15	33	50	-	-	100					
Seminar 1 /												
Project 1												
Individual												
Assessment												
2/Case		10	40	50			100					
Study 2/	-	10	40	50	-	-	100					
Seminar 2/												
Project 2												
ESE	10	25	25	20	10	10	100					

23GEOE07

ENERGY IN BUILT ENVIRONMENT

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To understand constructional energy requirements of buildings, er	nergy audit
Objective	methods and conservation of energy.	
UNIT-I	INTRODUCTION	9 Periods
Indoor activitie	s and environmental control - Internal and external factors on	energy use -
Characteristics of	f energy use and its management -Macro aspect of energy use in dw	vellings and its
implications -T	nermal comfort-Ventilation and air quality-Air-conditioning requi	rement-Visual
perception-Illun	ination requirement-Auditory requirement.	
UNIT-II	9 Periods	
The sun-earth r	elationship - Climate, wind, solar radiation and temperature - Su	n shading and
solar radiation of	on surfaces-Energy impact on the shape and orientation of buildings	–Lighting and
day lighting :Cha	racteristics and estimation, methods of day-lighting–Architectural o	considerations
for day-lighting.		
UNIT-III	ENERGY REQUIREMENTS IN BUILDING	9 Periods
Steady and un	steady heat transfer through wall and glazed window-Standard	s for thermal
performance of	building envelope- Evaluation of the overall thermal transfer- The	rmal gain and
net heat gain-En	d-Use energy requirements-Status of energy use in buildings-Estima	tion of energy
use in a building		
UNIT-IV	ENERGY AUDIT	9 Periods
Energy audit a	and energy targeting-Technological options for energy manageme	nt-Natural and
forced ventilation	n–Indoor environment and air quality-Air flow and air pressure on	buildings-Flow
due to Stack effe	ct.	
UNIT-V	COOLING IN BUILT ENVIRONMENT	9 Periods
Passive building	ng architecture–Radiative cooling-Solar cooling techniques-So	olar desiccan
dehumidification	n for ventilation-Natural and active cooling with adaptive comfo	rt–Evaporative
cooling –Zero er	ergy building concept.	
Contact Period	3:	

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill,
	2000.
2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, " Energy Design for Architects" , AEE Energy Books, 1991.
4	ASHRAE," Hand book of Fundamentals" ,ASHRAE,Atlanta,GA.,2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinois ,USA.

COUR	COURSE OUTCOMES:			
Upon	Upon completion of the course, the students will be able to:			
C01	Understand energy and its usage	К2		
CO2	Know lighting to be given to a building	K1		
CO3	Analyse the energy requirements in a building	КЗ		
C04	Apply the energy audit concepts.	КЗ		
C05	Study architectural specifications of a building	K1		

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	2	-	3	1	2	1		
CO2	2	-	3	1	2	1		
CO3	2	-	3	1	2	1		
CO4	2	-	3	1	2	1		
C05	2	-	3	1	2	1		
23GEOE07	2	-	3	1	2	1		
1–Slight, 2–Moderate, 3–Substantial								

ASSESSMENT P	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT 1	40	40	20	-	-	-	100				
CAT 2	40	40	20	-	-	-	100				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100				
ESE	40	40	20	-	-	-	100				

EARTH AND ITS ENVIRONMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course	To know about the planet earth, the geosystems and the resourc	oc like ground			
		-			
Objective	water and air and to learn about the Environmental Assessment and	sustainability.			
UNIT-I	EVOLUTION OF EARTH	9 Periods			
Evolution of earth as habitable planet-Evolution of continents-oceans and landforms-evolution of life					
through geologi	cal times - Exploring the earth's interior - thermal and chemical struc	ture - origin of			
gravitational and	d magnetic fields.				
UNIT-II	GEOSYSTEMS	9 Periods			
Plate tectonics -	working and shaping the earth - Internal geosystems - earthquake	s – volcanoes -			
climatic excurs	ions through time - Basic Geological processes - igneous, se	dimentation –			
metamorphic pr	ocesses.				
UNIT-III	GROUND WATER GEOLOGY	9 Periods			
Geology of grou	nd water occurrence -recharge process-Ground water movement	-Ground water			
discharge and c	atchment hydrology – Ground water as a resource - Natural ground	l water quality			
and contaminati	on-Modelling and managing ground water systems.				
UNIT-IV	ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY	9 Periods			
Engineering and	d sustainable development - population and urbanization - toxic chen	nicals and finite			
resources - wat	er scarcity and conflict - Environmental risk - risk assessment and cha	aracterization –			
hazard assessm	ent-exposure assessment.				
UNIT-V	AIR AND SOLIDWASTE	9 Periods			
Air resources en	Air resources engineering-introduction to atmospheric composition-behaviour-atmospheric photo				
chemistry-Solid waste management–characterization-management concepts.					
Contact Period	S:				
Lecture: 45 Per	iods Tutorial: 0 Period Practical: 0 Period Total: 45	5 Periods			

1	John Grotzinger and Thomas H.Jordan, "Understanding Earth", Sixth Edition, W.H.Freeman, 2010.							
2	Younger, P.L., "Ground water in the Environment: An introduction", Blackwell Publishing, 2007.							
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,							
	Sustainability and Design", Wiley, NJ, 2010.							

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
C01	To know about evolution of earth and the structure of the earth.	K2
C02	To understand the internal geosystems like earthquakes and volcanoes and	K2
	the Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground	K3
	water and the modeling systems.	
C04	To assess the Environmental risks and the sustainability developments.	К3
C05	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	1	-	-	2	2	-			
CO2	3	-	3	3	-	3			
CO3	2	-	-	-	-	-			
CO4	-	2	-	-	1	-			
CO5	2	2	-	1	-	-			
23GEOE08	2	2	3	3	2	3			
1–Slight, 2–Moderate,	1–Slight, 2–Moderate, 3–Substantial								

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	40	20	-	-	-	100			
CAT 2	40	40	20	-	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	40	40	20	-	-	-	100			

23GEOE09

NATURAL HAZARDS AND MITIGATION

(Common to all Branches)

PREREQUISITES:	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course To get idea on the causes, effects and mitigation measures of different types of hazards						
Objective	with case studies.					
UNIT-I	EARTH QUAKES	9 Periods				
Definitions and	basic concepts-different kinds of hazards-causes-Geologic	Hazards-Earthquakes-				
causes of earthquakes-effects-plate tectonics-seismic waves-measures of size of earthquakes-						
earthquake resis	stant design concepts.					
UNIT-II	SLOPE STABILITY	9 Periods				
Slope stability	and landslides-causes of landslides-principles of stability	analysis-remedial and				
corrective meas	ures for slope stabilization.					
UNIT-III	FLOODS	9 Periods				
_	FLOODS ds–Floods-causes of flooding-regional flood frequency					
Climatic Hazar						
Climatic Hazar	ds–Floods-causes of flooding-regional flood frequency					
Climatic Hazar measures-flood UNIT-IV	ds–Floods-causes of flooding-regional flood frequency routing-flood forecasting-warning systems.	analysis–flood control 9 Periods				
Climatic Hazar measures-flood UNIT-IV Droughts -cause	ds–Floods-causes of flooding-regional flood frequency routing-flood forecasting-warning systems. DROUGHTS	analysis–flood control 9 Periods				
Climatic Hazar measures-flood UNIT-IV Droughts -cause	ds–Floods-causes of flooding-regional flood frequency routing-flood forecasting-warning systems. DROUGHTS es - types of droughts –effects of drought -hazard assessment	analysis–flood control 9 Periods				
Climatic Hazar measures-flood UNIT–IV Droughts –cause of GIS in natural UNIT–V	ds–Floods-causes of flooding-regional flood frequency routing-flood forecasting-warning systems. DROUGHTS es - types of droughts –effects of drought -hazard assessment hazard assessment–mitigation-management.	analysis–flood control 9 Periods - decision making-Use 9 Periods				

Contact Periods :			
Lecture: 45 Periods	Tutorial: 0 Period	Practical: 0 Period	Total: 45 Periods

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage
	Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press,2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley & Sons,
	Inc,2005.
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering", John Wiley &
	Sons,Inc,2008

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon cor	npletion of the course, the students will be able to:	Mapped
CO1	Learn the basic concepts of earthquakes and the design concepts of	K2
	earthquake Resistant buildings.	
CO2	Acquire knowledge on the causes and remedial measures of slope	КЗ
	stabilization.	
CO3	As certain the causes and control measures of flood.	K3
C04	Know the types, causes and mitigation of droughts.	K2
CO5	Study the causes, effects and precautionary measures of Tsunami.	K2

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	PO3	P04	P05	P06			
CO1	3	1	-	3	2	3			
CO2	3	1	2	3	3	3			
CO3	3	2	3	-	-	3			
CO4	3	-	-	3	2	3			
CO5	3	-	2	2	-	3			
23GEOE09	3	1	2	3	2	3			
1–Slight, 2–Moderate, 3–Substantial									

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	40	20	-	-	-	100			
CAT 2	40	40	20	-	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	40	40	20	-	-	-	100			

23ED0E10

BUSINESS ANALYTICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

• To apprehend the fundamentals of business analytics and its life cycle.					
• To gain knowledge about fundamental business analytics.					
 To study modeling for uncertainty and statistical inference. To ensure and enalytics the users of Usedeen and Man Beduce from encoder 					
 To apprehend analytics the usage of Hadoop and Map Reduce frameworks. To acquire insight on other analytical frameworks. 					
UNIT – I BUSINESS ANALYTICS AND PROCESS 9 Period	ls				
Business analytics: Overview of Business analytics, Scope of Business analytics, Business					
Analytics Process, Relationship of Business Analytics Process and organization, competitive advantage	ues of				
Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Revie					
probability distribution and data modelling, sampling andestimation methods overview.	VV 01				
UNIT - II REGRESSION ANALYSIS 9 Period	IS				
Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple					
Linear Regression. Important Resources, Business Analytics Personnel, Data and models for					
Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics					
Technology.					
UNIT - III STRUCTURE OF BUSINESS ANALYTICS 9 Period					
Organization Structures of Business analytics, Team management, Management Issues, Designing Inform					
Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Cha	nges.				
Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data M	ining,				
Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive	ptive				
Modelling, nonlinear Optimization.					
UNIT – IV FORECASTING TECHNIQUES 9 Period	ls				
Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Foreca	sting				
Models for Stationary Time Series, Forecasting Models for Time Series					
with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with					
Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and					
Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product					
Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.					
UNIT – V DECISION ANALYSIS AND RECENT TRENDS IN BUSINESS ANALYTICS 9 Period	ls				
Decision Analysis: Formulating Decision Problems, Decision Strategies with the without					
Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision					
Making. Recent Trends: Embedded and collaborative business intelligence, Visual data recovery, Data					
	Data				
Storytelling and Data journalism	Data				

_	
1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R – A Practical Approach", Apress, 2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson, "Essentials of
	Business Analytics", Cengage Learning, second Edition, 2016.
5	U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making", Wiley, 2017.
6	Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Identify the real world business problems and model with analytical solutions.	K4
CO2	Solve analytical problem with relevant mathematics background knowledge.	K4
CO3	Convert any real world decision making problem to hypothesis and apply suitable	K4
	statistical testing.	
CO4	Write and Demonstrate simple applications involving analytics using Hadoop and	K4
	Map Reduce	
C05	Use open source frameworks for modeling and storing data.	K4

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	PO5				
C01	1	2	1	2	1				
CO2	1	1	1	2	1				
CO3	2	2	1	1	-				
CO4	2	2	1	-	-				
C05	1	2	-	-	-				
23EDOE10	1	2	1	2	1				
1 – Slight, 2 – Moderate, 3 – Substantial									

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23ED0E11

INTRODUCTION TO INDUSTRIAL SAFETY

(Common to all Branches)

PREREQUISITES			CATEGORY	L	Т	Р	С
	NIL		OE	3	0	0	3
Course Objectives	Summarize basics of inc	dustrial safety.					
	• Describe fundamentals	of maintenance engin	neering.				
	Explain wear and corro	osion.					
	Illustrate fault tracing.						
	Identify preventive and	periodic maintenanc	ce.				
UNIT – I	INTRODUCTION 9 Periods						
•	pes, results and control, mechan		••			-	
	scribe salient points of factories a		-			-	
	ness, fire, guarding, pressure vess	els, etc., Safety color	codes. Fire preven	tion a	nd f	irefig	hting
equipment and meth							
UNIT – II FUNDAMENTALS OF MAINTENANCE ENGINEERING						Perio	
Definition and aim	of maintenance engineering,	Primary and secon	ndary functions a	ndre	spon	sibili	ty of
maintenance depart	ment, Types of maintenance, T	Гурes and applicati	ons of tools use	d for	ma	inter	nance
Maintenance cost & i	ts relation with replacement econo	omy, Service life of eq	luipment.				
UNIT – III	WEAR AND CORROSION AND T	HEIR PREVENTION			9 F	Perio	ds
Wear- types, causes,	effects, wear reduction methods, lu	ubricants-types and a	pplications,				
Lubrication methods	, general sketch, working and app	lications, i. Screw do	wn grease cup, ii. I	ress	ire g	greas	e gun
iii. Splash lubrication	, iv. Gravity lubrication, v. Wick fe	ed lubrication vi. Sid	le feed lubrication,	vii. R	ing l	ubric	ation
Definition, principle	and factors affecting the corrosion.	. Types of corrosion,	corrosion preventio	on me	thoo	ls.	
UNIT – IV	FAULT TRACING				9 F	Perio	ods
Fault tracing-concep	t and importance, decision tree	concept, need and	applications, seque	ence	of fa	ult-fi	nding
activities, show as	decision tree, draw decision tre	ee for problems in	machine tools, hy	drau	lic, j	pneu	matic
automotive, thermal	and electrical equipment's like,	I. Any one machine	tool, ii. Pump iii.	Air o	comp	oress	or, iv
Internal combustion	engine, v. Boiler, vi. Electrical n	notors, Types of faul	ts in machine too	s and	d the	eir ge	enera
causes.	-					_	
UNIT – V	PERIODIC AND PREVENTIVE M	AINTENANCE			9 F	Perio	ods
Periodic inspection-	concept and need, degreasing, cl	eaning and repairin	g schemes, overha	uling	of 1	nech	anica
	lling of electrical motor, common						
-	n, need, steps and advantages of			-		-	
	nce of: I. Machine tools, ii. Pumps,	-			-		
-	eventive maintenance of mechan	-	-		-		-
-	cycle concept and importance		- • ′	5		-	
Lecture: 45 Periods		ractical:0Periods	Total:45 Periods				

1	Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London, 2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers, 2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing; Third edition ,2018
5	"Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COURS	COURSE OUTCOMES:			
		Taxonomy		
Upon c	Upon completion of the course, the students will be able to:			
C01	Ability to summarize basics of industrial safety	K4		
CO2	Ability to describe fundamentals of maintenance engineering	K4		
CO3	Ability to explain wear and corrosion	K4		
C04	Ability to illustrate fault tracing	K4		
C05	Ability to identify preventive and periodic maintenance	K4		

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	PO5				
C01	2	1	1	-	-				
C02	2	2	1	-	1				
C03	1	2	1	1	1				
C04	2	1	1	1	1				
C05	2	1	2	1	1				
23ED0E11	2	1	1	1	1				
1 – Slight, 2 – Moderate, 3 – Substantial									

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23ED0E12

OPERATIONS RESEARCH

(Common to all Branches)

PREREQUISIT	ES	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
• Solve linear programming problem and solve using graphical method.								
Objectives	• Solve LPP using simplex method.							
	 Solve transportation, assignment problems. 							
	 Solve project management problems. 							
	Solve scheduling problems.							
UNIT - I INTRODUCTION						iods		
Optimization T	echniques, Model Formulation, models, General L.R Fo	rmulation, Simplex	Tech	iniqu	es, S	ensitivity		
Analysis, Inven	tory Control Models							
UNIT – II	II LINEAR PROGRAMMING PROBLEM				9 Periods			
Formulation of	a LPP - Graphical solution revised simplex method - duali	ty theory - dual sim	plex n	netho	od - s	ensitivity		
analysis - parar	netric programming							
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM			9) Per	iods		
Nonlinear prog	ramming problem - Kuhn-Tucker conditions min cost flow	problem - max flov	v prob	olem ·	- CPM	I/PERT		
UNIT – IV	SEQUENCING AND INVENTORY MODEL			ç) Per	iods		
Scheduling and	d sequencing - single server and multiple server mo	odels - determinis	tic in	vent	ory	nodels -		
Probabilistic in	ventory control models - Geometric Programming.							
UNIT – V	GAME THEORY			ç	9 Per	iods		
Competitive M	odels, Single and Multi-channel Problems, Sequencing	Models, Dynamic	Prog	ramr	ning,	Flow in		
Networks, Elem	nentary Graph Theory, Game Theory Simulation							
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical:0Periods	Total:45 Perio	ds					

1	H.A. Taha"Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021.

COURS	SE OUTCOMES:	Bloom's Taxonomy Mapped
Upon c	ompletion of the course, the students will be able to:	
C01	Formulate linear programming problem and solve using graphical method.	K4
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
C04	Solve project management problems.	K4
C05	Solve scheduling problems	К4

Course Articulation Matrix					
COs/POs	P01	P02	P03	P04	P05
C01	2	1	1	-	-
CO2	2	2	1	-	-
CO3	1	1	2	1	1
CO4	1	1	-	-	-
C05	2	1	-	-	-
23EDOE12	2	1	1	1	1
1 – Slight, 2 – Moderate, 3 – Sub	ostantial				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23MF0E13

OCCUPATIONAL HEATH AND SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

 To gain knowledge about occupational health haza measures at work place. To learn about accident prevention and safety manageme To learn about general safety measures in industries. OCCUPATIONAL HEALTH AND HAZARDS v and development, National Safety Policy- Occupational Health Hazar					
 To learn about accident prevention and safety manageme To learn about general safety measures in industries. OCCUPATIONAL HEALTH AND HAZARDS					
• To learn about general safety measures in industries. OCCUPATIONAL HEALTH AND HAZARDS					
OCCUPATIONAL HEALTH AND HAZARDS	9 Periods				
OCCUPATIONAL HEALTH AND HAZARDS	9 Periods				
v and development, National Safety Policy- Occupational Health Hazar	9 Periods				
	ds - Ergonomics				
of Industrial Safety Radiation and Industrial Hazards- Machine Guard	ds and its types				
·					
SAFETY AT WORKPLACE	9 Periods				
kplace - Safe use of Machines and Tools: Safety in use of differen	nt types of unit				
	51				
f Machine guarding - working in different workplaces - Operation.	Inspection and				
	-				
	9 Periods				
vention Techniques - Principles of accident prevention - Defini	tions, Theories				
SAFETY MANAGEMENT	9 Periods				
ement System and Law - Legislative measures in Industrial Safet	y: Various acts				
etail- Occupational safety, Health and Environment Management: B	ureau of Indian				
Health and Safety, 14489, 15001 - OSHA, Process safety managemer	nt (PSM) and its				
PA standards- Safety Management: Organisational & Safety Committe	e - its structure				
GENERAL SAFETY MEASURES	9 Periods				
for Safety -design and location, distance between hazardous units,	lighting, colour				
	0 0				
on of health and safety measures in Industries.					
eriods Tutorial: 0 Periods Practical:0 Periods Total:45	Periods				
	kplace - Safe use of Machines and Tools: Safety in use of different f Machine guarding - working in different workplaces - Operation, Plant Design and Housekeeping, Industrial lighting, Vibration and Noise ACCIDENT PREVENTION vention Techniques - Principles of accident prevention - Definit Hazard identification and analysis, Event tree analysis, Hazop stu pories and Principles of Accident causation - First Aid : Body structure Dislocation, Injuries to various body parts. SAFETY MANAGEMENT ement System and Law - Legislative measures in Industrial Safete etail- Occupational safety, Health and Environment Management: B Health and Safety, 14489, 15001 - OSHA, Process safety management PA standards- Safety Management: Organisational & Safety Committee GENERAL SAFETY MEASURES for Safety -design and location, distance between hazardous units, lant studies, Housekeeping - Accidents Related with Maintenance of M t: Significance of Documentation Directing Safety, Leadership -Case s on of health and safety measures in Industries.				

1	Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
2	Danuta Koradecka, Handbook of Occupational Health and Safety, CRC, 2010.
3	Dr. Siddhartha Ray, <i>Maintenance Engineering,</i> New Age International (P) Ltd., Publishers, 2017
4	Deshmukh. L.M., Industrial Safety Management, 3 rd Edition, Tata McGraw Hill, New Delhi, 2008.
5	https://nptel.ac.in/courses/110105094
6	https://archive.nptel.ac.in/courses/110/105/110105094/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Gain the knowledge about occupational health hazard and safety measures	КЗ
	at work place.	
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures in	КЗ
	industries.	
C04	Know various laws, standards and legislations.	K2
C05	Implement safety and proper management of industries.	K4

Course Articulation Matrix:					
Cos/Pos	P01	P02	P03	P04	P05
C01	2	1	1	1	1
CO2	2	2	1	1	1
CO3	1	2	1	1	1
CO4	2	1	1	1	1
CO5	2	1	2	1	1
23MF0E13	2	1	1	1	1
1 – Slight, 2 – Moderate, 3 – Su	ıbstantial				

ASSESSMENT PA	TTERN – TH	IEORY					
Test / Bloom's Category*	Rememb ering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creating (K6) %	Tota 1%
CAT1		50	50				100
CAT2		50	30	20			100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50	50				100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50	30	20			100
ESE		40	40	20			100

23MF0E14

PREREQUISITESCATEGORYLTPC								
	NIL	OE	3	0	0	3		
 Course To understand the costing concepts and their role in decision making. Dbjectives To acquire the project management concepts and their various aspects in selection. To gain the knowledge in costing concepts with project execution. To develop knowledge of costing techniques in service sector and various budgetary control techniques. To familiarize with quantitative techniques in cost management. 								
UNIT – I	INTRODUCTION TO COSTING CONCEPTS			9	Peri	ods		
Introduction a	nd Overview of the Strategic Cost Management F	Process, Cost con	cept	s in	dec	ision-		
making; Relev	ant cost, Differential cost, Incremental cost and	Opportunity cos	t. 0	bjec	tives	s of a		
Costing Systen	n; Inventory valuation; Creation of a Database for	r operational cor	itrol	; Pr	ovisi	ion of		
data for Decisi								
UNIT – II	PROJECT PLANNING ACTIVITIES			9	Peri	ods		
documents Pr significance. P	ctivities. Detailed Engineering activities. Pre project team: Role of each member. Importance roject contracts. Types and contents. Project exwork diagram. Project commissioning: mechanical	Project site: Da accution Project	ta r	equ	ired	with		
UNIT – III	COST ANALYSIS			9	Peri	ods		
Absorption Co	r and Profit Planning Marginal Costing; Distincti sting; Break-even Analysis, Cost-Volume-Profit A dard Costing and Variance Analysis.		-			-		
UNIT – IV	PRICING STRATEGIES AND BUDGETORY CONT	ROL		9	Peri	ods		
Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just- in -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.								
UNIT – V	TQM AND OPERATIONS REASEARCH TOOLS Management and Theory of constraints, Activity	r Racad Cast Ma	nag			ods		
Marking; Bala management, Simulation, Lea	nced Score Card and Value-Chain Analysis. (Linear Programming, PERT/CPM, Transportation arning Curve Theory.	Quantitative tecl problems, Assig	hniq gnme	ues ent	for	cost		
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Peri	oas Total: 45 H	eri	oas				

REFERENCES:

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor
	&Francis, 2016
3	Nigel J, Engineering Project Management, John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall
	of India, New Delhi, 2011.

5 <u>https://archive.nptel.ac.in/courses/110/104/110104073/</u>

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the costing concepts and their role in decision making.	КЗ
CO2	Apply the project management concepts and analyze their various aspects	K4
	in selection.	
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various	K2
	budgetary control techniques.	
C05	Become familiar with quantitative techniques in cost management.	КЗ

Course Articulation Matrix:								
COs/Pos	P01	P02	P03	P04	P05			
C01	1	1	2	1	1			
CO2	2	1	1	1	-			
CO3	2	2	2	-	-			
CO4	1	1	1	1	1			
C05	1	2	1	1	-			
23MF0E14	1	1	1	1	1			
1 – Slight, 2 – Moderate, 3 – Sul	ostantial							

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1			40	60			100		
CAT2		30	30	40			100		
Individual			40	60			100		
Assessment 1									
/Case Study 1/									
Seminar 1 /									
Project1									
Individual		30	30	40			100		
Assessment 2									
/Case Study 2/									
Seminar 2 /									
Project 2									
ESE		20	40	40			100		

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Objectives	reinforgement in composite meterials					
	reinforcement in composite materials.					
	To identify the various reinforcements used in composite mat	erials.				
	To compare the manufacturing process of metal matrix compo	osites.				
	To understand the manufacturing processes of polymer matri	x composites.				
	To analyze the strength of composite materials.					
UNIT – I	INTRODUCTION	9 Periods				
	assification and characteristics of Composite materials. Advantages and	••				
composites. F	Functional requirements of reinforcement and matrix. Effect of rei	nforcement on				
overall compo	osite performance.					
UNIT – II	REINFORCEMENT	9 Periods				
Preparation-la	ayup, curing, properties and applications of glass fibers, carbon fibers	s, Kevlar fibers				
and Boron fil	pers. Properties and applications of whiskers, particle reinforcement	its. Mechanical				
Behavior of	composites: Rule of mixtures, Inverse rule of mixtures.	Isostrain and				
Isosterescond	itions.					
UNIT – III	MANUFACTURING OF METAL MATRIX COMPOSITES	9 Periods				
Casting – Sol	id State diffusion technique, Cladding – Hot isostatic pressing- Ma	nufacturing of				
Ceramic Matr	ix Composites: Liquid Metal Infiltration - Liquid phase sintering-Ma	anufacturing of				
Carbon – Carb	on composites: Knitting, Braiding, Weaving- Properties and application	IS.				
UNIT – IV	MANUFACTURING OF POLYMER MATRIX COMPOSITE	9 Periods				
Preparation o	f Moulding compounds and prepregs - hand layup method - Autoc	lave method –				
Filament wind	ding method – Compression moulding – Reaction injection moulding.	Properties and				
applications.						
UNIT – V	STRENGTH ANALYSIS OF COMPOSITES	9 Periods				
Laminar Fail	ure Criteria-strength ratio, maximum stress criteria, maximum	strain criteria,				
interacting fa	ilure criteria, hygrothermal failure. Laminate first play failure-in:	sight strength;				
	ngth-ply discount truncated maximum strain criterion; strength desig	0 0				
	oncentrations.					
Lecture: 45 P		l: 45 Periods				

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials, Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz,
	2013.
5	https://nptel.ac.in/courses/112104168

COUR	SE OUTCOMES:	Bloom's				
		Taxonomy				
Upon	Upon completion of the course, the students will be able to:					
C01	Know the characteristics of composite materials and effect of reinforcement in	K2				
	composite materials.					
C02	Know the various reinforcements used in composite materials.	K2				
CO3	Understand and apply the manufacturing processes of metal matrix	К3				
	composites					
C04	Understand and apply the manufacturing processes of polymer matrix	K3				
	composites.					
C05	Analyze the strength of composite materials.	K4				

Course Articulation Matrix:							
COs/Pos	P01	PO2	P03	PO4	PO5		
C01	1	2	1	1	1		
C02	2	2	1	1	2		
C03	2	1	2	1	1		
CO4	1	2	2	2	1		
C05	1	2	1	1	1		
23MF0E15	1	2	2	1	1		
1 – Slight, 2 – Moderate, 3 – Sul	bstantial						

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Rememberi ng (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creating (K6)%	Tota 1%	
Category*								
CAT1		60	40				100	
CAT2			60	40			100	
Individual		60	40				100	
Assessment								
1 /Case								
Study 1/								
Seminar 1 /								
Project1								
Individual			60	40			100	
Assessment								
2 /Case								
Study 2/								
Seminar 2 /								
Project 2								
ESE		40	40	20			100	

GLOBAL WARMING SCIENCE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To make th	e students learn abo	out the material consequer	nces of cli	mate change, sea		
Objective	level change	e due to increase in	the emission of greenhouse	e gases an	d to examine the		
	science beh	nd mitigation and ad	daptation proposals.				
UNIT – I	INTRODUC	ΓΙΟΝ			9 Periods		
Terminology I	elating to at	mospheric particles	- Aerosols - Types, chara	cteristics,	measurements –		
Particle mass :	spectrometry	- Anthropogenic-so	urces, effects on humans.				
UNIT – II	CLIMATE M	ODELS			9 Periods		
General clima	te modeling	- Atmospheric gene	eral circulation model - O	ceanic ge	neral circulation		
model, sea ice model, land model concept, paleo-climate - Weather prediction by numerical process.							
Impacts of clin	nate change -	Climate Sensitivity -	 Forcing and feedback. 				
UNIT – III	EARTH CAP	RBON CYCLE AND F	ORECAST		9 Periods		
Carbon cycle-	process, imp	ortance, advantage	es - Carbon on earth - G	lobal car	bon reservoirs -		
Interactions b	etween hum	an activities and ca	arbon cycle - Geologic tim	e scales -	Fossil fuels and		
energy - Pertu	rbed carbon	cycle.					
UNIT – IV	GREENHOU	SE GASES			9 Periods		
Blackbody rad	iation - Laye	r model - Earth's atr	mospheric composition and	l Green ho	ouse gases effects		
on weather an	d climate - Ra	adioactive equilibriu	m - Earth's energy balance.				
UNIT – V	GEO ENGIN	EERING			9 Periods		
Solar mitigati	on - Strateg	ies – Carbon dioxio	de removal - Solar radiati	ion mana	gement - Recent		
observed tren	ds in global v	arming for sea level	rise, drought, glacier exten	ıt.			
Contact Perio	ds:						
Lecture: 45 P	eriods Tu	torial: 0Periods	Practical: 0 Periods	Total	45 Periods		

TEXT BOOK:

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and						
	Its Consequences", Princeton University Press, 1st Edition, 2022.						
2	John Houghton, "Global warming: The Complete Briefing" , Cambridge University Press, 5 th						
	Edition, 2015.						

1	David Archer, "Global warming: Understanding the Forecast" , Wiley, 2 nd Edition, 2011.
2	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions
	for Global Warming", Elsevier, 1 st Edition, 2021.
3	Frances Drake, "Global Warming: The Science of Climate Change" , Routledge, 1 st edition, 2000.
4	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global
	energybalance", Springer, 1996.
5	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUR	Bloom's				
		Taxonomy			
Upon	Upon completion of the course, the students will be able to:				
C01	Understand the global warming in relation to climate changes throughout	К2			
01	the earth.	KZ.			
CO2	Assess the best predictions of current climate models.	K4			
C03	Understand the importance of carbon cycle and its implication on fossil	К2			
003	fuels.	KZ			
C04	Know about current issues, including impact from society, environment,	K4			
0.04	economy as well as ecology related to greenhouse gases.	IX T			
C05	Know the safety measures and precautions regarding global warming.	K5			

Course Articulation Matrix								
COs/POs	P01	PO2	P03	P04	P05	P06		
C01	2	1	2	1	1	2		
CO2	1	1	2	1	1	1		
CO3	1	2	1	1	1	2		
CO4	1	1	1	1	1	2		
CO5	2	1	2	1	1	2		
23TEOE16	1	1	1	1	1	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

Assessment pattern – theory								
Test /	Rememberin	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	g (K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	20	35	35	10	-	-	100	
CAT2	15	25	25	20	15	-	100	
Individual								
Assessment 1								
/ Case Study 1	25	20	20	35	-	-	100	
/ Seminar 1 /								
Project 1								
Individual								
Assessment 2								
/ Case Study 2	20	20	35	15	10	-	100	
/ Seminar 2 /								
Project 2								
ESE	25	20	25	20	10	-	100	

INTRODUCTION TO NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To make the students provide strong, essential, important methods	and foundations
Objective	of quantum mechanics and apply quantum mechanics on engineering	fields.
	T	
UNIT – I	INTRODUCTION	9 Periods
Particles and	Naves - Operators in quantum mechanics - The Postulates of quantum	mechanics - The
Schrodinger e	quation values and wave packet Solutions - Ehrenfest's Theorem.	
UNIT – II	ELECTRONIC STRUCTURE AND MOTION	9 Periods
Atoms- The H	ydrogen Atom - Many-Electron Atoms – Pseudopotentials, Nuclear Stru	cture, Molecules,
Crystals - Tra	nslational motion - Penetration through barriers - Particle in a box	x - Two terminal
quantum dot o	levices - Two terminal quantum wire devices.	
UNIT – III	SCATTERING THEORY	9 Periods
The formulati	on of scattering events - Scattering cross section - Stationary scatteri	ng state - Partial
wave stationa	ry scattering events - multi-channel scattering - Solution for Schro	dinger equation-
Radial and wa	ve equation - Greens' function.	
UNIT – IV	CLASSICAL STATISTICS	9 Periods
Probabilities a	nd microscopic behaviours - Kinetic theory and transport processes in	gases - Magnetic
properties of a	naterials - The partition function.	
UNIT – V	QUANTUM STATISTICS	9 Periods
Statistical med	hanics - Basic Concepts - Statistical models applied to metals and semi	conductors - The
thermal prop	erties of solids- The electrical properties of materials - Black body	radiation - Low
temperatures	and degenerate systems.	
Contact Perio	ds:	
Lecture:45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total:4	15 Periods

TEXT BOOK:

1	Vladimi	V.Mitin,	Viatcheslav	А.	Kochelap	and	Michael	A.Stroscio	"Introduction to
	Nanoelec	ctronics:	Science, Na	note	echnology,	Engir	neering,	and Apple	cations", Cambridge
	University) Press, 1 st	Edition, 2007						
2	Vinod Kui	mar Khan	na, "Introdu	ctory	y Nanoelec	tronic	s: Physic	al Theory d	nd Device Analysis",
	Routledge	e, 1 st Editi	on, 2020.						

1	George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States
	Edition, 2007.
2	Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.

3	Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian
	Edition, 2009.
4	Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum
	Statistical Mechanics", Wiley, 2004.
5	A. F. J. Levi, "Applied Quantum Mechanics" , 2 nd Edition, Cambridge, 2012.

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon	completion of the course, the students will be able to:	Mapped		
C01	Understand the postulates of quantum mechanics.	К2		
CO2	Know about nano electronic systems and building blocks.	K2		
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4		
CO4	Learn the concepts involved in kinetic theory of gases.	К2		
C05	Know about statistical models applies to metals and semiconductor.	К3		

Course Artic	Course Articulation Matrix						
COs/POs	P01	PO2	P03	P04	P05	P06	
C01	1	1	1	1	1	1	
CO2	2	2	1	1	1	1	
CO3	2	2	2	1	1	1	
CO4	1	1	1	1	1	1	
CO5	1	1	1	1	1	1	
23TEOE17	1	1	1	1	1	1	
1 – Slight, 2 –	- Moderate, 3 -	- Substantial					

Assessment pa	attern – theory						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	30	20	20	-	-	100
CAT2	30	30	20	20	-	-	100
Individual							
Assessment 1							
/ Case Study	35	25	20	20	-	-	100
1 / Seminar 1							
/ Project 1							
Individual							
Assessment 2							
/ Case Study	30	25	20	25	-	-	100
2 / Seminar 2							
/ Project 2							
ESE	20	30	30	20	-	-	100

22TEOE18

GREEN SUPPLY CHAIN MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To make the students learn and focus on the fundamental stra	tegies, tools and					
Objective	techniques required to analyze and design environmentally sustain	able supply chain					
	systems.						
UNIT – I	INTRODUCTION	9 Periods					
Intro to SCM -	Intro to SCM – complexity in SCM, Facility location - Logistics – Aim, activities, importance, progress,						
current trends	s - Integrating logistics with an organization.						
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAGEMENT	9 Periods					
Basic concept	s of supply chain management - Supply chain operations - Plannir	ng and sourcing -					
Making and d	elivering - Supply chain coordination and use of technology - Develop	ping supply chain					
systems.							
UNIT – III	PLANNING THE SUPPLY CHAIN	9 Periods					
Types of decis	sions – strategic, tactical, operational - Logistics strategies, implement	ting the strategy -					
Planning reso	urces – types, capacity, schedule, controlling material flow, measuring	ng and improving					
performance.							
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN	9 Periods					
Procurement	– cycle, types of purchase – Framework of e-procurement - Inventor	ry management –					
EOQ, uncertai	n demand and safety stock, stock control - Material handling – Purp	ose of warehouse					
and ownershi	p, layout, packaging - Transport – mode, ownership, vehicle routin	g and scheduling					
models- Trave	lling salesman problems - Exact and heuristic methods.						
UNIT – V	SUPPLY CHAIN MANAGEMENT STRATEGIES	9 Periods					
Five key confi	guration components - Four criteria of good supply chain strategies	- Next generation					
strategies- N	ew roles for end-to-end supply chain management - Evolution	of supply chain					
organization -	International issues in SCM – Regional differences in logistics.						
Contact Perio	Contact Periods:						
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods					

TEXT BOOK:

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply
	Chain Management", Routledge, 1st Edition, 2019.
2	Hsiao-Fan Wang and Surendra M.Gupta,"Green Supply Chain Management: Product Life Cycle

1	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management", Routledge, 1stEdition, 2017.
2	Arunachalam Rajagopal,"Green Supply Chain Management: A Practical Approach", Replica,
	2021.
3	Mehmood Khan, Matloub Hussain and Mian M. Ajmal,"Green Supply Chain Management for
	Sustainable Business Practice", IGI Global, 1st Edition, 2016.
4	S Emmett,"Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.
5	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction",
	Routledge, 1 st Edition, 2017.

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon con	npletion of the course, the students will be able to:	Mapped
C01	Integrate logistics with an organization.	К2
CO2	Evaluate complex qualitative and quantitative data to support strategic and	K5
	operational decisions.	KJ
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	КЗ
C04	Analyze inventory management models and dynamics of supply chain.	K4
C05	Identify issues in international supply chain management and outsources strategies.	К3

Course Articulatio	n Matrix						
COs/POs	P01	PO2	P03	P04	PO5	P06	
C01	1	1	1	1	1	3	
CO2	2	2	1	1	1	1	
CO3	2	1	2	1	1	1	
CO4	2	2	1	1	2	2	
C05	1	1	2	1	1	3	
23TEOE18	2	1	1	1	1	2	
1 – Slight, 2 – Moder	– Slight, 2 – Moderate, 3 – Substantial						

Assessment pat	tern – theory						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	25	25	30	10	10	-	100
CAT2	30	40	20	10	-	-	100
Individual							
Assessment 1 /							
Case Study 1 /	30	20	25	15	10	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment 2 /							
Case Study 2 /	35	30	25	10	-	-	100
Seminar 2 /							
Project 2							
ESE	30	30	20	10	10	-	100

23PSOE19

DISTRIBUTION AUTOMATION SYSTEM

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course	To study about the distributed automation and economic evaluation schemes	of nouvor
	network	of power
Objectives		
UNIT – I	INTRODUCTION	9 Periods
	Distribution Automation (DA) - Control system interfaces- Control and data re	equirements-
Centralized (vs	e) decentralized control- DA system-DA hardware-DAS software.	
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS	9 Periods
DA capabilitie	es - Automation system computer facilities- Management processes-	Information
management- S	System reliability management- System efficiency management- Voltage manag	ement- Load
management.		
UNIT – III	COMMUNICATION SYSTEMS	9 Periods
Communicatio	n requirements - reliability- Cost effectiveness- Data requirements- Two wa	y capability-
Communicatio	n during outages and faults - Ease of operation and maintenance- Confor	ming to the
architecture of	flow. Distribution line carrier- Ripple control-Zero crossing technique- Telepho	one, cableTV,
	dcast, FM SCA,VHF radio, microwave satellite, fiber optics-Hybrid communica	
used in field te		²
UNIT – IV	ECONOMIC EVALUATION METHODS	9 Periods
Development a	and evaluation of alternate plans- select study area – Select study period-	Project load
growth-Develo	p alternatives- Calculate operating and maintenance costs-Evaluate alternative	S.
UNIT – V	ECONOMIC COMPARISON	9 Periods
Economic com	parison of alternate plans-Classification of expenses - capital expenditures-Co	mparison of
	ements of alternative plans-Book life and continuing plant analysis- Year by y	-
=	nalysis, Short term analysis- End of study adjustment-Break even analysis	
=	putational aids.	<i>, , , , , , , , , , , , , , , , , , , </i>
Contact Perio		
Lecture: 45 Pe		
Lecture: 45 Pt	citous i utoriai, o rerious riacucai; o rerious i otal; 45 Perious	

1	M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications,
	Ltd., 2010.
2	Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design",
	Springer Science & Business Media, 21-Mar-2013
3	IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE
	Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society.
	Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
4	Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed automation.	К3
C04	Study the economic evaluation method	K4
C05	Understand the comparison of alternate plans	K5

Course Articulation Matrix

COs/Pos	P01	P02	P03	P04
C01	2	-	1	3
CO2	3	-	3	2
CO3	3	-	3	2
C04	3	-	3	1
C05	2	-	1	2
23PS0E19	3	-	3	2
23PS0E19 – Slight, 2 – Moderate, 3 – Subst	3	-		3

ASSESSMENT	PATTERN – THI	EORY					
Test /	Rememberin	Understandin	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	g (K1) %	g (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	30%	20%	10%	20%	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	10%	30%	20%	20%	-	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	20%	30%	10%	20%	20%	-	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	20%	20%	20%	10%	-	100%

23PSOE2	N
231 3062	υ

ELECTRICITY TRADING AND ELECTRICITY ACTS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To acquire expertise on Electric supply and demand of Indian Grid, gain e	exposure on
Objectives	energy trading in the Indian market and infer the electricity acts and	-
,	authorities.	0 5
UNIT – I	ENERGY DEMAND	9 Periods
Basic concepts	in Economics - Descriptive Analysis of Energy Demand - Decomposition A	nalysis and
Parametric Ap	proach - Demand Side Management - Load Management - Demand Side Ma	inagement -
Energy Efficien	cy - Rebound Effect	
UNIT – II	ENERGY SUPPLY	9 Periods
Supply Behavio	or of a Producer - Energy Investment - Economics of Non-renewable Resources	- Economics
of Renewable I	Energy Supply Setting the context - Economics of Renewable Energy Supply - E	conomics of
Electricity Sup	oly	
UNIT – III	ENERGY MARKET	9 Periods
Perfect Compe	tition as a Market Form - Why is the Energy Market not Perfectly Competitiv	ve? - Market
Failure and Mo	nopoly - Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC Era II - Oil Market: O	PEC
UNIT – IV	LAW ON ELECTRICITY	9 Periods
Introduction o	f the Electricity Law; Constitutional Design - Evolution of Laws on Electr	icity Salient
Features of Ele	ctricity Act, 2003 - Evolution of Laws on Electricity - Salient Features of the El	ectricity Act
2003		
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRICITY ACT	9 Periods
Regulatory Cor	nmissions - Appellate Tribunal - Other Institutions under the Act - Electricity (A	mendment)
Bill 2020/202	1. A Critical Comment - Renewable Energy - Role of Civil Society; Commer	nts on Draft
Renewable Ene	ergy Act, 2015	
Contact Perio	ds:	
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of
	Energy", Vol.1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
4	Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands,
	2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
6	Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and
	Practices ", Cambridge Univesity Press, 2014.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Describe electric supply and demand of power grid	K1
C02	Summarize various energy trading strategies	K2
CO3	Relate the electricity acts practically	КЗ
C04	Cite the electricity regulatory authorities	K2
C05	Analyze/check the existing power grid for its technical and economical	K4
	sustainability	

Course Articulation Matrix

COs/Pos	P01	P02	P03	P04
C01	3	-	3	3
C02	3	-	1	1
C03	3	-	2	2
C04	3	-	1	2
C05	3	-	3	3
23PSOE20	3	-	2	2
1 – Slight, 2 – Moderate, 3 – Sul	ostantial	•	1	-

ASSESSMENT	PATTERN – THE	ORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	30%	30%	20%	-	-	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	20%	30%	-	20%	-	40%	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	30%	-	20%	20%	-	100%

23PSOE21

MODERN AUTOMOTIVE SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To expose the students with theory and applications of Automotive Electrical	and
Objectives	Electronic Systems.	
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIVE ELECTRONICS	9 Periods
Introduction to	modern automotive systems and need for electronics in automobiles- Role o	f electronics
and microcont	rollers- Sensors and actuators- Possibilities and challenges in automotiv	ve industry-
Enabling techn	ologies and industry trends.	
UNIT – II	SENSORS AND ACTUATORS	9 Periods
Introduction- h	basic sensor arrangement- Types of sensors- Oxygen sensor, engine cranks	haft angular
position sensor	- Engine cooling water temperature sensor- Engine oil pressure sensor- Fu	el metering-
vehicle speed s	sensor and detonation sensor- Pressure Sensor- Linear and angle sensors- F	low sensor-
Temperature a	nd humidity sensors- Gas sensor- Speed and Acceleration sensors- Knock sen	sor- Torque
sensor- Yaw ra	te sensor- Tyre Pressure sensor- Actuators - Stepper motors – Relays.	
UNIT – III	POWERTRAIN CONTROL SYSTEMS IN AUTOMOBILE	9 Periods
Electronic Tra	nsmission Control - Digital engine control system: Open loop and close l	oop control
systems- Engin	e cooling and warm up control- Acceleration- Detonation and idle speed contr	ol - Exhaust
emission contro	ol engineering- Onboard diagnostics- Future automotive powertrain systems.	
UNIT – IV	SAFETY, COMFORT AND CONVENIENCE SYSTEMS	9 Periods
Cruise Control	- Anti-lock Braking Control- Traction and Stability control- Airbag cont	rol system-
Suspension con	trol- Steering control- HVAC Control.	
UNIT – V	ELECTRONIC CONTROL UNITS (ECU)	9 Periods
Introduction to	Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotiv	ves - Design
complexities of	ECUs- V-Model for Automotive ECU's- Architecture of an advanced microcontro	oller (XC166
Family, 32-bit	Tricore) used in the design of automobile ECUs- On chip peripherals, protoco	ol interfaces,
analog and digi	tal interfaces.	
Contact Period	-	
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John
	Wiley and Sons, 2001.
2	M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE
	Press, series on Power Engineering, 2000.
3	Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power
	SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
4	G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering applications	K4
C04	Develop modern automotive control system for electrical and electronics systems	K6
CO5	Understand the function of sensors and actuators	K2

Course Articulation Matrix

COs/Pos	P01	P02	PO3	P04
C01	3	-	1	3
CO2	3	-	3	2
CO3	3	-	3	2
CO4	2	-	3	1
C05	2	-	1	2
23PS0E21	3	-	2	2
1 – Slight, 2 – Moderate, 3 – Subs	tantial		·	•

ASSESSMENT	PATTERN – THE	ORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	30%	-	20%	-	30%	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	20%	30%	-	20%	-	40%	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	30%	20%	20%	-	-	100%

23PEOE22

VIRTUAL INSTRUMENTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To comprehend the Virtual instrumentation programming concepts towards me	easurements
Objectives	and control and to instill knowledge on DAQ, signal conditioning and its associa	ted software
	tools	
UNIT – I	INTRODUCTION	7 Periods
Introduction -	- advantages - Block diagram and architecture of a virtual instrument - (Conventiona
Instruments v	ersus Traditional Instruments - Data-flow techniques, graphical programming	in data flow
comparison wi	ith conventional programming.	
UNIT – II	GRAPHICAL PROGRAMMING AND LabVIEW	9 Periods
Concepts of gr	aphical programming - LabVIEW software - Concept of VIs and sub VI - Display t	ypes - Digita
- Analog - Cha	rt and Graphs. Loops - structures - Arrays – Clusters- Local and global variable	les – String
Timers and dia	alog controls.	
LINUT III	MANAGING FILES & DESIGN PATTERNS	11 Periods
UNIT – III	MANAGING FILES & DESIGN FATTERINS	
	low-level file I/O functions available in LabVIEW – Implementing File I/O func	
High-level and		tions to read
High-level and and write data	low-level file I/O functions available in LabVIEW – Implementing File I/O func	tions to read ogramming -
High-level and and write data	l low-level file I/O functions available in LabVIEW – Implementing File I/O func a to files – Binary Files – TDMS – sequential programming – State machine pro	tions to read ogramming -
High-level and and write data Communicatio	l low-level file I/O functions available in LabVIEW – Implementing File I/O func a to files – Binary Files – TDMS – sequential programming – State machine pro	tions to reac ogramming - sumer desigr
High-level and and write data Communicatio patterns UNIT – IV	l low-level file I/O functions available in LabVIEW – Implementing File I/O func a to files – Binary Files – TDMS – sequential programming – State machine pro n between parallel loops –Race conditions – Notifiers & Queues – Producer Cons	tions to read ogramming - sumer design 9 Period s
High-level and and write data Communicatio patterns UNIT – IV Introduction t	l low-level file I/O functions available in LabVIEW – Implementing File I/O func a to files – Binary Files – TDMS – sequential programming – State machine pro n between parallel loops –Race conditions – Notifiers & Queues – Producer Cons PC BASED DATA ACQUISITION	tions to read ogramming - sumer design 9 Period s Resolution,
High-level and and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio	l low-level file I/O functions available in LabVIEW – Implementing File I/O functions at the tot files – Binary Files – TDMS – sequential programming – State machine process by between parallel loops –Race conditions – Notifiers & Queues – Producer Conservations – PC BASED DATA ACQUISITION To data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, and outputs - Single-ended and differential inputs - Digital I/O, counters and to interface requirements - Issues involved in selection of Data acquisition ca	tions to reac ogramming - sumer desigr 9 Periods Resolution, - timers, DMA
High-level and and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio	l low-level file I/O functions available in LabVIEW – Implementing File I/O functions at the two files – Binary Files – TDMS – sequential programming – State machine provide the tween parallel loops –Race conditions – Notifiers & Queues – Producer Constants PC BASED DATA ACQUISITION to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, Tand outputs - Single-ended and differential inputs - Digital I/O, counters and the two sets are two sets and the two sets and the two sets are two sets are two sets and the two sets are two se	tions to reac ogramming - sumer desigr 9 Periods Resolution, - timers, DMA
High-level and and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio	l low-level file I/O functions available in LabVIEW – Implementing File I/O functions at the tot files – Binary Files – TDMS – sequential programming – State machine process by between parallel loops –Race conditions – Notifiers & Queues – Producer Conservations – PC BASED DATA ACQUISITION To data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, and outputs - Single-ended and differential inputs - Digital I/O, counters and to interface requirements - Issues involved in selection of Data acquisition ca	tions to reac ogramming - sumer desigr 9 Periods Resolution, - timers, DMA
High-level and and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio timer-counter UNIT – V	l low-level file I/O functions available in LabVIEW – Implementing File I/O functions at the total of the files – Binary Files – TDMS – sequential programming – State machine provide the between parallel loops –Race conditions – Notifiers & Queues – Producer Conservation of Data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, Tand outputs - Single-ended and differential inputs - Digital I/O, counters and to niterface requirements - Issues involved in selection of Data acquisition calor and analog outputs on the universal DAQ card.	tions to read ogramming - sumer design 9 Periods Resolution, timers, DMA ards - Use o 9 Periods
High-level and and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio timer-counter UNIT – V Components o	l low-level file I/O functions available in LabVIEW – Implementing File I/O functions at the tot files – Binary Files – TDMS – sequential programming – State machine proceed in between parallel loops –Race conditions – Notifiers & Queues – Producer Conservation of data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, and outputs - Single-ended and differential inputs - Digital I/O, counters and to interface requirements - Issues involved in selection of Data acquisition cata and analog outputs on the universal DAQ card.	tions to read ogramming - sumer design 9 Periods Resolution, timers, DMA ards - Use o 9 Periods hardware -
High-level and and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio timer-counter UNIT – V Components of Measurement	low-level file I/O functions available in LabVIEW – Implementing File I/O functions at the two files – Binary Files – TDMS – sequential programming – State machine provide the between parallel loops –Race conditions – Notifiers & Queues – Producer Conservation of the two parallel loops –Race conditions – Notifiers & Queues – Producer Conservation of the two parallel loops –Race conditions – Notifiers & Digital I/O, counters and the outputs - Single-ended and differential inputs - Digital I/O, counters and the two parallel loops of the universal DAQ card. DATA ACQUISITION AND SIGNAL CONDITIONING of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ	tions to read ogramming - sumer design 9 Period s Resolution, timers, DMA ards - Use o 9 Period s hardware - generation -
High-level and and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio timer-counter UNIT – V Components of Measurement Signal conditio	low-level file I/O functions available in LabVIEW – Implementing File I/O functions at the tot files – Binary Files – TDMS – sequential programming – State machine provide the parallel loops –Race conditions – Notifiers & Queues – Producer Conservation of data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, and outputs - Single-ended and differential inputs - Digital I/O, counters and to interface requirements - Issues involved in selection of Data acquisition cate and analog outputs on the universal DAQ card. DATA ACQUISITION AND SIGNAL CONDITIONING of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ of analog signal with Finite and continuous buffered acquisition- analog outputs	tions to read ogramming - sumer design 9 Periods Resolution, timers, DMA ards - Use o 9 Periods hardware - generation -
High-level and and write data Communicatio patterns UNIT – IV Introduction t analog inputs Data acquisitio timer-counter UNIT – V Components of Measurement Signal conditio	l low-level file I/O functions available in LabVIEW – Implementing File I/O functions at the tot files – Binary Files – TDMS – sequential programming – State machine proceed on between parallel loops –Race conditions – Notifiers & Queues – Producer Conseed PC BASED DATA ACQUISITION To data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, To data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, To data acquisition on PC, Sampling fundamentals, Digital I/O, counters and to ninterface requirements - Issues involved in selection of Data acquisition cate and analog outputs on the universal DAQ card. DATA ACQUISITION AND SIGNAL CONDITIONING of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ of analog signal with Finite and continuous buffered acquisition- analog output oning systems – Synchronizing measurements in single & multiple devices – P Electrical Power Measurement tool kit.	tions to read ogramming - sumer design 9 Period s Resolution, timers, DMA ards - Use o 9 Period s hardware - generation -

1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.
2	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
3	Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional
	Publishing, 2019
4	Robert H. Bishop, "Learning with LabVIEW" , Prentice Hall, 2013.
5	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation
	and Control", Newness, 2000

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	K6
C05	Familiarize and experiment with DAQ and Signal Conditioning	КЗ

Course Articulation Matrix)							
COs/POs	P01	P02	P03	P04	P05		
C01	3	-	3	2	1		
CO2	3	-	3	2	1		
CO3	3	-	2	2	2		
CO4	3	1	3	3	1		
C05	3	1	3	3	2		
23PEOE22	3	1	3	2	1		
1 – Slight, 2 – Moderate, 3 –	Substantial			•			

ASSESSMENT	PATTERN – THE	ORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	40	15	15	-	-	100
CAT2	15	10	25	30	20	-	100
Individual	10	10	20	30	20	10	100
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	25	40	20	15	-	-	100
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30	25	15	20	5	5	100

23PEOE23

ENERGY MANAGEMENT SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To Comprehend energy management schemes, perform energy audit a	and execute				
Objectives	economic analysis and load management in electrical systems.	Γ				
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND MANAGEMENT	9 Periods				
00	vation Act 2001 and policies – Eight National Missions - Basics of Energy at					
	Electrical) - Energy Management and Audit - Energy Managers and Auditors	51				
	Audit Report - Material and energy balance diagramsEnergy Monitoring and T					
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENERATION	9 Periods				
-	- Types - Performance Evaluation of boilers - Energy Conservation Opportu	-				
	Efficient Steam Utilisation - Furnaces:types and classification - Performance ev					
	ed furnace. Cogeneration: Need - Principle - Technical options - classification	- Technical				
-	d factors influencing cogeneration choice - Prime Movers - Trigeneration.	T				
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS	9 Periods				
•	ng – Electricity load management - Maximum Demand Control - Power Factor in	-				
	ts - pf controllers - capacitors - Energy efficient transformers and Induction					
	l other factors influencing energy efficiency - Standards and labeling pro	0				
	unsformers and IM - Analysis of distribution losses - demand side management	- harmonics				
	ind its selection.	1				
UNIT – IV	STUDY OF ELECTRICAL UTILITIES	9 Periods				
	pes - Performance - Air system components - Efficient operation of compressed	•				
-	apacity assessment - HVAC: psychrometrics and air-conditioning processes	• •				
	ystem - Compressor types and applications - Performance assessment of	0				
	g Systems: Energy efficient lighting controls - design of interior lighting - Case s	-				
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMENT	9 Periods				
U	nancial analysis: Fixed and variable costs – Payback period – ROI - metho					
	affecting analysis. Energy Performance Assessment: Heat exchangers - Fans and Blowers - Pumps. Energy					
	n buildings and ECBC.					
Contact Perio						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					
DEFEDENC	EC.					
REFERENC		007				
1 Murphy W.I	R. and G.Mckay Butter worth , " Energy Management ", Heinemann Publications, 2	007				

1	Murphy W.R. and G.Mckay Butter worth , " Energy Management ", Heinemann Publications, 2007
2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
	Publishers, 2012.
3	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
	edition, Technical Publications, 2019.
4	S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali
	Prakashan Publications, 2021.
5	www.em-ea.org/gbook1.asp

COUR	Bloom's Taxonomy	
Unon	completion of the course, the students will be able to	5
Upon	completion of the course, the students will be able to:	Mapped
C01	Analyze the feature of energy audit methodology and documentation of report.	КЗ
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
CO4	Familiarize with electrical utilities.	K4
CO5	Perform assessment of different systems.	K5

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05		
C01	3	2	2	1	1		
C02	3	2	2	1	1		
CO3	3	2	2	1	1		
CO4	3	2	2	1	1		
CO5	3	2	2	1	1		
23PEOE23	3	2	2	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT	PATTERN – THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1 / Case study1/ Seminar 1/Project1	-	30	30	20	20	-	100
Individual Assessment2 / Case study2/ Seminar 2 /Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23PEOE24

ADVANCED ENERGY STORAGE TECHNOLOGY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course	• To explore the fundamentals, technologies and applications of energy storage						
Objective							
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION AND	9 Periods					
	CHANGES						

Storage Needs- Variations in Energy Demand- Variations in Energy Supply- Interruptions in Energy Supply- Transmission Congestion - Demand for Portable Energy-Demand and scale requirements - Environmental and sustainability issues-conventional energy storage methods: battery-types.

UNIT – II	TECHNICAL METHODS OF STORAGE	9 Periods				
Introduction:	Energy and Energy Transformations, Potential energy (pumped hydro, com	pressed air,				
springs)- Kinet	tic energy (mechanical flywheels)- Thermal energy without phase change pass	sive (adobe)				
and active (water)-Thermal energy with phase change (ice, molten salts, steam)- Chemical energy						
(hydrogen, me	thane, gasoline, coal, oil)- Electrochemical energy (batteries, fuel cells)- Electros	tatic energy				
(capacitors), E	Electromagnetic energy (superconducting magnets)- Different Types of Ene	rgy Storage				
Systems.						
UNIT – III	PERFORMANCE FACTORS OF ENERGY STORAGE SYSTEMS	9 Periods				
Energy captur	e rate and efficiency- Discharge rate and efficiency- Dispatch ability and le	oad flowing				
characteristics	, scale flexibility, durability – Cycle lifetime, mass and safety – Risks of fire	e, explosion,				
toxicity- Ease c	of materials, recycling and recovery- Environmental consideration and recycling	, Merits and				
demerits of dif	demerits of different types of Storage.					
UNIT – IV	APPLICATION CONSIDERATION	9 Periods				
Comparing Sto	orage Technologies- Technology options- Performance factors and metrics- I	Efficiency of				
Energy System	is- Energy Recovery - Battery Storage System: Introduction with focus on Lea	ad Acid and				
Lithium- Chen	nistry of Battery Operation, Power storage calculations, Reversible reaction	ns, Charging				
patterns, Batte	ery Management systems, System Performance, Areas of Application of Ener	rgy Storage:				
Waste heat ree	covery, Solar energy storage, Green house heating, Power plant applications,	Drying and				
heating for pro	cess industries, energy storage in automotive applications in hybrid and electric	vehicles.				
UNIT – V	HYDROGEN FUEL CELLS AND FLOW BATTERIES	9 Periods				
Hydrogen Eco	nomy and Generation Techniques, Storage of Hydrogen, Energy generati	on - Super				
capacitors: properties, power calculations – Operation and Design methods - Hybrid Energy Storage:						
Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor						
"Battery + Cap	pacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power	Generation)				
Bacitor + Fue	el Cell or Flow Battery operation-Applications: Storage for Hybrid Electr	ric Vehicles,				
Regenerative P	ower, capturing methods.					
Contact Perio	ds:					

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley,
	2010.
2	Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy
	Storage and Conversion", John Wiley and Sons, 2012.
3	Francois Beguin and ElzbietaFrackowiak, " Super capacitors ", Wiley, 2013.
4	Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The
	Electrochemical Society, New Jersy, 2010.

COUR	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Mapped	
C01	Recollect the historical perspective and technical methods of energy storage.	K1	
CO2	Explain the basics of different storage methods.	K2	
CO3	Determine the performance factors of energy storage systems.	K2	
C04	Identify applications for renewable energy systems.	K4	
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2	

Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	P05			
C01	3	1	3	3	3			
CO2	3	1	3	3	3			
CO3	3	1	3	3	3			
CO4	3	1	3	3	3			
CO5	3	1	3	3	3			
23PEOE24	3	1	3	3	3			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT	PATTERN – THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

DESIGN OF DIGITAL SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course Objective

To gain knowledge in the design and VHDL programming of synchronous and asynchronous sequential • circuits, PLD's and the basic concepts of testing in VLSI circuits

UNIT-I SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of Clocked Synchronous Sequential Circuits - Modeling, state table reduction, state assignment, Design of Synchronous Sequential circuits, Design of iterative circuits- ASM chart –ASM realization.

UNIT-II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of Asynchronous Sequential Circuits - Races in ASC – Primitive Flow Table - Flow Table Reduction Techniques, State Assignment Problem and the Transition Table – Design of ASC – Static and Dynamic Hazards – Essential Hazards– Data Synchronizers.

UNIT-III SYSTEM DESIGN USING PLDS

Basic concepts – Programming Technologies - Programmable Logic Element (PLE) – Programmable Array Logic (PLA)-Programmable Array Logic (PAL) -Design of combinational and sequential circuits using PLDs-Complex PLDs (CPLDs).

UNIT- IV INTRODUCTION TO VHDL

Design flow -Software tools - VHDL: Data Objects-Data types - Operators -Entities and Architectures

- Components and Configurations - Signal Assignment - Concurrent and Sequential statements -- Behavioral, Dataflow and Structural modeling- Transport and Inertial delays -Delta delays-Attributes - Generics-Packages and Libraries.

UNIT-V LOGIC CIRCUIT TESTING AND TESTABLE DESIGN

Digital logic circuit testing - Fault models - Combinational logic circuit testing - Sequential logic circuit testing-Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study: Traffic Light Controller.

Contact Periods:

Lecture:45Periods Tutorial:0Periods Practical: 0Periods

Total: 45Periods

REFERENCES:

1	Donald G.Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni, "Circuit Design withVHDL", PHILearning, 2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", AcademicPress, 1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage2ndEdition2012.
6	NripendraN.Biswas,"Logic Design Theory"PrenticeHallofIndia,2001.

9 Periods

9 Periods

9 Periods

9 Periods

9 Periods

COUR	SEOUTCOMES:	Bloom's Taxonomy
	Upon completion of the course ,students will be able to/have:	
C01	To design synchronous sequential circuits based on specifications.	К3
C02	To design asynchronous sequential circuits based on specifications	КЗ
CO3	Ability to illustrate digital design implementation using PLDs.	K2
C04	To develop algorithm and VHDL code for design of digital circuits.	КЗ
C05	Understand the different testing methods for combinational and sequential	K2
	circuits.	

Course Articulation Matrix								
COs/POs	P01	PO2	P03	P04	P05	P06		
C01	3	-	2	-	-	1		
CO2	3	-	2	-	-	1		
CO3	3	-	2	-	-	1		
CO4	3	-	2	-	-	1		
C05	3	-	2	-	-	1		
23AE0E25	3	-	2	-	-	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's Category*	Remembering (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	20%	45%	35%				100%

BASICS OF NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course Objective

• The students will be able to acquire knowledge about nano device fabrication technology, nano structures, nano technology for memory devices and applications of nano electronics in data transmission.

UNIT – I TECHNOLOGY AND ANALYSIS	9 Periods
Fundamentals : Dielectric, Ferroelectric and Optical properties - Film Deposition Meth	ods – Lithography
Material removing techniques - Etching and Chemical Mechanical Polishing -	Scanning Probe
Techniques.	
UNIT – II CARBON NANO STRUCTURES	9 Periods
Principles and concepts of Carbon Nano tubes - Fabrication - Electrical, Mechan	nical and Vibration
Properties - Applications of Carbon Nano tubes.	
UNIT – III LOGIC DEVICES	9 Periods
Silicon MOSFET's: Novel materials and alternative concepts - Single electron of	devices for logic
applications - Super conductor digital electronics - Carbon Nano tubes for data processin	ıg.
UNIT – IV MEMORY DEVICES AND MASS STORAGE DEVICES	9 Periods
Flash memories - Capacitor based Random Access Memories - Magnetic Random A	Access Memories -
Information storage based on phase change materials - Resistive Random Access Memo	ories - Holographic
Data storage.	
UNIT - V DATA TRANSMISSION AND INTERFACING DISPLAYS	9 Periods
Photonic Networks - RF and Microwave Communication System - Liquid Crystal	Displays - Organic
Light emitting diodes.	
Contact Periods:	
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Per	riods

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronicmaterials and
	novel devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics
	Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer,
	2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher,
	California", 2003.

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, students will be able to/have:	Mapped
C01	Explain principles of nano device fabrication technology.	К2
CO2	Describe the concept of Nano tube and Nano structure.	K2
CO3	Explain the function and application of various nano devices	К3
C04	Reproduce the concepts of advanced memory technologies.	К2
C05	Emphasize the need for data transmission and display systems.	K2

COs/POs	P01	P02	P03	P04	P05	P06
C01	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
C05	3	-	2	-	-	1
23AE0E26	3	-	2	-	-	1

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creati ng (K6) %	Total %
CAT1	50%	25%	25%				100%
CAT2	50%	25%	25%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50%	25%	25%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50%	25%	25%				100%
ESE	50%	25%	25%				100%

ADVANCED PROCESSOR

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objective

• The students will be able to acquire knowledge about the high performance RISC, CISC and special purpose processors.

UNIT – I MICROPROCESSOR ARCHITECTURE

9 Periods

9 Periods

9 Periods

9 Periods

Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile – Cache – Virtual memory and paging – Segmentation – Pipelining – The instruction pipeline – pipeline hazards – Instruction level parallelism – reduced instruction set – Computer principles – RISCversus CISC – RISC properties – RISC evaluation.

UNIT – II HIGH PERFORMANCE CISC ARCHITECTURE –PENTIUM

The software model – functional description – CPU pin descriptions – Addressing modes – Processor flags – Instruction set – Bus operations – Super scalar architecture – Pipe lining – Branch prediction – The instruction and caches – Floating point unit– Programming the Pentium processor.

UNIT – III HIGH PERFORMANCE CISC ARCHITECTURE – PENTIUM INTERFACE 9 Periods

Protected mode operation – Segmentation – paging – Protection – multitasking – Exception and interrupts - Input /Output – Virtual 8086 model – Interrupt processing.

UNIT – IV HIGH PERFORMANCE RISC ARCHITECTURE: ARM

ARM architecture – ARM assembly language program – ARM organization and implementation – ARM instruction set - Thumb instruction set.

UNIT – V SPECIAL PURPOSE PROCESSORS

Altera Cyclone Processor – Audio codec – Video codec design – Platforms – General purpose processor – Digital signal processor – Embedded processor – Media Processor – Video signal Processor – Custom Hardware – Co-Processor.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System –On –Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COUR	SE OUTCOMES:	Bloom's
Upon o	completion of the course, students will be able to	Taxonomy
		Mapped
C01	Describe the fundamentals of various processor architecture.	K2
C02	Interpret and understand the high performance features in CISC	K2
	architecture.	
CO3	Describe the concepts of Exception and interrupt processing.	K2
C04	Develop programming skill for ARM processor.	К3
C05	Explain various special purpose processor	K2

		Course Art	iculation Ma	trix		
COs/POs	P01	P02	P03	P04	PO5	P06
C01	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
C04	3	-	2	-	-	1
C05	3	-	2	-	-	1
23AE0E27	3	-	2	-	-	1
1 – Slight, 2 – Moderate	, 3 – Substan	tial	•	·		

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	30%	40%	30%				100%

HDL PROGRAMMING LANGUAGES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To code and simulate any digital function in Verilog HDL and	understand the
Objective	difference between synthesizable and non-synthesizable code	S.
UNIT – I	VERILOG INTRODUCTION AND MODELING	9 Periods
Introduction t	o Verilog HDL, Language Constructs and Conventions, Gate Level Mod	eling, Modeling
	evel, Behavioral Modeling, Switch Level Modeling, System Tasks,	0 0
Compiler Dire	ctives.	
UNIT – II	SEQUENTIAL MODELING AND TESTING	9 Periods
Sequential Mo	dels - Feedback Model, Capacitive Model, Implicit Model, Basic Memor	ry Components,
Functional Re	gister, Static Machine Coding, Sequential Synthesis. Test Bench -	Combinational
Circuits Testin	ng, Sequential Circuit Testing, Test Bench Techniques, Design Verifica	ation, Assertion
Verification.		
UNIT – III	SYSTEM VERILOG	9 Periods
Introduction,	System Verilog declaration spaces, System Verilog Literal Values an	d Built-in Data
Types, System	Verilog User-Defined and Enumerated Types, system Verilog Arrays,	Structures and
Unions, system	n verilog Procedural Blocks, Tasks and Functions.	
UNIT – IV	SYSTEM VERILOG MODELING	9 Periods
System Verilo	g Procedural Statements, Modeling Finite State Machines with Sys	stem Verilog,
System Verilog	g Design Hierarchy.	
UNIT – V	INTERFACES AND DESIGN MODEL	9 Periods
•	g Interfaces, A Complete Design Modeled with System Verilog, I	Behavioral and
Transaction Le	6	
Contact Perio		
Lecture: 45 P	eriods Tutorial:0 Periods Practical:0 Periods Total: 45 Perio	ods

1	T.R.Padmanabhan, B Bala Tripura Sundari, " Design through Verilog HDL" ,Wiley 2009.
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog
	For Design Second Edition A Guide to Using System Verilog for Hardware Design and
	Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of
	Projects on FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language
	Features", Springer 2006.
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to
	Using System Verilog for Hardware Design and Modeling" 1st Edition, 2003

COUR	SE OUTCOMES:	Bloom's			
		Taxonomy			
Upon	Upon completion of the course, the students will be able to:				
C01	Explain the verilog coding and simulate any digital function using	K2			
	Verilog HDL				
CO2	Develop sequential modeling based Verilog HDL code and develop	K3			
	the test bench for the modeling				
CO3	Explain the system verilog modeling	K2			
C04	Differentiate the synthesizable and non-synthesizable code	КЗ			
CO5	Apply good coding techniques on system verilog interfaces and	КЗ			
	complete design model				

Course Articulation Matrix						
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	3		2		2
CO2	3	3		2		2
CO3	3	3		2		2
CO4	3	3		2		2
CO5	3	3		2		2
23VLOE28	3	3		2		2
1 – Slight, 2 – Mod	erate, 3 – Subs	stantial		•		4

ASSESSMEN	Г PATTERN – THE	ORY					
Test /	Remembering	Understandin	Applyin	Analyzin	Evaluating	Creating	Total
Bloom's	(K1) %	g (K2) %	g (K3) %	g (K4) %	(K5) %	(K6) %	%
Category*							
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

221/1 0520	CMOS VLSI DESIGN
23VLOE29	(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To gain knowledge on CMOS Circuits with its characterization a	and to desigr							
Objective	CMOS logic and sub-system with low power								
UNIT – I	INTRODUCTION TO MOS CIRCUITS	9 Periods							
	r Theory -Introduction MOS Device Design Equations -MOS Transistor as								
	or - CMOS Transmission Gate -Complementary CMOS Inverter - Stat								
	erters with NMOS loads - Differential Inverter - Tri State Inverter - BiCM								
UNIT – II	CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION	9 Period							
Delay Estimat	ion, Logical Effort and Transistor Sizing, Power Dissipation, Sizin	g Routing							
-	narge Sharing, Design Margin and Reliability.	0 0							
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN	9 Period							
CMOS Logic G	ate Design, Physical Design of CMOS Gate, Designing with Transmiss	sion Gates,							
CMOS Logic St	ructures, Clocking Strategies, I/O Structures.								
UNIT – IV	CMOS SUBSYSTEM DESIGN	9 Period							
DataPath Oper	ations-Addition/Subtraction, Parity Generators, Comparators, Zero/One	Detectors,							
Binary Counte	ers, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Cor	ntrol Logic							
Implementatio	n. 🚽 🚽								
UNIT – V	LOW POWER CMOS VLSI DESIGN	9 Period							
Introduction t	o Low Power Design, Power Dissipation in FET Devices, Power Dis	sipation in							
CMOS, Low-P	ower Design through Voltage Scaling – VTCMOS Circuits, MTCMO	S Circuits,							
Architectural I	evel Approach – Pipelining and Parallel Processing Approaches, Low Po	wer Basics							
CMOS Gate and	d Adder Design.								
Contact Perio	ds:								
Lecture: 45 Po		ls							
REFERENCES:									
	ang,Yusuf Lablebici,"CMOS Digital Integrated Circuits:Analysis & Desig	n" Tata Ma							
1 Sung Mo Ke Graw Hill, 2		п, таса МС-							
2 N.Weste an	d K.Eshranghian, "Principles of CMOS VLSI Design" , AddisonWesley,199	8.							
3 Neil H F M	Jeste David Harris Avan Raneriee "CMOS VISI Desian: A Circuits and S	Systems							

- 3 Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education 2013.
- 4 Kiat-Seng Yeo,Kaushik Roy,**"Low-Voltage, Low-Power VLSI Subsystems",** McGraw-Hill Professional, 2004.
- 5 Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.

6 Jan M.Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.

COUF	COURSE OUTCOMES:			
Upon	completion of the course, the students will be able to:	Taxonomy Mapped		
C01	Explain the MOS circuits and Transmission gates	K2		
CO2	Illustrate the CMOS Circuits with its characterization	K2		
CO3	Design CMOS logic circuits	K3		
C04	Design CMOS sub-system	K3		
C05	Discuss low power CMOS VLSI Design	K2		

Course Articulation Matrix						
COs/POs	P01	P02	P03	P04	P05	P06
C01	2	1	-	2	-	3
CO2	2	1	-	2	-	3
CO3	2	1	-	2	-	3
CO4	3	1	-	2	-	3
C05	3	1	-	2	-	3
23VLOE29	3	1	-	2	-	3
1 – Slight, 2 – Moc	lerate, 3 – Sub	stantial				

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

23VLOE30

HIGH LEVEL SYNTHESIS

(Common to all Branches)

PREREQUISI	ſES	CATEGORY	L	Т	Р	C
NIL		OE	3	0	0	3
				1		
Course	• To provide students with foundations	in High level synth	esis,	ver	ificat	tion
Objective and CAD Tools						
UNIT – I HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS 9 Periods						
Overview HLS	flow, Scheduling Techniques, Resource sharing	and Binding Techn	ique	s, Da	ata-p	oath
and Controller	r Generation Techniques.					
UNIT – II	HIGH LEVEL SYNTHESIS			9]	Peri	ods
Introduction t	o HDL, HDL to DFG, operation scheduling: constra	ined and unconstra	inec	l sch	edul	ing
ASAP, ALAP, I	List scheduling, Force directed Scheduling, opera	tor binding, Static '	Timi	ng A	naly	'sis
Delay models	, setup time, hold time, cycle time, critical path	ns, Topological mvs	s. Lo	gica	l tin	ing
analysis, False	paths, Arrival time (AT), Required arrival Time (I	RAT), Slacks.				
UNIT – III	HIGH-LEVEL SYNTHESIS VERIFICATION				Peri	
Simulation b	ased verification - Formal Verification of digita	l systems- BDD ba	sed	app	roac	hes
functional equ	ivalence, finite state automata, ω-automata, FSM v	verification.				
UNIT – IV	CAD TOOLS FOR SYNTHESIS				Peri	
	synthesis, optimization, simulation and verificatio	•				
-	l realizations and structures such as micropr	0			-	etc
	apping for FPGAs. Low power issues in high level	synthesis and logic	synt			
UNIT – V	ADVANCED TOPICS				Peri	
Relative Sche	duling, IO scheduling modes - cycle fixed schedu	lling modes, super-	fixed	d scł	nedu	ling
modes, free-	floating scheduling mode, Pipelining, Handsha	aking, System Des	sign,	Hig	gh-Le	eve
Synthesis for	FPGA.					
Contact Perio						
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Per	riods Total: 45 Pe	erio	ds		

1	Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit",
	Springer, 2008.
2	Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
3	D. Micheli,"Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
4	Dutt, N. D. and Gajski, D. D., " High level synthesis ", Kluwer, 2000.
5	Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
6	David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and
	Synchronization Constraints", Kluwer Academic Publishers, 1992.
7	K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999,
	Wiley.
8	Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System
	Design and Analysis", Springer,2006.

COUF	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Mapped	
C01	Understand the fundamentals of High level synthesis	K2	
CO2	Synthesis the HDL for operation scheduling	K2	
CO3	Simulate and verify any digital systems	K2	
C04	Apply CAD tools for synthesis	K2	
C05	Have knowledge on various scheduling modes	K2	

COURSE ARTICULATION MATRIX :

COs/POs	P01	PO2	P03	P04	P05	P06
C01	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	-	2	2	-
CO4	2	2	-	2	2	-
C05	2	2	-	2	2	-
23VL0E30	2	2	-	2	2	-

ASSESSMENT	PATTERN – THE	ORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	50%	50%		-	-	-	100%
CAT2	50%	50%		-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE	50%	50%		-	-	-	100%

23CSOE31

ARTIFICIAL INTELLIGENCE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	Identify and apply AI techniques in the design of systems that	act intelligently, making	
Objectives	automatic decisions and learn from experience.		
UNIT – I	SEARCH STRATEGIES	9 Periods	
Uninformed	Strategies – BFS, DFS, Djisktra, Informed Strategies – A* search	, Heuristic functions, Hill	
Climbing, Ad	versarial Search – Min-max algorithm, Alpha-beta Pruning		
UNIT – II	PLANNING AND REASONING	9 Periods	
State Space s	earch, Planning Graphs, Partial order planning, Uncertain Reasoning	– Probabilistic Reasoning,	
Bayesian Net	works, Dempster Shafer Theory, Fuzzy logic		
UNIT – III	PROBABILISTIC REASONING	9 Periods	
Probabilistic	Reasoning over Time - Hidden Markov Models, Kalman Filters, Dy	namic Bayesian Networks.	
Knowledge R	epresentations – Ontological Engineering, Semantic Networks and d	escription logics.	
UNIT – IV	DECISION MAKING	9 Periods	
Utility Theor	y, Utility Functions, Decision Networks – Sequential Decision Proble	ems – Partially Observable	
MDPs – Game	e Theory.		
UNIT – V	REINFORCEMENT LEARNING	9 Periods	
Reinforceme	nt Learning - Passive and active reinforcement learning - Gene	rations in Reinforcement	
Learning - Po	licy Search – Deep Reinforcement Learning.		
Contact Peri	ods:		
Lecture: 3 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods			

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach ", 3rd edition, Pearson Prentice Hall,2010.
4	Elaine Rich,Kevin Knight,Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill, 2009.

COUR	COURSE OUTCOMES:			
Upon	completion of the course, the students will be able to:	Mapped		
C01	Use search techniques to solve AI problems	K2		
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	K3		
CO3	Examine data using statistical codes and solve complex AI problems	K6		
CO4	Apply techniques to make apt decisions.	K4		
CO5	Use deep reinforcement learning to solve complex AI problems	K6		

COURSE ARTICUI	LATION N	MATRIX				
COs/ POs	PO 1	P02	PO 3	PO 4	P05	P06
C01	3		2		3	3
CO2	3		2		3	3
CO3	3		3		3	3
CO4	3		3		3	3
C05	3		3		3	3
23CSOE31	3		3		3	3
1 – Slight, 2 – Mod	1 – Slight, 2 – Moderate, 3 – Substantial					

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1		20	40	20	20		100
CAT2		10	20	40	10	20	100
Individual							
Assessment							
1/ Case					50	FO	100
study 1/					50	50	100
Seminar 1/							
Project 1							
Individual							
Assessment							
2/Case					FO	FO	100
study 2/					50	50	100
Seminar 2/							
Project 2							
ESE	30	30	40				100

23CSOE32	COMPUTER NETWORK MANAGEMENT (Common to all Branches)					
PREREQUISI	CATEGORY	L	Τ	Р	C	
NIL		OE	3	0	0	3

Course	• After the completion of the course, the students will be	able to understand the			
Objective	concept of layering in networks, functions of protocols				
objective	protocol suite, concepts related to network addressing	•			
	simple LANs, perform basic configurations for route				
	implement IPv4 and IPv6 addressing schemes using Cisco				
UNIT – I	INTRODUCTION AND APPLICATION LAYER	9 Periods			
	k – Network Edge and Core – Layered Architecture – OSI Model				
U	rking Devices: Hubs, Bridges, Switches, Routers, and Gateways –				
	rking – Introduction to Sockets – Application Layer protocols				
Protocols – DNS.	Tring - infounction to sockets - Application Layer protocols				
UNIT – II	TRANSPORT LAYER AND ROUTING	9 Periods			
	functions –User Datagram Protocol – Transmission Control Pro				
	Strategies – Congestion Control - Routing Principles – Distance	-			
	RIP – OSPF – BGP – Introduction to Quality of Service (QoS).Case	Study: Configuring RIP,			
OSPF BGP using		0 Davis da			
UNIT – III	NETWORK LAYER	9 Periods			
5	Switching concepts – Internet Protocol – IPV4 Packet Format – IP A	0 0			
	Domain Routing (CIDR) – Variable Length Subnet Mask (VLSM) –				
	tion (NAT) – ICMP – Concept of SDN.Case Study: Configuring V	LAN, DHCP, NAT using			
Packet tracer					
UNIT – IV	INTERNETWORK MANAGEMENT	9 Periods			
	he Cisco IOS - Router User Interface – CLI - Router and Switch Ad				
	es - Viewing, Saving, and Erasing Configurations - Switching				
	ging Configuration Registers - Backing Up and Restoring IOS - Ba	• · ·			
the Configuration	the Configuration - Using Discovery Protocol (CDP) - Checking Network Connectivity				
UNIT – V	TRAFFIC MANAGEMENT AND WAN PROTOCOLS	9 Periods			
Managing Traffic	with Access Lists: Introduction to Access Lists - Standard Access	Lists - Extended Access			
Lists - Named Ad	Lists - Named Access Lists - Monitoring Access Lists - Wide Area Networking Protocols: Introduction to				
Wide Area Netw	Wide Area Networks - Cabling the Wide Area Network - High-Level Data-Link Control (HDLC) Protocol -				
Point-to-Point Pr	rotocol (PPP) - Frame Relay: Frame Relay Implementation and	Monitoring - Integrated			
Services Digital N	Services Digital Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring DDR				
Contact Periods	:				
Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh
	Edition, Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education,
	2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNA™: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon completion of the course, the students will be able to:		Mapped
C01	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	К3
C04	Build simple LANs, perform basic configurations for routers and switches	K6
C05	Illustrate various WAN protocols	K2

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	3		3		2	1		
CO2	3		3		2	2		
CO3	3		3		3	2		
CO4	3		3		3	3		
CO5	3		3		3	3		
23CSOE32	3		3		3	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN	ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
Category*											
CAT1	30	30	20	20			100				
CAT2		30	20	30	10	10	100				
Individual	10	30	20	20	20		100				
Assessment											
1 /Case											
Study 1 /											
Seminar 1 /											
Project 1											
Individual		20	20	20	20	20	100				
Assessment											
2 / Case											
Study 2/											
Seminar 2/											
Project 2											
ESE	20	40	40				100				

23CSOE33

BLOCKCHAIN TECHNOLOGIES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	The objective of the course is to explore basics of block ch	ain technology							
Objective	and its application in various domain								
UNIT – I	NTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN 9 Periods								
History of Blo	ockchain - Types of blockchain- CAP theorem and blockchain	– benefits and							
Limitations of	Blockchain – Decentalization using blockchain – Blockchain im	plementations-							
Block chain in	practical use - Legal and Governance Use Cases								
UNIT – II	BITCOIN AND CRYPTOCURRENCY	9 Periods							
Introduction t	o Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining	Developments,							
Bitcoin Wallet	s, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM	1), Merkle Tree,							
Double-Spend	Problem, Blockchain and Digital Currency, Transactional Bloc	cks, Impact of							
Blockchain Te	chnology on Cryptocurrency								
UNIT – III	ETHEREUM	9 Periods							
Introduction	to Ethereum, Consensus Mechanisms, Metamask Setup, Ethereu	ım Accounts, ,							
Transactions,	Receiving Ethers, Smart Contracts								
UNIT – IV	HYPERLEDGER AND SOLIDITY PROGRAMMING	9 Periods							
Introduction 1	to Hyperledger, Distributed Ledger Technology & its Challenges,	Hyperledger &							
Distributed I	edger Technology, Hyperledger Fabric, Hyperledger Compo	ser. Solidity –							
Programming	with solidity								
UNIT – V	BLOCKCHAIN APPLICATIONS	9 Periods							
Ten Steps to b	uild your Blockchain application – Application: Internet of Things,	Medical Record							
Management S	System, Domain Name Service and Future of Blockchain, Alt Coins								
Contact Perio	ds:								
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods Total	l: 45 Periods							
REFERENCE	S:								
1 Imran Basi	hir, " Mastering Blockchain: Distributed Ledger Technology, Decen	tralization, and							
Smart Con	tracts Explained", Second Edition, Packt Publishing, 2018.								

- 2 Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and Technology Solutions", McGraw Hill Education ,2018.
- 3 Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, **"Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction"** Princeton University Press, 2016.

4 Manav Gupta "**Blockchain for Dummies**", IBM Limited Edition 2017.

5 Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018

6 NPTEL Course : Blockchain and its applications https://archive.nptel.ac.in/courses/106/105/106105235/

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Comprehend the working of Blockchain technology	K2
	Narrate working principle of smart contracts and create them using solidity for given scenario.	K3
CO3	Comprehend the working of Hyperledger in an real time application	K2
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum	КЗ
CO5	Develop applications on Blockchain	КЗ

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	2		3	2		3		
CO2	2	3	3	3	2	3		
CO3	3		3	2		3		
CO4	3	3	3	3	2	3		
C05	3	3	3	3	2	3		
23CSOE33	3	3	3	3	2	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	40	40				100				
CAT2	20	30	50				100				
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		30	70				100				
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		40	60				100				
ESE	10	60	30				100				

23VLACZ1

ENGLISH FOR RESEARCH PAPER WRITING

(Common to All Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	• The objective of the course is to make the learners understand t	he format and
Objective	intricacies involved in writing a research paper.	
UNIT – I	PLANNING AND PREPARATION	6 Periods
-	g articles, Choosing the journal, Identifying a model journal paper, Crea stations of Referees, Online Resources.	tion of files for
UNIT – II	SENTENCES AND PARAGRAPHS	6 Periods
suitably in a sent	ish, Word order in English and Vernacular, placing nouns, Verbs, Adjectiv ence, Using Short Sentences, Discourse Markers and Punctuations- ng up lengthy Paragraphs.	
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC) OF WRITING	6 Periods
use of Relative and	and Clarity in Writing, Reducing the linking words, Avoiding redundand I Reflexive Pronouns, Monologophobia, verifying the journal style, Logic thor's findings and yours.	
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING	6 Periods
	ngs stand out, Using bullet points headings, Tables and Graphs- Availin Toning Down Verbs, Adjectives, Not over hedging, Limitations of your re	• •
UNIT – V	SECTIONS OF A PAPER	6 Periods
Titles, Abstracts, In	troduction, Review of Literature, Methods, Results, Discussion, Conclusio	ons, References.
Contact Periods: Lecture: 30 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods	

REFERENCES :

1	Goldbort R , "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book,
	1998.
4	Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht
	Heidelberg London, 2011.

COURSE	E OUTCOMES :	Bloom's Taxonomy
Upon co	mpletion of this course the learners will be able to	Mapped
C01	Understand the need for writing good research paper.	К2
CO2	Practice the appropriate word order, sentence structure and paragraph	K4
	writing.	
CO3	Practice unambiguous writing.	К3
C04	Avoid wordiness in writing.	К2
C05	Exercise the elements involved in writing journal paper.	К3

COURSE ARTICULATION MATRIX :								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	3	3	1	1	1	1		
CO2	3	3	1	1	1	1		
CO3	3	3	1	1	1	1		
CO4	3	3	1	1	1	1		
CO5	3	3	1	1	1	1		
23VLACZ1	3	3	1	1	1	1		
1 – Slight, 2 – Modera	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PA	ATTERN – THEO	ORY					
Test / Bloom's	Rememberi	Understanding	Applyin	Analyzin	Evaluatin	Creatin	Tota
Category*	ng (K1) %	(K2) %	g (K3)	g (K4) %	g (K5) %	g (K6)	1%
			%			%	
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual							
Assessment 1/							
Case Study 1/	-	50	50	-	-	-	100
Seminar 1/							
Project 1							
Individual							
Assessment 2/							
Case Study 2/	-	50	50	-	-	-	100
Seminar 2/							
Project 2							
ESE	30	30	40	-	-	-	100

23VLACZ2	DISASTER MANAGEMENT (Common to all branches)	
Course Objectives	 To become familiar in key concepts and consequences about had disaster and area of occurrence. To know the various steps in disaster planning. To create awareness on disaster preparedness and management 	nt.
UNIT – I	INTRODUCTION	6 Periods
Disasters: Diffe	tion, Factors and Significance; Difference between Hazard and Disaster; Natural rence, Nature, Types and Magnitude. Areas proneto "EarthquakesFloods,Drought lone and Coastal Hazards with Special Reference to Tsunami.	
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods
Volcanisms, Cyc	age, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters lones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man- Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epide	made disaster:
UNIT – III	DISASTER PLANNING	6 Periods
	ng-Disaster Response Personnel roles and duties, Community MitigationGoals Personnel Training, Comprehensive Emergency Management, Early Warning Systems	
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT	6 Periods
-	fonitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Applica	
•	om Meteorological and other Agencies, Media Reports: Governmental and Community	
UNIT – V	RISK ASSESSMENT	6 Periods
Techniques of R	Concept and Elements, Disaster Risk Reduction, Global and National Disaster isk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Parti- ategies for Survival.	

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies" , New Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections" , Prentice Hall Of India, New Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies" , Deep &Deep Publication Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities" , I.K. International Publishing House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
C01	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
C05	Prepare risk assessment strategy for national and global disaster.	K4

Course Articulation Matrix					
COs/POs	P01	PO2	P03	P04	P05
C01	2	1	1	2	2
CO2	1	2	1	1	1
C03	1	1	1	2	2
CO4	1	1	1	2	2
C05	2	1	1	2	2
23VLACZ2	1	1	1	2	2
1 – Slight, 2 – Moderate, 3 – S	ubstantial				

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2			100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

23VLACZ3

VALUE EDUCATION

(Common to All Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	 Value of education and self- development 							
Objectives	Requirements of good values in students							
	Importance of character							
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods						
	and individual attitudes. Work ethics, Indian vision of humanism. Moral ndards and principles. Value judgements.	and non-mora						
UNIT – II	PERSONALITY AND BEHAVIOR DEVELOPMENT	6 Periods						
	entific attitude. Positive Thinking. Integrity and discipline. Punctua pid fault Thinking. Free from anger, Dignity of labour. Universal bro rance.							
UNIT – III	VALUES IN HUMAN LIFE	6 Periods						
Concentration	of cultivation of values, Sense of duty. Devotion, Self-reliance a. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, N ve for nature,Discipline.							
UNIT – IV	VALUES IN SOCIETY	6 Periods						
	ip. Happiness Vs suffering, love for truth. Aware of self-destructive hab on. Doing best for saving nature.	ts. Association						
UNIT – V	POSITIVE VALUES	6 Periods						
reincarnation Mind your Min	Competence –Holy books vs Blind faith. Self-management and Good he Equality, Nonviolence, Humility, Role of Women. All religions and s nd, Self-control. Honesty, Studying effectively.							
Contact Perio								
Lecture: 30 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Perio	ada						

REFERENCES :

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice" , Oxford University Press, New Delhi,1998
2	Dr. Yogesh Kumar Singh, "Value Education" , A.P.H Publishing Corporation, New Delhi,2010
3	R.P Shukla, "Value Education and Human Rights" , Sarup and Sons, NewDelhi,2004
4	https://nptel.ac.in/courses/109104068/36

COUI	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Taxonomy Mapped	
C01	Know the values and work ethics.	КЗ	
CO2	Enhance personality and behaviour development.	КЗ	
CO3	Apply the values in human life.	К3	
C04	Gain Knowledge of values in society.	КЗ	
C05	Learn the importance of positive values in human life.	К3	

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	-	-	3	1	1	1			
CO2	-	-	3	1	2	1			
CO3	-	-	3	1	2	1			
CO4	-	-	3	1	1	1			
CO5	-	-	3	1	1	2			
23VLACZ3	-	-	3	1	1	1			
1 – Slight, 2 – Moderate, 3 -	- Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	50%	30%	-	-	-	100%		
CAT2	20%	50%	30%	-	-	-	100%		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%		
ESE	20%	50%	30%	-	-	-	100%		

23VLACZ4	ŀ
----------	---

CONSTITUTION OF INDIA

(Common to All Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	AC	2	0	0	0

Course	• To address the importance of constitutional rights and duties	
Objectives	 To familiarize about Indian governance and local administration. 	
0.5,0001.05	 To know about the functions of election commission. 	
UNIT – I	INDIAN CONSTITUTION	6 Periods
	ing of the Indian Constitution: History Drafting Committee, (Composition	
•	he Indian Constitution: Preamble Salient Features.	0)
UNIT – II	CONSTITUTIONAL RIGHTS & DUTIES	6 Periods
Right against l	nstitutional Rights & Duties: Fundamental Rights , Right to Equality, Right Exploitation, Right to Freedom of Religion, Cultural and Educational Rig Remedies, Directive Principles of State Policy, Fundamental Duties.	
UNIT – III	ORGANS OF GOVERNANCE	6 Periods
Functions, Exec Judges, Qualific	rernance: Parliament, Composition, Qualifications and Disqualifications, cutive, President, Governor, Council of Ministers, Judiciary, Appointment an cations, Powers and Functions.	d Transfer of
UNIT – IV	LOCAL ADMINISTRATION	6 Periods
Introduction, M Introduction, P role. Block leve	stration: District's Administration head: Role and Importance, M Mayor and role of Elected Representative, CEO of Municipal Corporation. P PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: el: Organizational Hierarchy (Different departments), Village level: Role of cials, Importance of grass root democracy.	anchayat raj: Position and
UNIT – V	ELECTION COMMISSION	6 Periods
Election Comm	hission: Election Commission: Role and Functioning. Chief Election Commissioners. State Election Commission: Role and Functioning. Institute and E T/OBC and women.	
Contact Period Lecture: 30 Pe		

REFERENCES:

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain,"Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu,"Introduction to the Constitution of India", Lexis Nexis, 2015.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	K2
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	-	-	1	1	1	1			
CO2	-	-	1	1	1	2			
CO3	-	-	1	1	2	1			
CO4	-	-	1	1	1	1			
C05	-	-	1	1	1	1			
23VLACZ4	-	-	1	1	1	1			
1 – Slight, 2 – Moc	lerate, 3 – S	ubstantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23VLACZ5

PEDAGOGY STUDIES

(Common to All Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	1. To Understand of various theories of learning, prevailing pedagogiand design of curriculum in engineering studies.	cal practices						
Objectives	2. Application of knowledge in modification of curriculum, its assessment and introduction of innovation in teaching methodology.							
UNIT – I	INTRODUCTION	6 Periods						
and terminolo	and Methodology: Aims and rationale, Policy background, Conceptua ogy Theories of learning, Curriculum, Teacher education. Conceptual stions. Overview of methodology and Searching.							
UNIT – II	PEDAGOGICAL PRACTICES	6 Periods						
classrooms in	rview: Pedagogical practices are being used by teachers in formal a developing countries. Curriculum, Teacher education. Evidence on the l practices Methodology for the in depth stage: quality assessment	effectiveness						
UNIT – III	PEDAGOGICAL APPROACHES	6 Periods						
materials best evidence for	her education (curriculum and practicum) and the school curriculum a support effective pedagogy? Theory of change. Strength and nature o effective pedagogical practices. Pedagogic theory and pedagogical cudes and beliefs and Pedagogic strategies.	f the body of						
UNIT – IV	PROFESSIONAL DEVELOPMENT	6 Periods						
Professional development: alignment with classroom practices and follow-up support. Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes.								
UNIT – V	CURRICULUM AND ASSESSMENT	6 Periods						
Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.								
	Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods							

REFERENCES:

1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261, 2001.
2	Alexander RJ , Culture and pedagogy: International comparisons in primary education . Oxford and Boston: Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282, 2013.
4	<i>Agrawal M</i> , <i>Curricular reform in schools: The importance of evaluation</i> , <i>Journal of Curriculum Studies</i> , 36 (3): 361-379, 2004

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain the concept of curriculum, formal and informal education systems and teacher education.	КЗ
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	КЗ
CO3	Understand the relation between teacher and community, support from various levels of teachers to students and limitation in resources and size of the class.	К3
CO4	Perform research in design a problem in pedagogy and curriculum development.	КЗ

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	-	-	1	1	2	1			
CO2	-	-	1	1	1	2			
CO3	-	-	1	1	2	1			
CO4	-	-	1	1	2	1			
23VLACZ5	-	-	1	1	2	1			
1 – Slight, 2 – I	1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

STRESS MANAGEMENT BY YOGA

(Common to All Branches)

PREREQUISITES :	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	1. To create awareness on the benefits of yoga and meditation.	
Objectives	2. To understand the significance of Asana and Pranayama.	
UNIT – I	PHYSICAL STRUCTURE AND ITS FUNCTIONS	6 Periods
exercises, hand	structure, Importance of physical exercise, Rules and regulation of simplif exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, mahar essure, body relaxation.	
UNIT – II	YOGA TERMINOLOGIES	6 Periods
	nsa, satya, astheya, bramhacharya, aparigrahaNiyamas- Saucha, santo rarapranidhana.	osha, tapas,
UNIT – III	ASANA	6 Periods
Asana - Rules &	Reg	
UNIT – IV	PRANAYAMA	6 Periods
Regularization	of breathing techniques and its effects-Types of pranayama	
UNIT – V	MIND	6 Periods
frequency and	& mind - imprinting & magnifying – eight essential factors of living be ten stages of mind, benefits of meditation, such as perspicacity, m ptability, creativity.	
Contact Period	ls:	
Lecture: 30 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods	

REFERENCES :

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Training-Part-I",, Nagpur.
2	Swami Vivekananda,"Rajayoga or conquering the Internal Nature", AdvaitaAshrama (Publication
	Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New
	Dawn Press, New Delhi, 2016.
4	K. N. Udupa ,"Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi,
	2007.

COUF	RSE OUTCOMES:	Bloom's
		Taxonom
Upon	completion of the course, the students will be able to:	y Mapped
C01	Practice physical exercises and maintain good health.	КЗ
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	КЗ
C04	Practice breathing techniques in a precise manner.	К3
C05	Attain emotional stability and higher level of consciousness.	K2

Course Articulation Matrix :										
COs/POs	P01	P02	P03	P04	P05	P06				
C01	-	-	2	-	-	-				
CO2	-	-	2	-	-	-				
CO3	-	-	2	-	-	-				
CO4	-	-	2	-	-	-				
C05	CO5 2									
23VLACZ6 2										
1 – Slight, 2 – M	oderate, 3	– Substar	ntial							

ASSESSMENT	PATTERN - TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

(Common to All Branches)

PREREQUISITES :	CATEGORY	L	Τ	Ρ	С
NIL	AC	2	0	0	0

Course Objectives	• To familiar with Techniques to achieve the highest goal in						
objectives	 To become a person with stable mind, pleasing personali determination. 	ty and					
UNIT – I		6 Periods					
	Holistic development of personality-Verses- 19,20,21,22 (wisdom) m)-Verses- 26,28,6.)-Verses29,31,32					
UNIT – II		6 Periods					
Verses- 52,53,59 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day work and duties Shrimad BhagwadGeeta - Chapter 2-Verses 41, 47,48,							
UNIT – III		6 Periods					
Shrimad Bhag Chapter 18-Ver	wadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5 rses 45, 46, 48.	5,13,17, 23, 35,-					
UNIT – IV		6 Periods					
	oasic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62 15, 16,17, 18-Personality of Role model.	2, 68 -Chapter 12					
UNIT – V		6 Periods					
	wadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chap 18 – Verses 37,38,63.	ter 4-Verses 18,					
Contact Period Lecture: 30 Pe		Periods					

REFERENCES :

1	Swami SwarupanandaAdvaita Ashram " Srimad Bhagavad Gita ",AdvaitaAshrama, Kolkata,2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam " Bhartrihari's Three Satakam " (Niti-sringar- vairagya), New Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog " Bhagavad Gita: The Song Of God ", USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada " Bhagavad-Gita As It Is ",Bhaktivedanta Book Trust Publications,2001

23VLACZ7

	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the Holistic development in life	K4
CO2	Effective Planning of day to day work and duties	K4
CO3	Identify mankind to peace and prosperity	K4
C04	Develop versatile personality.	K4
CO5	Awakening wisdom in life	K4
I		

Course Articulation Matrix										
COs/POs	P01	PO2	P03	P04	PO5	P06				
C01	-	-	1	-	-	-				
CO2	-	-	1	-	-	-				
CO3	-	-	1	-	-	-				
CO4	-	-	1	-	-	-				
CO5	-	-	1	-	-	-				
23VLACZ7	-	-	1	-	-	-				
1 – Slight, 2 –	Moderate	e, 3 – Substanti	al							

ASSESSME	NT PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

SANSKRIT FOR TECHNICAL KNOWLEDGE

(Common to all Branches)

PREREQUISITES:	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course Objectives	• To get a working knowledge in illustrious Sanskrit, the s in the world.	• To get a working knowledge in illustrious Sanskrit, the scientific language in the world.						
	 Learning of Sanskrit to improve brain functioning. Enhancing the memory power. Learning of Sanskrit to develop the logic in mathematics subjects. 	s, science & other						
UNIT – I	BASICS OF SANSKRIT	6 Periods						
Alphabets in Sanskrit, Past/Present/Future Tense.								
UNIT – II	SENTENCES AND ROOTS	6 Periods						
Simple Senter	nces - Order, Introduction of roots							
UNIT – III	SANSKRIT LITERATURE	6 Periods						
Technical info	ormation about Sanskrit Literature							
UNIT – IV	TECHNICAL CONCEPTS -1	6 Periods						
Technical con	cepts of Engineering-Electrical, Mechanical							
UNIT – V	TECHNICAL CONCEPTS -2	6 Periods						
Technical con	cepts of Engineering-Architecture, Mathematics							
Contact Peri	ods:							
Lecture: 30 I	Periods Tutorial: 0 Periods Practical: 30 Periods 7	otal: 30 Periods						

REFERENCES:

1	Dr.Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.
2	Prathama Deeksha Vempati Kutumbshastri, " Teach Yourself Sanskrit ", Rashtriya Sanskrit
	Sansthanam, New Delhi, Publication, 2009.
3	Suresh Soni, "India's Glorious Scientific Tradition ", Ocean books (P) Ltd., New Delhi,2006.

COURS	E OUTCOMES:	Bloom's				
Upon c	ompletion of the course, the students will be able to:	Taxonomy				
		Mapped				
C01	CO1 Recognize ancient literature and their basics					
CO2	Formulate the sentences with order and understand the roots of	К2				
	Sanskrit					
CO3	Acquire familiarity of the major traditions of literatures written in	КЗ				
	Sanskrit					
C04	Distinguish the Technical concepts of Electrical & Mechanical	K2				
	Engineering					
C05	Categorize the Technical concepts of Architecture & Mathematics	K2				

COs/POs	P01	P02	P03	P04	P05	P06
C01	-	-	-	1	2	1
CO2	-	-	-	1	2	-
CO3	-	-	-	1	1	1
CO4	-	-	-	2	1	1
CO5	-	-	-	1	2	1
23VLACZ8	-	-	-	1	2	1

ASSESSMEN	IT PATTERN – T	HEORY					
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%