

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

Curriculum For M. E. THERMAL ENGINEERING

2023

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

(An Autonomous Institution Affiliated to Anna University)

VISION

To create outstanding Mechanical Engineers with strong domain knowledge and skills capable of working in an Interdisciplinary environment with exemplary ethical values contributing to society through Innovation, Entrepreneurship and Leadership.

MISSION

- To develop in each student, a strong theoretical and practical knowledge, a global outlook for a sustainable future and problem solving skills.
- To make productive members of interdisciplinary teams, capable of adapting to changing environments of Engineering, technology and society.
- To inculcate critical thinking abilities among students to enhance innovative ideas and entrepreneurial skills, leadership qualities.
- To imbibe moral and ethical values along with leadership qualities in students.

(An Autonomous Institution Affiliated to Anna University)

M.E. THERMAL ENGINEERING

PROGRAMME OUTCOMES (POs)

- **PO1 :** An ability to independently carry out research / investigation and development work to solve practical problems.
- **PO2:** An ability to write and present a substantial technical report/ document.
- **PO3** : Demonstrate a degree of mastery over thermal engineering at a level higher than the Bachelor's program.
- PO4: Identify feasible energy sources and develop adequate technologies to equipage them.
- PO5: Design, develop and analyze thermal systems for recapitulation.
- **PO6**: Engage in lifelong learning adhering to professional, ethical, legal, safety, environmental and societal aspects for career excellence.

(An Autonomous Institution Affiliated to Anna University)

M.E. THERMAL ENGINEERING

PROGRAMME EDUCTAIONAL OBJECTIVES (PEOs)

- PEO1 : Apply their knowledge in basic science, Mathematics and engineering to solve thermal, industrial and societal problems with a strong emphasis on innovation ethics and social responsibility.
- PEO2: Apply state of the art of Thermal Engineering tools and techniques to develop products and processes.
- PEO3: Ability to solve interdisciplinary problems by working in cross-functional teams.
- PEO4: Develop and upgrade Thermal Engineering, intellectual and emotional skills for life-long learning to compete on the competitive world.
- PEO5: Nurture entrepreneurial ventures and foster modern research accomplishments that support sustainable environmental and economical factors to improve the quality of life.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 M.E. THERMAL ENGINEERING

FIRST SEMESTER

SI.	Course		Category CA	End	Total		Hours	/Wee	k	
No.	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
			THEORY							
		RESEARCH METHODOLOGY								
1	23TEFCZ1	AND IPR	FC	40	60	100	3	0	0	3
		(Common to all branches)								
2	22755602	ADVANCED MATHEMATICS	EC	40	60	100	2	1	0	4
Z	231EFC02	FOR THERMAL ENGINEERING	FC	40	60	100	3	1	0	4
2	22750001	ADVANCED	DC	40	60	100	2	1	0	4
3	231EPC01	THERMODYNAMICS	PC	40	00	100	5	1	0	4
4	23TEPC02	ADVANCED FLUID DYNAMICS	РС	40	60	100	3	1	0	4
5	23TEPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3
6	23TEPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3
7	23TEACXX	AUDIT COURSE I	AC	40	60	100	2	0	0	0
			PRACTICAL	REEV	9	•				
8	23TFPC03	ADVANCED IC ENGINES AND	PC	60	40	100	0	0	4	2
Ŭ	20111000	SIMULATION LABORATORY	I.U.	3	10	100	Ŭ	Ū	1	2
		TOTAL		340	460	800	20	3	4	23

SECOND SEMESTER

SI	Course	A	Q.	CA End	Total]	Hours/	/Weel	K	
No.	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
		C.C.	THEORY	ST AL						
1	23TEPC04	ADVANCED HEAT AND MASS TRANSFER	PC	40	60	100	3	1	0	4
2	23TEPC05	COMPUTATIONAL FLUID DYNAMICS	РС	40	60	100	3	1	0	4
3	23TEPC06	FUEL CELL TECHNOLOGY	РС	40	60	100	3	0	0	3
4	23TEPC07	MANUFACTURING AND TESTING OF IC ENGINES AND COMPONENTS	РС	40	60	100	3	0	0	3
5	23TEPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3
6	23TEACXX	AUDIT COURSE II	AC	40	60	100	2	0	0	0
			PRACTICA	L						
7	23TEPC08	ADVANCED COMBUSTION LABORATORY	РС	60	40	100	0	0	4	2
8	23TEEE01	MINI PROJECT	EE	40	60	100	0	0	4	2
		TOTAL		340	460	800	17	2	8	21

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE - 641 013 B.E.MECHANICAL ENGINEERING

THIRD SEMESTER

SI.	Course Code	Course Title	Category	CA	End Sem	Total		Hour	s/Weeł	C C
No	course coue	course rule	category	Marks	Marks	Marks	L	Т	Р	С
	1		THEORY						1	
1	23TEPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3
2	23\$\$0EXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3
			PRACTICAL	L						
3	23TEEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	-	100	0	0	*	2
4	23TEEE03	PROJECT PHASE I	EEC	100	100	200	0	0	12	6
		TOTAL		280	220	500	6	0	12	14

* Internship / Industrial Training Four Weeks

FOURTH SEMESTER

			Castler	2 32	115-1015					
Sl.	Course Code	Course Title	Category	СА	End Sem	Total		Hours	/Week	
No			Canogory	Marks	Marks	Marks	L	Т	Р	С
			THEORY	L	- 7/					
1	23TEEE04	PROJECT PHASE II	EEC	200	200	400	0	0	24	12
		TOTAL		200	200	400	0	0	24	12

LIST OF EMPLOYABILITY ENHANCEMENT COURSE

S. No	Course Code	Course Title	Category	Continuous Assessment Marks	End Sem Marks	Total Marks	L	Т	Р	С
1	23TEEE01	MINI PROJECT	EEC	40	60	100	0	0	4	2
2	23TEEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	-	100	0	0	*	2
3	23TEEE03	PROJECT PHASE I	EEC	100	100	200	0	0	12	6
4	23TEEE04	PROJECT PHASE II	EEC	200	200	400	0	0	24	2
		TOTAL		440	360	800	0	0	40	12

* Internship / Industrial Training Four Weeks

	LIST OF PROFESSIONAL ELECTIVE									
S. No	Course Code	Course Title	Category	Continuous Assessment Marks	End Sem Marks	Total Marks	L	Т	Р	С
		PROFI	ESSIONAL ELE	CTIVE I						
1	23TEPE01	THERMODYNAMICS AND COMBUSTION	PE	40	60	100	3	0	0	3
2	23TEPE02	ARTIFICIAL INTELLIGENCE IN THERMAL SYSTEMS	PE	40	60	100	3	0	0	3
3	23TEPE03	ADVANCED GAS TURBINES	PE	40	60	100	3	0	0	3
4	23TEPE04	DESIGN OF CONDENSERS, EVAPORATORS AND COOLING TOWERS	PE	40	60	100	3	0	0	3
5	23TEPE05	INSTRUMENTATION IN THERMAL ENGINEERING	PE	40	60	100	3	0	0	3
		PROFE	SSIONAL ELE	CTIVE II						
6	23TEPE06	ENGINE ELECTRONICS	PE	40	60	100	3	0	0	3
7	23TEPE07	FINITE ELEMENT METHODS IN THERMAL ENGINEERING	PE	40	60	100	3	0	0	3
8	23TEPE08	ADVANCED GAS DYNAMICS AND SPACE PROPULSION	PE	40	60	100	3	0	0	3
9	23TEPE09	STEAM ENGINEERING	PE	40	60	100	3	0	0	3
10	23TEPE10	SUPERCHARGING AND SCAVENGING	PE	40	60	100	3	0	0	3
		PROFE	SSIONAL ELE	CTIVE III						
11	23TEPE11	REFRIGERATION AND CRYOGENICS	PE	40	60	100	3	0	0	3
12	23TEPE12	THERMAL ENERGY SYSTEMS	PE	40	60	100	3	0	0	3
13	23TEPE13	ENGINE POLLUTION AND CONTROL	PE	40	60	100	3	0	0	3
14	23TEPE14	AIR CONDITIONING SYSTEM DESIGN	PE	40	60	100	3	0	0	3
15	23TEPE15	SOLAR ENERGY AND WIND ENERGY	PE	40	60	100	3	0	0	3
		PROFES	SIONAL ELEC	TIVE IV						
16	23TEPE16	BIO-ENERGY CONVERSION TECHNIQUES	PE	40	60	100	3	0	0	3
17	23TEPE17	ENVIRONMENTAL ENGINEERING AND POLLUTION CONTROL	PE	40	60	100	3	0	0	3
18	23TEPE18	MODELING OF CI ENGINE PROCESSES	PE	40	60	100	3	0	0	3
19	23TEPE19	ENERGY AUDITING AND MANAGEMENT	PE	40	60	100	3	0	0	3
20	23TEPE20	ELECTRIC AND HYBRID VEHICLES	PE	40	60	100	3	0	0	3

SI.			Catego	CA	End	Total	H	ours	/Weel	K
No	Course Code	Course Title	ry	Marks	Sem Marks	Marks	L	Т	Р	C
1	23SEOE01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3
2	23SEOE02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3
3	23SEOE03	GREEN BUILDING	OE	40	60	100	3	0	0	3
4	23EEOE04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3
5	23EEOE05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3
6	23EEOE06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3
7	23GEOE07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3
8	23GEOE08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3
9	23GEOE09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3
10	23EDOE10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3
11	23EDOE11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3
12	23EDOE12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3
13	23MFOE13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3
14	23MFOE14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3
15	23MFOE15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3
16	23TEOE16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3
17	23TEOE17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3
18	23TEOE18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3
19	23PSOE19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3
20	23PSOE20	ELECTRICITY TRADING & ELECTRICITY ACTS	OE	40	60	100	3	0	0	3

LIST OF OPEN ELECTIVE COURSES

SI.	Course Code	Course Title	e Catego CA Sem		Total	Н	ours	/Weel	ĸ	
No	course coue	course ritle	ry	Marks	Marks	Marks	L	L	L	L
21	23PSOE21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3
22	23PEOE22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PEOE23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PEOE24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AE0E25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AE0E26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3
27	23AE0E27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3
31	23CSOE31	ARTIFICIAL INTELLIGENCE	OE	40	60	100	3	0	0	3
32	23CS0E32	COMPUTER NETWORK MANAGEMENT	OE	40	60	100	3	0	0	3
33	23CSOE33	BLOCKCHAIN TECHNOLOGIES	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSE

S. No	Course Code	Course Title	Category	Continuous Assessment Marks	End Sem Marks	Total Marks	L	Т	Р	С
			THEOR	Y						
1	23TEACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0
2	23TEACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0
3	23TEACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0
4	23TEACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0
5	23TEACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0
6	23TEACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0
7	23TEACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	AC	40	60	100	2	0	0	0
8	23TEACZ8	SANSKRIT FORTECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0

CURRICULUM DESIGN

	Course Work			Percentage			
S.No	SubjectArea	Ι	п	III	IV	Total	Percentage
1.	Foundation Course	7	-	-	-	07	10.00 %
2.	Professional Cores	10	16	-	-	26	37.14%
3.	Employability Enhancement Courses	0	2	8	12	22	31.43 %
4.	Professional Electives	6	3	3	-	12	17.14 %
5.	Audit courses	0	0	-	-	-	-
6.	Open Elective Courses	-	-	3	-	03	4.29 %
	Total Credits		21	14	12	70	100.00%

23TEFCZ1

PREREQUISIT	TES	CATEGORY	L	Т	Р	С			
	NIL	FC	3	0	0	3			
Course Objectives UNIT – I	 To impart knowledge on research method problem solving, data interpretation and re To know the importance of IPR and patent INTRODUCTION	ology ,Quantitativ eport writing rights.	e met	hod	s foi	ods			
Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question-Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code.									
UNIT – II	QUANTITATIVE METHODS FOR PROBLEM SOLVIN	G		9 P	erio	ds			
Analysis and In Series Analysis	ference, Multivariate methods, Concepts of Correlation and Spectral Analysis, Error Analysis, Applications of S	and Regression, F pectral Analysis.	undar	nent	tals	of Time			
UNIT – III	DATA DESCRIPTION AND REPORT WRITING			9 Pe	erio	ds			
Tabular and gra graphs that sho other graphs, p Layout of Resea	aphical description of data: Tables and graphs of free ow the relationship between two variables, Relation reparing data for analysis. Structure and Component rch Report, Mechanism of writing a research report, re	uency data of one n between frequer s of Research Rep eferencing in acade	varia cy di ort, T mic w	ble, strib ypes ritir	Tab outio s of ng.	les and ns and Report,			
UNIT – IV	INTELLECTUAL PROPERTY			9 P	erio	ds			
Nature of Inte Development: to International Se Patenting under	Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.								
UNIT – V	PATENT RIGHTS			9 P	erio	ds			
Patent Rights: S Geographical In Contact Period	cope of Patent Rights. Licensing and transfer of techno dications. ds:	ology. Patent inform	nation	and	l dat	abases.			
Lecture: 45 F	rerioas i utoriai:0 Perioas - Practical: 0 P	erioas lota	1:45	rer	100	5			

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students", Juta Academic, 1996.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, engageLearning, 2013.
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2014.
4	Dr. C. R. Kotharia and GauravGarg, "Research Methodology: Methods and Trends", New age international publishers, Fourth Edition, 2018.

COUI	Bloom's Taxonomy Mapped	
Upon	completion of the course, the students will be able to:	
C01	Formulate research question for conducting research.	K4
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K4
C04	Develop a structured content to write technical report.	K4
C05	Summarize the importance of IPR and protect their research work through intellectual property.	K4

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
C01	1	2	1	1	2			
CO2	2	-	-	-	-			
CO3	3	3	3	2	2			
CO4	2	2	2	2	2			
CO5	1	1	amin	1	1			
23TEFCZ1	2	2	I STA DO RUGO DUL US BI	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial								

-		74		1				
				7				
ASSESSMENT PATT	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	40	40	20	- 11	-	-	100	
CAT2	40	40	20	<u> </u>	-	-	100	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100	
ESE	30	30	20	20	-	-	100	

23	TE	F	C O	2

ADVANCED MATHEMATICS FOR THERMAL ENGINEERING

PREREQUISI	TES	CATEGORY	ľ L	Т	Р	С
	NIL	FC	3	1	0	4
					•	
Course	• The course is designed to teach students variou	is techniques	s to so	lve	line	ar,
Objective	Objective nonlinear equations including boundary value problems occur in engineering					
	them to the important mathematical tool of numer	ical methods.				_
UNIT – I	SYSTEM OF LINEAR AND NONLINEAR EQUATIONS		9+	3 Po	erio	ds
System of lin	ear equation: Gauss elimination method, Gauss Jordan me	thod, Cholesk	ki meth	10d,	Gaı	ISS
Jacobi metho	d, Gauss-Seidel method-System of nonlinear equations:	Iteration m	nethod,	, Ne	ewto)n-
Raphson met	hod for single variable-Eigen value problems: Power method	d.		<u> </u>		
UNIT – II	NUMERICAL DIFFERENTIATION AND INTEGRATION		9+	3 Pe	erio	ds
Interpolation	: Newton's forward and backward interpolation, N	lewton's div	vided	diff	erer	ice
interpolation,	Lagrange's Interpolation-Differentiation: Newton's For	mula-Numer	ical in	iteg	ratio	on:
Trapezoidal r	ule, Simpson's 1/3rd and 3/8 rules-Gaussian two- and three	e-point quadra	ature f	orm	ula.	
UNIT – III	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL		9+	3 Po	erio	ds
	EQUATIONS					
First order di	fferential equations: Taylor's series method-Euler and mod	dified Euler's	metho	ds-I	Rung	ge-
Kutta metho	d of fourth order- Milne's and Adam's predictor-correc	ctor methods	s -Seco	ond	orc	ler
differential ec	uations: Taylor's series method.					
UNIT – IV	NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQ	UATIONS	9+	3 Po	erio	ds
Partial differe	ential equations: Finite difference solution two dimensional	Laplace equa	ition ar	nd P	oiss	on
equation- Im	plicit and explicit methods for one dimensional heat ec	uation (Ben	der-Scł	nmie	dt a	nd
Crank-Nichol	son methods)-Finite difference explicit method for wave equ	uation.				
UNIT – V	FINITE ELEMENT METHOD		9+	3 Po	erio	ds
Basics of finite element method: Weak formulation, weighted residual method-Shape functions for						
linear and triangular element-Finite element method for two point boundary value problems, Laplace						
and Poisson equations.						
Contact Periods:						
Lecture: 45 F	Periods Tutorial: 15 Periods Practical: 0 Periods	Total: 60 Peri	iods			

1	S.S. Sastry, Introductory methods of numerical analysis, PHI, New Delhi, 5 th Edition, 2015.
2	Ward Cheney, David Kincaid, Numerical Methods and Computing, Cengage Learning, Delhi, 7th
	Edition 2013.
3	James.G, "Advanced Modern Engineering Mathematics", Pearson Education Asia, 4th edition, 2011.
4	Grewal.B.S., "Numerical Methods In Engineering And Science", Khanna Publishers New Delhi, 2014.
5	Veerarajan.Tand Ramachandran.T, "Numerical Methods With Programming C", Tata Mc Graw Hill
	Publishing Company Ltd., New Delhi, 2011.
6	S.R.K.Iyengar, R.K Jain, "Numerical Methods", New Age International Publishers, New Delhi.

COUF	RSE OUTCOMES:	Bloom's			
Upon	Upon completion of the course, the students will be able to:				
		y Mapped			
C01	Solve the linear, non-linear equations and Eigenvalue problems using an	K6			
	appropriate numerical method.				
CO2	Gain the knowledge of numerical differentiation and integration.	K6			
CO3	3 Construct one-step and linear multistep methods for the numerical solution of				
	initial-value problems for ordinary differential equations and systems of such				
	equations.				
CO4	Acquire the knowledge of principles for designing numerical schemes for PDEs in	K6			
	particular finite difference schemes, interpret solutions in a physical context of				
	wave and heat equation in specified techniques.				
C05	Acquire the knowledge of principles for designing numerical schemes for PDEs in	K6			
	particular finite difference schemes, interpret solutions in a physical context of				
	wave and heat equation in specified techniques.				

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	PO3	P04	PO5	P06
C01	3	3		-	-	1
CO2	3	3	NO DIL VIE DI VIELON	-	-	2
CO3	3	3	The second	-	-	2
CO4	2	2		-	-	1
CO5	1	2	-	-	-	1
23TEFC02	3	3		-	-	1
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT I	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*		0.00						
CAT1	20	40	-30	10	-	-	100	
CAT2	20	40	30	10	-	-	100	
Individual	-	50	30	20	-	-	100	
Assessment 1								
/ Case Study								
1 / Seminar 1								
/ Project 1								
Individual	-	50	30	20	-	-	100	
Assessment 2								
/ Case Study								
2 / Seminar 2								
/ Project 2								
ESE	20	40	30	10	-	-	100	

23TEPC01

ADVANCED THERMODYNAMICS

(Use of approved gas tables and charts are permitted)

Ι

PREREQUIS	TES	CATEGORY	L	Т	Р	С	
ENGINEERIN	IG THERMODYNAMICS	РС	3	1	0	4	
Course	• To make the students learn the advanced concepts thermodynamic properties,						
Objective	multi phase systems, chemical and statisti	ical thermodyna	mics,	energ	gy at 1	micro	
	level, conversion of heat energy in thermod	lynamic systems	i.				
UNIT – I	AVAILABILITY AND THERMODYNAMIC PROPER	TY RELATIONS	5	9-	+3 Pe	riods	
Reversible w	ork, Availability, Irreversibility and Second-Law Effi	ciency for a clos	ed Sys	tem a	nd St	eady-	
State Control	Volume. Thermodynamic Potentials, Maxwell relati	ons, Generalized	d relat	ions f	for ch	anges	
in Entropy, I	Internal Energy and Enthalpy, C_p and C_v , Clausius	: Clayperon Equ	lation	, Joul	e-Tho	mson	
Coefficient, B	ridgmann Tables for Thermodynamic relations.						
UNIT – II	SINGLE AND MULTI PHASE SYSTEMS			9-	+3 Pe	riods	
SINGLE-PHA	SE SYSTEMS: Simple System, Equilibrium Cond	litions, The Fu	ındam	ental	Rela	tions,	
Legendre Tra	ansforms, Relations between Thermodynamic Prop	perties, EXERGY	ANA	LYSIS	: Non	flow	
Systems, Flor	w Systems, Generalized Exergy Analysis, Air Cond	litioning and it	s type	es. Ml	JLTIP	HASE	
SYSTEMS: Th	ne Energy Minimum Principle, The Stability of a S	Simple System,	The C	ontin	uity o	of the	
Vapor and Lie	quid States, Phase Diagrams, Corresponding States.						
UNIT – III	REAL GAS AND MULTI-COMPONENT SYSTEMS			9-	+3 Pe	riods	
Different Eq	uations of State, Fugacity, Compressibility, Princi	ple of Corresp	onding	g Stat	tes, U	se of	
generalized of	charts for enthalpy and entropy departure, fugacit	y coefficient, Le	ee-Kes	sler g	genera	alized	
three parame	eter tables, Fundamental property relations for sys	stems of variabl	e com	iposit	ion, p	artial	
molar prope	rties, Real gas mixtures, Ideal solution of real gas	es and liquids,	Equilil	orium	in m	ulti -	
phase system	s, Gibbs phase rule for non-reactive components.						
UNIT – IV	CHEMICAL THERMODYNAMICS AND EQUILIBRI	UM		9-	+3 Pe	riods	
Thermo chei	mistry, First Law analysis of reacting systems, A	diabatic Flame	tempe	eratur	e, En	tropy	
change of rea	cting systems, Second Law analysis of reacting syste	ems, Criterion fo	r reac	tion e	quilib	rium,	
Chemical availability, Equilibrium constant for gaseous mixtures, evaluation of equilibrium							
composition, Availability of reacting systems.							
UNIT – V	STATISTICAL THERMODYNAMICS			9-	+3 Pe	riods	
Microstates and Macrostates, Thermodynamic probability, Degeneracy of energy levels, Maxwell-							
Boltzman, Fermi-Dirac and Bose-Einstein Statistics, Microscopic Interpretation of heat and work,							
Evaluation of entropy, Calculation of the Macroscopic properties from partition functions, Equilibrium							
constant statistical thermodynamics approach.							
Contact Peri	ods:						
Lecture: 45	Periods Tutorial: 15 Periods Practical: 0 Pe	riods Total: 6	0 Per	iods			

TEXT BOOK:

1Yunus Cengel, Michael Boles, "Thermodynamics: An Engineering Approach", 9th Edition, 2019.2P.K.Nag, "Engineering Thermodynamics", Tata McGraw Hill Education, 6 th Edition, 2017.

REFERENCES:

1	Kenneth Wark Jr., "Advanced Thermodynamics for Engineers, McGraw-Hill Inc. New York, 1995.
2	Holman, J.P., "Thermodynamics", McGraw-Hill Inc, 4th Edition, 1988.
3	Smith, J.M. and Van Ness., H.C., "Introduction to Chemical Engineering Thermodynamics",
	McGraw-Hill Inc., 4thEdition, 2005.
4	Bejan, A., "Advanced" Engineering Thermodynamics", John Wiley and Sons, 3 rd edition, 2006.
5	Domkundwar, Kothandaraman, "A Course in Thermal Engineering", DhanpatRai and Co,
	2008.
-	

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the thermodynamics property and relation between them.	КЗ
CO2	Understand the concepts of Thermodynamics Phase systems.	K5
CO3	Discuss the properties of different types of gases.	K2
C04	Discuss the basic concepts of Irreversible and Chemical Thermodynamics.	КЗ
C05	Derive equations and calculating the properties related to statistical	K5
	thermodynamics.	
	and an a state of the state of	

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05	P06		
C01	3	3	72	2	3	2		
C02	3	3	2	2	2	1		
C03	3	3	2	3	2	1		
CO4	2	25	1	2	3	2		
C05	3	3	3	3	3	3		
23TEPC01	3	3	2	2	3	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

		Change Co	CT On we)					
ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	20	30	30	10	10	-	100		
CAT2	30	30	20	10	10	-	100		
Individual									
Assessment 1									
/ Case Study 1	20	10	10	30	30	-	100		
/ Seminar 1 /									
Project 1									
Individual									
Assessment 2									
/ Case Study 2	10	20	30	20	20	-	100		
/ Seminar 2 /									
Project 2									
ESE	30	20	15	20	15	-	100		

23TEPC02

ADVANCED FLUID DYNAMICS (use of approved gas tables and charts are permitted)

PREREQUISITE	Y L	Т	Р	С							
FLUID MECHANI	1	0	4								
Course	To make the students learn the advanced concepts as	nd equ	ations	of var	ious						
Objective	types of fluid flows and realize the special effects due	e to tu	rbulenc	e, fric	tion						
	and shock.										
UNIT – I	BASIC LAWS OF FLUID FLOW		9+	3 Peri	ods						
Condition for ir	rotationality, circulation and vorticity Accelerations in Cartesi	an sys	tems n	ormal	and						
tangential accel	erations, Euler's, Bernoulli equations in 3D– Continuity and Mor	nentun	n Equat	ions, I	deal						
and non-ideal f	lows, general equations of fluid motion, Navier - stokes equ	uations	and t	heir e	xact						
solutions. Bound	dary layer theory, wedge flows, laminar flow over plates and thr	ough c	ylinder	s.							
UNIT – II	BOUNDARY LAYER THEORY		9+3	B Peri	ods						
Prandtl's contri	hution to real fluid flows – Prandtl's houndary layer theory -B	oundai	w laver	thick	ness						
for flow over	hat nate - Von-Karman momentum integral equation -Bl	ounuar	olution	- Lam	inar						
houndary laver	- Turbulent Boundary Laver - Expressions for local and me	an dra	σ cooff	cionte	for						
different velocit	v profiles - Total Drag due to Laminar & Turbulent Lavers - Pro	all ula hlome	g toen		5 101						
	TURBLE FOR FLOW	Diems.	-0	2 Por	ode						
Eundamontal co	Propert of turbulance Time Averaged Equations Boundary La	vor Fo	untion	Dra	Jul						
Mixing Length	Model - Universal Velocity Distribution Law: Van Driest Model	-Annro	vimate	1 4	Fundamental concept of turbulence – Time Averaged Equations – Boundary Layer Equations - Prandtl						
for drag coeffici	Mixing Length Model - Universal Velocity Distribution Law: Van Driest Model –Approximate solutions										
for drag coefficients – More Refined Turbulence Models – k - ϵ model - boundary layer separation and											
form drag – Kar	ients – More Refined Turbulence Models – k-ε model - bounda man Vortex Trail. Boundary layer control. lift on circular cylinde	ry laye ers.	er sepai	ation	ndti ions and						
form drag – Kar UNIT – IV	ients – More Refined Turbulence Models – k-ε model - bounda man Vortex Trail, Boundary layer control, lift on circular cylinde SHOCK WAVE	ry laye ers.	er sepai	ation	ndti ions and						
form drag – Kar UNIT – IV Normal and ob	ients – More Refined Turbulence Models – k-ε model - bounda man Vortex Trail, Boundary layer control, lift on circular cylindε SHOCK WAVE igue shocks – Prandtl – Meyer expansion – Rankine Hugnoit	ry laye ers.	er sepai 9+	solut ation 3 Per i	ndtl ions and ods n of						
form drag – Kar UNIT – IV Normal and obl method of chara	ients – More Refined Turbulence Models – k-ε model - bounda man Vortex Trail, Boundary layer control, lift on circular cylinde SHOCK WAVE lique shocks – Prandtl – Meyer expansion – Rankine Hugnoit acteristics applied to two-dimensional case – simple supersoni	ry laye ers. relatic	er sepai 9+ on. App tunnel	solut ration 3 Peri licatio Desig	and and ods n of n of						
form drag – Kar UNIT – IV Normal and obl method of chara supersonic wind	ients – More Refined Turbulence Models – k-ε model - bounda man Vortex Trail, Boundary layer control, lift on circular cylinde SHOCK WAVE lique shocks – Prandtl – Meyer expansion – Rankine Hugnoit acteristics applied to two-dimensional case – simple supersoni l tunnel and nozzle.	ry laye ers. relation c wind	er sepai 9+ n. App tunnel	solut ration 3 Per i licatio Desig	ions and ods n of n of						
form drag – Kar UNIT – IV Normal and obl method of chara supersonic wind UNIT – V	ients – More Refined Turbulence Models – k-ε model - bounda man Vortex Trail, Boundary layer control, lift on circular cylinde SHOCK WAVE lique shocks – Prandtl – Meyer expansion – Rankine Hugnoit acteristics applied to two-dimensional case – simple supersoni l tunnel and nozzle.	ry laye ers. relation c wind	9+ 9+ n. App tunnel 9+	solut ration 3 Per ilicatio Desig 3 Per i	ions and ods n of n of						
form drag – Kar UNIT – IV Normal and obl method of chara supersonic wind UNIT – V Role of experim	ients – More Refined Turbulence Models – k-ε model - bounda man Vortex Trail, Boundary layer control, lift on circular cylinde SHOCK WAVE lique shocks – Prandtl – Meyer expansion – Rankine Hugnoit acteristics applied to two-dimensional case – simple supersonid tunnel and nozzle. EXPERIMENTAL TECHNIQUES nents in fluid, layout of fluid flow experiments, sources of err	ry laye ers. relatic c wind or in e	9+ 9+ on. App tunnel 9+ 29+	ation 3 Per ilicatio Desig 3 Per i ents.	and and ods n of n of ods data						
form drag – Kar UNIT – IV Normal and obl method of chara supersonic wind UNIT – V Role of experim analysis, design	ients – More Refined Turbulence Models – k-ε model - bounda man Vortex Trail, Boundary layer control, lift on circular cylinde SHOCK WAVE lique shocks – Prandtl – Meyer expansion – Rankine Hugnoit acteristics applied to two-dimensional case – simple supersoni d tunnel and nozzle. EXPERIMENTAL TECHNIQUES nents in fluid, layout of fluid flow experiments, sources of err n of experiments, review of probes and transducers, Int	ry laye ers. relatic c wind or in e	9+ m. App tunnel 9+ 9+ xperim tion to	3 Peri lication Desig 3 Peri ents, The	ions and ods n of n of data mal						
form drag – Kar UNIT – IV Normal and obl method of chara supersonic wind UNIT – V Role of experim analysis, design Anemometry-Ho	ients – More Refined Turbulence Models – k-ε model - bounda man Vortex Trail, Boundary layer control, lift on circular cylinde SHOCK WAVE lique shocks – Prandtl – Meyer expansion – Rankine Hugnoit acteristics applied to two-dimensional case – simple supersoni d tunnel and nozzle. EXPERIMENTAL TECHNIQUES nents in fluid, layout of fluid flow experiments, sources of err n of experiments, review of probes and transducers, Into t wire anemometer, Laser Doppler Velocimetry and Partic	ry laye ers. relatic c wind or in e troduct	9+ m. App tunnel 9+ xperim tion to age Ve	3 Peri licatio Desig 3 Peri ents, The locim	ions and ods n of n of data cmal etry,						
form drag – Kar UNIT – IV Normal and obl method of chara supersonic wind UNIT – V Role of experim analysis, design Anemometry-Ho Measurement of	 ients – More Refined Turbulence Models – k-ε model - bounda man Vortex Trail, Boundary layer control, lift on circular cylinde SHOCK WAVE lique shocks – Prandtl – Meyer expansion – Rankine Hugnoit acteristics applied to two-dimensional case – simple supersoni d tunnel and nozzle. EXPERIMENTAL TECHNIQUES nents in fluid, layout of fluid flow experiments, sources of err n of experiments, review of probes and transducers, Into t wire anemometer, Laser Doppler Velocimetry and Partief velocity components by 3 holes and 4 holes probes. 	ry laye ers. relatic c wind or in e troduct	9+ m. App tunnel 9+ xperim cion to age Ve	3 Peri licatio Desig 3 Peri ents, Theilocim	and and ods n of n of data rmal etry,						
form drag – Kar UNIT – IV Normal and obl method of chara supersonic wind UNIT – V Role of experim analysis, design Anemometry-Ho Measurement of Contact Period	ients – More Refined Turbulence Models – k- ε model - bounda man Vortex Trail, Boundary layer control, lift on circular cylinde SHOCK WAVE lique shocks – Prandtl – Meyer expansion – Rankine Hugnoit acteristics applied to two-dimensional case – simple supersoni d tunnel and nozzle. EXPERIMENTAL TECHNIQUES nents in fluid, layout of fluid flow experiments, sources of err n of experiments, review of probes and transducers, Into t wire anemometer, Laser Doppler Velocimetry and Partie f velocity components by 3 holes and 4 holes probes. S :	ry laye ers. relatic c wind or in e troduct	9+ 9+ n. App tunnel 9+ xperim tion to age Ve	3 Per ilication Desig 3 Per il ents, The locim	ions and ods n of n of data rmal etry,						
form drag – Kar UNIT – IV Normal and obl method of chara supersonic wind UNIT – V Role of experim analysis, design Anemometry-Ho Measurement of Contact Period Lecture: 45 Pe	ients – More Refined Turbulence Models – k-ε model - bounda man Vortex Trail, Boundary layer control, lift on circular cylinde SHOCK WAVE lique shocks – Prandtl – Meyer expansion – Rankine Hugnoit acteristics applied to two-dimensional case – simple supersoni d tunnel and nozzle. EXPERIMENTAL TECHNIQUES nents in fluid, layout of fluid flow experiments, sources of err n of experiments, review of probes and transducers, Int ot wire anemometer, Laser Doppler Velocimetry and Partie f velocity components by 3 holes and 4 holes probes. s: riods Tutorial: 15 Periods Practical: 0 Periods Total:	ry laye ers. relatic c wind or in e troduct cle Im 60 Pe	9+ n. App tunnel 9+ xperim tion to age Ve riods	3 Peri licatio Desig 3 Peri ents, Then locim	ions and ods n of n of data mal etry,						

TEXT BOOK:

1	Mohanty, A. K., "Fluid Mechanics" , Prentice Hall of India, 2 nd edition, 2006.
2	Yunus A Cengel, John M.Cimbala, "Fluid Mechanics: Fundamentals and Applications", McGraw-Hill, 4th
	Edition, 2019

1	Muralidhar, K and Biswas, G., "Advanced Engineering Fluid Mechanics" , Alpha Science International
	Ltd., 2015.
2	Pijush K. Kundu, Ira M Kohen and David R. Dawaling, "Fluid Mechanics" , Academic Press, 5 th Edition
	2011.
	White, F. M., "Viscous Fluid Flow", 3 rd Edition, Tata McGraw Hill Book Company, 2017.
2	<i>"Advanced Fluid Mechanics"</i> by Dr. Suman Chakraborty (IIT Kharagpur), NPTEL Course
	(Link: https://nptel.ac.in/courses/112/105/112105218/#)
ļ	"Introduction to Turbulence" by Prof. Gautam Biswas (IIT Kanpur), NPTEL Course
	(Link: https://nptel.ac.in/courses/112/104/112104120/)

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand fundamentals and Basic laws of Fluid Flows.	K3
CO2	Discuss the various laws pertaining to different Boundary layer concepts.	K5
CO3	Identify, formulate and solve problems related to fluid flows.	K5
CO4	Understand and Evaluate different wave phenomena.	K5
CO5	Apply fluid concepts in the experimental setups.	K5
	Bysterin Bandon Brithand	

COURSE ARTICULATION MATRIX								
COs/POs	P01 🧹	PO2	P03	P04	PO5	P06		
C01	3	3	2	2	3	2		
CO2	3	3	2	2	2	1		
CO3	3	3	2	3	2	1		
CO4	2	2	1	2	3	2		
CO5	3	8 3	3	3	3	3		
23TEPC02	3	3	2	2	3	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

1	Jingint, 2	Mouerate, 5	Substantia	
			Que tuto	
			A STAR BUILD STAR	ŝ

ASSESSMENT I	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	30	20	20	10	-	100			
CAT2	5	30	30	15	20	-	100			
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	10	20	30	20	20	-	100			
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	30	20	15	15	20	-	100			
ESE	20	25	25	15	15	-	100			

23TEPC03

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	0	0	4	2

Course	• To make the students learn the importance of various types of I.C engines and				
Objective	analyze them using commercial open source software.				
LIST OF EXP	LIST OF EXPERIMENTS (60)				
1. Pe	erformance test on Spark Ignition and Compression Ignition engi	ines usin	g Alternative		
fu	els such as ethanol and Biofuels.				
2. Pe	erformance test using pressure transducers in CI and SI Engines.				
3. Pe	erformance and Heat balance test on I. C. Engines using a water dyna	amomete	er.		
4. Pe	erformance test on variable compression ratio petrol and diesel eng	ines.			
5. Ei	nission measurement in Spark Ignition and Compression Ignition	Engines	using smoke		
m	eter and gas analyzer.	-	-		
6. De	etermination of Temperature Distribution using Thermal Imager.				
7. Pe	erformance test on computerized Two Stage Air Compressor Test Ri	ig.			
8. St	udy on Drawing of Engine Components with Dimensions, Assembly	and Disa	ssembly.		
9. Pe	erformance test on the effect of Air Fuel Ratio of the Two Stroke	Single Cy	vlinder Petrol		
Eı	ngine.	0			
10. St	udy on Meshing Techniques and Turbulent Modeling.				
11. Fl	ow analysis over a Flat Plate for Boundary layer characteristics usin	ng CFD.			
12. Co	onvection Heat transfer analysis in laminar flow inside 2D pipe	-			
Contact Peri	ods:				
Lecture: 0 P	eriods Tutorial: 0 Periods Practical: 60 Periods Total: 6	60 Perio	ds		
	A				
COURSE OUT	COMES:	Bloom	s Taxonomy		
		N	lapped		
Upon completion of the course, the students will be able to:					
CO1 Evaluate the performance of S1 and C1 engines. K5 CO2 Analyze the emission characteristics of IC engines. K4					
CO3 Study t	CO2 Analyze the emission characteristics of it engines. K4 CO3 Study the various equipment used for analysis K4				
CO4 Apply 1	the principles of CFD in fluid flow problems.		K5		
CO5 Learn t	the various tools used in analysis.		K3		

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	PO3	P04	PO5	P06		
C01	2	2	3	2	2	2		
CO2	3	3	2	1	2	2		
CO3	2	3	2	1	2	2		
CO4	2	2	3	1	3	3		
CO5	2	2	3	1	3	3		
23TEPC03	2	3	3	1	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

23TEPC04

ADVANCED HEAT AND MASS TRANSFER

(use of approved tables and charts are permitted)

Π

PREREQUISITES	CATEGORY	L	Τ	Р	С
1. NUMERICAL METHODS 2. HEAT AND MASS TRANSFER	PC	3	1	0	4

Course Objective	• To make the students learn the concepts of modes of heat transfer, heat exchangers along with numerical formulation of heat equations and to analyze various heat transfer correlations.										
UNIT I	CONDUCTION AND DADIATION HEAT TRANSFER	0 + 2 Dominda									
	NII - I CUNDUCTION AND KADIATION HEAT TRANSFER 9+3 PERIODS										
One dimensio	inal energy equations and boundary condition – Three dimensional	I neat conduction									
equations - E	xtended surface heat transfer - Conduction with moving boundarie	s - Porous-media									
heat transfer	- Radiation in gases and vapour.										
UNIT – II	TURBULENT FORCED CONVECTIVE HEAT TRANSFER	9+3 Periods									
Momentum a	nd energy equations - Turbulent boundary layer heat transfer	- Mixing length									
concept - Tu	rbulence model - k-ε model - Analogy between heat and mome	entum transfer –									
Reynolds, Col	burn analogy, Von-karman, turbulent flow in a tube - High speed flov	NS.									
UNIT – III	PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGER	9+3 Periods									
Condensation	with shear edge on bank of tubes - Boiling, types - pool and flo	ow boiling - heat									
exchanger – a	-NTU approach and design procedure - Compact heat exchangers.										
UNIT – IV	NUMERICAL METHODS IN HEAT TRANSFER	9+3 Periods									
Finite differen	nce formulation of steady and transient heat conduction problems	s – Discretization									
schemes – Ex	xplicit, Crank Nicolson and fully implicit schemes - Control volu	me formulation -									
Steady one-di	mensional convection and diffusion problems - Calculation of the flo	ow field – Simpler									
Algorithm.		-									
UNIT – V	MASS TRANSFER AND ENGINE HEAT TRANSFER CORRELATION	9+3 Periods									
Mass Transfer - Vaporization of droplets - Combined heat and mass transfer problems - Heat											
transfer correlations in I.C. Engines.											
Contact Periods:											
Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods											

TEXT BOOK:

1	Frank P.Incropera, David P.Dewitt, Adrienne S.Lavine and Theodore L.Bergman, "Fundamentals
	of Heat & Mass Transfer", John wiley, 7th Edition, 2011.
2	Suhas V.Patankar, "Numerical Heat Transfer and Fluid Flow", CRC Press, 1st Edition, 2017.

1	Adrian Bejan, "Convection Heat Transfer", John Wiley, 4th Edition, 2013.									
2	Yunus A.Cengel and Afshin J.Ghajar, "Heat and Mass Transfer: Fundamentals and									
	Applications", McGraw Hill, 6 th Edition, 2020.									
3	Dr. D.S.Kumar, "Heat & Mass Transfer" , S.K.Kataria & Sons, 9 th Edition, 2018.									
4	Mahesh M.Rathore, "Engineering Heat and Mass Transfer", University Science Press,									
	3 rd Edition, 2016.									
5	Yunus A.Cengel, "Heat and Mass Transfer: A Practical Approach", Mcgraw Hill, 5 th Edition,									
	2015.									

COUF	RSE OUTCOMES:	Bloom's
Upon	n completion of the course, the students will be able to:	Taxonomy Mapped
C01	Apply the heat transfer concepts for conduction, convection and radiation heat transfer.	К3
CO2	Learn mathematical models for various flows in heat transfer.	K4
CO3	Evaluate the concepts of phase change in heat transfer and heat exchanger.	К5
CO4	Apply numerical methods for solving heat and mass transfer problems.	КЗ
CO5	Understand relation between mass and heat transfer in engine.	K2

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	PO3	P04	P05	P06		
C01	3	3	2	2	3	2		
CO2	3	3	3	1	3	3		
CO3	3	3	3	2	3	3		
CO4	3	3	3	1	2	3		
CO5	3	3	3	2	2	2		
23TEPC04	3	3	2 3 3	2	3	2		
1 – Slight, 2 – Moderate, 3 – Substantial								
			- MURCHAN					

ASSESSMENT PATTERN – THEORY									
Test /	Rememberin	Understandin	Applying	Analyzing	Evaluatin	Creating	Total		
Bloom's	g (K1) %	g (K2) %	(K3) %	(K4) %	g (K5) %	(K6) %	%		
Category*			SV21	11					
CAT1	20	25	25	10	20	-	100		
CAT2	15	15 💩	15	25	30	-	100		
Individual		X Is		A.					
Assessment 1		800		238					
/ Case Study 1	25	20	20	20	15	-	100		
/ Seminar 1 /		1200	CO CE DE						
Project 1									
Individual									
Assessment 2									
/ Case Study 2	20	20	25	20	15	-	100		
/ Seminar 2 /									
Project 2									
ESE	30	20	20	15	15	-	100		

PREREQUISI	ГЕS	CATEGORY	L	Τ	Ρ	С					
1. NUMERICA	AL METHODS	PC	3	1	0	4					
2. HEAT AND											
Course	• To make the students learn finite differe	• To make the students learn finite difference and finite volume discretized									
Objective	forms of CFD equations and their solutio	ns.									
UNIT – I	GOVERNING EQUATIONS AND BOUNDARY CO	NDITION		9+3	Per	riods					
Basics of CFI) - Governing equations of fluid dynamics – Co	ntinuity, momer	itun	n ar	nd e	nergy					
equations - P	hysical boundary conditions - Mathematical beh	navior of PDEs o	n C	FD	– El	liptic,					
parabolic and	hyperbolic equations.										
UNIT – II	DISCRETISATION TECHNIQUES AND	SOLUTION	I	0.2	Dor	riode					
	METHODOLOGIES			973	rei	lous					
Methods of d	leriving discretization equations - Finite differe	ence & Finite vo	olun	ne r	neth	ods -					
Finite differe	nce discretization of wave equation - Laplac	ce equation, Bu	irge	r's	equ	ation,					
numerical er	cor and stability analysis. Time dependent meth	nods – Explicit,	imp	olicit	, Cr	ank –					
Nicolson met	nods, time split methods.										
UNIT – III	CALCULATION OF FLOW-FIELD FOR N-S EQUA	TIONS		9+3	Per	riods					
Finite volume	e formulation of steady one - Dimensional conv	vection and diffu	isio	n p	robl	ems -					
Central, upwi	nd, hybrid and power-law schemes – Discretizatio	on equations for	two	o-dir	nen	sional					
convection a	nd diffusion. Representation of the pressure -	- Gradient term	a ar	nd o	cont	inuity					
equation – St	aggered grid – Momentum equations – Pressur	re-Correction eq	uat	ion	- SI	MPLE					
algorithm and	l its variants.		-								
UNIT – IV	TURBULENCE MODELING			9+3	Per	riods					
Time – Avera	ged equation for turbulent flow - Turbulence mo	odels – Zero equ	atio	n m	ode	l, one					
equation model, two equation K-I models and advanced models.											
UNIT – V	UNIT - V GRID GENERATION 9+3 Periods										
Algebraic Met	hods – Methods – Differential Equation methods	 Adaptive grids. 									
Contact Perio	ods:										
Lecture:45 P	eriods Tutorial: 15 Periods Practical: (0 Periods 7	ota	l:60) Pe	riods					

TEXT BOOK:

1	John C.Tanne hill, Dale A.Anderson and Richard H.Pletcher, "Computational Fluid Mechanics
	and Heat Transfer", CRC Press, 3 rd Edition, 2011.
2	H.Versteeg and W.Malalasekra, "An Introduction to Computational Fluid Dynamics: The
	Finite Volume Method". Pearson, 2 nd Edition, 2007.

_	
1	K.Muralidhar and T.Sundararajan, "Computational Fluid Flow and Heat Transfer", Narosa
	Publishing House, 2 nd Edition, 2014.
2	Sunil Kumar Chakrabartty, Manas Kumar Laha and Pradip Niyogi, "Introduction to
	Computational Fluid Dynamics", Pearson, 1st Edition, 2009.
3	T.J.Chung, "Computational Fluid Dynamics", Cambridge University Press, 2 nd Edition, 2014.
4	Tapan Sen Gupta, "Computational Fluid Dynamics" , Universities Press, 1st Edition, 2004.
5	S.C.Gupta, "Applied Computational Fluid Dynamics", Wiley, 1st Edition, 2019.

COUF	RSE OUTCOMES:	Bloom's
Upon	1 completion of the course, the students will be able to:	Mapped
C01	Appreciate different types of PDEs that arise in fluid flow and heat transfer problems.	К2
CO2	Develop finite volume discretized forms of the governing equations for diffusion processes.	К3
CO3	Analyze the consistency, stability and convergence of various discretization schemes for parabolic, elliptic and hyperbolic partial differential equations.	K4
CO4	Develop turbulent model for various engineering applications.	КЗ
CO5	Analyze various methods of grid generation techniques and application of finite difference and finite volume methods to various thermal problems.	K4

	- Churry -								
COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	2	3	3	1	3	1			
CO2	2	3	3 -	• 7/1	3	2			
CO3	3	3	3	2	3	3			
CO4	3	3	3	1	3	3			
CO5	3	3	3 = 1	2	3	2			
23TEPC05	3	3	3	1	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Rememberin	Understandin g (K2) %	Applying (K3) %	Analyzing	Evaluatin	Creating	Total %
Category*	g(KI) /0	g (12) /0	(113) /0	(11) /0	5 (13) /0	(10) /0	70
CAT1	25	25	30	20	-	-	100
CAT2	20	20	20	40	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	25	20	25	30	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	15	25	20	40	-	-	100
ESE	20	20	25	35	-	-	100

PREREQUISI	TES	CATEGORY L T P C				С			
1. ENGINEER	ENGINEERING CHEMISTRY								
2. THERMOD	YNAMICS	PC	PC 3 0 3			3			
3. HEAT AND	MASS TRANSFER								
Course	To provide the students about comprehe	• To provide the students about comprehensive understanding of fuel cell							
Objective	technology, enabling them to analyze, de	sign and contrib	ute	to t	he				
	development of efficient and sustainable	energy systems							
		energy systems	•						
UNIT – I	INTRODUCTION			91	Peri	ods			
Principle, wo	rking, components, types of fuel cells; AFC, PAF	C, SOFC, MCFC,	DM	IFC,	PEI	MFC –			
Relative meri	ts and demerits - Performance evaluation of fuel	cell - Comparis	on o	of ba	tter	y and			
fuel cell.	- 14490A.B								
UNIT – II	NIT - II THERMODYNAMICS OF FUEL CELLS 9 Periods					ods			
Electrochemical and electrolysis cell - Energy conversion in fuel cells - Change in Gibbs free						s free			
energy - Effe	ect of operating conditions - Efficiency of fuel cel	l - Fuel consum	ptic	n a	nd s	upply			
rates - Water	production rate - Heat generation in fuel cell.								
UNIT – III	HEAT AND MASS TRANSFER IN FUEL CELLS			91	Peri	ods			
Fluid flow -	Heat transfer modes and rate equations - In	let and bound	ary	cor	nditi	ions -			
Conservation	of energy and heat equations - Mass transfer:	Basic modes an	nd t	rans	spor	t rate			
equation - Ma	ss species transport in fuel cell - Convective mass	transfer - Diffus	ion	coef	ficie	ent.			
UNIT – IV	FUELING			91	Peri	ods			
Hydrogen sto	orage technology – Pressure cylinders, liquid hy	drogen, metal	hyd	ride	s, c	arbon			
fibers – Refo	rmer technology – Steam reforming, partial ox	idation, auto th	lern	nal	refo	rming			
water shift re	action, desulfurization, CO removal - Fuel cell tech	nology from bio	mas	ss.					
UNIT – V	APPLICATIONS AND STANDARD CODES			91	Peri	ods			
Stationary po	wer applications - Transportation power, portab	le applications,	lan	dfills	s, m	ilitary			
applications f	fuel cell codes and standards - Environmental	effects - Emissi	on	and	life	cycle			
assessments.									
Contact Perio	ods:								
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0	Periods To	otal	: 45	Per	iods			

TEXT BOOK:

 Shripad T.Revankar and Pradip Majumdar, "Fuel cells: Principles, Design and Analysis", CRC Press, 1st Edition, 2014.
 Chris Rayment and Scott Sherwin, "Introduction to Fuel Cell Technology", Notre Dame, 1st Edition, 2003.

1	Bent Sorensen, "Hydrogen and Fuel Cells: Emerging Technologies and Applications" , Elsevier Academic Press, 3 rd Edition, 2018.
2	Rebecca L.Busby, "Hydrogen and Fuel Cells: A Comprehensive Guide" , PennWell Corporation, American ed. Edition, 2005.
3	Peter Hoffmann, "Tomorrow's Energy: Hydrogen, Fuel cells and the prospects for a
	cleaner planet", The MIT Press, Revised and Expanded Edition, 2012.

- 4 Andrew Bocarsly and David Michael P.Mingos, **"Fuel Cells and Hydrogen Storage"**, Springer, 2011thEdition, 2011.
- 5 Zhigang Qi, **"Proton Exchange Membrane Fuel Cells"**, CRC Press, 1st edition, 2013.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upor	n completion of the course, the students will be able to:	Mapped
C01	Outline the performance and design characteristics and operating issues for various fuel cells.	К2
CO2	Apply principles of thermodynamics, electrochemistry, heat transfer, and fluid mechanics principles to design and analysis of fuel cells.	К3
CO3	Understand the opportunities for using hydrogen and the impact of this technology in a global and societal context.	K2
CO4	Understand the various types of fueling techniques.	K2
C05	Gain the knowledge of various applications and standard codes in fuel cell technologies.	К3

COURSE AR	FICULATION N	ATRIX				
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	2	m3m	3	2	3
CO2	1	1. 376	3	9,000	1	1
CO3	2	2	3	3	3	2
CO4	2	2	2	3	3	2
CO5	2	2	3	3	2	2
23TEPC06	3	2	2	3	3	2
1 – Slight, 2 –	- Moderate. 3 -	- Substantial				

ASSESSMENT F	ATTERN – THEC	DRY 🛛 🖁		1			
Test / Bloom's	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
Category*							
CAT1	45	35	20	- 010	-	-	100
CAT2	35	35	30	7 -	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	30	40	30	-	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	30	40	30	-	-	-	100
ESE	35	40	25	-	-	-	100

23TEPC07

MANUFACTURING AND TESTING OF IC ENGINES AND COMPONENTS

PREREQUISI	TES	CATEGORY	L	Т	Р	С		
NIL PC				0	0	3		
Course	• To make the students learn a comprehensive module on the aspects of							
Objective	materials, manufacturing and testing of	engine piston ass	sem	blie	5,			
	components, subsystems and Internatio	nal Standards.						
UNIT – I	CYLINDER BLOCK AND CYLINDER HEAD			9	Per	iods		
Casting pract	ice and special requirements - Materials, machi	ning, methods o	f te	stin	g - (ylinder		
liners, types a	nd manufacture.							
UNIT – II	PISTON ASSEMBLY			9	Per	iods		
Types, requir	ements, casting, forging, squeeze casting, materia	als, machining, te	estii	ng, n	nanı	ıfacture		
piston rings -	Material, types and manufacture – Surface treat	ment, bimetallic	pist	ons,	arti	culated		
pistons.								
UNIT – III	NIT – III DRIVE SYSTEMS 9 Periods							
Requirements	s, materials, forging practice, machining, balancin	g of crankshaft, t	esti	ng -	Con	necting		
rod, crank sha	aft, cam shaft, valve timing.							
UNIT – IV	COMPUTER INTEGRATED MANUFACTURING			9	Per	iods		
Integration o	f CAD, CAM and business functions - CIM, ne	etworking - CNC	2 pr	ogra	amm	ing for		
machining of	IC engines components.							
UNIT – V	QUALITY AND TESTING			9	Per	iods		
SPC - Introdu	ction to ISO 9000, ISO L4000, TS L6949, its impor	tance - BIS codes	s foi	tes	ting	various		
types of eng	ines - Equipments required, instrumentation,	computer aide	d e	ngin	e te	esting -		
Metrology for	r manufacturing IC engine components - In si	te measuremen	t –	Tele	eme	ry and		
sensors.								
Contact Perio	ods:		-		_			
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0	Periods To	otal	: 45	Per	iods		

TEXT BOOK:

1	Mikell	P.Groover,	"Automation,	production	Systems	and	Computer	-	Integrated
I	Manuf	acturing" , P	earson Educatio	n, 4 th Edition, 2	016.				
2	Mahle (GmbH, "Cylir	nder componen	ts: Properties	, Applicati	on, Ma	t terials", Spri	inge	er vieweg, 2 nd
ı.	Edition	2016.							

REFERENCES:

•

1	P.Radhakrishnan, S.Subramanian and V.Raju, "CAD/CAM/CIM" , New Age International
	Publishers, 4 th Edition, 2018.
2	Carl R. Loper, Philip C. Rosenthal and Richard W. Heine, "Principles of Metal Casting",
	McGrawHill, 2 nd Edition, 2017.
3	Mikell P.Groover and Emory W.Zimmers, "CAD/CAM: Computer-Aided Design and
	Manufacturing", Pearson Education, 1st Edition, 2003.
4	T.V.Ramana Rao, "Metal Casting: Principles and Practice", New Age International Publishers,
	2 nd Edition, 2020.
5	Itay Abuhav, "ISO 9001: 2015 - A Complete Guide to Quality Management Systems", CRC
	Press, 1 st Edition, 2017.

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Specify the component material and manufacturing method for a	K2
	cylinder block and head of the IC engine.	
CO2	Specify the component material and manufacturing method for a piston	K2
	of IC engine.	
CO3	Understand the basic concepts about IC engine drive system.	K2
CO4	Implement advanced computer integrated techniques in Manufacturing	K3
	IC engine components.	
C05	Relate and quality checks a component with International Standards.	КЗ

COURSE ARTICULATION MATRIX
000102111100211100111111

COs/POs	P01	PO2	PO3	P04	P05	P06
CO1	2	3	2	2	2	2
CO2	3	3	2	3	2	2
CO3	2	3	1	3	2	2
CO4	3	3	3	2	3	3
CO5	1	2	3 3	2	2	2
23TEPC07	2	3	2 WELLER	2	2	2
1 – Slight, 2 –	Moderate, 3 -	- Substantial	Strander Contraction			

ASSESSMENT P	ATTERN – THEO	RY		//			
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	45	55 💩	<u> </u>	- 11	-	-	100
CAT2	45	35	20		-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	55	45	Dartz Rature Rature		-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	35	35	30	-	-	-	100
ESE	40	35	25	-	-	-	100

23TEPC08	

٦

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	0	0	4	2

Course Obiective	• To make the students learn the various advancements in combustion research through experimental and analytical methods								
	researen en ougn experimentar und anaryticar metrious.								
LIST OF EXE	PERIMENTS	(60)							
1.	Studies on combustion kinetics and chemical dynamics.								
2.	Studies on low temperature combustion.								
3.	Experimental investigation on HCCI engine.								
4.	Experimental investigation on CRDI engine.								
5.	Particle ignition and char combustion characteristics of a solid fuel.								
6.	Modeling of large eddy simulation of IC engines.								
7.	Modeling of exhaust after treatment of IC engines.								
8.	Soot measurement using laser induced incandescence.								
9.	Stereoscopic and tomographic particle imaging velocimetry measure	ments.							
10	Test on subsonic combustion tunnel.								
Contact Per	iods:								
Lecture: 0 P	eriods Tutorial: 0 Periods Practical: 60 Periods Tota	l: 60 Periods							

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Analyze the modern low temperature combustion strategies.	K4
CO2	Evaluate the combustion characteristics of CI engine fuelled with various fuels.	К5
CO3	Simulate the in-cylinder flows of IC engines.	K4
CO4	Analyze post combustion properties of flue gases.	K4
C05	Explore and have insight on modern day analyzer and measuring instruments.	К3

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	PO3	P04	P05	P06
C01	2	3	3	3	2	1
CO2	3	2	3	2	2	2
CO3	3	3	3	1	3	2
CO4	2	2	3	2	1	2
CO5	3	2	3	2	2	2
23TEPC08	2	3	3	2	3	2
1 – Slight, 2 -	- Moderate, 3 -	Substantial				

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EE	0	0	4	2

Course Objective	• To provide the opportunity for self-learning beyond the syllabus content related to the thrust area of Engineering and Technology.
Course Content	 Students can take up small problems in the field of thermal engineering as a Mini Project. It can be related to solutions to a thermal engineering problem, verification and analysis of experimental data, conducting experiments on various thermal engineering domains, material characterization, studying a simulation software tool for analyzing thermal engineering problems.
Contact Perio Lecture: 0 Pe	ods: riods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COUR Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Get an opportunity to work in an actual industrial environment during internship.	K3
CO2	Solve industrial problems related to thermal engineering using software / analytical / computational tools.	К5
CO3	Learn to be creative, well planned and innovative.	К6
CO4	Develop skills to present and defend their work in front of a technically qualified person.	K4
CO5	Learn to draft technical reports and research articles.	КЗ

COURSE ARTICULATION MATRIX							
COs/POs	P01	PO2	P03	PO4	PO5	P06	
C01	2	3		ALUID	1	2	
CO2	3	2	3	1	2	2	
CO3	1	2	1	1	1	2	
CO4	2	2	2	1	2	1	
CO5	2	3	2	1	2	2	
23TEEE01	2	3	2	1	2	2	
1 – Slight, 2 -	- Moderate, 3	- Substantial					

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EE	0	0	*	2

Course	- Each student will been through "hands on" americaness at a gualified place
Obientine	• Each student will learn through nands-on experiences at a qualified place
Objective	of employment (non-profit or governmental agency) about the daily
	expectations of employment within the agency. Students will engage in
	activities which are supervised by an agency employee, and will acquire the
	skills and knowledge base necessary to become successfully employed
	within the agency or a similar occupational or professional environment.
	1. Students must complete a minimum of 2 weeks of actual work-time to
	successfully complete the course
	2 Internship hours and activities must be documented each time in a log
	notebook
	3 Students should note the date time and activities of each agency
	experience.
	4. Students should engage in activities which provide a quality experience and
	should not be treated as glorified copy machines or file clerks.
	5 Students must maintain client confidentiality and act in an ethical and
	professional manner at all times while performing internship activities.
Course	
Content	The following activities must be completed and turned into the instructor of record
	by the last day of regular classes and before final exams begin.
	1. Students must turn in the log book of activities, signed and dated by the
	supervisor, to the instructor of record.
	2. Students must also write a report which discusses what the student gained
	from the internship experience and what problems they encountered
	during the experience.
	3. Students shall obtain completed intern evaluation form from agency
	supervisor and submit it to concerned faculty.
Contact Perio	ods:
Lecture: 0 Pe	eriods Tutorial: 0 Periods Practical: * Periods Total: 0 Periods

 Lecture: 0 Periods
 Tutorial: 0 Periods
 Practical: * Periods
 Total: 0 Periods

 *Internship / Industrial Training Four Weeks
 * Internship / Industrial Training Four Weeks
 * Internship / Industrial Training Four Weeks

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Maintain current knowledge of practical situations encountered in professional practice.	К3
CO2	Provide an entry level, professionally trained personnel resource for a specifically designated period of time.	КЗ
CO3	Learn from a qualified and experienced professional in the field.	K2
CO4	Acquire leadership experience in a professional setting by participating in daily operations and by planning and implementing a major project.	K6
CO5	Apply the concepts of human development and education by maintaining appropriate professional relationships with coworkers, and agencies.	К5

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	PO3	P04	PO5	P06			
C01	1	2	2	1	1	2			
CO2	1	3	3	1	1	2			
CO3	1	2	2	1	1	1			
CO4	2	2	3	1	2	2			
CO5	2	3	2	1	1	3			
23TEEE02	1	3	2	1	1	2			
1 – Slight, 2 -	1 – Slight, 2 – Moderate, 3 – Substantial								

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	EE	0	0	12	6

Course Objective	• To identify a specific problem for the current need of the society and collect information related to the same through detailed review of literature and to develop the methodology to solve the identified problem then publish namer at least in conferences or indexed journals
	1. The project work will start in semester iii and should preferably be a
	problem with research potential and should involve scientific research in thermal engineering, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution.
	2. Seminars should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M.Tech. Students should note the date, time, and activities of each agency experience.
Course Content	 The examination shall consist of the preparation of a report consisting of a detailed problem statement and a literature review.
	4. The preliminary results (if available) of the problem may also be discussed in the report.
	5. The work has to be presented in front of the examiners panel set by the Head and PG coordinator.
	 The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.
Contact Perio Lecture: 0 Pe	ods: riods Tutorial: 0 Periods Practical: 300 Periods Total: 300 Periods

COUR	RSE OUTCOMES:	Bloom's Taxonomy		
Upon	completion of the course, the students will be able to:	Mapped		
C01	Provide innovative ideas for practical engineering problems.	K4		
CO2	Carry out literature surveys from various journals, books and identify the research gaps.	К5		
CO3	Solve complex thermal engineering problems through analytical and experimental studies	K6		
CO4	Develop oral and written communication skills to present and defend their thesis in front of a technically qualified audience.	К3		
CO5	Draft technical reports and research articles.	K3		

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05	P06		
C01	2	2	3	1	3	3		
CO2	2	3	3	2	2	3		
CO3	3	3	3	1	3	2		
CO4	1	1	3	2	1	3		
C05	1	3	2	1	2	3		
23TEEE03	2	3	3	1	3	3		
1 - Slight 2 - Moderate 3 - Substantial								

PREREQUISITE	CATEGORY	L	Т	Р	С			
	EE	0	0	24	12			

Course	 To solve the identified problem based on the formulated Methodology and
Objective	to develop skills to analyze and discuss the test results and make
	conclusions then publish paper at least in conferences or indexed journals.
Course	1. It is a continuation of project work started in semester III.
Content	2. He / She has to submit the report in prescribed format and also present a seminar.
	3. The dissertation should be presented in standard format as provided by the department.
	4. The candidate has to prepare a detailed project report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up or numerical details as the case may be) of solution and results and discussion.
	5. The report must bring out the conclusions of the work and future scope for the study.
	 The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a guide, co-guide atta as desided by the Used and PC examinator.
	etc as decided by the Head and PG coordinator.
	7. The candidate has to be in regular contact with his guide.
Contact Perio	ods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 480 Periods Total: 480 Periods

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Select suitable experimental techniques for given engineering problem.	К3
CO2	Select different software/computational/analytical tools for given problem statement.	К5
CO3	Work in different analytical equipment to obtain required output.	K4
CO4	Work in a research environment and industrial environment.	КЗ
C05	Excel in technical report writing and present their work to the engineering community.	К3

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	PO3	P04	P05	P06			
C01	3	3	3	2	3	2			
CO2	3	2	3	2	3	3			
CO3	2	1	2	1	2	3			
CO4	2	2	3	1	2	2			
CO5	2	2	3	2	1	2			
23TEEE04	3	3	3	2	3	3			
1 – Slight, 2 – Moderate, 3 – Substantial									
PREREQUISITES CATEGORY						С			
--------------------------------	---	--------------------	--------------	-------	------	------			
	ENGINEERING THERMODYNAMICS PE								
Course	To make the students learn advanced concepts like	e maximum ene	rgy a	nd					
Objective	minimum energy, combustion principles, energy a	t micro level, co	nver	sion	of				
	heat energy into electrical flux of thermodynamic s	systems.							
UNIT – I	BASIC CONCEPTS OF THERMODYNAMICS		9 Pe	erio	ds				
Entropy ,Wor	k and Quantity of Heat: First Law of Thermodynamics ,Ter	Pres, nperature	sure	, Th	e F	ree			
Energy and t	he Thermodynamic Potentials , Enthalpy, Nernst's Theorer	n, Carnot's Cycl	e an	d Ca	rno	oťs			
Theorem, Le	Chatelier Principle, Dependence of the Thermodynamic	Quantities on t	he N	lum	ber	of			
Particles, Idea	al Gases ,Ideal Gases with Constant Specific Heat: Equation o	f Poisson Adiab	atic.						
UNIT – II	IDEAL, REAL GASES AND VAPOUR MIXTURES		9 Pe	erio	ds				
Introduction,	The Equation of State for a Perfect Gas, p-V-T Surface of an	Ideal Gas,Inter	nal E	nerg	gy a	ind			
Enthalpy of a	Perfect Gas, Specific Heat Capacities of an Ideal Gas, Real G	Vander W, ases	'aal's	Eqι	iati	on,			
Virial Equation	on of State, Beattie-Bridgeman Equation, Reduced Prope	erties, Law of	Corr	espo	ond	ing			
States, Comp	ressibility Chart, Dalton's Law and Gibbs-Dalton Law, Volume	etric Analysis of	a Ga	is M	ixtı	ıre,			
The Apparent	t Molecular Weight and Gas Constant ,Specific Heats of a Ga	s Mixture, Adia	batio	: Miz	king	g of			
Perfect Gases	,Gas and Vapour Mixtures								
UNIT – III	FUNDAMENTALS OF COMBUSTION		9 Pe	erio	ds				
Thermodynai	mics, concepts of combustion – Combustion equations, he	at of combusti	on T	'heo	reti	cal			
flame temper	ature, chemical equilibrium and dissociation, Combustion c	ycles. Stoichion	netry	, Th	eor	ies			
of Combustio	n, Pre-flame reactions, Reaction rates, Rankine-Hugoniot r	elations – deto	natio	n b	ran	ch-			
Analysis of th	e deflagration - Chapman- Jouguet waves, Laminar and Turk	oulent Flame pr	opag	atio	n.				
UNIT – IV	FLAME PHENOMENA IN PREMIXED COMBUSTIBLE GAS	ES	9 Pe	erio	ds				
Introduction	, Laminar flame structure, The laminar flame speed , Stab	oility limits of l	amir	ar f	lam	ies,			
Flame propag	gation through stratified combustible mixtures, Turbulent	reacting flows	and	tur	bul	ent			
flames, The t	urbulent flame speed, Stirred reactor theory ,Flame stabiliz	ation in high-ve	locit	y sti	real	ms,			
Combustion i	n small volumes .								
UNIT – V	DETONATION AND ENVIRONMENTAL COMBUSTION		9 P <i>i</i>	rio	ds				
	CONSIDERATIONS		, , ,		40				
Introduction,	Detonation phenomena, Hugoniot relations and the hydrod	ynamic theory	of de	ton	atio	ons,			
Comparison	of detonation velocity calculations with experimental re-	esults, The ZNI	D st	ructi	ure	of			
detonation w	vaves, The structure of the cellular detonation front and	other detonation	on p	heno	ome	ena			
parameters,	The nature of photochemical smog, Formation and redu	iction of nitrog	gen (oxid	es,S	50x			
emissions.									
Contact Peri	ods:								
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Per	iods						

TEXT BOOK:

1 *R.K Rajput, "Engineering Thermodynamics", Laxmi Publications Ltd,* 6th edition,2016.

2 Irvin Glassman, Richard A. Yetter, "Combustion", Elsevier Inc., 5th edition,2014.

REFERENCES:

1 R. M. Helsdon, "Introduction to Applied Thermodynamics", Elsevier Science, 2013.

- 2 Kenneth Wark Jr., "Advanced Thermodynamics for Engineers", McGraw-Hill Inc. New York, 1995.
- 3 Michael Liberman, "Introduction to Physics and Chemistry of Combustion", Springer-Verlag Berlin Heidelberg, 2008.
- 4 Fawzy El-Mahallawy, Saad El-Din Habik, **"Fundamentals and technology of Combustion"**, Elsevier Science Ltd, 2002.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the conceptsin thermodynamics and its relevant properties.	K3
CO2	Discuss the properties of various types of gases and vapour mixtures.	K4
CO3	Concept in combustion and its principles.	K5
C04	Understand the concepts of flame phenomena during the combustion process.	K4
C05	Gain knowledge on environmental considerations of combustion.	K5

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	P06			
C01	3	2	2	2	1	1			
CO2	3	3	_2	2	1	1			
CO3	2	3	3	2	1	1			
CO4	3	2	2	2	1	1			
C05	2	3	3	2	1	2			
23TEPE01	3	3 &	2	2	1	1			
1 – Slight, 2 – M	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %					
CAT1	-	30	35	35	-	-	100					
CAT2	10	25	25	20	20	-	100					
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 135	-	30	35	35	-	-	100					
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	25	25	20	20	-	100					
ESE	10	20	25	25	20	-	100					

ARTIFICIAL INTELLIGENCE IN THERMAL SYSTEMS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	• To present a research oriented in depth knowledge of artificial	intelligence and			
Objective	to address the underlying concepts, methods and applicat	ion of artificial			
	intelligence.				
UNIT – I	INTRODUCTION	9 Periods			
Core of AI - G	oals of AI - Fields of application - Global economic effects of artificial intel	ligence.			
UNIT – II	BASICS AND DRIVERS OF ARTIFICIAL INTELLIGENCE	9 Periods			
Moore's law a	and the effects of exponential- digitalization and dematerialization of pr	oducts, services			
and processe technologies.	es-connecting products, services, processes, animals and people-	Big data- new			
UNIT – III	ARTIFICIAL INTELLIGENCE IN HEAT TRANSFER ANALYSIS	9 Periods			
Application o	f New Artificial- Neural Network to Predict -Heat Transfer and Thermal	Performance of			
heat exchangers.					
UNIT – IV	ARTIFICIAL INTELLIGENCE IN COMBUSTION STUDIES	9 Periods			
Artificial-inte	lligence- based prediction and control of combustion instabilities in	spark-ignition			
engines and c	ombustion - ignition engines.				
UNIT – V	ARTIFICIAL INTELLIGENCE IN THERMAL FLOW SIMULATION	9 Periods			
AI application	ns in thermal engineering - Artificial intelligence-based computational	fluid dynamics			
approaches.					
Contact Peri	ods:				
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					
TEXT BOOK:					

Modeling, Control, Optimization, Forecasting and Fault Diagnosis", Elsevier Science, 23 June 2022.
 Ralf Herbrich, "Learning Kernel classifiers theory and algorithm", MIT Press, Cambridge, London, England, 2022.

1	Ralf T. Kreutzer, Marie Sirrenberg, "Understanding Artificial Intelligence Fundamentals, Use
	Cases and Methods for a Corporate AI Journey", Berlin, Germany Bad Wilsnack, Germany August
	2019.

- 2 Amit Konar, "Artificial Intelligence and Soft Computing Behavioral and Cognitive Modeling of the Human Brain", CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, 8 October 2018.
- 3 Siddhartha Bhattacharyya, Vaclav Snasel, **"Hybrid Computational Intelligence challenges and** applications A volume in hybrid computational intelligence for pattern analysis and understanding", Springer, 2020. https://doi.org/10.1016/B978-0-12-818699-2.00009-3
- 4 Bryan Maldonado, Brian Kaul, "Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines", Chapter 8, Springer, 2022. https://doi.org/10.1016/B978-0-323-88457-0.00006-0

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	марреа
CO1	Obtain the fundamental knowledge of AI basics.	K2
CO2	Gain the knowledge on machine learning techniques	К3
CO3	Understand the role of Artificial Intelligence in numerical studies.	K5
C04	Gain knowledge for combustion studies by using Artificial Intelligence	К3
C05	Analyse the thermal flow simulations using Artificial Intelligence	K5

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	PO3	P04	P05	P06			
C01	2	2	3	2	3	2			
CO2	3	2 &	3	3	3	3			
CO3	3	3	3	3	3	3			
CO4	2	2	2	č 1	2	2			
CO5	3	3	3	3	2	2			
23TEPE02	3	2	1 and 3 20	3	3	2			
1 – Slight 2 – M	1 - Slight 2 - Moderate 3 - Substantial								

Assessment	Assessment pattern – theory									
Test /	Remembering	Understandin	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(k1) %	g (k2) %	(k3) %	(k4) %	(k5) %	(k6) %	%			
Category*										
CAT1	30	35	35	-	-	-	100			
CAT2	10	30	30	-	30	-	100			
Individual	30	35	35	-	-	-	100			
Assessmen										
t 1 / Case										
Study 1 /										
Seminar 1										
/ Project 1										
Individual	10	30	30	-	30	-	100			
Assessmen										
t 2 / Case										
Study 2 /										
Seminar 2										
/ Project 2										
ESE	15	25	20	20	20	-	100			

ADVANCED GAS TURBINES

(Use of approved tables and charts are permitted)

T	
L	

PREREQUISITES	CATEGORY	L	Т	Р	С
THERMAL ENGINEERING	PE	3	0	0	3

Course Objective	 To make the students learn aircraft applications of power p turbo machines like compressors, axial and radial flow combustors. 	blant cycles and turbines and						
UNIT – I	INTRODUCTION	9 Periods						
Power plant cy applications, Man turbo-propeller, I	Power plant cycles for stationery and aircraft applications, component behaviors, Industrial applications, Marine and land transportation, Environmental issues, analysis of ramjet, turbojet and turbo-propeller, Inlets and nozzles.							
UNIT – II	COMPRESSORS	9 Periods						
Principle and operative rotors, velocity d characteristics.	Principle and operations of Centrifugal and axial flow compressors momentum and energy transfer in rotors, velocity diagrams, calculation of stage performance, compressibility effects, cascade testing and characteristics.							
UNIT – III	AXIAL AND RADIAL FLOW TURBINE	9 Periods						
Elementary theo Chord Stage vel materials, testing	ry of axial and radial flow turbine, Vortex theorem, choice of blade procity diagrams, reaction stages, losses and coefficients, blade des and performance characteristics.	ofile, Pitch and sign principles,						
UNIT – IV	COMBUSTORS	9 Periods						
Different types a reduction.	and flow patterns, material requirements and cooling systems, air	r pollution and						
UNIT – V	MATCHING	9 Periods						
Matching procedure of power plant components, engine off-design performance,Off-design performance of single shaft gas turbine, free turbine engine and jet engine, Methods of displacing the equilibrium running line, Design of Nozzles, afterburners, anti-icing mechanisms.								
Contact Periods Lecture: 45 Peri	: ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ds						

TEXT BOOK:

1 Dixon S.L., **"Fluid Mechanics and Thermodynamics of Turbomachinery"**, Pergamon Press, 7th edition 2013.

2 Ganesan V., "Gas Turbines", Tata McGraw Hill, 3rdEdition, 2017.

REFERENCES:

1	Yahya S.M., "Turbines, Compressors and Fans", Tata mcgraw-Hill, 4th edition, 2017.
2	Sarvanamuttoo, H.I.H., Rogers, G. F. C. and Cohen, "Gas Turbine Theory" , H., Pearson Prentice Hall, 7 th Edition, 2019.
3	Kerrebrock J.L., "Aircraft engines and gas turbines", The MIT Press, 2 nd edition, 1992.
4	Gurrappa Injeti, " Gas Turbines" , IntechOpen, ISBN-978-953-51-1743-8, February 25 th 2015.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Identify, formulate and solve problems related to gas turbines and jet propulsion.	К5
CO2	Analyze the operational aspects and control, including the system interaction of compressors	К5
CO3	Discuss the various laws pertaining to different fluid flow applications	K2
CO4	Learn the components of a combustor and its performance.	K2
C05	Knowledge on matching the components.	K5

COURSE ARTICULATION MATRIX

CO CHOL MILLICOLLINIC									
COs/POs	P01	PO2	P03	P04	P05	P06			
C01	3	3	2	2	3	2			
CO2	3	3	2	2	2	1			
CO3	3	3	27	3	2	1			
CO4	2	2	1	2	3	2			
CO5	3	3	3	3	3	3			
23TEPE03	3	3	2	2	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

W

Vb

Assessment pa	ssessment pattern – theory						
Test / Bloom's	Remembering (k1) %	Understandin g (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %
	15	25	20	20	20		100
CAT2	10	90	-	-	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	15	25	20	20	20	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	90	-	-	-	-	100
ESE	10	30	20	20	20	-	100

23	TEP	E04

PREREQUISI	CATEGORY	L	Т	Р	С	
	3	0	0	3		
					1	
Course	• To make the students learn the heat transfer p	processes and o	desig	gn o	f he	eat
Objective	transfer equipment.					
UNIT – I	INTRODUCTION			9 Pe	erio	ds
Principles of	heat transfer, Types of heat exchangers, Standard Repr	esentation, Par	ts d	escr	iptio	on,
TEMA classifi	cations, Applications.					
UNIT – II	CONDENSERS			9 Pe	erio	ds
Estimation of	heat transfer coefficient, Fouling factor, Friction factor- De	sign procedures	s, Wi	lson	plo	ots,
Design differ	ent types of condensers, BIS Standards.					
UNIT – III	EVAPORATORS			9 Pe	erio	ds
Different type Stress calcula	es of evaporators, Design procedure, Factors affecting the tions, matching of components, Design of evaporative conde	evaporator cap ensers.	acity	7, Tł	iern	nal
UNIT – IV	COOLING TOWERS			9 Pe	erio	ds
Types of Cool	ing towers, Analytical and graphical design procedures, Tow	ver Characterist	tics F	Para	met	ric
analysis, Rang	ge of cooling tower, Tower efficiency, cooling tower load, En	ergy conservati	on.			
UNIT – V	SELECTION OF CONDENSERS, EVAPORATORS AN TOWER	D COOLING		9 Po	erio	ds
Condenser se	lection – Water cooled – Air cooled, Selection of evaporate	rs, Selection of	cool	ing	tow	er,
Selection of P	umps and Fans.					
Contact Peri	ods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
TEXT BOOK:	Pa Panat Sundan Pai M Manalik "Diata Haat Evahamaarra	losian Annlisa	Hor			

- 1
 Lieke Wang, Bengt Sunden, Raj M. Manglik, "Plate Heat Exchangers: Design, Applications and Performance", WIT Press, 2013.

 2
 Kitcher Design, Applications (Kitcher Design, Applications)
- 2 Krishna P. Singh, Alan I. Soler, "Mechanical Design of Heat Exchangers And Pressure Vessel Components", Springer Berlin Heidelberg, 4 December 2014.

	1	Manfred Nitsche, Raji Gbadamosi., "Design of Heat exchangers, condensers and evaporators",
		2015.
	2	Kern K.H., "Process heat transfer" , McGraw-Hill, 2 nd edition, 2017.
	3	Wilfried Roetzel, Xing Luo, Dezhen Chen, "Design and Operation of Heat Exchangers and Their
		Networks", Elsevier Science, 4 October 2019.
I	4	S Chand, R S Khurmi, J K Gupta, "Modern Refrigeration and Air Conditioning", published, 2019.

COUR	RSE OUTCOMES:	Bloom's
		Taxonom
Upon	completion of the course, the students will be able to:	y Mapped
C01	Utilize the principles of heat transfer for industrial applications.	K2
CO2	Design the condenser, evaporators and cooling towers.	K2
CO3	Understand the concepts of evaporators.	K3
CO4	Gain the knowledge of cooling towers, Analytical and graphical design procedures	КЗ
CO5	Select the suitable heat transfer equipment	КЗ

COs/POs	P01	P02	PO3	P04	P05	P06		
C01	2	2	2	2	2	2		
CO2	2	2	1	1	3	2		
CO3	2	2	2	1	2	2		
CO4	3	3	2	1	2	2		
CO5	2	2	1	2	1	2		
23TEPE04	2	2	2	1	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial								
	·	A	P					

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %			
CAT1	50	50	~ ~ //	-	-	-	100			
CAT2	25	35	40	-	-	-	100			
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	50	50		-	-	-	100			
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	25	0.35 0 44.05 5 0 44.05	40,000	-	-	-	100			
ESE	25	25	50	-	-	-	100			

PREREQUISITES CATEGORY L						С
	NIL	PE	3	0	0	3
Course	• To learn different techniques involved in thermal of	luantity measur	eme	nt a	nd t	he
Objective	Objective concept of microprocessors in measurement, different kind of errors involved					
	and the transducers for different types of thermo-physical quantities					
UNIT – I	MEASUREMENT CHARACTERISTICS			9 Pe	erio	ds
Instrument C	lassification, Characteristics of Instruments - Static and	dynamic, exper	ime	ntal	err	or
analysis, Syst	ematic and random errors, Statistical analysis, Uncertaint	y, Experimental	pla	nnir	ng a	nd
selection of m	easuring instruments, Reliability of instruments.					
UNIT – II	MICROPROCESSORS AND COMPUTERS IN MEASUREME	NT		9 Pe	erio	ds
Basic Electri	cal measurements, Transducers and its types, Signal c	onditioning an	d p	roce	essir	ng-
Measurement	of temperature, pressure, velocity, flow – basic and advan	ced techniques,	and	l rad	liati	on
properties of	surfaces.					
UNIT – III	MEASUREMENT OF PHYSICAL QUANTITIES			9 Pe	erio	ds
Thermo, Phys	sical, Chemical and transport properties of solids, liquids	and gaseous fue	els, A	Anal	yses	s –
Flame Ioniza	tion Detector, Non-Dispersive Infrared Analyses, Chemilu	iminescence de	tect	or, S	Smo	oke
meters, and G	as chromatography.					
UNIT – IV	CONTROL SYSTEM, COMPONENTS AND CONTROLLERS			9 Pe	erio	ds
Introduction,	Open and closed loop control systems, Transfer function. T	ypes of feedbacl	c and	l fee	edba	ıck
control system	n characteristics – Control system parameters – DC and AC	servomotors, se	ervo	am	plifi	er,
potentiomete	r, synchronic transmitters, synchronic receivers, synchroni	c control transfo	orme	er, st	tepp	ber
motors - Cont	inuous, Discontinuous and Composite control modes – Anal	og and Digital c	ontr	ollei	ſS.	
UNIT – V DESIGN OF MEASUREMENT AND CONTROL SYSTEMS 9 Periods						ds
Data logging	and acquisition - Sensors for error reduction, elements of	computer inter	facin	ig, T	ime	ers,
and Counters	, Designing of measurement and control systems for specifi	c applications -	Faul	t fin	ding	g –
Computer bas	sed controls					
Contact Periods:						
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Per	iods			

TEXT BOOK:

1	Holman, J.P., "Experimental methods for engineers" , McGraw-Hill, 8th edition 2011.
2	Rangan, C.S., Sharma, G.R., Mani, V.S.V, "Instrumentation Devices and Systems", Tata McGraw Hill,

2nd edition, New Delhi, 2017.

1	Alan S. Morris, Reza Langari, "Measurement and Instrumentation", Elsevier Science, 2015
2	Barney, "Intelligent Instrumentation", Prentice Hall of India, 2012.
3	Preobrazhensky, V., "Measurements and Instrumentation in Heat Engineering", Vol.1 and 2, MIR
	Publishers, 2013.
4	Doeblin, "Measurement System Application and Design", McGraw Hill, 2012.
5	Morris.A.S, "Principles of Measurements and Instrumentation", Prentice Hall of India, 2006.

COUF	RSE OUTCOMES:	Bloom's
		Taxonom
Upon	completion of the course, the students will be able to:	y Mapped
C01	Gain the knowledge on various measuring instruments and advance measurement	K2
	techniques.	
CO2	Evaluate the various steps involved in error analysis and uncertainty analysis.	K5
CO3	Analyze the various thermal and flow systems and their behaviour.	K5
CO4	Distinguish between measurement and control systems, and use appropriate control System for an application.	К2
C05	Construct a complete control system for a thermal application.	K2

				-		-
COs/POs	P01	P02	P03	P04	P05	P06
C01	2	2	2	1	1	2
CO2	2	2	2	1	2	2
CO3	2	2	2	2	2	2
CO4	2	2	2	1	2	2
C05	1	101	10 m 2	1	2	1
23TEPE05	2	2	2	1	2	2
1 – Slight, 2 – M	loderate, 3 – Sul	bstantial				
				1		

ASSESSMENT	PATTERN - THEO	RY					
Test / Bloom's	Remembering (k1) %	Understandin g (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %
Category*				. 11			
CAT1	10	30	30	3 -	30	-	100
CAT2	10	20	20	20	30	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	10	30 00 31	30		30	_	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	20	20	20	30	-	100
ESE	10	20	30	30	10	-	100

ENGINE ELECTRONICS

PREREQUISI	TES	CATEGORY	L	Т	Р	C
	APPLIED ELECTRONICS	PE	3	0	0	3
						·
Course	To make the students learn concepts of Automotiv	e Electronics an	d its	evo	olut	ion
Objective	and trends of sensor monitoring mechanisms t	o design and i	nod	el v	ari	ous
	automotive ignition and injection systems control	for different veh	icles	5.		
UNIT – I	SENSORS			9 Pe	erio	ods
Types – Air f	ow, Pressure, Temperature, Speed Oxygen, Detonation, Po	sition –Principle	e of	Ope	rati	on,
Arrangement	and material.					
UNIT – II	UNIT - II GASOLINE INJECTION SYSTEM					
Open loop an	d closed loop systems, Mono point, Multi point and direct	injection system	ns –	Prir	ıcip	oles
and Features,	Bosch injection systems.					
UNIT – III	DIESEL INJECTION SYSTEM			9 Pe	eri	ods
Inline injection	on pump, Rotary pump and injector – Construction and pr	inciple of opera	tion	, Co	mn	ıon
rail and unit i	njector system – Construction and principle of operation.					
UNIT – IV	IGNITION SYSTEMS			9 Pe	erio	ods
Ignition fund	lamentals, Types of solid -state ignition systems, high	energy ignition	ı di	strił	oute	ors,
Electronic spa	ark timing and control.					
UNIT – V	ENGINE MAPPING			9 Pe	erio	ods
Combined igr	nition and fuel management systems. Digital control technic	jues – Dwell ang	gle c	alcu	lati	on,
Ignition timin	g calculation and Injection duration calculation, Hybrid veh	icles and fuel ce	lls.			
Contact Peri	ods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
TEXT BOOK:	94100 to 00 00 100					
1 Tom Dento	on "Automotive Electrical and Electronic Systems" Edward A	nold 5 th edition 2	017			
2 Robert N.B	 2 Robert N Brady "Automotive Computers and Diaital Instrumentation" Proprise Hall 2011 					
	(ad), indemotive compacts and Digital most americation ;	1 / on of contract, 201				
REFERENCES	5:					
1 Ali Emadi,	"Handbook of Automotive Power Electronics and Motor D	rives", CRC Pres	s, 19	Dee	сет	ber
2017.						
2 Konrad Re	if, "Fundamentals of Automotive and Engine Technology St	andard Drives,	Hyb	rid I	Dri	ves,
Brakes, Sc	fety Systems", Springer Fachmedien Wiesbaden, 16 June 2014.					
3 Akhilendra	Pratap Singh, Avinash Kumar Agarwal, "Novel Internal Comb	istion Engine Te	chn	olog	ies	for

- Performance Improvement and Emission Reduction", Springer Nature Singapore, 14 June 2021.
- 4 Heinz Heisler., "Advanced Engine Technology", SAE Publications, 2011.
- 5 Ronald K. Jurgan, "Electronic Engine Control", Edward Amold, 2017.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Obtain an overview on the types of sensors.	K2
CO2	Understand the various injection systems and its principal of operation.	K2
CO3	Develop the knowledge on ignition and fuel management systems.	K4
CO4	Gain the knowledge of Ignition fundamentals, types of solid, electronic sparking	K3
	timing and control.	
CO5	Utilize the dwell angle calculation, Ignition timing calculation for engine	K5
	mapping in hybrid vehicles and fuel cells.	

COs/POs	P01	P02	P03	P04	P05	P06
C01	2	2	2	2	1	2
CO2	2	2	1	1	2	2
CO3	2	2	2	1	2	1
CO4	1	1	2	1	1	1
C05	2	2	1	2	2	1
23TEPE06	2	2	2	1	2	2
1 – Slight, 2 – M	1 – Slight, 2 – Moderate, 3 – Substantial					

Total % 100 100 100

100

100

		9410	Mar 20	<i>y</i>		
ASSESSMENT PA	TTERN – THEORY			_		
Test / Bloom's	Remembering	Understandin	Applying	Analyzing	Evaluating	Creating
Category*	(k1) %	g (k2) %	(k3) %	(k4) %	(k5) %	(k6) %
CAT1	10	30	30	-	30	-
CAT2	10	20	20	20	30	-
Individual	10	30	30	-	30	-
Assessment 1 /		A V		2		
Case Study 1 /				de la		
Seminar 1 /				10		
Project 1		Querion Co	ALUA OLUA			
Individual	10	20	2020	20	30	-
Assessment 2 /						
Case Study 2 /						
Seminar 2 /						
Project 2						
ESE	10	20	30	30	10	-

PREREQUISITES CATEGORY I						C
	HEAT AND MASS TRANSFER	PE	3	0	0	3
• To make the students learn different discretization methods for solving heat						
Objective	transfer and fluid flow problems.					
UNIT – I	INTRODUCTION		5	Per	iod	S
Overview of r	numerical methods - Discretized representation of physical	systems - therm	al re	esist	anc	e –
Governing eq	uations and Boundary conditions for thermal and flow syste	ems.				
UNIT – II	ONE DIMENSIONAL HEAT CONDUCTION		6	Peri	iod	s
Principles of	variations calculus - applications of variational approa	ich to one din	nensi	ona	l h	eat
conduction –	element matrix contribution and assembly.					
UNIT – III	HEAT FUNCTIONS AND ANALYSIS		10	Per	riod	ls
Weighted res	idual methods - Galerkin's approach - Shape functions. App	lication of Galer	kin's	s we	ight	ted
residual appr	oach to one dimensional heat conduction - Three noded tr	iangular elemer	nts- 1	L-D :	stea	ıdy
state conduct	ion using triangular elements - Radiation and natural conv	vective boundar	у со	ndit	ion	s –
incorporation	n of variations in thermal properties.					
UNIT – IV	CONVECTIVE HEAT TRANSFER		12	Per	riod	ls
Higher order	elements and numerical integration solution of heat condu	ction and creep	ing	flow	us	ing
higher order	element - Solution of convective heat transfer.					
UNIT – V	HEAT EXCHANGER APPLICATIONS		12	Per	riod	ls
Incompressib	Incompressible laminar flow simulation - Stream function and Vorticity methods, Velocity Pressure					ıre
formulation, mixed order interpolation for incompressible flow modifications for turbulent flow.						
Application to heat exchanger.						
Contact Periods:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
	Contra and Co					

TEXT BOOK:

1	S.S.Rao, "The Finite Element Method in Engineering" , Pergamon Press, 5 th edition, 2013.
2	Larry Segerlind "Applied Finite Element Analysis" , John Wiley & Sons, 2 nd edition, 2005.

1	C.S.Krishnamoorthy, "Finite Element Analysis Theory and Programming", Tata McGraw-Hill, 2 nd
	edition, 2011.
2	J.N.Reddy, "An Introduction to Finite Elements Methods", McGraw-Hill, 2020.
3	O.C.Zienkiewiez, "Finite Element Methods", McGraw-Hill, 2003.
4	T.R.Chandrapatla and Belegundu, "Introduction to Finite Elements in Engineering", Prentice Hall
	of India, 2002.

COUR	RSE OUTCOMES:	Bloom's
		Taxonom
Upon	completion of the course, the students will be able to:	y Mapped
C01	Understand the basic numerical methods and governing equations of heat transfer	КЗ
	and fluid flow conditions.	
CO2	Evaluate temperature distribution in one and two-dimensional conduction and	K5
	convection problems numerically.	
CO3	Analyze the various flow problems to evaluate the performance of heat	K5
	exchangers.	
CO4	Apply higher order elements and numerical integration solutions of heat	K5
	conduction and convective heat transfer.	
CO5	Analyze the laminar and turbulent flow problems to evaluate the performance of	K5
	heat exchangers	

COs/POs	P01	P02	PO3	P04	P05	P06
C01	1	1	2	2	2	2
CO2	2	2	1	1	2	2
CO3	2	2	2	1	2	2
CO4	2	2	2	1	2	2
C05	3	3	3	2	1	1
23TEPE07	2	1	2	1	2	2
1 – Slight, 2 – M	loderate, 3 – Su	ostantial		7		
			× //			

1 = Slight, 2	- model ate, $5 - 5$	ubstalltial					
ASSESSMENT	PATTERN - THEO	RY					
Test / Bloom's Category*	Remembering (k1) %	Understandin g (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %
CAT1	10	30	30	- A	30	-	100
CAT2	-	25	25	30	20	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	10	30	30	-	30	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	-	25	25	30	20	-	100
ESE	10	25	25	20	20	-	100

PREREQUISI	PREREQUISITES CATEGORY L 7							
GAS DYNAMI	GAS DYNAMICS AND JET PROPULSION PE 3 (3		
Course	• To make the students learn the compressible flow through different systems							
Objective	and propulsion systems for jet and space ve	hicles.						
UNIT – I	BASIC CONCEPTS AND ISENTROPIC FLOWS				9 Pei	riods		
Energy and n	nomentum equations of compressible fluid flows -	isentropic flow	- M	ach	waves	s and		
Mach cone. I	Flow regimes, effect of Mach number on compre-	ssibility. Stagna	tion,	stat	tic, cr	itical		
properties an	d their interrelationship. Isentropic flow through	variable area d	lucts	– n	ozzles	and		
diffusers. Use	of Gas tables.							
UNIT – II	FLOW THROUGH DUCTS				9 Pei	riods		
The Shock Tu	be: Propagating Expansion Fan - Flows through cor	istant area duct	s wit	h he	at tra	nsfer		
and Friction	- variation of flow properties Use of tables and ch	arts - Unsteady	Sho	ck V	Vaves	: The		
Shock Tube -	Applications, Method of Characteristics: Flow throug	h a diverging ch	anne	el.				
UNIT - IIINORMAL AND OBLIQUE SHOCKS9 Periods								
Governing eq	uations - Rankine-Hugoniot Relation. Variation of f	low parameters	s acr	oss t	he no	ormal		
and oblique s	hocks- Supersonic Flow over a Wavy wall - Finite W	ave Theory: An	intr	oduc	tion t	o the		
Method of Ch	aracteristics. Prandtl – Meyer expansion and relatio	n. Supersonic F	low j	past	a HD	Cone		
at an angle of	attack - Bluff Body at an angle of attack - Flow Visual	ization-Use of ta	able a	and o	harts			
UNIT – IV	JET PROPULSION				9 Per	riods		
Theory of jet	propulsion – thrust equation – thrust power and pr	opulsive efficien	icy. C)pera	ation,	cycle		
analysis and p	performance of ramjet, turbojet, turbofan and turbop	rop engines.						
UNIT – V	UNIT - V SPACE PROPULSION 8 9 Periods							
Types of roc	Types of rocket engines and propellants. Characteristic velocity, Theory of single and multistage							
rocket propulsion, Liquid fuel feeding systems, Solid propellant geometries. Space flights – orbital								
and escape ve	and escape velocity, Rocket performance calculations – nuclear and electrical rocket propulsion.							
Contact Perio	ods:							
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Perio	ods Total: 45 l	Perio	ods				

TEXT BOOK:

1	S.M. Yahya, "Fundamentals of Compressible Flow with Aircraft and Rocket propulsion", New Age
	International (P) Limited, 6 th edition, 2018.
2	Radhakrishnan, E., "Gas Dynamics", Prentice Hall of India, 7th edition, 2020.

- 1 *H. Saravanamutto HIH, Cohen H., Rogers CEC&Straznicky PV, "Gas Turbine Theory"*, *Printice Hall,* 7th edition, 2019.
- 2 L. Anderson, J.D., "Modern Compressible Flow", McGraw Hill, 3rdedition, 2017.
- 3 Sutton, G.P., **"Rocket Propulsion Elements"**, John wiley, New York,9th edition, 2017.
- 4 Shapiro, **"Dynamics and Thermodynamics of Compressible Fluid Flow"**, Prentice hall of India, 7th edition, 2014.

COU	Bloom's					
Upon	Upon completion of the course, the students will be able to:					
		Mapped				
C01	Understand the basic concepts of various flows.	K2				
CO2	Analyze the application using ducts.	K5				
CO3	Basic theorems derive to normal and oblique shocks.	K2				
C04	Know the concepts of various jet engines.	K5				
CO5	Design and application of rocket science and engineering.	K3				

COURSE ARTICULAT	ION MATRIX					
COs/POs	P01	P02	P03	P04	P05	P06
C01	2	2	1	1	1	2
CO2	2	2	1	1	1	2
CO3	2	2	2	1	2	2
CO4	2	2	2	1	2	2
CO5	2	2	2	1	2	2
23TEPE08	2	2	2	1	2	2
1 – Slight 2 – Moderat	te 3 – Substar	ntial		-	•	

ASSESSMENT PATTERN – THEORY Understanding Test / Creating Remembering Applying Analyzing Evaluating Total Bloom's (k1) % (k2) % (k3) % (k4) % (k5) % (k6) % % Category* 35 15 50 100 CAT1 ---25 CAT2 10 25 20 20 100 -100 Individual 15 35 50 _ -_ Assessment 1 / Case Study 1 / Seminar 1 / Project 1 10 25 20 20 100 Individual 25 _ Assessment 2 / Case Study 2 / Seminar 2 / Project 2 ESE 10 25 25 30 10 100 _

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

• To make the students learn various power generation units, steam generators,					
Objective heat balance and safety standards of various steam generating ur	nits.				
UNIT – I INTRODUCTION	9 Periods				
Parameter of a steam Generator - Thermal calculations of Modern steam Generato	or – Tube Metal				
Temperature Calculation and choice of Materials – Steam purity Calculations and Water	r treatment.				
UNIT – II STEAM SYSTEM AND HEAT BALANCE	9 Periods				
Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate	and flash steam				
recovery system- Heat transfer in Furnace – Furnace Heat Balance –Calculation of He	ating Surfaces –				
Features of Firing systems for solid – Liquid and Gaseous Fuels – Design of Burners.					
UNIT - III BOILER DESIGN 9 Period					
Design of Boiler Drum - Steam Generator Configurations for Industrial Power and Re	ecovery Boiler –				
Pressure Loss and Circulation in Boilers.					
UNIT – IV DESIGN OF ACCESSORIES	9 Periods				
Design of Air Preheaters – Economizer and Superheater for high pressure Steam Gene	erators – Design				
Features of Fuel Firing Systems and Ash Removing Systems.					
UNIT – V BOILER CODE	9 Periods				
IBR and International Regulations - ISI Code's Testing and Inspection of Steam Ger	nerator – Safety				
Methods in Boilers - Factor of safety in the Design of Boiler Drum and Pressure parts-Safety of Fuel					
Storage and Handling – Safety Methods of Automatic Operation of Steam Boilers.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods				
and the second s					

TEXT BOOK:

1	P.K. Nag, "Power Plant Engineering" , McGraw Hill Education, 4 th edition 2017.
---	---

2 Domkundwar, **"A Course in Power Plant Engineering**", Dhanapat Rai & Co, 2016.

1	Kumar Rayaprolu, "Boilers" , A Practical Reference, CRC Press, 2012.
	Kayla Westra, Larry Drbal, Lawrence F. Drbal, Pat Boston, "Power Plant Engineering", Springer
	US,2012.
3	Kumar Rayaprolu , "Boilers for Power and Process", CRC Press, 2009.
4	Richard Dolezal, "Large Boiler Furnaces" Elsevier Company, 2008.

COUF	COURSE OUTCOMES:			
		Taxonomy		
Upon	completion of the course, the students will be able to:	Mapped		
C01	Learn the parameters and calculations of steam generators.	K5		
CO2	Understand the steam systems and heat balance in steam generators.	K2		
CO3	Gain the knowledge in various designs of boilers.	K4		
CO4	Design the accessories of a steam generator.	K4		
CO5	Understand the codes and standards.	K5		

COs/POs	P01	P02	P03	P04	P05	P06	
C01	3	2	2	2	2	2	
CO2	3	2	2	2	2	2	
CO3	2	2	2	1	3	2	
CO4	2	2	2	1	3	2	
CO5	2	2	3	1	2	2	
23TEPE09	2	2	2	1	2	2	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (k1) %	Understandin g (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluating (k5) %	Creating (k6) %	Total %
CAT1	15	20	<u> </u>	35	30	-	100
CAT2	-	35	35	30	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	15	20		35	30	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	-	35	35	30	-	-	100
ESE	10	35	30	15	10	-	100

SUPERCHARGING AND SCAVENGING

Ι

PREREQUISITES CATEGORY				Τ	Р	C
	NIL	PE	3	0	0	3
Course	• To make the students to learn effects of superch	narging and sca	ven	ging	in	I.C
Objective	engines and design of exhaust systems					
UNIT – I	SUPERCHARGING		8	Per	ioc	ds
Objectives -	Effects on engine performance – engine modification re	quired - Therm	iody	nan	nics	of
Mechanical su	percharging and Turbocharging - Turbo charging method	ls - Engine exha	aust	mai	nifo	lds
arrangements	5.					
UNIT – II	COMPRESSORS		1) Pe	rio	ds
Types of con	npressors - Positive displacement blowers - Centrifugal	compressors -	Pe	rfor	mai	nce
characteristic	curves- Suitability for engine application - Surging	- Matching of	sup	percl	har	ger
compressor a	nd Engine – Matching of compressor, Turbine Engine.					
UNIT – III	SCAVENGING OF TWO STROKE ENGINES		12	2 Pe	rio	ds
Peculiarities	of two stroke cycle engines - Classification of scavengir	ng systems - M	ixtu	re c	ont	rol
through Reed	d valve induction - Charging Processes in two stroke cy	cle engine - Te	ermi	nolo	ogie	es -
Shankey diag	ram - Relation between scavenging terms - scavenging mo	deling - perfect	disj	olace	eme	ent,
Perfect mixing	g Complex scavenging models.					
UNIT – IV	PORTS AND MUFFLER DESIGN		8	Per	io	ls
Porting - Desi	gn considerations - Design of intake and Exhaust Systems -	Tuning.				
UNIT – V	EXPERIMENTAL METHODS		7	Per	rioc	ls
Experimental techniques for evaluating scavenging - Firing engine tests - Non firing engine tests - Port						
flow characteristics - Kadenacy system - Orbital engine combustion system, Sonic system.						
Contact Periods:						
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Per	iods	;		
	Con and Co					

TEXT BOOK:

1	Obert, E.F., "Internal Combustion Engines and Air Pollution", McGraw-Hill, 2017.
2	Vincent,E.T., "Supercharging the I.C.Engines", Facsimile publishers, 2015.

1	Giancarlo Ferrari, Angelo Onorati, Gianluca D'Errico, "Internal Combustion Engines", Società Editrice
	Esculapio, 21 July 2022.
2	K.A. Zinner, "Supercharging of Internal Combustion Engines", 4 July 2012.
3	Evangelos G. Giakoumis, "Turbochargers and Turbocharging Advancements, Applications and
	Research" Nova Science Publishers, Incorporated, 2017.
4	JohnB. Heywood, "Two-Stroke Cycle Engine its Development, Operation and Design", CRC Press,
	November 2017.
5	Schweitzer, P.H., "Scavenging of Two Stroke Cycle Diesel Engine", MacMillan Co.2007.
6	John B.Heywood, "Two Stroke Cycle Engine" , SAE Publications 2010.

COUF	Bloom's	
Upon	Taxonomy	
		Mapped
C01	Design and make thermal analysis of the supercharging system and scavenging	K4
	processes.	
CO2	Design and tune intake and exhaust systems to achieve desired performance	K5
	results.	
CO3	Address specific issues arising in laboratory testing of modified engines.	КЗ
C04	Develop and design of ports and muffler design consideration	КЗ
CO5	Evaluate the characteristics involved in non-firing engine tests using experimental	K5
	techniques.	

	1		r		r	
COs/POs	P01	P02	P03	P04	P05	P06
C01	2	2	2	1	2	2
CO2	2	2	2	1	3	2
CO3	2	2	2	1	2	2
CO4	2	2-2	2	1	1	2
CO5	3	3	1 STO 101 - 12	1	1	2
23TEPE10	2	2	2	1	2	2
1 – Slight, 2 – Moderate, 3 – Substantial						

//

ASSESSMENT PATTERN – THEORY								
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(k1) %	(k2) %	(k3) %	(k4) %	(k5) %	(k6) %	%	
Category*								
CAT1	-	30	30	20	20	-	100	
CAT2	-	50	50	- 10	-	-	100	
Individual	-	30	30	20	20	-	100	
Assessment 1		100000	Party Party					
/ Case Study		000	60					
1 / Seminar 1								
/ Project 1								
Individual	-	50	50	-	-	-	100	
Assessment 2								
/ Case Study								
2 / Seminar 2								
/ Project 2								
ESE	-	25	25	25	25	-	100	

REFRIGERATION AND CRYOGENICS

(use of approved tables and charts are permitted)

PREREQUISITES CATEGORY L					Р	С
REFRIGERAT	ION AND AIR CONDITIONING	РЕ	3	0	0	3
Course Objective	• To make the students learn different processes in cryogenic systems and to conduct activities related to design and the experimental study of low-temperature plant facilities and related industries.					
UNIT – I	INTRODUCTION 9 Period				ods	
Insight on cryogenics - Methods of producing cold - Thermodynamic basis, first and second law analysis - Vapour compression systems - Properties of cryogenic fluids and material properties at cryogenic temperatures.						
UNIT – II	- II LIQUEFACTION CYCLES 9 Periods					ods

Carnot liquefaction cycle - F.O.M. and yield of liquefaction cycles - Inversion curve - Joule Thomson effect - Linde Hampson cycle – Precooled Linde Hampson cycle, Claude's cycle, Dual cycle - Helium refrigerated hydrogen liquefaction systems - Critical components in liquefaction systems.

UNIT – III	CRYOGENIC REFRIGERATORS	9 Periods
Binary Mixtu	res - T-C and H- C Diagrams - Principle of rectification - Rectif	ication column
analysis – Mc	Cabe Thiele method - Adsorption systems for purification.	

UNIT - IVSEPARATION OF CRYOGENIC GASES9 PeriodsJ.T.Cryocoolers - Stirling cycle refrigerators - G.M.Cryocoolers - Pulse tube refrigerators -
Regenerators used in cryogenic refrigerators - Magnetic refrigerators.9 Periods

UNIT - VHANDLING OF CRYOGENS AND APPLICATIONS9 PeriodsCryogenic storage dewar construction and design - Cryogenic transfer lines - Insulations used in

cryogenic storage dewar construction and design - Cryogenic transfer lines - insulations used in cryogenic systems - Applications of cryogenics in space programmes.

dontact i critous.		The second se	
Lecture: 45 Periods	Tutorial: OPeriods	Practical: 0 Periods	Total: 45 Periods

TEXT BOOK:

1	Valery V.Kostionk and D.Bhaskara Rao, "A Text book of Cryogenics", Discovery Publishing
	House, 1 st Edition, 2019.
2	Klaus D.Timmerhaus and Thomas M.Flynn, "Cryogenic Process Engineering", Plenum Press,
	Softcover reprint of the original 1 st Edition, 2013.

- 1 Mamata Mukhopadhyay, **"Fundamentals of Cryogenic Engineering"**, PHI Publications, 2010.
- G. Venkatarathnam, "Cryogenic Mixed Refrigerant Processes", Springer Publication, 2010.
 Beth Evans, Tom Bradshaw and John Vandore, "Cryogenics: Fundamentals, Foundations and Applications", Institute of Physics Publishing, 1st Edition, 2022.
- 4 Dr. Zuyu Zhao and Dr. Chao Wang, **"Cryogenic Engineering and Technologies: Principles** and Applications of Cryogen-Free Systems", CRC Press, 2019.
- 5 Thomas M.Flynn, "Cryogenic Engineering", Marcel Dekker, 2nd Revise Edition, 2009.

COU	RSE OUTCOMES:	Bloom's		
Upon	Upon completion of the course, the students will be able to:			
C01	Understand the basic concepts of cryogenic systems.	K2		
CO2	Learn the fundamentals of cycles and applications of liquefaction system.	К2		
CO3	Understand the basic principle and working of cryogenic refrigerator.	K2		
CO4	Perform analysis for a selecting suitable cryogenic refrigerator.	K5		
C05	Understand the concepts of storage systems and insulation techniques used in cryogenic applications.	К2		

COs/POs	P01	PO2	PO3	P04	PO5	P06
CO1	2	2	3	2	2	2
CO2	1	3	2	1	1	3
CO3	2	2	3	2	1	2
CO4	2	3	3	1	2	2
CO5	2	2	2	1	1	1
23TEPE11	2	2	m3m	1	1	2
1 – Slight, 2 – Moderate, 3 – Substantial						
		SC -	Phone P			

ASSESSMENT I	PATTERN - THE	DRY		2			
Test / Bloom's	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
Category*				1			
CAT1	45	55		// -	-	-	100
CAT2	10	20	30	30	10	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	55	45			-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	30	20	30	10	-	100
ESE	25	40	15	10	10	-	100

PREREQUISI	TES	CATEGORY	L	Т	Ρ	С
THERMAL EN	IGINEERING	PE	3	0	0	3
Course	• To make the students able to design, mo	del and optimize	e the	erma	al en	ergy
Objective	systems used in various engineering app	lications and en	suri	ng i	ts	
	stahility			0		
	stability.					
UNIT – I	DESIGN OF THERMAL SYSTEMS			9	Peri	ods
Design syster	ns, workable systems and optimal systems - M	atching of syste	em (com	pon	ents -
Economic ana	lysis, depreciation and gradient present worth fac	ctor.			-	
UNIT – II	MATHEMATICAL MODELLING			91	Peri	ods
Equation fitti	ng – Nomography, empirical equation, regression	on analysis - D	iffer	ent	mod	les of
mathematical	models, selection - Computer programmes for mo	odels.				
UNIT – III	MODELLING THERMAL EQUIPMENTS			91	Peri	ods
Modelling of	heat exchangers, evaporators, condensers, absor	rption and recti	ifica	tion	col	umns,
compressor a	nd pumps - Simulation studies - Information flow	diagram - Solut	ion	proc	edu	res.
UNIT – IV	OPTIMIZATION OF THERMAL SYSTEMS			91	Peri	ods
Objective fun	ction formulation - Constraint equations, math	ematical formu	ılati	on -	Ca	lculus
methods, dyn	amic programming, linear programming methods	- Solution proce	edur	·es.		
UNIT – V	DYNAMIC BEHAVIOUR OF THERMAL SYSTEMS	S		91	Peri	ods
Steady state s	simulation - Laplace transformation - Feedback c	ontrol loops - S	Stabi	lity	ana	lysis -
Non linearities.						
Contact Periods:						
Lecture:45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods						
	AL X.					
TEYT BOOK.						

TEXT BOOK:

- 1 Steven G.Penoncello, **"Thermal Energy Systems: Design and Analysis"**, CRC Press, 2ndEdition, 2018.
- 2 W.F.Stoecker, "Design of Thermal Systems", Mcgraw Hill, 3rdEdition, 2021.

1	Ibrahim Dincer and Marc A. Rosen, "Thermal Energy Storage: Systems and Applications",
	Wiley, 2 nd Edition, 2011.
2	J.N.Kapur, "Mathematical Modelling" , New Age International Publisher, 2 nd Edition, 2021.
3	Mcquiston, Parker and Spitler, "Heating, Ventilating and Air conditioning: Analysis and
	Design" , John Wiley & Sons, 6 th Edition, 2011.
4	W.F.Stoecker, "Refrigeration and Air Conditioning" , TMH, 2 nd Edition, 2014.
5	Fergus Nicol, Michael Humphreys and Susan Roaf, "Adaptive Thermal Comfort: Principles
	and Practice", Routledge, 2012.

COUF	Bloom's	
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
C01	Develop simulate and integrate various components in thermal systems.	K5
CO2	Understand the modern engineering tools used in engineering practice.	K3
CO3	Develop mathematic models for thermal equipment.	K4
CO4	Optimize thermal energy systems.	K4
CO5	Analyze dynamic behavior of the thermal system.	K5

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	PO3	P04	P05	P06
C01	3	3	2	2	3	2
CO2	3	3	2	1	2	2
CO3	2	2	1	2	3	2
CO4	3	3	2	2	3	3
CO5	2	2	2	2	2	2
23TEPE12	3	3	2m-2	2	2	2
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT I	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %		
Category*			SW& Y'	1					
CAT1	10	25	30	25	10	-	100		
CAT2	10	20 🔗	30	30	10	-	100		
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	15	25	25 -2 10 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	15	20	-	100		
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	25	25	20	20	-	100		
ESE	10	20	25	25	20	-	100		

22TEPE13	ENGINE POLLUTION AND CONTROL	II

PREREQUISI	PREREQUISITES CATEGORY L							
	NIL PE 3							
Course	• To make the students understand mecha	nism of engine p	ollu	tio	1			
Objective	formation, control, Measurement technic	ques and its impa	ct o	n tł	ıe			
	society.							
	5							
UNIT – I	POLLUTION – ENGINES AND TURBINES			91	Peri	ods		
Atmospheric	pollution from piston engines and gas turbines - G	lobal warming.						
UNIT – II	POLLUTANT FORMATION			91	Peri	ods		
Formation of	f oxides of nitrogen, carbon-monoxide, hydro	ocarbon, aldehy	des	an	d s	moke		
particulate en	nission - effects of pollutants on environment.							
UNIT – III	MEASUREMENT OF POLLUTANTS			91	Peri	ods		
Non dispersiv	ve infrared gas analyzer - Gas chromatography -	Chemi-luminesc	ent	ana	lyze	r and		
flame ionizati	on detector - Smoke measurement - Noise polluti	on - Measuremer	t an	nd c	ontr	ol.		
UNIT – IV	CONTROL OF ENGINE POLLUTION			91	Peri	ods		
Engine compo	onents - Fuel modification - Evaporative emission	control, EGR an	d ai	r in	ject	ion in		
thermal reac	tors - In cylinders control of pollution - cata	lytic converter	- Aj	ppli	cati	on of		
microprocess	ors in emission control.							
UNIT – V DRIVING CYCLES AND EMISSION STANDARDS				9 Periods				
Use of driving cycles for emission measurement - Chassis dynamometer - CVS system - National								
and International emission standards.								
Contact Periods:								
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0	Periods To	otal	: 45	Pei	riods		

TEXT BOOK:

- 1 G.Amba Prasad Rao and T.Karthikeya Sharma, **"Engine Emission Control Technologies"**, Apple Academic Press and CRC Press, 1stEdition, 2021.
- 2 Crouse William, "Automotive Emission Control", Gregg Division / McGraw-Hill, 2000.

1	George, Springer and Donald J.Patterson, "Engine emissions, pollutant Formation and
	Measurement", Plenum Press, 2012.
2	C.S.Rao, "Environmental Pollution Control Engineering", New Age International Publishers,
	2 nd Edition, 2006.
3	B.P.Pundir, "Engine Emissions: Fundamentals and Advances in Control", Alpha Science
	International, 2 nd Edition, 2017.
4	Ernest S.Starkman, "Combustion Generalized Air Pollutions", Plenum Press, 1993.
5	Eran Sher, "Handbook of Air Pollution from Internal Combustion Engines", Academic
	Press, 1998.

COUR	Bloom's	
Upon	Taxonomy Mapped	
C01	Identify the various sources of pollution.	K2
CO2	Study the formation of various pollutants in the environment.	K2
CO3	Develop the knowledge on pollutant measurement techniques.	K2
CO4	Identify the strategies to control engine pollution.	K3
CO5	Develop the knowledge on environment pollution and its standards.	K2

COURSE AR	FICULATION N	MATRIX				
COs/POs	P01	P02	PO3	P04	P05	P06
C01	3	3	2	3	2	2
CO2	2	2	2	2	2	2
CO3	3	2	3	2	3	2
CO4	3	3	2	2	2	2
CO5	3	2	2	1	1	1
23TEPE13	2	3	2	2	2	2
1 – Slight, 2 -	- Moderate. 3 -	- Substantial	- amm	0		

	110401400,0 0	Anglein D-	B 519/0	80				
ASSESSMENT PA	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	60	40		- 1	-	-	100	
CAT2	50	40	10	-	-	-	100	
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	30	70		-	-	-	100	
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	40	50	10	-	-	-	100	
ESE	50	50	-	-	-	-	100	

AIR CONDITIONING SYSTEM DESIGN

(use of approved tables and charts are permitted)

PREREQUISITES	CATEGORY	L	Τ	Р	С
REFRIGERATION AND AIR CONDITIONING	PE	3	0	0	3

Course	• To make the students learn the design of air conditioning syste	em components,			
Objective	equipments and their testing methods.	•			
UNIT – I	AIR CONDITIONING SYSTEMS	9 Periods			
Packaged air c	onditioning systems - Centralized air conditioning systems - VAV syste	ms - Underfloor			
distribution sy	stems - Radiant cooling systems - Hydronic systems - Air handling syste	ms.			
UNIT – II	COMPONENTS TESTING AS PER BIS CODES	9 Periods			
Testing of con	densers and evaporators - Testing of cold storages - Code of practice	e for fire safety,			
storage - Spe	cification and testing of all types of air conditioners – Enthalpy de	viation curve –			
psychrometry.	Bybern Danker on the a right				
UNIT – III	AIR CONDITIONING SYSTEM DESIGN AND LOAD CALCULATION	9 Periods			
Design condit	ions - Air distribution, pressure drop, duct design, fans and blowers	s design - Load			
calculations -	Fhermal comfort - Solar radiation - Heat gain through envelopes -	Infiltration and			
ventilation loa	ds, Internal loads - Procedure for heating and cooling load estimation.				
UNIT – IV	APPLICATIONS OF AIR CONDITIONING	9 Periods			
Air conditioni	ng in automobiles - Railway wagons, marine vessels, aircraft and ot	her commercial			
applications.					
UNIT – V	AIR CONDITIONING ACCESSORIES AND CONTROL	9 Periods			
Performance a	nd selection - Noise control, piping system, valves, receivers, oil trap, o	oil regenerators,			
driers and strainers - Control system of temperature, pressure and oil Flow - Compressor motor -					
Protection dev	rices.				
Contact Perio	ds:				
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 4	5 Periods			

TEXT BOOK:

1	Roger Legg, "Air Conditioning System Design" , Butterworth-Heinemann, 1stEdition, 2017.
2	Herbert W. Stanford III and Adam F. Spach, "Analysis and Design of Heating, Ventilating, and Air-
	Conditioning Systems", CRC Press, 2 nd Edition, 2019.

1	Dossat, R. J., "Principles of Refrigeration and Air Conditioning", John Wiley & Sons, 4thEdition,
	2010.
2	Manohar Prasad, "Refrigeration & Air Conditioning" , New Age Publishers, 3 rd Edition, 2021.
3	Arora C.P., "Refrigeration and Air Conditioning", Tata McGraw Hill, 4th Edition, 2021.
4	Grondzik W T., "Air Conditioning System Design Manual", Elsevier Science, 2 nd Edition, 2011.
5	Ashrae Press, "Air Conditioning System Design Manual", Butterworth-Heinemann, 2 nd Edition,
	2020.

COUR	Bloom's	
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
C01	Understand different types of air conditioning systems.	K2
CO2	Understand the testing of components as per BIS codes.	КЗ
CO3	Impart the design and load calculations for air conditioning systems.	K5
CO4	Select the suitable air conditioning system for engineering applications.	K2
C05	Study the performance of different air conditioning accessories.	КЗ

COURSE ART	COURSE ARTICULATION MATRIX							
COs/POs	P01	PO2	P03	P04	P05	P06		
C01	3	3	2	2	2	3		
CO2	3	3	2	1	2	2		
CO3	2	2	Marin 1	8-529.00 L	3	2		
CO4	2	2	1521000	2	3	3		
CO5	3	3	2		2	2		
23TEPE14	2	3	2 -		2	2		
1 – Slight, 2 -	- Moderate, 3 -	- Substantial		泉 //				
			SAUG					

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Rememberin	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	g (K1) %	(K2) % 🔐	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1	10	30	20	30	10	-	100	
CAT2	10	30	30	20	10	-	100	
Individual		Quer pon	DOL ANU					
Assessment 1		C.S.S.	10 000000	R.				
/ Case Study 1	10	35	25	20	10	-	100	
/ Seminar 1 /								
Project 1								
Individual								
Assessment 2								
/ Case Study 2	10	30	30	20	10	-	100	
/ Seminar 2 /								
Project 2								
ESE	15	25	30	20	10	-	100	

4th

PREREQUISIT	`ES	CATEGORY	L	Т	Ρ	С		
	NIL	PE	3	0	0	3		
Course	• To make the students learn properties, types, energy conversion techniques of							
Objective	solar and wind energy systems.							
UNIT – I	SOLAR RADIATION			91	Peri	ods		
Availability -	Measurement and estimation - Capturing solar r	adiation-Isotropic	: an	d a	niso	tropic		
model - Introd	luction to solar collectors - Flat-plate collectors, air l	neater, concentrat	ing (colle	ecto	rs and		
thermal storage	<u>ge - Steady state transient analysis - Solar Pond - Sola</u>	r refrigeration.						
UNIT – II	MODELLING AND SIMULATION OF SOLAR THER	MAL SYSTEMS		91	Peri	ods		
Design of activ	ve systems by f-chart and utilizability methods - W	later heating syst	ems	; - A	Activ	ve and		
passive - Passi	ve heating and cooling of buildings - Solar distillation	n - Solar Drying.						
UNIT – III	PHOTOVOLTAIC SOLAR CELL			91	Peri	ods		
P-N Junction –	Metal-Schottky junction - Electrolyte - Semiconduct	or junction - Type	es of	sol	ar ce	ell and		
their applicat	ions - Experimental techniques to determine th	e characteristics	of	sol	ar o	cells -		
Photovoltaic	hybrid systems - Photovoltaic thermal systems	- Storage batte	ту –	- Sc	olar	array		
characteristics	and evaluation – Solar chargeable battery.							
UNIT – IV	WIND TURBINE			91	Peri	ods		
Structure – S	tatistics - Measurements and data presentation	- Wind turbine	aei	rody	/nan	nics –		
Momentum th	eories - Basics of aerodynamics - Airfoils charact	teristics – HAWT	– E	Blad	e el	ement		
theory – Prai	ndtl's lifting line theory - VAWT aerodynamic lo	oads in steady o	pera	atio	n –	Wind		
turbulence – Y	awed operation and tower shadow.							
UNIT – V	WIND ENERGY CONVERSION SYSTEM			91	Peri	ods		
Classification	- Components - Yaw system – Synchronous and asy	nchronous gener	ator	's ai	nd lo	oads –		
Integration of	wind energy into electrical systems -Testing of WE	CS – WECS contr	ol sy	vstei	т -Е	nergy		
conversion st	rategies for wind energy system – Applications ·	 Future of WEC 	S -	Wir	nd e	energy		
programmes.								
Contact Perio	ds:							
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Per	riods Total: 4	5 Pe	erio	ds			

TEXT BOOK:

1	Mukund R. Patel, Omid Beik, "Wind and Solar Power Systems: Design, Analysis, and Operation",
	CRC Press, 3 rd Edition, 2021.
2	S. P. Sukhatme, J. K. Nayak, "Solar Energy: Principles of Thermal Collection and Storage", Tata
	MaGraw-Hill, 3 rd Edition, 2010.

REFERENCES:

1	D.A.Spera, "Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering",
	ASME Press, 2 nd Edition, 2009.

2 F.A.Duffie and W.A.Beckman, **"Solar Engineering of Thermal Processes"**, John Wiley, Edition, 2013.

3 Anup Goel, Mahesh A. Khot, Siddu Patil, "Wind & Solar Energy", Technical Publications, 2022.

4 Mukund R. Patel, "Wind and Solar Power Systems", CRC Press, 1999.

5 J.F.Krider and F.Kreith, "Solar Energy Handbook", McGraw-Hill, 3rdEdition, 1986.

COUR Upon	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Familiarize with the methods to trap solar radiation for energy conversion.	K2
CO2	Able to model solar thermal systems.	K4
CO3	Impart knowledge on solar cells and its applications.	K3
C04	Gain the knowledge of wind turbine systems.	K2
CO5	Familiarize with various wind energy conversion systems	K3

COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	P04	P05	P06				
C01	2	3	2	2	2	2				
CO2	3	1	2	2	2	2				
CO3	3	3	3	1	1	1				
CO4	2	3	3	3	2	1				
C05	2	2	2	1	3	2				
23TEPE15	2	3	2	2	1	1				
1 – Slight, 2 – Moderate, 3 – Substantial										
		Canter Bandris Br We wind and								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Rememberin	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	g (K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	10	30	30	30	-	-	100			
CAT2	30	35	35	-	-	-	100			
Individual Assessment 1 / Case Study 1	20	35	25	20	-	-	100			
/ Seminar 1 / Project 1										
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	35	30	35	-	-	-	100			
ESE	15	35	25	25	-	-	100			

23SEOE01

BUILDING BYE-LAWS AND CODES OF PRACTICE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	 To impart knowledge on the building bye –laws and to emphasize th 	e significance of							
Objective	codes of practice in construction sector.								
	▲								
UNIT – I	INTRODUCTION TO BUILDING BYE-LAWS	9 Periods							
Introduction to	Building Bye Laws and regulation, their need and relevance, General de	efinitions such as							
building heigh	building height, building line, FAR, Ground Coverage, set back line. Introduction to Master Plan and								
understanding	understanding various land uses like institutional, residential etc Terminologies of Building bye-laws.								
UNIT – II ROLE OF STATUTORY BODIES 9 Periods									
Role of various statutory bodies governing building works like development authorities, municipal									
corporations e	tc. Local Planning Authority, Town and Country planning organisation, M	Ainistry of urban							
development.									
UNIT – III	APPLICATION OF BUILDING BYE-LAWS	9 Periods							
Interpretation	of information given in bye laws including ongoing changes as shown in v	various annexure							
and appendice	s. Application of Bye-laws like structural safety, fire safety, earthquake s	safety, basement,							
electricity, water, and communication lines in various building types.									
ciectificity, wat	er, and communication lines in various building types.								
UNIT – IV	INTRODUCTION TO CODES OF PRACTICE	9 Periods							
UNIT – IV Introduction to	INTRODUCTION TO CODES OF PRACTICE	9 Periods							
UNIT – IV Introduction to health, safety a	INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations t nd welfare - Codes , regulations to ensure compliance with the local author	9 Periods to protect public rity.							
UNIT – IV Introduction to health, safety a UNIT – V	INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations to nd welfare - Codes , regulations to ensure compliance with the local author APPLICATION OF CODES OF PRACTICE	9 Periods to protect public rity. 9 Periods							
UNIT – IV Introduction to health, safety a UNIT – V Applications o	INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations to nd welfare - Codes , regulations to ensure compliance with the local author APPLICATION OF CODES OF PRACTICE f various codes as per various building types. Bureau of Indian Standa	9 Periods to protect public rity. 9 Periods ards, Eurocode –							
UNIT – IV Introduction to health, safety a UNIT – V Applications o Introduction to	INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations to nd welfare - Codes , regulations to ensure compliance with the local author APPLICATION OF CODES OF PRACTICE f various codes as per various building types. Bureau of Indian Standa o other international codes.	9 Periods to protect public rity. 9 Periods ards, Eurocode –							
UNIT – IV Introduction to health, safety a UNIT – V Applications o Introduction to Contact Period	INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations to and welfare - Codes , regulations to ensure compliance with the local author APPLICATION OF CODES OF PRACTICE f various codes as per various building types. Bureau of Indian Standard other international codes. ds:	9 Periods to protect public rity. 9 Periods ards, Eurocode –							
UNIT – IV Introduction to health, safety a UNIT – V Applications o Introduction to Contact Period Lecture: 45 Period	INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations to and welfare - Codes , regulations to ensure compliance with the local author APPLICATION OF CODES OF PRACTICE f various codes as per various building types. Bureau of Indian Standa o other international codes. ds: priods Tutorial: 0 Periods Practical: 0 Periods Total: 45	9 Periods to protect public rity. 9 Periods ards, Eurocode –							
UNIT – IV Introduction to health, safety a UNIT – V Applications o Introduction to Contact Period Lecture: 45 Period	INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations to nd welfare - Codes , regulations to ensure compliance with the local author APPLICATION OF CODES OF PRACTICE f various codes as per various building types. Bureau of Indian Standa o other international codes. ds: priods Tutorial: 0 Periods Practical: 0 Periods Total: 45	9 Periods to protect public rity. 9 Periods ards, Eurocode –							
UNIT – IV Introduction to health, safety a UNIT – V Applications o Introduction to Contact Period Lecture: 45 Period REFERENCE	INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations to nd welfare - Codes , regulations to ensure compliance with the local author APPLICATION OF CODES OF PRACTICE f various codes as per various building types. Bureau of Indian Standa o other international codes. ds: priods Tutorial: 0 Periods Practical: 0 Periods Total: 45	9 Periods to protect public rity. 9 Periods ards, Eurocode –							
UNIT – IV Introduction to health, safety a UNIT – V Applications o Introduction to Contact Perior Lecture: 45 Perior REFERENCE	INTRODUCTION TO CODES OF PRACTICE	9 Periods to protect public rity. 9 Periods ards, Eurocode – 5 Periods							

2	"Model Building Bye-Laws (MBBL) - 2016", Town and Country Planning Organization, Ministry
	Housing and Urban Affairs, Government of India.
3	
	"Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
4	Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
C01	Apply the building bye-laws in planning, design and construction works.	K3
CO2	Familiarize with the role of various statutory bodies.	K2
CO3	Execute safety related work practices in the construction sector.	КЗ
CO4	Ensure compliance with the rules and regulations in design and construction	КЗ
	practices.	
C05	Perform design and construction practices based on national and international	K3
	codal provisions.	

COURSE ARTICULATION MATRIX										
COs/POs	P01	PO2	P03	P04	P05	P06				
C01	1	3	1	1	2	3				
C02	1	3	1	1	2	3				
C03	1	3	1	1	2	3				
CO4	2	3	1	1	2	3				
C05	2	3	1	1	2	3				
23SEOE01	23SEOE01 2 3 1 1 2 3									
1 – Slight, 2 – Moderate, 3 – Substantial										
Contraction of the second s										

ASSESSMENT PAT	ΓERN – THEORY		1	(
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	- //	-	-	100
CAT2	40	40 🐼	20	- 1	-	-	100
Individual	40	40	20	· ·	-	-	100
Assessment 1 /							
Case Study 1/		941000	2022 04	10			
Seminar 1 /		C.S.	16 MORTE	7			
Project1							
Individual	40	40	20	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

235	FO	FO	2
200	ĿО	ĽU	-

PLANNING OF SMART CITIES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course • To have a	n exposure on planning of smart cities wi	ith consideration	of the recent			
Objective challenge	challenges and to address the importance of sustainable development of urban					
area.	-					
UNIT – I SMART CITIES I	EVELOPMENT POTENTIALS AND CHA	ALLENGES	9 Periods			
Perspectives of Smart Cities: Intro	luction and Overview - Implementatio	on Challenges - I	Methodological			
issues - Spatial distribution of st	artup cities – Re imagining postindu	strial cities - I	mplementation			
Challenges for Establishing Smart U	rban Information and Knowledge Mana	igement System.	1			
UNIT – II SUSTAINABLE U	RBAN PLANNING		9 Periods			
Optimising Green Spaces for Sus	tainable Urban Planning - 3D City	Models for Ext	tracting Urban			
Environmental Quality Indicators -	Assessing the Rainwater Harvesting P	otential - The St	rategic Role of			
Green Spaces - Monitoring Urban Expansion.						
UNIT – III ENERGY MANAG	EMENT AND SUSTAINABLE DEVELOP	PMENT	9 Periods			
Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy						
Management - Urban Dynamics a	nd Resource Consumption - Issues a	and Challenges	of Sustainable			
Tourism - Green Buildings: Eco-friendly Technique for Modern Cities.						
UNIT – IV MULTIFARIOUS	MANAGEMENT FOR SMART CITIES		9 Periods			
Assessment of Domestic Water Use	Practices - Issue of Governance in Urb	an Water Suppl	y - Assessment			
of Water Consumption at Urban He	ousehold Level - Water Sustainability -	Socio-economic	c Determinants			
and Reproductive Healthcare System - Problems and Development of Slums.						
UNIT – V INTELLIGENT T	RANSPORT SYSTEM		9 Periods			
Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network						
Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information -						
The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic						
Assignment - Traffic Enforcement. Urban Mobility and Economic Development.						
Contact Periods:	Quanto					
Lecture: 45 Periods Tutorial:) Periods Practical: 0 Periods	Total: 45 Pei	riods			

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva" , 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems And
	Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems" , PHI Learning, 2018.

COUR Upon	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Indicate the potential challenges in smart city development.	K2
CO2	Select the different tools for sustainable urban planning.	К3
CO3	Choose appropriate energy conservation system for smart cities.	К3
CO4	Identify the proper method of water management system.	К3
CO5	Apply Intelligent Transport System concepts in planning of smart city.	K3

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05	P06		
C01	1	-	2	3	1	1		
CO2	1	1	1	3	2	1		
CO3	1	1		2	2	1		
CO4	1	-	1	2	1	1		
CO5	1	-	1	3	1	-		
23SEOE02	1	1,000	2	3	2	1		
1 – Slight, 2 – Moderate, 3 –	Substantial		SP .					

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %		
CAT1	25	45	30	// -	-	-	100	
CAT2	25	45	30	· -	-	-	100	
Individual	15	40	45	-	-	-	100	
Assessment 1 /								
Case Study 1/								
Seminar 1 /		STATE OF AN	DO OF PL	10				
Project1		69%	COLOGE					
Individual	10	45	45	-	-	-	100	
Assessment 2 /								
Case Study 2/								
Seminar 2 /								
Project 2								
ESE	20	40	40	-	-	-	100	

225E0E02	GREEN BUILDING
233EUEU3	(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To introduce the different concents of energy efficient buildings inc	loor						
Course Objective	• To incloduce the uniferent concepts of energy encient buildings, inc	1001						
Objective	Objective environmental quality management, green buildings and its design.							
UNIT – I	INTRODUCTION	9 Periods						
Life cycle impacts	of materials and products – sustainable design concepts – strategies	of design for the						
Environment - The	sun-earth relationship and the energy balance on the earth's surface, clin	nate, wind – Solar						
radiation and solar	temperature – Sun shading and solar radiation on surfaces – Energy im	pact on the shape						
and orientation of	buildings – Thermal properties of building materials.							
UNIT – II	ENERGY EFFICIENT BUILDINGS	9 Periods						
Passive cooling and	d day lighting – Active solar and photovoltaic- Building energy analysis r	nethods- Building						
energy simulation	- Building energy efficiency standards-Lighting system design- Lightin	g economics and						
aesthetics- Impact	s of lighting efficiency - Energy audit and energy targeting- Technology	ogical options for						
energy managemen	nt.							
UNIT – III	INDOOR ENVIRONMENTAL QUALITY MANAGEMENT	9 Periods						
Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning								
requirement- Visu	al perception- Illumination requirement- Auditory requirement- Ene	rgy management						
options- Air condit	ioning systems- Energy conservation in pumps- Fans and blowers- Refrig	erating machines-						
Heat rejection equipment- Energy efficient motors- Insulation.								
UNIT – IV	GREEN BUILDING CONCEPTS	9 Periods						
Green building concept- Green building rating tools- Leeds and IGBC codes Material selection Embodied								
energy- Operating energy- Façade systems- Ventilation systems-Transportation- Water treatment systems-								
Water efficiency- Building economics								
UNIT – V	GREEN BUILDING DESIGN - CASE STUDY	9 Periods						
Case studies - Building form, orientation and site considerations; conservation measures; energy modeling;								
heating system and fuel choices; renewable energy systems; material choices - construction budget								
Contact Periods:								
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ods						

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", , Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

COURSE	OUTCOMES:	Bloom's Taxonomy Mapped
C01	Apply the concepts of sustainable design in building construction.	K3
CO2	Execute green building techniques including energy efficiency management in the building design.	КЗ
CO3	Establish indoor environmental quality in green building.	КЗ
C04	Perform the green building rating using various tools.	КЗ
C05	Create drawings and models of green buildings.	K3

COURSE ARTICULATION MATRIX							
COs/POs	P01	PO2	PO3	P04	P05	P06	
C01	3	3	2	3	3	3	
CO2	3	3	2	3	3	3	
CO3	2	2	2	2	3	3	
CO4	2	3	1	3	3	3	
CO5	3	3	1	3	3	3	
23SEOE03	3	3	2	3	3	3	
1 – Slight, 2 – Moderate, 3	– Substantial						

seen De Commente assigner	- G		2	
We want the second birth and and a second se	TT -		and a second second	-
	Service Character	10.00	110 B1-15017	110

8194 String Date String to							
ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
CAT1	40	40	20		-	-	100
CAT2	40	40	20	<u> </u>	-	-	100
Individual	40	40	20	<u> </u>	-	-	100
Assessment 1 /		8					
Case Study 1/		X Ja		A.			
Seminar 1 /							
Project1		Querio a	GOL	110			
Individual	40	40	20	F -	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100
23EEOE04

ENVIRONMENT HEALTH AND SAFETY MANAGEMENT (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	Course • To impart knowledge on occupational health hazards, safety measures at work					
Objective	place, accident prevention, safety management and safety measures in					
	industries					
UNIT – I	OCCUPATIONAL HEALTH HAZARDS	9 Periods				
Occupation, H	ealth and Hazards - Safety Health and Management: Occupational H	ealth Hazards -				
Ergonomics -	Importance of Industrial Safety - Radiation and Industrial Hazards: Ty	pes and effects -				
Vibration - Inc	lustrial Hygiene - Different air pollutants in industries and their effects	- Electrical, fire				
and Other Haz	ards.					
UNIT – II	SAFETY AT WORKPLACE	9 Periods				
Safety at Wor	kplace - Safe use of Machines and Tools: Safety in use of different	it types of unit				
operations -	Ergonomics of Machine guarding - working in different workplac	es - Operation,				
Inspection and	l maintenance - Housekeeping, Industrial lighting, Vibration and Noise.					
UNIT – III	ACCIDENT PREVENTION	9 Periods				
Accident Prev	rention Techniques - Principles of accident prevention - Hazard ide	entification and				
analysis, Even	t tree analysis, Hazop studies, Job safety analysis - Theories and Princi	ples of Accident				
causation - Fi	rst Aid: Body structure and functions - Fracture and Dislocation, Inj	uries to various				
body parts.						
UNIT – IV	SAFETY MANAGEMENT	9 Periods				
Safety Manage	ement System and Law - Legislative measures in Industrial Safety - Occ	upational safety,				
Health and En	vironment Management, Bureau of Indian Standards on Health and S	Safety, IS 14489				
standards - OS	SHA, Process safety management (PSM) and its principles - EPA standar	ds				
UNIT – V	GENERAL SAFETY MEASURES	9 Periods				
Plant Layout for Safety - design and location, distance between hazardous units, lighting, colour						
coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work						
Permit System - Significance of Documentation - Case studies involving implementation of health and						
safety measures in Industries.						
Contact Perio	ods:					
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

	1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
	2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications,2019
I	3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
	4	" Occupational Health and Hygiene in Industries ", Raja Sekhar Mamillapalli, Visweswara Rad PharmaMed Press, 1st edition, 2021.

COURSE OUTCOMES:		Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Identify the occupational health hazards.	КЗ
CO2	Execute various safety measures at workplace.	КЗ
CO3	Analyze and execute accident prevention techniques.	КЗ
CO4	Implement safety management as per various standards.	КЗ
CO5	Develop awareness on safety measures in Industries.	К3

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	PO3	P04	P05	P06	
C01	1	2	2	2	3	2	
C02	2	2	2	1	2	2	
C03	2	3	2	1	2	2	
CO4	1	1	1	2	2	2	
C05	1	1	1	1	1	2	
23EEOE04	1	2	2	1	2	2	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	35	20	10	5	5	100			
CAT2	25	35	20	10	5	5	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100			
ESE	25	35	20	10	5	5	100			

23EEOE05

CLIMATE CHANGE AND ADAPTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To understand the Earth's climate system, changes and their effects on the earth,					
Objective	identifying the impacts, adaptation, mitigation of climate change and for gaining					
	knowledge on clean technology, carbon trading and alternate energy sources.					

UNIT – I EARTH'S CLIMATE SYSTEM

Introduction-Climate in the spotlight - The Earth's Climate Machine – Climate Classification- Global Wind Systems – Trade Winds and the Hadley Cell – The Westerlies – Cloud Formation and Monsoon Rains – Storms and Hurricanes - The Hydrological Cycle – Global Ocean Circulation – El Nino and its Effect - Solar Radiation – The Earth's Natural Green House Effect – Green House Gases and Global Warming – Carbon Cycle.

UNIT – II OBSERVED CHANGES AND ITS CAUSES

9 Periods

9 Periods

9 Periods

Observation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effects of Climate Changes – Patterns of Large-Scale Variability –Drivers of Climate Change – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – climate change modeling.

UNIT – III IMPACTS OF CLIMATE CHANGE

Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios –Projected Impacts for Different Regions – Uncertainties in the Projected Impacts of Climate Change – Risk of Irreversible Changes.

UNIT – IV	CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES	9 Periods

Adaptation Strategy/Options in various sectors – Water – Agriculture –- Infrastructure and Settlement including coastal zones – Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and Practices – Energy Supply – Transport – Buildings – Industry –Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) – Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation.

UNIT – V CLEAN TECHNOLOGY AND ENERGY	9 Periods				
Clean Development Mechanism - Carbon Trading - examples of future Clean Technology -Biodiesel -					
Natural Compost - Eco- Friendly Plastic - Alternate Energy - Hydrogen - Biofuels- Solar Energy - Wind -					
Hydroelectric Power – Mitigation Efforts in India and Adaptation funding.					

Contact Periods:Lecture: 45 PeriodsTutorial: 0PeriodsPractical: 0 PeriodsTotal:45 Periods

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam, Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report –Working Group I Report, "The physical sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability", 2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate Change,
	Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

COURSE	E OUTCOMES:	Bloom's
Unon co	mpletion of the course, the students will be able to:	Manned
	all the course, the statents will be able to.	Mappeu
C01	Classify the Earths climatic system and factors causing climate change and global	K2
	warming.	
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise and	K2
	Observed effects of Climate Changes	
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible	КЗ
	changes.	
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	КЗ
CO5	Discover clean technologies and alternate energy source for sustainable growth.	КЗ

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	PO5	P06
C01	2	2	3	2	3	1
CO2	3	2	2	2	3	2
CO3	2	2	2	2	3	2
CO4	3	2	······12	2	2	2
CO5	3	3	2	3	3	3
23EEOE05	3	3	50 PUL 3	3	3	3
1 – Slight, 2 – Moderate, 3	3 – Substantia	1 San	Decore of			

1 - 3hght, 2 - 1	viouerate, 5 - Subs	stantial					
				\neg			
ASSESSMENT	PATTERN – THEO	RY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	30	35	10	-	-	100
CAT2	25	30	35	10	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100
ESE	25	30	35	10	-	-	100

225501	ናበራ
ZJEEUI	200

WASTE TO ENERGY

(Common to all Branches)

PRER	PREREQUISITES CATEGORY L T P C					С	
		NIL	OE	3	0	0	3
Cc Obj	ourse jective	• To classify waste as fuel, introduce conversion de Pyrolysis, demonstrate methods, factors for biom about biogas and its development in India.	vices, gain knowledg ass gasification, and	e abo acqu	out B ire k	ioma nowl	iss edge
UNIT	Γ – I INTRODUCTION 9 Periods						
Intro waste	duction to e - MSW – (Energy from Waste: Classification of waste as fuel – A Conversion devices – Incinerators, Gasifiers, Digestors.	Agro based, Forest i	resid	ue, l	ndu	strial
UNIT	' – II	BIOMASS PYROLYSIS			9 Pe	erioc	ls
Biom Yields	ass Pyroly s and Appl	rsis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis – I ications – Manufacture of Pyrolytic oils and gases, Yields	Manufacture of chan and Applications.	rcoal	l – M	letho	ods –
UNIT	' – III	BIOMASS GASIFICATION			9 Pe	eriod	ls
Const arran	truction a gement ar	and Operation – Gasifier burner arrangement for ad electrical power – Equilibrium and Kinetic Considerat	thermal heating – ions in gasifier oper	Gatior	sifie	r Er	igine
UNIT	' – IV	BIOMASS COMBUSTION			9 Pe	eriod	ls
Bioma comb opera	ass Comb oustors, ty ation of all	ustion – Biomass Stoves – Improved Chullahs, type pes – Inclined grate combustors – Fluidized bed co the above biomass combustors.	es, some exotic de ombustors, design,	esign con:	ıs, F struc	ixed tion	bed and
UNIT	' - V	BIOENERGY SYSTEM			9 Pe	eriod	ls
Bioga energ conve and li Alcoh energ	s: Propert gy system ersion pro- iquefaction ol produc gy program	ties of biogas (Calorific value and composition) – Biog – Design and constructional features – Biomass resour cesses – Thermo chemical conversion – Direct combust n – biochemical conversion – anaerobic digestion – Ty tion from biomass – Bio diesel production – Urban wa me in India.	as plant technology ces and their classi ion – biomass gasifi pes of biogas plant aste to energy conv	r and ficat icatio s – A versi	l sta ion - on – Appli on –	tus - Bio pyrc catic Bio	- Bio mass ilysis ins – mass
Lectu	ire: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Perio	ods Total: 45 Pe	erioc	ls		
REF	ERENCES	1	-				
1	" Energy Reddy, Taj	Recovery from Municipal Solid Waste by Thermal C ylor and Francis Publications, 2016.	onversion Technolo	ogies	s", I	P Jay	aram
2	"Waste - Screve,EL	- to – Energy: Technologies and project Implem SEVIER Publications, Third Edition, 2019.	entations", Marc J	I Ro	goff,	Fra	ncois
3	" Biogas " 2015.	Fechnology and Principles" , Brad Hill, NY RESEARCH H	PRESS Publications,	Illus	trate	d Ed	ition,

4 **"Biomass Gasification and Pyrolysis Practical Design and Theory"**, Prabir ELSEVIER Publications, 2010.

COURS Upon co	E OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	K3
CO3	Demonstrate methods and factors considered for biomass gasification.	K3
C04	Identify the features of different facilities available for biomass combustion.	K4
CO5	Analyze the potential of different Bioenergy systems with respect to Indian condition.	K2

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	P06
C01	2	3	3	2	3	1
CO2	3	2	2	2	3	1
CO3	3	3	2	3	2	1
CO4	3	2	2	3	3	1
CO5	2	3	3	3	2	1
23EEOE06	3	3	3	3	3	1
1 – Slight, 2 – Moderate, 3 – Subs	tantial	NOTION	и			

ASSESSMENT	PATTERN – THEO	RY VI	UTUR CO				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	20	20	25	15	10	100
CAT2	10	25	20	10	25	10	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	15	35	50	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	10	40	50	-	-	100
ESE	10	25	25	20	10	10	100

23GEOE07

ENERGY IN BUILT ENVIRONMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To understand constructional energy requirements of	buildings, energy					
Objective	audit methods and conservation of energy.						
UNIT-I	INTRODUCTION	9 Periods					
Indoor activitie	s and environmental control - Internal and external facto	rs on energy use –					
Characteristics of	Characteristics of energy use and its management -Macro aspect of energy use in dwellings and its						
implications –T	hermal comfort-Ventilation and air quality-Air-conditioning	, requirement-Visual					
perception-Illun	nination requirement-Auditory requirement.						
UNIT-II	LIGHTING REQUIREMENTS IN BUILDING	9 Periods					
The sun-earth r	elationship - Climate, wind, solar radiation and temperatur	e - Sun shading and					
solar radiation o	on surfaces-Energy impact on the shape and orientation of bu	ildings–Lighting and					
day lighting :Cha	aracteristics and estimation, methods of day-lighting–Archited	ctural considerations					
for day-lighting.	Braderie Damas an up a stagene						
UNIT-III	ENERGY REQUIREMENTS IN BUILDING	9 Periods					
Steady and un	steady heat transfer through wall and glazed window-Sta	indards for thermal					
performance of	building envelope- Evaluation of the overall thermal transfe	er- Thermal gain and					
net heat gain-En	d-Use energy requirements-Status of energy use in buildings-	Estimation of energy					
use in a building							
UNIT-IV	ENERGY AUDIT	9 Periods					
Energy audit a	and energy targeting-Technological options for energy man	agement-Natural and					
forced ventilation	n–Indoor environment and air quality-Air flow and air press	are on buildings-Flow					
due to Stack effe	ct.						
UNIT-V	COOLING IN BUILT ENVIRONMENT	9 Periods					
Passive building	ng architecture–Radiative cooling-Solar cooling technic	jues-Solar desiccant					
dehumidification	n for ventilation-Natural and active cooling with adaptive	comfort-Evaporative					
cooling –Zero en	ergy building concept.						
Contact Period	S:						
Lecture: 45 Per	iods Tutorial: 0 Period Practical: 0 Period Total	: 45 Periods					

1	J.Krieder and A.Rabl , "Heating and Cooling of Buildings : Design for Efficiency ", McGraw-Hill, 2000.
2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, " Energy Design for Architects" , AEE Energy Books, 1991.
4	ASHRAE," Hand book of Fundamentals" ,ASHRAE,Atlanta,GA.,2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinois ,USA.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
C01	Understand energy and its usage	K2
CO2	Know lighting to be given to a building	K1
CO3	Analyse the energy requirements in a building	КЗ
C04	Apply the energy audit concepts.	КЗ
C05	Study architectural specifications of a building	K1

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	2	-	3	1	2	1			
CO2	2	-	3	1	2	1			
CO3	2	- am	3	1	2	1			
CO4	2	Carden Danse	BIL 116 3	1	2	1			
C05	2	<u> (98-200</u>)	3	1	2	1			
23GEOE07	2		-3	1	2	1			
1–Slight, 2–Moderate, 3–Substantial									

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	<u> </u>	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100
ESE	40	40	20	-	-	-	100

22CE0E00
ZJUEUEUO

EARTH AND ITS ENVIRONMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To know about the planet earth, the geosystems and the	ne resources like						
Objective	ground water and air and to learn about the Environmenta	l Assessment and						
	sustainability.							
UNIT-I	EVOLUTION OF EARTH	9 Periods						
Evolution of ear	th as habitable planet-Evolution of continents-oceans and landform	s-evolution of life						
through geologi	through geological times - Exploring the earth's interior - thermal and chemical structure - origin of							
gravitational and magnetic fields.								
UNIT-II	GEOSYSTEMS	9 Periods						
Plate tectonics	- working and shaping the earth - Internal geosystems - earthqua	kes – volcanoes -						
climatic excurs	sions through time - Basic Geological processes - igneous,	sedimentation –						
metamorphic pi	rocesses.							
UNIT-III	GROUND WATER GEOLOGY	9 Periods						
Geology of grou	und water occurrence -recharge process-Ground water moveme	ent-Ground water						
discharge and o	catchment hydrology – Ground water as a resource - Natural grou	and water quality						
and contaminat	ion-Modelling and managing ground water systems.							
UNIT-IV	ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY	9 Periods						
Engineering an	d sustainable development - population and urbanization - toxic ch	emicals and finite						
resources - wat	ter scarcity and conflict - Environmental risk - risk assessment and	characterization –						
hazard assessm	nent-exposure assessment.							
UNIT-V	AIR AND SOLIDWASTE	9 Periods						
Air resources e	ngineering-introduction to atmospheric composition-behaviour-at	tmospheric photo						
chemistry-Solid waste management-characterization-management concepts.								
Contact Period	s:							
Lecture: 45 Per	riods Tutorial: 0 Period Practical: 0 Period Total:	45 Periods						
REFERENCES								
1 Iohn Gro	tzinaer and Thomas H.lordan. " Understandina Earth". Sixth Edition.	W.H.Freeman, 2010						

1	John Grotzinger and Thomas H.Jordan, " Understanding Earth", Sixth Edition, W.H.Freeman, 2010.
2	Younger,P.L., "Ground water in the Environment: An introduction", Blackwell Publishing,2007.
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,
	Sustainability and Design", Wiley, NJ, 2010.

COURSE	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
C01	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and	K2
	the Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground	КЗ
	water and the modeling systems.	
CO4	To assess the Environmental risks and the sustainability developments.	КЗ
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	PO5	P06		
C01	1	-	-	2	2	-		
CO2	3	-	3	3	-	3		
CO3	2		A.		-	-		
CO4	-	2	alfor BL 100	- No	1	-		
CO5	2	2		1	-	-		
23GEOE08	2	2	3	73	2	3		
1–Slight, 2–Moderate, 3–Substantial								

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT 1	40	40	20	-	-	-	100		
CAT 2	40	40	20	-	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100		
ESE	40	40	20	-	-	-	100		

2	3	G	E	n	F	n	q
4	J	u	Ľ	υ	Ľ	υ	7

NATURAL HAZARDS AND MITIGATION

(Common to all Branches)

PREREQUISITES:	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objective	 To get idea on the causes, effects and mitigation measures of different types of hazards with case studies. 							
UNIT-I	EARTH QUAKES	9 Periods						
Definitions and	basic concepts-different kinds of hazards-causes-Geologi	c Hazards–Earthquakes-						
causes of eart	nquakes–effects-plate tectonics-seismic waves-measures o	of size of earthquakes-						
earthquake resis	earthquake resistant design concepts.							
UNIT-II	SLOPE STABILITY	9 Periods						
Slope stability	and landslides-causes of landslides-principles of stability	y analysis-remedial and						
corrective meas	ures for slope stabilization.							
UNIT-III	FLOODS	9 Periods						
Climatic Hazar	ds-Floods-causes of flooding-regional flood frequency	analysis–flood control						
measures-flood	routing-flood forecasting-warning systems.							
UNIT-IV	DROUGHTS	9 Periods						
Droughts -cause	es - types of droughts -effects of drought -hazard assessmen	nt – decision making-Use						
of GIS in natural	hazard assessment-mitigation-management.							
UNIT-V	TSUNAMI	9 Periods						
Tsunami-causes	-effects-under sea earthquakes-landslides-volcanic eruptio	ns–impact of sea						
meteorite-reme	dial measures-precautions-case studies.							
Contact Period	s:							
Lecture: 45 Per	iods Tutorial: 0 Period Practical: 0 Period	Total: 45 Periods						
	The state of the state of the state							

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage
	Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press,2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley & Sons,
	Inc,2005.
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering", John Wiley &
	Sons,Inc,2008

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon cor	npletion of the course, the students will be able to:	Mapped
C01	Learn the basic concepts of earthquakes and the design concepts of	K2
	earthquake Resistant buildings.	
CO2	Acquire knowledge on the causes and remedial measures of slope	K3
	stabilization.	
CO3	As certain the causes and control measures of flood.	КЗ
C04	Know the types, causes and mitigation of droughts.	K2
C05	Study the causes, effects and precautionary measures of Tsunami.	K2

COURSE AR	COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	PO3	P04	PO5	P06				
C01	3	1	-	3	2	3				
CO2	3	1	2	3	3	3				
CO3	3	2	3	-	-	3				
CO4	3	-	ammo	3	2	3				
CO5	3	- (874	TROGAL CONTRACTOR	2	-	3				
23GEOE09	3	1	202	3	2	3				
1–Slight, 2–M	1–Slight, 2–Moderate, 3–Substantial									

							_
ASSESSMENT	PATTERN – THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	<u> </u>	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	-	-	-	100

23ED0E10

PREREQUISITES CANNIL		L	Т	Р	С
NIL	OE	3	0	0	3

• To apprehend the fundamentals of business analytics and its life cycle.						
Objectives	• To gain knowledge about fundamental business analytics.					
	To study modeling for uncertainty and statistical inference.	l				
	 I o apprenend analytics the usage of Hadoop and Map Reduce fram To acquire insight on other analytical frameworks 	ieworks.				
UNIT – I	BUSINESS ANALYTICS AND PROCESS	9 Periods				
Business analy	tics: Overview of Business analytics, Scope of Business analytics, Busines	S				
Analytics Proc	ess, Relationship of Business Analytics Process and organization, compe	titive advantages				
of Business Ai	nalytics. Statistical Tools: Statistical Notation, Descriptive Statistical me	thods, Review of				
probability dis	tribution and data modelling, sampling andestimation methods overview					
UNIT – II	REGRESSION ANALYSIS	9 Periods				
Trendiness and	d Regression Analysis: Modelling Relationships and Trends in Data, simple	e				
Linear Regress	ion. Important Resources, Business Analytics Personnel, Data and models	s for				
Business analy	Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics					
Technology.	Technology.					
UNIT – III	STRUCTURE OF BUSINESS ANALYTICS	9 Periods				
Organization Structures of Business analytics, Team management, Management Issues, Designing						
Information P	olicy, Outsourcing, Ensuring Data Quality, Measuring contribution of B	usiness analytics,				
Managing Chai	nges. Descriptive Analytics, predictive analytics, predicative Modelling, Pr	edictive analytics				
analysis, Data	Mining, Data Mining Methodologies, Prescriptive analytics and its step	o in the business				
analytics Proce	ess, Prescriptive Modelling, nonlinear Optimization.					
UNIT – IV	FORECASTING TECHNIQUES	9 Periods				
Forecasting T	echniques: Qualitative and Judgmental Forecasting, Statistical Fore	ecasting Models,				
Forecasting Mo	odels for Stationary Time Series, Forecasting Models for Time Series					
with a Linear T	Trend, Forecasting Time Series with Seasonality, Regression Forecasting w	vith				
Casual Variable	es, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and	l				
Risk Analysis:	Monte Carle Simulation Using Analytic Solver Platform, New-Product					
Development N	Model, Newsvendor Model, Overbooking Model, Cash Budget Model.					
UNIT – V	DECISION ANALYSIS AND RECENT TRENDS IN BUSINESS	9 Periods				
	ANALYTICS					
Decision Analy	sis: Formulating Decision Problems, Decision Strategies with the without					
Outcome Prob	abilities, Decision Trees, The Value of Information, Utility and Decision					
Making. Recen	t Trends: Embedded and collaborative business intelligence, Visual da	ta recovery, Data				
Storytelling an	d Data journalism					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical:0Periods Total:45 Pe	riods				

REFERENCES

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R – A Practical Approach", Apress,
	2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press,
	2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson, "Essentials of
	Business Analytics", Cengage Learning, second Edition, 2016.
-	

5 U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making", Wiley, 2017.

6 Rui Miguel Forte, **"Mastering Predictive Analytics with R"**, Packt Publication, 2015.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
C01	Identify the real world business problems and model with analytical	K4
	solutions.	
CO2	Solve analytical problem with relevant mathematics background knowledge.	K4
CO3	Convert any real world decision making problem to hypothesis and apply	K4
	suitable statistical testing.	
C04	Write and Demonstrate simple applications involving analytics using Hadoop	K4
	and Map Reduce	
C05	Use open source frameworks for modeling and storing data.	K4

COURSE ARTICULATIO	N MATRIX				
COs/POs	P01	P02	P03	P04	P05
C01	1	2	1	2	1
CO2	1	1	1	2	1
CO3	2	Query2 55	COT DEUD	1	-
CO4	2	25000	anger	-	-
C05	1	2	-	-	-
23EDOE10	1	2	1	2	1
1 – Slight, 2 – Moderate,	3 – Substantia	al			

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23ED0E11

INTRODUCTION TO INDUSTRIAL SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3
	•				

Course Objectives	 Summarize basics of industrial safety. Describe fundamentals of maintenance engineering. Explain wear and corrosion. Illustrate fault tracing. Identify preventive and periodic maintenance. 		
UNIT – I	INTRODUCTION	9 Periods	
Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive			

steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc., Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT – II	FUNDAMENTALS OF MAINTENANCE ENGINEERING	9 Periods		
Definition and aim	of maintenance engineering, Primary and secondary functions andre	esponsibility of		
maintenance depar	tment, Types of maintenance, Types and applications of tools used fo	or maintenance,		
Maintenance cost & its relation with replacement economy. Service life of equipment				

UNIT - III WEAR AND CORROSION AND THEIR PREVENTION 9 Periods

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications,

Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT – IV	FAULT TRACING	9 Periods				
Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault-finding						
activities, show as	activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic,					
automotive, therma	automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv.					
Internal combustion	n engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools an	nd their general				
causes.						

UNIT - VPERIODIC AND PREVENTIVE MAINTENANCE9 PeriodsPeriodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical
components, overhauling of electrical motor, common troubles and remedies of electric motor, repair
complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure
for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel
generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical
equipment, advantages of preventive maintenance. Repair cycle concept and importance9 Periods

Lecture: 45 Periods Tutorial: 0 Periods Practical:0Periods Total:45 Periods

1	Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London,2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers, 2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
4	2018, "Industrial Engineering And Production Management", S. Chand Publishing; Third edition
5	"Industrial Safety and Maintenance Engineering",Parth B. Shah, 2021.

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon o	Mapped		
C01	Ability to summarize basics of industrial safety	K4	
CO2	Ability to describe fundamentals of maintenance engineering	K4	
CO3	Ability to explain wear and corrosion	K4	
C04	Ability to illustrate fault tracing	K4	
CO5	Ability to identify preventive and periodic maintenance	K4	

COURSE ARTICULATION MATRIX

COs/POs	P01	PO2	PO3	P04	PO5
C01	2	1	1	-	-
CO2	2	2	1	-	1
CO3	1	2	1	1	1
CO4	2	1	1	1	1
CO5	2	1	2	1	1
23EDOE11	2	mm	1	1	1
1 – Slight, 2 – Moderate, 3 – Substantial					

10 minere

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	-30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23ED0E12

OPERATIONS RESEARCH

(Common to all Branches)

PREREQUISIT	ES	CATEGORY	L	Т	Р	С	
	NIL	OE	3	0	0	3	
Course	Solve linear programming problem and solve using graphical method.						
Objectives	Solve LPP using simplex method.						
	Solve transportation, assignment problems.						
	 Solve project management problems. Solve scheduling problems 						
UNIT – I	INTRODUCTION			9 Pe	erio	ds	
Optimization T	Cechniques, Model Formulation, models, General L.R For	rmulation, Simplex T	ech	niqu	es, Se	ensitivity	
Analysis, Inver	tory Control Models	· •		•		, i i i i i i i i i i i i i i i i i i i	
UNIT – II	LINEAR PROGRAMMING PROBLEM			9 Pe	erio	ds	
Formulation o	f a LPP - Graphical solution revised simplex method	- duality theory - d	ıal	simp	lex 1	nethod -	
sensitivity ana	lysis - parametric programming						
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM9 Periods						
Nonlinear pro	gramming problem - Kuhn-Tucker conditions min co	ost flow problem -	ma	x flo	w p	roblem -	
CPM/PERT							
UNIT – IV	SEQUENCING AND INVENTORY MODEL			9 Pe	erio	ds	
Scheduling and sequencing - single server and multiple server models - deterministic inventory models -							
Probabilistic inventory control models - Geometric Programming.							
UNIT – V	UNIT – V GAME THEORY 9 Periods					ds	
Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in							
Networks, Elementary Graph Theory, Game Theory Simulation							
Lecture: 45 Periods Tutorial: 0 Periods Practical:0Periods Total:45 Periods							
REFERENCES							

1	H.A. Taha"Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.

3 "Operations Research", S.K. Patel, 2017.

4 "Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021.

COURS	SE OUTCOMES:	Bloom's Taxonomy Mapped
Upon c	completion of the course, the students will be able to:	
C01	Formulate linear programming problem and solve using graphical method.	K4
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
CO4	Solve project management problems.	K4
C05	Solve scheduling problems	K4

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	
C01	2	1	1	-	-	
CO2	2	2	1	-	-	
CO3	1	1	2	1	1	
CO4	1	1	-	-	-	
CO5	2	1	-	-	-	
23EDOE12	2	1	1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT	PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23MF0E13

OCCUPATIONAL HEATH AND SAFETY (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To gain knowledge about occupational health hazard and sa	afety measures at						
Objectives	work place.							
	 To learn about accident prevention and safety management. 							
	 To learn about general safety measures in industries. 							
UNIT – I	OCCUPATIONAL HEALTH AND HAZARDS	9 Periods						
Safety- History	y and development, National Safety Policy- Occupational Health Hazard	s - Ergonomics -						
Importance of	Importance of Industrial Safety Radiation and Industrial Hazards- Machine Guards and its types,							
Automation.								
UNIT – II	SAFETY AT WORKPLACE	9 Periods						
Safety at Work	place - Safe use of Machines and Tools: Safety in use of different types of u	nit operations -						
Ergonomics o	f Machine guarding - working in different workplaces - Operation,	Inspection and						
maintenance,	Plant Design and Housekeeping, Industrial lighting, Vibration and Noise Ca	ase studies.						
UNIT – III	ACCIDENT PREVENTION	9 Periods						
Accident Preve	ention Techniques - Principles of accident prevention - Definitions, Theo	ries, Principles –						
Hazard identif	ication and analysis, Event tree analysis, Hazop studies, Job safety analys	is - Theories and						
Principles of A	Accident causation - First Aid : Body structure and functions - Fracture	and Dislocation,						
Injuries to vari	ious body parts.							
UNIT – IV	SAFETY MANAGEMENT	9 Periods						
Safety Manage	ment System and Law - Legislative measures in Industrial Safety: Variou	s acts involved in						
Detail- Occupa	tional safety, Health and Environment Management: Bureau of Indian Sta	ndards on Health						
and Safety, 14	489, 15001 - OSHA, Process safety management (PSM) and its principles	- EPA standards-						
Safety Manage	ment: Organisational & Safety Committee - its structure and functions.							
UNIT – V	GENERAL SAFETY MEASURES	9 Periods						
Plant Layout f	or Safety -design and location, distance between hazardous units, lightin	ıg, colour coding,						
pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work Permit								
System: Significance of Documentation Directing Safety, Leadership -Case studies involving								
implementation of health and safety measures in Industries.								
Lecture: 45 Periods Tutorial: 0 Periods Practical:0 Periods Total:45 Periods								
REFERENCES								

1	Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
2	Danuta Koradecka, Handbook of Occupational Health and Safety, CRC, 2010.
3	Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
4	Deshmukh. L.M., Industrial Safety Management, 3 rd Edition, Tata McGraw Hill, New Delhi, 2008.
5	https://nptel.ac.in/courses/110105094
6	https://archive.nptel.ac.in/courses/110/105/110105094/

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
C01	Gain the knowledge about occupational health hazard and safety measures at	K3
	work place.	
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures in	K3
	industries.	
CO4	Know various laws, standards and legislations.	K2
C05	Implement safety and proper management of industries.	K4

COURSE ARTICULATION MATRIX:

Cos/Pos	P01	P02	P03	P04	PO5	
C01	2	1	1	1	1	
CO2	2	2	1	1	1	
CO3	1	2	1	1	1	
CO4	2	1	1	1	1	
CO5	2		2	1	1	
23MFOE13	2	andri gt	(مر)	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

Total %

1 – Slight, 2 – Moc	lerate, 3 – Su	bstantial				
			-	\neg		
ASSESSMENT PAT	TTERN – THE	EORY	▶ 東	(/		
Test / Bloom's	Rememb	Understanding	Applying	Analyzing	Evaluating	Creating
Category*	ering	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %
	(K1) %			//		
CAT1		50	50			
CAT2		50	30	20		
Individual		50	50			
Assessment 1		1000	DO OF	20		
/Case Study 1/		602	GOGO			
Seminar 1 /						
Project1						
Individual		50	30	20		
Assessment 2						
/Case Study 2/						
Seminar 2 /						
Project 2						
ESE		40	40	20		

23MF0E14	COST MANAGEMENT OF ENGINE (Common to all Brand	ERING PROJECTS ches)	1			
PREREQUISIT	TES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3

Course	• To understand the costing concents and their role in decision making						
Objectives	 To acquire the project management concepts and their various aspects in 	selection					
Objectives	 To gain the knowledge in costing concepts with project execution. 						
	• To develop knowledge of costing techniques in service sector and vari	ous budgetary					
	control techniques.	0,					
	• To familiarize with quantitative techniques in cost management.						
UNIT – I	INTRODUCTION TO COSTING CONCEPTS	9 Periods					
Introduction an	Introduction and Overview of the Strategic Cost Management Process, Cost concepts in decision-making;						
Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System;							
Inventory valua	ation; Creation of a Database for operational control; Provision of data	for Decision -					
Making.							
UNIT – II	PROJECT PLANNING ACTIVITIES	9 Periods					
Project: meaning	ng, Different types, why to manage, cost overruns centers, various stag	ges of project					
execution: con	ception to commissioning. Project execution as conglomeration of	technical and					
nontechnical a	ctivities. Detailed Engineering activities. Pre project execution main cl	earances and					
documents Proj	ject team: Role of each member. Importance Project site: Data required wit	h significance.					
Project contrac	ts. Types and contents. Project execution Project cost control. Bar charts	and Network					
diagram. Projec	t commissioning: mechanical and process.						
UNIT – III	COST ANALYSIS	9 Periods					
Cost Behaviour	and Profit Planning Marginal Costing; Distinction between Marginal	Costing and					
Absorption Co	sting; Break-even Analysis, Cost-Volume-Profit Analysis. Various de	cision-making					
problems. Stand	lard Costing and Variance Analysis.						
UNIT – IV	PRICING STRATEGIES AND BUDGETORY CONTROL	9 Periods					
Pricing strategi	es: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service s	ector, Just-in -					
time approach,	, Material Requirement Planning, Enterprise Resource Planning. Budge	etary Control;					
Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability							
pricing decisions including transfer pricing.							
UNIT – V	TQM AND OPERATIONS REASEARCH TOOLS	9 Periods					
Total Quality M	anagement and Theory of constraints, Activity-Based Cost Management, B	ench Marking;					
Balanced Score	Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear						
Programming, I	PERT/CPM, Transportation problems, Assignment problems, Simulation, L	earning Curve					
Theory.							
Theory.							

REFERENCES:

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor & Francis,
	2016
3	Nigel J, Engineering Project Management, John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall of
	India, New Delhi, 2011.
5	https://archive.pntel.ac.in/courses/110/104/110104073/

5 <u>https://archive.nptel.ac.in/courses/110/104/110104073/</u>

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the costing concepts and their role in decision making.	КЗ
CO2	Apply the project management concepts and analyze their various aspects in	K4
	selection.	
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various budgetary	K2
	control techniques.	
CO5	Become familiar with quantitative techniques in cost management.	K3

COURSE ARTICULATION MATRIX:

		the second second					
COs/Pos	P01	P02	P03	P04	PO5		
C01	1		2	1	1		
CO2	2	() E)	1	1	-		
CO3	2	2	2	-	-		
CO4	1 6	1	1	1	1		
C05	992 / /	2	1	1	-		
23MF0E14	1		1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

27

ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1			40	60			100
CAT2		30	30	40			100
Individual			40	60			100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual		30	30	40			100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE		20	40	40			100

23MF0E15

COMPOSITE MATERIALS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To summarize the characteristics of composite materials and effect of reinforcement						
Objectives	in composite materials.						
	• To identify the various reinforcements used in composite materials.						
	• To compare the manufacturing process of metal matrix composites.	•.					
	• To understand the manufacturing processes of polymer matrix com	posites.					
	• I o analyze the strength of composite materials.	0 Deede de					
UNII – I	INTRODUCTION	9 Periods					
Definition – Cl	assification and characteristics of Composite materials. Advantages and	d application of					
composites. Fu	nctional requirements of reinforcement and matrix. Effect of reinforcement	nent on overall					
composite perf	ormance.						
UNIT – II	REINFORCEMENT	9 Periods					
Preparation-lay	rup, curing, properties and applications of glass fibers, carbon fibers, Ke	evlar fibers and					
Boron fibers. P	roperties and applications of whiskers, particle reinforcements. Mechan	ical Behavior of					
composites: Ru	le of mixtures, Inverse rule of mixtures. Isostrain and Isosteresconditions.						
UNIT – III	MANUFACTURING OF METAL MATRIX COMPOSITES	9 Periods					
Casting – Solid	State diffusion technique, Cladding - Hot isostatic pressing- Manufactu	ring of Ceramic					
Matrix Compos	ites: Liquid Metal Infiltration – Liquid phase sintering–Manufacturing of C	arbon – Carbon					
composites: Kn	itting, Braiding, Weaving- Properties and applications.						
UNIT – IV	MANUFACTURING OF POLYMER MATRIX COMPOSITE	9 Periods					
Preparation of	Moulding compounds and prepregs – hand layup method – Autoclave me	ethod –Filament					
winding metho	d – Compression moulding – Reaction injection moulding. Properties and a	applications.					
UNIT - V STRENGTH ANALYSIS OF COMPOSITES 9 Periods							
Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting							
failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply							
discount trunca	ated maximum strain criterion; strength design using caplet plots; stress c	oncentrations.					
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 4	5 Periods					

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials, Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics , uLektz Learning Solutions Private Limited, Lektz, 2013.
5	https://nptel.ac.in/courses/112104168

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
C01	Know the characteristics of composite materials and effect of reinforcement in	K2
	composite materials.	
CO2	Know the various reinforcements used in composite materials.	K2
CO3	Understand and apply the manufacturing processes of metal matrix composites	K3
C04	Understand and apply the manufacturing processes of polymer matrix	K3
	composites.	
C05	Analyze the strength of composite materials.	K4

COURSE ARTICULATION MATRIX:

COs/Pos	P01	P02	P03	P04	P05	
C01	1	2	1	1	1	
CO2	2	2	1	1	2	
CO3	2	1	2	1	1	
CO4	1	2	2	2	1	
C05	1 and an	2	1	1	1	
23MF0E15	1 35	2	2	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

			T	7			
ASSESSMENT	PATTERN - THE	ORY					
Test /	Rememberin	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	g (K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*				No			
CAT1		60	40				100
CAT2			60	40			100
Individual		60	40				100
Assessment		202	G				
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual			60	40			100
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE		40	40	20			100

GLOBAL WARMING SCIENCE 23TEOE16

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Obiective	To make the students learn about the material consequences of climate change, sea level change due to increase in the emission of greenhouse gases and to examine the					
,	science behind mitigation and adaptation proposals.					
UNIT – I	INTRODUCTION	9 Periods				
Terminology re	elating to atmospheric particles – Aerosols - Types, characteristics, measu	rements – Particle				
mass spectrom	etry - Anthropogenic-sources, effects on humans.					
UNIT – II	CLIMATE MODELS	9 Periods				
General climate	e modeling- Atmospheric general circulation model - Oceanic general circ	ulation model, sea				
ice model, lan	d model concept, paleo-climate - Weather prediction by numerical pr	ocess. Impacts of				
climate change	- Climate Sensitivity - Forcing and feedback.					
UNIT – III	EARTH CARBON CYCLE AND FORECAST	9 Periods				
Carbon cycle-p	rocess, importance, advantages - Carbon on earth - Global carbon reserve	oirs - Interactions				
between huma	n activities and carbon cycle - Geologic time scales - Fossil fuels and e	nergy - Perturbed				
carbon cycle.	Considerate					
UNIT – IV	GREENHOUSE GASES	9 Periods				
Blackbody rad	iation - Layer model - Earth's atmospheric composition and Green hous	e gases effects on				
weather and cl	imate - Radioactive equilibrium - Earth's energy balance.					
UNIT – V	GEO ENGINEERING	9 Periods				
Solar mitigation - Strategies - Carbon dioxide removal - Solar radiation management - Recent observed						
trends in global warming for sea level rise, drought, glacier extent.						
Contact Periods:						
Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total: 45 Periods						
REFERENCES:	ALLES ALLES					

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and Its
	Consequences ", Princeton University Press, 1 st Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5 th
	Edition, 2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions for
	Global Warming", Elsevier, 1 st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1st edition, 2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global
	energybalance", Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUR	SE OUTCOMES:	Bloom's	
		Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped	
CO1	Understand the global warming in relation to climate changes throughout the	K2	
01	earth.	K2	
CO2	Assess the best predictions of current climate models.	K4	
CO3	Understand the importance of carbon cycle and its implication on fossil fuels.	K2	
CO4	Know about current issues, including impact from society, environment,	KA.	
C04	economy as well as ecology related to greenhouse gases.	K 4	
C05	Know the safety measures and precautions regarding global warming.	K5	

I COURSE ARTICULATION MATRIX	
COUNSE ANTICOLATION PIATMA	

COs/POs	P01	PO2	PO3	P04	P05	P06				
C01	2	1	2	1	1	2				
CO2	1	1	2	1	1	1				
CO3	1	2	1	1	1	2				
CO4	1	1	1	1	1	2				
CO5	2	1	2	1	1	2				
23TEOE16	1	1	Pand to Bring		1	2				
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY Test / Bloom's Remembering Understanding Applying Analyzing **Evaluating** Creating Total **Category*** (K1) % (K2) % % (K3) % (K4) % (K5) % (K6) % CAT1 20 35 35 10 100 --CAT2 15 25 20 15 25 100 -Individual hAssessment 1 / 20 20 Case Study 1 / 25 35 100 -_ Seminar 1 / Project 1 Individual Assessment 2 / Case Study 2 / 20 20 35 15 10 100 -Seminar 2 / Project 2 ESE 25 20 25 20 10 100 -

-

INTRODUCTION TO NANO ELECTRONICS (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

-									
Course	 To make the students provide strong, essential, important methods 	and foundations of							
Objective	quantum mechanics and apply quantum mechanics on engineering	fields.							
UNIT – I	INTRODUCTION	9 Periods							
Particles and V	Particles and Waves - Operators in quantum mechanics - The Postulates of quantum mechanics - The								
Schrodinger eq	uation values and wave packet Solutions - Ehrenfest's Theorem.								
UNIT – II	ELECTRONIC STRUCTURE AND MOTION	9 Periods							
Atoms- The H	ydrogen Atom - Many-Electron Atoms – Pseudopotentials, Nuclear Str	ucture, Molecules,							
Crystals - Tran	slational motion – Penetration through barriers – Particle in a box - Two	terminal quantum							
dot devices - T	wo terminal quantum wire devices.								
UNIT – III	SCATTERING THEORY	9 Periods							
The formulation	n of scattering events - Scattering cross section - Stationary scattering s	tate - Partial wave							
stationary scat	tering events - multi-channel scattering - Solution for Schrodinger equ	ation- Radial and							
wave equation	- Greens' function.								
UNIT – IV	CLASSICAL STATISTICS	9 Periods							
Probabilities a	nd microscopic behaviours - Kinetic theory and transport processes in	gases - Magnetic							
properties of m	naterials - The partition function.								
UNIT – V	QUANTUM STATISTICS	9 Periods							
Statistical mec	hanics - Basic Concepts - Statistical models applied to metals and sem	iconductors - The							
thermal properties of solids- The electrical properties of materials - Black body radiation - Low									
temperatures and degenerate systems.									
Contact Periods:									
Lecture:45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total:45	Periods							

1	Vladimi V.Mitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "Introduction to Nanoelectronics:
	Science, Nanotechnology, Engineering, and Applications", Cambridge University Press, 1st Edition,
	2007.
2	Vinod Kumar Khanna, "Introductory Nanoelectronics: Physical Theory and Device Analysis",
	Routledge, 1 st Edition, 2020.
3	George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States Edition,
	2007.
4	Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.
5	Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian Edition,
	2009.
6	Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum
	Statistical Mechanics", Wiley, 2004.
7	A. F. J. Levi, "Applied Quantum Mechanics" , 2 nd Edition, Cambridge, 2012.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
C01	Understand the postulates of quantum mechanics.	K2
CO2	Know about nano electronic systems and building blocks.	K2
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4
CO4	Learn the concepts involved in kinetic theory of gases.	K2
CO5	Know about statistical models applies to metals and semiconductor.	К3

COURSE ARTICULATION MATRIX

COs/POs	P01	PO2	PO3	P04	PO5	P06			
C01	1	1	1	1	1	1			
CO2	2	2	1	1	1	1			
CO3	2	2	2	1	1	1			
CO4	1	1	1	1	1	1			
C05	1	1	Q1 3	1	1	1			
23TEOE17	1	1	1 Dantin W. WO		1	1			
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY Understanding Applying Analyzing Test / Remembering Evaluating Total Creating (K2) % (K1) % (K3) % (K4) % (K5) % (K6) % Bloom's % **Category*** CAT1 30 30 20 20 100 --20 T CAT2 30 30 20 --100 Individual Assessment 1 20 / Case Study 1 35 25 20 100 --/ Seminar 1 / Project 1 Individual Assessment 2 25 / Case Study 2 30 20 25 100 _ _ / Seminar 2 / Project 2 20 30 30 20 100 ESE --

GREEN SUPPLY CHAIN MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To make the students learn and focus on the fundamental strategies	To make the students learn and focus on the fundamental strategies, tools and							
Objective	techniques required to analyze and design environmentally sustain	able supply chain							
	systems.								
UNIT – I	INTRODUCTION	9 Periods							
Intro to SCM ·	- complexity in SCM, Facility location - Logistics – Aim, activities, imp	oortance, progress,							
current trends	- Integrating logistics with an organization.								
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAGEMENT	9 Periods							
Basic concepts	of supply chain management - Supply chain operations - Planning and	sourcing - Making							
and delivering	- Supply chain coordination and use of technology - Developing supply cha	ain systems.							
UNIT – III	PLANNING THE SUPPLY CHAIN	9 Periods							
Types of decis	ions – strategic, tactical, operational - Logistics strategies, implement	ing the strategy -							
Planning reso	urces – types, capacity, schedule, controlling material flow, measuring	ng and improving							
performance.									
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN	9 Periods							
Procurement -	cycle, types of purchase - Framework of e-procurement - Inventory m	anagement – EOQ,							
uncertain dem	and and safety stock, stock control - Material handling - Purpose of	of warehouse and							
ownership, lay	rout, packaging - Transport - mode, ownership, vehicle routing and s	cheduling models-							
Travelling sales	sman problems - Exact and heuristic methods.								
UNIT – V	SUPPLY CHAIN MANAGEMENT STRATEGIES	9 Periods							
Five key confi	guration components - Four criteria of good supply chain strategies	- Next generation							
strategies- Nev	v roles for end-to-end supply chain management - Evolution of supply ch	ain organization –							
International is	International issues in SCM – Regional differences in logistics.								
Contact Perio	ds:								
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods							

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply Chain							
	Management", Routledge, 1 st Edition, 2019.							
2	Hsiao-Fan Wang and Surendra M.Gupta,"Green Supply Chain Management: Product Life Cycle							
	Approach",McGraw-Hill Education, 1 st Edition, 2011.							

3	Joseph Sarkis and Yijie Dou,	"Green Supply Chain Management	", Routledge,	1stEdition, 2017
---	------------------------------	--------------------------------	---------------	------------------

4	Arunachalam	Rajagopal,	"Green	Supply	Chain	Management:	A	Practical	Approach",	Replica,
	2021.									

5 Mehmood Khan, Matloub Hussain and Mian M. Ajmal,"Green Supply Chain Management for Sustainable Business Practice", IGI Global, 1st Edition, 2016.

6 S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.

7 Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction", Routledge, 1st Edition, 2017.

COURSE	OUTCOMES:	Bloom's			
		Taxonomy			
Upon completion of the course, the students will be able to:					
C01	Integrate logistics with an organization.	K2			
CO2	Evaluate complex qualitative and quantitative data to support strategic and operational	KE			
	decisions.	KJ			
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	КЗ			
C04	Analyze inventory management models and dynamics of supply chain.	K4			
CO5	Identify issues in international supply chain management and outsources strategies.	КЗ			

COURSE ARTICULA	FION MATRIX		· ·			
COs/POs	P01	PO2	P03	P04	PO5	P06
C01	1	1	1 SUITS	1 1	1	3
CO2	2	2	1	1	1	1
CO3	2	1	2	1	1	1
CO4	2	2		1	2	2
C05	1	1	2	1	1	3
23TEOE18	2	1	1		1	2
1 – Slight, 2 – Moder	ate, 3 – Substa	ntial	100000	CIE ALUS		

C

ASSESSMENT PA	TTERN – THEORY						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	25	30	10	10	-	100
CAT2	30	40	20	10	-	-	100
Individual							
Assessment 1 /							
Case Study 1 /	30	20	25	15	10	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment 2 /							
Case Study 2 /	35	30	25	10	-	-	100
Seminar 2 /							
Project 2							
ESE	30	30	20	10	10	-	100

23PSOE19

DISTRIBUTION AUTOMATION SYSTEM

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objective	To study about the distributed automation and economic evaluation schemes network	of power				
IINIT - I	INTRODUCTION	9 Periods				
Introduction to	Distribution Automation (DA) - Control system interfaces. Control and data re	JT erious				
Centralized (vs)	decentralized control. DA system DA hardware DAS software	quirements-				
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS	9 Periods				
DA canabilitios	- Automation system computer facilities- Management processes- Information m	onogomont-				
System reliabili	- Automation system computer ratifices Management processes mitormation in	anagement				
INIT – III	COMMUNICATION SYSTEMS	9 Periods				
Communication	requirements - reliability- Cost effectiveness- Data requirements- Two way	canability-				
Communication	during outages and faults - Ease of operation and maintenance. Conforming to the	architecture				
of flow Distrik	ution line carrier- Ripple control-Zero crossing technique- Telephone, cableT	<i>L</i> radio. AM				
broadcast. FM	SCA.VHF radio, microwave satellite, fiber optics-Hybrid communication systems i	used in field				
tests.	and the strate of the strate o	abou in noiu				
UNIT – IV	ECONOMIC EVALUATION METHODS	9 Periods				
Development a	nd evaluation of alternate plans- select study area – Select study period- Project l	oad growth-				
Develop alterna	tives- Calculate operating and maintenance costs-Evaluate alternatives.	0				
UNIT – V	ECONOMIC COMPARISON	9 Periods				
Economic com	parison of alternate plans-Classification of expenses - capital expenditures-Co	mparison of				
revenue requir	ements of alternative plans-Book life and continuing plant analysis- Year by y	ear revenue				
requirement an	alysis, Short term analysis- End of study adjustment-Break even analysis, sensitivi	ity analysis -				
Computational	aids.	-				
Contact Period	s:					
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					
REFERENCES	EFERENCES					

1	M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications, Ltd., 2010.
2	Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design" , Springer Science & Business Media, 21-Mar-2013
3	IEEE Tutorial course "Distribution Automation" , IEEE Working Group on Distribution Automation, IEEE Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society. Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
4	Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COURS	COURSE OUTCOMES:			
C01	Analyse the requirements of distributed automation	K1		
CO2	Know the functions of distributed automation	К2		
CO3	Perform detailed analysis of communication systems for distributed automation.	K3		
CO4	Study the economic evaluation method	K4		
CO5	Understand the comparison of alternate plans	K5		

COURSE ARTICULATION MATRIX

COs/Pos	P01	PO2	P03	P04
C01	2	-	1	3
C02	3	-	3	2
C03	3	-	3	2
C04	3	-	3	1
C05	2	-	1	2
23PS0E19	3	-	3	2
1 – Slight, 2 – Moderate, 3 – Substar	ntial	P		

ASSESSMENT P	PATTERN – THE	DRY WS	anten pro				
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	30%	20%	10%	20%	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual Assessment1/ Case study1/ Seminar 1/Project1	20%	10%	30%	20%	20%	-	100%
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20%	30%	10%	20%	20%	-	100%
ESE	30%	20%	20%	20%	10%	-	100%

23PSOE20

ELECTRICITY TRADING AND ELECTRICITY ACTS

(Common to all Branches)

PREREQUISITE	S	CATEGORY	L	Т	Р	С	
	NIL	OE	3	0	0	3	
			1			LJ	
Course	• To acquire expertise on Electric supply and dem	and of Indian Grid, ga	ain expo	osure	on		
Objective	energy trading in the Indian market and infer th	e electricity acts and	regulat	ory			
	authorities.						
UNIT – I	ENERGY DEMAND			9	Peri	ods	
Basic concepts i	n Economics - Descriptive Analysis of Energy Demand -	· Decomposition Ana	alysis a	nd Pa	rame	etric	
Approach - Den	nand Side Management - Load Management - Demand	l Side Management	- Energ	gy Eff	icien	cy -	
Rebound Effect							
UNIT – II	ENERGY SUPPLY			9	Peri	ods	
Supply Behavio	r of a Producer - Energy Investment - Economics of N	on-renewable Reso	urces -	Econ	omic	s of	
Renewable Ene	ergy Supply Setting the context - Economics of Ren	ewable Energy Sup	oply -	Econ	omic	s of	
Electricity Supp	ly						
UNIT – III	ENERGY MARKET			9	Peri	ods	
Perfect Competition	ition as a Market Form - Why is the Energy Market no	t Perfectly Competit	ive? - N	Iarke	t Fai	lure	
and Monopoly -	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC Era I	I - Oil Market: OPEC					
UNIT – IV	LAW ON ELECTRICITY			9	Peri	ods	
Introduction of	the Electricity Law; Constitutional Design - Evolution of	of Laws on Electricit	ty Salie	nt Fe	ature	s of	
Electricity Act, 2	2003 - Evolution of Laws on Electricity - Salient Features	s of the Electricity A	ct 2003	}			
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRICITY AC	Т		9	Peri	ods	
Regulatory Com	missions - Appellate Tribunal - Other Institutions und	er the Act - Electrici	ty (Am	endn	nent)	Bill	
2020/2021. A (Critical Comment - Renewable Energy - Role of Civil	Society; Comments	on Dra	nft Re	enewa	able	
Energy Act, 201	5						
Contact Period	S:						
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods					
	Que to a to a to Acup						
EFERENCES	FERENCES						

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of Energy",
	Vol.1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
4	Mohammad Naseem, "Energy Laws in India" , Kluwer Law International, 3rd Edn, The Netherlands, 2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
6	Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and Practices",
	Cambridge Univesity Press, 2014.

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
C01	Describe electric supply and demand of power grid	K1
CO2	Summarize various energy trading strategies	K2
CO3	Relate the electricity acts practically	K3
CO4	Cite the electricity regulatory authorities	K2
C05	Analyze/check the existing power grid for its technical and economical sustainability	K4

COURSE ARTICULATION MATE	RIX			
COs/Pos	P01	PO2	P03	P04
C01	3	-	3	3
CO2	3	-	1	1
CO3	3	-	2	2
CO4	3	-	1	2
C05	3	-	3	3
23PSOE20	3	R	2	2
1 – Slight, 2 – Moderate, 3 – Sub	stantial	notion par we as in the		
1 – Slight, 2 – Moderate, 3 – Sub	stantial			

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20%	30%	20%	30%	-	-	100%	
CAT2	20%	20%	20%	20%	20%	-	100%	
Individual Assessment1/ Case study1/ Seminar 1/Project1	20%	30%	30%	20%	-	-	100%	
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20%	30%	-	20%	-	40%	100%	
ESE	30%	30%	-	20%	20%	-	100%	

23PSOE21

MODERN AUTOMOTIVE SYSTEMS

(Common to all Branches)

9 Periods

9 Periods

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	 To expose the students with theory and applications of Automotive Electrical and
Objective	Electronic Systems.

INTRODUCTION TO MODERN AUTOMOTIVE ELECTRONICS UNIT – I

Introduction to modern automotive systems and need for electronics in automobiles- Role of electronics and microcontrollers- Sensors and actuators- Possibilities and challenges in automotive industry- Enabling technologies and industry trends.

UNIT – II	SENSORS AND ACTUATORS	9 Periods
Introduction- b	asic sensor arrangement- Types of sensors- Oxygen sensor, engine crankshaft ang	ular position
sensor – Engine	e cooling water temperature sensor- Engine oil pressure sensor- Fuel metering- v	ehicle speed
sensor and det	onation sensor- Pressure Sensor- Linear and angle sensors- Flow sensor- Temp	perature and
humidity senso	rs- Gas sensor- Speed and Acceleration sensors- Knock sensor- Torque sensor- Yaw	rate sensor-
Tvre Pressure s	ensor- Actuators - Stepper motors – Relays.	

UNIT – III **POWERTRAIN CONTROL SYSTEMS IN AUTOMOBILE**

9 Periods Electronic Transmission Control - Digital engine control system: Open loop and close loop control systems-Engine cooling and warm up control- Acceleration- Detonation and idle speed control - Exhaust emission control engineering- Onboard diagnostics- Future automotive powertrain systems.

SAFETY, COMFORT AND CONVENIENCE SYSTEMS UNIT – IV

Cruise Control- Anti-lock Braking Control- Traction and Stability control- Airbag control system- Suspension control- Steering control- HVAC Control. 9 Periods

UNIT – V **ELECTRONIC CONTROL UNITS (ECU)**

Introduction to Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotives - Design complexities of ECUs- V-Model for Automotive ECU's- Architecture of an advanced microcontroller (XC166 Family, 32-bit Tricore) used in the design of automobile ECUs- On chip peripherals, protocol interfaces, analog and digital interfaces.

Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John Wiley 1 and Sons, 2001.
- M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE 2 Press. series on Power Engineering, 2000.
- 3 Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
- 4 G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).
| COURS | E OUTCOMES: | Bloom's |
|---------|---|----------|
| | | Taxonomy |
| Upon co | ompletion of the course, the students will be able to: | Mapped |
| C01 | Acquire knowledge about conventional automotive control units and devices. | K1 |
| CO2 | Recognize the practical issues in the automotive control systems | K2 |
| CO3 | Analyze the impact of modern automotive techniques in various Engineering | K4 |
| | applications | |
| C04 | Develop modern automotive control system for electrical and electronics systems | K6 |
| C05 | Understand the function of sensors and actuators | К2 |

COURSE ARTICULATION MATRIX							
COs/Pos	P01	P02	P03	P04			
C01	3	-	1	3			
C02	3	-	3	2			
C03	3	-	3	2			
CO4	2	-	3	1			
C05	2	-	1	2			
23PS0E21	3	B	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual Assessment1/ Case study1/ Seminar 1/Project1	20%	30%		20%	-	30%	100%
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20%	30%	-	20%	-	40%	100%
ESE	30%	30%	20%	20%	-	-	100%

VIRTUAL INSTRUMENTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To comprehend the Virtual instrumentation programming concepts tov	vards			
Objective	measurements and control and to instill knowledge on DAQ, signal cond	litioning and			
	its associated software tools				
UNIT – I	INTRODUCTION	7 Periods			
Introduction -	advantages - Block diagram and architecture of a virtual instrument -	Conventional			
Instruments ve	ersus Traditional Instruments - Data-flow techniques, graphical programming	in data flow,			
comparison wi	th conventional programming.				
UNIT – II	GRAPHICAL PROGRAMMING AND LabVIEW	9 Periods			
Concepts of gra	aphical programming - LabVIEW software - Concept of VIs and sub VI - Display t	ypes - Digital			
- Analog - Cha	rt and Graphs. Loops - structures - Arrays – Clusters- Local and global variab	les – String -			
Timers and dia	log controls.				
UNIT – III	MANAGING FILES & DESIGN PATTERNS	11 Periods			
High-level and	low-level file I/O functions available in LabVIEW – Implementing File I/O functions	tions to read			
and write data	to files - Binary Files - TDMS - sequential programming - State machine pro	ogramming –			
Communicatio	n between parallel loops –Race conditions – Notifiers & Queues – Producer Cons	sumer design			
patterns					
UNIT – IV	PC BASED DATA ACQUISITION	9 Periods			
Introduction to	o data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration,	Resolution, -			
analog inputs	and outputs - Single-ended and differential inputs - Digital I/O, counters and	timers, DMA,			
Data acquisitio	on interface requirements - Issues involved in selection of Data acquisition ca	ards - Use of			
timer-counter	and analog outputs on the universal DAQ card.				
UNIT – V	DATA ACQUISITION AND SIGNAL CONDITIONING	9 Periods			
Components o	f a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ	hardware –			
Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation –					
Signal conditioning systems - Synchronizing measurements in single & multiple devices - Power quality					
analysis using	Electrical Power Measurement tool kit.				
Contact Perio	ds:				
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				
REFERENCES :					
1 1 Lattron Tree	uia Jim Vring "LabVIEW for Enormone, Cranhigal Drogramming Made Eagu ar	a Dava " (Dead			

1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.
2	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
3	Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional
	Publishing, 2019
4	Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
5	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation
	and Control", Newness, 2000

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	K6
C05	Familiarize and experiment with DAQ and Signal Conditioning	КЗ

Course Articulation Matrix

COs/POs	P01	P02	P03	P04	P05
C01	3	mann	3	2	1
CO2	3		3	2	1
CO3	3	5 Sugar Co	2	2	2
CO4	3		3	3	1
CO5	3	1 9	3	3	2
23PEOE22	3	1	3	2	1
1 – Slight, 2 – Moderate, 3 -	- Substantial		. //		
	//				

ASSESSMENT PATTERN – THEORY								
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*		04 TO 0 4	DO DE	00				
CAT1	30	40	15	15	-	-	100	
CAT2	15	10	25	30	20	-	100	
Individual	10	10	20	30	20	10	100	
Assessment1								
/ Case								
study1/								
Seminar								
1/Project1								
Individual	25	40	20	15	-	-	100	
Assessment2								
/ Case								
study2/								
Seminar 2								
/Project2								
ESE	30	25	15	20	5	5	100	

23PEOE23

ENERGY MANAGEMENT SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	Course• To Comprehend energy management schemes, perform energy audit and execute					
Objective	economic analysis and load management in electrical systems.					
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND MANAGEMENT	9 Periods				
Energy Conser	vation Act 2001 and policies – Eight National Missions - Basics of Energy a	nd its forms				
(Thermal and	Electrical) - Energy Management and Audit - Energy Managers and Auditors	- Types and				
Methodology A	Audit Report - Material and energy balance diagramsEnergy Monitoring and T	largeting.				
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENERATION	9 Periods				
Boiler Systems	- Types - Performance Evaluation of boilers - Energy Conservation Opportu	nity - Steam				
Distribution - I	Efficient Steam Utilisation - Furnaces:types and classification - Performance eva	aluation of a				
typical fuel fire	ed furnace. Cogeneration: Need - Principle - Technical options - classification	- Technical				
parameters and	d factors influencing cogeneration choice - Prime Movers - Trigeneration.					
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS	9 Periods				
Electricity Billi	ng – Electricity load management - Maximum Demand Control - Power Factor ir	nprovement				
and its benefit	ts - pf controllers - capacitors - Energy efficient transformers and Induction	on motors -				
rewinding and	l other factors influencing energy efficiency - Standards and labeling pro	ogramme of				
distribution tra	insformers and IM - Analysis of distribution losses - demand side management	- harmonics				
- filters - VFD a	and its selection.					
UNIT – IV	STUDY OF ELECTRICAL UTILITIES	9 Periods				
Compressor ty	pes - Performance - Air system components - Efficient operation of compressed	air systems-				
Compressor ca	apacity assessment - HVAC: psychrometrics and air-conditioning processes	- Types of				
refrigeration s	ystem - Compressor types and applications - Performance assessment of n	efrigeration				
plants - Lightin	g Systems: Energy efficient lighting controls - design of interior lighting - Case s	tudy.				
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMENT	9 Periods				
Performing Financial analysis: Fixed and variable costs - Payback period - ROI - methods - factors						
affecting analysis. Energy Performance Assessment: Heat exchangers - Fans and Blowers - Pumps. Energy						
Conservation in	n buildings and ECBC.					
Contact Perio	ds:					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					
REFERENC	ES:					

1	Murphy W.R. and G.Mckay Butter worth, "Energy Management", Heinemann Publications, 2007
2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
	Publishers, 2012.
3	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
	edition, Technical Publications, 2019.

4 S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, **"Energy Conservation and Audit"**, Second Edition, Nirali Prakashan Publications, 2021.

5 www.em-ea.org/gbook1.asp

COUR	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Analyze the feature of energy audit methodology and documentation of report.	КЗ
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
C04	Familiarize with electrical utilities.	K4
CO5	Perform assessment of different systems.	K5

Course Articulation Matrix COs/POs P01 P02 P03 P04 P05 C01 CO2 CO3 C04 C05 **23PEOE23** 1 – Slight, 2 – Moderate, 3 – Substantial

è

ASSESSMENT P	ATTERN – THEOR	Y &					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/Project1	-	30	30	20	20	-	100
Individual Assessment2/ Case study2/ Seminar 2 /Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23PEOE24

ADVANCED ENERGY STORAGE TECHNOLOGY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To explore the fundamentals, technologies and applications of energy s	torage		
Objective				
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION AND	9 Periods		
	CHANGES			
Storage Needs	- Variations in Energy Demand- Variations in Energy Supply- Interruptions	in Energy		
Supply- Transi	mission Congestion - Demand for Portable Energy-Demand and scale requ	irements -		
Environmental	and sustainability issues-conventional energy storage methods: battery-types.			
UNIT – II	TECHNICAL METHODS OF STORAGE	9 Periods		
Introduction: I	Energy and Energy Transformations, Potential energy (pumped hydro, comp	pressed air,		
springs)- Kinet	ic energy (mechanical flywheels)- Thermal energy without phase change pass	ive (adobe)		
and active (w	ater)-Thermal energy with phase change (ice, molten salts, steam)- Chem	ical energy		
(hydrogen, met	hane, gasoline, coal, oil)- Electrochemical energy (batteries, fuel cells)- Electrost	tatic energy		
(capacitors), E	lectromagnetic energy (superconducting magnets)- Different Types of Ener	gy Storage		
Systems.				
UNIT – III	PERFORMANCE FACTORS OF ENERGY STORAGE SYSTEMS	9 Periods		
Energy capture	e rate and efficiency- Discharge rate and efficiency- Dispatch ability and lo	oad flowing		
characteristics,	scale flexibility, durability - Cycle lifetime, mass and safety - Risks of fire	, explosion,		
toxicity- Ease o	f materials, recycling and recovery- Environmental consideration and recycling,	, Merits and		
demerits of diff	ferent types of Storage.			
UNIT – IV	APPLICATION CONSIDERATION	9 Periods		
Comparing Sto	rage Technologies- Technology options- Performance factors and metrics- E	fficiency of		
Energy System	s- Energy Recovery - Battery Storage System: Introduction with focus on Lea	d Acid and		
Lithium- Chem	nistry of Battery Operation, Power storage calculations, Reversible reaction	s, Charging		
patterns, Batte	ry Management systems, System Performance, Areas of Application of Ener	gy Storage:		
Waste heat rec	covery, Solar energy storage, Green house heating, Power plant applications,	Drying and		
heating for pro	cess industries, energy storage in automotive applications in hybrid and electric	vehicles.		
UNIT – V	HYDROGEN FUEL CELLS AND FLOW BATTERIES	9 Periods		
Hydrogen Eco	nomy and Generation Techniques, Storage of Hydrogen, Energy generation	on - Super		
capacitors: properties, power calculations - Operation and Design methods - Hybrid Energy Storage:				
Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor				
"Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation)				
Bacitor + Fue	l Cell or Flow Battery operation-Applications: Storage for Hybrid Electri	c Vehicles,		
Regenerative P	ower, capturing methods.			
Contact Period	ds:			
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods			

1	DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley,
	2010.
2	Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy
	Storage and Conversion", John Wiley and Sons, 2012.
3	Francois Beguin and ElzbietaFrackowiak, " Super capacitors ", Wiley, 2013.
4	Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The
1	Electrochemical Society, New Jersy, 2010.

COUR	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
C04	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2
	a and a second a se	

COURSE ARTICULATI	ON MATRIX	Same Danger Brug at					
COs/POs	P01	PO2	P03	P04	PO5		
C01	3	1	3	3	3		
CO2	3	1	3	3	3		
CO3	3	1	3	3	3		
CO4	3		3	3	3		
CO5	3		3	3	3		
23PEOE24	3	1	3	3	3		
1 – Slight, 2 – Moderate, 3 – Substantial							
ASSESSMENT DATTEDN _	ACCECCMENT DATTEDN THEODY						

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23AEOE25

DESIGN OF DIGITAL SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objective

• To gain knowledge in the design and VHDL programming of synchronous and asynchronous sequential circuits, PLD's and the basic concepts of testing in VLSI circuits

UNIT-I SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of Clocked Synchronous Sequential Circuits - Modeling, state table reduction, state assignment, Design of Synchronous Sequential circuits, Design of iterative circuits- ASM chart –ASM realization.

UNIT-II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of Asynchronous Sequential Circuits - Races in ASC – Primitive Flow Table - Flow Table Reduction Techniques, State Assignment Problem and the Transition Table – Design of ASC – Static and Dynamic Hazards – Essential Hazards– Data Synchronizers.

UNIT-III SYSTEM DESIGN USING PLDS

Basic concepts – Programming Technologies - Programmable Logic Element (PLE) – Programmable Array Logic (PLA)-Programmable Array Logic (PAL) –Design of combinational and sequential circuits using PLDs– Complex PLDs (CPLDs).

UNIT- IV INTRODUCTION TO VHDL

Design flow -Software tools – VHDL: Data Objects-Data types – Operators –Entities and Architectures

 Components and Configurations – Signal Assignment – Concurrent and Sequential statements ––Behavioral, Dataflow and Structural modeling– Transport and Inertial delays –Delta delays-Attributes - Generics– Packages and Libraries.

UNIT-V LOGIC CIRCUIT TESTING AND TESTABLE DESIGN

Digital logic circuit testing - Fault models - Combinational logic circuit testing - Sequential logic circuit testing-Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study: Traffic Light Controller.

Contact Periods:			
Lecture:45Periods	Tutorial:0Periods	Practical: 0Periods	Total: 45Periods

REFERENCES:

1	Donald G.Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni,"Circuit Design withVHDL",PHILearning,2011.
4	ParagK Lala,"Digital Circuit Testing and Testability",AcademicPress,1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage2ndEdition2012.
6	NripendraN.Biswas,"Logic Design Theory"PrenticeHallofIndia,2001.

9 Periods

9 Periods

9 Periods

9 Periods

9 Periods

COUR	SEOUTCOMES:	Bloom's Taxonomy
Upon	completion of the course ,students will be able to/have:	Mapped
C01	To design synchronous sequential circuits based on specifications.	К3
CO2	To design asynchronous sequential circuits based on specifications	КЗ
CO3	Ability to illustrate digital design implementation using PLDs.	K2
CO4	To develop algorithm and VHDL code for design of digital circuits.	КЗ
C05	Understand the different testing methods for combinational and sequential	K2
	circuits.	

COURSE ARTICU	JLATION MA	TRIX				
COs/POs	P01	PO2	P03	P04	P05	P06
C01	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3	- 76	Wara Da 2 500 BULW	A CIRLING	-	1
23AEOE25	3	-	2		-	1
1 – Slight, 2 – Mode	rate, 3 – Subs	stantial 🧹	-			
				봤 (

ASSESSMENT PAT	TTERN – THEORY			11			
Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%	V B.			100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%	A BUS			100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	2001	50%	50%				100%
ESE	20%	45%	35%				100%

BASICS OF NANO ELECTRONICS

23AE0E26

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objective

• The students will be able to acquire knowledge about nano device fabrication technology, nano structures, nano technology for memory devices and applications of nano electronics in data transmission.

UNIT – I TECHNOLOGY AND ANALYSIS	9 Periods
Fundamentals : Dielectric, Ferroelectric and Optical properties - Film Deposition Metho	ds – Lithography
Material removing techniques - Etching and Chemical Mechanical Polishing -	Scanning Probe
Techniques.	
UNIT – II CARBON NANO STRUCTURES	9 Periods
Principles and concepts of Carbon Nano tubes - Fabrication - Electrical, Mechan	ical and Vibration
Properties - Applications of Carbon Nano tubes.	
UNIT – III LOGIC DEVICES	9 Periods
Silicon MOSFET's: Novel materials and alternative concepts - Single electron d	levices for logic
applications - Super conductor digital electronics - Carbon Nano tubes for data processin	g.
UNIT – IV MEMORY DEVICES AND MASS STORAGE DEVICES	9 Periods
Flash memories - Capacitor based Random Access Memories - Magnetic Random A	Access Memories -
Information storage based on phase change materials - Resistive Random Access Memo	ories - Holographic
Data storage.	
UNIT – V DATA TRANSMISSION AND INTERFACING DISPLAYS	9 Periods
Photonic Networks - RF and Microwave Communication System - Liquid Crystal	Displays - Organic
Light emitting diodes.	
Contact Periods:	
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Per	iods

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronicmaterials and
	novel devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics
	Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer,
	2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher,
	California", 2003.

COURS	SE OUTCOMES:	oom's Taxonomy
Upon completion of the course, students will be able to/have:		Mapped
C01	Explain principles of nano device fabrication technology.	K2
CO2	Describe the concept of Nano tube and Nano structure.	K2
CO3	Explain the function and application of various nano devices	K3
CO4	Reproduce the concepts of advanced memory technologies.	K2
CO5	Emphasize the need for data transmission and display systems.	K2

COURSE ARTICU	LATION M	IATRIX				
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
C05	3	-	2	P-	-	1
23AE0E26	3	- (0	2	LUB BELOW	-	1
1 – Slight, 2 – Moder	ate, 3 – Su	ıbstantial	D'AND	THE CON	/	
				H /	>	

ASSESSMENT PA	ATTERN – THEORY	Y		11			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creati ng (K6) %	Total %
CAT1	50%	25%	25%	S.			100%
CAT2	50%	25%	25%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50%	25%	25%	110			100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50%	25%	25%				100%
ESE	50%	25%	25%				100%

	ADVANCED PROCESSOR
23AE0E27	(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course Objective

• The students will be able to acquire knowledge about the high performance RISC, CISC and special purpose processors.

UNIT – I MICROPROCESSOR ARCHITECTURE

9 Periods

Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile – Cache – Virtual memory and paging – Segmentation – Pipelining – The instruction pipeline – pipeline hazards – Instruction level parallelism – reduced instruction set – Computer principles – RISCversus CISC – RISC properties – RISC evaluation.

UNIT – II HIGH PERFORMANCE CISC ARCHITECTURE –PENTIUM

9 Periods

9 Periods

9 Periods

The software model – functional description – CPU pin descriptions – Addressing modes – Processor flags – Instruction set – Bus operations – Super scalar architecture – Pipe lining – Branch prediction – The instruction and caches – Floating point unit– Programming the Pentium processor.

UNIT - III HIGH PERFORMANCE CISC ARCHITECTURE - PENTIUM INTERFACE9 Periods

Protected mode operation – Segmentation – paging – Protection – multitasking – Exception and interrupts - Input /Output – Virtual 8086 model – Interrupt processing.

UNIT – IV HIGH PERFORMANCE RISC ARCHITECTURE: ARM

ARM architecture – ARM assembly language program – ARM organization and implementation – ARM instruction set - Thumb instruction set.

UNIT – V SPECIAL PURPOSE PROCESSORS

Altera Cyclone Processor – Audio codec – Video codec design – Platforms – General purpose processor – Digital signal processor – Embedded processor – Media Processor – Video signal Processor – Custom Hardware – Co-Processor.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, " ARM System –On –Chip architecture ", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COUR	Bloom's	
Upon o	Taxonomy	
		Mapped
C01	Describe the fundamentals of various processor architecture.	K2
CO2	Interpret and understand the high performance features in CISC	K2
	architecture.	
CO3	Describe the concepts of Exception and interrupt processing.	K2
CO4	Develop programming skill for ARM processor.	КЗ
C05	Explain various special purpose processor	K2

COURSE ARTICULATION MATRIX							
P01 P02 P03	P04 P05 P06						
3 - 2	1						
3 - 2	1						
3 - 2	1						
3 - 2	1						
3	1						
3 - 2 2	1						
e, 3 – Substantial							
3 - 2 2 2, 3 – Substantial							

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Total %	
CAT1	40%	40%	20%	VB.			100%	
CAT2	40%	40%	20%	7.000			100%	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%	
ESE	30%	40%	30%				100%	

23VLOE28

HDL PROGRAMMING LANGUAGES (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To code and simulate any digital function in Verilog HDL and understand the				
Objective	difference between synthesizable and non-synthesizable codes.				
UNIT – I	VERILOG INTRODUCTION AND MODELING	9 Periods			
Introduction to	o Verilog HDL, Language Constructs and Conventions, Gate Level Mod	eling, Modeling			
at Dataflow L	evel, Behavioral Modeling, Switch Level Modeling, System Tasks,	Functions and			
Compiler Dire	ctives.				
UNIT – II	SEQUENTIAL MODELING AND TESTING	9 Periods			
Sequential Mo	dels - Feedback Model, Capacitive Model, Implicit Model, Basic Memor	ry Components,			
Functional Re	gister, Static Machine Coding, Sequential Synthesis. Test Bench -	Combinational			
Circuits Testin	g, Sequential Circuit Testing, Test Bench Techniques, Design Verifica	ation, Assertion			
Verification.					
UNIT – III	SYSTEM VERILOG	9 Periods			
Introduction,	System Verilog declaration spaces, System Verilog Literal Values an	d Built-in Data			
Types, System	Verilog User-Defined and Enumerated Types, system Verilog Arrays,	Structures and			
Unions, system	n verilog Procedural Blocks, Tasks and Functions.				
UNIT – IV	SYSTEM VERILOG MODELING	9 Periods			
System Verilo	g Procedural Statements, Modeling Finite State Machines with Sys	stem Verilog,			
System Verilog	g Design Hierarchy.				
UNIT – V	INTERFACES AND DESIGN MODEL	9 Periods			
System Verilog Interfaces, A Complete Design Modeled with System Verilog, Behavioral and					
Transaction Level Modeling.					
Contact Periods:					
Lecture: 45 Periods Tutorial:0 Periods Practical:0 Periods Total: 45 Periods					

1	T.R.Padmanabhan, B Bala Tripura Sundari, " Design through Verilog HDL" , Wiley 2009.					
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog For					
	Design Second Edition A Guide to Using System Verilog for Hardware Design and					
	Modelling", Springer 2006.					
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.					
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.					
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004					
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of					
	Projects on FPGAs and ASICs Using Verilog", Springer, 2007.					
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language					
	Features", Springer 2006.					

Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using System Verilog for Hardware Design and Modeling" 1st Edition, 2003

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	Mapped	
C01	Explain the verilog coding and simulate any digital function using	K2
	Verilog HDL	
CO2	Develop sequential modeling based Verilog HDL code and develop	КЗ
	the test bench for the modeling	
CO3	Explain the system verilog modeling	K2
CO4	Differentiate the synthesizable and non-synthesizable code	КЗ
CO5	Apply good coding techniques on system verilog interfaces and	КЗ
	complete design model	

COURSE ARTICULATION MATRIX						
COs/POs	P01	PO2	P03	P04	P05	P06
C01	3	3 Basher	1 A F	2		2
CO2	3	3	Summer Ce	2 2		2
CO3	3	3		2		2
CO4	3	3	•1	2		2
CO5	3	3	\geq	2		2
23VLOE28	3	3		2		2
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PATTERN – THEORY								
Test /	Remembering	Understandin	Applyin	Analyzin	Evaluating	Creating	Total	
Bloom's	(K1) %	g (K2) %	g (K3) %	g (K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	40%	40%	20%	-	-	-	100%	
CAT2	40%	40%	20%	-	-	-	100%	
Individual	-	50%	50%	-	-	-	100%	
Assessment								
1 /Case								
Study 1/								
Seminar 1 /								
Project1								
Individual	-	50%	50%	-	-	-	100%	
Assessment								
2 /Case								
Study 2/								
Seminar 2 /								
Project 2								
ESE	40%	40%	20%	-	-	-	100%	

6

23V	LOF	29
23V	LUĽ	

CMOS VLSI DESIGN (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To gain knowledge on CMOS Circuits with its characterization a	and to design			
Objective	CMOS logic and sub-system with low power				
UNIT – I	INTRODUCTION TO MOS CIRCUITS	9 Periods			
MOS Transistor	Theory -Introduction MOS Device Design Equations -MOS Transistor as	a Switches -			
Pass Transisto	r - CMOS Transmission Gate -Complementary CMOS Inverter - Stati	c Load MOS			
Inverters - Inve	rters with NMOS loads - Differential Inverter - Tri State Inverter - BiCMC	S Inverter.			
UNIT – II	CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION	9 Periods			
Delay Estimat	ion, Logical Effort and Transistor Sizing, Power Dissipation, Sizin	g Routing			
Conductors, Ch	arge Sharing, Design Margin and Reliability.				
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN	9 Periods			
CMOS Logic G	ate Design, Physical Design of CMOS Gate, Designing with Transmiss	sion Gates,			
CMOS Logic Str	uctures, Clocking Strategies, I/O Structures.				
UNIT – IV	CMOS SUBSYSTEM DESIGN	9 Periods			
DataPath Opera	ations-Addition/Subtraction, Parity Generators, Comparators, Zero/One	Detectors,			
Binary Counte	rs, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Con	trol Logic			
Implementatio	n.				
UNIT – V	LOW POWER CMOS VLSI DESIGN	9 Periods			
Introduction to	b Low Power Design, Power Dissipation in FET Devices, Power Diss	sipation in			
CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits,					
Architectural Level Approach – Pipelining and Parallel Processing Approaches, Low Power Basics					
CMOS Gate and Adder Design.					
Contact Periods					
Locture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					
Lecture. 45 Fe	inus interious riacticalio rerious Iolal: 45 reriou	3			

1	Sung Mo Kang,Yusuf Lablebici,"CMOS Digital Integrated Circuits:Analysis & Design", Tata Mc-
	Graw Hill, 2011.
2	N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley,1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems
	Perspective", Pearson Education 2013.
4	Kiat-Seng Yeo,Kaushik Roy," Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill
	Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Jan M .Rabaey,"Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.

COUF	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Explain the MOS circuits and Transmission gates	K2
CO2	Illustrate the CMOS Circuits with its characterization	K2
CO3	Design CMOS logic circuits	К3
C04	Design CMOS sub-system	К3
C05	Discuss low power CMOS VLSI Design	K2

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05	P06		
C01	2	1	-	2	-	3		
CO2	2	1	-	2	-	3		
CO3	2	1	-	2	-	3		
CO4	3	1	mm	2	-	3		
CO5	3	1 angular		28,000 2	-	3		
23VLOE29	3	113	NUT OF	2	-	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test /	Rememberin	Understandin	Applying	Analyzing	Evaluatin	Creatin	Total		
Bloom's	g (K1) %	g (K2) % 🧷	(K3) %	(K4) %	g (K5) %	g (K6)	%		
Category*		X Ja		A.		%			
CAT1	40%	40%	20%		-	-	100%		
CAT2	40%	40%	20%	acuto /	-	-	100%		
Individual	-	50%	50%	Ð -	-	-	100%		
Assessment									
1 /Case									
Study 1/									
Seminar 1 /									
Project1									
Individual	-	50%	50%	-	-	-	100%		
Assessment									
2 /Case									
Study 2/									
Seminar 2 /									
Project 2									
ESE	40%	40%	20%	-	-	-	100%		

HIGH LEVEL SYNTHESIS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To provide students with foundations in High level synthes	vic vorification				
Ohiective	• To provide students with foundations in fligh level synthes	sis, vermaalon				
Objective	and CAD 1001s					
UNIT – I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS	9 Periods				
Overview HLS	flow, Scheduling Techniques, Resource sharing and Binding Techniq	ues, Data-path				
and Controller	and Controller Generation Techniques.					
UNIT – II	HIGH LEVEL SYNTHESIS	9 Periods				
Introduction t	o HDL, HDL to DFG, operation scheduling: constrained and unconstrair	ned scheduling,				
ASAP, ALAP, L	ist scheduling, Force directed Scheduling, operator binding, Static Ti	ming Analysis:				
Delay models,	setup time, hold time, cycle time, critical paths, Topological mvs.	Logical timing				
analysis, False	paths, Arrival time (AT), Required arrival Time (RAT), Slacks.					
UNIT – III	HIGH-LEVEL SYNTHESIS VERIFICATION	9 Periods				
Simulation ba	ased verification - Formal Verification of digital systems- BDD base	ed approaches,				
functional equ	ivalence, finite state automata, ω -automata, FSM verification.					
UNIT – IV	CAD TOOLS FOR SYNTHESIS	9 Periods				
CAD tools for	synthesis, optimization, simulation and verification of design at variou	s levels as well				
as for special	l realizations and structures such as microprogrammes, PLAs, ga	ate arrays etc.				
Technology ma	apping for FPGAs. Low power issues in high level synthesis and logic sy	nthesis.				
UNIT – V	ADVANCED TOPICS	9 Periods				
Relative Sched	luling, IO scheduling modes - cycle fixed scheduling modes, super-fi:	xed scheduling				
modes, free-floating scheduling mode, Pipelining, Handshaking, System Design, High-Level						
Synthesis for FPGA.						
Contact Perio	ds:					
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Peri	iods				
	Auron Dia Dia					
	10 AN 10 AN					

1	Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit",
	Springer, 2008.
2	Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
3	D. Micheli,"Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
4	Dutt, N. D. and Gajski, D. D., " High level synthesis ", Kluwer, 2000.
5	Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
6	David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and
	Synchronization Constraints", Kluwer Academic Publishers, 1992.
7	K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999,
	Wiley.
8	Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System
	Design and Analysis", Springer,2006.

COUR Upon	COURSE OUTCOMES: Upon completion of the course, the students will be able to:				
C01	Understand the fundamentals of High level synthesis	K2			
CO2	Synthesis the HDL for operation scheduling	K2			
CO3	Simulate and verify any digital systems	K2			
C04	Apply CAD tools for synthesis	K2			
CO5	Have knowledge on various scheduling modes	K2			

COURSE ARTICULATION MATRIX :

COs/POs	P01	P02	P03	P04	P05	P06
CO1	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	-	2	2	-
CO4	2	2	-	2	2	-
CO5	2	2	-	2	2	-
23VL0E30	2	2		2	2	-
1 – Slight, 2 – Moderate, 3 -	- Substanti	ial	P			

Contro pr

ASSESSMENT PATTERN – THEORY								
Test /	Rememberin	Understandin	Applying	Analyzing	Evaluatin	Creating	Total	
Bloom's	g (K1) %	g (K2) %	(K3) %	(K4) %	g (K5) %	(K6) %	%	
Category*								
CAT1	50%	50%		- //	-	-	100%	
CAT2	50%	50%		<u> </u>	-	-	100%	
Individual	-	50%	50%	- 11 -	-	-	100%	
Assessment 1		AL X						
/Case Study								
1/ Seminar 1		Querup a	4000	15000				
/ Project1		TUS-	440 00000	57				
Individual	-	50%	50%	-	-	-	100%	
Assessment 2								
/Case Study								
2/ Seminar 2								
/ Project 2								
ESE	50%	50%		-	-	-	100%	

23CSOE31

ARTIFICIAL INTELLIGENCE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	Identify and apply AI techniques in the design of systems that	t act intelligently, making			
Objectives	automatic decisions and learn from experience.				
UNIT – I	SEARCH STRATEGIES	9 Periods			
Uninformed S	Strategies – BFS, DFS, Djisktra, Informed Strategies – A* search,	, Heuristic functions, Hill			
Climbing, Adv	ersarial Search – Min-max algorithm, Alpha-beta Pruning				
UNIT – II	PLANNING AND REASONING	9 Periods			
State Space se	arch, Planning Graphs, Partial order planning, Uncertain Reasoning	– Probabilistic Reasoning,			
Bayesian Netv	vorks, Dempster Shafer Theory, Fuzzy logic	_			
UNIT – III	PROBABILISTIC REASONING	9 Periods			
Probabilistic	Reasoning over Time - Hidden Markov Models, Kalman Filters, Dyi	namic Bayesian Networks.			
Knowledge Re	epresentations – Ontological Engineering, Semantic Networks and de	escription logics.			
UNIT – IV	DECISION MAKING	9 Periods			
Utility Theory	, Utility Functions, Decision Networks – Sequential Decision Proble	ems – Partially Observable			
MDPs – Game	Theory.				
UNIT – V	REINFORCEMENT LEARNING	9 Periods			
Reinforcemen	t Learning - Passive and active reinforcement learning - Gene	rations in Reinforcement			
Learning - Policy Search – Deep Reinforcement Learning.					
Contact Periods:					
Lecture: 3 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	riods			
REFERENCES					

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice Hall,2010.
4	Elaine Rich,Kevin Knight,Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill, 2009.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	K3
CO3	Examine data using statistical codes and solve complex AI problems	K6
CO4	Apply techniques to make apt decisions.	K4
C05	Use deep reinforcement learning to solve complex AI problems	K6

COURSE ARTICULATION MATRIX									
COs/ POs	PO 1	P02	PO 3	PO 4	P05	P06			
C01	3		2		3	3			
CO2	3		2		3	3			
CO3	3		3		3	3			
CO4	3		3		3	3			
C05	3		3		3	3			
23CSOE31 3 3 3 3									
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY											
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
Category*											
CAT1		20	40	20	20		100				
CAT2		10	20	40	10	20	100				
Individual		W595	and and)							
Assessment											
1/ Case				>	FO	FO	100				
study 1/			東 //		50	50	100				
Seminar 1/											
Project 1											
Individual		1 1									
Assessment											
2/Case		X BA		nd.	50	50	100				
study 2/				3	50	50	100				
Seminar 2/		04000	001	1							
Project 2		TO BELLE	Aleren all								
ESE	30	30	40				100				

23CSOE32

COMPUTER NETWORK MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	• After the completion of the course, the students will be	able to understand the				
Objective	concept of layering in networks, functions of protocols	of each layer of TCP/IP				
	protocol suite, concepts related to network addressing	and routing and build				
	simple LANs, perform basic configurations for route	ers and switches, and				
	implement IPv4 and IPv6 addressing schemes using Cisco	o Packet Tracer.				
UNIT – I	INTRODUCTION AND APPLICATION LAYER	9 Periods				
Building networ	k – Network Edge and Core – Layered Architecture – OSI Model	– Internet Architecture				
(TCP/IP) Networking Devices: Hubs, Bridges, Switches, Routers, and Gateways – Performance Metrics -						
Ethernet Netwo	rking – Introduction to Sockets – Application Layer protocols	– HTTP – FTP Email				
Protocols – DNS.						
UNIT – II	TRANSPORT LAYER AND ROUTING	9 Periods				
Transport Layer	functions -User Datagram Protocol - Transmission Control Pro	otocol – Flow Control –				
Retransmission S	Strategies – Congestion Control - Routing Principles – Distance Vec	tor Routing – Link State				
Routing – RIP –	OSPF – BGP – Introduction to Quality of Service (QoS).Case Study	r: Configuring RIP, OSPF				
BGP using Packe	t tracer					
UNIT – III	NETWORK LAYER	9 Periods				
Network Layer: S	Switching concepts – Internet Protocol – IPV4 Packet Format – IP A	Addressing – Subnetting				
– Classless Inter	Domain Routing (CIDR) – Variable Length Subnet Mask (VLSM) –	DHCP – ARP – Network				
Address Transla	tion (NAT) – ICMP – Concept of SDN.Case Study: Configuring V	LAN, DHCP, NAT using				
Packet tracer						
UNIT – IV	INTERNETWORK MANAGEMENT	9 Periods				
Introduction to t	he Cisco IOS - Router User Interface – CLI - Router and Switch Ad	ministrative Functions -				
Router Interface	s - Viewing, Saving, and Erasing Configurations - Switching Service	s - Configuring Switches				
- Managing Con	figuration Registers - Backing Up and Restoring IOS - Backing	Up and Restoring the				
Configuration - Using Discovery Protocol (CDP) - Checking Network Connectivity						
UNIT – V	TRAFFIC MANAGEMENT AND WAN PROTOCOLS	9 Periods				
Managing Traffic	with Access Lists: Introduction to Access Lists - Standard Access	Lists - Extended Access				
Lists - Named Access Lists - Monitoring Access Lists - Wide Area Networking Protocols: Introduction to						
Wide Area Networks - Cabling the Wide Area Network - High-Level Data-Link Control (HDLC) Protocol -						
Point-to-Point P	rotocol (PPP) - Frame Relay: Frame Relay Implementation and I	Monitoring - Integrated				
Services Digital N	Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring DD	R				
Contact Periods:						

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh Edition,
	Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education,
	2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNA™: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COURSE	OUTCOMES:	Bloom's		
		Taxonomy		
Upon completion of the course, the students will be able to:				
C01	Highlight the significance of the functions of each layer in the network.	K1		
CO2	Identify the devices and protocols to design a network and implement it.	K4		
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	K3		
CO4	Build simple LANs, perform basic configurations for routers and switches	K6		
C05	Illustrate various WAN protocols	K2		

COURSE ART	TICULATION	MATRIX		H N		
COs/POs	P01	PO2	P03	P04	PO5	P06
C01	3	1	3		2	1
CO2	3		3		2	2
CO3	3	E	3		3	2
CO4	3		3		3	3
C05	3	Ű	3		3	3
23CSOE32	3	1	2 Pos	STR PLUS	3	2
1 – Slight, 2 –	Moderate, 3	- Substantial	0000	GO		

ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	30	30	20	20			100		
CAT2		30	20	30	10	10	100		
Individual	10	30	20	20	20		100		
Assessment									
1 /Case									
Study 1 /									
Seminar 1 /									
Project 1									
Individual		20	20	20	20	20	100		
Assessment									
2 / Case									
Study 2/									
Seminar 2/									
Project 2									
ESE	20	40	40				100		

23CSOE33

BLOCKCHAIN TECHNOLOGIES (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• The objective of the course is to explore basics of block ch	ain technology
Objective	and its application in various domain	
UNIT – I	INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN	9 Periods
History of Blo	ockchain - Types of blockchain- CAP theorem and blockchain	– benefits and
Limitations of	Blockchain - Decentalization using blockchain - Blockchain im	plementations-
Block chain in	practical use - Legal and Governance Use Cases	
UNIT – II	BITCOIN AND CRYPTOCURRENCY	9 Periods
Introduction to	o Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining	Developments,
Bitcoin Wallets	s, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM	I), Merkle Tree,
Double-Spend	Problem, Blockchain and Digital Currency, Transactional Bloc	cks, Impact of
Blockchain Teo	chnology on Cryptocurrency	
UNIT – III	ETHEREUM	9 Periods
Introduction t	o Ethereum, Consensus Mechanisms, Metamask Setup, Ethereu	ım Accounts, ,
Transactions, I	Receiving Ethers, Smart Contracts	
UNIT – IV	HYPERLEDGER AND SOLIDITY PROGRAMMING	9 Periods
Introduction t	o Hyperledger, Distributed Ledger Technology & its Challenges,	Hyperledger &
Distributed L	edger Technology, Hyperledger Fabric, Hyperledger Compo	ser. Solidity –
Programming	with solidity	
UNIT – V	BLOCKCHAIN APPLICATIONS	9 Periods
Ten Steps to b	uild your Blockchain application – Application: Internet of Things,	Medical Record
Management S	ystem, Domain Name Service and Future of Blockchain, Alt Coins	
Contact Perio	ds:	
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods

1	Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and
	Smart Contracts Explained", Second Edition, Packt Publishing, 2018.
2	Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law,
	and Technology Solutions",McGraw Hill Education ,2018.
3	Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency
	Technologies: A Comprehensive Introduction" Princeton University Press, 2016.
4	Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.
5	Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps",
	O'Reilly Publishing, 2018
6	NPTEL Course : Blockchain and its applications
	https://archive.nptel.ac.in/courses/106/105/106105235/

COUR Upon o	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Comprehend the working of Blockchain technology	K2
CO2	Narrate working principle of smart contracts and create them using solidity for given scenario.	КЗ
CO3	Comprehend the working of Hyperledger in an real time application	K2
C04	Apply the learning of solidity to build de-centralized apps on Ethereum	K3
CO5	Develop applications on Blockchain	КЗ

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	PO5	P06		
C01	2		3	2		3		
CO2	2	3	3	3	2	3		
CO3	3		3	2		3		
CO4	3	3	3	Andre pr3	2	3		
C05	3	3	3	3	2	3		
23CSOE33	3	3	3	3	2	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

				11					
ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	40	40	7			100		
CAT2	20	30	50				100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		30	70				100		
Individual Assessment 2 /Case Study 2/Seminar 2 / Project 2		40	60				100		
ESE	10	60	30				100		

ENGLISH FOR RESEARCH PAPER WRITING

(Common to All Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course ObjectiveThe objective of the course is to make the learners understand the format and intricacies involved in writing a research paper.						
UNIT – I	PLANNING AND PREPARATION	6 Periods				
Need for publishin	g articles, Choosing the journal, Identifying a model journal paper, Crea	tion of files for				
each section, Exped	ctations of Referees, Online Resources.					
UNIT – II	SENTENCES AND PARAGRAPHS	6 Periods				
Basic word in Engl	ish, Word order in English and Vernacular, placing nouns, Verbs, Adjectiv	ves, and Adverb				
suitably in a sent	ence, Using Short Sentences, Discourse Markers and Punctuations-	Structure of a				
Paragraph, Breakin	ng up lengthy Paragraphs.					
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC) OF WRITING	6 Periods				
Accuracy, Brevity a	and Clarity in Writing, Reducing the linking words, Avoiding redundan	cy, Appropriate				
use of Relative and	l Reflexive Pronouns, Monologophobia, verifying the journal style, Logic	cal Connections				
between others aut	thor's findings and yours.					
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING	6 Periods				
Making your finding	ngs stand out, Using bullet points headings, Tables and Graphs- Availing	g non-experts				
opinions, Hedging,	Toning Down Verbs, Adjectives, Not over hedging, Limitations of your res	earch.				
UNIT – V	SECTIONS OF A PAPER	6 Periods				
Titles, Abstracts, Introduction, Review of Literature, Methods, Results, Discussion, Conclusions, References.						
Contact Periods:						
Lecture: 30 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods					

1	Goldbort R , "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences" , SIAM. Highman's book, 1998.
4	Adrian Wallwork," English for Writing Research Papers" , Springer New York Dordrecht Heidelberg London, 2011.

COURSE	COURSE OUTCOMES :						
Upon completion of this course the learners will be able to							
C01	Understand the need for writing good research paper.	K2					
CO2	Practice the appropriate word order, sentence structure and paragraph writing.	K4					
CO3	Practice unambiguous writing.	КЗ					
C04	Avoid wordiness in writing.	K2					
CO5	Exercise the elements involved in writing journal paper.	КЗ					

COURSE ARTICULATION MATRIX :

COc/POc	DO1	PO2	PO2	PO4	POF	PO6	
C05/F05	FUI	F02	F03	104	105	ruu	
C01	3	3	1	1	1	1	
CO2	3	3	1	1	1	1	
CO3	3	3 0	12	1	1	1	
CO4	3	3	100 10-10-00	1	1	1	
CO5	3	3		1	1	1	
23VLACZ1	3	3	1	1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Rememberi	Understanding	Applyin	Analyzin	Evaluatin	Creatin	Tota		
Category*	ng (K1) %	(K2) %	g (K3)	g (K4) %	g (K5) %	g (K6)	1%		
			%			%			
CAT1	40	40	20	-	-	-	100		
CAT2	40	40	20	-	-	-	100		
Individual									
Assessment 1/									
Case Study 1/	-	50	50	-	-	-	100		
Seminar 1/									
Project 1									
Individual									
Assessment 2/									
Case Study 2/	-	50	50	-	-	-	100		
Seminar 2/									
Project 2									
ESE	30	30	40	-	-	-	100		

2211 4672	DISASTER MANAGEMENT
23VLAU22	(Common to all branches)

Course	• To become familiar in key concepts and consequences about hazards	s, disaster and			
Objectives	bjectives area of occurrence.				
	• To know the various steps in disaster planning.				
	• To create awareness on disaster preparedness and management.				
UNIT – I	INTRODUCTION	6 Periods			
Disaster: Defin	ition, Factors and Significance; Difference between Hazard and Disaster;	Natural and			
Manmade Dis	asters: Difference, Nature, Types and Magnitude. Areas proneto	,Earthquakes			
Floods,Drought	ts, Landslides ,Avalanches ,Cyclone and Coastal Hazards with Special Referenc	e to Tsunami.			
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods			
Economic Dam	nage, Loss of Human and Animal Life, Destruction of Ecosystem. Natu	ral Disasters:			
Earthquakes, V	olcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides an	d Avalanches,			
Man-made disa	aster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills,	Outbreaks of			
Disease and Ep	idemics, War and Conflicts.				
UNIT – III	DISASTER PLANNING	6 Periods			
Disaster Plann	ing-Disaster Response Personnel roles and duties, Community Mitigation	onGoals, Pre-			
Disaster Mitiga	ation Plan, Personnel Training, Comprehensive Emergency Management, E	arly Warning			
Systems.	Constant of an store of the articles				
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT	6 Periods			
Preparedness:	Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Ris	k: Application			
of Remote Sen	sing, Data from Meteorological and other Agencies, Media Reports: Gover	rnmental and			
Community Pre	eparedness.				
UNIT – V	RISK ASSESSMENT	6 Periods			
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation.					
Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's					
Participation in Risk Assessment, Strategies for Survival.					
Contact Period	is:				
Lecture:30 Pe	riods Tutorial: 0 Periods Practical: 0Periods Total: 30 Periods				

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies",
	New Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India,
	New Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep
	Publication Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International
	Publishing House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann,
	2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
C01	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
C04	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05		
C01	2	1	1	2	2		
CO2	1	2	1	1	1		
CO3	1	1	1	2	2		
CO4	1	1	1	2	2		
CO5	2	1	1	2	2		
23VLACZ2	1	1	1	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2			100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

23VLACZ3

VALUE EDUCATION

(Common to All Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	Value of education and self- development							
Objectives	Requirements of good values in students							
	Importance of character							
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods						
Social values a	Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non-moral							
valuation. Star	ndards and principles. Value judgements.							
UNIT – II PERSONALITY AND BEHAVIOR DEVELOPMENT								
Soul and Scie	entific attitude. Positive Thinking. Integrity and discipline. Punctua	lity, Love and						
Kindness. Ave	oid fault Thinking. Free from anger, Dignity of labour. Universal bro	otherhood and						
religious toler	ance.							
UNIT – III VALUES IN HUMAN LIFE								
Importance	of cultivation of values, Sense of duty. Devotion, Self-reliance	e. Confidence,						
Concentration	. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, M	National Unity.						
Patriotism. Lo	ve for nature,Discipline.							
UNIT – IV	VALUES IN SOCIETY	6 Periods						
True friendsh	ip. Happiness Vs suffering, love for truth. Aware of self-destructive hab	its. Association						
and Cooperati	on. Doing best for saving nature.							
UNIT – V	POSITIVE VALUES	6 Periods						
Character and	Competence –Holy books vs Blind faith. Self-management and Good he	alth. Science of						
reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message.								
Mind your Mind, Self-control. Honesty, Studying effectively.								
Contact Periods:								
Lecture: 30 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Perio	ods						
DEEDDWGEG								
REFERENCES :								

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University
	Press, New Delhi,1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi,2010
3	R.P Shukla, "Value Education and Human Rights" , Sarup and Sons, NewDelhi,2004
4	https://nptel.ac.in/courses/109104068/36

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Know the values and work ethics.	К3
CO2	Enhance personality and behaviour development.	К3
CO3	Apply the values in human life.	К3
C04	Gain Knowledge of values in society.	К3
CO5	Learn the importance of positive values in human life.	К3

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	-	-	3	1	1	1			
CO2	-	-	3	1	2	1			
CO3	-	-	3	1	2	1			
CO4	-	-	3	1	1	1			
CO5	-	-	3	1	1	2			
23VLACZ3	-	-	3	1	1	1			
1 – Slight, 2 – Moderate, 3 -	- Substantial	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Marrie .						

			Andria gyr 116 a Pil					
ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Rememberi ng (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %	
CAT1	20%	50%	30%	- //	-	-	100%	
CAT2	20%	50%	30%	-	-	-	100%	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%	
ESE	20%	50%	30%	-	-	-	100%	

CONSTITUTION OF INDIA

(Common to All Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	 To address the importance of constitutional rights and duties 				
Objectives	• To familiarize about Indian governance and local administration.				
	• To know about the functions of election commission.				
UNIT – I	INDIAN CONSTITUTION	6 Periods			
History of Mak	ing of the Indian Constitution: History Drafting Committee, (Composition &	& Working) -			
Philosophy of t	he Indian Constitution: Preamble Salient Features.				
UNIT – II	CONSTITUTIONAL RIGHTS & DUTIES	6 Periods			
Contours of Co Right against I Constitutional I	nstitutional Rights & Duties: Fundamental Rights , Right to Equality, Right Exploitation, Right to Freedom of Religion, Cultural and Educational Rig Remedies, Directive Principles of State Policy, Fundamental Duties.	to Freedom, hts, Right to			
UNIT – III	ORGANS OF GOVERNANCE	6 Periods			
Organs of Gov Functions, Exec Judges, Qualific	ernance: Parliament, Composition, Qualifications and Disqualifications, cutive, President, Governor, Council of Ministers, Judiciary, Appointment and ations, Powers and Functions.	Powers and d Transfer of			
UNIT – IV	LOCAL ADMINISTRATION	6 Periods			
Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.					
UNIT – V	ELECTION COMMISSION	6 Periods			
Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.					
Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods					

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain,"Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu,"Introduction to the Constitution of India", Lexis Nexis, 2015.

COUR	SE OUTCOMES:	Bloom's Taxonomy Mannod
opon	completion of the course, the students will be able to.	Mappeu
CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	К2
CO3	Understand the various organs of Indian governance.	K2
C04	Familiarize with the various levels of local administration.	K2
C05	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	P04	P05	P06				
C01	-	-	1	1	1	1				
CO2	-	-	1	1	1	2				
CO3	-	-	1	1	2	1				
CO4	-	-	1	1	1	1				
C05	-	-	1	1	1	1				
23VLACZ4	-	-	1	1	1	1				
1 – Slight, 2 – Moo	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY

Test /	Rememberin	Understandi	Applying	Analyzing	Evaluati	Creating	Total				
Bloom's	g (K1) %	ng (K2) %	(K3) %	(K4) %	ng (K5)	(K6) %	%				
Category*					%						
CAT1	20%	50%	30%	-	-	-	100%				
CAT2	20%	50%	30%	-	-	-	100%				
Individual	20%	50%	30%	-	-	-	100%				
Assessment											
1 /Case		Quarter a	GOD A	400							
Study 1/		- Chilling	46 00000	T							
Seminar 1 /)									
Project1											
Individual	20%	50%	30%	-	-	-	100%				
Assessment											
2 /Case											
Study 2/											
Seminar 2 /											
Project 2											
ESE	20%	50%	30%	-	-	-	100%				

23VLACZ5

PEDAGOGY STUDIES (Common to All Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	C
NIL	AC	2	0	0	0

Course Objectives UNIT – I	 To Understand of various theories of learning, prevailing practices and design of curriculum in engineering studies. Application of knowledge in modification of curriculum, its ass introduction of innovation in teaching methodology. 	pedagogical essment and 6 Periods							
Introduction a and terminolo Research ques	Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.								
UNIT – II	PEDAGOGICAL PRACTICES	6 Periods							
Thematic ove classrooms in of pedagogica	Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education. Evidence on the effectiveness of pedagogical practices Methodology for the in depth stage: quality assessment of included								
UNIT – III	PEDAGOGICAL APPROACHES	6 Periods							
How can teach materials best evidence for Teacher's attit	her education (curriculum and practicum) and the school curriculum a support effective pedagogy? Theory of change. Strength and nature o effective pedagogical practices. Pedagogic theory and pedagogical sudes and beliefs and Pedagogic strategies.	and guidance f the body of approaches.							
UNIT – IV	PROFESSIONAL DEVELOPMENT	6 Periods							
Professional support Supp to learning: lir	Professional development: alignment with classroom practices and follow-up support. Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes.								
UNIT – V	CURRICULUM AND ASSESSMENT	6 Periods							
Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.									
Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods									

1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools,Compare , 31 (2): 245-261, 2001.
2	Alexander RJ , Culture and pedagogy: International comparisons in primary education . Oxford and Boston: Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282, 2013.
4	<i>Agrawal M</i> , <i>Curricular reform in schools: The importance of evaluation</i> , <i>Journal of Curriculum Studies</i> , 36 (3): 361-379, 2004

COUR	SE OUTCOMES:	Bloom's Taxonomy Mannad
opon	completion of the course, the students will be able to:	маррец
C01	Explain the concept of curriculum, formal and informal education systems and teacher education.	КЗ
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	КЗ
CO3	Understand the relation between teacher and community, support from various levels of teachers to students and limitation in resources and size of the class.	К3
CO4	Perform research in design a problem in pedagogy and curriculum development.	К3

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	-	-	1	1	2	1			
CO2	-	-	1	1	1	2			
CO3	-		m_1	1	2	1			
CO4	-	a sydema or	1 a 610,000	1	2	1			
23VLACZ5	-	V Bass	No of the other	1	2	1			
1 – Slight, 2 – Moder	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY

ASSESSMEN	NT PATTERN – T	HEORY		R //			
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	3	-	-	100%
CAT2	20%	50%	30%		-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	ALUMA-	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%
STRESS MANAGEMENT BY YOGA

(Common to All Branches)

PREREQUISITES :	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course Objectives	 To create awareness on the benefits of yoga and meditation. To understand the significance of Asana and Pranayama. 								
UNIT – I	PHYSICAL STRUCTURE AND ITS FUNCTIONS	6 Periods							
Yoga - Physical structure, Importance of physical exercise, Rules and regulation of simplified physical exercises, hand exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, maharasana, body massage, acupressure, body relaxation.									
UNIT – II	YOGA TERMINOLOGIES	6 Periods							
Yamas - Ahimsa Ishvarapranidh	Yamas - Ahimsa, satya, astheya, bramhacharya, aparigrahaNiyamas- Saucha, santosha, tapas, svadhyaya, Ishvarapranidhana.								
UNIT – III	ASANA	6 Periods							
Asana - Rules &	Reg								
UNIT – IV	PRANAYAMA	6 Periods							
Regularization	of breathing techniques and its effects-Types of pranayama								
UNIT – V	MIND	6 Periods							
Bio magnetism & mind - imprinting & magnifying – eight essential factors of living beings, Mental frequency and ten stages of mind, benefits of meditation, such as perspicacity, magnanimity, receptivity, adaptability, creativity. Contact Periods: Lasterna 20 Periods - Tutorial O Periods - Proticel O Periods - Tatak 20 Periods									
Lecture: 30 Pe	riods Tutorial: U Periods Practical: U Periods Total: 30 Periods								

REFERENCES:

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Training-Part-I ",, Nagpur.
2	Swami Vivekananda," Rajayoga or conquering the Internal Nature ", AdvaitaAshrama (Publication Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New Dawn Press, New Delhi, 2016.
4	K. N. Udupa ,"Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi, 2007.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Practice physical exercises and maintain good health.	КЗ
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	КЗ
CO4	Practice breathing techniques in a precise manner.	КЗ
CO5	Attain emotional stability and higher level of consciousness.	K2

COURSE ARTICULATION MATRIX :									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	-	-	2	-	-	-			
CO2	-	-	2	-	-	-			
CO3	-	-	2	-	-	-			
CO4	-	-	2	-	-	-			
CO5	-	-	2	-	-	-			
23VLACZ6	-	-	2	-	-	-			
1 – Slight, 2 – Moderate, 3 – Substantial									
and and a not the artigina									

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Rememberi ng (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluati ng (K5) %	Creating (K6) %	Total %		
CAT1	20%	50%	30%	\ -	-	-	100%		
CAT2	20%	50%	30%	-	-	-	100%		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%		
ESE	20%	50%	30%	-	-	-	100%		

22VI AC77
23VLACL/

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

(Common to All Branches)

PREREQUISITES :	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	• To familiar with Techniques to achieve the highest goal in	n life.
Objectives	• To become a person with stable mind, pleasing personal	ity and
	determination.	-
UNIT – I		6 Periods
Neetisatakam-	Holistic development of personality-Verses- 19,20,21,22 (wisdom)-Verses29,31,32
(pride & herois	em)-Verses- 26,28,6.	
UNIT – II		6 Periods
Verses- 52,53,5	59 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day v	vork and duties
Shrimad Bhagw	vadGeeta - Chapter 2-Verses 41, 47,48,	
UNIT – III		6 Periods
Shrimad Bhag	wadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses	5,13,17, 23, 35,-
Chapter 18-Ver	rses 45, 46, 48.	
UNIT – IV	Contraction per the second	6 Periods
Statements of b	oasic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62	, 68 -Chapter 12 -
Verses 13, 14, 1	15, 16,17, 18-Personality of Role model.	•
UNIT – V		6 Periods
Shrimad Bhag	wadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Char	ter 4-Verses 18,
38,39-Chapter	18 – Verses 37,38,63.	,
Contact Perio	ds:	
Lecture: 30 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 30 I	Periods
REFERENCES :	Bandon Strate Bisso	
1 Swami Swa	rupanandaAdvaita Ashram " Srimad Bhagavad Gita ",AdvaitaAshrai	na, Kolkata,2016
2 P.Gopinath,	Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Sataka	ı m " (Niti-sringar-

vairagya), New Delhi, 1986.

3 Swami Mukundananda, JagadguruKripalujiYog "**Bhagavad Gita: The Song Of God**", USA,2019

4 A.C. Bhaktivedanta Swami Prabhupada "**Bhagavad-Gita As It Is**", Bhaktivedanta Book Trust Publications, 2001

COUR Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Apply the Holistic development in life	K4
CO2	Effective Planning of day to day work and duties	K4
CO3	Identify mankind to peace and prosperity	K4
CO4	Develop versatile personality.	K4
CO5	Awakening wisdom in life	K4

COURSE ART	COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	PO4	PO5	P06					
C01	-	-	1	-	-	-					
CO2	-	-	1	-	-	-					
CO3	-	-	1	-	-	-					
CO4	-	-	1	-	-	-					
CO5	-	-	1	-	-	-					
23VLACZ7	-	-	1	-	-	-					
1 – Slight, 2 – Moderate, 3 – Substantial											
	and an										

ASSESSMENT PATTERN – THEORY

			2 NO COL				
Test /	Rememberin	Understandi	Applyin	Analyzin	Evaluatin	Creatin	Total
Bloom's	g (K1) %	ng (K2) %	g (K3)	g (K4) %	g (K5) %	g (K6)	%
Category*			%			%	
CAT1	20%	50%	30%		-	-	100%
CAT2	20%	50%	30%	+	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23VLACZ8

SANSKRIT FOR TECHNICAL KNOWLEDGE (Common to all Branches)

PREREQUISITES:	CATEGORY	L	Τ	Ρ	С
NIL	AC	2	0	0	0

Course Objectives	 To get a working knowledge in illustrious Sanskrit, the scientific language in the world. Learning of Sanskrit to improve brain functioning. Enhancing the memory power. Learning of Sanskrit to develop the logic in mathematics, science & other subjects. 							
UNIT – I	BASICS OF SANSKRIT	6 Periods						
Alphabets in Sanskrit, Past/Present/Future Tense.								
UNIT – II	SENTENCES AND ROOTS	6 Periods						
Simple Sentences - Order, Introduction of roots								
UNIT – III	SANSKRIT LITERATURE							
Technical information about Sanskrit Literature								
UNIT – IV	TECHNICAL CONCEPTS -1	6 Periods						
Technical concepts of Engineering-Electrical, Mechanical								
UNIT – V	TECHNICAL CONCEPTS -2	6 Periods						
Technical concepts of Engineering-Architecture, Mathematics								
Contact Periods: Lecture: 30 PeriodsTutorial: 0 PeriodsPractical: 30 PeriodsTotal: 30 Periods								

REFERENCES:

1	Dr.Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.
2	Prathama Deeksha Vempati Kutumbshastri, " Teach Yourself Sanskrit ", Rashtriya Sanskrit
	Sansthanam, New Delhi, Publication, 2009.
2	Surgeh Coni "India's Clarious Scientific Tradition" Ocean hooks (D) 1td New Dolki 200(

3 Suresh Soni, **"India's Glorious Scientific Tradition**", Ocean books (P) Ltd., New Delhi,2006.

COURS Upon co	Bloom's Taxonomy Mapped	
C01	Recognize ancient literature and their basics	K3
CO2	Formulate the sentences with order and understand the roots of Sanskrit	К2
CO3	Acquire familiarity of the major traditions of literatures written in Sanskrit	К3
CO4	Distinguish the Technical concepts of Electrical & Mechanical Engineering	К2
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2

COURSE ARTICUL	ATION MATR	IX				
COs/POs	P01	P02	PO3	P04	P05	P06
C01	-	-	-	1	2	1
CO2	-	-	-	1	2	-
CO3	-	-	-	1	1	1
CO4	-	-	-	2	1	1
CO5	-	-	-	1	2	1
23VLACZ8	-	P (1	2	1
1 – Slight, 2 – Mod	erate, 3 – Subs	tantial	TIGO DIC US & SUGURA	27	•	
		C boo	NUTER COL			

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category *	Rememberi ng (K1) %	Understand ing (K2) %	Applyi ng (K3) %	Analyzi ng (K4) %	Evaluati ng (K5) %	Creating (K6) %	Total %	
CAT1	20%	50%	30%		-	-	100%	
CAT2	20%	50%	30%		-	-	100%	
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%	
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%	
ESE	20%	50%	30%	-	-	-	100%	