#### DEPARTMENT OF CIVIL ENGINEERING GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE (An Autonomous Institution Affiliated to Anna University, Chennai)



### M.E STRUCTURAL ENGINEERING 2023 REGULATIONS CURRICULAM & SYLLABI

# GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE DEPARTMENT OF CIVIL ENGINEERING <u>VISION AND MISSION OF THE DEPARTMENT</u>

#### VISION

To provide quality education in Civil Engineering to the societal growth in sustainable manner on par with global standards

#### MISSION

- To establish the process of teaching and learning to meet the global standards for sustainable built environment
- \* To make Civil Engineering department a renowned high-tech consultancy centre.
- \* To carry out socially relevant and forward looking research for societal needs.
- Integrated with opportunities for teamwork, leadership, values, ethics and social activities.



#### GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore – 641 013 DEPARTMENT OF CIVIL ENGINEERING (Structural Engineering) PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The following Programme Educational Objectives are designed based on the department mission:

**PEO 1:** To impart conceptual knowledge and develop analytical skills to design and build sustainable structural systems with an exposure to real time projects.

**PEO 2:** To develop research attitude in the field of Structural Engineering covering a wide spectrum of themes.

**PEO 3:** To excel in the profession with team work and leadership qualities having social responsibility and ethical values.

#### GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore – 641 013 DEPARTMENT OF CIVIL ENGINEERING (Structural Engineering)

#### PROGRAMME OUTCOMES (POs)

Students in the Structural Engineering Programme should be at the time of their graduation be in possession of the following:

- **PO 1:** An ability to independently carry out research/investigation and development work to solve practical problems.
- **PO 2:** An ability to write and present a substantial technical report/document.
- **PO 3:** Students should be able to demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program.
- **PO 4:** An ability to use the advanced techniques, modern engineering skills, instrumentation and software packages necessary for structural engineering practice.
- **PO 5:** To execute and manage the multidisciplinary projects with higher standards and sustainability.
- **PO 6:** An ability to recognize the need for life-long learning to meet the challenging and demand driven needs of the society with a high level of enthusiasm.

# CURRICULAM

# GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore – 641 013 M.E. STRUCTURAL ENGINEERING FIRST SEMESTER

| SI. | Course   |                                                                 |          | CA    | End          | Total | H  | lours | /Wee | ek |
|-----|----------|-----------------------------------------------------------------|----------|-------|--------------|-------|----|-------|------|----|
| No  | Code     | Course Title                                                    | Category | Marks | Sem<br>Marks | Marks | L  | Т     | Р    | С  |
|     |          | TH                                                              | EORY     |       |              |       |    |       |      |    |
| 1   | 23SEFCZ1 | Research Methodology and IPR<br>(Common to all Branches)        | FC       | 40    | 60           | 100   | 3  | 0     | 0    | 3  |
| 2   | 23SEFC02 | Analytical and Numerical<br>Methods ( <i>Common to SE, GE</i> ) | FC       | 40    | 60           | 100   | 3  | 0     | 0    | 3  |
| 3   | 23SEPC01 | Computer Methods of Structural<br>Analysis                      | PC       | 40    | 60           | 100   | 3  | 1     | 0    | 4  |
| 4   | 23SEPC02 | Design of Advanced Reinforced concrete structures               | PC       | 40    | 60           | 100   | 3  | 0     | 0    | 3  |
| 5   | 23SEPC03 | Theory of Elasticity and Plasticity                             | PC       | 40    | 60           | 100   | 3  | 0     | 0    | 3  |
| 6   | 23SEPEXX | Professional Elective I                                         | PE       | 40    | 60           | 100   | 3  | 0     | 0    | 3  |
| 7   | 23SEACXX | Audit Course-I                                                  | AC       | 40    | 60           | 100   | 2  | 0     | 0    | 0  |
|     | •        | PRA                                                             | CTICAL   | •     | •            |       | •  | •     | •    |    |
| 8   | 23SEPC04 | Experimental Techniques<br>Laboratory                           | PC       | 60    | 40           | 100   | 0  | 0     | 4    | 2  |
|     |          | TOTAL                                                           |          | 340   | 460          | 800   | 20 | 1     | 4    | 21 |

### **SEMESTER II**

| SI. | Course   |                                                     |          | CA    | End          | Total | I  | Hours | /Wee | ek |
|-----|----------|-----------------------------------------------------|----------|-------|--------------|-------|----|-------|------|----|
| No  | Code     | Course Title                                        | Category | Marks | Sem<br>Marks | Marks | L  | Т     | Р    | С  |
|     |          | TH                                                  | EORY     |       |              |       |    |       |      |    |
| 1   | 23SEPC05 | Finite Element Analysis for<br>Structural Engineers | PC       | 40    | 60           | 100   | 3  | 0     | 0    | 3  |
| 2   | 23SEPC06 | Structural Dynamics                                 | PC       | 40    | 60           | 100   | 3  | 0     | 0    | 3  |
| 3   | 23SEPC07 | Advanced Steel Structures                           | PC       | 40    | 60           | 100   | 3  | 0     | 0    | 3  |
| 4   | 23SEPEXX | Professional Elective II                            | PE       | 40    | 60           | 100   | 3  | 0     | 0    | 3  |
| 5   | 23SEPEXX | Professional Elective III                           | PE       | 40    | 60           | 100   | 3  | 0     | 0    | 3  |
| 6   | 23SEACXX | Audit Course-II                                     | AC       | 40    | 60           | 100   | 2  | 0     | 0    | 0  |
|     |          | PRA                                                 | CTICAL   |       |              |       |    |       |      |    |
| 7   | 23SEPC08 | Finite Element analysis and Applications Laboratory | PC       | 60    | 40           | 100   | 0  | 0     | 4    | 2  |
| 8   | 23SEEE01 | Mini Project                                        | EEC      | 40    | 60           | 100   | 0  | 0     | 4    | 2  |
|     |          | TOTAL                                               |          | 340   | 460          | 800   | 17 | 0     | 8    | 19 |

# SEMESTER III

| SI. | Course     |                                | C (      | СА    | End<br>Som   | Total |   | Hours | s/Weel | ς. |
|-----|------------|--------------------------------|----------|-------|--------------|-------|---|-------|--------|----|
| No  | Code       | Course Title                   | Category | Marks | Sem<br>Marks | Marks | L | Т     | Р      | С  |
|     |            | Т                              | HEORY    |       |              |       |   |       | •      |    |
| 1   | 23SEPEXX   | Professional Elective IV       | PE       | 40    | 60           | 100   | 3 | 0     | 0      | 3  |
| 2   | 23\$\$OEXX | Open Elective - I              | OE       | 40    | 60           | 100   | 3 | 0     | 0      | 3  |
|     |            | PR                             | ACTICAL  |       |              |       |   |       |        |    |
| 3   | 23SEEE02   | Internship/Industrial Training | EEC      | 100   | -            | 100   | - | -     | **     | 2  |
| 4   | 23SEEE03   | Project Phase I                | EEC      | 100   | 100          | 200   | 0 | 0     | 12     | 6  |
|     |            | TOTAL                          |          | 280   | 220          | 500   | 6 | 0     | 12     | 14 |

\*\*4 weeks Internship / Industrial Training

### SEMESTER IV

| SI. | Course   |                     |           | CA    | End          | Total     | H | Iours | /Wee | k  |
|-----|----------|---------------------|-----------|-------|--------------|-----------|---|-------|------|----|
| No  | Code     | <b>Course Title</b> | Category  | Marks | Sem<br>Marks | Mark<br>s | L | Т     | Р    | С  |
|     |          |                     | PRACTICAI | I     |              |           |   |       |      |    |
| 1   | 23SEEE04 | Project Phase II    | EEC       | 200   | 200          | 400       | 0 | 0     | 24   | 12 |
|     |          | TOTAL               |           | 200   | 200          | 400       | 0 | 0     | 24   | 12 |

**Total Credits - 66** 

# Summary of Credit Distribution

|       | Course Work                          |    |    | No of Cı | edits |       |            |
|-------|--------------------------------------|----|----|----------|-------|-------|------------|
| S. No | Subject Area                         | Ι  | II | Ш        | IV    | Total | Percentage |
| 1.    | Foundation Course                    | 6  | -  | -        | -     | 6     | 9.09       |
| 2.    | Professional Cores                   | 12 | 11 | -        | -     | 23    | 34.85      |
| 3.    | Professional Electives               | 3  | 6  | 3        | -     | 12    | 18.18      |
| 4.    | Employability<br>Enhancement Courses | -  | 2  | 8        | 12    | 22    | 33.33      |
| 5.    | Open Elective Courses                | -  | -  | 3        | -     | 3     | 4.55       |
|       | Total Credits                        | 21 | 19 | 14       | 12    | 66    | 100        |

### FOUNDATION COURSES (FC)

|        | Course   | Correct Title                                             |          | СА    | End          | Total | Hours/Week |   |   |   |  |  |
|--------|----------|-----------------------------------------------------------|----------|-------|--------------|-------|------------|---|---|---|--|--|
| Sl. No | Code     | Course Title                                              | Category | Marks | Sem<br>Marks | Marks | L          | Т | Р | С |  |  |
| 1      | 23SEFCZ1 | Research Methodology and IPR (Common to all Branches)     | FC       | 40    | 60           | 100   | 3          | 0 | 0 | 3 |  |  |
| 2      | 23SEFC02 | Analytical and Numerical<br>Methods<br>(Common to SE, GE) | FC       | 40    | 60           | 100   | 3          | 0 | 0 | 3 |  |  |
|        |          | TOTAL                                                     |          | 80    | 120          | 200   | 6          | 0 | 0 | 6 |  |  |

#### **PROFESSIONAL CORES (PC)**

|        | Course   |                                                        |          | CA    | End          | Total | Η  | ours | /Wee | ek |
|--------|----------|--------------------------------------------------------|----------|-------|--------------|-------|----|------|------|----|
| Sl. No | Code     | Course Title                                           | Category | Marks | Sem<br>Marks | Marks | L  | Т    | Р    | С  |
| 1      | 23SEPC01 | Computer Methods of Structural<br>Analysis             | PC       | 40    | 60           | 100   | 3  | 1    | 0    | 4  |
| 2      | 23SEPC02 | Design of Advanced Reinforced concrete structures      | PC       | 40    | 60           | 100   | 3  | 0    | 0    | 3  |
| 3      | 23SEPC03 | Theory of Elasticity and Plasticity                    | PC       | 40    | 60           | 100   | 3  | 0    | 0    | 3  |
| 4      | 23SEPC04 | Experimental Techniques<br>Laboratory                  | PC       | 60    | 40           | 100   | 0  | 0    | 4    | 2  |
| 5      | 23SEPC05 | Finite Element Analysis for<br>Structural Engineers    | PC       | 40    | 60           | 100   | 3  | 0    | 0    | 3  |
| 6      | 23SEPC06 | Structural Dynamics                                    | PC       | 40    | 60           | 100   | 3  | 0    | 0    | 3  |
| 7      | 23SEPC07 | Advanced Steel Structures                              | PC       | 40    | 60           | 100   | 3  | 0    | 0    | 3  |
| 8      | 23SEPC08 | Finite Element analysis and<br>Applications Laboratory | РС       | 60    | 40           | 100   | 0  | 0    | 4    | 2  |
|        |          | TOTAL                                                  |          | 360   | 440          | 800   | 18 | 1    | 8    | 23 |

# **PROFESSIONAL ELECTIVES (PE)**

| SI. | Course   |                                                                            |          | СА    | End          | Total | H | ours | /Wee | ek |
|-----|----------|----------------------------------------------------------------------------|----------|-------|--------------|-------|---|------|------|----|
| No  | Code     | Course Title                                                               | Category | Marks | Sem<br>Marks | Marks | L | Т    | Р    | С  |
| 1   | 23SEPE01 | Stability of Structures                                                    | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 2   | 23SEPE02 | Theory and Applications of<br>Cement Composites                            | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 3   | 23SEPE03 | Structural Health Monitoring                                               | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 4   | 23SEPE04 | Design of Formwork                                                         | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 5   | 23SEPE05 | Analysis of Laminated Composite<br>Plates                                  | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 6   | 23SEPE06 | Design of Concrete Bridges                                                 | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 7   | 23SEPE07 | Prestressed Concrete Structures                                            | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 8   | 23SEPE08 | Experimental Techniques and<br>Instrumentation                             | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 9   | 23SEPE09 | Structural Optimization                                                    | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 10  | 23SEPE10 | Advanced Concrete Technology                                               | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 11  | 23SEPE11 | Plates and Shells                                                          | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 12  | 23SEPE12 | Fracture Mechanics                                                         | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 13  | 23SEPE13 | Design of Steel Concrete<br>Composite Structures                           | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 14  | 23SEPE14 | Maintenance and Rehabilitation of Structures                               | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 15  | 23SEPE15 | Prefabricated Structures                                                   | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 16  | 23SEPE16 | Corrosion in Reinforced Concrete<br>Elements                               | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 17  | 23SEPE17 | Offshore Structures                                                        | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 18  | 23SEPE18 | Earthquake Resistant Design of Structures                                  | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 19  | 23SEPE19 | Substructure Design                                                        | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 20  | 23SEPE20 | Design of Structures for Dynamic<br>Loads                                  | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 21  | 23SEPE21 | Design of Tall Buildings                                                   | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 22  | 23SEPE22 | Cold Formed Steel Structures                                               | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 23  | 23SEPE23 | Smart Materials and Smart<br>Structures                                    | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 24  | 23SEPE24 | Soil Structure Interaction<br>(Common with ME Geotechnical<br>Engineering) | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 25  | 23SEPE25 | Fundamentals of Concrete 3D<br>Printing                                    | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 26  | 23SEPE26 | Nano Technology                                                            | PE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |

# **OPEN ELECTIVES (OE)**

| Sl. | Course   |                                             |          | CA    | End          | Total | H | ours | /Wee | ek |
|-----|----------|---------------------------------------------|----------|-------|--------------|-------|---|------|------|----|
| No  | Code     | Course Title                                | Category | Marks | Sem<br>Marks | Marks | L | Т    | Р    | С  |
| 1   | 23SEOE01 | Building Bye-Laws and Codes of<br>Practice  | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 2   | 23SEOE02 | Planning of Smart Cities                    | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 3   | 23SEOE03 | Green Building                              | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 4   | 23EEOE04 | Environment Health and Safety<br>Management | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 5   | 23EEOE05 | Climate Change and Adaptation               | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 6   | 23EEOE06 | Waste to Energy                             | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 7   | 23GEOE07 | Energy in Built Environment                 | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 8   | 23GEOE08 | Earth and Its Environment                   | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 9   | 23GEOE09 | Natural Hazards and Mitigation              | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 10  | 23EDOE10 | Business Analytics                          | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 11  | 23EDOE11 | Introduction to Industrial safety           | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 12  | 23EDOE12 | Operations Research                         | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 13  | 23MFOE13 | Occupational Health and Safety              | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 14  | 23MFOE14 | Cost Management of Engineering<br>Projects  | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 15  | 23MFOE15 | Composite Materials                         | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 16  | 23TEOE16 | Global Warming Science                      | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 17  | 23TEOE17 | Introduction to Nano Electronics            | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 18  | 23TEOE18 | Green Supply Chain Management               | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 19  | 23PSOE19 | Distribution Automation System              | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 20  | 23PSOE20 | Electricity Trading & Electricity Acts      | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 21  | 23PSOE21 | Modern Automotive Systems                   | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 22  | 23PEOE22 | Virtual Instrumentation                     | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 23  | 23PEOE23 | Energy Management Systems                   | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 24  | 23PEOE24 | Advanced Energy Storage<br>Technology       | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 25  | 23AEOE25 | Design of Digital Systems                   | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 26  | 23AEOE26 | Basics of Nano Electronics                  | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 27  | 23AEOE27 | Advanced Processor                          | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 28  | 23VLOE28 | HDL Programming Languages                   | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 29  | 23VLOE29 | CMOS VLSI Design                            | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 30  | 23VLOE30 | High Level Synthesis                        | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 31  | 23CSOE31 | Artificial Intelligence                     | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 32  | 23CSOE32 | Computer Network Management                 | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |
| 33  | 23CSOE33 | Block Chain Technologies                    | OE       | 40    | 60           | 100   | 3 | 0    | 0    | 3  |

## AUDIT COURSES (AC)

(Common to all branches)

| CI        | Commo          |                                                           |          | CA          | End          | Tatal          | H | ours | /Wee | :k |
|-----------|----------------|-----------------------------------------------------------|----------|-------------|--------------|----------------|---|------|------|----|
| SI.<br>No | Course<br>Code | Course Title                                              | Category | CA<br>Marks | Sem<br>Marks | Total<br>Marks | L | Т    | Р    | С  |
| 1         | 23SEACZ1       | English for Research Paper writing                        | AC       | 40          | 60           | 100            | 2 | 0    | 0    | 0  |
| 2         | 23SEACZ2       | Disaster Management                                       | AC       | 40          | 60           | 100            | 2 | 0    | 0    | 0  |
| 3         | 23SEACZ3       | Value Education                                           | AC       | 40          | 60           | 100            | 2 | 0    | 0    | 0  |
| 4         | 23SEACZ4       | Constitution of India                                     | AC       | 40          | 60           | 100            | 2 | 0    | 0    | 0  |
| 5         | 23SEACZ5       | Pedagogy Studies                                          | AC       | 40          | 60           | 100            | 2 | 0    | 0    | 0  |
| 6         | 23SEACZ6       | Stress Management by Yoga                                 | AC       | 40          | 60           | 100            | 2 | 0    | 0    | 0  |
| 7         | 23SEACZ7       | Personality Development through life enlightenment skills | AC       | 40          | 60           | 100            | 2 | 0    | 0    | 0  |
| 8         | 23SEACZ8       | Sanskrit for Technical Knowledge                          | AC       | 40          | 60           | 100            | 2 | 0    | 0    | 0  |

### EMPLOYABILTY ENHANCEMENT COURSES (EEC)

| SI. | Course   |                                  |          | CA    | End          | Total | I | Iour | s/We | ek |
|-----|----------|----------------------------------|----------|-------|--------------|-------|---|------|------|----|
| No  | Code     | Course Title                     | Category | Marks | Sem<br>Marks | Marks | L | Т    | Р    | С  |
| 1   | 23SEEE01 | Mini Project                     | EEC      | 40    | 60           | 100   | 0 | 0    | 4    | 2  |
| 2   | 23SEEE02 | Internship / Industrial Training | EEC      | 100   | -            | 100   | - | -    | **   | 2  |
| 3   | 23SEEE03 | Project Phase I                  | EEC      | 100   | 100          | 200   | 0 | 0    | 12   | 6  |
| 4   | 23SEEE04 | Project Phase II                 | EEC      | 200   | 200          | 400   | 0 | 0    | 24   | 12 |
|     |          | TOTAL                            |          | 450   | 350          | 800   | 0 | 0    | 40   | 22 |

\*\*4 weeks Internship / Industrial Training

# **SYLLABI**

| 23SEFCZ1                                                                                               | <b>RESEARCH METHODOLOGY AND IP</b><br>(Common to all Branches)                                                                                                                              | R                 | S      | EMF    | STEI   | RI              |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|--------|--------|-----------------|
| PREREQUISI                                                                                             |                                                                                                                                                                                             | CATEGORY          | L      | Т      | Р      | С               |
|                                                                                                        | NIL                                                                                                                                                                                         | FC                | 3      | 0      | 0      | 3               |
| Course                                                                                                 | • To impart knowledge on research methodology,                                                                                                                                              | Quantitative meth | nods f | for pi | oblen  | 1               |
| Objectives                                                                                             | solving, data interpretation and report writing.                                                                                                                                            | -                 |        | •      |        |                 |
| -                                                                                                      | • To know the importance of IPR and patent rights.                                                                                                                                          |                   |        |        |        |                 |
| UNIT – I                                                                                               | INTRODUCTION                                                                                                                                                                                |                   |        |        | 9 P    | eriod           |
| Definition and                                                                                         | objectives of Research – Types of research, Various Ste                                                                                                                                     | ps in Research    | proce  | ss, N  | Iather | natica          |
|                                                                                                        | vsis, Developing a research question-Choice of a pro-                                                                                                                                       | •                 |        |        |        |                 |
|                                                                                                        | ritical analysis, reading materials, reviewing, rethinkir                                                                                                                                   |                   |        |        |        |                 |
|                                                                                                        | ses, Ethics in research – APA Ethics code.                                                                                                                                                  |                   |        |        | •      |                 |
| UNIT – II                                                                                              | QUANTITATIVE METHODS FOR PROBLEM SOL                                                                                                                                                        | VING              |        |        | 9 P    | eriod           |
| Statistical Mod                                                                                        | eling and Analysis, Time Series Analysis Probability Dis                                                                                                                                    |                   | amen   | tals ( |        |                 |
|                                                                                                        | ference, Multivariate methods, Concepts of Correlation a                                                                                                                                    |                   |        |        |        |                 |
| •                                                                                                      | and Spectral Analysis, Error Analysis, Applications of Spe                                                                                                                                  | •                 |        |        |        |                 |
| UNIT – III                                                                                             | DATA DESCRIPTION AND REPORT WRITING                                                                                                                                                         |                   |        |        | 9 P    | eriod           |
| Tabular and gr                                                                                         | aphical description of data: Tables and graphs of freque                                                                                                                                    | ency data of one  | e vari | able,  | Tabl   | es an           |
| -                                                                                                      | w the relationship between two variables, Relation betw                                                                                                                                     | •                 |        |        |        |                 |
|                                                                                                        | g data for analysis.                                                                                                                                                                        |                   |        |        |        |                 |
| Structure and C                                                                                        | Components of Research Report, Types of Report, Layou                                                                                                                                       | ut of Research I  | Repor  | t, M   | echan  | ism o           |
|                                                                                                        | ch report, referencing in academic writing.                                                                                                                                                 |                   | •      |        |        |                 |
| UNIT – IV                                                                                              | INTELLECTUAL PROPERTY                                                                                                                                                                       |                   |        |        | 9 P    | eriod           |
| Nature of Intell                                                                                       | ectual Property: Patents, Designs, Trade and Copyright. P                                                                                                                                   | Process of Patent | ing a  | nd D   | evelop | oment           |
| technological re                                                                                       | search, innovation, patenting, development.                                                                                                                                                 |                   | C      |        | -      |                 |
| International S                                                                                        | cenario: International cooperation on Intellectual Prope                                                                                                                                    | rty. Procedure    | for g  | rants  | of p   | atents          |
|                                                                                                        | DOT                                                                                                                                                                                         |                   |        |        |        |                 |
| Patenting under                                                                                        | PCT.                                                                                                                                                                                        |                   |        |        |        |                 |
| -                                                                                                      | PATENT RIGHTS                                                                                                                                                                               |                   |        |        | 9 P    | eriod           |
| UNIT – V                                                                                               |                                                                                                                                                                                             | ogy. Patent infor | matic  | on an  |        |                 |
| UNIT – V<br>Patent Rights: S                                                                           | PATENT RIGHTS<br>Scope of Patent Rights. Licensing and transfer of technology                                                                                                               | ogy. Patent infor | matic  | on an  |        |                 |
| UNIT – V<br>Patent Rights: S<br>Geographical Ir                                                        | <b>PATENT RIGHTS</b><br>Scope of Patent Rights. Licensing and transfer of technolo<br>dications.                                                                                            | ogy. Patent infor | matio  | on an  |        |                 |
| Patenting under<br>UNIT – V<br>Patent Rights: S<br>Geographical Ir<br>Contact Period<br>Lecture: 45 Pe | PATENT RIGHTS<br>Scope of Patent Rights. Licensing and transfer of technolo<br>dications.<br>s:                                                                                             |                   |        | on an  |        |                 |
| UNIT – V<br>Patent Rights: S<br>Geographical Ir<br>Contact Period                                      | PATENT RIGHTS<br>Scope of Patent Rights. Licensing and transfer of technolo<br>dications.<br>s:                                                                                             |                   |        | on an  |        |                 |
| UNIT – V<br>Patent Rights: S<br>Geographical Ir<br>Contact Period                                      | PATENT RIGHTS         Scope of Patent Rights. Licensing and transfer of technologications.         dications.         s:         riods       Tutorial: 0 Periods       Practical: 0 Periods |                   |        | on an  |        | eriod<br>ibases |
| UNIT – V<br>Patent Rights: S<br>Geographical Ir<br>Contact Period<br>Lecture: 45 Pe<br>REFERE          | PATENT RIGHTS         Scope of Patent Rights. Licensing and transfer of technologications.         dications.         s:         riods       Tutorial: 0 Periods       Practical: 0 Periods | Total: 45 Period  | ls     |        | d data | lbases          |

2 Donald H.McBurney and Theresa White, "**Research Methods**", 9<sup>th</sup> Edition, CengageLearning, 2013.

3 RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5<sup>th</sup> Edition, 2019.

4 Dr. C. R. Kothari and GauravGarg, "**Research Methodology: Methods and Trends**", New age international publishers, 4<sup>th</sup> Edition, 2018.

| COURSE OUTCOMES: |                                                                                      |        |  |
|------------------|--------------------------------------------------------------------------------------|--------|--|
| Upon co          | mpletion of the course, the students will be able to:                                | Mapped |  |
| CO1              | Formulate research question for conducting research.                                 | K3     |  |
| CO2              | Analyze qualitative and quantitative data.                                           | K4     |  |
| CO3              | Interpret research findings and give appropriate conclusions.                        | K2     |  |
| CO4              | Develop a structured content to write technical report.                              | K3     |  |
| CO5              | Summarize the importance of IPR and protect their research work through intellectual | K2     |  |
|                  | property.                                                                            |        |  |

# COURSE ARTICULATION MATRIX

| COs/POs                                 | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |
|-----------------------------------------|-----|-----|-----|-----|-----|-----|--|--|
| CO1                                     | 2   | -   | -   | 2   | 1   | 1   |  |  |
| CO2                                     | 2   | 1   | 1   | 2   | 1   | -   |  |  |
| CO3                                     | 2   | 1   | 1   | 2   | 1   | -   |  |  |
| CO4                                     | -   | 3   | 1   | 1   | 1   | -   |  |  |
| CO5                                     | 1   | 1   | 2   | 1   | -   | 1   |  |  |
| 23SEFCZ1                                | 2   | 3   | 2   | 2   | 1   | 1   |  |  |
| – Slight, 2 – Moderate, 3 – Substantial |     |     |     |     |     |     |  |  |

| ASSESSMENT I   | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |       |  |  |  |
|----------------|-----------------------------|---------------|----------|-----------|------------|----------|-------|--|--|--|
| Test / Bloom's | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |
| Category*      | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |
| CAT1           | 40                          | 40            | 20       | -         | -          | -        | 100   |  |  |  |
| CAT2           | 40                          | 40            | 20       | -         | -          | -        | 100   |  |  |  |
| Individual     |                             |               |          |           |            |          |       |  |  |  |
| Assessment 1 / |                             |               |          |           |            |          |       |  |  |  |
| Case Study 1/  | -                           | 50            | 30       | 20        | -          | -        | 100   |  |  |  |
| Seminar 1 /    |                             |               |          |           |            |          |       |  |  |  |
| Project1       |                             |               |          |           |            |          |       |  |  |  |
| Individual     |                             |               |          |           |            |          |       |  |  |  |
| Assessment 2 / |                             |               |          |           |            |          |       |  |  |  |
| Case Study 2/  | -                           | 50            | 30       | 20        | -          | -        | 100   |  |  |  |
| Seminar 2 /    |                             |               |          |           |            |          |       |  |  |  |
| Project 2      |                             |               |          |           |            |          |       |  |  |  |
| ESE            | 30                          | 30            | 20       | 20        | -          | -        | 100   |  |  |  |

| 23SEFC02               | ANALYTICAL AND NUMERICA<br>(Common with ME Geotechnical E |                         |       | SEMESTER I |          |         |  |
|------------------------|-----------------------------------------------------------|-------------------------|-------|------------|----------|---------|--|
| PREREQU                | ISITES                                                    | CATEGORY                | L     |            |          |         |  |
| -                      | NIL                                                       | FC                      | 3     | 0          | 0        | 3       |  |
| Course                 | To familiarise the foundations of numerical me            | thods and analysis tec  | chnic | ues n      | lostly ı | used in |  |
| Objectives             | various applications in engineering and technological     | gy.                     |       |            |          |         |  |
| UNIT – I               | SOLUTIONS OF EQUATIONS AND EIGEN<br>PROBLEMS              | VALUE                   |       |            | 9 F      | Periods |  |
| Error Analy            | sis: Sources of Error in Numerical Computation            | ns, Absolute and Rela   | ative | Error      | s, Rou   | nd off  |  |
| and Truncat            | tion Errors. Solutions of nonlinear algebraic a           | and transcendental equi | luati | ons by     | y fixed  | l point |  |
| iteration me           | ethod and Newton Raphson method. Solution                 | s of linear system of   | of eq | Juation    | ns by    | Gauss   |  |
| Elimination            | , Gauss Jordan and Gauss Seidel method. Eig               | gen value of Matrix     | by F  | ower       | metho    | od and  |  |
| Jacobi meth            | od.                                                       |                         |       |            |          |         |  |
| UNIT – II              | <b>CURVE FITTING AND INTERPOLATION</b>                    |                         |       |            | 9 F      | Periods |  |
| Curve fitting          | g: Fitting a straight line and parabola by method         | l of least squares. Cu  | rves  | reduc      | ible to  | linear  |  |
| form. Newto            | on's divided difference formula, Lagrange's int           | erpolation-Newton's     | For   | ward a     | and bad  | ckward  |  |
| difference for         | ormula.                                                   |                         |       |            |          |         |  |
| UNIT –                 | NUMERICAL DIFFERENTIATION AND N                           | UMERICAL                |       |            | 9 F      | Periods |  |
| III                    | INTEGRATION                                               |                         |       |            |          |         |  |
| Numerical              | approximation of derivatives using                        | interpolation polyn     | omi   | als -      | Num      | erical  |  |
| integration            | by Trapezoidal, Simpson's one third rule and              | simpson's three eight   | nt ru | le- Tv     | vo poi   | nt and  |  |
| three point (<br>rule. | Gaussian quadrature formula - Double integration          | on using Trapezoidal    | and   | Simp       | son on   | e third |  |
| UNIT –                 | NUMERICAL SOLUTION OF ORDINAL                             | RY DIFFERENTIA          | L     |            | 9 F      | Periods |  |
| IV                     | EQUATIONS                                                 |                         |       |            |          |         |  |
| Taylor serie           | s method - Euler method - Modified Euler m                | ethod - Fourth order    | Ru    | nge -      | Kuttar   | nethod  |  |
| for solving methods.   | first order equations - Predictor and correc              | tor methods: Milne's    | s and | d Ada      | m Bas    | shforth |  |
| memous.                | NUMERICAL SOLUTION OF PARTIAL DI                          | FFFRENTIAL              |       |            | 0 E      | Periods |  |
| UNIT – V               | EQUATIONS                                                 |                         |       |            |          |         |  |
|                        | ence solutions for the second order ordinary diffe        | •                       |       |            |          |         |  |
|                        | ensional Heat Equation (Both Explicit and Implicit        | it Methods) One dime    | nsio  | nal wa     | ve equ   | ation - |  |
| -                      | Poisson equation.                                         |                         |       |            |          |         |  |
| Contact Per            |                                                           |                         |       |            |          |         |  |
| Lecture: 45            | Periods Tutorial: 0 Periods Practical: 0 P                | eriods Total: 45 Pe     | riod  | s          |          |         |  |
|                        |                                                           |                         |       |            |          |         |  |

#### **REFERENCE BOOKS:**

| 1 | Steven C. Chapra, Raymond P., Canale, "Numerical Methods for Engineers", McGraw Hill        |
|---|---------------------------------------------------------------------------------------------|
|   | Education Pvt Ltd 8 <sup>th</sup> Edition 2021.                                             |
| 2 | Srimanthapal "Numerical Methods, Principles, Analyses and Algorithm", Oxford                |
|   | University Press, New Delhi, 1 <sup>st</sup> Edition, 2009.                                 |
| 3 | Veerarajan T and Ramachandran T "Numerical Methods with Programming in C"                   |
|   | McGraw Hill Education Pvt Ltd, New Delhi, 1 <sup>st</sup> Edition, Reprint, 2016.           |
| 4 | S.S.Sastry, "Introduction to Methods of Numerical Analysis", Prentice Hall of India, Delhi, |
|   | 5 <sup>th</sup> Edition, 2015.                                                              |
| 5 | Dr. J.S Chitode "Numerical Methods" Technical Publications, Pune, 2010.                     |

| COUR | COURSE OUTCOMES:                                                                                                                                  |        |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------|--|--|--|
| Upon | completion of the course, the students will be able to:                                                                                           | Mapped |  |  |  |
| CO1  | Understand the numerical solutions to algebraic, exponential, logarithmic, transcendental and linear system of simultaneous equations.            | K3     |  |  |  |
| CO2  | Appreciate the numerical techniques of interpolation and error approximations in various intervals in real life situations.                       | К3     |  |  |  |
| CO3  | Apply the numerical techniques of finite differences to numerical differentiation and numerical integration in engineering problems.              | К3     |  |  |  |
| CO4  | Understand the numerical solution to first order ordinary differential equations by different methods like single step and multistep.             | К3     |  |  |  |
| CO5  | Solve second order partial differential equations with initial and boundary conditions by using certain techniques with engineering applications. | К3     |  |  |  |

| COURSE ARTICULATION MATRIX |                                           |     |     |     |     |     |  |  |  |
|----------------------------|-------------------------------------------|-----|-----|-----|-----|-----|--|--|--|
| COs/POs                    | PO1                                       | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                        | 3                                         | 2   | 2   | -   | 2   | 2   |  |  |  |
| CO2                        | 3                                         | 2   | 3   | -   | 2   | 3   |  |  |  |
| CO3                        | 3                                         | 2   | 3   | -   | 2   | 2   |  |  |  |
| CO4                        | 3                                         | 2   | 2   | -   | 2   | 2   |  |  |  |
| CO5                        | 3                                         | 2   | 3   | -   | 2   | 2   |  |  |  |
| 23SEFC02                   | 3                                         | 2   | 3   | -   | 2   | 3   |  |  |  |
| 1 - Slight, $2 - Mode$     | 1 – Slight, 2 – Moderate, 3 – Substantial |     |     |     |     |     |  |  |  |

| ASSESSMENT P                                                              | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |         |  |  |  |
|---------------------------------------------------------------------------|-----------------------------|---------------|----------|-----------|------------|----------|---------|--|--|--|
| Test / Bloom's                                                            | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total % |  |  |  |
| Category*                                                                 | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   |         |  |  |  |
| CAT1                                                                      | 20                          | 40            | 40       | -         | -          | -        | 100     |  |  |  |
| CAT2                                                                      | 20                          | 40            | 40       | -         | -          | -        | 100     |  |  |  |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | -                           | 50            | 50       | -         | -          | -        | 100     |  |  |  |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | -                           | 50            | 50       | -         | -          | -        | 100     |  |  |  |
| ESE                                                                       | 20                          | 40            | 40       | -         | -          | -        | 100     |  |  |  |

| 23SEPC01                                                                                                                                                                           | COMPUTER METHODS OF STRUCTURAL<br>ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SF                                                                                                  | EMESTER I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                           |                                                                |                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|
| PREREQUIS                                                                                                                                                                          | ITES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CATEGORY                                                                                            | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т                                                         | Р                                                              | С                                                       |
|                                                                                                                                                                                    | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | РС                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                         | 0                                                              | 4                                                       |
| Course                                                                                                                                                                             | To Understand force and displacement measurements, energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y concepts, apply                                                                                   | ying l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flexit                                                    | oility                                                         | and                                                     |
| Objectives                                                                                                                                                                         | Stiffness Matrix methods, and sub structuring techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                |                                                         |
| UNIT – I                                                                                                                                                                           | FUNDAMENTAL CONCEPTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                         | 2 Per                                                          | iods                                                    |
| Force and disp                                                                                                                                                                     | lacement measurement - Generalized measurement - Const                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rained measurer                                                                                     | nents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | – Pr                                                      | incip                                                          | le of                                                   |
| superposition                                                                                                                                                                      | - Stiffness and flexibility matrices in constrained measurer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ments – Stiffnes                                                                                    | ss an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | d fley                                                    | kibilit                                                        | y of                                                    |
| systems and el                                                                                                                                                                     | ements – computing stiffness and flexibility coefficients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                |                                                         |
| UNIT – II                                                                                                                                                                          | ENERGY CONCEPTS AND TRANSFORMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ATION OF                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                        | 2 Per                                                          | iods                                                    |
|                                                                                                                                                                                    | INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                |                                                         |
| Strain energy i                                                                                                                                                                    | n terms of stiffness & flexibility matrices – Betti's law – App                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | olication of Bett                                                                                   | i's lav                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | w - C                                                     | ompu                                                           | ıting                                                   |
| displacements                                                                                                                                                                      | and forces from virtual work - other energy theorems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Transformat                                                                                       | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of fo                                                     | orces                                                          | and                                                     |
| displacements                                                                                                                                                                      | in general - Stiffness and flexibility in general - No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ormal coordinat                                                                                     | es a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd o                                                      | rthog                                                          | onal                                                    |
| transformation                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                |                                                         |
|                                                                                                                                                                                    | – Principle of contragradience.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                           |                                                                |                                                         |
| UNIT – III                                                                                                                                                                         | <ul><li>Principle of contragradience.</li><li>FLEXIBILITY METHOD</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                         | 2 Per                                                          | iods                                                    |
| UNIT – III                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | redundants lead                                                                                     | ling t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |                                                                |                                                         |
| UNIT – III<br>Statically dete                                                                                                                                                      | FLEXIBILITY METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | o ill                                                     | and                                                            | well                                                    |
| UNIT – III<br>Statically dete<br>conditioned m                                                                                                                                     | FLEXIBILITY METHOD<br>rminate structures – Indeterminate structures – Choice of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | r – Internal for                                                                                    | rces c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to ill<br>lue to                                          | and the                                                        | well<br>rmal                                            |
| <b>UNIT – III</b><br>Statically dete<br>conditioned m<br>expansion and                                                                                                             | <b>FLEXIBILITY METHOD</b><br>rminate structures – Indeterminate structures – Choice of<br>atrices Transformation to one set of redundants to another                                                                                                                                                                                                                                                                                                                                                                                                                                                    | r – Internal for                                                                                    | rces c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to ill<br>lue to                                          | and the                                                        | well<br>rmal                                            |
| <b>UNIT – III</b><br>Statically dete<br>conditioned m<br>expansion and                                                                                                             | <b>FLEXIBILITY METHOD</b><br>rminate structures – Indeterminate structures – Choice of<br>atrices Transformation to one set of redundants to another<br>lack of fit – Reducing the size of flexibility matrix – Applie                                                                                                                                                                                                                                                                                                                                                                                  | r – Internal for                                                                                    | rces c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | o ill<br>lue to<br>d plai                                 | and the                                                        | well<br>rmal<br>ıss –                                   |
| UNIT – III<br>Statically dete<br>conditioned m<br>expansion and<br>continuous bea<br>UNIT – IV                                                                                     | <b>FLEXIBILITY METHOD</b><br>rminate structures – Indeterminate structures – Choice of<br>atrices Transformation to one set of redundants to another<br>lack of fit – Reducing the size of flexibility matrix – Applie<br>ms – Frames – Grids (Concept only).                                                                                                                                                                                                                                                                                                                                           | r – Internal for<br>cation to pin - j                                                               | ointe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | to ill<br>due to<br>d plan                                | and<br>then<br>the tru<br>2 Per                                | well<br>rmal<br>Iss –<br><b>iods</b>                    |
| UNIT – III<br>Statically dete<br>conditioned m<br>expansion and<br>continuous bea<br>UNIT – IV<br>Introduction –                                                                   | FLEXIBILITY METHOD<br>rminate structures – Indeterminate structures – Choice of<br>atrices Transformation to one set of redundants to another<br>lack of fit – Reducing the size of flexibility matrix – Applie<br>ms – Frames – Grids (Concept only).<br>STIFFNESS METHOD                                                                                                                                                                                                                                                                                                                              | r – Internal for<br>cation to pin - j                                                               | rces cointection of the second | to ill<br>lue to<br>d plan<br>12<br>-Appl                 | and<br>then<br>the tru<br><b>2 Per</b><br>icatio               | well<br>rmal<br>iss –<br><b>iods</b><br>on of           |
| UNIT – III<br>Statically dete<br>conditioned m<br>expansion and<br>continuous bea<br>UNIT – IV<br>Introduction –<br>stiffness appro                                                | FLEXIBILITY METHOD<br>rminate structures – Indeterminate structures – Choice of<br>atrices Transformation to one set of redundants to another<br>lack of fit – Reducing the size of flexibility matrix – Applie<br>ms – Frames – Grids (Concept only).<br>STIFFNESS METHOD<br>Development of the stiffness method – Analogy between flex                                                                                                                                                                                                                                                                | r – Internal for<br>cation to pin - j<br>kibility and stiffr<br>lack of fit – Gri                   | rces cointection of the second | to ill<br>lue to<br>d plan<br>12<br>-Appl                 | and<br>then<br>the tru<br><b>2 Per</b><br>icatio               | well<br>rmal<br>iss –<br><b>iods</b><br>on of           |
| UNIT – III<br>Statically dete<br>conditioned m<br>expansion and<br>continuous bea<br>UNIT – IV<br>Introduction –<br>stiffness appro                                                | FLEXIBILITY METHOD<br>rminate structures – Indeterminate structures – Choice of<br>atrices Transformation to one set of redundants to another<br>lack of fit – Reducing the size of flexibility matrix – Applie<br>ms – Frames – Grids (Concept only).<br>STIFFNESS METHOD<br>Development of the stiffness method – Analogy between flex<br>ach to pin jointed plane truss – Continuous beams – Frames –                                                                                                                                                                                                | r – Internal for<br>cation to pin - j<br>kibility and stiffr<br>lack of fit – Gri<br>ness approach. | rces cointection of the second | o ill<br>lue to<br>d plan<br><u>1</u> 2<br>-Appl<br>Conce | and<br>then<br>the tru<br><b>2 Per</b><br>icatio               | well<br>rmal<br>iss –<br>iods<br>on of<br>ly) –         |
| UNIT – III<br>Statically dete<br>conditioned m<br>expansion and<br>continuous bea<br>UNIT – IV<br>Introduction –<br>stiffness appro<br>Space frames i<br>UNIT – V                  | FLEXIBILITY METHOD<br>rminate structures – Indeterminate structures – Choice of<br>atrices Transformation to one set of redundants to another<br>lack of fit – Reducing the size of flexibility matrix – Applie<br>ms – Frames – Grids (Concept only).<br>STIFFNESS METHOD<br>Development of the stiffness method – Analogy between flex<br>ach to pin jointed plane truss – Continuous beams – Frames –<br>ntroduction only – Static condensation technique - Direct stiffness                                                                                                                         | r – Internal for<br>cation to pin - j<br>tibility and stiffr<br>lack of fit – Gri<br>ness approach. | ness –<br>ds (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o ill<br>lue to<br>d plai<br>12<br>-Appl<br>Conce         | and<br>b them<br>ne tru<br>2 Per<br>ication<br>pt onl<br>2 Per | well<br>rmal<br>iss –<br>iods<br>on of<br>ly) –<br>iods |
| UNIT – III<br>Statically dete<br>conditioned m<br>expansion and<br>continuous bea<br>UNIT – IV<br>Introduction –<br>stiffness appro<br>Space frames i<br>UNIT – V<br>Analysis by s | FLEXIBILITY METHOD         rminate structures – Indeterminate structures – Choice of atrices Transformation to one set of redundants to another lack of fit – Reducing the size of flexibility matrix – Appliems – Frames – Grids (Concept only).         STIFFNESS METHOD         Development of the stiffness method – Analogy between flex ach to pin jointed plane truss – Continuous beams – Frames – Introduction only – Static condensation technique - Direct stiffness         ANALYSIS BY SUBSTRUCTURING AND ITERATION                                                                        | r – Internal for<br>cation to pin - j<br>tibility and stiffr<br>lack of fit – Gri<br>ness approach. | ness –<br>ds (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o ill<br>lue to<br>d plai<br>12<br>-Appl<br>Conce         | and<br>b them<br>ne tru<br>2 Per<br>ication<br>pt onl<br>2 Per | well<br>rmal<br>iss –<br>iods<br>on of<br>ly) –<br>iods |
| UNIT – III<br>Statically dete<br>conditioned m<br>expansion and<br>continuous bea<br>UNIT – IV<br>Introduction –<br>stiffness appro<br>Space frames i<br>UNIT – V<br>Analysis by s | FLEXIBILITY METHOD         rminate structures – Indeterminate structures – Choice of atrices Transformation to one set of redundants to another lack of fit – Reducing the size of flexibility matrix – Appliems – Frames – Grids (Concept only).         STIFFNESS METHOD         Development of the stiffness method – Analogy between flex ach to pin jointed plane truss – Continuous beams – Frames - ntroduction only – Static condensation technique - Direct stiffness and the flexibility abstructuring technique using the stiffness and the flexibility and for continuous beams and frames. | r – Internal for<br>cation to pin - j<br>tibility and stiffr<br>lack of fit – Gri<br>ness approach. | ness –<br>ds (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | o ill<br>lue to<br>d plai<br>12<br>-Appl<br>Conce         | and<br>b them<br>ne tru<br>2 Per<br>ication<br>pt onl<br>2 Per | well<br>rmal<br>iss –<br>iods<br>on of<br>ly) –<br>iods |

| <b>REFERENCES:</b> |
|--------------------|
|                    |

| 1 | William McGuire, Richard H. Gallagher, Ronald D. Ziemian, "Matrix structural Analysis", Wiley, 2015. |
|---|------------------------------------------------------------------------------------------------------|
| 2 | Pandit G.S, Gupta S.P, "Structural Analysis-A matrix Approach", Tata McGraw Hill Publishing          |
|   | Company Ltd, 2008.                                                                                   |
| 3 | Manicka Selvam V.K, "Elements of Matrix Stability Analysis of structures", Khanna Publishers, 2006.  |
| 4 | Natarajan C. And Revathi P., "Matrix Methods of Structural Analysis: Theory and Problems", PHI       |
|   | Learning Pvt. Ltd, 2014.                                                                             |

| COURS   | SE OUTCOMES:                                                                            | Bloom's |  |  |
|---------|-----------------------------------------------------------------------------------------|---------|--|--|
|         |                                                                                         |         |  |  |
| Upon co | ompletion of the course, the students will be able to:                                  | Mapped  |  |  |
| CO1     | Apply fundamental principles to evaluate the characteristics of structures.             | K3      |  |  |
| CO2     | Compute the forces and displacements using energy concepts.                             | К3      |  |  |
| CO3     | Apply the flexibility matrix method for the analysis of beams, trusses and frames.      | K3      |  |  |
| CO4     | Analyze the continuous beams, frames and trusses using stiffness matrix methods.        | K3      |  |  |
| CO5     | Perform complex analytical procedures such as sub structuring and iteration techniques. | K3      |  |  |

| COURSE ARTICULATION MATRIX |           |                |     |     |     |     |  |  |  |  |  |
|----------------------------|-----------|----------------|-----|-----|-----|-----|--|--|--|--|--|
| COs/POs                    | PO1       | PO2            | PO3 | PO4 | PO5 | PO6 |  |  |  |  |  |
| CO1                        | 1         | -              | 2   | 2   | -   | 1   |  |  |  |  |  |
| CO2                        | 1         | -              | 2   | 2   | -   | 1   |  |  |  |  |  |
| CO3                        | 3         | -              | 3   | 3   | 1   | 1   |  |  |  |  |  |
| CO4                        | 3         | -              | 3   | 3   | 1   | 1   |  |  |  |  |  |
| CO5                        | 2         | -              | 3   | 2   | 1   | 1   |  |  |  |  |  |
| 23SEPC01                   | 3         | -              | 3   | 3   | 1   | 1   |  |  |  |  |  |
| 1-Slight, $2-$             | Moderate, | 3 – Substantia | 1   |     |     | •   |  |  |  |  |  |

| ASSESSMENT I   | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |       |  |  |  |  |
|----------------|-----------------------------|---------------|----------|-----------|------------|----------|-------|--|--|--|--|
| Test / Bloom's | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |  |
| Category*      | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |  |
| CAT1           | 20                          | 20            | 60       |           |            |          | 100   |  |  |  |  |
| CAT2           | 20                          | 20            | 60       |           |            |          | 100   |  |  |  |  |
| Individual     | 25                          | 25            | 50       |           |            |          | 100   |  |  |  |  |
| Assessment 1 / |                             |               |          |           |            |          |       |  |  |  |  |
| Case Study 1/  |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 1 /    |                             |               |          |           |            |          |       |  |  |  |  |
| Project1       |                             |               |          |           |            |          |       |  |  |  |  |
| Individual     | 25                          | 25            | 50       |           |            |          | 100   |  |  |  |  |
| Assessment 2 / |                             |               |          |           |            |          |       |  |  |  |  |
| Case Study 2/  |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 2 /    |                             |               |          |           |            |          |       |  |  |  |  |
| Project 2      |                             |               |          |           |            |          |       |  |  |  |  |
| ESE            | 20                          | 20            | 60       |           |            |          | 100   |  |  |  |  |

| 23SEPC02              | DESIGN OF ADVANCED REINFORCED CONCR<br>STRUCTURES               | ETE         | SEMESTER I |        |        |       |       |
|-----------------------|-----------------------------------------------------------------|-------------|------------|--------|--------|-------|-------|
| PREREQUISI            | TES                                                             | CATEGO      | DRY        | L      | Т      | Р     | С     |
|                       | NIL                                                             | PC          |            | 3      | 0      | 0     | 3     |
| Course                | To familiarize with the design of structural elements using     | limit state | e of d     | esign  | con    | cept  | and   |
| Objectives            | understand the inelastic behaviour of concrete elements.        |             |            |        |        |       |       |
| UNIT – I              | DESIGN OF BEAMS                                                 |             |            |        | 9      | Per   | iods  |
| Review of basi        | c concepts - Design of beams circular in plan and Spandrel be   | eams-Desig  | n of C     | orbel  | s - I  | Desig | n of  |
| Deep beams -          | Short-term and long-term deflection of reinforced concrete bea  | ams and sla | bs – E     | Estima | ation  | of c  | rack  |
| width in reinfor      | ced concrete members.                                           |             |            |        |        |       |       |
| UNIT – II             | DESIGN OF SLABS                                                 |             |            |        | 9      | Per   | iods  |
| Yield line theo       | ry of slabs - Hillerberg's strip method of design of slabs- l   | Design of t | flat sla   | abs a  | nd fl  | at p  | lates |
| according to BI       | S method- Design of grid floors.                                |             |            |        |        |       |       |
| UNIT – III            | DESIGN OF SPECIAL RC ELEMENTS                                   |             |            |        | 9      | Per   | iods  |
| Design of slend       | er columns - Design of shearwalls - Design of pile caps.        |             |            | •      |        |       |       |
| UNIT – IV             | INELASTIC BEHAVIOUR OF CONCRETE BEAMS ANI                       | ) FRAME     | 5          |        | 9      | Per   | iods  |
| Inelastic behave      | our of concrete beams- Moment-rotation curves- Plastic hinge    | formation-  | Mom        | ent re | edisti | ibuti | on -  |
| Bakers method         | of analysis and design- Design of cast-in-situ joints in frames |             |            |        |        |       |       |
| UNIT – V              | DETAILING AND FIELD PRACTICE                                    |             |            |        | 9      | Per   | iods  |
| Detailing requi       | rements for various concrete elements in ductility, durability  | and fire re | sistan     | ce as  | pects  | - C   | odal  |
| requirements- (       | Quality control of concrete                                     |             |            |        |        |       |       |
| <b>Contact Period</b> | ls:                                                             |             |            |        |        |       |       |
| Lecture: 45 P         | eriods Tutorial: 0 Periods Practical: 0 Periods                 | Total: 45   | Perio      | ls     |        |       |       |

| 1 | Varghese P.C., "Advanced Reinforced Concrete", Prentice Hall of India, New Delhi, 2009                   |
|---|----------------------------------------------------------------------------------------------------------|
| 2 | Varghese P.C., "Limit state design of Reinforced Concrete", Prentice Hall of India, New Delhi, 2008      |
| 3 | Krishna Raju, N., "Advanced Reinforced Concrete Design", CBS Publishers and Distributers, 2008           |
| 4 | Unnikrishnan Pillai S and Menon D., " Reinforced concrete Design", Tata McGraw Hill Book Co., New        |
|   | Delhi, 2003.                                                                                             |
| 5 | N.C.Sinha and S. K.Roy, "Fundamentals of Reinforced concrete", S.Chand& Co Ltd., 2007                    |
| 6 | Pankaj Agarwal and Manish Shaikande, "Earthquake Resistant Design of structures", Prentice Hall of India |
|   | Pvt. Ltd, New Delhi, 2006                                                                                |

|            | SE OUTCOMES:<br>ompletion of the course, the students will be able to:                               | Bloom's<br>Taxonomy<br>Mapped |
|------------|------------------------------------------------------------------------------------------------------|-------------------------------|
| CO1        | Analyse and design the circular beam, spandrel beam, deep beams and its serviceability criteria      | K3                            |
| CO2        | Apply the concepts of yield line theory of slabs as per codal provisions                             | K3                            |
| CO3        | Design the slender columns, pile caps and shear walls                                                | K3                            |
| <b>CO4</b> | Implement the concept of inelastic behaviour of concrete elements and in joints                      | K3                            |
| CO5        | Execute the detailing of concrete elements with respect to durability, ductility and fire resistance | K2                            |

| COURSE ARTICULATION MATRIX |              |             |     |     |     |     |  |  |  |
|----------------------------|--------------|-------------|-----|-----|-----|-----|--|--|--|
| COs/POs                    | PO1          | PO2         | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                        | 3            | 2           | 3   | 1   | 1   | 2   |  |  |  |
| CO2                        | 3            | 2           | 3   | 1   | 1   | 2   |  |  |  |
| CO3                        | 3            | 2           | 3   | 1   | 1   | 2   |  |  |  |
| CO4                        | 3            | 2           | 3   | 1   | 1   | 2   |  |  |  |
| CO5                        | 3            | 2           | 3   | 3   | 1   | 2   |  |  |  |
| 23SEPC02                   | 3            | 2           | 3   | 3   | 1   | 2   |  |  |  |
| 1 - Slight, 2 - Me         | oderate, 3 – | Substantial |     |     |     |     |  |  |  |

| ASSESSMENT I   | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |       |  |  |  |  |
|----------------|-----------------------------|---------------|----------|-----------|------------|----------|-------|--|--|--|--|
| Test / Bloom's | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |  |
| Category*      | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |  |
| CAT1           | 20                          | 20            | 60       |           |            |          | 100   |  |  |  |  |
| CAT2           | 20                          | 20            | 60       |           |            |          | 100   |  |  |  |  |
| Individual     | 25                          | 25            | 50       |           |            |          | 100   |  |  |  |  |
| Assessment 1 / |                             |               |          |           |            |          |       |  |  |  |  |
| Case Study 1/  |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 1 /    |                             |               |          |           |            |          |       |  |  |  |  |
| Project1       |                             |               |          |           |            |          |       |  |  |  |  |
| Individual     | 25                          | 25            | 50       |           |            |          | 100   |  |  |  |  |
| Assessment 2 / |                             |               |          |           |            |          |       |  |  |  |  |
| Case Study 2/  |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 2 /    |                             |               |          |           |            |          |       |  |  |  |  |
| Project 2      |                             |               |          |           |            |          |       |  |  |  |  |
| ESE            | 20                          | 20            | 60       |           |            |          | 100   |  |  |  |  |

| 23SEPC03            | 5                                                                                               | THEORY OF ELASTICITY AND PLA                         | STICITY              | 5       | SEME    | STER        | I      |  |  |  |
|---------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------|---------|---------|-------------|--------|--|--|--|
| PREREQUIS           | SIT                                                                                             | ES                                                   | CATEGORY             | L       | Т       | Р           | С      |  |  |  |
|                     |                                                                                                 | NIL                                                  | PC                   | 3       | 0       | 0           | 3      |  |  |  |
| Course              | То                                                                                              | import knowledge on the stress and strain fields     | s of materials in o  | elastic | and p   | lastic      | state, |  |  |  |
| Objectives          | tors                                                                                            | sion behavior of non-circular and thin-walled se     | ections and energ    | gy prir | nciples | for e       | lastic |  |  |  |
|                     | me                                                                                              | iedium.                                              |                      |         |         |             |        |  |  |  |
| UNIT – I            | AN                                                                                              | ANALYSIS OF STRESS AND STRAIN 9 Period               |                      |         |         |             |        |  |  |  |
| Analysis of         | ysis of stress and strain - Stress-strain relationship- Generalised Hooke's Law - Compatibility |                                                      |                      |         |         |             |        |  |  |  |
| equations -Ty       | wo a                                                                                            | nd three dimensional problems in Cartesian and F     | Polar coordinates.   |         |         |             |        |  |  |  |
| UNIT – II           | TV                                                                                              | VO DIMENSIONAL PROBLEMS IN CART                      | <b>FESIAN AND F</b>  | POLA    | R       | <b>9 Pe</b> | riods  |  |  |  |
|                     | CC                                                                                              | COORDINATES                                          |                      |         |         |             |        |  |  |  |
| Plane stress a      | ind p                                                                                           | plane strain - Airy's stress function - Bending of   | beams by uniform     | m load  | l – Thi | ick cyl     | inder  |  |  |  |
| under uniform       | n pre                                                                                           | essure-Shrink and Force fits- Stress concentration   | - Flat plate subject | cted to | in pla  | ine tra     | ction  |  |  |  |
| and shear with      | h Ci                                                                                            | rcular hole - Boussinesque's Equation-Wedge pro      | oblem subjected to   | o incli | ned lo  | ading.      |        |  |  |  |
| UNIT – III          | TO                                                                                              | DRSION                                               |                      |         |         | 9 Pe        | riods  |  |  |  |
| Torsion of N        | on c                                                                                            | circular and Prismatic bars - St. Venant's approx    | ach – Prandtl app    | roach   | - Holl  | ow sec      | tion-  |  |  |  |
| Membrane an         | nalog                                                                                           | gy of torsion- Torsion of thin walled open and close | sed cell – Multi-co  | elled s | ection  | s           |        |  |  |  |
| UNIT – IV           | EN                                                                                              | ERGY THEOREMS                                        |                      |         |         | 9 Pe        | riods  |  |  |  |
| Strain energy       | for                                                                                             | 2D and 3D- principle of complementary energy         | - Principle of vir   | rtual w | vork –  | Recip       | rocal  |  |  |  |
| theorem- Eng        | gesse                                                                                           | er Theorem – Raleigh Ritz method.                    |                      |         |         |             |        |  |  |  |
| UNIT – V            | PL                                                                                              | ASTICITY                                             |                      |         |         | 9 Pe        | riods  |  |  |  |
| Physical assu       | ımpt                                                                                            | tions - Yield criteria for metals- Plastic stress    | and strain relation  | ons –   | Strain  | harde       | ning-  |  |  |  |
| Application to      | o sin                                                                                           | nple problems in tension, bending and torsion.       |                      |         |         |             |        |  |  |  |
| <b>Contact Peri</b> | ods:                                                                                            |                                                      |                      |         |         |             |        |  |  |  |
| Lecture: 45 I       | Peri                                                                                            | ods Tutorial: 0 Periods Practical: 0 Per             | iods Total: 45 l     | Period  | s       |             |        |  |  |  |
|                     |                                                                                                 |                                                      |                      |         |         |             |        |  |  |  |

| 1 | Timeshenko.S.P and Goodier.J.N, "Theory of Elasticity", McGraw hill international edition, 2017. |
|---|--------------------------------------------------------------------------------------------------|
| 2 | Alexander Mendelson, "Plasticity: Theory and Application", Krieger Publishing Company, 1983.     |
| 3 | Sadhu Singh, "Theory of Elasticity and metal forming processes", Khanna publishers, 2005.        |
| 4 | Hill.R, "Mathematical theory of plasticity", Oxford Publishers 1998.                             |

| COUR   | RSE OUTCOMES:                                                                        | Bloom's  |
|--------|--------------------------------------------------------------------------------------|----------|
|        |                                                                                      | Taxonomy |
| Upon o | completion of the course, the students will be able to:                              | Mapped   |
| CO1    | Illustrate the equilibrium and compatibility conditions in Cartesian and Polar       | K3       |
|        | coordinate systems and Compute principal stresses in Cartesian system.               |          |
| CO2    | Investigate the 2D stress system using Airy's stress function in Cartesian and Polar | K3       |
|        | Coordinates                                                                          |          |
| CO3    | Calculate the torsional capacity of non-circular sections both solid and tubular     | K3       |
|        | sections                                                                             |          |
| CO4    | To solve elastic problems using energy principles                                    | К3       |
| CO5    | To apply the concepts of plasticity in plastic problems                              | K3       |

| COs/POs  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|----------|-----|-----|-----|-----|-----|-----|
| CO1      | 1   | -   | 2   | 3   |     | 1   |
| CO2      | 1   | -   | 2   | 3   | 1   | 1   |
| CO3      | 1   | -   | 2   | 3   | 1   | 1   |
| CO4      | 1   | -   | 2   | 3   | 1   | 1   |
| CO5      | 1   | -   | 2   | 3   | 1   | 1   |
| 23SEPC03 | 1   | -   | 2   | 3   | 1   | 1   |

| ASSESSMENT PA  | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |       |  |  |  |  |
|----------------|-----------------------------|---------------|----------|-----------|------------|----------|-------|--|--|--|--|
| Test / Bloom's | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |  |
| Category*      | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |  |
| CAT1           | 30                          | 30            | 40       | -         | -          | -        | 100   |  |  |  |  |
| CAT2           | 30                          | 30            | 40       | -         | -          | -        | 100   |  |  |  |  |
| Individual     | -                           | 40            | 40       | 20        | -          | -        | 100   |  |  |  |  |
| Assessment 1 / |                             |               |          |           |            |          |       |  |  |  |  |
| Case Study 1/  |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 1 /    |                             |               |          |           |            |          |       |  |  |  |  |
| Project1       |                             |               |          |           |            |          |       |  |  |  |  |
| Individual     | -                           | 40            | 40       | 20        | -          | -        | 100   |  |  |  |  |
| Assessment 2 / |                             |               |          |           |            |          |       |  |  |  |  |
| Case Study 2/  |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 2 /    |                             |               |          |           |            |          |       |  |  |  |  |
| Project 2      |                             |               |          |           |            |          |       |  |  |  |  |
| ESE            | 30                          | 30            | 40       | -         | -          | -        | 100   |  |  |  |  |

| 23SEPC04      | EXPERIMENTAL TECHNIQUES LABORATORY                  |                      |         |              | SEMESTER |      |  |
|---------------|-----------------------------------------------------|----------------------|---------|--------------|----------|------|--|
| PREREQUIS     | SITES                                               | CATEGORY             | L       | Т            | Р        | С    |  |
|               | NIL                                                 | PC 0 0 4 2           |         |              |          |      |  |
| Course        | To have exposure on instruments and to con          | duct experiments of  | n vari  | ious s       | truct    | ural |  |
| Objectives    | elements to identify its behaviour.                 |                      |         |              |          |      |  |
|               |                                                     |                      |         |              |          |      |  |
|               |                                                     |                      |         |              |          |      |  |
|               | IMENTS / PROGRAMS                                   |                      |         |              |          |      |  |
| 1. Introc     | luction to instrumentation (LVDT, Load cell, Hy     | draulic jack, Strain | gauge   | es)          |          |      |  |
| 2. Castin     | ng and Testing of Reinforced Concrete beams fo      | r deflection         |         |              |          |      |  |
| 3. Castin     | ng and Testing of Reinforced Concrete beams fo      | r flexure            |         |              |          |      |  |
| 4. Castin     | ng and Testing of Reinforced Concrete beams fo      | r shear              |         |              |          |      |  |
|               | and Testing of Reinforced Concrete columns          |                      |         |              |          |      |  |
|               | ng and Testing of Reinforced Concrete columns       | beam – column joir   | nt and  | Fram         | nes      |      |  |
|               | cation and testing of elements for steel structures | e                    |         |              |          |      |  |
|               | f Non destructive testing (NDT) equipment – R       |                      |         |              |          |      |  |
|               | f Non destructive testing (NDT) equipment – U       |                      | ocity   | meter        |          |      |  |
|               |                                                     | *                    | •       |              |          |      |  |
| locate        | f Non destructive testing (NDT) equipment $-C$      | onosion Anaryzer a   | anu K   | CUal         |          |      |  |
|               |                                                     |                      |         |              |          |      |  |
| Contact Peri  |                                                     |                      |         | (a) <b>b</b> |          |      |  |
| Lecture: 0 Pe | eriods Tutorial: 0 Periods Practical: 0             | 50 Periods To        | otal: 6 | 50 Pei       | riods    |      |  |

| COU  | RSE OUTCOMES:                                                        | Bloom's  |
|------|----------------------------------------------------------------------|----------|
|      |                                                                      | Taxonomy |
| Upon | completion of the course, the students will be able to:              | Mapped   |
| CO1  | Familiarize with the various instruments used for testing structural | K3       |
|      | elements.                                                            |          |
| CO2  | Execute the test on reinforced concrete beams.                       | K3       |
| CO3  | Conduct the experiments on reinforced concrete columns, joints and   | K3       |
|      | frames.                                                              |          |
| CO4  | Fabricate and conduct test on various steel elements.                | K3       |
| CO5  | Employ Non destructive testing equipments for testing of structures. | K3       |

| COURSE ART        | COURSE ARTICULATION MATRIX                |     |     |     |     |     |  |  |
|-------------------|-------------------------------------------|-----|-----|-----|-----|-----|--|--|
| COs/POs           | PO1                                       | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |
| CO1               | 3                                         | -   | 2   | 2   | 2   | 1   |  |  |
| CO2               | 3                                         | -   | 2   | 2   | 2   | 2   |  |  |
| CO3               | 3                                         | -   | 2   | 2   | 2   | 2   |  |  |
| CO4               | 3                                         | -   | 3   | 2   | 2   | 1   |  |  |
| CO5               | 3                                         | -   | 2   | 3   | 2   | 3   |  |  |
| 23SEPC04          | 3                                         | -   | 3   | 3   | 2   | 3   |  |  |
| 1 - Slight, 2 - N | 1 – Slight, 2 – Moderate, 3 – Substantial |     |     |     |     |     |  |  |

| 23SEPC05                                                                                                                                                                            | FINITE ELEMENT ANALYSIS FOR STRUCT<br>ENGINEERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TURAL                                                                                  | SEM                                             | IEST                    | ESTER II                                                                                               |                                               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| PREREQUI                                                                                                                                                                            | SITES C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CATEGORY                                                                               | L                                               | Т                       | Р                                                                                                      | С                                             |  |
|                                                                                                                                                                                     | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | РС                                                                                     | 3                                               | 0                       | 0                                                                                                      | 3                                             |  |
| Course                                                                                                                                                                              | To learn the fundamental concepts of finite element analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vsis, familiarize                                                                      | e with                                          | the e                   | lemer                                                                                                  | nt                                            |  |
| Objectives                                                                                                                                                                          | properties and isoparametric elements, and get exposure to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o axisymmetri                                                                          | c stres                                         | s ana                   | lysis                                                                                                  | and                                           |  |
|                                                                                                                                                                                     | non linear analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                        |                                                 |                         |                                                                                                        |                                               |  |
| UNIT – I                                                                                                                                                                            | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |                                                 | 9                       | 9 Per                                                                                                  | iod                                           |  |
| Engineering                                                                                                                                                                         | Problems – Numerical Methods – Brief History of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e Finite Eleme                                                                         | nt Me                                           | thod                    | – Ba                                                                                                   | isic                                          |  |
| steps in the                                                                                                                                                                        | Finite Element Method - Minimum Total Potential E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Energy Formul                                                                          | lations                                         | ; - `                   | Weig                                                                                                   | hteo                                          |  |
| Residual For                                                                                                                                                                        | mulations - Direct method - Element stiffness matri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x – Global                                                                             | stiffn                                          | ess                     | matri                                                                                                  | X -                                           |  |
| Boundary co                                                                                                                                                                         | nditions- Problems on bars, simple beams, Trusses and fran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mes.                                                                                   |                                                 |                         |                                                                                                        |                                               |  |
| UNIT – II                                                                                                                                                                           | ELEMENT PROPERTIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                                 | 9                       | 9 Per                                                                                                  | iod                                           |  |
| Discretizatio                                                                                                                                                                       | n – Displacement model – Element properties – converger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nce and compa                                                                          | tibility                                        | v real                  | uirem                                                                                                  | ent                                           |  |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | itee unie eompu                                                                        | unonni,                                         | y requ                  |                                                                                                        |                                               |  |
| – Node Nu                                                                                                                                                                           | mbering procedure – Natural coordinate system - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                      |                                                 | · •                     |                                                                                                        |                                               |  |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Generalized C                                                                          | oordir                                          | nates                   | -SI                                                                                                    | nap                                           |  |
| function – I                                                                                                                                                                        | umbering procedure – Natural coordinate system - (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Generalized C                                                                          | oordir                                          | nates                   | -SI                                                                                                    | nap                                           |  |
| function – I<br>strain– Static                                                                                                                                                      | umbering procedure – Natural coordinate system - C<br>Lagrange elements – stiffness matrix – Nodal load vector -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Generalized C                                                                          | oordir                                          | nates<br>tress          | -SI                                                                                                    | napo<br>lano                                  |  |
| function – I<br>strain– Static<br>UNIT – III                                                                                                                                        | umbering procedure – Natural coordinate system -<br>Lagrange elements – stiffness matrix – Nodal load vector -<br>condensation – Simple problems only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Generalized C<br>- elements in p                                                       | loordir<br>lane st                              | nates<br>tress          | – Sl<br>and p<br><b>9 Per</b>                                                                          | napo<br>lano<br><b>iod</b>                    |  |
| function – I<br>strain– Static<br>UNIT – III<br>Basic princip                                                                                                                       | imbering procedure – Natural coordinate system - O         Lagrange elements – stiffness matrix – Nodal load vector -         condensation – Simple problems only.         ISOPARAMETRIC ELEMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Generalized C<br>- elements in p<br>ng - Sub – Iso                                     | loordir<br>lane st                              | hates<br>tress<br>per p | – Sl<br>and p<br>9 <b>Per</b><br>aram                                                                  | hapolano<br>lano<br><b>iod</b><br>etrio       |  |
| function – I<br>strain– Static<br>UNIT – III<br>Basic princip                                                                                                                       | <ul> <li>imbering procedure – Natural coordinate system - Ocagrange elements – stiffness matrix – Nodal load vector - condensation – Simple problems only.</li> <li><b>ISOPARAMETRIC ELEMENTS</b></li> <li>ibles of Shape Functions - Mapping – Uniqueness of mapping</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Generalized C<br>- elements in p<br>ng - Sub – Iso                                     | loordir<br>lane st                              | hates<br>tress<br>per p | – Sl<br>and p<br>9 <b>Per</b><br>aram                                                                  | hapolano<br>lano<br><b>iod</b><br>etrio       |  |
| function – I<br>strain– Static<br>UNIT – III<br>Basic princip<br>elements –<br>dimension.<br>UNIT – IV                                                                              | imbering       procedure       – Natural       coordinate       system       - O         _agrange       elements       – stiffness       matrix       – Nodal       load       vector       -         condensation       – Simple       problems       only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Generalized C<br>- elements in p<br>ng - Sub – Iso<br>xamples in one                   | oordir<br>lane st<br>o – Su<br>e dime           | per pension             | - Sl<br>and p<br><b>9 Per</b><br>aram<br>1 and<br><b>9 Per</b>                                         | napo<br>land<br>iod<br>etrio<br>two<br>iod    |  |
| function – I<br>strain– Static<br>UNIT – III<br>Basic princip<br>elements –<br>dimension.<br>UNIT – IV                                                                              | <ul> <li>Imbering procedure – Natural coordinate system - Cagrange elements – stiffness matrix – Nodal load vector - condensation – Simple problems only.</li> <li>ISOPARAMETRIC ELEMENTS</li> <li>Islame Functions - Mapping – Uniqueness of mapping Numerical integration using Gaussian Quadrature - Experimental using Gaussi</li></ul>   | Generalized C<br>- elements in p<br>ng - Sub – Iso<br>xamples in one                   | oordir<br>lane st<br>o – Su<br>e dime           | per pension             | - Sl<br>and p<br><b>9 Per</b><br>aram<br>1 and<br><b>9 Per</b>                                         | napo<br>lano<br>iod<br>etrio<br>two<br>iod    |  |
| function – I<br>strain– Static<br>UNIT – III<br>Basic princip<br>elements –<br>dimension.<br>UNIT – IV                                                                              | umbering procedure – Natural coordinate system - O         Lagrange elements – stiffness matrix – Nodal load vector -         condensation – Simple problems only.         ISOPARAMETRIC ELEMENTS         oles of Shape Functions - Mapping – Uniqueness of mapping         Numerical integration using Gaussian Quadrature - Ex         AXISYMMETRIC STRESS ANALYSIS         olids of revolution under axisymmetric loading – Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Generalized C<br>- elements in p<br>ng - Sub – Iso<br>xamples in one                   | oordir<br>lane st<br>o – Su<br>e dime           | per pension             | - Sl<br>and p<br><b>9 Per</b><br>aram<br>1 and<br><b>9 Per</b>                                         | napo<br>lano<br>iod<br>etrio<br>two<br>iod    |  |
| function – I<br>strain– Static<br>UNIT – III<br>Basic princip<br>elements –<br>dimension.<br>UNIT – IV<br>Analysis of s<br>– Simple exa                                             | umbering procedure – Natural coordinate system - O         Lagrange elements – stiffness matrix – Nodal load vector -         condensation – Simple problems only.         ISOPARAMETRIC ELEMENTS         oles of Shape Functions - Mapping – Uniqueness of mapping         Numerical integration using Gaussian Quadrature - Ex         AXISYMMETRIC STRESS ANALYSIS         olids of revolution under axisymmetric loading – Formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Generalized C<br>- elements in p<br>ng - Sub – Iso<br>xamples in one                   | oordir<br>lane st<br>o – Su<br>e dime           | per pension             | - Sl<br>and p<br><b>9 Per</b><br>aram<br>1 and<br><b>9 Per</b>                                         | napolano<br>iod<br>etrio<br>two<br>iod<br>men |  |
| function – I<br>strain– Static<br>UNIT – III<br>Basic princip<br>elements –<br>dimension.<br>UNIT – IV<br>Analysis of s<br>– Simple exa<br>UNIT – V<br>Types of m                   | imbering       procedure       – Natural       coordinate       system       - O         agrange       elements       – stiffness       matrix       – Nodal       load       vector       -         condensation       – Simple       problems       only.       ISOPARAMETRIC ELEMENTS         oles       of       Shape       Functions       - Mapping       – Uniqueness       of       mapping         Numerical       integration       using       Gaussian       Quadrature       - Ex         AXISYMMETRIC       STRESS       ANALYSIS         olids       of       revolution       under       axisymmetric       loading       – Formula         mples.       NONLINEAR       ANALYSIS       Dilinearities       – Geometric       nonlinearity       – Material       nonlinearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Generalized C<br>- elements in p<br>ng - Sub – Iso<br>xamples in one<br>tion of axisym | oordir<br>lane st<br>o – Su<br>e dime<br>metric | per pension             | <ul> <li>Sland p</li> <li>Per</li> <li>aramon and</li> <li>Per</li> <li>d eler</li> <li>Per</li> </ul> | napolano<br>iod<br>etrio<br>two<br>iod<br>nen |  |
| function – I<br>strain– Static<br>UNIT – III<br>Basic princip<br>elements –<br>dimension.<br>UNIT – IV<br>Analysis of s<br>– Simple exa<br>UNIT – V<br>Types of ne<br>solution tech | <ul> <li>Imbering procedure – Natural coordinate system - Quagrange elements – stiffness matrix – Nodal load vector - condensation – Simple problems only.</li> <li><b>ISOPARAMETRIC ELEMENTS</b></li> <li>Isoles of Shape Functions - Mapping – Uniqueness of mapping Numerical integration using Gaussian Quadrature - Examples of revolution under axisymmetric loading – Formula mples.</li> <li><b>NONLINEAR ANALYSIS</b></li> <li>Indinearities – Geometric nonlinearity – Material nonlinearity – Newton Raphson and Modified Newton Raphson processing and the system of the s</li></ul> | Generalized C<br>- elements in p<br>ng - Sub – Iso<br>xamples in one<br>tion of axisym | oordir<br>lane st<br>o – Su<br>e dime<br>metric | per pension             | <ul> <li>Sland p</li> <li>Per</li> <li>aramon and</li> <li>Per</li> <li>d eler</li> <li>Per</li> </ul> | napo<br>lano<br>iod:<br>two<br>iod:<br>nen    |  |
| function – I<br>strain– Static<br>UNIT – III<br>Basic princip<br>elements –<br>dimension.<br>UNIT – IV<br>Analysis of s<br>– Simple exa<br>UNIT – V<br>Types of m                   | <ul> <li>Imbering procedure – Natural coordinate system - Quagrange elements – stiffness matrix – Nodal load vector - condensation – Simple problems only.</li> <li><b>ISOPARAMETRIC ELEMENTS</b></li> <li>Isoles of Shape Functions - Mapping – Uniqueness of mapping Numerical integration using Gaussian Quadrature - Examples of revolution under axisymmetric loading – Formula mples.</li> <li><b>NONLINEAR ANALYSIS</b></li> <li>Indinearities – Geometric nonlinearity – Material nonlinearity – Newton Raphson and Modified Newton Raphson processing and the system of the s</li></ul> | Generalized C<br>- elements in p<br>ng - Sub – Iso<br>xamples in one<br>tion of axisym | oordir<br>lane st<br>o – Su<br>e dime<br>metric | per pension             | <ul> <li>Sland p</li> <li>Per</li> <li>aramon and</li> <li>Per</li> <li>d eler</li> <li>Per</li> </ul> | napo<br>lano<br>iod:<br>two<br>iod:<br>nen    |  |

| 1 | Krishnamurthy C.S, "Finite Element Analysis – Theory and programming", Second edition, Tata |
|---|---------------------------------------------------------------------------------------------|
|   | McGraw Hill Publishing Co. 2004                                                             |
| 2 | Reddy J. N., "Introduction to Finite Element Method", Tata McGraw Hill Publishing Co. 2020. |
| 3 | Rajasekaran S., "Finite Element Analysis in Engineering Design", Wheeler publishing,2008    |
| 4 | Chandrapatla Tirupathi.R and Belegundu, Ashok. D., "Introduction to Finite Elements in      |
|   | Engineering", Second edition, Prentice Hall of India, 2014                                  |
| 5 | S.S.Rao, "The Finite Element Method in Engineering", Buttersworth - Heinemann publishing,   |
|   | 2010.                                                                                       |

| COURSE OUTCOMES: |                                                                                      |        |
|------------------|--------------------------------------------------------------------------------------|--------|
| Upon co          | ompletion of the course, the students will be able to:                               | Mapped |
| CO1              | Practice the basics FEM for the solution of bars, beams, trusses and frame problems. | K4     |
| CO2              | Solve the structural mechanics problems using FEM element approach.                  | K4     |
| CO3              | Identify solutions for problems involving isoparametric elements.                    | K4     |
| CO4              | Analyze axisymmetric solid elements.                                                 | K4     |
| CO5              | Identify the different types of non linearities and its solution techniques.         | K4     |

# COURSE ARTICULATION MATRIX

| COURSEARTICE         |                                           |     |     |     |     |     |  |  |
|----------------------|-------------------------------------------|-----|-----|-----|-----|-----|--|--|
| COs/POs              | PO1                                       | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |
| CO1                  | 1                                         | -   | 2   | 2   | -   | 1   |  |  |
| CO2                  | 1                                         | -   | 3   | 2   | -   | 1   |  |  |
| CO3                  | 2                                         | -   | 3   | 3   | 1   | 2   |  |  |
| CO4                  | 1                                         | -   | 2   | 3   | 1   | 2   |  |  |
| CO5                  | 2                                         | -   | 3   | 3   | -   | 1   |  |  |
| 23SEPC05             | 2                                         | -   | 3   | 3   | 1   | 2   |  |  |
| 1 - Slight, 2 - Mode | 1 – Slight, 2 – Moderate, 3 – Substantial |     |     |     |     |     |  |  |

# ASSESSMENT PATTERN – THEORY

| Test /<br>Bloom's | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
|-------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Category*         |                       |                         |                    |                     |                      |                    |            |
| CAT1              | 20                    | 20                      | 60                 | -                   | -                    | -                  | 100        |
| CAT2              | 20                    | 20                      | 60                 | -                   | -                    | -                  | 100        |
| Individual        | 25                    | 25                      | 50                 | -                   | -                    | -                  | 100        |
| Assessment 1 /    |                       |                         |                    |                     |                      |                    |            |
| Case Study 1/     |                       |                         |                    |                     |                      |                    |            |
| Seminar 1 /       |                       |                         |                    |                     |                      |                    |            |
| Project1          |                       |                         |                    |                     |                      |                    |            |
| Individual        | 25                    | 25                      | 50                 | -                   | -                    | -                  | 100        |
| Assessment 2 /    |                       |                         |                    |                     |                      |                    |            |
| Case Study 2/     |                       |                         |                    |                     |                      |                    |            |
| Seminar 2 /       |                       |                         |                    |                     |                      |                    |            |
| Project 2         |                       |                         |                    |                     |                      |                    |            |
| ESE               | 20                    | 20                      | 60                 | -                   | -                    | -                  | 100        |

STRUCTURAL DYNAMICS

SEMESTER II

|                                           |                                                     |                    |         | r      |        | r —  |
|-------------------------------------------|-----------------------------------------------------|--------------------|---------|--------|--------|------|
| PREREQUISITES                             |                                                     | CATEGORY           | L       | Т      | Р      | C    |
|                                           | NIL                                                 | PC                 | 3       | 0      | 0      | 3    |
| Course Objectives                         | To impart knowledge on analysis of SDOF, MD         | OF, Continuous s   | system  | subj   | jecteo | d to |
|                                           | dynamic loading and also solve by numerical         | methods and give   | ve an   | expo   | sure   | on   |
|                                           | advance topics of structural dynamics.              |                    |         |        |        |      |
| UNIT – I SINGLE DEGREE OF FREEDOM SYSTEMS |                                                     |                    |         |        | Peri   | iods |
| Formulation of equation                   | of motion, Free and forced vibrations, Effect of da | amping, Response   | to per  | riodic | load   | ling |
| - Fourier series and anal                 | lysis, Response to impulse loading – Duhamel's inte | egral              |         |        |        |      |
| UNIT – II                                 | MULTI DEGREE OF FREEDOM SYSTEMS                     |                    |         | 9      | Peri   | iods |
| Free and forced vibratio                  | n of undamped and damped MDOF systems. Equat        | tion of motions, E | valuat  | ion o  | f nat  | ural |
| frequencies and mode sh                   | napes – Eigen value problem, Modal analysis – mod   | e superposition m  | ethod.  |        |        |      |
| UNIT – III                                | CONTINUOUS SYSTEMS                                  |                    |         | 9      | Peri   | iods |
| Dynamics of distribute                    | d parameter systems, Free and forced vibration of   | of flexural beams  | , shea  | r be   | ams    | and  |
| columns, Modal analysi                    | S.                                                  |                    |         |        |        |      |
| UNIT – IV                                 | NUMERICAL METHODS IN STRUCTURAL                     | DYNAMICS           |         | 9      | Peri   | iods |
| MDOF system - Matrix                      | Iteration method - Rayleigh Method - Holzer Meth    | nod – Dunkerleys   | metho   | od – S | Stodo  | ola  |
| method.                                   |                                                     |                    |         |        |        |      |
| UNIT – V                                  | SPECIAL TOPICS IN STRUCTURAI                        | <b>DYNAMICS</b>    |         | 9      | Peri   | iods |
| Response spectrum anal                    | ysis – Time history analysis. Dynamic Effects of    | Wind Loading , V   | ibratio | ons ca | aused  | l by |
| Traffic, Blasting and Pil                 | e Driving, machine foundation, Dynamic analysis of  | of water tank.     |         |        |        |      |
| Vibration isolation - Tur                 | ned mass damper - vibration absorber                |                    |         |        |        |      |
| Contact Periods:                          |                                                     |                    |         |        |        |      |
| Lecture: 45 Periods                       | Tutorial: 0 Periods Practical: 0 Periods            | Total: 45 Period   | S       |        |        |      |

| 1 | Anil K. Chopra, "Dynamics of Structures", fifth Edition, pearson publishers, 2017         |
|---|-------------------------------------------------------------------------------------------|
| 2 | Mario Paz, "Structural Dynamics – Theory and Computations", Third Edition, CBS            |
|   | publishers, 2012.                                                                         |
| 3 | Clough R.W, and Penzien J, "Dynamics of Structures", Second Edition, CBS publishers, 2015 |
| 4 | Manickaselvam, V.K., "Elementary Structural Dynamics", Dhanpat Rai & Sons, 2001           |
| 5 | Madhujit Mukhopadhyay, "Structural Dynamics: Vibrations & Systems", Ane Books Pvt. Ltd,   |
|   | 2010.                                                                                     |

| COURSI   | E OUTCOMES:                                                                    | Bloom's  |
|----------|--------------------------------------------------------------------------------|----------|
|          |                                                                                | Taxonomy |
| Upon con | npletion of the course, the students will be able to:                          | Mapped   |
| C01      | Analyze and evaluate the response of SDOF systems under dynamic loading        | K3       |
| CO2      | Analyze and evaluate the response of MDOF systems under dynamic loading.       | K3       |
| CO3      | Analyze and evaluate the response of continuous systems under dynamic loading. | K3       |
| CO4      | Apply the concepts of numerical methods to solve structural dynamics problems. | K3       |
| CO5      | Analyze and apply advance techniques to the structures subjected to dynamic    | K2       |
|          | loading.                                                                       |          |

| COs/POs  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|----------|-----|-----|-----|-----|-----|-----|
| CO1      | 3   | 2   | 3   | 2   | 1   | 2   |
| CO2      | 3   | 2   | 3   | 2   | 1   | 2   |
| CO3      | 3   | 2   | 3   | 2   | 1   | 2   |
| CO4      | 3   | 2   | 3   | 2   | 1   | 2   |
| CO5      | 3   | 2   | 3   | 3   | 1   | 2   |
| 23SEPC06 | 3   | 2   | 3   | 3   | 1   | 2   |

|                | ATTERN – THE |               | [        |           |            |          | 1       |
|----------------|--------------|---------------|----------|-----------|------------|----------|---------|
| Test / Bloom's | Remembering  | Understanding | Applying | Analyzing | Evaluating | Creating | Total % |
| Category*      | (K1) %       | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   |         |
| CAT1           | 20           | 40            | 40       | -         | -          | -        | 100     |
| CAT2           | 20           | 40            | 40       | -         | -          | -        | 100     |
| Individual     | -            | -             | 50       | 50        | -          | -        | 100     |
| Assessment 1 / |              |               |          |           |            |          |         |
| Case Study 1/  |              |               |          |           |            |          |         |
| Seminar 1 /    |              |               |          |           |            |          |         |
| Project1       |              |               |          |           |            |          |         |
| Individual     | -            | -             | 50       | 50        | -          | -        | 100     |
| Assessment 2 / |              |               |          |           |            |          |         |
| Case Study 2/  |              |               |          |           |            |          |         |
| Seminar 2 /    |              |               |          |           |            |          |         |
| Project 2      |              |               |          |           |            |          |         |
| ESE            | 20           | 40            | 40       | -         | -          | -        | 100     |

| 23SEPC07                                                                                                                                                                                                   |                                                       | ADVANCEI                                                           | ) STEEL STRUCTU                                                                                                             | JRES                                         | S                 | EMF     | ESTER II         |                     |            |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------|---------|------------------|---------------------|------------|--|--|--|
| PREREQUIS                                                                                                                                                                                                  | SITES                                                 |                                                                    |                                                                                                                             | CATEG                                        | ORY               | Y L T P |                  |                     |            |  |  |  |
|                                                                                                                                                                                                            |                                                       | NIL                                                                |                                                                                                                             | PC                                           |                   | 3       | 3 0 0            |                     |            |  |  |  |
| CourseTo gain knowledge on design philosophies, special requirements on design and constructionsObjectivesand understand the design of industrial buildings, connections and cold formed steel structures. |                                                       |                                                                    |                                                                                                                             |                                              |                   |         |                  |                     |            |  |  |  |
| UNIT – I                                                                                                                                                                                                   | REVIEW                                                | OF DESIGN PHIL                                                     | OSOPHIES                                                                                                                    |                                              |                   |         | 9                | Peri                | ods        |  |  |  |
| plate element                                                                                                                                                                                              | s – Sectior                                           | 0                                                                  | nd LRFD Concepts (<br>mit State Design – C<br>eam-columns.                                                                  | U                                            |                   |         |                  |                     |            |  |  |  |
| UNIT – II                                                                                                                                                                                                  | BEHAVI                                                | OUR AND DESIGN                                                     | OF CONNECTION                                                                                                               | NS                                           |                   |         | 9                | Peri                | ods        |  |  |  |
| stiffeners and<br>UNIT – III<br>Review of loa                                                                                                                                                              | other reinfo<br>ANALYS<br>ads on stru<br>ustrial buil | orcement-principles of <b>IS AND DESIGN O</b> ctures-Dead, Live, w | nent transmission-tee<br>of semi rigid connection<br><b>F INDUSTRIAL BU</b><br>vind and Seismic load<br>y and non-sway fram | ons<br>J <b>ILDINGS</b><br>ds as per Nationa | l stanc           | lards-  | <b>9</b><br>Anal | <b>Peri</b><br>ysis | ods<br>and |  |  |  |
| UNIT – IV                                                                                                                                                                                                  | ANALYS                                                | SIS AND DESIGN O                                                   | F COLD-FORMED                                                                                                               | STEEL STRUC                                  | TUR               | ES      | 9                | Peri                | ods        |  |  |  |
| members-cone<br>Combined stre                                                                                                                                                                              | cepts of latesses and co                              | teral buckling–Desig<br>onnections-Empirical                       | ckling, and Effective<br>n of Beams, deflecti<br>design of Z-purlins v                                                      | ons of beams an with lips and wall           | d desig<br>studs. |         | bear             | n we                | ebs-       |  |  |  |
| UNIT – V                                                                                                                                                                                                   |                                                       |                                                                    | S OF DESIGN AND                                                                                                             |                                              |                   | fataa   |                  | Peri                |            |  |  |  |
| Principle of F                                                                                                                                                                                             | atigue-resis<br>resistant d<br>ods:                   | •                                                                  |                                                                                                                             | aviour and ad van                            | tages o           | f stee  |                  |                     |            |  |  |  |
| REFERE                                                                                                                                                                                                     | INCES                                                 |                                                                    |                                                                                                                             |                                              |                   |         |                  |                     |            |  |  |  |

| 1 | Salmon.C.G. and Johnson.J.E. "Steel Structure-Design and Behaviour", Harper and Row, 1980.    |
|---|-----------------------------------------------------------------------------------------------|
| 2 | Wie-WenYu., "Cold-formed Steel Structures", McGraw Hill Book Company, 1973.                   |
| 3 | William McGuire, "Steel Structures", Prentice Hall, Inc., Englewood Cliffs, N.J. 1986.        |
| 4 | Subramanian.N, "Design of Steel Structures", Oxford University press, 2008                    |
| 5 | DuggalS.K, "Limit State Design of Steel Structures", Tata McGraw Hill,2010.                   |
| 6 | GregoryJ. Hancock, Thomas Murray, DuaneS. Ellifrit, "Cold-Formed Steel Structures to the AISI |
|   | Specification", CRC Press, 2001.                                                              |

| COUR       | RSE OUTCOMES:                                                                 | Bloom's<br>Taxonomy |
|------------|-------------------------------------------------------------------------------|---------------------|
| Upon       | completion of the course, the students will be able to:                       | Mapped              |
| CO1        | Know the various design philosophies as per various international codes.      | K3                  |
| CO2        | Design different types of eccentric bolted and welded connections.            | K3                  |
| CO3        | Analyse and design the components of industrial buildings.                    | K3                  |
| <b>CO4</b> | Perform design of cold formed steel structures.                               | K3                  |
| CO5        | Design of steel structures for fire, fatigue and understand the principles of | K3                  |
|            | earthquake resistant design.                                                  |                     |

| COURSE ARTICULATION MATRIX |               |               |     |     |     |     |  |  |  |  |  |
|----------------------------|---------------|---------------|-----|-----|-----|-----|--|--|--|--|--|
| COs/POs                    | PO1           | PO2           | PO3 | PO4 | PO5 | PO6 |  |  |  |  |  |
| CO1                        | 2             | -             | 2   | 1   | -   | -   |  |  |  |  |  |
| CO2                        | 1             | -             | -   | 1   | 1   | -   |  |  |  |  |  |
| CO3                        | 2             | -             | 1   | 3   | 2   | 1   |  |  |  |  |  |
| CO4                        | 2             | -             | -   | 2   | 1   | 2   |  |  |  |  |  |
| CO5                        | 2             | -             | 2   | 2   | 2   | 3   |  |  |  |  |  |
| 23SEPC07                   | 2             | -             | 2   | 3   | 2   | 3   |  |  |  |  |  |
| 1 – Slight, 2 – 1          | Moderate, 3 - | - Substantial |     |     |     |     |  |  |  |  |  |

| ASSESSMENT PATTERN – THEORY |             |               |          |           |            |          |       |  |  |  |  |
|-----------------------------|-------------|---------------|----------|-----------|------------|----------|-------|--|--|--|--|
| Test / Bloom's              | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |  |
| Category*                   | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |  |
| CAT1                        | 20          | 30            | 50       | -         | -          | -        | 100   |  |  |  |  |
| CAT2                        | 20          | 30            | 50       | -         | -          | -        | 100   |  |  |  |  |
| Individual                  | 20          | 30            | 50       | -         | -          | -        | 100   |  |  |  |  |
| Assessment 1 /              |             |               |          |           |            |          |       |  |  |  |  |
| Case Study 1/               |             |               |          |           |            |          |       |  |  |  |  |
| Seminar 1 /                 |             |               |          |           |            |          |       |  |  |  |  |
| Project1                    |             |               |          |           |            |          |       |  |  |  |  |
| Individual                  | 20          | 30            | 50       | -         | -          | -        | 100   |  |  |  |  |
| Assessment 2 /              |             |               |          |           |            |          |       |  |  |  |  |
| Case Study 2/               |             |               |          |           |            |          |       |  |  |  |  |
| Seminar 2 /                 |             |               |          |           |            |          |       |  |  |  |  |
| Project 2                   |             |               |          |           |            |          |       |  |  |  |  |
| ESE                         | 20          | 30            | 50       | -         | -          | -        | 100   |  |  |  |  |

| 23SEPC | 08 |
|--------|----|
|--------|----|

### FINITE ELEMENT ANALYSIS AND APPLICATIONS LABORATORY

SEMESTER II

| PREREQUI            | SITES                                                        | CATEGORY        | L     | Т    | Р     | С    |
|---------------------|--------------------------------------------------------------|-----------------|-------|------|-------|------|
|                     | NIL                                                          | РС              | 0     | 0    | 4     | 2    |
| Course              | To provide exposure on commercial software package           | o solve problem | is in | mech | anics | ; of |
| Objectives          | materials and in structural engineering.                     |                 |       |      |       |      |
|                     |                                                              |                 |       |      |       |      |
|                     | RIMENTS / PROGRAMS                                           |                 |       |      |       |      |
|                     | duction to ANSYS/ABAQUS                                      |                 |       |      |       |      |
| 2. Finite           | e element analysis of simple beams                           |                 |       |      |       |      |
| 3. Finite           | e element analysis of trusses                                |                 |       |      |       |      |
| 4. Finite           | e element analysis of frames                                 |                 |       |      |       |      |
| 5. Finite           | e element analysis of element subjected to combined axial lo | ad and bending. |       |      |       |      |
| 6. Finite           | e element analysis of complex elements.                      | -               |       |      |       |      |
|                     | duction to MATLAB                                            |                 |       |      |       |      |
| 8. Struc            | tural analysis of beams using MATLAB                         |                 |       |      |       |      |
| 9. Struc            | tural analysis of Frames and Trusses using MATLAB            |                 |       |      |       |      |
| 10. Finite          | e element programming using MATLAB                           |                 |       |      |       |      |
|                     |                                                              |                 |       |      |       |      |
| <b>Contact Peri</b> | iods:                                                        |                 |       |      |       |      |
| Lecture: 0 P        | eriods Tutorial: 0 Periods Practical: 60 Perio               | ds Total: 6     | 0 Per | iods |       |      |

|     | SE OUTCOMES:<br>ompletion of the course, the students will be able to:                   | Bloom's<br>Taxonomy<br>Mapped |
|-----|------------------------------------------------------------------------------------------|-------------------------------|
| CO1 | Perform finite element formulations for simple engineering problems.                     | K1                            |
| CO2 | Develop the various structural models using commercially available software.             | K3                            |
| CO3 | Use MATLAB and commercial finite element software for analyzing the structural elements. | K3                            |
| CO4 | Use finite element method to solve engineering problems.                                 | K3                            |
| CO5 | Develop and validate the numerical model of structural elements.                         | K3                            |

| COURSE ARTICULATION MATRIX                |     |     |     |     |     |     |  |  |  |  |  |
|-------------------------------------------|-----|-----|-----|-----|-----|-----|--|--|--|--|--|
| COs/POs                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |  |  |
| CO1                                       | 1   | -   | 2   | 2   | -   | 1   |  |  |  |  |  |
| CO2                                       | 1   | -   | 3   | 2   | -   | 1   |  |  |  |  |  |
| CO3                                       | 2   | -   | 3   | 3   | 1   | 2   |  |  |  |  |  |
| CO4                                       | 1   | -   | 2   | 3   | 1   | 2   |  |  |  |  |  |
| CO5                                       | 2   | -   | 3   | 3   | -   | 1   |  |  |  |  |  |
| 23SEPC08                                  | 2   | -   | 3   | 3   | 1   | 2   |  |  |  |  |  |
| 1 – Slight, 2 – Moderate, 3 – Substantial |     |     |     |     |     |     |  |  |  |  |  |

| <b>23SEEE01</b>                                                                                                                                                                                                                                                                                                             | 23SEEE01 MINI PROJECT |                                                                                                                                   |                         | SEMESTE |        |     | RII     |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------|--------|-----|---------|--|--|--|
| PREREQUISITES CATEGORY                                                                                                                                                                                                                                                                                                      |                       |                                                                                                                                   |                         |         |        | Р   | С       |  |  |  |
|                                                                                                                                                                                                                                                                                                                             |                       | NIL                                                                                                                               | EEC                     | 0       | 0      | 4   | 2       |  |  |  |
| Course<br>Objectives                                                                                                                                                                                                                                                                                                        | То                    | develop skill competencies in design and de                                                                                       | etailing of structures. |         |        |     |         |  |  |  |
| MODULE                                                                                                                                                                                                                                                                                                                      |                       |                                                                                                                                   |                         |         |        |     |         |  |  |  |
| presenta<br>the struc                                                                                                                                                                                                                                                                                                       | tion<br>tural         | ect will have mid semester presentation an<br>will include identification of the design pro<br>l system using various techniques. | blem based on the re    | cent (  | trends | and | analyse |  |  |  |
| <ol> <li>End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted, analysis, design and detailing of the entire structural system.</li> <li>* Continuous assessment of Design Project will be monitored by the departmental committee.</li> </ol> |                       |                                                                                                                                   |                         |         |        |     |         |  |  |  |
| Contact Periods<br>Lecture: 0 Perio                                                                                                                                                                                                                                                                                         |                       | Tutorial: 0 Periods Practical: 6                                                                                                  | 0 Periods Total         | l: 60 ] | Perio  | ds  |         |  |  |  |

| COUF   | RSE OUTCOMES:                                                               | Bloom's  |
|--------|-----------------------------------------------------------------------------|----------|
|        |                                                                             | Taxonomy |
| Upon o | completion of the course, the students will be able to:                     | Mapped   |
| CO1    | Identify structural engineering problems based on the current scenario.     | K3       |
| CO2    | Familiarize with the various loads and load combinations as per IS codes.   | K3       |
| CO3    | Apply different techniques to analyze complex structural systems.           | K3       |
| CO4    | Acquire hands on experience in the analysis and design of entire structure. | K4       |
| CO5    | Prepare the structural drawings for concrete/steel structures.              | K3       |

| COs/POs  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|----------|-----|-----|-----|-----|-----|-----|
| CO1      | 3   | 1   | 1   | -   | 2   | 2   |
| CO2      | 1   | 2   | -   | 1   | -   | -   |
| CO3      | 3   | 1   | 2   | 2   | 3   | 3   |
| CO4      | -   | -   | 1   | -   | -   | -   |
| CO5      | -   | 2   | 3   | 3   | 2   | 2   |
| 23SEEE01 | 3   | 3   | 3   | 3   | 3   | 3   |

| 23SEEE02                              | INTERNSHIP / INDUSTRIAL TRAINI                                                                                                     | NG            | SE       | EMF   | ESTI | ER II | I    |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------|----------|-------|------|-------|------|
| PREREQUISIT                           | ES                                                                                                                                 | CATEGO        | RY       | L     | Т    | Р     | С    |
|                                       | NIL                                                                                                                                | EEC           |          | 0     | 0    | 4     | 2    |
| Course<br>Objectives                  | <ul> <li>To acquire entrepreneurship skills in the fig</li> <li>To develop communication, interpersona work experience.</li> </ul> |               |          | •     |      | -     | l of |
| MODULE<br>• End seme                  | ster presentation should be done along with the report                                                                             | t on internsh | ip traiı | ning  |      |       |      |
| Contact Periods:<br>Lecture: 0 Period |                                                                                                                                    | Hours         | Tota     | al: 1 | 60 H | lours |      |

| COU  | RSE OUTCOMES:                                                                     | Bloom's  |
|------|-----------------------------------------------------------------------------------|----------|
|      |                                                                                   | Taxonomy |
| Upon | completion of the course, the students will be able to:                           | Mapped   |
| CO1  | Relate theoretical knowledge and skills to real world situation.                  | K4       |
| CO2  | Integrate knowledge from diverse disciplines in Construction Industry.            | K3       |
| CO3  | Apply higher order thinking skills in making decisions in complex situations.     | K3       |
| CO4  | Express ideas clearly with clients and in the preparation of technical documents. | K3       |
| CO5  | Conduct collaborative research and preparation of technical document.             | K4       |

| COURSE ARTICU        | ULATION M       | ATRIX    |     |     |     |     |
|----------------------|-----------------|----------|-----|-----|-----|-----|
| COs/POs              | PO1             | PO2      | PO3 | PO4 | PO5 | PO6 |
| CO1                  | 2               | 1        | 2   | 3   | 3   | 2   |
| CO2                  | 2               | 1        | 2   | 3   | 2   | 3   |
| CO3                  | 3               | 1        | 3   | 1   | 2   | 2   |
| CO4                  | -               | 3        | 2   | 1   |     | 2   |
| CO5                  | 2               | 3        | 1   | 1   | 3   | 2   |
| 23SEEE02             | 3               | 3        | 3   | 3   | 3   | 3   |
| 1 - Slight, 2 - Mode | erate, 3 – Subs | stantial |     |     |     |     |

| 23SEEE03          | PROJECT PHASE I                                               |                | SEM       | ESTI  | ER III    |    |
|-------------------|---------------------------------------------------------------|----------------|-----------|-------|-----------|----|
| PREREQUISITES     | 5                                                             | CATEGOR        | RY L      | Τ     | Р         | C  |
|                   | NIL                                                           | EEC            | 0         | 0     | 12        | 6  |
| Course Objectives | To carry out the independent research work on the evaluation. | ne chosen topi | c and sub | nit a | thesis fo | or |
| MODULE            | •                                                             |                |           |       |           |    |

- 1. The project work is defined based on the interest of the students to specialize in a particular Structural Engineering area. Students are expected to carry out independent research work on the chosen topic and submit a thesis for evaluation.
- 2. The work at this stage may involve extensive review of literature in the chosen area of interest. Based on the literature review, the project may be carried out by numerical simulation using software packages and/or experimental work.
- 3. The students will give three periodical review seminars.
- 4. After completion of the thesis work, the student shall prepare and submit a report. The work will be evaluated by the panel of examiners.

# Contact Periods:Lecture: 0 PeriodsTutorial: 0 PeriodsPractical: 180 PeriodsTotal: 180 Periods

| COUI | RSE OUTCOMES:                                               | Bloom's<br>Taxonomy |
|------|-------------------------------------------------------------|---------------------|
| Upon | completion of the course, the students will be able to:     | Mapped              |
| CO1  | Collect the literatures relevant to their area of research. | K2                  |
| CO2  | Identify the research problems based on current scenario.   | K4                  |
| CO3  | Perform analytical investigation.                           | K3                  |
| CO4  | Conduct experimental work.                                  | K3                  |
| CO5  | Interpret the results and prepare the report.               | K4                  |

| COURSE ART        | ICULATIO      | N MATRIX    |     |     |     |     |
|-------------------|---------------|-------------|-----|-----|-----|-----|
| COs/POs           | PO1           | PO2         | PO3 | PO4 | PO5 | PO6 |
| CO1               | -             | 1           | -   | -   | -   | -   |
| CO2               | 3             | 2           | 2   | 1   | 2   | 3   |
| CO3               | 3             | 1           | 2   | 3   | 2   | 2   |
| CO4               | 3             | 1           | 1   | 2   | 1   | 1   |
| CO5               | 3             | 2           | 2   | 1   | -   | 1   |
| 23SEEE03          | 3             | 2           | 2   | 3   | 2   | 3   |
| 1 - Slight, 2 - M | Ioderate, 3 – | Substantial | •   | •   | •   | •   |

| 23SEEE0              | 4    | PROJECT PHASE II                                                                             | SEM      | ESTE    | R IV    |        |    |
|----------------------|------|----------------------------------------------------------------------------------------------|----------|---------|---------|--------|----|
| PREREQUIS            | ITES |                                                                                              | CATEGORY | L       | Т       | Р      | C  |
|                      |      | NIL                                                                                          | EEC      | 0       | 0       | 24     | 12 |
| Course<br>Objectives |      | evelop the skills to formulate the methodolo<br>sive research work and submit a thesis for e |          | opic, c | arry ou | it the |    |
| MODULE               |      |                                                                                              |          |         |         |        |    |

1. Students are expected to carry out research work on the chosen topic and submit a thesis for evaluation. The work at this stage may involve review of literature, extensive experimental work and/or Numerical simulation using software packages, development of analytical model, case study, field data collection and analysis etc. The students will give a periodical review seminar on each stage.

2. Student shall prepare a report on the project work outlining a review of literature published in the relevant area, need, objective and scope of work, methodology, and discusses about the results and come out with appropriate conclusions.

3. After completion of the thesis, the student shall prepare and publish a paper related to the thesis work in a Journal/Conference. The student shall have to appear for a Viva-voce examination for the thesis.

#### **Contact Periods**:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 360 Periods Total: 360 Periods

| COUR   | RSE OUTCOMES:                                                                   | Bloom's  |
|--------|---------------------------------------------------------------------------------|----------|
|        |                                                                                 | Taxonomy |
| Upon o | completion of the course, the students will be able to:                         | Mapped   |
| CO1    | Collect the literatures relevant to their area of research.                     | K2       |
| CO2    | Identify the research problems based on current scenario.                       | K3       |
| CO3    | Perform analytical investigation.                                               | K3       |
| CO4    | Conduct experimental work. Critically assess and propose solutions to           | K4       |
|        | Structural Engineering problems.                                                |          |
| CO5    | Demonstrate the research findings and present the solutions of the thesis work. | K4       |

| COURSE AI       | RTICULATI     | ON MATRIX     | -   |     |     |     |
|-----------------|---------------|---------------|-----|-----|-----|-----|
| COs/POs         | PO1           | PO2           | PO3 | PO4 | PO5 | PO6 |
| CO1             | -             | 1             | 2   | -   | -   | -   |
| CO2             | 3             | 2             | 2   | -   | 2   | 2   |
| CO3             | 3             | 2             | 2   | 2   | 3   | 2   |
| CO4             | 3             | 1             | 3   | 3   | 2   | 1   |
| CO5             | 3             | 2             | 2   | 2   | 3   | 3   |
| <b>23SEEE04</b> | 3             | 2             | 3   | 3   | 3   | 3   |
| 1 – Slight, 2 – | - Moderate, 3 | – Substantial |     |     |     |     |

|                                                                                                                                                                               | STABILITY OF STRU                                                                                                                                                                                                                                                                                                                                                                                                      | CTURES                                                                                   |          |                                        |                                       |                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------|----------------------------------------|---------------------------------------|------------------------------------------------|
| PREREQUISITE                                                                                                                                                                  | ES                                                                                                                                                                                                                                                                                                                                                                                                                     | CATEGORY                                                                                 | L        | Т                                      | Р                                     | C                                              |
|                                                                                                                                                                               | NIL                                                                                                                                                                                                                                                                                                                                                                                                                    | PE                                                                                       | 3        | 0                                      | 0                                     | 3                                              |
| Course                                                                                                                                                                        | To learn the concepts of stability, beam-columns                                                                                                                                                                                                                                                                                                                                                                       | , inelastic and to                                                                       | rsiona   | l bu                                   | ckling                                | g                                              |
| Objectives                                                                                                                                                                    | characteristics of various members and buckling behav                                                                                                                                                                                                                                                                                                                                                                  | vior of plates.                                                                          |          |                                        |                                       |                                                |
| UNIT – I                                                                                                                                                                      | CONCEPT OF STABILITY                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                          |          | 91                                     | Perio                                 | ds                                             |
| Concept of stabili                                                                                                                                                            | ty - states of equilibrium – Euler column – Linear colu                                                                                                                                                                                                                                                                                                                                                                | mn theory, an eige                                                                       | n valu   | e pro                                  | blem                                  | for                                            |
| various end condit                                                                                                                                                            | ions – Large deformation theory – Imperfect columns.                                                                                                                                                                                                                                                                                                                                                                   |                                                                                          |          |                                        |                                       |                                                |
| UNIT – II                                                                                                                                                                     | INELASTIC BUCKLING AND METHODS OF AN                                                                                                                                                                                                                                                                                                                                                                                   | NALYSIS                                                                                  |          | 91                                     | Perio                                 | ds                                             |
| Inelastic buckling                                                                                                                                                            | , double modulus and tangent modulus theory-Approxi                                                                                                                                                                                                                                                                                                                                                                    | mate Methods- con                                                                        | servat   | ion o                                  | f Ene                                 | ergy                                           |
| principle, principl                                                                                                                                                           | e of stationery and potential energy, Rayleigh Ritz m                                                                                                                                                                                                                                                                                                                                                                  | ethod, Finite Diffe                                                                      | erence   | meth                                   | ods a                                 | and                                            |
| Matrix methods.                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                          |          |                                        |                                       |                                                |
| UNIT – III                                                                                                                                                                    | BEAM-COLUMNS                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          |          | <b>9</b> I                             | Perio                                 | ds                                             |
|                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                          |          |                                        |                                       |                                                |
| Beam-Column sub                                                                                                                                                               | jected to concentrated lateral loads, distributed lateral lo                                                                                                                                                                                                                                                                                                                                                           | oads – Effect of Axi                                                                     | ial Loa  | ad on                                  | Bend                                  |                                                |
|                                                                                                                                                                               | ojected to concentrated lateral loads, distributed lateral lo<br>of beam columns- Buckling of frames – Modes of buck                                                                                                                                                                                                                                                                                                   |                                                                                          |          |                                        |                                       | ling                                           |
|                                                                                                                                                                               | of beam columns- Buckling of frames – Modes of buch                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          |          |                                        |                                       | ling                                           |
| Stiffness - Failure                                                                                                                                                           | of beam columns- Buckling of frames – Modes of buch                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          |          | ical lo                                |                                       | ling<br>g in                                   |
| Stiffness - Failure<br>frames– Stability o<br>UNIT – IV                                                                                                                       | of beam columns- Buckling of frames – Modes of buck                                                                                                                                                                                                                                                                                                                                                                    | kling– Calculation of                                                                    | of criti | ical lo<br>9 1                         | oading<br>Perio                       | ling<br>g in<br><b>ds</b>                      |
| Stiffness - Failure<br>frames– Stability o<br>UNIT – IV<br>Torsional Load-I                                                                                                   | of beam columns- Buckling of frames – Modes of buch<br>of a frame.<br>TORSIONAL BUCKLING                                                                                                                                                                                                                                                                                                                               | kling– Calculation of                                                                    | of criti | ical lo<br>91<br>n– C                  | oadinş<br>Perio<br>ombi               | ling<br>g in<br><b>ds</b><br>ned               |
| Stiffness - Failure<br>frames– Stability o<br>UNIT – IV<br>Torsional Load-I<br>torsional and flex                                                                             | of beam columns- Buckling of frames – Modes of buck<br>of a frame.<br>TORSIONAL BUCKLING<br>Deformation characteristics of Structural members–S                                                                                                                                                                                                                                                                        | kling– Calculation of                                                                    | of criti | ical lo<br>91<br>n– C                  | oadinş<br>Perio<br>ombi               | ling<br>g in<br><b>ds</b><br>ned               |
| Stiffness - Failure<br>frames– Stability of<br>UNIT – IV<br>Torsional Load-E<br>torsional and flex<br>cantilever beam–E<br>UNIT – V                                           | of beam columns- Buckling of frames – Modes of buck<br>of a frame.<br><b>TORSIONAL BUCKLING</b><br>Deformation characteristics of Structural members–S<br>structural buckling - Lateral buckling of beams – Pure be<br>Design simplifications for lateral buckling.<br><b>BUCKLING OF PLATES</b>                                                                                                                       | kling– Calculation of<br>train energy of T<br>ending of simply s                         | of criti | ical lo<br>91<br>n- C<br>ted b<br>91   | Perio<br>Ombi<br>eam                  | ling<br>g in<br>ds<br>ned<br>and<br>ds         |
| Stiffness - Failure<br>frames– Stability of<br>UNIT – IV<br>Torsional Load-E<br>torsional and flex<br>cantilever beam–E<br>UNIT – V                                           | of beam columns- Buckling of frames – Modes of buck<br>of a frame.<br>TORSIONAL BUCKLING<br>Deformation characteristics of Structural members–S<br>cural buckling - Lateral buckling of beams – Pure be<br>Design simplifications for lateral buckling.                                                                                                                                                                | kling– Calculation of<br>train energy of T<br>ending of simply s                         | of criti | ical lo<br>91<br>n- C<br>ted b<br>91   | Perio<br>Ombi<br>eam                  | ling<br>g in<br>ds<br>ned<br>and<br>ds         |
| Stiffness - Failure<br>frames– Stability of<br>UNIT – IV<br>Torsional Load-I<br>torsional and flex<br>cantilever beam–I<br>UNIT – V<br>Governing differe                      | of beam columns- Buckling of frames – Modes of buck<br>of a frame.<br><b>TORSIONAL BUCKLING</b><br>Deformation characteristics of Structural members–S<br>structural buckling - Lateral buckling of beams – Pure be<br>Design simplifications for lateral buckling.<br><b>BUCKLING OF PLATES</b>                                                                                                                       | kling– Calculation of<br>train energy of T<br>ending of simply s<br>e conditions – Strai | of criti | ical lo<br>9 I<br>n- C<br>ted b<br>9 I | Perio<br>Ombi<br>eam<br>Perio<br>bend | ling<br>g in<br>ds<br>ned<br>and<br>ds<br>ling |
| Stiffness - Failure<br>frames– Stability of<br>UNIT – IV<br>Torsional Load-E<br>torsional and flex<br>cantilever beam–E<br>UNIT – V<br>Governing differe<br>in a plate – Calo | of beam columns- Buckling of frames – Modes of buck<br>of a frame.<br>TORSIONAL BUCKLING<br>Deformation characteristics of Structural members–S<br>cural buckling - Lateral buckling of beams – Pure be<br>Design simplifications for lateral buckling.<br>BUCKLING OF PLATES<br>Intial equation – Buckling of thin plates with various edg                                                                            | kling– Calculation of<br>train energy of T<br>ending of simply s<br>e conditions – Strai | of criti | ical lo<br>9 I<br>n- C<br>ted b<br>9 I | Perio<br>Ombi<br>eam<br>Perio<br>bend | ling<br>g in<br>ds<br>ned<br>and<br>ds<br>ling |
| Stiffness - Failure<br>frames– Stability of<br>UNIT – IV<br>Torsional Load-E<br>torsional and flex<br>cantilever beam–E<br>UNIT – V<br>Governing differe<br>in a plate – Calo | of beam columns- Buckling of frames – Modes of buck<br>of a frame.<br><b>TORSIONAL BUCKLING</b><br>Deformation characteristics of Structural members–S<br>cural buckling - Lateral buckling of beams – Pure be<br>Design simplifications for lateral buckling.<br><b>BUCKLING OF PLATES</b><br>Intial equation – Buckling of thin plates with various edge<br>culation of critical load of plates – Inelastic buckling | kling– Calculation of<br>train energy of T<br>ending of simply s<br>e conditions – Strai | of criti | ical lo<br>9 I<br>n- C<br>ted b<br>9 I | Perio<br>Ombi<br>eam<br>Perio<br>bend | ling<br>g in<br>ds<br>ned<br>and<br>ds<br>ling |

| REFERENCES |
|------------|
|            |

|   | REFERENCES                                                                                         |  |  |  |  |
|---|----------------------------------------------------------------------------------------------------|--|--|--|--|
| 1 | Chajes.A, "Principles of Structural Stability Theory", Prentice Hall, 1974.                        |  |  |  |  |
| 2 | AshwiniKumar, "Stability Theory of Structures", Tata McGraw Hill Publishing, Company Ltd, N.Delhi, |  |  |  |  |
|   | 1998.                                                                                              |  |  |  |  |
| 3 | Iyengar NGR, "Elastic Stability of Structural Elements", Macmillan, 2007.                          |  |  |  |  |
| 4 | Allen H.G and Bulson.P.S, "Background to buckling", McGraw Hill Publishing Company Ltd, 1980.      |  |  |  |  |
|   |                                                                                                    |  |  |  |  |
| 5 | Smites, "Elastic Stability of Structures", Prentice Hall, 1974.                                    |  |  |  |  |
| 6 | Timoshenko.S, and Gere, "Theory of Elastic Stability", McGraw Hill Publishing Company Ltd,         |  |  |  |  |
|   | 2012.                                                                                              |  |  |  |  |

| COURSE OUTCOMES:                                             |                                                                                                    |    |  |  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----|--|--|
| Upon completion of the course, the students will be able to: |                                                                                                    |    |  |  |
| CO1                                                          | Apply basic concepts and various approaches of stability of columns                                | K3 |  |  |
| CO2                                                          | Execute and workout the inelastic buckling using various methodologies                             | K3 |  |  |
| CO3                                                          | Examine the buckling behavior of beam columns and frames.                                          | K3 |  |  |
| CO4                                                          | Examine the lateral buckling, torsional buckling and flexural torsional buckling of various beams. | К3 |  |  |
| CO5                                                          | Do stability analysis of buckling of thin plates.                                                  | K3 |  |  |

| COURSE ARTICULATION MATRIX                |     |     |     |     |     |     |  |  |
|-------------------------------------------|-----|-----|-----|-----|-----|-----|--|--|
| COs/Pos                                   | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |
| CO1                                       | 1   | -   | 2   | 1   | 1   | 1   |  |  |
| CO2                                       | 1   | -   | 2   | 2   | 1   | 1   |  |  |
| CO3                                       | 1   | -   | 3   | 1   | 2   | 1   |  |  |
| CO4                                       | 1   | -   | 2   | 1   | 1   | 1   |  |  |
| CO5                                       | 1   | -   | 2   | 1   | 2   | 1   |  |  |
| 23SEPE01                                  | 1   | -   | 2   | 2   | 2   | 1   |  |  |
| 1 – Slight, 2 – Moderate, 3 – Substantial |     |     |     |     |     |     |  |  |

| ASSESSMENT PATTERN – THEORY |             |               |          |           |            |          |       |  |  |
|-----------------------------|-------------|---------------|----------|-----------|------------|----------|-------|--|--|
| Test / Bloom's              | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |
| Category*                   | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |
| CAT1                        | 30          | 40            | 30       | -         | -          | -        | 100   |  |  |
| CAT2                        | 30          | 40            | 30       | -         | -          | -        | 100   |  |  |
| Individual                  | 30          | 40            | 30       | -         | -          | -        | 100   |  |  |
| Assessment 1 /              |             |               |          |           |            |          |       |  |  |
| Case Study 1/               |             |               |          |           |            |          |       |  |  |
| Seminar 1 /                 |             |               |          |           |            |          |       |  |  |
| Project1                    |             |               |          |           |            |          |       |  |  |
| Individual                  | 30          | 40            | 30       | -         | -          | -        | 100   |  |  |
| Assessment 2 /              |             |               |          |           |            |          |       |  |  |
| Case Study 2/               |             |               |          |           |            |          |       |  |  |
| Seminar 2 /                 |             |               |          |           |            |          |       |  |  |
| Project 2                   |             |               |          |           |            |          |       |  |  |
| ESE                         | 30          | 40            | 30       | -         | -          | -        | 100   |  |  |

| 23SEPE02                           | THEORY AND APPLICATIO                         | THEORY AND APPLICATIONS OF CEMENT COMPOSITES |                |           |        |       |  |  |  |  |
|------------------------------------|-----------------------------------------------|----------------------------------------------|----------------|-----------|--------|-------|--|--|--|--|
| PREREQUISIT                        | ES                                            | CATEGORY                                     | L              | Т         | Р      | С     |  |  |  |  |
|                                    | NIL                                           | PE                                           | 3              | 0         | 0      | 3     |  |  |  |  |
| Course                             | To enhance the knowledge in the behaviour     | of composite materials a                     | nd to          | inves     | tigate | the   |  |  |  |  |
| Objectives                         | failure and fracture characteristics.         |                                              |                |           |        |       |  |  |  |  |
| UNIT – I                           | INTRODUCTION                                  |                                              |                | 9         | Perio  | ds    |  |  |  |  |
| Introduction to C                  | Composites, Classifying composite materials,  | Types of Cement Compo                        | osites,        | Terr      | ninol  | ogy   |  |  |  |  |
| Constituent Mate                   | erials and their Properties - Commonly use    | d fiber and matrix cons                      | tituen         | ts -E     | ngine  | ered  |  |  |  |  |
| Cementitious con                   | nposites -Advantages.                         |                                              |                |           | -      |       |  |  |  |  |
| UNIT – II PROPERTIES OF COMPOSITES |                                               |                                              |                |           |        |       |  |  |  |  |
| Stress-Strain Rel                  | ations - Orthotropic and Anisotropic Mater    | rials, Engineering Consta                    | ants f         | or O      | rthotr | opic  |  |  |  |  |
| Materials, Restri                  | ctions on Elastic Constants, Plane Stress     | Problem, Biaxial Strengt                     | th, Tl         | neorie    | es foi | r an  |  |  |  |  |
| Orthotropic Lami                   | na.                                           |                                              |                |           |        |       |  |  |  |  |
| UNIT – III                         | BEHAVIOUR OF COMPOSITES                       |                                              |                | 9 Periods |        | ds    |  |  |  |  |
| Mechanics of M                     | aterials Approach to Stiffness - Determinat   | ion of Relations between                     | n Ela          | stic (    | Consta | ants, |  |  |  |  |
| Elasticity Approa                  | ach to Stiffness - Bounding Techniques of Ela | asticity, Exact Solutions -                  | Elast          | icity     | Solut  | ions  |  |  |  |  |
| with Continuity,                   | Halpin, Tsai Equations, Comparison of approa  | ches to Stiffness-Behavior                   | r of Fe        | erroce    | ement  | and   |  |  |  |  |
| Fiber Reinforced                   | Concrete in Tension, Compression, Flexure     | , Shear, Fatigue and Imp                     | act -          | Dura      | bility | and   |  |  |  |  |
| Corrosion of cem                   | ent composites.                               |                                              |                |           |        |       |  |  |  |  |
| UNIT – IV                          | CONSTRUCTION TECHNIQUES                       |                                              |                | 9         | Perio  | ds    |  |  |  |  |
| Construction Te                    | chniques - Fibre Reinforced Concrete, F       | Ferrocement, SIFCON,                         | Polym          | ner (     | Concre | etes, |  |  |  |  |
| Preparation of Re                  | inforcement, Casting and Curing- Composite    | Construction.                                |                |           |        |       |  |  |  |  |
| UNIT – V                           | STRUCTURAL AND NON-STRUCTURA                  | L APPLICATIONS                               |                | 9 Periods |        |       |  |  |  |  |
| FRC and Ferroce                    | ment - Housing, Water Storage, Boats and mis  | cellaneous applications -                    | Comp           | osite     | Mate   | rials |  |  |  |  |
| - Introduction to                  | Analysis and Design of Cement Composite Sta   | ructural Elements - Ferroc                   | emen           | t, SIF    | CON    | and   |  |  |  |  |
| Fibre Reinforced                   | Concrete.                                     |                                              |                |           |        |       |  |  |  |  |
| <b>Contact Periods</b>             | :                                             |                                              |                |           |        |       |  |  |  |  |
| Lecture: 45 Peri                   | ods Tutorial: 0 Periods Pract                 | tical: 0 Periods                             | <b>Fotal</b> : | : 45 P    | eriod  | ls    |  |  |  |  |
| REFERENC                           | ES:                                           |                                              |                |           |        |       |  |  |  |  |

| 1 | Arnon Bentur, Sidney Mindess, "Fibre Reinforced Cementitious Composites", CRC Press, 2014                      |
|---|----------------------------------------------------------------------------------------------------------------|
| 2 | Kaw, Autar K "Mechanics of composite materials", CRC Press, 2006.                                              |
| 3 | Andrzej M. Brandt, "Cement-Based Composites: Materials, Mechanical Properties and Performance",                |
|   | Second Edition, CRC Press, 2005.                                                                               |
| 4 | Robert M Jones, "Mechanics of Composite Materials", Taylor and Francis/BSP Books, 1998.                        |
| 5 | Mallick P. K Fiber Reinforced Composite Materials Manufacturing and Design (2007)                              |
| 6 | "New Concrete Materials", Swamy R.N., 1 <sup>st</sup> Ed., Blackie, Academic and Professional, Chapman & Hall, |
|   | 1983.                                                                                                          |
| 7 | Chris I. Page M.M. Page "Durability of Concrete and Coment Composites" Elsevier 2007                           |

7 Chris L. Page, M M Page, "Durability of Concrete and Cement Composites", Elsevier, 2007.

| COURS    | E OUTCOMES:                                                                                                         | Bloom's<br>Taxonomy |
|----------|---------------------------------------------------------------------------------------------------------------------|---------------------|
| Upon cor | npletion of the course, the students will be able to:                                                               | Mapped              |
| CO1      | Detect the type of composite materials and its applications                                                         | K3                  |
| CO2      | Estimate properties of composite materials.                                                                         | K3                  |
| CO3      | Formulate constitutive behaviour of composite materials for different loading conditions by using various theories. | K4                  |
| CO4      | Recognize the techniques for appropriate composite material based on its behaviour and properties                   | К3                  |
| CO5      | Implement composites as an alternative to traditional materials.                                                    | K3                  |

| COURSE ARTICULATION MATRIX |             |              |     |     |     |     |  |  |  |
|----------------------------|-------------|--------------|-----|-----|-----|-----|--|--|--|
| COs/POs                    | PO1         | PO2          | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                        | 2           | 2            | 1   | 1   | 2   | 2   |  |  |  |
| CO2                        | 3           | 2            | 2   | 2   | 1   | 2   |  |  |  |
| CO3                        | 3           | 1            | 2   | 3   | 2   | 2   |  |  |  |
| CO4                        | 2           | 2            | 2   | 3   | 2   | 1   |  |  |  |
| CO5                        | 3           | 1            | 2   | 2   | 2   | 1   |  |  |  |
| 23SEPE02                   | 3           | 2            | 2   | 3   | 2   | 2   |  |  |  |
| 1 – Slight, 2 –            | Moderate, 3 | – Substantia | 1   |     | •   | •   |  |  |  |

| Test / Bloom's                                                            | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|---------------------------------------------------------------------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Category*                                                                 | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1                                                                      | 20          | 40            | 40       | -         | -          | -        | 100   |
| CAT2                                                                      | 20          | 40            | 40       | -         | -          | -        | 100   |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | -           | -             | 50       | 50        | -          | -        | 100   |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | -           | -             | 50       | 50        | -          | -        | 100   |
| ESE                                                                       | 20          | 40            | 40       | -         | -          | -        | 100   |

#### STRUCTURAL HEALTH MONITORING

| PREREQUI                                                                                                                                                 | ISITES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CATEGORY                                                 | L             | Т                                 | Р                                                  | С                                          |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------|-----------------------------------|----------------------------------------------------|--------------------------------------------|--|--|--|
|                                                                                                                                                          | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PE                                                       | 3             | 0                                 | 0                                                  | 3                                          |  |  |  |
| Course                                                                                                                                                   | To impart knowledge on structural health monitoring,                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | remote structura                                         | l hea         | lth m                             | onito                                              | ring                                       |  |  |  |
| Objectives                                                                                                                                               | to have an exposure on the various repair and rehabilitation techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                          |               |                                   |                                                    |                                            |  |  |  |
| UNIT – I                                                                                                                                                 | STRUCTURAL HEALTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                          |               | 9]                                | Perio                                              | ds                                         |  |  |  |
| Factors affe                                                                                                                                             | cting Health of Structures, Causes of Distress, Regu                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lar Maintenance.                                         | Stru          | ictura                            | ıl He                                              | ealth                                      |  |  |  |
| Monitoring (                                                                                                                                             | SHM): Definition of SHM - Classification, Types and Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mponents of SHN                                          | $\Lambda - A$ | dvan                              | tages                                              | and                                        |  |  |  |
| Benefits of S                                                                                                                                            | HM.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                          |               |                                   |                                                    |                                            |  |  |  |
| UNIT – II STATIC FIELD TESTING                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                          |               |                                   |                                                    |                                            |  |  |  |
| UNIT – II                                                                                                                                                | STATIC FIELD TESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |               | 9                                 | Perio                                              | ds                                         |  |  |  |
|                                                                                                                                                          | STATIC FIELD TESTING<br>esting -Types of Static Tests, Simulation and Loading Me                                                                                                                                                                                                                                                                                                                                                                                                                                          | ethods, sensor sys                                       | stems         |                                   |                                                    |                                            |  |  |  |
| Static field to                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ethods, sensor sys                                       | stems         |                                   |                                                    |                                            |  |  |  |
| Static field to<br>requirements                                                                                                                          | esting -Types of Static Tests, Simulation and Loading Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ethods, sensor sys                                       | stems         | and                               |                                                    | ware                                       |  |  |  |
| Static field to<br>requirements<br>UNIT – III                                                                                                            | esting -Types of Static Tests, Simulation and Loading Me<br>s, Static Response Measurement.                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |               | and 9]                            | hardv<br>Perio                                     | ware<br>ods                                |  |  |  |
| Static field to<br>requirements<br><b>UNIT – III</b><br>Dynamic Fie                                                                                      | esting -Types of Static Tests, Simulation and Loading Me<br>s, Static Response Measurement.<br><b>DYNAMIC FIELD TESTING</b>                                                                                                                                                                                                                                                                                                                                                                                               |                                                          |               | and 9]                            | hardv<br>Perio                                     | ware                                       |  |  |  |
| Static field to<br>requirements<br><b>UNIT – III</b><br>Dynamic Fie                                                                                      | esting -Types of Static Tests, Simulation and Loading Mes, Static Response Measurement.           DYNAMIC FIELD TESTING           eld Testing -Types of Dynamic Field Test, Stress History                                                                                                                                                                                                                                                                                                                                | Data, Dynamic                                            |               | and<br>9 Donse                    | hardv<br>Perio                                     | ware                                       |  |  |  |
| Static field to<br>requirements<br><b>UNIT – III</b><br>Dynamic Fie<br>Data Acquisi<br><b>UNIT – IV</b>                                                  | esting -Types of Static Tests, Simulation and Loading Me<br>s, Static Response Measurement.<br><b>DYNAMIC FIELD TESTING</b><br>eld Testing -Types of Dynamic Field Test, Stress History<br>ition Systems.                                                                                                                                                                                                                                                                                                                 | Data, Dynamic                                            | Resp          | and<br>91<br>onse<br>91           | hardv<br>Perio<br>Meth<br>Perio                    | ware<br>ods<br>ods,<br>ods,                |  |  |  |
| Static field to<br>requirements<br><b>UNIT – III</b><br>Dynamic Fie<br>Data Acquisi<br><b>UNIT – IV</b><br>Remote Strue                                  | esting -Types of Static Tests, Simulation and Loading Me<br>s, Static Response Measurement.<br><b>DYNAMIC FIELD TESTING</b><br>eld Testing -Types of Dynamic Field Test, Stress History<br>ition Systems.<br><b>REMOTE STRUCTURAL HEALTH MONITORING</b>                                                                                                                                                                                                                                                                   | Data, Dynamic                                            | Resp          | and<br>91<br>onse<br>91           | hardv<br>Perio<br>Meth<br>Perio                    | ware<br>ods<br>ods,<br>ods,                |  |  |  |
| Static field to<br>requirements<br><b>UNIT – III</b><br>Dynamic Fie<br>Data Acquisi<br><b>UNIT – IV</b><br>Remote Strue                                  | esting -Types of Static Tests, Simulation and Loading Me<br>s, Static Response Measurement.<br>DYNAMIC FIELD TESTING<br>eld Testing -Types of Dynamic Field Test, Stress History<br>ition Systems.<br>REMOTE STRUCTURAL HEALTH MONITORING<br>ctural Health Monitoring - Importance and Advantages -<br>ications of Machine learning Techniques in SHM.                                                                                                                                                                    | Data, Dynamic<br>G<br>Methodology –                      | Resp          | and<br>91<br>onse<br>91<br>applio | hardv<br>Perio<br>Meth<br>Perio                    | ware<br>ods<br>ods,<br>ods<br>ns in        |  |  |  |
| Static field to<br>requirements<br><b>UNIT – III</b><br>Dynamic Fie<br>Data Acquisi<br><b>UNIT – IV</b><br>Remote Strue<br>SHM – Appl<br><b>UNIT – V</b> | esting -Types of Static Tests, Simulation and Loading Me<br>s, Static Response Measurement.<br>DYNAMIC FIELD TESTING<br>eld Testing -Types of Dynamic Field Test, Stress History<br>ition Systems.<br>REMOTE STRUCTURAL HEALTH MONITORING<br>ctural Health Monitoring - Importance and Advantages -<br>ications of Machine learning Techniques in SHM.                                                                                                                                                                    | Data, Dynamic<br>G<br>- Methodology –                    | Respo         | and<br>91<br>onse<br>91<br>applic | hardy<br>Perio<br>Meth<br>Perio<br>catior<br>Perio | ware<br>ods<br>ods,<br>ods<br>ns in<br>ods |  |  |  |
| Static field to<br>requirements<br>UNIT – III<br>Dynamic Fie<br>Data Acquisi<br>UNIT – IV<br>Remote Struc<br>SHM – Appl<br>UNIT – V<br>Repair and F      | esting -Types of Static Tests, Simulation and Loading Mes,<br>static Response Measurement.<br>DYNAMIC FIELD TESTING<br>eld Testing -Types of Dynamic Field Test, Stress History<br>ition Systems.<br>REMOTE STRUCTURAL HEALTH MONITORING<br>ctural Health Monitoring - Importance and Advantages -<br>ications of Machine learning Techniques in SHM.<br>REPAIRS AND REHABILITATION TECHNIQUES                                                                                                                            | Data, Dynamic<br>G<br>Methodology –<br>Materials and oth | Respo         | and<br>91<br>onse<br>91<br>applic | hardy<br>Perio<br>Meth<br>Perio<br>catior<br>Perio | ware<br>ods<br>ods<br>ods<br>ns in<br>ods  |  |  |  |
| Static field to<br>requirements<br>UNIT – III<br>Dynamic Fie<br>Data Acquisi<br>UNIT – IV<br>Remote Struc<br>SHM – Appl<br>UNIT – V<br>Repair and F      | esting -Types of Static Tests, Simulation and Loading Me<br>s, Static Response Measurement.<br>DYNAMIC FIELD TESTING<br>eld Testing -Types of Dynamic Field Test, Stress History<br>ition Systems.<br>REMOTE STRUCTURAL HEALTH MONITORING<br>ctural Health Monitoring - Importance and Advantages -<br>ications of Machine learning Techniques in SHM.<br>REPAIRS AND REHABILITATION TECHNIQUES<br>Rehabilitation of structures - Case Studies, piezoelectric<br>nanical impedance (EMI) technique, adaptations of EMI te | Data, Dynamic<br>G<br>Methodology –<br>Materials and oth | Respo         | and<br>91<br>onse<br>91<br>applic | hardy<br>Perio<br>Meth<br>Perio<br>catior<br>Perio | ware<br>ods<br>ods,<br>ods<br>ns in<br>ods |  |  |  |

| Alessandro Pegoretti, "Structural Health Monitoring : Current State and Future Trends", SAE  |
|----------------------------------------------------------------------------------------------|
| International, 2018.                                                                         |
| D. Hutson, "Structural Sensing, Health Monitoring, and Performance Evaluation", CRC Press,   |
| 2019.                                                                                        |
| Filippo Ubertini, Simon Laflamme, Jian Li, "Smart Sensors for Structural Health Monitoring", |
| MDPI Books, 2019.                                                                            |
| Maguid H.M. Hassan "Advances in Structural Health Monitoring", IntechOpen, 2019.             |
|                                                                                              |

| COUR   | SE OUTCOMES:                                                                     | Bloom's  |
|--------|----------------------------------------------------------------------------------|----------|
|        |                                                                                  | Taxonomy |
| Upon c | ompletion of the course, the students will be able to:                           | Mapped   |
| CO1    | Diagnosis the distress in the structure by understanding the causes and factors. | K3       |
| CO2    | Assess the health of the structure using static field testing.                   | K3       |
| CO3    | Analyse the condition of structures using dynamic field-testing methods.         | K3       |
| CO4    | Perform the process of remote health monitoring of structures.                   | K3       |
| CO5    | Suggest repairs and rehabilitation measures of the structure.                    | K3       |

| COURSE ARTICULATION MATRIX |               |               |     |     |     |     |  |  |
|----------------------------|---------------|---------------|-----|-----|-----|-----|--|--|
| COs/POs                    | PO1           | PO2           | PO3 | PO4 | PO5 | PO6 |  |  |
| CO1                        | 3             | 2             | 2   | 3   | 2   | 2   |  |  |
| CO2                        | 3             | 2             | 3   | 3   | 2   | 2   |  |  |
| CO3                        | 3             | 2             | 3   | 3   | 2   | 2   |  |  |
| CO4                        | 1             | 2             | 3   | 3   | 2   | 3   |  |  |
| CO5                        | 2             | 2             | 3   | 3   | 2   | 3   |  |  |
| 23SEPE03                   | 3             | 2             | 3   | 3   | 2   | 3   |  |  |
| 1 – Slight, 2 –            | Moderate, 3 - | - Substantial |     | •   | •   | •   |  |  |

| ASSESSMENT PATTERN – THEORY |             |               |          |           |            |          |       |  |  |
|-----------------------------|-------------|---------------|----------|-----------|------------|----------|-------|--|--|
| Test / Bloom's              | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |
| Category*                   | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |
| CAT1                        | 40          | 40            | 20       | -         | -          | -        | 100   |  |  |
| CAT2                        | 40          | 40            | 20       | -         | -          | -        | 100   |  |  |
| Individual                  | 40          | 40            | 20       | -         | -          | -        | 100   |  |  |
| Assessment 1 /              |             |               |          |           |            |          |       |  |  |
| Case Study 1/               |             |               |          |           |            |          |       |  |  |
| Seminar 1 /                 |             |               |          |           |            |          |       |  |  |
| Project1                    |             |               |          |           |            |          |       |  |  |
| Individual                  | 40          | 40            | 20       | -         | -          | -        | 100   |  |  |
| Assessment 2 /              |             |               |          |           |            |          |       |  |  |
| Case Study 2/               |             |               |          |           |            |          |       |  |  |
| Seminar 2 /                 |             |               |          |           |            |          |       |  |  |
| Project 2                   |             |               |          |           |            |          |       |  |  |
| ESE                         | 40          | 40            | 20       | -         | -          | -        | 100   |  |  |

| 23SEPE04            | DESIGN OF FORMWORK                                                                                            |                     |       |           |        |       |  |  |  |  |
|---------------------|---------------------------------------------------------------------------------------------------------------|---------------------|-------|-----------|--------|-------|--|--|--|--|
| PREREQUI            | SITES                                                                                                         | CATEGORY            | L     | Т         | P      | С     |  |  |  |  |
|                     | NIL                                                                                                           | PE                  | 3     | 0         | 0      | 3     |  |  |  |  |
| Course              | To impart knowledge on design of formwork and spe-                                                            | cial structures con | sider | ing f     | ormv   | vork  |  |  |  |  |
| Objectives          | failure conditions and safety measures.                                                                       |                     |       |           |        |       |  |  |  |  |
| UNIT – I            | INTRODUCTION                                                                                                  |                     | 9 P   | eriod     | ls     |       |  |  |  |  |
| Introduction        | to Formwork, Requirements and Site Constraints, Select                                                        | tion of Formwork    | , Cla | assifi    | catio  | n of  |  |  |  |  |
| Formwork. F         | ormwork Materials: Timber, Plywood, Steel, Aluminum,                                                          | Plastic, and Acce   | ssori | es. H     | lorizo | ontal |  |  |  |  |
| and Vertical I      | Formwork Supports.                                                                                            |                     |       |           |        |       |  |  |  |  |
| UNIT – II           | FORMWORK DESIGN FOR STRUCTURAL ELEMENTS                                                                       |                     |       |           |        | ls    |  |  |  |  |
| Formwork de         | sign concepts, Formwork System Design for Foundations                                                         | s, Walls, Columns,  | Slat  | os and    | d Bea  | ams.  |  |  |  |  |
| Design of De        | ccks and False works, Effects of various loads. Loading                                                       | and Moment of F     | ormv  | vork,     | IS C   | lode  |  |  |  |  |
| provisions.         |                                                                                                               |                     |       |           |        |       |  |  |  |  |
| UNIT – III          | FORMWORK DESIGN FOR SPECIAL STRUCTUR                                                                          | ES                  |       | 9 P       | eriod  | ls    |  |  |  |  |
|                     | es, Folded Plates, Overhead Water Tanks, Bridges, Na                                                          | tural Draft Coolir  | ng To | ower,     | Nuc    | lear  |  |  |  |  |
| Reactor, Tuni       | nel and Lift Shaft.                                                                                           |                     |       |           |        |       |  |  |  |  |
|                     | FLYING FORMWORK                                                                                               |                     |       | 9 Periods |        |       |  |  |  |  |
| •••                 | work Accessories and Construction Sequence, Table Fo<br>m, Gang Form, Slip Form, and Formwork for Precast Con |                     |       | umn       | Mou    | nted  |  |  |  |  |
| UNIT – V            |                                                                                                               |                     |       |           |        | ls    |  |  |  |  |
| Formwork Fa         | ailure, Causes for Formwork Failure, Case studies in                                                          | Formwork Failure    | . Saf | ety i     | n use  | e of  |  |  |  |  |
|                     | d False work. Formwork Management Issues – Pre and Po                                                         |                     |       | •         |        |       |  |  |  |  |
|                     | g Construction.                                                                                               |                     |       |           |        |       |  |  |  |  |
| <b>Contact Peri</b> | ods:                                                                                                          |                     |       |           |        |       |  |  |  |  |
| Lecture: 45         | Periods Tutorial: 0 Periods Practical: 0 Perio                                                                | ds Total: 4         | 45 Pe | riods     | 5      |       |  |  |  |  |
|                     |                                                                                                               |                     |       |           |        |       |  |  |  |  |

| 1 | Jha, K.N., "Formwork For Concrete Structures", First Edition, McGraw Hill. 2012.               |
|---|------------------------------------------------------------------------------------------------|
| 2 | Michael P. Hurst, "Formwork", Construction Press, London and New York, 2003.                   |
| 3 | Robert L. Peurifoy and Garold D. Oberlender, "Formwork For Concrete Structures", McGraw -Hill, |
|   | 2011.                                                                                          |
| 4 | Austin, C.K., "Formwork For Concrete, Cleaver", Hume Press Ltd., London, 2006.                 |
| 5 | Tudor Dinescu and Constantin Radulescu, "Slip Form Techniques", Abacus Press, Turn Bridge      |
|   | Wells, Kent, 2004.                                                                             |
| 6 | Indian Concrete Institute, "Technical Monograph For Formwork", 2002.                           |

| COURS   | E OUTCOMES:                                                          | Bloom's  |
|---------|----------------------------------------------------------------------|----------|
|         |                                                                      | Taxonomy |
| Upon co | mpletion of the course, the students will be able to:                | Mapped   |
| CO1     | Identify the suitable type of formwork for construction activities.  | K2       |
| CO2     | Carry out design of formwork system for various structural elements. | K3       |
| CO3     | Perform formwork design for special structures.                      | K3       |
| CO4     | Select a suitable type of flying formwork.                           | K3       |
| CO5     | To indicate the causes for failure of formwork.                      | K2       |

| COURSE A        | RTICULATI     | ON MATRIX     | Ι   |     |     |     |
|-----------------|---------------|---------------|-----|-----|-----|-----|
| COs/POs         | PO1           | PO2           | PO3 | PO4 | PO5 | PO6 |
| CO1             | -             | -             | 3   | 2   | 1   | -   |
| CO2             | -             | -             | 3   | 2   | 1   | -   |
| CO3             | -             | -             | 3   | 2   | 1   | -   |
| CO4             | -             | -             | 3   | 2   | 1   | -   |
| CO5             | -             | 1             | 3   | 2   | 1   | 1   |
| 23SEPE04        | -             | 1             | 3   | 2   | 1   | 1   |
| 1 – Slight, 2 - | – Moderate, 3 | – Substantial |     |     |     |     |

| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
|                             | . ,                   | · · ·                   |                    | (114) /0            | (13) 70              | (130) 70           |            |
| CAT1                        | 25                    | 35                      | 40                 | -                   | -                    | -                  | 100        |
| CAT2                        | 25                    | 35                      | 40                 | -                   | -                    | -                  | 100        |
| Individual                  | 15                    | 35                      | 50                 | -                   | -                    | -                  | 100        |
| Assessment 1/               |                       |                         |                    |                     |                      |                    |            |
| Case Study 1/               |                       |                         |                    |                     |                      |                    |            |
| Seminar 1/                  |                       |                         |                    |                     |                      |                    |            |
| Project1                    |                       |                         |                    |                     |                      |                    |            |
| Individual                  | 15                    | 35                      | 50                 | -                   | -                    | -                  | 100        |
| Assessment 2/               |                       |                         |                    |                     |                      |                    |            |
| Case Study 2/               |                       |                         |                    |                     |                      |                    |            |
| Seminar 2/                  |                       |                         |                    |                     |                      |                    |            |
| Project 2                   |                       |                         |                    |                     |                      |                    |            |
| ESE                         | 20                    | 40                      | 40                 | -                   | -                    | -                  | 100        |

| 23SEPE05                              | 5      | ANALYSIS OF LAMINATED C                          | OMPOSITE PLA        | ATES   | 5      |       |       |
|---------------------------------------|--------|--------------------------------------------------|---------------------|--------|--------|-------|-------|
| PREREQUIS                             | SITE   | 8                                                | CATEGORY            | L      | Т      | Р     | С     |
|                                       |        | NIL                                              | PE                  | 3      | 0      | 0     | 3     |
| Course                                | То     | impart the knowledge on governing equations,     | analysis and var    | ious   | meth   | ods o | of    |
| Objectives                            | com    | posite plates.                                   |                     |        |        |       |       |
| UNIT – I                              | INT    | RODUCTION                                        |                     |        | 91     | Perio | ds    |
| Displacement                          | Field  | Approximations for Classical Laminated Plate T   | heory (CLPT) and    | l Firs | t Ord  | er Sh | ear   |
| Deformation 7<br>CLPT.                | Theor  | ry (FSDT), Analytical Solutions for Bending of   | Rectangular Lami    | nated  | l Plat | es us | ing   |
| UNIT - IIGOVERNING EQUATIONS9 Periods |        |                                                  |                     |        | ds     |       |       |
| Navier Solution                       | ons o  | of Cross-Ply and Angle-Ply Laminated Simply      | Supported Plates,   | Dete   | ermin  | ation | of    |
| Stresses. Levy                        | y Solu | tions for Plates with Other Boundary Conditions, | Analytical Solution | ons fo | or Be  | nding | g of  |
| Rectangular L                         | amin   | ated Plates using FSDT.                          |                     |        |        |       |       |
| UNIT – III                            | CL     | ASSICAL LAMINATED PLATE THEORY                   |                     |        | 91     | Perio | ds    |
| Finite Elemen                         | t Solu | utions for Bending of Rectangular Laminated Plat | es using CLPT .In   | trodu  | iction | to F  | inite |
|                                       |        | Rectangular Elements, Formation of Stiffness     | Matrix, Formatio    | n of   | Load   | d Ve  | ctor, |
| Numerical Inte                        | -      | ion, Post Computation of Stresses.               |                     |        |        |       |       |
| UNIT – IV                             | FIR    | ST ORDER SHEAR DEFORMATION THEO                  | RY                  |        | 9 I    | Perio | ds    |
| Finite Elemen                         | nt So  | lutions for Bending of Rectangular Laminated     | Plates using FSD    | T. Fi  | nite   | Elem  | ent   |
| Model, C0 Ele                         | ement  | Formulation, Post Computation of Stresses.       |                     |        |        |       |       |
| UNIT – V                              | ANA    | ALYTICAL METHODS                                 |                     |        | 91     | Perio | ds    |
| Analysis of Re                        | ectan  | gular Composite Plates using Analytical Methods. |                     |        |        |       |       |
| Contact Perio                         | ods:   |                                                  |                     |        |        |       |       |
| Lecture: 45 P                         | erio   | ls Tutorial: 0 Periods Practical: 0 Pe           | eriods Tota         | l: 45  | Peri   | ods   |       |

| 1 | J.N. Reddy, "Mechanics of Laminated Composite Plates: Theory and Analysis", CRC-Press,        |
|---|-----------------------------------------------------------------------------------------------|
|   | 1996.                                                                                         |
| 2 | G.J. Turvey, "Buckling and Post buckling of Composite Plates", I.H. Marshall Springer Science |
|   | & Business Media, 1994.                                                                       |
| 3 | Jianqiao Y, "Laminated Composite Plates and Shells", Springer-Verlag, London, 2003.           |
| 4 | Yi-Ming Fu, "Nonlinear Analyses of Laminated Plates and Shells with Damage", WIT Press,       |
|   | 2013.                                                                                         |
| 5 | O.O. Ochoa, J.N. Reddy, "Finite Element Analysis of Composite Laminates", Springer Science    |
|   | & Business Media, 2013.                                                                       |

| COURS   | E OUTCOMES:                                                                      | Bloom's  |
|---------|----------------------------------------------------------------------------------|----------|
|         |                                                                                  | Taxonomy |
| Upon co | mpletion of the course, the students will be able to:                            | Mapped   |
| CO1     | Know the various theories behind the analysis of laminated composite plates.     | K3       |
| CO2     | Apply the governing equations for laminated composite plates.                    | K3       |
| CO3     | Apply the Classical Laminated Plate Theory on laminated plates using FEM.        | K3       |
| CO4     | Execute the FEM analysis of laminated plates using First Order Shear Deformation | K3       |
|         | Theory                                                                           |          |
| CO5     | Analyse the rectangular laminated composite plate using the analytical method.   | K3       |

| COURSE ARTIC         | CULATION       | MATRIX    |     |     |     |     |
|----------------------|----------------|-----------|-----|-----|-----|-----|
| COs/POs              | PO1            | PO2       | PO3 | PO4 | PO5 | PO6 |
| CO1                  | 1              |           | 2   | 1   | 1   | 1   |
| CO2                  | 1              |           | 2   | 2   | 1   | 1   |
| CO3                  | 1              |           | 3   | 3   | 2   | 1   |
| CO4                  | 1              |           | 3   | 3   | 2   | 1   |
| CO5                  | 1              |           | 2   | 1   | 2   | 1   |
| 23SEPE05             | 1              | -         | 3   | 3   | 2   | 1   |
| 1 - Slight, $2 - Mo$ | derate, 3 – Su | bstantial |     | •   | ÷   |     |

| ASSESSMENT     | PATTERN – TH | EORY          |          |           |            |          |       |
|----------------|--------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering  | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %       | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 30           | 40            | 30       | -         | -          | -        | 100   |
| CAT2           | 30           | 40            | 30       | -         | -          | -        | 100   |
| Individual     | 30           | 40            | 30       | -         | -          | -        | 100   |
| Assessment 1/  |              |               |          |           |            |          |       |
| Case Study 1/  |              |               |          |           |            |          |       |
| Seminar 1/     |              |               |          |           |            |          |       |
| Project1       |              |               |          |           |            |          |       |
| Individual     | 30           | 40            | 30       | -         | -          | -        | 100   |
| Assessment 2 / |              |               |          |           |            |          |       |
| Case Study 2/  |              |               |          |           |            |          |       |
| Seminar 2/     |              |               |          |           |            |          |       |
| Project 2      |              |               |          |           |            |          |       |
| ESE            | 30           | 40            | 30       | -         | -          | -        | 100   |

#### **DESIGN OF CONCRETE BRIDGES**

|                                      |        |                               |                            |                       | -      |        | r      |      |
|--------------------------------------|--------|-------------------------------|----------------------------|-----------------------|--------|--------|--------|------|
| PREREQUISIT                          | ГES    |                               |                            | CATEGORY              | L      | Т      | Р      | C    |
|                                      |        | NIL                           |                            | PE                    | 3      | 0      | 0      | 3    |
| Course                               | То     | oossess knowledge on the ar   | nalysis and design of she  | ort span, long span   | bridg  | es, fo | unda   | tion |
| Objectives                           | and    | bearing.                      |                            |                       |        |        |        |      |
| UNIT – I                             | IN     | RODUCTION                     |                            |                       |        | 9      | Perio  | ods  |
| Classification, in                   | nvest  | gations and planning, choi    | ice of type, I.R.C. Spec   | cifications for road  | bridg  | ges, s | tanda  | rd   |
| live loads, other                    | force  | s acting on bridges, general  | l design considerations.   |                       |        |        |        |      |
| UNIT – II                            | SH     | ORT SPAN BRIDGES              |                            |                       |        | 9      | Perio  | ods  |
| Load distribution                    | n the  | ories - Design of box culvert | rts - Design of slab decks | s, tee beam and slab  | bridg  | ges.   |        |      |
| UNIT – IIILONG SPAN BRIDGES9 Periods |        |                               |                            |                       | ods    |        |        |      |
| Design principl                      | les c  | f continuous bridges, arc     | ch bridges, box girder     | bridges, bow strin    | ng gin | der t  | oridge | es,  |
| cable stayed brid                    | dges,  | suspension bridges, balance   | ed cantilever bridges      |                       |        |        |        |      |
| UNIT – IV                            | DE     | SIGN OF PRESTRESSED           | D CONCRETE BRIDG           | ES                    |        | 9      | Peric  | ods  |
| Courbon's theor                      | ry –   | Distribution co-efficient by  | v exact analysis – Desig   | n of girder section   | - m    | axim   | um ai  | nd   |
| minimum prestre                      | essin  | g forces – Eccentricity – Cal | able Zone in girder – Stre | esses at various sect | ions a | and d  | iagon  | nal  |
| tension – Diaphi                     | ragm   | - End block - short term as   | and long term deflections  | S                     |        |        |        |      |
| UNIT – V                             | BE     | ARINGS, CONSTRUCTIO           | ON AND MAINTENA            | NCE OF BRIDGE         | S      | 9      | Perio  | ods  |
| Bearings – Stee                      | el roc | ker and roller bearings - R   | Reinforced concrete rock   | ker and roller beari  | ngs –  | - Elas | stome  | eric |
| bearings - Expan                     | nsion  | joints- Design of abutment    | ts and piers – Bridge Co   | nstruction and Main   | ntena  | nce. 7 | Гурез  | s of |
| bridge foundation                    | ons –  | Design of foundations         |                            |                       |        |        |        |      |
| Contact Period                       | s:     |                               |                            |                       |        |        |        |      |
| Lecture: 45 Per                      | riods  | Tutorial: 0 Periods           | Practical: 0 Periods       | Total: 45 Periods     |        |        |        |      |

| 1 | Raina V.K. "Concrete Bridge Practice", Tata McGraw Hill Publishing Company, New Delhi, 2014.                                             |
|---|------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Jagadeesh T.R and Jayaram M.A, "Design Of Bridge Structures", PHI Learning Private Limited, 2020                                         |
| 3 | Krishnaraju, N., <b>"Design of Bridges"</b> Oxford and IBH Publishing Co., Bombay, Calcutta, New Delhi, 2019.                            |
|   |                                                                                                                                          |
| 4 | Bakht, B. and Jaegar, L.G., "Bridge Analysis simplified", McGraw Hill, 1985.                                                             |
| 4 | Bakht, B. and Jaegar, L.G., "Bridge Analysis simplified", McGraw Hill, 1985.Ponnuswamy, S., "Bridge Engineering", Tata McGraw Hill, 2017 |

|     | SE OUTCOMES:<br>ompletion of the course, the students will be able to:     | Bloom's<br>Taxonomy<br>Mapped |
|-----|----------------------------------------------------------------------------|-------------------------------|
| CO1 | Classify the different types of bridges and calculate the loads on bridges | K2                            |
| CO2 | Analyse and design short span bridges using different theories             | К3                            |
| CO3 | Illustrates the design principles of various long span bridges             | K2                            |
| CO4 | Analyse and design the Prestressed Concrete bridges                        | К3                            |
| CO5 | Design the foundation and bearings of the bridges                          | K3                            |

| COURSE ARTICULATION MATRIX |                 |             |     |     |     |     |  |  |  |  |
|----------------------------|-----------------|-------------|-----|-----|-----|-----|--|--|--|--|
| COs/POs                    | PO1             | PO2         | PO3 | PO4 | PO5 | PO6 |  |  |  |  |
| CO1                        | 3               | 1           | 3   | 1   | 1   | 2   |  |  |  |  |
| CO2                        | 3               | 2           | 3   | 3   | 2   | 3   |  |  |  |  |
| CO3                        | 3               | 2           | 3   | 1   | 2   | 3   |  |  |  |  |
| CO4                        | 3               | 2           | 3   | 1   | 2   | 3   |  |  |  |  |
| CO5                        | 3               | 2           | 3   | 1   | 2   | 3   |  |  |  |  |
| 23SEPE06                   | 3               | 2           | 3   | 3   | 2   | 3   |  |  |  |  |
| 1 - Slight, 2 - N          | Ioderate, 3 – S | Substantial |     |     |     |     |  |  |  |  |

| ASSESSMENT        | PATTERN – TH           | HEORY                   |                    |                     |                      |                    |            |
|-------------------|------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test /<br>Bloom's | Rememberin<br>g (K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| Category*         |                        |                         |                    |                     |                      |                    |            |
| CAT1              | 20                     | 20                      | 60                 | -                   | -                    | -                  | 100        |
| CAT2              | 20                     | 20                      | 60                 | -                   | -                    | -                  | 100        |
| Individual        | 25                     | 25                      | 50                 | -                   | -                    | -                  | 100        |
| Assessment 1 /    |                        |                         |                    |                     |                      |                    |            |
| Case Study 1/     |                        |                         |                    |                     |                      |                    |            |
| Seminar 1 /       |                        |                         |                    |                     |                      |                    |            |
| Project1          |                        |                         |                    |                     |                      |                    |            |
| Individual        | 25                     | 25                      | 50                 | -                   | -                    | -                  | 100        |
| Assessment 2 /    |                        |                         |                    |                     |                      |                    |            |
| Case Study 2/     |                        |                         |                    |                     |                      |                    |            |
| Seminar 2 /       |                        |                         |                    |                     |                      |                    |            |
| Project 2         |                        |                         |                    |                     |                      |                    |            |
| ESE               | 20                     | 20                      | 60                 | -                   | -                    | -                  | 100        |

| 23SEPE07                                                                                          | PRESTRESSED CONCRETE                                      | STRUCTURES          |       |        |        |       |  |  |  |  |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------|-------|--------|--------|-------|--|--|--|--|
| PREREQUI                                                                                          | SITES                                                     | CATEGORY            | L     | Т      | Р      | С     |  |  |  |  |
|                                                                                                   | NIL                                                       | PE                  | 3     | 0      | 0      | 3     |  |  |  |  |
| Course                                                                                            | To impart knowledge on the basic principles, analyz       | e and design of p   | orest | ress   | conc   | rete  |  |  |  |  |
| Objectives                                                                                        | members.                                                  |                     |       |        |        |       |  |  |  |  |
|                                                                                                   |                                                           |                     |       |        |        |       |  |  |  |  |
| UNIT – I                                                                                          | NALYSIS OF BEAMS AND LOSSES IN PRESTRESS     9 Periods    |                     |       |        |        |       |  |  |  |  |
| ·                                                                                                 | prestressing - Different systems of prestressing - Mater  |                     |       |        |        |       |  |  |  |  |
| Design of prismatic beams – Simple cable profile Design of beams for shear. Losses in prestress - |                                                           |                     |       |        |        |       |  |  |  |  |
| Deflections –                                                                                     | Short Term and Long Term deflection.                      |                     |       |        |        |       |  |  |  |  |
| UNIT – II                                                                                         | DESIGN OF TENSION AND COMPRESSION ME                      | MBERS               |       | 9 Pe   | eriod  | S     |  |  |  |  |
| Design of co                                                                                      | mpression and tension members - Design of Compre          | ession members w    | ith 1 | bendi  | ing. 1 | End   |  |  |  |  |
| Block- Introd                                                                                     | uction- Stress Distribution in End Block – Anchorage Z    | one Stresses -Desi  | gn o  | f end  | l bloc | 2k –  |  |  |  |  |
| Guyon's meth                                                                                      | nod, Magnel's method – I.S 1343 recommendations.          |                     |       |        |        |       |  |  |  |  |
| UNIT – III                                                                                        | CONTINUOUS BEAMS AND COMPOSITE CONS                       | TRUCTION            |       | 9 Pe   | eriod  | S     |  |  |  |  |
| Concept of co                                                                                     | oncordancy and Linear Transformation – Elastic analysis   | of continuous bea   | ms–   | Sket   | chin   | g of  |  |  |  |  |
| pressure lines                                                                                    | for continuous beams and single span single storey rigi   | d frames – Load ba  | alano | cing 1 | meth   | od -  |  |  |  |  |
| Design of co                                                                                      | ntinuous beams. Composite construction - Types and        | behavior – Analys   | is a  | nd de  | esign  | for   |  |  |  |  |
| flexure and sh                                                                                    | near – Differential shrinkage.                            |                     |       |        |        |       |  |  |  |  |
| UNIT – IV                                                                                         | SPECIAL TOPICS                                            |                     |       | 9 Pe   | eriod  | S     |  |  |  |  |
| One way slat                                                                                      | bs - Two way slabs - Circular prestressing - Prestres     | ssed concrete pipe  | s –   | Anal   | ysis   | and   |  |  |  |  |
| design of liqu                                                                                    | id retaining tanks - Design of prestressed concrete sleep | ers and poles.      |       |        |        |       |  |  |  |  |
| UNIT – V                                                                                          | LIMIT STATE DESIGN                                        |                     |       | 9 Pe   | eriod  | .s    |  |  |  |  |
| •                                                                                                 | erviceability requirements - Partial safety factors - Lin | Ū.                  |       |        |        |       |  |  |  |  |
| and shear –                                                                                       | Limit state Design of Compression members. Non p          | restressed reinforc | eme   | ents - | – pa   | rtial |  |  |  |  |
| prestressing.                                                                                     |                                                           |                     |       |        |        |       |  |  |  |  |
| <b>Contact Peri</b>                                                                               | ods:                                                      |                     |       |        |        |       |  |  |  |  |
| Lecture: 45 l                                                                                     | Periods Tutorial: 0 Periods Practical: 0 Per              | riods Total: 4      | 45 P  | erioo  | ls     |       |  |  |  |  |

| 1 | Lin.T.Y. and Ned.H.Burns, "Design of Prestressed concrete structures" (S.I Version), John wiley |
|---|-------------------------------------------------------------------------------------------------|
|   | & Sons Inc., New York, 2015.                                                                    |
| 2 | Sinha.N.C. and Roy.S.K. "Fundamentals of prestressed Concrete", S.Chand and Co., 2011           |
| 3 | Krishnaraju N., "Prestressed Concrete", Tata McGraw Hill publishing Co.Ltd. New Delhi, 2018.    |
| 4 | Leonhardt.F. "Prestressed Concrete Design and Construction", Wiley Ernst and Sons, 1964.        |
| 5 | N.Rajagopalan, "Prestressed Concrete", Narosana Publications, 2006.                             |

|     | <b>RSE OUTCOMES:</b> completion of the course, the students will be able to:                        | Bloom's<br>Taxonomy<br>Mapped |
|-----|-----------------------------------------------------------------------------------------------------|-------------------------------|
| CO1 | Analyze and design the prestressed concrete beam sections.                                          | K3                            |
| CO2 | Design the prestressed concrete tension, compression members and end block.                         | K3                            |
| CO3 | Analyse the statically indeterminate structure and design the continuous beams and composite beams. | К3                            |
| CO4 | Design the prestressed concrete pipes, sleepers, tanks, poles and slabs.                            | K3                            |
| CO5 | Design the PSC beam and compression member by limit state method                                    | K3                            |

| COURSE ARTICU        | COURSE ARTICULATION MATRIX |       |     |     |     |     |  |  |  |  |  |
|----------------------|----------------------------|-------|-----|-----|-----|-----|--|--|--|--|--|
| COs/POs              | PO1                        | PO2   | PO3 | PO4 | PO5 | PO6 |  |  |  |  |  |
| CO1                  | 3                          | 2     | 2   | 3   | 1   | 2   |  |  |  |  |  |
| CO2                  | 2                          | 2     | 1   | 2   | 2   | 2   |  |  |  |  |  |
| CO3                  | 2                          | 2     | 2   | 1   | 2   | 1   |  |  |  |  |  |
| CO4                  | 3                          | 2     | 2   | 3   | 3   | 2   |  |  |  |  |  |
| CO5                  | 2                          | 2     | 1   | 2   | 1   | 2   |  |  |  |  |  |
| 23SEPE07             | 3                          | 2     | 2   | 3   | 3   | 2   |  |  |  |  |  |
| 1 – Slight, 2 – Mode | rate, 3 – Substa           | ntial |     |     |     |     |  |  |  |  |  |

| Test / Bloom's | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|----------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Category*      | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 20          | 40            | 40       | -         | -          | -        | 100   |
| CAT2           | 20          | 40            | 40       | -         | -          | -        | 100   |
| Individual     | -           | -             | 50       | 50        | -          | -        | 100   |
| Assessment 1/  |             |               |          |           |            |          |       |
| Case Study 1/  |             |               |          |           |            |          |       |
| Seminar 1/     |             |               |          |           |            |          |       |
| Project1       |             |               |          |           |            |          |       |
| Individual     | -           | -             | 50       | 50        | -          | -        | 100   |
| Assessment 2/  |             |               |          |           |            |          |       |
| Case Study 2/  |             |               |          |           |            |          |       |
| Seminar 2/     |             |               |          |           |            |          |       |
| Project 2      |             |               |          |           |            |          |       |
| ESE            | 20          | 40            | 40       | -         | -          | -        | 100   |

| PREREQUI                                                                                                                                 | SITES                                                                                                    | CATEGORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L                                                           | Т                                                                      | Р                                                                                                | С                                                             |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--|--|
| THERE                                                                                                                                    |                                                                                                          | NIL PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                           | 0                                                                      | 0                                                                                                | 3                                                             |  |  |
| Course                                                                                                                                   | To lear                                                                                                  | a various experimental techniques and instrumentation proc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                           | -                                                                      |                                                                                                  |                                                               |  |  |
| Objectives                                                                                                                               | elemen                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                        | U                                                                                                |                                                               |  |  |
| UNIT – I                                                                                                                                 | FORC                                                                                                     | E AND STRAIN MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 Periods                                                   |                                                                        | eriods                                                                                           |                                                               |  |  |
| Strain Gauge                                                                                                                             | s, princi                                                                                                | le, types, performance and uses - Photo elasticity, principl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e and                                                       | applic                                                                 | ations                                                                                           | s - Moir                                                      |  |  |
| -                                                                                                                                        |                                                                                                          | s and pressure gauges - Electrical load cells - proving rin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |                                                                        |                                                                                                  |                                                               |  |  |
| machines.                                                                                                                                | 5                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U                                                           |                                                                        |                                                                                                  |                                                               |  |  |
| UNIT – II                                                                                                                                |                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                        |                                                                                                  |                                                               |  |  |
| Characteristic                                                                                                                           | s of str                                                                                                 | struct ribustion linear registric differential transformers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             | т (7                                                                   | ranged                                                                                           | ucare fo                                                      |  |  |
|                                                                                                                                          |                                                                                                          | ctural vibration - innear variable differential transformer (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             | .) - I                                                                 | ransu                                                                                            | uccis iu                                                      |  |  |
| Velocity and                                                                                                                             |                                                                                                          | ctural vibration - linear variable differential transformer (<br>tion measurements- vibration meterseismographs - vibrat                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             | ,                                                                      |                                                                                                  |                                                               |  |  |
| •                                                                                                                                        | acceler                                                                                                  | tion measurements- vibration meterseismographs - vibrat<br>athode ray oscilloscope - XY plotter - chart plotters - Digital                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion a                                                       | nalyze                                                                 | r - di                                                                                           | splay o                                                       |  |  |
| recording of s                                                                                                                           | acceler<br>signals -                                                                                     | tion measurements- vibration meterseismographs - vibrat<br>athode ray oscilloscope - XY plotter - chart plotters - Digital                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion a                                                       | nalyze                                                                 | r - di<br>ion sy                                                                                 | splay o<br>stems.                                             |  |  |
| recording of s                                                                                                                           | acceler<br>signals -                                                                                     | tion measurements- vibration meterseismographs - vibrat<br>athode ray oscilloscope - XY plotter - chart plotters - Digital<br>STICS AND WIND FLOW MEASURES                                                                                                                                                                                                                                                                                                                                                                                                     | ion aı<br>data a                                            | nalyze<br>cquisit                                                      | r - di<br>ion sy<br><b>9 P</b> (                                                                 | isplay o<br>vstems.<br>eriods                                 |  |  |
| recording of s<br>UNIT – III<br>Principles of                                                                                            | acceler<br>signals -<br>ACO<br>pressure                                                                  | tion measurements- vibration meterseismographs - vibrat<br>athode ray oscilloscope - XY plotter - chart plotters - Digital                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion an<br>data a<br>ter - v                                 | nalyze<br>cquisit                                                      | r - di<br>ion sy<br><b>9 P</b> e<br>meter                                                        | isplay o<br>vstems.<br>eriods<br>and flov                     |  |  |
| recording of s<br>UNIT – III<br>Principles of                                                                                            | acceler<br>signals -<br>ACO<br>pressure<br>d tunnel                                                      | tion measurements- vibration meterseismographs - vibrat<br>athode ray oscilloscope - XY plotter - chart plotters - Digital<br>STICS AND WIND FLOW MEASURES<br>and flow measurements- pressure transducer- sound level me                                                                                                                                                                                                                                                                                                                                       | ion an<br>data a<br>ter - v                                 | nalyze<br>cquisit                                                      | r - di<br>ion sy<br><b>9 Po</b><br>meter<br>odel a                                               | isplay o<br>vstems.<br>eriods<br>and flov                     |  |  |
| recording of s<br>UNIT – III<br>Principles of<br>meters - Wind<br>UNIT – IV                                                              | acceler<br>signals -<br>ACO<br>pressure<br>d tunnel                                                      | tion measurements- vibration meterseismographs - vibrat<br>athode ray oscilloscope - XY plotter - chart plotters - Digital<br><b>STICS AND WIND FLOW MEASURES</b><br>and flow measurements- pressure transducer- sound level me<br>nd its use in structural analysis- structural modeling- direct an                                                                                                                                                                                                                                                           | ion an<br>data ao<br>ter - v<br>nd indi                     | nalyze<br>cquisit<br>enturin<br>rect m                                 | r - di<br>ion sy<br><b>9 Po</b><br>meter<br>odel a<br><b>9 Po</b>                                | splay o<br>stems.<br>eriods<br>and flow<br>nalysis.<br>eriods |  |  |
| recording of s<br>UNIT – III<br>Principles of<br>meters - Wind<br>UNIT – IV<br>Diagnosis of                                              | acceler<br>signals -<br>pressure<br>d tunnel<br>DIST                                                     | tion measurements- vibration meterseismographs - vibrat<br>athode ray oscilloscope - XY plotter - chart plotters - Digital<br>STICS AND WIND FLOW MEASURES<br>and flow measurements- pressure transducer- sound level me<br>and its use in structural analysis- structural modeling- direct an<br>ESS MEASUREMENTS                                                                                                                                                                                                                                             | ion an<br>data ad<br>ter - v<br>nd indi                     | nalyze<br>cquisit<br>enturin<br>rect m<br>of rei                       | r - di<br>ion sy<br><b>9 P</b><br>meter<br>odel a<br><b>9 P</b><br>nforce                        | splay or stems.<br>eriods<br>and flow<br>nalysis.<br>eriods   |  |  |
| recording of s<br>UNIT – III<br>Principles of<br>meters - Wind<br>UNIT – IV<br>Diagnosis of                                              | acceler<br>signals -<br>pressure<br>d tunnel a<br>DIST<br>distress<br>f cell, co                         | tion measurements- vibration meterseismographs - vibrat<br>athode ray oscilloscope - XY plotter - chart plotters - Digital<br><b>STICS AND WIND FLOW MEASURES</b><br>and flow measurements- pressure transducer- sound level me<br>nd its use in structural analysis- structural modeling- direct at<br><b>ESS MEASUREMENTS</b><br>in structures- crack observation and measurement- Corr                                                                                                                                                                      | ion an<br>data ad<br>ter - v<br>nd indi                     | nalyze<br>cquisit<br>enturin<br>rect m<br>of rei                       | r - di<br>ion sy<br><b>9 Po</b><br>meter<br>aodel a<br><b>9 Po</b><br>nforco<br>n.               | splay of stems.<br>eriods<br>and flow<br>nalysis.             |  |  |
| recording of s<br>UNIT – III<br>Principles of<br>meters - Wind<br>UNIT – IV<br>Diagnosis of<br>concrete- Hal<br>UNIT – V                 | acceler<br>signals -<br>ACO<br>pressure<br>d tunnel<br>distress<br>f cell, co<br>NON                     | tion measurements- vibration meterseismographs - vibrat<br>athode ray oscilloscope - XY plotter - chart plotters - Digital<br><b>STICS AND WIND FLOW MEASURES</b><br>and flow measurements- pressure transducer- sound level me<br>nd its use in structural analysis- structural modeling- direct at<br><b>ESS MEASUREMENTS</b><br>in structures- crack observation and measurement- Corr<br>astruction and use- damage assessment - controlled blasting for                                                                                                   | ter - v<br>data ad<br>ter - v<br>nd indi<br>osion<br>or dem | nalyze:<br>cquisit<br>enturin<br>rect m<br>of rei<br>olitior           | r - di<br>ion sy<br><b>9 Pe</b><br>meter<br>odel a<br><b>9 Pe</b><br>nforce<br>a.<br><b>9 Pe</b> | eriods<br>eriods<br>and flow<br>and sis.<br>eriods<br>ement i |  |  |
| recording of s<br>UNIT – III<br>Principles of<br>meters - Wind<br>UNIT – IV<br>Diagnosis of<br>concrete- Hal<br>UNIT – V<br>Load testing | ACOU<br>ACOU<br>pressure<br>d tunnel a<br>DIST<br>distress<br>f cell, co<br>NON<br>on struc              | tion measurements- vibration meterseismographs - vibrat<br>athode ray oscilloscope - XY plotter - chart plotters - Digital<br>STICS AND WIND FLOW MEASURES<br>and flow measurements- pressure transducer- sound level me<br>nd its use in structural analysis- structural modeling- direct an<br>ESS MEASUREMENTS<br>in structures- crack observation and measurement- Corr<br>astruction and use- damage assessment - controlled blasting for<br>DESTRUCTIVE TESTING METHODS                                                                                  | ter - v<br>data ad<br>ter - v<br>nd indi<br>osion<br>or dem | nalyze:<br>cquisit<br>enturin<br>rect m<br>of rei<br>olitior<br>emissi | r - di<br>ion sy<br>9 Po<br>meter<br>addel a<br>9 Po<br>n.<br>9 Po<br>ion- U                     | eriods<br>eriods<br>and flow<br>and sis.<br>eriods<br>ement i |  |  |
| recording of s<br>UNIT – III<br>Principles of<br>meters - Wind<br>UNIT – IV<br>Diagnosis of<br>concrete- Hal<br>UNIT – V<br>Load testing | acceler<br>signals -<br>Pressure<br>d tunnel a<br>distress<br>f cell, co<br>NON<br>on struc<br>iples and | tion measurements- vibration meterseismographs - vibrat<br>athode ray oscilloscope - XY plotter - chart plotters - Digital<br><b>STICS AND WIND FLOW MEASURES</b><br>and flow measurements- pressure transducer- sound level me<br>and its use in structural analysis- structural modeling- direct an<br><b>ESS MEASUREMENTS</b><br>in structures- crack observation and measurement- Corr<br>struction and use- damage assessment - controlled blasting for<br><b>DESTRUCTIVE TESTING METHODS</b><br>ares, buildings, bridges and towers - Rebound hammer Acc | ter - v<br>data ad<br>ter - v<br>nd indi<br>osion<br>or dem | nalyze:<br>cquisit<br>enturin<br>rect m<br>of rei<br>olitior<br>emissi | r - di<br>ion sy<br>9 Po<br>meter<br>addel a<br>9 Po<br>n.<br>9 Po<br>ion- U                     | eriods<br>eriods<br>and flow<br>and sis.<br>eriods<br>ement i |  |  |

| 1 | Sadhu Singh, <b>"Experimental Stress Analysis"</b> , Khanna publishers, New Delhi, 1996.   |
|---|--------------------------------------------------------------------------------------------|
| 2 | Dalley and Riley, "Experimental Stress Analysis"- McGraw Hill Book Company, New York 1991. |
|   |                                                                                            |
| 3 | L.S.Srinath. "Experimental Stress Analysis", Tata McGraw Hill company Book Ltd.,           |
|   | NewDelhi. 1984                                                                             |
| 4 | Bray and Stanley, "Non Destructive Evaluation", McGraw Hill Publishing co., New York, 1989 |

|     | <b>RSE OUTCOMES:</b> completion of the course, the students will be able to:                            | Bloom's<br>Taxonomy<br>Mapped |
|-----|---------------------------------------------------------------------------------------------------------|-------------------------------|
| CO1 | Apply concepts of measurements and related instruments in the real time application areas.              | K2                            |
| CO2 | Use the various vibration measuring instruments and analyze the structures using digital display units. | K2                            |
| CO3 | Perform model analysis for wind flow measurements.                                                      | K3                            |
| CO4 | Diagnose the distressed structures using advanced damage assessing techniques                           | K2                            |
| CO5 | Perform NDT methods on the existing structures.                                                         | K3                            |

| COURSE ARTICUI         | COURSE ARTICULATION MATRIX |      |     |     |     |     |  |  |  |  |  |
|------------------------|----------------------------|------|-----|-----|-----|-----|--|--|--|--|--|
| COs/POs                | PO1                        | PO2  | PO3 | PO4 | PO5 | PO6 |  |  |  |  |  |
| CO1                    | 3                          | -    | 2   | 3   | 2   | 3   |  |  |  |  |  |
| CO2                    | 3                          | -    | -   | 2   | -   | -   |  |  |  |  |  |
| CO3                    | 3                          | -    | 2   | 1   | 1   | 2   |  |  |  |  |  |
| CO4                    | 3                          | -    | 1   | 2   | 1   | 2   |  |  |  |  |  |
| CO5                    | 3                          | -    | 1   | 3   | 1   | 2   |  |  |  |  |  |
| 23SEPE08               | 3                          | -    | 2   | 3   | 2   | 3   |  |  |  |  |  |
| 1 - Slight, 2 - Modera | ate, 3 – Substan           | tial | •   |     |     | •   |  |  |  |  |  |

| ASSESSMENT P                                                              | ATTERN – THI           | EORY                    |                    |                     |                      |                    |            |
|---------------------------------------------------------------------------|------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category*                                               | Rememberin<br>g (K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                                                                      | 50                     | 40                      | 10                 |                     |                      |                    | 100        |
| CAT2                                                                      | 50                     | 40                      | 10                 |                     |                      |                    | 100        |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | 30                     | 50                      | 20                 |                     |                      |                    | 100        |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | 30                     | 50                      | 20                 |                     |                      |                    | 100        |
| ESE                                                                       | 50                     | 40                      | 10                 |                     |                      |                    | 100        |

23SEPE09

## STRUCTURAL OPTIMIZATION

| 256EI E07                        | STRUCTURAL OF THE                                             |                       |         |        |        |       |
|----------------------------------|---------------------------------------------------------------|-----------------------|---------|--------|--------|-------|
| PREREQUI                         | SITES                                                         | CATEGORY              | L       | Т      | P      | C     |
|                                  | NIL                                                           | PE                    | 3       | 0      | 0      | 3     |
| Course                           | To learn the optimization techniques in structural engineer   | ering.                |         |        |        |       |
| Objectives                       |                                                               |                       |         |        |        |       |
| UNIT – I                         | OPTIMIZATION FUNDAMENTALS                                     |                       |         | 9      | Peri   | ods   |
| Optimization                     | methods - Introduction, Problem formulation, Mathe            | ematical principles   | in o    | ptim   | izatio | m -   |
| Mathematica                      | models - Activity - Design methodology- Civil engineeri       | ng case study - Unco  | onstrai | ned    | funct  | ions  |
| <ul> <li>single varia</li> </ul> | ble - several variable - equality constraints - inequality co | onstraints- optimizat | ion - c | lesig  | n spa  | ice · |
| Feasible and                     | Infeasible - Convex and concave - Active constraints -        | Local and Global o    | ptima   | – di   | fferei | ntia  |
| Calculus - Op                    | timality criteria - Lagrange multiplier method - Kuhn- tuc    | ker Criteria.         |         |        |        |       |
| UNIT – II                        | LINEAR PROGRAMMING                                            |                       |         | 9      | Peri   | ods   |
| Linear Progra                    | amming – Formulation of problems - graphical solution         | - plastic design of f | rames   | - an   | alytic | cal   |
| methods- Sir                     | nplex method - Basic ideas and steps- Duality sensitive       | ity analysis – simp   | le LP   | prot   | lems   | _     |
| Transportatio                    | n Problem – Assignment Method.                                |                       |         |        |        |       |
| UNIT – III                       | NON-LINEAR PROGRAMMING                                        |                       |         | 9      | Peri   | ods   |
| Introduction                     | to non - linear problems - One dimensional minimiza           | tion methods – uni    | imodal  | l fur  | iction | 1 -   |
| Exhaustive a                     | nd unrestricted search – Dichotomous search – Fibonac         | cci method- Golden    | sectio  | on m   | ethod  | 1 -   |
| Interpolation                    | methods.                                                      |                       |         |        |        |       |
| Unconstraine                     | d multivariable function - univariate method - Cauchy's       | s steepest descent m  | ethod   | - co   | njuga  | ite   |
| gradient met                     | hod (Fletcher Reeves) - Variable metric methods (Dav          | vison-Fletcher-Powe   | ell) -  | Dir    | ect a  | nd    |
| indirect meth                    | ods - cutting plane method - Methods of feasible direction    | - Interior Penality f | unctio  | n – E  | Exterr | nal   |
| Penalty funct                    | ion method.                                                   |                       |         |        |        |       |
| UNIT – IV                        | GEOMETRIC PROGRAMMING AND DYNAMIC H                           | PROGRAMMING           |         | 9      | Peri   | ods   |
| Geometric P                      | rogramming- Polynomial – Degree of difficulty- Reduc          | cing G.P.P. to a se   | t of s  | imul   | taneo  | us    |
| equations – C                    | concepts of solving problems with zero difficulty and one c   | legree of difficulty. |         |        |        |       |
| Dynamic Pro                      | ogramming - Bellman's principle of optimality – Repr          | resentation of a mu   | lti sta | ige d  | lecisi | on    |
| problem - Co                     | ncept of sub - Optimisation problems – Truss optimization     | 1.                    |         |        |        |       |
| UNIT – V                         | NON-TRADITIONAL METHODS (concepts only)                       | )                     |         | 9      | Peri   | ods   |
| Genetic Algo                     | rithm – Terminology – Natural Law of Evolutions – Ger         | netic operators – ste | eps for | : solı | ution  | of    |
|                                  | nulated Annealing – Algorithm – Boltzman's equation.          | L L                   |         |        |        |       |
| •                                | optimization – Algorithm -Travelling salesman problem.        |                       |         |        |        |       |
| •                                | to TABU search – sample problem. Artificial Neural No         | etwork - Basic cond   | cepts - | - Bio  | ologia | cal   |
|                                  | blication characteristics – overview of learning methods.     |                       | T       |        | 0      |       |
| Contact Peri                     |                                                               |                       |         |        |        |       |
| Lecture: 45                      |                                                               | Total: 45 Periods     |         |        |        |       |
|                                  | RENCES:                                                       |                       |         |        |        |       |

| 1 | Kirsch.U, "Structural Optimisation: Fundamentals and Applications", Springer-Verlog, 2012.            |
|---|-------------------------------------------------------------------------------------------------------|
| 2 | K.Deb, "Optimisation for Engineering Design : Algorithms and examples", Prentice Hall, New Delhi,     |
|   | 2012                                                                                                  |
| 3 | J.S.Arora, "Introduction to Optimum Design", McGraw –Hill Book Compan, 2011.                          |
| 4 | Belegundu, A.D.and Chandrapatla, T.R., "Optimisation Concepts and Applications in Engineering",       |
|   | Pearson Education, 2011.                                                                              |
| 5 | Rao.S.S, "Optimisation Theory and Applications", New Age International Private Limited Publisher, New |
|   | Delhi, 2002                                                                                           |

| COURSE OUTCOMES:<br>Upon completion of the course, the students will be able to: |                                                                              |    |  |  |  |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|----|--|--|--|--|
| CO1                                                                              | Apply fundamental concepts and principles in Optimization.                   |    |  |  |  |  |
| CO2                                                                              | Implement the linear programming technique for simple problems.              |    |  |  |  |  |
| CO3                                                                              | Utilize various non-linear programming methods in structural engineering.    | K3 |  |  |  |  |
| CO4                                                                              | Analyze the Optimization methods by using Geometric and Dynamic programming. | К3 |  |  |  |  |
| CO5                                                                              | Attain basic concepts of Non-traditional methods.                            | K4 |  |  |  |  |

## COURSE ARTICULATION MATRIX

|                       | 1               | •        |     |     |     | 1   |
|-----------------------|-----------------|----------|-----|-----|-----|-----|
| COs/POs               | PO1             | PO2      | PO3 | PO4 | PO5 | PO6 |
| CO1                   | 3               | 1        | 2   | 3   | 2   | 2   |
| CO2                   | 2               | 2        | 1   | 2   | 2   | 2   |
| CO3                   | 2               | 2        | 2   | 1   | 2   | 1   |
| CO4                   | 3               | 2        | 2   | 3   | 3   | 2   |
| CO5                   | 2               | 2        | 1   | 2   | 1   | 2   |
| 23SEPE09              | 3               | 2        | 2   | 3   | 3   | 2   |
| 1 - Slight, $2 - Mod$ | erate, 3 – Subs | stantial |     |     |     |     |

| ASSESSMENT     | PATTERN – THI | EORY          |          |           |            |          |       |
|----------------|---------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering   | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %        | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 20            | 40            | 40       | -         | -          | -        | 100   |
| CAT2           | 20            | 40            | 40       | -         | -          | -        | 100   |
| Individual     |               |               |          |           |            |          |       |
| Assessment 1 / |               |               |          |           |            |          |       |
| Case Study 1/  | -             | -             | 50       | 50        | -          | -        | 100   |
| Seminar 1/     |               |               |          |           |            |          |       |
| Project1       |               |               |          |           |            |          |       |
| Individual     |               |               |          |           |            |          |       |
| Assessment 2 / |               |               |          |           |            |          |       |
| Case Study 2/  | -             | -             | 50       | 50        | -          | -        | 100   |
| Seminar 2/     |               |               |          |           |            |          |       |
| Project 2      |               |               |          |           |            |          |       |
| ESE            | 20            | 40            | 40       | -         | -          | -        | 100   |

23SEPE10

#### ADVANCED CONCRETE TECHNOLOGY

| PREREQUI            | SITES                                                       | CATEGORY            | L      | Т     | Р      | C     |  |  |
|---------------------|-------------------------------------------------------------|---------------------|--------|-------|--------|-------|--|--|
|                     | NIL PE                                                      |                     |        |       |        |       |  |  |
| Course              | To acquire knowledge on the properties of concrete and      | l get exposed to sp | ecial  | l con | crete  | s in  |  |  |
| Objectives          | order to impart the concepts of sustainability in the field | l of concrete       |        |       |        |       |  |  |
|                     |                                                             |                     |        |       |        |       |  |  |
| UNIT – I            | INTRODUCTION                                                |                     |        | 9 Pe  | riod   | S     |  |  |
|                     | nderstanding the quassi-brittle nature of concrete - Fa     |                     |        |       |        |       |  |  |
| Micro-crackin       | ng, crack propagation - stress concentration at opening     | gs –Destructive, se | emi-o  | destr | uctiv  | 'e &  |  |  |
| Non-destructi       | ve testing methodology - Rebound hammer test - Ultr         | asonic Pulse Velo   | city   | (UP   | V) T   | est - |  |  |
| Penetration re      | esistance test - Pull-out Test - Pull-off Method - Break-   | off test - Cover Me | easur  | reme  | nt - ( | Core  |  |  |
| Sampling and        | Testing - Half-cell electrical potential method - Resisting | vity Mapping Prob   | lems   | s fac | ed du  | ıring |  |  |
| Non-destructi       | ve evaluation - Microscopic Analysis - XRD, SEM, TE         | M Analysis.         |        |       |        |       |  |  |
| UNIT – II           | ADMIXTURES AND POLYMERS                                     |                     |        | 9 Pe  | riod   | S     |  |  |
| Chemical Ad         | mixtures- Mechanism of chemical admixture - Test for        | determining optim   | um d   | losag | ge -E  | ffect |  |  |
| on concrete p       | roperty in fresh and hardened state, Mineral Admixture-     | Effect on concrete  | e pro  | pert  | y in f | resh  |  |  |
| state and har       | dened state. Polymers in Civil Engineering-Structural       | Plastics And Con    | nposi  | ites- | Poly   | /mer  |  |  |
| Membranes C         | Coatings.                                                   |                     |        |       |        |       |  |  |
|                     | DURABILITY PROPERTIES                                       |                     |        |       | riod   |       |  |  |
| •                   | - chemical attack - Sulphate attack - Carbonation - Qu      | •                   | arine  | e cor | ditio  | ns –  |  |  |
|                     | erties of concrete - fire resistance - methods of making    | durable concrete    |        |       |        |       |  |  |
| UNIT – IV           | SPECIAL CONCRETE                                            |                     |        | 9 Pe  | riod   | S     |  |  |
| e e                 | t concrete, Fiber and Hybrid Fiber reinforced co            | •                   |        |       | te, S  |       |  |  |
| -                   | oncrete, Epoxy resins and screeds for rehabilitatio         | -                   | -      |       |        | -     |  |  |
|                     | gh performance concrete - Self compacting concrete          | - Self curing cor   | ncrete | e –   | Recy   | cled  |  |  |
| aggregate cor       | crete - Bacterial concrete - Nanoconcrete                   |                     |        |       |        |       |  |  |
| UNIT – V            | SUSTAINABILITY                                              |                     |        |       | riod   |       |  |  |
|                     | - Need for sustainability - Concept of sustainability - s   |                     |        |       |        |       |  |  |
| •                   | concepts. Sustainable development - Engineering for su      | •                   |        |       |        |       |  |  |
| -                   | - Low Impact development techniques-Green material          | s -Material selecti | on fo  | or su | istain | able  |  |  |
| design              |                                                             |                     |        |       |        |       |  |  |
| <b>Contact Peri</b> |                                                             |                     |        |       |        |       |  |  |
| Lecture: 45 l       | Periods Tutorial: 0 Periods Practical: 0 Perio              | ds Total: 45        | 5 Per  | riods | 5      |       |  |  |
|                     |                                                             |                     |        |       |        |       |  |  |

| 1 | Neville, A.M., "Properties of Concrete", Pitman Publishing Limited, London, 2012.                                          |
|---|----------------------------------------------------------------------------------------------------------------------------|
| 2 | Shetty M.S., "Concrete Technology", S.Chand and Company Ltd. Delhi, 2019.                                                  |
| 3 | Gambhir.M.L., "Concrete Technology", Tata McGraw Hill, Publishing Co. Ltd New Delhi, 2013.                                 |
| 4 | Santhakumar .A.R., "Concrete Technology", Oxford University Press, NewDelhi,2018                                           |
| 5 | Metha P.K. and Montreio P.J.M., "Concrete Structure Properties and Materials", 2 <sup>nd</sup> edition, Prentice Hall, 203 |
| 6 | A. M. Neville & J. J. Brooks, "Concrete Technology", 4th Impression, Pearsons Education Ltd, 2010                          |

|     | COURSE OUTCOMES:<br>Upon completion of the course, the students will be able to:                             |    |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| CO1 | Apply the various testing methods of concrete to assess its properties                                       | K2 |  |  |  |  |  |
| CO2 | Identify and explain the role of admixture and polymers of concrete and their effects on concrete properties | K2 |  |  |  |  |  |
| CO3 | Produce durable concrete                                                                                     | K2 |  |  |  |  |  |
| CO4 | Identify a suitable concrete for different structures considering the prevailing conditions                  | K2 |  |  |  |  |  |
| CO5 | Implement the concepts and need for sustainability                                                           | K2 |  |  |  |  |  |

| COURSE ARTICULATION MATRIX |                                           |     |     |     |     |     |  |  |  |  |  |
|----------------------------|-------------------------------------------|-----|-----|-----|-----|-----|--|--|--|--|--|
| COs/POs                    | PO1                                       | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |  |  |
| CO1                        | 3                                         | 3   | 2   | 3   | 2   | 2   |  |  |  |  |  |
| CO2                        | 3                                         | 3   | 2   | 3   | 2   | 3   |  |  |  |  |  |
| CO3                        | 3                                         | 3   | 2   | 3   | 2   | 2   |  |  |  |  |  |
| CO4                        | 3                                         | 3   | 3   | 3   | 2   | 3   |  |  |  |  |  |
| CO5                        | 3                                         | 3   | 3   | 3   | 3   | 3   |  |  |  |  |  |
| 23SEPE10                   | 3                                         | 3   | 3   | 3   | 3   | 3   |  |  |  |  |  |
| 1 – Slight, 2 – Mod        | 1 – Slight, 2 – Moderate, 3 – Substantial |     |     |     |     |     |  |  |  |  |  |

| Test / Bloom's | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|----------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Category*      | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 50          | 50            | -        | -         | -          | -        | 100   |
| CAT2           | 50          | 50            | -        | -         | -          | -        | 100   |
| Individual     | 50          | 50            | -        | -         | -          | -        | 100   |
| Assessment 1 / |             |               |          |           |            |          |       |
| Case Study 1/  |             |               |          |           |            |          |       |
| Seminar 1/     |             |               |          |           |            |          |       |
| Project1       |             |               |          |           |            |          |       |
| Individual     | 50          | 50            | -        | -         | -          | -        | 100   |
| Assessment 2 / |             |               |          |           |            |          |       |
| Case Study 2/  |             |               |          |           |            |          |       |
| Seminar 2/     |             |               |          |           |            |          |       |
| Project 2      |             |               |          |           |            |          |       |
| ESE            | 50          | 50            | -        | -         | -          | -        | 100   |

| 23SEPE11            | L      | PLATES AND SH                                       | ELLS             |       |       |        |          |
|---------------------|--------|-----------------------------------------------------|------------------|-------|-------|--------|----------|
| PREREQUIS           | SITE   | ES                                                  | CATEGORY         | L     | Τ     | Р      | С        |
|                     |        | NIL                                                 | 0                | 0     | 3     |        |          |
| Course              | То     | impart knowledge on structural behaviour of plates  | under different  | bour  | ıdary | cor    | iditions |
| Objectives          | and    | the membrane theory concept for the analysis of she | ells.            |       |       |        |          |
| UNIT – I            | LA     | TERALLY LOADED PLATES                               |                  |       | 9     | 9 Pe   | riods    |
| Thin Plates v       | with   | Small Defection - Laterally Loaded Thin Plates -    | Governing Diff   | erent | ial I | Equa   | tion -   |
| Boundary Co         | nditi  | ons. Rectangular Plates- Simply Supported Recta     | angular Plates - | Na    | vier  | So     | lution   |
| and Levy's          | Met    | hod - Plates with Various Edge Conditions. Symm     | etrical Bending  | of Ci | rcula | ır Pl  | ates -   |
| Plates on Elas      | stic F | Foundation.                                         |                  |       |       |        |          |
| UNIT – II           | NU     | MERICAL METHODS                                     |                  |       |       | 9 Pe   | riods    |
| Finite Differe      | ence   | Method - Isotropic Rectangular plates - Bounda      | ary Conditions - | - All | -rou  | nd s   | imply    |
| supported squ       | Jare   | plate, clamped square plate and fixed square plate  | subjected to un  | iforn | nly c | listri | buted    |
| load.               |        |                                                     |                  |       |       |        |          |
| UNIT – III          | AN     | ISOTROPIC PLATES AND THICK PLATES                   |                  |       | 9     | 9 Pe   | riods    |
| Orthotropic P       | lates  | and Grids, Moderately Thick Plates                  |                  |       |       |        |          |
| UNIT – IV           | ME     | MBRANE THEORY OF SHELLS                             |                  |       | 9     | 9 Pe   | riods    |
| Classification      | of S   | Shells - Types of Shells - Structural Action - Memb | orane Theory - S | hells | of F  | Revo   | lution   |
| and Shells of       | Tran   | slation - Examples - Limitations of Membrane Theo   | ry.              |       |       |        |          |
| UNIT – V            | FO     | LDED PLATES                                         |                  |       | 9     | 9 Pe   | riods    |
| Folded Plate        | stru   | ctures - structural behavior and analysis - Types   | s - Design by A  | ACI   | - AS  | SCE    | Task     |
| Committee m         | etho   | d.                                                  |                  |       |       |        |          |
| <b>Contact Peri</b> | ods:   |                                                     |                  |       |       |        |          |
| Lecture: 45 I       | Perio  | ods Tutorial: 0 Periods Practical: 0 Period         | s Total: 45 Per  | riods |       |        |          |

| 1 | Szilard, R., "Theories and Applications of Plate Analysis", Wiley India Pvt. Ltd., 2014.       |
|---|------------------------------------------------------------------------------------------------|
| 2 | Timoshenko, S. and Krieger S.W. "Theory of Plates and Shells", McGraw Hill Book Company, 1990. |
| 3 | Wilhelm Fluegge, <b>"Stresses in shells"</b> , Springer – Verlag, 1988.                        |
| 4 | Ramasamy, G.S., "Design and Construction of Concrete Shells Roofs", CBS Publishers, 2005.      |

|     | COURSE OUTCOMES:<br>Upon completion of the course, the students will be able to: |    |  |  |
|-----|----------------------------------------------------------------------------------|----|--|--|
| CO1 | Analyse the plates subjected to lateral load.                                    | K2 |  |  |
| CO2 | Carry out numerical analysis on plates with various boundary conditions.         | K2 |  |  |
| CO3 | Evaluate the behaviour of the anisotropic plates and thick plates.               | K2 |  |  |
| CO4 | Perform analysis of shells using membrane theory.                                | K2 |  |  |
| CO5 | Carry out analysis and design of folded plates.                                  | K2 |  |  |

| COURSE ARTICULATION MATRIX |               |               |     |     |     |     |  |  |  |  |
|----------------------------|---------------|---------------|-----|-----|-----|-----|--|--|--|--|
| COs/POs                    | PO1           | PO2           | PO3 | PO4 | PO5 | PO6 |  |  |  |  |
| CO1                        | 2             | -             | 2   | 3   | 1   | 1   |  |  |  |  |
| CO2                        | 2             | -             | 2   | 3   | 1   | 1   |  |  |  |  |
| CO3                        | 2             | -             | 2   | 3   | 1   | 1   |  |  |  |  |
| CO4                        | 2             | -             | 2   | 3   | 1   | 1   |  |  |  |  |
| CO5                        | 2             | -             | 2   | 3   | 1   | 1   |  |  |  |  |
| 23SEPE11                   | 2             | -             | 2   | 3   | 1   | 1   |  |  |  |  |
| 1 - Slight, 2 -            | – Moderate, 3 | - Substantial |     |     |     |     |  |  |  |  |

| Test / Bloom's | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|----------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Category*      | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 40          | 40            | 20       | -         | -          | -        | 100   |
| CAT2           | 40          | 40            | 20       | -         | -          | -        | 100   |
| Individual     | -           | 40            | 40       | 20        | -          | -        | 100   |
| Assessment 1 / |             |               |          |           |            |          |       |
| Case Study 1/  |             |               |          |           |            |          |       |
| Seminar 1 /    |             |               |          |           |            |          |       |
| Project1       |             |               |          |           |            |          |       |
| Individual     | -           | 40            | 40       | 20        | -          | -        | 100   |
| Assessment 2 / |             |               |          |           |            |          |       |
| Case Study 2/  |             |               |          |           |            |          |       |
| Seminar 2 /    |             |               |          |           |            |          |       |
| Project 2      |             |               |          |           |            |          |       |
| ESE            | 40          | 40            | 20       | -         | -          | -        | 100   |

| 23SEPE12 FRACTURE MECHANICS                                                                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |                                        |                                                                  |                                                                |                                         |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------|--|
| PREREQU                                                                                                                                                            | SIT                                                                                         | ES                                                                                                                                                                                                                                                                                                                                                                                                                 | CATEGORY                                                                                                    | L                                      | Т                                                                | Р                                                              | С                                       |  |
|                                                                                                                                                                    |                                                                                             | NIL                                                                                                                                                                                                                                                                                                                                                                                                                | PE                                                                                                          | 3                                      | 0                                                                | 0                                                              | 3                                       |  |
| Course                                                                                                                                                             | То                                                                                          | learn about the development of fatigue crack and                                                                                                                                                                                                                                                                                                                                                                   | ler el                                                                                                      | astic                                  | & el                                                             | ast                                                            |                                         |  |
| Objectives                                                                                                                                                         | plas                                                                                        | astic conditions and to familiarize the principle of crack arrest along with the methods                                                                                                                                                                                                                                                                                                                           |                                                                                                             |                                        |                                                                  |                                                                |                                         |  |
|                                                                                                                                                                    | dete                                                                                        | ermine fracture parameters.                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                             |                                        |                                                                  |                                                                |                                         |  |
| UNIT – I                                                                                                                                                           | Introduction to FRACTURE MECHANICS         9 Periods                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |                                        |                                                                  |                                                                |                                         |  |
| Modes of fra                                                                                                                                                       | cture                                                                                       | failure, The Griffith energy Balance Approach - Cra                                                                                                                                                                                                                                                                                                                                                                | ck tip Plasticity –                                                                                         | Fract                                  | ure to                                                           | oughn                                                          | ess                                     |  |
| UNIT – II                                                                                                                                                          | LI                                                                                          | NEAR ELASTIC FRACTURE MECHANICS                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                                                    |                                        | 9 P                                                              | eriod                                                          | s                                       |  |
| Elastic crack                                                                                                                                                      | tip s                                                                                       | stress field - Stress and displacement fields in isotro                                                                                                                                                                                                                                                                                                                                                            | pic elastic materia                                                                                         | als –                                  | West                                                             | ergaa                                                          | rd'                                     |  |
| approach-P                                                                                                                                                         | lane                                                                                        | Strain Fracture toughness (KIC) testing – Feddersen                                                                                                                                                                                                                                                                                                                                                                | approach, R cur                                                                                             | ve, E                                  | nergy                                                            | relea                                                          | ase                                     |  |
| rate of DCB                                                                                                                                                        | spec                                                                                        | imen – An elastic deformation at crack tip – $K_{1c}$ Tes                                                                                                                                                                                                                                                                                                                                                          | t technique, Vario                                                                                          | us te                                  | st spe                                                           | cime                                                           | ns                                      |  |
| critical energ                                                                                                                                                     | y rat                                                                                       | e                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                             |                                        |                                                                  |                                                                |                                         |  |
| UNIT – III                                                                                                                                                         | EL                                                                                          | ASTIC PLASTIC FRACTURE MECHANICS                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                             |                                        | 9 P                                                              | eriod                                                          | ls                                      |  |
| -                                                                                                                                                                  | denc                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                             |                                        |                                                                  | 1                                                              |                                         |  |
| small scale y                                                                                                                                                      |                                                                                             | e, critical J integral – Evaluation of CTOD- relation                                                                                                                                                                                                                                                                                                                                                              | nship between CT                                                                                            |                                        |                                                                  |                                                                |                                         |  |
| small scale y<br>UNIT – IV                                                                                                                                         | ieldi                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                  | nship between CT                                                                                            |                                        | $K_1$ as                                                         |                                                                | fc                                      |  |
| UNIT – IV                                                                                                                                                          | ieldi<br>FA                                                                                 | ng                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                             | OD,                                    | K <sub>1</sub> an<br>9 P                                         | nd G                                                           | ls                                      |  |
| <b>UNIT – IV</b><br>Fatigue cracl                                                                                                                                  | ieldii<br>FA                                                                                | ng<br>TIGUE CRACK GROWTH                                                                                                                                                                                                                                                                                                                                                                                           | crack propagation                                                                                           | OD,                                    | K <sub>1</sub> an<br><b>9 P</b><br>is La                         | nd G<br>Period                                                 | fo<br>Is                                |  |
| <b>UNIT – IV</b><br>Fatigue crack                                                                                                                                  | ieldin<br>FA<br>c gro<br>nanis                                                              | ng<br>TIGUE CRACK GROWTH<br>wth, SN Curve –J <sub>1c</sub> Mechanism of Fatigue, Fatigue                                                                                                                                                                                                                                                                                                                           | crack propagation                                                                                           | OD,                                    | K <sub>1</sub> an<br><b>9 P</b><br>is La                         | nd G<br>Period                                                 | fc<br>Is<br>rac                         |  |
| <b>UNIT – IV</b><br>Fatigue crack                                                                                                                                  | ieldin<br>FA<br>& gro<br>nanis<br>or, fa                                                    | ng<br><b>TIGUE CRACK GROWTH</b><br>wth, SN Curve –J <sub>1c</sub> Mechanism of Fatigue, Fatigue<br>m- Residual stresses at crack tip – Retardation eff                                                                                                                                                                                                                                                             | crack propagation                                                                                           | OD,                                    | K <sub>1</sub> at<br><b>9 P</b><br>is La<br>vth te               | nd G<br>Period                                                 | fo<br>Is<br>raci                        |  |
| UNIT – IV<br>Fatigue crach<br>closure mech<br>intensity fact<br>UNIT – V                                                                                           | ieldin<br>FA<br>c gro<br>nanis<br>or, fa                                                    | ng<br><b>TIGUE CRACK GROWTH</b><br>wth, SN Curve $-J_{1c}$ Mechanism of Fatigue, Fatigue<br>m- Residual stresses at crack tip – Retardation eff<br>actors affecting stress intensity factor                                                                                                                                                                                                                        | crack propagation<br>fect fatigue crack                                                                     | OD,<br>- Par<br>grov                   | K <sub>1</sub> an<br><b>9 P</b><br>is La<br>wth te<br><b>9 P</b> | nd G<br>Period<br>w- C<br>est, st<br>Period                    | fo<br>Is<br>racl<br>tres                |  |
| UNIT – IV<br>Fatigue crack<br>closure mech<br>intensity fact<br>UNIT – V<br>Principles of                                                                          | ieldin       FA       x gromanis       or, fa       CF       crace                          | ng<br><b>TIGUE CRACK GROWTH</b><br>wth, SN Curve $-J_{1c}$ Mechanism of Fatigue, Fatigue<br>m- Residual stresses at crack tip – Retardation eff<br>actors affecting stress intensity factor<br><b>RACK ARREST &amp; NUMERICAL METHODS</b>                                                                                                                                                                          | crack propagation<br>fect fatigue crack<br>istance curve, Nu                                                | OD,<br>- Par<br>grov                   | K <sub>1</sub> an<br>9 P<br>is La<br>wth te<br>9 P<br>cal M      | reriod<br>w- C<br>est, st<br>Period<br>ethod                   | l fo<br>ls<br>raci<br>ls ii             |  |
| UNIT – IV<br>Fatigue crack<br>closure mech<br>intensity fact<br>UNIT – V<br>Principles of<br>fracture Mec                                                          | ieldin<br>FA<br>c gro<br>nanis<br>or, fa<br>CF<br>crac                                      | TIGUE CRACK GROWTH<br>wth, SN Curve –J <sub>1c</sub> Mechanism of Fatigue, Fatigue<br>m- Residual stresses at crack tip – Retardation eff<br>actors affecting stress intensity factor<br>ACK ARREST & NUMERICAL METHODS<br>k arrest, crack arrest in practice-R curves, Crack res<br>cs, Direct methods to determine fracture parameter                                                                            | crack propagation<br>fect fatigue crack<br>istance curve, Nu                                                | OD,<br>- Par<br>grov                   | K <sub>1</sub> an<br>9 P<br>is La<br>wth te<br>9 P<br>cal M      | reriod<br>w- C<br>est, st<br>Period<br>ethod                   | l fo<br>ls<br>raci<br>ls ii             |  |
| UNIT – IV<br>Fatigue crack<br>closure mech<br>intensity fact<br>UNIT – V<br>Principles of                                                                          | ieldin<br>FA<br>a gro<br>nanis<br>or, fa<br>crac<br>chani<br>mete                           | TIGUE CRACK GROWTH<br>wth, SN Curve –J <sub>1c</sub> Mechanism of Fatigue, Fatigue<br>m- Residual stresses at crack tip – Retardation eff<br>actors affecting stress intensity factor<br><b>RACK ARREST &amp; NUMERICAL METHODS</b><br>k arrest, crack arrest in practice-R curves, Crack res<br>cs, Direct methods to determine fracture parameters                                                               | crack propagation<br>fect fatigue crack<br>istance curve, Nu                                                | OD,<br>- Par<br>grov                   | K <sub>1</sub> an<br>9 P<br>is La<br>wth te<br>9 P<br>cal M      | reriod<br>w- C<br>est, st<br>Period<br>ethod                   | l fo<br>ls<br>raci<br>ls ii             |  |
| UNIT – IV<br>Fatigue crack<br>closure mech<br>intensity fact<br>UNIT – V<br>Principles of<br>fracture Mea<br>fracture para                                         | ieldin<br>FA<br>c gro<br>nanis<br>or, fa<br>crac<br>crac<br>chani<br>mete<br>iods:          | TIGUE CRACK GROWTH<br>wth, SN Curve –J <sub>1c</sub> Mechanism of Fatigue, Fatigue<br>m- Residual stresses at crack tip – Retardation eff<br>actors affecting stress intensity factor<br><b>RACK ARREST &amp; NUMERICAL METHODS</b><br>k arrest, crack arrest in practice-R curves, Crack res<br>cs, Direct methods to determine fracture parameters                                                               | crack propagation<br>fect fatigue crack<br>istance curve, Nu<br>ers - Indirect me                           | OD,<br>- Par<br>grov<br>merio<br>thods | K <sub>1</sub> an<br>9 P<br>is La<br>wth te<br>9 P<br>cal M      | reriod<br>w- C<br>est, st<br>Period<br>ethod                   | l fo<br>ls<br>raci<br>tres<br>ls in     |  |
| UNIT – IV<br>Fatigue crack<br>closure mech<br>intensity fact<br>UNIT – V<br>Principles of<br>fracture Mech<br>fracture para<br>Contact Per                         | ieldin<br>FA<br>c gro<br>nanis<br>or, fa<br>CF<br>c crac<br>chani<br>mete<br>iods:<br>Perio | TIGUE CRACK GROWTH<br>wth, SN Curve –J <sub>1c</sub> Mechanism of Fatigue, Fatigue<br>m- Residual stresses at crack tip – Retardation eff<br>actors affecting stress intensity factor<br><b>ACK ARREST &amp; NUMERICAL METHODS</b><br>k arrest, crack arrest in practice-R curves, Crack res<br>cs, Direct methods to determine fracture parameters<br><b>Determine Strutorial: 0 Periods Practical: 0 Periods</b> | crack propagation<br>fect fatigue crack<br>istance curve, Nu<br>ers - Indirect me                           | OD,<br>- Par<br>grov<br>merio<br>thods | K <sub>1</sub> an<br>9 P<br>is La<br>wth te<br>9 P<br>cal M      | reriod<br>w- C<br>est, st<br>Period<br>ethod                   | l fo<br>ls<br>rac<br>rac<br>Is i        |  |
| UNIT – IV<br>Fatigue crack<br>closure meck<br>intensity fact<br>UNIT – V<br>Principles of<br>fracture Mec<br>fracture para<br>Contact Per<br>Lecture: 45<br>REFERE | ieldin<br>FA<br>c gro<br>nanis<br>or, fa<br>crac<br>chani<br>mete<br>iods:<br>Perio         | TIGUE CRACK GROWTH<br>wth, SN Curve –J <sub>1c</sub> Mechanism of Fatigue, Fatigue<br>m- Residual stresses at crack tip – Retardation eff<br>actors affecting stress intensity factor<br><b>ACK ARREST &amp; NUMERICAL METHODS</b><br>k arrest, crack arrest in practice-R curves, Crack res<br>cs, Direct methods to determine fracture parameters<br><b>Determine Strutorial: 0 Periods Practical: 0 Periods</b> | crack propagation<br>fect fatigue crack<br>istance curve, Nu<br>ers - Indirect me<br><b>Total: 45 Perio</b> | OD,<br>- Par<br>grov<br>meric<br>thods | K <sub>1</sub> an<br>9 P<br>is La<br>wth te<br>9 P<br>cal M      | nd G<br>Perioc<br>w- C<br>est, st<br>Perioc<br>ethoc<br>leterr | I fc<br>Is<br>rac<br>res<br>Is i<br>nin |  |

| 2 | David Broek, "Elementary Engineering Fracture Mechanics", Springer Publishers, 2011. |
|---|--------------------------------------------------------------------------------------|

3 Knott J.F., "Fundamental of Fracture Mechanics", Butterworth & Co Publishers Ltd, 1976.

4 Suresh S., "Fatigue of materials", Cambridge India, 2015.

5 B, Karihaloo, "Fracture Mechanics and Structural Concrete", Longman Scientific Publishers, 1995.

6 Simha K.R.Y., "Fracture Mechanics for Modern Engineering design", University Press (India) Ltd, Hyderabad, 2001.

|     | SE OUTCOMES:<br>completion of the course, the students will be able to:                                            | Bloom's<br>Taxonomy<br>Mapped |
|-----|--------------------------------------------------------------------------------------------------------------------|-------------------------------|
| CO1 | Identify the modes of fracture and suitable theories of failures for structural materials with pre existing cracks | K2                            |
| CO2 | Measure crack tip stress and displacement fields using the principles of Linear Elastic Fracture Mechanics         | K3                            |
| CO3 | Implement the Elastic Plastic Fracture Mechanics approach to determine the parameters of crack development         | K3                            |
| CO4 | Predict the rate of Fatigue Crack Growth and influencing factors in crack propagation.                             | K3                            |
| CO5 | Choose the methods to Crack Arrest and Numerical methods to determine fracture parameters                          | K3                            |

| COURSE ARTICULATION MATRIX |                 |          |     |     |     |     |  |  |
|----------------------------|-----------------|----------|-----|-----|-----|-----|--|--|
| COs/POs                    | PO1             | PO2      | PO3 | PO4 | PO5 | PO6 |  |  |
| CO1                        | 3               | -        | 2   | 1   | 2   | 1   |  |  |
| CO2                        | 3               | -        | 2   | 1   | 2   | 1   |  |  |
| CO3                        | 3               | -        | 2   | 1   | 2   | 1   |  |  |
| CO4                        | 3               | -        | 2   | 1   | 2   | 1   |  |  |
| CO5                        | 3               | -        | 2   | 1   | 2   | 1   |  |  |
| 23SEPE12                   | 3               | -        | 2   | 1   | 2   | 1   |  |  |
| 1 - Slight, 2 – Mod        | lerate, 3 – Sub | stantial | •   |     |     | •   |  |  |

| Test /         | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|----------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Bloom's        | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| Category*      |             |               |          |           |            |          |       |
| CAT1           | 30          | 40            | 30       | -         | -          | -        | 100   |
| CAT2           | 30          | 40            | 30       | -         | -          | -        | 100   |
| Individual     | -           | 30            | 30       | 40        | -          | -        | 100   |
| Assessment 1 / |             |               |          |           |            |          |       |
| Case Study 1/  |             |               |          |           |            |          |       |
| Seminar 1 /    |             |               |          |           |            |          |       |
| Project1       |             |               |          |           |            |          |       |
| Individual     | -           | 30            | 30       | 40        | -          | -        | 100   |
| Assessment 2 / |             |               |          |           |            |          |       |
| Case Study 2/  |             |               |          |           |            |          |       |
| Seminar 2 /    |             |               |          |           |            |          |       |
| Project 2      |             |               |          |           |            |          |       |
| ESE            | 30          | 40            | 30       | -         | -          | -        | 100   |

23SEPE13

#### DESIGN OF STEEL CONCRETE COMPOSITE STRUCTURES

| PREREQUISITES CATEGORY L T P C                                                                  |                                                              |                    |               |        |        |               |  |  |  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------|---------------|--------|--------|---------------|--|--|--|
| FREEQUI                                                                                         | NIL                                                          | PE                 | <b>L</b><br>3 | 1<br>0 | г<br>0 | <u>C</u><br>3 |  |  |  |
| C                                                                                               |                                                              |                    | -             | Ŷ      | -      | -             |  |  |  |
| Course                                                                                          | To impart the knowledge on the design principles and         | • •                |               |        |        |               |  |  |  |
| Objectives                                                                                      | columns, truss and its connections and to learn the co       | oncept of compos   | site a        | ction  | betv   | veen          |  |  |  |
|                                                                                                 | structural steel and concrete in composite structures.       |                    |               |        |        |               |  |  |  |
| UNIT – I                                                                                        | INTRODUCTION                                                 |                    |               |        | Perio  |               |  |  |  |
| Theory of C                                                                                     | omposite Structures - Modular Ratio and Transformed          | section – Compo    | site          | Actio  | n – 1  | No            |  |  |  |
| interaction &                                                                                   | Partial Interaction - Full interaction - Effect of Slip on   | stress & deflectio | n– St         | ress   | Block  | - I           |  |  |  |
| Ultimate mor                                                                                    | nent Capacity.                                               |                    |               |        |        |               |  |  |  |
| Codal Provisi                                                                                   | ons for Steel Concrete Composite Design                      |                    |               |        |        |               |  |  |  |
| UNIT – II                                                                                       | COMPOSITE BEAMS                                              |                    |               | 9      | Perie  | ods           |  |  |  |
| Introduction t                                                                                  | to Composite beams – Ultimate Moment behaviour – Shear       | connectors types a | and lo        | ad tra | nsfer  | ring          |  |  |  |
| mechanism -                                                                                     | Profiled decking - Design consideration for simply support   | rted and continuo  | us co         | mpos   | ite be | ams           |  |  |  |
| with and with                                                                                   | out profile deck – Design examples                           |                    |               |        |        |               |  |  |  |
| UNIT – III                                                                                      | COMPOSITE FLOORS                                             |                    |               | 9      | Perio  | ods           |  |  |  |
| Introduction t                                                                                  | to composite floors – Shear transferring mechanism in profil | e deck system – B  | endir         | ng res | istanc | e of          |  |  |  |
| Composite flo                                                                                   | oor slabs Design consideration of composite floors - De      | sign examples      |               |        |        |               |  |  |  |
| UNIT – IV                                                                                       | COMPOSITE COLUMNS                                            |                    |               | 9      | Perio  | ods           |  |  |  |
| Introduction                                                                                    | to composite columns- Resistance to axial compression of     | of encased compo   | site o        | colum  | n cro  | DSS           |  |  |  |
| section and i                                                                                   | nfilled composite column cross section- Design consider      | ration of both end | cased         | and    | infill | ed            |  |  |  |
| composite co                                                                                    | lumn under axial compression, uniaxial bending and biaxial   | bending- Design e  | examp         | oles.  |        |               |  |  |  |
| UNIT – V                                                                                        | COMPOSITE TRUSSES AND CONNECTIONS                            |                    |               | 9      | Perio  | ods           |  |  |  |
| Introduction                                                                                    | of Composite Truss –Design consideration – Stud Specifica    | ations – Load Calo | culati        | ons –  | Desi   | gn            |  |  |  |
| of composite                                                                                    | e truss. Composite connections- Complexities of Comp         | osite Connection   | is an         | d its  | desi   | gn            |  |  |  |
| Philosophies – Force flow in the joint. Case studies on steel concrete composite constructions. |                                                              |                    |               |        |        |               |  |  |  |
| rmosopnies                                                                                      |                                                              |                    |               |        |        |               |  |  |  |
| Contact Peri                                                                                    | ods:                                                         |                    |               |        |        |               |  |  |  |

#### **REFERENCES:**

1 Johnson R.P., "Composite Structures of Steel and Concrete: Beams, Slabs, Columns, and Frames for Buildings", Wiley-Blackwell Publishers, 2004.

2 Deric Oehlers, Mark A. Bradford., "Elementary Behaviour of Composite Steel and Concrete Structural Members", CRC Publishers, 1999.

3 Workshop on "Steel –Concrete Composite Structures", conducted at Anna University, Chennai, 2000

4 IS 11384 -1985, "Code of Practice for Composite Construction in Structural Steel and Concrete".

5 Euro Code 4, "Design of composite steel and concrete structures"

6 BS 5950-3.1, "Structural use of steelwork in building - Part 3: Design in composite construction".

| COURSE OUTCOMES: |                                                                                     |        |  |
|------------------|-------------------------------------------------------------------------------------|--------|--|
| Upon con         | npletion of the course, the students will be able to:                               | Mapped |  |
| CO1              | Determine the ultimate load carrying capacity of composite structures               | K2     |  |
| CO2              | Perform analysis and design a composite beams with or without profile decking sheet | K3     |  |
| CO3              | Design a composite slab with the provision of profile decking                       | K3     |  |
| CO4              | Assess the load carrying capacity and perform design of composite columns           | K3     |  |
|                  | subjected to axial compression and bending                                          |        |  |
| CO5              | Carry out design of composite truss and its connections                             | K3     |  |

# COURSE ARTICULATION MATRIX

| COs/POs             | PO1             | PO2      | PO3 | PO4 | PO5 | PO6 |
|---------------------|-----------------|----------|-----|-----|-----|-----|
| CO1                 | 2               | -        | 3   | 1   | 2   | 1   |
| CO2                 | 2               | -        | 3   | 1   | 2   | 1   |
| CO3                 | 2               | -        | 3   | 1   | 2   | 1   |
| CO4                 | 2               | -        | 3   | 1   | 2   | 1   |
| CO5                 | 2               | -        | 3   | 1   | 2   | 1   |
| 23SEPE13            | 2               | -        | 3   | 1   | 2   | 1   |
| 1 - Slight, 2 – Mod | lerate, 3 - Sub | stantial |     |     |     |     |

| ASSESSMENT     | PATTERN – THE | EORY          |          |           |            |          |       |
|----------------|---------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering   | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %        | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 20            | 40            | 40       | -         | -          | -        | 100   |
| CAT2           | 20            | 40            | 40       | -         | -          | -        | 100   |
| Individual     | -             | -             | 50       | 50        | -          | -        | 100   |
| Assessment 1 / |               |               |          |           |            |          |       |
| Case Study 1/  |               |               |          |           |            |          |       |
| Seminar 1 /    |               |               |          |           |            |          |       |
| Project1       |               |               |          |           |            |          |       |
| Individual     | -             | -             | 50       | 50        | -          | -        | 100   |
| Assessment 2 / |               |               |          |           |            |          |       |
| Case Study 2/  |               |               |          |           |            |          |       |
| Seminar 2 /    |               |               |          |           |            |          |       |
| Project 2      |               |               |          |           |            |          |       |
| ESE            | 20            | 40            | 40       | -         | -          | -        | 100   |

| 23SEPE14             |       | MAINTENANCE AND REHABILITA                             | TION OF STRU        | CTUI   | RES    |        |        |
|----------------------|-------|--------------------------------------------------------|---------------------|--------|--------|--------|--------|
| PREREQUIS            | ITE   | S                                                      | CATEGORY            | L      | Т      | Р      | С      |
|                      |       | NIL                                                    | PE                  | 3      | 0      | 0      | 3      |
| Course<br>Objectives |       | induce an exposure on repair, rehabilitation and stren | ngthening techniqu  | ies fo | r dan  | aged   | and    |
| UNIT – I             |       | AINTENANCE AND REPAIR STRATEGIES                       |                     |        |        | Perio  |        |
| Maintenance –        | Re    | pair and Rehabilitation – Retrofit and Strengthening - | - Facets of Mainte  | enance | e – In | nport  | ance   |
| of Maintenance       | e –   | Various aspects Inspection - Assessment procedure      | for evaluating a c  | lamag  | ged st | ructu  | re –   |
| Structural Audi      | it –  | Causes of deterioration – Diagnosis of Causes and Pr   | eventive measures   |        |        |        |        |
| UNIT – II            | SE    | <b>CRVICEABILITY AND DURABILITY OF CONC</b>            | CRETE               |        | 9 ]    | Perio  | ds     |
| Quality assuran      | nce   | for concrete construction - Factors affecting concret  | te properties – Str | ength  | , peri | neabi  | ility, |
| thermal proper       | rties | s - Effects due to climate, temperature, chemicals     | s, aggressive envi  | ronm   | ent,   | wear   | and    |
| erosion – Type       | es o  | f cracks - Causes and effects of cracks - Corrosion    | n mechanism – Ca    | auses  | and    | effect | is of  |
| corrosion – Co       | ver   | thickness requirements.                                |                     |        |        |        |        |
| UNIT – III           | RI    | EPAIR MATERIALS AND SPECIAL CONCRET                    | `E                  |        | 9 ]    | Perio  | ds     |
| Repair material      | ls –  | Strategy and Selection - Special Mortars and Concre    | etes – Polymer Co   | ncret  | e and  | Mor    | tar –  |
| Concrete Chem        | nica  | ls - Quick setting compounds - Grouting Materials -    | Bonding Agents -    | - Prot | ective | e coat | ings   |
| - FRP Sheets.        |       |                                                        |                     |        |        |        |        |
| UNIT – IV            | RI    | EPAIR TECHNIQUES AND DEMOLITION                        |                     |        | 9 ]    | Perio  | ds     |
| Rust eliminato       | rs –  | - Methods of corrosion protection: Corrosion inhibi    | tors and cathodic   | prote  | ection | – C    | rack   |
| repair techniqu      | ues   | - Vacuum concreting - Guniting and Shotcreting         | g – Epoxy inject    | ion -  | - Sho  | oring  | and    |
| underpinning -       | - En  | gineered demolition techniques for dilapidated struct  | ures – Case studies | 5.     |        | -      |        |
| UNIT – V             | RI    | EHABILITATION AND STRENGTHENING TEC                    | CHNIQUES            |        | 9      | Perio  | ds     |
| Repairs to over      | erco  | ome deflection, cracking, chemical disruption, wea     | athering, wear, fin | re, le | akage  | e, ma  | rine   |
| •                    |       | thening of Super Structures – Jacketing – Reinforce    | •                   |        | •      |        |        |
| <u>^</u>             | •     | ction – Post stressing – Strengthening of substructure |                     |        |        |        |        |
| Contact Perio        |       |                                                        |                     |        |        |        |        |
| Lecture: 45 P        | erio  | ods Tutorial: 0 Periods Practical: 0 Periods           | Total: 45 Perio     | ds     |        |        |        |

| 1 | Bhattacharjee J "Concrete Structures Repair, Rehabilitation and Retrofitting", CBS Publishers and   |
|---|-----------------------------------------------------------------------------------------------------|
|   | Distributors, 2020.                                                                                 |
| 2 | CPWD "Handbook on Repair and Rehabilitation of RCC Buildings", CPWD, Govt. of India, New Delhi,     |
|   | 2014.                                                                                               |
| 3 | Peter H. Emmons "Concrete Repair And Maintenance Illustrated", RS Means, 1994.                      |
| 4 | R.T.Allen and S.C.Edwards, "Repair Of Concrete Structures", CRC Press, 2019.                        |
| 5 | P.C Varghese "Maintenance, Repair & Rehabilitation & Minor Works of Buildings", PHI Learning        |
|   | Private Limited, Delhi, 2014.                                                                       |
| 6 | Denison Campbell, Allen and Harold Roper, "Concrete Structures, Materials, Maintenance And Repair", |
|   | Longman Scientific and Technical UK, 1991.                                                          |

| COURSE OUTCOMES: |                                                                                | Bloom's<br>Taxonomy |
|------------------|--------------------------------------------------------------------------------|---------------------|
| Upon             | completion of the course, the students will be able to:                        | Mapped              |
| <b>CO1</b>       | Inspect the condition of the damages structures to perform structural audit.   | K2                  |
| CO2              | Identify issues addressed in structures due to lack of durability.             | K2                  |
| CO3              | Select a suitable repair material & retrofit technique for damaged structures. | K3                  |
| CO4              | Apply the appropriate demolition technique for damaged structure.              | K3                  |
| CO5              | Choose an appropriate strengthening technique for deteriorated structures.     | K3                  |

## COURSE ARTICULATION MATRIX

|                         |               | 1        |     |     | n   |     |
|-------------------------|---------------|----------|-----|-----|-----|-----|
| COs/POs                 | PO1           | PO2      | PO3 | PO4 | PO5 | PO6 |
| CO1                     | 2             | 1        | 3   | 1   | -   | 1   |
| CO2                     | 2             | 1        | 3   | 2   | -   | 1   |
| CO3                     | 2             | -        | 3   | 2   | -   | 1   |
| CO4                     | 2             | -        | 3   | 2   | -   | 1   |
| CO5                     | 2             | -        | 3   | 2   | -   | 1   |
| 23SEPE14                | 2             | 1        | 3   | 2   | -   | 1   |
| 1 - Slight, $2 - $ Mode | rate, 3 – Sub | stantial |     |     |     |     |

| Test / Bloom's<br>Category*                                               | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
|---------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| CAT1                                                                      | 25                    | 35                      | 40                 | -                   | -                    | -                  | 100        |
| CAT2                                                                      | 20                    | 40                      | 40                 | -                   | -                    | -                  | 100        |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | 10                    | 40                      | 50                 | -                   | -                    | -                  | 100        |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | 10                    | 40                      | 50                 | -                   | -                    | -                  | 100        |
| ESE                                                                       | 20                    | 40                      | 40                 | -                   | -                    | -                  | 100        |

| <b>23SEPE1</b> | 5 |
|----------------|---|
|                | - |

#### PREFABRICATED STRUCTURES

| PREREQUISIT                                                                                                                                         | ES                                                                                                                                                                                                                                                                                                                                                                                                                                           | CATEGORY                                                                                                                                 | L                                 | Т                                             | Р                                                         | С                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                                                                                     | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                          | PE                                                                                                                                       | 3                                 | 0                                             | 0                                                         | 3                                                                  |
| Course To :                                                                                                                                         | impart knowledge on elements of prefabricated s                                                                                                                                                                                                                                                                                                                                                                                              | tructures and its constru                                                                                                                | ction                             |                                               |                                                           |                                                                    |
| Objectives                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                   |                                               |                                                           |                                                                    |
| UNIT – I INT                                                                                                                                        | <b>TRODUCTION AND DESIGN PRINCIPLES</b>                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                                   | 9                                             | Peri                                                      | iods                                                               |
| Comparison with                                                                                                                                     | monolithic construction - Types of prefabricat                                                                                                                                                                                                                                                                                                                                                                                               | tion – site and plant pro-                                                                                                               | efabri                            | icatio                                        | on - s                                                    | pecifi                                                             |
| requirements for                                                                                                                                    | planning and layout of prefabrication plant-IS G                                                                                                                                                                                                                                                                                                                                                                                             | Code specifications. Mo                                                                                                                  | odula                             | r co-                                         | ordin                                                     | ation -                                                            |
| Components - I                                                                                                                                      | Prefabrication systems and structural scheme                                                                                                                                                                                                                                                                                                                                                                                                 | s - Design considerat                                                                                                                    | tions                             | - E                                           | cono                                                      | my o                                                               |
| prefabrication- as                                                                                                                                  | sessment of handling and erection spaces.                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                          |                                   |                                               |                                                           |                                                                    |
| UNIT – II PREECAST CONCRETE FLOOR AND BEAMS                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                   |                                               | Peri                                                      | iods                                                               |
| Types of compos                                                                                                                                     | ites - non composite - reinforced beam - pre strea                                                                                                                                                                                                                                                                                                                                                                                           | ssed beam - design-deta                                                                                                                  | iling                             | Prec                                          | cast f                                                    | looring                                                            |
| options-flooring a                                                                                                                                  | arrangements-design of individual units-design of                                                                                                                                                                                                                                                                                                                                                                                            | f composite floors - Roo                                                                                                                 | of par                            | nels.                                         |                                                           |                                                                    |
| UNIT – III PRECAST CONCRETE COLUMN AND WALLS                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                   |                                               | 9 Periods                                                 |                                                                    |
|                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          |                                   |                                               |                                                           |                                                                    |
| Precast column d                                                                                                                                    | esign, Types of wall panels - Blocks and large p                                                                                                                                                                                                                                                                                                                                                                                             | anels- Curtain- Partition                                                                                                                | 1 -loa                            | d bea                                         | aring                                                     | walls                                                              |
| Precast column d<br>precast shear wal                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                              | anels- Curtain- Partition                                                                                                                | 1 -loa                            | d bea                                         | aring                                                     | walls                                                              |
| precast shear wal                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                              | anels- Curtain- Partition                                                                                                                | 1 -loa                            |                                               | ering<br>Peri                                             |                                                                    |
| precast shear wal                                                                                                                                   | ls - footings.                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |                                   | 9                                             | Peri                                                      | iods                                                               |
| precast shear wal<br>UNIT – IV JO<br>Basic mechanism                                                                                                | ls - footings.<br>INTS AND CONNECTIONS                                                                                                                                                                                                                                                                                                                                                                                                       | t. Pin jointed connect                                                                                                                   | ion-n                             | 9<br>nome                                     | Peri                                                      | i <b>ods</b><br>esisting                                           |
| precast shear walUNIT – IVJOBasic mechanismconnections- bea                                                                                         | ls - footings.<br><b>INTS AND CONNECTIONS</b><br>n-compression joint-shear joint - tension join                                                                                                                                                                                                                                                                                                                                              | t. Pin jointed connect<br>us- wall to wall panel c                                                                                       | ion-n                             | 9<br>nome<br>ction                            | Peri<br>ent re                                            | iods<br>esisting                                                   |
| precast shear walUNIT – IVJOBasic mechanismconnections- bea                                                                                         | ls - footings.<br><b>INTS AND CONNECTIONS</b><br>n-compression joint-shear joint - tension join<br>m to column- column to foundation connection                                                                                                                                                                                                                                                                                              | t. Pin jointed connect<br>us- wall to wall panel c                                                                                       | ion-n                             | 9<br>nome<br>ction                            | Peri<br>ent re                                            | iods<br>esisting                                                   |
| precast shear wal<br><b>UNIT – IV JO</b><br>Basic mechanism<br>connections- bea<br>sealing of joints<br>construction.                               | ls - footings.<br><b>INTS AND CONNECTIONS</b><br>n-compression joint-shear joint - tension join<br>m to column- column to foundation connection                                                                                                                                                                                                                                                                                              | t. Pin jointed connect<br>1s- wall to wall panel c<br>1ral fastenings – Expan                                                            | ion-n                             | 9<br>nome<br>ction<br>joints                  | Peri<br>ent re                                            | iods<br>esisting<br>fective<br>pre-cas                             |
| precast shear wal $UNIT - IV$ $JO$ Basicmechanismconnections-beasealing of jointsconstruction.UNIT - VPR                                            | ls - footings.<br><b>INTS AND CONNECTIONS</b><br>n-compression joint-shear joint - tension join<br>m to column- column to foundation connection<br>for water proofing – Provisions for non-structu                                                                                                                                                                                                                                           | t. Pin jointed connect<br>as- wall to wall panel c<br>aral fastenings – Expans<br><b>GY</b>                                              | ion-n<br>conne<br>sion j          | nome<br>ction<br>joints                       | Peri<br>nt re<br>- Ef<br>in p<br>Peri                     | iods<br>esisting<br>fective<br>re-cas                              |
| precast shear walUNIT – IVJOBasic mechanismconnections- beasealing of jointsconstruction.UNIT – VPRChoice of product                                | ls - footings.<br><b>INTS AND CONNECTIONS</b><br>n-compression joint-shear joint - tension join<br>m to column- column to foundation connection<br>for water proofing – Provisions for non-structu<br><b>CODUCTION AND HOISTING TECHNOLO</b>                                                                                                                                                                                                 | t. Pin jointed connect<br>as- wall to wall panel c<br>aral fastenings – Expan<br>GY<br>pnary and mobile prod                             | ion-n<br>conne<br>sion j<br>uctio | nome<br>ction<br>joints<br>9<br>n –           | Perion re<br>nt re<br>- Ef<br>in p<br>Peri<br>Planr       | iods<br>sisting<br>fective<br>re-cas<br>iods<br>ing o              |
| precast shear walUNIT – IVJOBasic mechanismconnections-beasealing of jointsconstruction.UNIT – VPRChoice of production setup                        | ls - footings.<br><b>INTS AND CONNECTIONS</b><br>n-compression joint-shear joint - tension join<br>m to column- column to foundation connection<br>for water proofing – Provisions for non-structu<br><b>CODUCTION AND HOISTING TECHNOLO</b><br>ction setup – Manufacturing methods – Static                                                                                                                                                 | t. Pin jointed connect<br>is- wall to wall panel c<br>iral fastenings – Expan<br>GY<br>onary and mobile prod<br>erances – Acceleration o | ion-n<br>conne<br>sion j<br>uctio | nome<br>ction<br>joints<br>9<br>n –<br>ncrete | Peri<br>ent re<br>- Ef<br>in p<br>Peri<br>Plann<br>e harc | iods<br>esisting<br>fective<br>ore-cas<br>iods<br>hing o<br>dening |
| precast shear walUNIT – IVJOBasic mechanismconnections- beasealing of jointsconstruction.UNIT – VPRChoice of production setupEquipments for labeled | ls - footings.<br><b>INTS AND CONNECTIONS</b><br>n-compression joint-shear joint - tension join<br>m to column- column to foundation connection<br>for water proofing – Provisions for non-structu<br><b>RODUCTION AND HOISTING TECHNOLO</b><br>ction setup – Manufacturing methods – Static<br>- Storage of precast elements – Dimensional tole                                                                                             | t. Pin jointed connect<br>is- wall to wall panel c<br>iral fastenings – Expan<br>GY<br>onary and mobile prod<br>erances – Acceleration o | ion-n<br>conne<br>sion j<br>uctio | nome<br>ction<br>joints<br>9<br>n –<br>ncrete | Peri<br>ent re<br>- Ef<br>in p<br>Peri<br>Plann<br>e harc | iods<br>esisting<br>fective<br>ore-cas<br>iods<br>hing o<br>dening |
| precast shear walUNIT – IVJOBasic mechanismconnections- beasealing of jointsconstruction.UNIT – VPRChoice of production setupEquipments for labeled | Is - footings.<br><b>INTS AND CONNECTIONS</b><br>n-compression joint-shear joint - tension join<br>m to column- column to foundation connection<br>for water proofing – Provisions for non-structu<br><b>CODUCTION AND HOISTING TECHNOLO</b><br>ction setup – Manufacturing methods – Static<br>- Storage of precast elements – Dimensional tole<br>hoisting and erection – Techniques for erection<br>Is and Columns – Vacuum lifting pads. | t. Pin jointed connect<br>is- wall to wall panel c<br>iral fastenings – Expan<br>GY<br>onary and mobile prod<br>erances – Acceleration o | ion-n<br>conne<br>sion j<br>uctio | nome<br>ction<br>joints<br>9<br>n –<br>ncrete | Peri<br>ent re<br>- Ef<br>in p<br>Peri<br>Plann<br>e harc | iods<br>esisting<br>fective<br>ore-cas<br>iods<br>hing o<br>dening |

- 1 L. Mokk, **"Prefabricated Concrete for Industrial and Public Structures"**, Publishing House of the Hungarian Academy of Sciences, Budapest, 2007.
- 2 K.M. Elliott, "Precast concrete structures", Butterworth Heinmann, 2002.
- 3 Structural Design Manual, **"Precast Concrete Connection Details"**, Society for the Studies in the use of Precast Concrete, Netherland Betor Verlag, 2009.
- 4 *Ganesan and Latha,* **"Prefabricated structures"**, Sree Kamalamani Publications, Chennai, 2014.

| COU        | RSE OUTCOMES:                                                              | Bloom's            |
|------------|----------------------------------------------------------------------------|--------------------|
| Unon       | completion of the course, the students will be able to:                    | Taxonomy<br>Monnod |
| Opon       | completion of the course, the students will be able to:                    | Mapped             |
| <b>CO1</b> | Apply the principle of fabrication in the design of structures.            | K2                 |
| CO2        | Plan, analyze and design the prefabricated floor and beam element.         | K3                 |
| CO3        | Plan, analyze and design the prefabricated concrete column and wall.       | K3                 |
| CO4        | Design the joints of prefabricated structures                              | K3                 |
| CO5        | Perform the production and erection process in the design of prefabricated | K2                 |
|            | elements.                                                                  |                    |

| COURSE ARTICULATION MATRIX |     |     |     |     |     |     |  |  |  |
|----------------------------|-----|-----|-----|-----|-----|-----|--|--|--|
| COs/POs                    | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                        | 3   | 1   | 2   | 3   | 2   | 2   |  |  |  |
| CO2                        | 3   | 2   | 1   | 2   | 2   | 2   |  |  |  |
| CO3                        | 3   | 2   | 2   | 1   | 2   | 1   |  |  |  |
| CO4                        | 3   | 2   | 2   | 3   | 3   | 2   |  |  |  |
| CO5                        | 3   | 2   | 1   | 2   | 1   | 2   |  |  |  |
| 23SEPE15                   | 3   | 2   | 2   | 3   | 3   | 2   |  |  |  |

| Test / Bloom's | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|----------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Category*      | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 20          | 40            | 40       | -         | -          | -        | 100   |
| CAT2           | 20          | 40            | 40       | -         | -          | -        | 100   |
| Individual     | -           | -             | 50       | 50        | -          | -        | 100   |
| Assessment 1 / |             |               |          |           |            |          |       |
| Case Study 1/  |             |               |          |           |            |          |       |
| Seminar 1 /    |             |               |          |           |            |          |       |
| Project1       |             |               |          |           |            |          |       |
| Individual     | -           | -             | 50       | 50        | -          | -        | 100   |
| Assessment 2 / |             |               |          |           |            |          |       |
| Case Study 2/  |             |               |          |           |            |          |       |
| Seminar 2 /    |             |               |          |           |            |          |       |
| Project 2      |             |               |          |           |            |          |       |
| ESE            | 20          | 40            | 40       | -         | -          | -        | 100   |

| PREREQUIS                                                                                                 | SITES                                                                                                                                                                                                                     | CATEGORY          | L      | Т       | Р      | С     |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------|---------|--------|-------|
|                                                                                                           | NIL                                                                                                                                                                                                                       | PE                | 3      | 0       | 0      | 3     |
| Course                                                                                                    | To understand the basics of corrosion mechanism, corr                                                                                                                                                                     | rosion losses due | to v   | ariou   | s exte | erna  |
| Objectives                                                                                                | factors, the testing methods of corrosion in concrete and t                                                                                                                                                               | the methods of co | rrosio | n pre   | ventic | on ii |
|                                                                                                           | reinforced concrete                                                                                                                                                                                                       |                   |        |         |        |       |
| UNIT – I                                                                                                  | CORROSION FUNDAMENTALS                                                                                                                                                                                                    |                   |        | 9 P     | eriod  | s     |
| General, Cor                                                                                              | rosion Mechanisms in concrete, Types - Carbonation,                                                                                                                                                                       | Chlorination, str | ay cu  | ırrent  | indu   | ced   |
| Hydrogen em                                                                                               | brittlement, Stress corrosion, Oxidation, Electrochemical                                                                                                                                                                 | aspects, corrosio | n kine | etics,  | corro  | sior  |
| induced degra                                                                                             | dation in concrete, Environmental Exposures.                                                                                                                                                                              |                   |        |         |        |       |
| UNIT – II CORROSION PROCESS                                                                               |                                                                                                                                                                                                                           |                   |        |         |        | S     |
| Diffusion, Pe                                                                                             | rmeation, Migration and Porosity, Concrete Resistivity, G                                                                                                                                                                 | Corrosion Thermo  | odyna  | mics,   | Initia | tio   |
|                                                                                                           | on of Corrosion, Passivation and Re-passivation of Stee                                                                                                                                                                   | l, Electrochemica | l Pola | arizati | on, T  | afe   |
| _                                                                                                         | , EMF series, Corrosion Products                                                                                                                                                                                          |                   |        |         |        |       |
| UNIT – III                                                                                                | CORROSION DIAGNOSIS & TESTING                                                                                                                                                                                             |                   |        |         | eriod  |       |
| •                                                                                                         | Inspection and Condition Assessment, Classification                                                                                                                                                                       |                   | •      |         |        |       |
|                                                                                                           | exposure techniques, duration, planned interval tests, Ele                                                                                                                                                                |                   | -      |         | -      |       |
| Half Cell Pot                                                                                             | ential Mapping, Resistivity Measurements, Corrosion Mo                                                                                                                                                                    | nitoring Techniqu | ies, N | ACE     | Meth   | ods   |
|                                                                                                           |                                                                                                                                                                                                                           |                   |        |         |        |       |
|                                                                                                           | CORROSION PROTECTION FOR CONCRETE                                                                                                                                                                                         |                   |        |         | eriod  |       |
| UNIT – IV                                                                                                 | ation concrete manufacturing design and curing Spa                                                                                                                                                                        |                   |        |         |        |       |
| UNIT – IV<br>Material sele                                                                                | ction, concrete manufacturing, design and curing, Spe                                                                                                                                                                     | urface treatments | , Cor  | rosior  | resis  | stan  |
| UNIT – IV<br>Material sele<br>protection, Co                                                              | patings (metallic, inorganic, non-metallic and organic), S                                                                                                                                                                |                   |        |         |        |       |
| UNIT – IV<br>Material sele<br>protection, Co<br>reinforcement                                             | patings (metallic, inorganic, non-metallic and organic), S<br>, Admixtures.                                                                                                                                               |                   |        |         | eriod  |       |
| UNIT – IV<br>Material sele<br>protection, Co<br>reinforcement<br>UNIT – V                                 | batings (metallic, inorganic, non-metallic and organic), S<br>Admixtures.<br>CORROSION IN SELECTED ENVIRONMENTS                                                                                                           |                   |        |         |        | ater  |
| UNIT – IV<br>Material sele<br>protection, Co<br>reinforcement<br>UNIT – V<br>Atmospheric                  | oatings (metallic, inorganic, non-metallic and organic), S<br>, Admixtures.<br>CORROSION IN SELECTED ENVIRONMENTS<br>Corrosion, Corrosion in Soils, Corrosion of Steel                                                    |                   | orrosi |         | n Wa   | ater  |
| UNIT – IV<br>Material sele<br>protection, Co<br>reinforcement<br>UNIT – V<br>Atmospheric<br>Microbiologio | oatings (metallic, inorganic, non-metallic and organic), S<br>Admixtures.<br>CORROSION IN SELECTED ENVIRONMENTS<br>Corrosion, Corrosion in Soils, Corrosion of Steel<br>cally Induced Corrosion - Case studies.           |                   | orrosi |         | n Wa   | ator  |
| Material sele<br>protection, Co<br>reinforcement<br>UNIT – V<br>Atmospheric                               | oatings (metallic, inorganic, non-metallic and organic), S<br>, Admixtures.<br>CORROSION IN SELECTED ENVIRONMENTS<br>Corrosion, Corrosion in Soils, Corrosion of Steel<br>cally Induced Corrosion - Case studies.<br>ods: | in Concrete, C    |        |         | n Wa   |       |

| 1 | Mars G. Fontana, "Corrosion Engineering", Third Edition, Thirteenth Reprint, Tata Mc-Graw Hill        |
|---|-------------------------------------------------------------------------------------------------------|
|   | Education Private Limited, New Delhi, 2012.                                                           |
| 2 | Amir Poursaee, "Corrosion of Steel in Concrete Structures", WoodHead Publishing series in Civil and   |
|   | Structural Engineering, 2016.                                                                         |
| 3 | Jones, D.A. "Principles and Prevention of Corrosion", 2nd Edition, Macmillan Publishing Co., 1995.    |
| 4 | Balasubramanian, M.R., Krishnamoorthy, S. and Murugesan, V., "Engineering Chemistry", Allied          |
|   | Publisher Limited., Chennai, 1993.                                                                    |
| 5 | Sadasivam, V. "Modern Engineering Chemistry - A Simplified Approach", Kamakya Publications,           |
|   | Chennai, 1999                                                                                         |
| 6 | Kuriakose, J.C. and Rajaram J. "Chemistry in Engineering and Technology", Vol. I and II, Tata McGraw- |
|   | Hill Publications Co. Ltd., New Delhi, 1996.                                                          |

| COUR   | COURSE OUTCOMES:                                                          |        |  |  |  |  |
|--------|---------------------------------------------------------------------------|--------|--|--|--|--|
|        |                                                                           |        |  |  |  |  |
| Upon c | ompletion of the course, the students will be able to:                    | Mapped |  |  |  |  |
| CO1    | Apply the fundamental science involved in the corrosion process           | K2     |  |  |  |  |
| CO2    | Identify the causes and mechanism of corrosion in concrete                | K2     |  |  |  |  |
| CO3    | Diagnose the extent of deterioration due to corrosion                     | K2     |  |  |  |  |
| CO4    | Implement the prevention techniques available for reinforcement corrosion | K2     |  |  |  |  |
| CO5    | Examine the influence of environment on corrosion process                 | K2     |  |  |  |  |

| COURSE ARTICULATION MATRIX |                                           |     |     |     |     |     |
|----------------------------|-------------------------------------------|-----|-----|-----|-----|-----|
| COs/POs                    | PO1                                       | PO2 | PO3 | PO4 | PO5 | PO6 |
| CO1                        | 3                                         | 3   | 3   | 3   | 3   | 2   |
| CO2                        | 3                                         | 3   | 3   | 3   | 3   | 2   |
| CO3                        | 3                                         | 3   | 3   | 3   | 3   | 2   |
| CO4                        | 3                                         | 3   | 3   | 3   | 3   | 3   |
| CO5                        | 3                                         | 3   | 3   | 3   | 3   | 2   |
| 23SEPE16                   | 3                                         | 3   | 3   | 3   | 3   | 3   |
| 1 - Slight, 2 - Mode       | 1 – Slight, 2 – Moderate, 3 – Substantial |     |     |     |     |     |

| Test / Bloom's | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|----------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Category*      | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 50          | 50            |          |           |            |          | 100   |
| CAT2           | 50          | 50            |          |           |            |          | 100   |
| Individual     | 50          | 50            |          |           |            |          | 100   |
| Assessment 1 / |             |               |          |           |            |          |       |
| Case Study 1/  |             |               |          |           |            |          |       |
| Seminar 1 /    |             |               |          |           |            |          |       |
| Project1       |             |               |          |           |            |          |       |
| Individual     | 50          | 50            |          |           |            |          | 100   |
| Assessment 2 / |             |               |          |           |            |          |       |
| Case Study 2/  |             |               |          |           |            |          |       |
| Seminar 2 /    |             |               |          |           |            |          |       |
| Project 2      |             |               |          |           |            |          |       |
| ESE            | 50          | 50            |          |           |            |          | 100   |

| 23SEPE17 |  |
|----------|--|

#### **OFFSHORE STRUCTURES**

| 235EI E17                                                                                   | OFFSHORE STRUCTORES                                                            |                     |       |           |       |      |  |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------|-------|-----------|-------|------|--|
| PREREQUIS                                                                                   | SITES                                                                          | CATEGORY            | L     | Т         | P     | С    |  |
|                                                                                             | NIL                                                                            | PE                  | 3     | 0         | 0     | 3    |  |
| <b>Course</b> To impart knowledge on analysis and design of offshore structures under varie |                                                                                |                     |       |           |       |      |  |
| Objectives                                                                                  | environmental conditions.                                                      |                     |       |           |       |      |  |
| UNIT – I WAVE THEORIES 9 Per                                                                |                                                                                |                     |       |           |       | iods |  |
| Wave generat                                                                                | ion process, small and finite amplitude wave theor                             | ries.               |       |           |       |      |  |
| UNIT – II                                                                                   | FORCES OF OFFSHORE STRUCTURES                                                  |                     |       | 9 Periods |       |      |  |
| Wind forces,                                                                                | wave forces on vertical, inclined cylinders, str                               | uctures - current   | force | s an      | d use | e of |  |
| Morison equa                                                                                | tion                                                                           |                     |       |           |       |      |  |
| UNIT – III                                                                                  | OFFSHORE SOIL AND STRUCTURE MO                                                 | DELING              |       | 9         | Peri  | iods |  |
| Different type                                                                              | s of offshore structures, foundation modeling, stru                            | ctural modeling.    |       |           |       |      |  |
| UNIT – IV                                                                                   | ANALYSIS OF OFFSHORE STRUCTURE                                                 | S                   |       | 9         | Peri  | iods |  |
| Static method                                                                               | of analysis, foundation analysis and dynamics of                               | offshore structures | •     |           |       |      |  |
| UNIT - VDESIGN OF OFFSHORE STRUCTURES9 Period                                               |                                                                                |                     |       |           | iods  |      |  |
| Design of platforms, helipads, Jacket tower and mooring cables and pipe lines.              |                                                                                |                     |       |           |       |      |  |
| Contact Periods:                                                                            |                                                                                |                     |       |           |       |      |  |
| Lecture: 45 H                                                                               | Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods |                     |       |           |       |      |  |

| 1 Chakrabarti, S.K. "H   | La dua marine of Offah and Standards " Commutational Machania          |
|--------------------------|------------------------------------------------------------------------|
|                          | <i>Hydrodynamics of Offshore Structures</i> ", Computational Mechanics |
| Publications, 1987.      |                                                                        |
| 2 Thomas H. Dawson, "    | Offshore Structural Engineering", Prentice Hall Inc Englewood Cliffs,  |
| N.J. 1983                |                                                                        |
| 3 API, Recommended Pro   | actice for Planning, "Designing And Constructing Fixed Offshore Plat-  |
| Forms", American Pet     | roleum Institute Publication, RP2A, Dalls, Tex.                        |
| 4 Reddy, D.V. and Aroc   | kiasamy, M., "Offshore Structures", Vol.1, Krieger Publishing Com-     |
| pany, Malabar, Florida   | ı, 1991.                                                               |
| 5 Brebia, C.A.Walker, S. | , "Dynamic Analysis Of Offshore Structures", Newnes Butterworths,      |
| U.K. 1979.               |                                                                        |

| COUR   | SE OUTCOMES:                                                             | Bloom's  |
|--------|--------------------------------------------------------------------------|----------|
|        |                                                                          | Taxonomy |
| Upon c | ompletion of the course, the students will be able to:                   | Mapped   |
| CO1    | Choose appropriate wave theory for small and finite amplitude waves      | K2       |
| CO2    | Calculate member forces acting on off shore structures.                  | K3       |
| CO3    | Formulate the structural and foundation modeling of offshore structures. | K3       |
| CO4    | Perform different analysis of Offshore platform.                         | K3       |
| CO5    | Design various components of offshore structures.                        | K3       |

| COURSE ARTICULATION MATRIX |                                           |     |     |     |     |     |
|----------------------------|-------------------------------------------|-----|-----|-----|-----|-----|
| COs/POs                    | PO1                                       | PO2 | PO3 | PO4 | PO5 | PO6 |
| 001                        |                                           |     | 2   | 2   | 2   | 2   |
| CO1                        | 2                                         | -   | 2   | 2   | 2   | 3   |
| CO2                        | 2                                         | -   | -   | 2   | -   | 2   |
| CO3                        | 2                                         | -   | 2   | 3   | 1   | 2   |
| CO4                        | 2                                         | -   | 1   | 2   | 2   | 3   |
| CO5                        | 2                                         | -   | 1   | 3   | 2   | 3   |
| 23SEPE17                   | 2                                         | -   | 2   | 3   | 2   | 3   |
| 1 - Slight, 2 - Mo         | 1 – Slight, 2 – Moderate, 3 – Substantial |     |     |     |     |     |

| ASSESSMENT P   | ATTERN – THE | ORY           |          |           |            |          |       |
|----------------|--------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering  | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %       | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 40           | 40            | 20       |           |            |          | 100   |
| CAT2           | 30           | 50            | 20       |           |            |          | 100   |
| Individual     | 20           | 40            | 40       |           |            |          | 100   |
| Assessment 1 / |              |               |          |           |            |          |       |
| Case Study 1/  |              |               |          |           |            |          |       |
| Seminar 1 /    |              |               |          |           |            |          |       |
| Project1       |              |               |          |           |            |          |       |
| Individual     | 20           | 40            | 40       |           |            |          | 100   |
| Assessment 2 / |              |               |          |           |            |          |       |
| Case Study 2/  |              |               |          |           |            |          |       |
| Seminar 2 /    |              |               |          |           |            |          |       |
| Project 2      |              |               |          |           |            |          |       |
| ESE            | 40           | 40            | 20       |           |            |          | 100   |

| 23SEPE18                                                                                               | EARTHQUAKE RESISTANT DESIGN OF STRUCTURES                                                            |                     |        |        |         |         |  |  |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------|--------|--------|---------|---------|--|--|
| PREREQUI                                                                                               | SITES                                                                                                | CATEGORY            | L      | Т      | Р       | С       |  |  |
|                                                                                                        | NIL                                                                                                  | PE                  | 3      | 0      | 0       | 3       |  |  |
| Course                                                                                                 | To get exposure in to effect of earthquakes, analy                                                   | sis and design o    | f ear  | thqua  | ake re  | sistant |  |  |
| Objectives                                                                                             | Structures                                                                                           |                     |        |        |         |         |  |  |
| UNIT – I                                                                                               | INTRODUCTION                                                                                         |                     |        |        | 9 Per   | riods   |  |  |
| Elements of                                                                                            | engineering seismology - causes of earthquakes, sei                                                  | ismic waves, ma     | gnitu  | de, in | ntensi  | ty and  |  |  |
| energy releas                                                                                          | energy release - Indian seismology - Earthquake history - Seismic zone Map of India - seismographs - |                     |        |        |         |         |  |  |
| seismogram – accelerograph – strong motion characteristics- initiation into vibration of structures.   |                                                                                                      |                     |        |        |         |         |  |  |
| UNIT - II     METHODS OF SEISMIC ANALYSIS     9 Periods                                                |                                                                                                      |                     |        |        |         |         |  |  |
| Introduction                                                                                           | to methods of seismic analysis - Equivalent static                                                   | analysis IS 1893    | prov   | visio  | ns – I  | Design  |  |  |
| horizontal se                                                                                          | ismic coefficient - design base shear - distribution                                                 | 1 - idealization    | of bu  | ildin  | g frar  | nes -   |  |  |
| seismic analy                                                                                          | sis and modeling – determination of lateral forces – e                                               | equivalent static   | latera | 1 for  | ce me   | thod –  |  |  |
|                                                                                                        | ctrum method - time history method - push over                                                       | analysis - mathe    | emati  | cal 1  | nodel   | ing of  |  |  |
| multistorey R                                                                                          | C Building.                                                                                          |                     |        |        |         |         |  |  |
| UNIT – III                                                                                             | IS CODE PROVISIONS                                                                                   |                     |        |        | 9 Per   | riods   |  |  |
| Modal respo                                                                                            | nse contribution - modal participation factor - re                                                   | esponse history -   | - spe  | ectral | anal    | ysis –  |  |  |
| approximate                                                                                            | methods for lateral load analysis - IS 1893 provision                                                | ns – IS 4326 prov   | vision | s – t  | ehavi   | or and  |  |  |
| design of m                                                                                            | asonry structures – discussion of codes IS 1382                                                      | 27 and 13828.       | Duc    | tile   | detaili | ng of   |  |  |
| reinforcemen                                                                                           | t in RC Buildings as per IS 13920                                                                    |                     |        |        |         |         |  |  |
| UNIT – IV                                                                                              | SEISMIC DESIGN CONCEPTS                                                                              |                     |        |        | 9 Per   | riods   |  |  |
| Concept of e                                                                                           | arthquake resistant design - concept of ductility - la                                               | ateral force resis  | ting   | syste  | ms –    | strong  |  |  |
| column weak                                                                                            | beam concept - guidelines for seismic resistant constr                                               | ruction - beam co   | lumr   | ı join | ts –ef  | fect of |  |  |
| structural irre                                                                                        | gularities - cyclic load behavior of RC, steel and press                                             | tressed concrete e  | eleme  | nts –  | Earth   | nquake  |  |  |
| Resistant Des                                                                                          | ign for multi storey RC frames, shear wall, braced fran                                              | mes- capacity bas   | sed d  | esign  | •       |         |  |  |
| UNIT – V                                                                                               | SPECIAL PROBLEMS AND MODERN CONCE                                                                    | PTS                 |        |        | 9 Per   | riods   |  |  |
| Soil perform                                                                                           | ance - Liquefaction -Modern concepts - base iso                                                      | olation – adaptiv   | ve sy  | /stem  | n – s   | eismic  |  |  |
| evaluation- re                                                                                         | trofitting and strengthening of structures - seismic ret                                             | rofitting strategie | s.     |        |         |         |  |  |
| Computer A                                                                                             | Computer Aided Analysis and Design: (For internal assessment only - not for theory examination)      |                     |        |        |         |         |  |  |
| computer aided analysis and design of building systems for earthquake loads - response spectrum - time |                                                                                                      |                     |        |        |         |         |  |  |
| history analysis – capacity based design – hands on session using computer software.                   |                                                                                                      |                     |        |        |         |         |  |  |
| Contact Periods:                                                                                       |                                                                                                      |                     |        |        |         |         |  |  |
| Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods                         |                                                                                                      |                     |        |        |         |         |  |  |
| REFE                                                                                                   | RENCES:                                                                                              |                     |        |        |         |         |  |  |
|                                                                                                        | adv "Dungming of Structure 5 Theory on                                                               | 1 4 1 4             |        | Г      | .1      | 1       |  |  |

| 1 | Chopraak, Dynamics of Structure s-theory and Applications to Earlinguake          |  |  |  |  |  |  |
|---|-----------------------------------------------------------------------------------|--|--|--|--|--|--|
|   | Engineering", Prentice-Hall of India Pvt. Ltd., NewDelhi, 2007.                   |  |  |  |  |  |  |
| 2 | Pankaj Agarwal and ManishShrikhande, "Earthquake Resistant Design of Structures", |  |  |  |  |  |  |
|   | Prentice– Hall of India Pvt.Ltd., NewDelhi–110 001,2006.                          |  |  |  |  |  |  |
| 3 | CloughRW and Penzien J, "Dynamics of Structures", McGraw Hill, INC, 1993.         |  |  |  |  |  |  |
| 4 | TaranathBS, "Wind and Earthquake Resistant Buildings –structural Analysis &       |  |  |  |  |  |  |
|   | Design", Marcell Decker, NewYork, 2005.                                           |  |  |  |  |  |  |

5 Chen WF & Scawthorn, "Earthquake Engineering Handbook", CRC Press, 2003.

| COURSE OUTCOMES: |                                                                             |        |  |  |
|------------------|-----------------------------------------------------------------------------|--------|--|--|
| Upon con         | npletion of the course, the students will be able to:                       | Mapped |  |  |
| CO1              | Value the causes of earthquake and its measurement.                         | K3     |  |  |
| CO2              | Analyze the structure for lateral loads.                                    | K2     |  |  |
| CO3              | Implement the codal provisions for earthquake resistant design & detailing  | K3     |  |  |
| CO4              | Apply the concepts of earthquake resistant design.                          | K3     |  |  |
| CO5              | Utilize the modern concepts on strengthening and retrofitting of structures | K3     |  |  |
|                  | affected due to earthquake.                                                 |        |  |  |

## COURSE ARTICULATION MATRIX

| COs/POs  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|----------|-----|-----|-----|-----|-----|-----|
| CO1      | 2   | 1   | 2   | 1   | 1   | 2   |
| CO2      | 2   | 2   | 2   | 3   | 2   | 2   |
| CO3      | 2   | 3   | 2   | 2   | 3   | 2   |
| CO4      | 3   | 2   | 2   | 3   | 2   | 2   |
| CO5      | 2   | 2   | 2   | 3   | 3   | 3   |
| 23SEPE18 | 3   | 3   | 2   | 3   | 3   | 3   |

| ASSESSMENT PATTERN – THEORY |             |               |          |           |            |          |       |  |  |  |
|-----------------------------|-------------|---------------|----------|-----------|------------|----------|-------|--|--|--|
| Test / Bloom's              | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |
| Category*                   | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |
| CAT1                        | 20          | 40            | 40       | -         | -          | -        | 100   |  |  |  |
| CAT2                        | 20          | 40            | 40       | -         | -          | -        | 100   |  |  |  |
| Individual                  |             |               |          |           |            |          |       |  |  |  |
| Assessment 1 /              |             |               |          |           |            |          |       |  |  |  |
| Case Study 1/               | -           | -             | 50       | 50        | -          | -        | 100   |  |  |  |
| Seminar 1 /                 |             |               |          |           |            |          |       |  |  |  |
| Project1                    |             |               |          |           |            |          |       |  |  |  |
| Individual                  |             |               |          |           |            |          |       |  |  |  |
| Assessment 2 /              |             |               |          |           |            |          |       |  |  |  |
| Case Study 2/               | -           | -             | 50       | 50        | -          | -        | 100   |  |  |  |
| Seminar 2 /                 |             |               |          |           |            |          |       |  |  |  |
| Project 2                   |             |               |          |           |            |          |       |  |  |  |
| ESE                         | 20          | 40            | 40       | -         | -          | -        | 100   |  |  |  |

| 23SEPE19 SUBSTRUCTURE DESIGN |         |                                                            |                      |                       |         |           |       |      |
|------------------------------|---------|------------------------------------------------------------|----------------------|-----------------------|---------|-----------|-------|------|
| PREREQUISI                   | TES     |                                                            |                      | CATEGORY              | L       | Т         | P     | C    |
| NIL                          |         |                                                            |                      | PE                    | 3       | 0         | 0     | 3    |
| Course<br>Objectives         |         | scuss and evaluate the feations considering the time e     |                      | blutions to different | ent typ | pes o     | of so | oil  |
| UNIT – I                     | INTR    | ODUCTION                                                   |                      |                       |         | 9 Pe      | riod  | .s   |
| -                            | foundat | ation report for design of fo<br>ion–Computation of loads- | • •                  |                       |         |           |       |      |
| UNIT – II                    | DESI    | SIGN OF SHALLOW FOUNDATION9 Periods                        |                      |                       |         |           |       |      |
|                              |         | bearing capacity of footing<br>raft and buoyancy–Rafts a   |                      | acity of footing –    | Beam    | s on      | Elas  | stic |
| UNIT – III                   | DESI    | GN OF DEEP FOUNDAT                                         | ΓΙΟΝ                 |                       |         | 9 Pe      | riod  | S    |
| -                            |         | carrying capacity of dif<br>Design of pile caps– Uplift    |                      | -                     | of rei  | infor     | cem   | ent  |
| UNIT – IV                    | FOUN    | DATION FOR BRIDGE                                          | ES AND MACHINES      | _                     |         | 9 Pe      | riod  | s    |
|                              | -       | es- Well and caisson fou<br>d design of machine found      |                      | er cap - Design       | of p    | ier–0     | Gene  | eral |
| UNIT – V                     | TOW     | ER FOUNDATIONS                                             |                      |                       |         | 9 Periods |       |      |
|                              | •       | of foundation for towers-<br>oports for foundation excav   |                      |                       | desig   | gn c      | riter | ia–  |
| <b>Contact Period</b>        | ls :    |                                                            |                      |                       |         |           |       |      |
| Lecture: 45 Pe               | riods   | <b>Tutorial: 0 Periods</b>                                 | Practical: 0 Periods | s Total: 45           | 5 Perio | ods       |       |      |
|                              |         |                                                            |                      |                       |         |           |       |      |

## REFERENCES

| 1 | Swami Saran, "Analysis and Design of Substructures", Oxford & IBH Publishing Company Private Limited, 2009.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Bowels J. E, "Foundation Analysis and Design", McGraw-Hill International Book Co,2007.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3 | Thomlinson, M.J. and Boorman. R., "Foundation Design and Construction", ELBS Longman VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | edition, 2005.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4 | Nayak, N.V., "Foundation Design manual for Practicing Engineers", Dhanpat Rai and Sons,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|   | 2009.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5 | Winterkorn H.F., and Fang H.Y., "Foundation Engineering Hand Book", Van Nostrard-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | Reinhold -2004.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | $\mathbf{D} \stackrel{\cdot}{\to} \mathbf{M} \stackrel{\bullet}{\to} \mathbf{D} \stackrel{\bullet}{\to} \frac{\mathbf{D}}{\mathbf{D}} \stackrel{\bullet}{\to} \frac{\mathbf{D}} \stackrel{\bullet}{\to} \frac{\mathbf{D}}{\mathbf$ |

6 BrajaM. Das, "Principles of Foundations Engineering", Thomson Asia(P) Ltd-2009.

| COUF   | RSE OUTCOMES:                                                                 | Bloom's  |
|--------|-------------------------------------------------------------------------------|----------|
|        |                                                                               | Taxonomy |
| Upon o | completion of the course, the students will be able to:                       | Mapped   |
| CO1    | Interpret subsurface information and to identify a suitable foundation system | К3       |
|        | for a structure.                                                              |          |
| CO2    | Design shallow foundations for various types of structures.                   | K3       |
| CO3    | Calculate capacity of piles and Design deep foundation.                       | K3       |
| CO4    | Analyse and design foundations for bridges and machines.                      | K3       |
| CO5    | Analyse and Design foundations for tall towers.                               | K3       |

| COs/POs  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|----------|-----|-----|-----|-----|-----|-----|
| CO1      | 1   | -   | 2   | 1   | 1   | 1   |
| CO2      | 2   | -   | 2   | 2   | 1   | 1   |
| CO3      | 2   | -   | 3   | 2   | 2   | 1   |
| CO4      | 2   | -   | 3   | 2   | 2   | 1   |
| CO5      | 2   | -   | 3   | 2   | 2   | 1   |
| 23SEPE19 | 2   | -   | 3   | 2   | 2   | 1   |

| ASSESSMENT PA  | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |       |  |  |  |  |
|----------------|-----------------------------|---------------|----------|-----------|------------|----------|-------|--|--|--|--|
| Test / Bloom's | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |  |
| Category*      | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |  |
| CAT1           | 20                          | 30            | 50       | -         | -          | -        | 100   |  |  |  |  |
| CAT2           | 20                          | 30            | 50       | -         | -          | -        | 100   |  |  |  |  |
| Individual     | 20                          | 30            | 50       | -         | -          | -        | 100   |  |  |  |  |
| Assessment 1 / |                             |               |          |           |            |          |       |  |  |  |  |
| Case Study 1/  |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 1 /    |                             |               |          |           |            |          |       |  |  |  |  |
| Project1       |                             |               |          |           |            |          |       |  |  |  |  |
| Individual     | 20                          | 30            | 50       | -         | -          | -        | 100   |  |  |  |  |
| Assessment 2 / |                             |               |          |           |            |          |       |  |  |  |  |
| Case Study 2/  |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 2 /    |                             |               |          |           |            |          |       |  |  |  |  |
| Project 2      |                             |               |          |           |            |          |       |  |  |  |  |
| ESE            | 20                          | 30            | 50       | -         | -          | -        | 100   |  |  |  |  |

| PREREQUISI                          | TES                                                                                              | CATEGORY            | L         | Т        | Р         | С      |
|-------------------------------------|--------------------------------------------------------------------------------------------------|---------------------|-----------|----------|-----------|--------|
|                                     | NIL                                                                                              | PE 3 0              |           |          |           | 3      |
| Course                              | To impart knowledge on behaviour, analy                                                          | yze and design      | of struc  | tures    | subjec    | ted to |
| Objectives                          | dynamic loading                                                                                  |                     |           |          |           |        |
| UNIT – I                            | GENERAL                                                                                          |                     |           |          | 9 Peri    | ods    |
| Design philosop                     | hy to resist earthquake, cyclone, flood, blast a                                                 | and impact - Natio  | nal and   | Intern   | ational   | code   |
| of practice – Be                    | havior of concrete, steel, masonry and soil und                                                  | er impact and cycli | ic loads- | - Energ  | gy abso   | rptio  |
| capacity - Ducti                    | lity of material and the structure.                                                              |                     |           |          |           |        |
| Design Against                      | Cyclone And Flood- Effect of cyclones on I                                                       | buildings and spec  | ial stru  | ctures   | - safet   | ty and |
| precautionary st                    | eps in design.                                                                                   |                     |           |          |           |        |
| UNIT – II                           | DESIGN AGAINST EARTH-QUAKES                                                                      |                     |           |          | 9 Peri    | ods    |
| Earth-quake cha                     | racterisation - Response spectrum - seismic                                                      | coefficient and re  | sponse    | spectr   | a meth    | ods o  |
| estimating loads                    | - Response of framed, braced frames and she                                                      | ear wall buildings  | – Desig   | n as p   | er BIS    | code   |
| practice - Ducti                    | lity based design.                                                                               |                     |           |          |           |        |
| UNIT – III                          | DESIGN AGAINST BLAST AND IMPAC                                                                   | CT                  |           |          | 9 Peri    | ods    |
| Characteristics                     | of internal and external blast - Impact and                                                      | impulse loads- Ex   | plosion   | s- Th    | reats –   | wav    |
| scaling law - F                     | ire loading - restraints - Pressure distribution                                                 | n on buildings abo  | ove grou  | ınd du   | e to ex   | terna  |
| blast-undergroom blast              | und explosion - Design of buildings for blast ,                                                  | fire and impact as  | per BIS   | code     | of pract  | ice.   |
| UNIT – IV                           | DESIGN AGAINST WIND                                                                              |                     |           |          | 9 Peri    | ods    |
| Characteristics of                  | of wind – Basic and design wind speeds Aeroe                                                     | lastic and Aerodyn  | amic ef   | fect - ] | Design    | as pe  |
| BIS code of pra                     | ctice including Gust factor approach-along w                                                     | vind and across wi  | nd resp   | onse-    | effect of | on tal |
| buildings, towe                     | rs, chimneys, roofs, window glass, Cladding                                                      | g and slender struc | ctures -  | vibra    | tion of   | cabl   |
| supported bridge                    | es and power lines due to wind effects- tornado                                                  | effects.            |           |          |           |        |
| UNIT – V                            | SPECIAL CONSIDERATIONS                                                                           |                     |           |          | 9 Peri    | ods    |
|                                     | ctility - Passive and active control of vibration                                                |                     |           |          |           | •      |
| Detailing for du                    |                                                                                                  | alysis- methods of  | strengtl  | hening   | for dif   | fferer |
| Detailing for du                    | s, buildings- strengthening measures-safety an                                                   | •                   |           |          |           |        |
| Detailing for du<br>of dams, bridge | s, buildings- strengthening measures-safety an<br>tenance and modifications to improve hazard re |                     |           |          |           |        |
| Detailing for du<br>of dams, bridge | tenance and modifications to improve hazard re-                                                  |                     |           |          |           |        |

| 1 | Raiker.R.N. "Learning from failure Deficiencies in Design", Construction and Service, R & D           |
|---|-------------------------------------------------------------------------------------------------------|
|   | Centre(SDCPL) Raiker Bhavan, Bombay , 1987                                                            |
| 2 | Bela Goschy, "Design of Buildings to withstand abnormal loading", Butterworhts, 1990.                 |
| 3 | Paulay.T and Priestly. M.N.J, "A seismic Design of Reinforced Concrete and Masonry Buildings", John   |
|   | Wiley and Sons, 1991                                                                                  |
| 4 | Dowling. C.H, "Blast Vibration – Monitoring and Control", Prentice Hall Inc, Englewoods Cliffs, 1985. |
| 5 | Alan G. Daven Port, "Wind Effects on Buildings and Structures", Proceedings of the Jubileum           |
|   | Conference on Wind effects on Structures", Port Alegne, Brazil, pp 25-29, May 1998, Balkema A.A.      |
|   | Publishers, 1998.                                                                                     |

| COURSE OUTCOMES:<br>Upon completion of the course, the students will be able to: |                                                                                                     |    |  |  |  |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----|--|--|--|
| CO1                                                                              | <b>CO1</b> Analyze the effects of dynamic loads like earthquake, blast and impact on structures.    |    |  |  |  |
| CO2                                                                              | CO2 Perform seismic resistant design as per IS                                                      |    |  |  |  |
| CO3                                                                              | 3 Design the structures against blast and impact.                                                   |    |  |  |  |
| <b>CO4</b>                                                                       | CO4 Calculate effect of wind on structures and design against wind load.                            |    |  |  |  |
| CO5                                                                              | Implement detailing of structure considering ductility and apply different strengthening techniques | K2 |  |  |  |

| COURSE ARTICU<br>COs/POs | PO1 | PO2 | PO3  | PO4 | PO5 | PO6 |
|--------------------------|-----|-----|------|-----|-----|-----|
| 0001200                  |     | 101 | 2.00 | 101 |     | 200 |
| CO1                      | 3   | 1   | 2    | 3   | 2   | 2   |
| CO2                      | 3   | 2   | 1    | 2   | 2   | 2   |
| CO3                      | 3   | 2   | 2    | 1   | 2   | 1   |
| CO4                      | 3   | 2   | 2    | 3   | 3   | 2   |
| CO5                      | 3   | 2   | 1    | 2   | 1   | 2   |
| 23SEPE20                 | 3   | 2   | 2    | 3   | 3   | 2   |

| ASSESSMENT P   | PATTERN – TH | EORY          |          |           |            |          | ASSESSMENT PATTERN – THEORY |  |  |  |  |  |  |  |
|----------------|--------------|---------------|----------|-----------|------------|----------|-----------------------------|--|--|--|--|--|--|--|
| Test / Bloom's | Remembering  | Understanding | Applying | Analyzing | Evaluating | Creating | Total                       |  |  |  |  |  |  |  |
| Category*      | (K1) %       | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %                           |  |  |  |  |  |  |  |
| CAT1           | 20           | 40            | 40       | -         | -          | -        | 100                         |  |  |  |  |  |  |  |
| CAT2           | 20           | 40            | 40       | -         | -          | -        | 100                         |  |  |  |  |  |  |  |
| Individual     | -            | -             | 50       | 50        | -          | -        | 100                         |  |  |  |  |  |  |  |
| Assessment 1 / |              |               |          |           |            |          |                             |  |  |  |  |  |  |  |
| Case Study 1/  |              |               |          |           |            |          |                             |  |  |  |  |  |  |  |
| Seminar 1 /    |              |               |          |           |            |          |                             |  |  |  |  |  |  |  |
| Project1       |              |               |          |           |            |          |                             |  |  |  |  |  |  |  |
| Individual     | -            | -             | 50       | 50        | -          | -        | 100                         |  |  |  |  |  |  |  |
| Assessment 2 / |              |               |          |           |            |          |                             |  |  |  |  |  |  |  |
| Case Study 2/  |              |               |          |           |            |          |                             |  |  |  |  |  |  |  |
| Seminar 2 /    |              |               |          |           |            |          |                             |  |  |  |  |  |  |  |
| Project 2      |              |               |          |           |            |          |                             |  |  |  |  |  |  |  |
| ESE            | 20           | 40            | 40       | -         | -          | -        | 100                         |  |  |  |  |  |  |  |

23SEPE21

#### DESIGN OF TALL BUILDINGS

|                                                                                                                                               | DESIGN OF TALL BUI                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                |                                              |                                                                 |                                                                          |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|--|
| PREREQUIS                                                                                                                                     | TES                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CATEGORY                                                                                              | L                                              | Т                                            | Р                                                               | С                                                                        |  |
|                                                                                                                                               | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PE                                                                                                    | 3                                              | 0                                            | 0                                                               | 3                                                                        |  |
| Course                                                                                                                                        | To acquire knowledge in the behaviour, analysis and o                                                                                                                                                                                                                                                                                                                                                                                                                          | design of tall bu                                                                                     | ildin                                          | gs.                                          |                                                                 |                                                                          |  |
| Objectives                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                |                                              |                                                                 |                                                                          |  |
| UNIT – I                                                                                                                                      | UNIT – I DESIGN CRITERIA                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                       |                                                |                                              |                                                                 |                                                                          |  |
| Design philoso                                                                                                                                | pphy, Loading, Sequential loading, materials - Speci                                                                                                                                                                                                                                                                                                                                                                                                                           | ial Concrete fo                                                                                       | r Ta                                           | ll b                                         | uildi                                                           | ngs -                                                                    |  |
| Design mixes.                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                       |                                                |                                              |                                                                 |                                                                          |  |
| UNIT – II                                                                                                                                     | LOADS AND MOVEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                                                |                                              | 9 Pe                                                            | riods                                                                    |  |
| Gravity Loadin                                                                                                                                | ng : Dead and live load, methods of live load red                                                                                                                                                                                                                                                                                                                                                                                                                              | duction, Impac                                                                                        | t and                                          | co                                           | nstru                                                           | iction                                                                   |  |
| loads. Wind                                                                                                                                   | load : Static and dynamic approach, Analytical                                                                                                                                                                                                                                                                                                                                                                                                                                 | and wind tur                                                                                          | nnel                                           | exp                                          | perin                                                           | nental                                                                   |  |
| method. Seism                                                                                                                                 | ic load: Equivalent lateral force, modal analysis, comb                                                                                                                                                                                                                                                                                                                                                                                                                        | inations of load                                                                                      | ing.                                           |                                              |                                                                 |                                                                          |  |
| UNIT – III                                                                                                                                    | <b>BEHAVIOUR OF VARIOUS STRUCTURAL SYS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                     | STEMS                                                                                                 |                                                |                                              | 9 Pe                                                            | riods                                                                    |  |
| Factors affectin                                                                                                                              | ng growth, Height and Structural form. High rise b                                                                                                                                                                                                                                                                                                                                                                                                                             | ehaviour, Rigi                                                                                        | id f                                           | ram                                          | es, b                                                           | raced                                                                    |  |
|                                                                                                                                               | d frames, shear walls, coupled shear walls, wall-fr                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                     |                                                |                                              |                                                                 |                                                                          |  |
|                                                                                                                                               | rid mega system.                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                                                                                     |                                                | ,                                            | ·                                                               |                                                                          |  |
| UNIT – IV                                                                                                                                     | ANALYSIS AND DESIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                       |                                                |                                              | 9 Pe                                                            | riods                                                                    |  |
| Modeling for a                                                                                                                                | approximate analysis, Accurate analysis and reduction                                                                                                                                                                                                                                                                                                                                                                                                                          | techniques Ar                                                                                         | nalvs                                          | is o                                         | f bu                                                            | ilding                                                                   |  |
|                                                                                                                                               | approximate analysis, Accurate analysis and reduction                                                                                                                                                                                                                                                                                                                                                                                                                          | i icenniques, Ai                                                                                      | iaryo                                          |                                              |                                                                 |                                                                          |  |
| •                                                                                                                                             | ctural system considering overall integrity and                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                     | •                                              |                                              |                                                                 | •                                                                        |  |
| as total stru                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d major subs                                                                                          | syste                                          | m iı                                         | ntera                                                           | ction,                                                                   |  |
| as total stru<br>Analysis for                                                                                                                 | ctural system considering overall integrity and                                                                                                                                                                                                                                                                                                                                                                                                                                | d major subs<br>zed general                                                                           | syste<br>thre                                  | m iı<br>e di                                 | ntera<br>mens                                                   | ction,<br>sional                                                         |  |
| as total stru<br>Analysis for<br>analysis. Struc                                                                                              | ctural system considering overall integrity and<br>member forces, drift and twist, computeriz                                                                                                                                                                                                                                                                                                                                                                                  | d major subs<br>zed general<br>ing capacity, d                                                        | syste<br>thre<br>esign                         | m in<br>e din<br>n, c                        | ntera<br>mens<br>lefle                                          | ction,<br>sional<br>ction,                                               |  |
| as total stru<br>Analysis for<br>analysis. Struc<br>cracking, pres                                                                            | ctural system considering overall integrity and<br>member forces, drift and twist, computeriz<br>tural elements: Sectional shapes, properties and resisti                                                                                                                                                                                                                                                                                                                      | d major subs<br>zed general<br>ing capacity, d                                                        | syste<br>thre<br>esign                         | m in<br>e din<br>n, c                        | ntera<br>mens<br>lefle                                          | ction,<br>sional<br>ction,                                               |  |
| as total stru<br>Analysis for<br>analysis. Struc<br>cracking, pres<br>temperature eff                                                         | ctural system considering overall integrity and<br>member forces, drift and twist, computeriz<br>tural elements: Sectional shapes, properties and resisti<br>stressing, shear flow. Design for differential mo                                                                                                                                                                                                                                                                 | d major subs<br>zed general<br>ing capacity, d                                                        | syste<br>thre<br>esign                         | m in<br>e di<br>n, c<br>nkaş                 | ntera<br>mens<br>lefle<br>ge ef                                 | ction,<br>sional<br>ction,<br>fects,                                     |  |
| as total stru<br>Analysis for<br>analysis. Struc<br>cracking, pres<br>temperature eff<br><b>UNIT – V</b>                                      | ctural system considering overall integrity and<br>member forces, drift and twist, computeriz<br>tural elements: Sectional shapes, properties and resisti<br>stressing, shear flow. Design for differential mo<br>fects, fire resistance.                                                                                                                                                                                                                                      | d major subs<br>zed general<br>ing capacity, d<br>ovement, creep,                                     | syste<br>three<br>esign<br>shri                | m in<br>e din<br>n, c<br>nkaş                | ntera<br>mens<br>lefle<br>ge ef<br><b>9 Pe</b>                  | ction,<br>sional<br>ction,<br>fects,<br><b>riods</b>                     |  |
| as total stru<br>Analysis for<br>analysis. Struc<br>cracking, pres<br>temperature eff<br><b>UNIT – V</b><br>Overall buckli                    | ctural system considering overall integrity and<br>member forces, drift and twist, computeriz<br>tural elements: Sectional shapes, properties and resisti<br>stressing, shear flow. Design for differential mo<br>fects, fire resistance.<br>STABILITY OF TALL BUILDINGS                                                                                                                                                                                                       | d major subs<br>zed general<br>ing capacity, d<br>ovement, creep,<br>methods, secon                   | syste<br>three<br>esign<br>shri                | m in<br>e di<br>n, o<br>nkaş                 | ntera<br>mens<br>lefle<br>ge ef<br><b>9 Pe</b><br>effe          | ction,<br>sional<br>ction,<br>fects,<br><b>riods</b><br>cts of           |  |
| as total stru<br>Analysis for<br>analysis. Struc<br>cracking, pres<br>temperature eff<br><b>UNIT – V</b><br>Overall buckli<br>gravity loading | <ul> <li>ctural system considering overall integrity and member forces, drift and twist, computeriz tural elements: Sectional shapes, properties and resisti stressing, shear flow. Design for differential more texts, fire resistance.</li> <li>STABILITY OF TALL BUILDINGS</li> <li>ng analysis of frames, wall -frames, Approximate</li> </ul>                                                                                                                             | d major subs<br>zed general<br>ing capacity, d<br>ovement, creep,<br>methods, secon<br>P -Delta analy | syste<br>three<br>esign<br>shri<br>d o<br>sis, | m in<br>e din<br>n, d<br>nkag<br>rder<br>Tra | ntera<br>mens<br>defle<br>ge ef<br><b>9 Pe</b><br>effe<br>nslat | ction,<br>sional<br>ction,<br>fects,<br><b>riods</b><br>cts of<br>ional, |  |
| as total stru<br>Analysis for<br>analysis. Struc<br>cracking, pres<br>temperature eff<br><b>UNIT – V</b><br>Overall buckli<br>gravity loading | <ul> <li>ctural system considering overall integrity and member forces, drift and twist, computerize tural elements: Sectional shapes, properties and resisting stressing, shear flow. Design for differential more texts, fire resistance.</li> <li><b>STABILITY OF TALL BUILDINGS</b></li> <li>ng analysis of frames, wall -frames, Approximate g, P-Delta analysis, simultaneous first-order and H bility, out of plum effects, stiffness of member in stability</li> </ul> | d major subs<br>zed general<br>ing capacity, d<br>ovement, creep,<br>methods, secon<br>P -Delta analy | syste<br>three<br>esign<br>shri<br>d o<br>sis, | m in<br>e din<br>n, d<br>nkag<br>rder<br>Tra | ntera<br>mens<br>defle<br>ge ef<br><b>9 Pe</b><br>effe<br>nslat | ction,<br>sional<br>ction,<br>fects,<br><b>riods</b><br>cts of<br>ional, |  |

| 1 | Bungale S. Taranath ., "Structural Analysis and Design of Tall Buildings", McGraw Hill, 2011      |
|---|---------------------------------------------------------------------------------------------------|
| 2 | Taranath B.S, "Tall Building Design: Steel, Concrete, and Composite Systems", McGraw Hill, 2016   |
| 3 | Bryan stafford Smith, Alexcoull, "Tall Building Structures", Analysis and Design", John Wiley and |
|   | Sons, Inc., 1991                                                                                  |
| 4 | Wolfgang Schueller, "High Rise Building Structures", John Wiley and Sons, 1977.                   |
| 5 | Lynn S.Beedle, "Advances in Tall Buildings", CBS Publishers and Distributors, Delhi, 1986         |

| COURS                                                        | COURSE OUTCOMES:                                                                      |          |  |  |  |  |
|--------------------------------------------------------------|---------------------------------------------------------------------------------------|----------|--|--|--|--|
|                                                              |                                                                                       | Taxonomy |  |  |  |  |
| Upon completion of the course, the students will be able to: |                                                                                       |          |  |  |  |  |
| CO1                                                          | Classify different types of loads acting on tall buildings.                           | K3       |  |  |  |  |
| CO2                                                          | Recognize various structural loads and movements in tall structures                   | K4       |  |  |  |  |
| CO3                                                          | Differentiate the behaviour of different types of tall structures and its components. | K4       |  |  |  |  |
| CO4                                                          | Analyze and design structural elements of tall buildings                              | K3       |  |  |  |  |
| CO5                                                          | Evaluate stability analysis of frames for various secondary effects such as creep,    | K4       |  |  |  |  |
|                                                              | shrinkage and temperature                                                             |          |  |  |  |  |

| COURSE ARTICULATION MATRIX |                                           |     |     |     |     |     |
|----------------------------|-------------------------------------------|-----|-----|-----|-----|-----|
| COs/POs                    | PO1                                       | PO2 | PO3 | PO4 | PO5 | PO6 |
| CO1                        | 2                                         | 1   | 2   | 2   | 1   | 2   |
| CO2                        | 2                                         | 2   | 3   | 3   | 2   | 2   |
| CO3                        | 2                                         | 1   | 2   | 2   | 2   | 1   |
| CO4                        | 3                                         | 2   | 3   | 2   | 3   | 2   |
| CO5                        | 3                                         | 2   | 2   | 3   | 2   | 3   |
| 23SEPE21                   | 3                                         | 2   | 3   | 3   | 3   | 3   |
| 1 – Slight, 2 – Mode       | 1 – Slight, 2 – Moderate, 3 – Substantial |     |     |     |     |     |

| Test / Bloom's | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total % |
|----------------|-------------|---------------|----------|-----------|------------|----------|---------|
| Category*      | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   |         |
| CAT1           | 20          | 40            | 40       | -         | -          | -        | 100     |
| CAT2           | 20          | 40            | 40       | -         | -          | -        | 100     |
| Individual     |             |               |          |           |            |          |         |
| Assessment 1 / |             |               |          |           |            |          |         |
| Case Study 1/  | -           | -             | 50       | 50        | -          | -        | 100     |
| Seminar 1 /    |             |               |          |           |            |          |         |
| Project1       |             |               |          |           |            |          |         |
| Individual     |             |               |          |           |            |          |         |
| Assessment 2 / |             |               |          |           |            |          |         |
| Case Study 2/  | -           | -             | 50       | 50        | -          | -        | 100     |
| Seminar 2 /    |             |               |          |           |            |          |         |
| Project 2      |             |               |          |           |            |          |         |
| ESE            | 20          | 40            | 40       | -         | -          | -        | 100     |

| 23SEPE22                                                                       |                                                                                                          | COLD FORMED STEEL STRUCTURES |                        |                    |        |        |          |            |
|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------|------------------------|--------------------|--------|--------|----------|------------|
| PREREQUISITES                                                                  |                                                                                                          | CATEGORY L T                 |                        |                    |        |        |          | С          |
|                                                                                |                                                                                                          | NIL PE 3 0                   |                        |                    |        |        |          | 3          |
| Course                                                                         | To impa                                                                                                  | t knowledge on desig         | n of various cold for  | med steel structur | al ele | ment   | s and    | its        |
| Objectives                                                                     | connecti                                                                                                 | ons.                         |                        |                    |        |        |          |            |
| UNIT – I                                                                       | INTRO                                                                                                    | DUCTION                      |                        |                    |        |        | 9 Pe     | eriods     |
| General – Types of C                                                           | Cold For                                                                                                 | ned Steel Sections an        | d their applications – | Methods of Form    | ning - | – Ma   | terial   | s used in  |
| Cold Formed Steel C                                                            | Construct                                                                                                | ion – Yield Point – T        | ensile Strength – Str  | ess Strain Curve   | – Mo   | dulu   | s of E   | Elasticity |
| and Tangent Moduly                                                             | us – Duo                                                                                                 | tility – Weldability         | – Fatigue Strength a   | nd Toughness. C    | Conne  | ction  | s – 7    | Types of   |
| Connections – Welde                                                            | ed Conne                                                                                                 | ctions – Bolted Conn         | ections – Other Faste  | ners.              |        |        |          |            |
| UNIT – II                                                                      | STREN                                                                                                    | GTH OF THIN ELE              | MENTS AND DES          | IGN CRITERIA       |        |        | 9 Pe     | eriods     |
| General – Definition                                                           | ns of Ge                                                                                                 | neral Terms – Basic          | Design Stress – Wi     | nd, Earthquake a   | and C  | Comb   | ined     | forces -   |
| Structural Behavior                                                            | of Com                                                                                                   | pression Elements an         | d Design Criteria –    | Stiffeners for Co  | ompr   | essio  | n Ele    | ments -    |
| Structural Behavior                                                            | of Perfo                                                                                                 | rated Elements – Pla         | te buckling of Colu    | mns – Behavior     | of W   | ebs o  | of Be    | ams and    |
| Cylindrical Tubular I                                                          | Elements                                                                                                 |                              |                        |                    |        |        |          |            |
| UNIT – III                                                                     | DESIG                                                                                                    | NOF FLEXURAL M               | IEMBERS                |                    |        |        | 9 Pe     | eriods     |
| General – Beam Stre                                                            | ength an                                                                                                 | 1 Deflection – Design        | n of Webs of beams     | - Lateral Buckli   | ng of  | Bea    | ms –     | Bracing    |
| Requirements of Bea                                                            | ums – Un                                                                                                 | usually Wide Beam F          | langes and Unusually   | y Short Span beam  | ns.    |        |          |            |
| UNIT – IV                                                                      | DESIGN                                                                                                   | OF COMPRESSIO                | ON MEMBERS             |                    |        |        | 9 Pe     | eriods     |
| General - Yielding -                                                           | General - Yielding - Flexural Column Buckling - Effect of Cold Work on Column Buckling - Effect of Local |                              |                        |                    |        |        | of Local |            |
| Buckling on Column                                                             | n Streng                                                                                                 | h – AISI Design Fo           | ormula for Flexural I  | Buckling – Effec   | tive 1 | Leng   | th fac   | ctor K –   |
| Torsional Buckling                                                             | and To                                                                                                   | orsional-Flexural Bud        | ckling – Bracing a     | and Secondary I    | Meml   | oers   | – M      | laximum    |
| Slenderness Ratio -                                                            | Wall Stu                                                                                                 | ls – Testing of Wall M       | Material for Lateral B | racing Value.      |        |        |          |            |
| UNIT – V                                                                       | DESIG                                                                                                    | OF BEAM COLU                 | MNS                    |                    |        |        | 9 Pe     | eriods     |
| General - doubly sy                                                            | mmetric                                                                                                  | shapes and shapes ne         | ot subjected to torsic | onal or torsional- | flexu  | ral bu | ıcklir   | ıg – thin  |
| walled open Sections                                                           | s which 1                                                                                                | nay be subjected to T        | orsional-Flexural Bu   | ckling – Singly S  | Symm   | etric  | Oper     | n Shapes   |
| - Unsymmetrical Sh                                                             | apes. Li                                                                                                 | ght Gauge Steel Shea         | ar Diaphragms and s    | hell Roof Structu  | res -  | light  | t Gau    | ge Steel   |
| Shear Diaphragms –                                                             | Columns                                                                                                  | and Beams braced by          | y Steel Diaphragms –   | Shell Roof Struc   | tures  | •      |          |            |
| Contact Periods:                                                               |                                                                                                          |                              |                        |                    |        |        |          |            |
| Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods |                                                                                                          |                              |                        |                    |        |        |          |            |

| 1 | Wie-Wen Yu, "Cold Formed Steel Structures", Mcgraw Hill Book Company, 1973.                                                                                                     |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Horne M.R. and Morris L.J., "Plastic Design Of Low Rise Frames", Granada Publishing Ltd., 1981.                                                                                 |
| 3 | Salmon C.G. and Johnson J.E., "Steel Structures-Design And Behaviour", Harper and Row, 1980. Dayaratnam P. "Design of Steel Structures", A.H. Wheeler, 1980. L T P C 3 0 0 3 89 |
| 4 | Kuzamanovic B.O. and Willems N., "Steel Design For Structural Engineers", Prentice Hall, 1977.                                                                                  |
| 5 | William McGuire, "Steel Structures", Prentice Hall Inc., Englewood Cliffs, N.J., 1986.                                                                                          |

| COURSE OUTCOMES:<br>Upon completion of the course, the students will be able to: |                                                                               | Bloom's<br>Taxonomy<br>Mapped |
|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|
| CO1                                                                              | Indicate the properties of Cold formed steel structures.                      | K2                            |
| CO2                                                                              | Apply the knowledge of thin elements in the design of cold formed steel.      | K3                            |
| CO3                                                                              | Perform design of cold formed steel flexural members as per codal provisions. | K3                            |
| CO4                                                                              | Design the compression members as per codal provisions.                       | K3                            |
| CO5                                                                              | Check the adequacy of cold formed steel beam columns as per codal provisions  | K3                            |

| COURSE ARTICU          | COURSE ARTICULATION MATRIX |        |     |     |     |     |  |  |  |  |  |
|------------------------|----------------------------|--------|-----|-----|-----|-----|--|--|--|--|--|
| COs/POs                | PO1                        | PO2    | PO3 | PO4 | PO5 | PO6 |  |  |  |  |  |
| CO1                    | 2                          | -      | 2   | 1   | 1   | 1   |  |  |  |  |  |
| CO2                    | 2                          | -      | 1   | 2   | 2   | 1   |  |  |  |  |  |
| CO3                    | 2                          | -      | 2   | 3   | 2   | 2   |  |  |  |  |  |
| CO4                    | 2                          | -      | 1   | 2   | 2   | 2   |  |  |  |  |  |
| CO5                    | 2                          | -      | 1   | 3   | 2   | 2   |  |  |  |  |  |
| 23SEPE22               | 2                          | -      | 2   | 3   | 2   | 2   |  |  |  |  |  |
| 1 - Slight, $2 - Mode$ | erate, 3 – Subst           | antial |     |     |     |     |  |  |  |  |  |

| ASSESSMENT I   | PATTERN – THE | ORY           |          |           |            |          |       |
|----------------|---------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering   | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %        | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 40            | 40            | 20       |           |            |          | 100   |
| CAT2           | 30            | 50            | 20       |           |            |          | 100   |
| Individual     | 20            | 40            | 40       |           |            |          | 100   |
| Assessment 1 / |               |               |          |           |            |          |       |
| Case Study 1/  |               |               |          |           |            |          |       |
| Seminar 1 /    |               |               |          |           |            |          |       |
| Project1       |               |               |          |           |            |          |       |
| Individual     | 20            | 40            | 40       |           |            |          | 100   |
| Assessment 2 / |               |               |          |           |            |          |       |
| Case Study 2/  |               |               |          |           |            |          |       |
| Seminar 2 /    |               |               |          |           |            |          |       |
| Project 2      |               |               |          |           |            |          |       |
| ESE            | 40            | 40            | 20       |           |            |          | 100   |

| 23SEPE23                                                                                                                                                                                                    |                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                        |                                                                                 |                                                    |                                                                                            |                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| PREREQUISI                                                                                                                                                                                                  | ГES                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CATEGORY                                                                                                                                                                                                                                               | L                                                                               | Т                                                  | Р                                                                                          | С                                                                                                                   |
|                                                                                                                                                                                                             |                                                                                                         | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PE                                                                                                                                                                                                                                                     | 3                                                                               | 0                                                  | 0                                                                                          | 3                                                                                                                   |
| Course                                                                                                                                                                                                      | То                                                                                                      | tive an exposure of various smart ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | terials for measuring tech                                                                                                                                                                                                                             | niques, s                                                                       | signal                                             | proce                                                                                      | ssing and                                                                                                           |
| Objectives                                                                                                                                                                                                  | con                                                                                                     | rol systems and structural health mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nitoring systems.                                                                                                                                                                                                                                      |                                                                                 |                                                    |                                                                                            |                                                                                                                     |
| UNIT – I                                                                                                                                                                                                    | IN                                                                                                      | RODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                        |                                                                                 | 9 Per                                              | riods                                                                                      |                                                                                                                     |
| Properties of sn                                                                                                                                                                                            | nart 1                                                                                                  | aterials - mechanisms – instrumente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ed structures functions an                                                                                                                                                                                                                             | d respo                                                                         | nse se                                             | nsing                                                                                      | system -                                                                                                            |
| self-diagnosis –                                                                                                                                                                                            | signa                                                                                                   | l processing consideration – actuation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n systems and effectors                                                                                                                                                                                                                                |                                                                                 |                                                    |                                                                                            |                                                                                                                     |
| UNIT – II                                                                                                                                                                                                   | MF                                                                                                      | ASURING TECHNIQUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                        |                                                                                 |                                                    | 9 Per                                                                                      | riods                                                                                                               |
| Strain measurin                                                                                                                                                                                             | g tec                                                                                                   | nniques using electrical strain gauge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es, types – resistance-cap                                                                                                                                                                                                                             | acitance                                                                        | -ind                                               | uctanc                                                                                     | e- whea                                                                                                             |
| stone bridges-pr                                                                                                                                                                                            | essui                                                                                                   | e transducers-load cells- temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | compensation - strain ros                                                                                                                                                                                                                              | ettes                                                                           |                                                    |                                                                                            |                                                                                                                     |
| UNIT – III                                                                                                                                                                                                  | - III SENSORS AND ACTUATORS                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                        |                                                                                 | 9 Periods                                          |                                                                                            |                                                                                                                     |
|                                                                                                                                                                                                             | SE                                                                                                      | SORS AND ACTUATORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                        |                                                                                 |                                                    | 9 Per                                                                                      | riods                                                                                                               |
|                                                                                                                                                                                                             |                                                                                                         | <b>SORS AND ACTUATORS</b><br>- types of sensors – physical mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | surement using piezo el                                                                                                                                                                                                                                | ectric st                                                                       | rain 1                                             |                                                                                            |                                                                                                                     |
| Sensing technol                                                                                                                                                                                             | logy                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÷ .                                                                                                                                                                                                                                                    |                                                                                 |                                                    | neasu                                                                                      | rement -                                                                                                            |
| Sensing technol<br>inductively read                                                                                                                                                                         | logy<br>1 trar                                                                                          | - types of sensors - physical mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s - fiber optic strain sens                                                                                                                                                                                                                            | sors - A                                                                        | ctuato                                             | neasu<br>or tech                                                                           | rement -<br>niques -                                                                                                |
| Sensing technol<br>inductively read<br>Actuator and A                                                                                                                                                       | logy<br>1 trar<br>ctuat                                                                                 | - types of sensors – physical mea<br>sducers – LVDT – fiber techniques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s - fiber optic strain sens<br>ctro resistive material – 1                                                                                                                                                                                             | sors - A<br>magneto                                                             | ctuato<br>struc                                    | neasu<br>or tech<br>ture n                                                                 | rement -<br>niques -<br>naterial -                                                                                  |
| Sensing technol<br>inductively read<br>Actuator and A<br>shape memory a                                                                                                                                     | logy<br>1 trar<br>ctuat<br>alloys                                                                       | – types of sensors – physical mea<br>sducers – LVDT – fiber techniques<br>or materials - piezo electric and elec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s - fiber optic strain sens<br>ctro resistive material – r<br>ro magnetic actuation – r                                                                                                                                                                | sors - A<br>magneto                                                             | ctuato<br>struc                                    | neasu<br>or tech<br>ture n                                                                 | rement -<br>nniques -<br>naterial -<br>l actuator                                                                   |
| Sensing technol<br>inductively read<br>Actuator and A<br>shape memory a<br>materials<br>UNIT – IV                                                                                                           | logy<br>1 trar<br>ctuat<br>alloy:<br><b>SIC</b>                                                         | <ul> <li>types of sensors – physical mea</li> <li>sducers – LVDT – fiber techniques</li> <li>materials - piezo electric and electric</li> <li>electro ortheological fluids– electro</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s - fiber optic strain sens<br>ctro resistive material – 1<br>ro magnetic actuation – r<br>ROL SYSTEMS                                                                                                                                                 | sors - A<br>magneto<br>role of a                                                | ctuato<br>struc                                    | neasu<br>or tech<br>ture n<br>rs and<br><b>9 Per</b>                                       | rement -<br>nniques -<br>naterial -<br>l actuator                                                                   |
| Sensing technol<br>inductively reac<br>Actuator and A<br>shape memory a<br>materials<br>UNIT – IV<br>DataAcquisition                                                                                        | logy<br>l trar<br>ctuat<br>alloys<br><b>SIC</b><br>aandp                                                | <ul> <li>types of sensors – physical mea</li> <li>sducers – LVDT – fiber techniques</li> <li>or materials - piezo electric and electric</li> <li>electro ortheological fluids– electric</li> <li>NAL PROCESSING AND CONTI</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s - fiber optic strain sens<br>ctro resistive material – r<br>ro magnetic actuation – r<br><b>ROL SYSTEMS</b><br>lforsmartstructures–senso                                                                                                             | sors - A<br>magneto<br>role of a                                                | ctuato<br>struc<br>ctuato                          | neasu<br>or tech<br>ture n<br>rs and<br><b>9 Per</b>                                       | rement -<br>niques -<br>naterial -<br>l actuator<br><b>iods</b>                                                     |
| Sensing technol<br>inductively read<br>Actuator and A<br>shape memory a<br>materials<br>UNIT – IV<br>DataAcquisition                                                                                        | logy<br>1 trar<br>ctuat<br>alloys<br><b>SIC</b><br>aandp                                                | <ul> <li>types of sensors – physical mea<br/>sducers – LVDT – fiber techniques<br/>or materials - piezo electric and elect<br/>– electro ortheological fluids– elect</li> <li>NAL PROCESSING AND CONTI<br/>rocessing–signalprocessingandcontro<br/>pcessing–control system– linear and to<br/>RODUCTION TO STRUCTURAL</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s - fiber optic strain sens<br>ctro resistive material – 1<br>ro magnetic actuation – r<br>ROL SYSTEMS<br>lforsmartstructures–senso<br>nonlinear.                                                                                                      | sors - A<br>magneto<br>role of a<br>rs                                          | ctuato<br>struc<br>ctuato                          | neasu<br>or tech<br>ture n<br>rs and<br><b>9 Per</b>                                       | rement -<br>nniques -<br>naterial -<br>l actuator<br><b>iods</b><br>ometrica                                        |
| Sensing technol<br>inductively read<br>Actuator and A<br>shape memory a<br>materials<br>UNIT – IV<br>DataAcquisition<br>processors– sigr<br>UNIT – V                                                        | logy<br>l trar<br>ctuat<br>alloy:<br><b>SIC</b><br>andp<br>nal pr<br><b>IN</b><br>( <b>SH</b>           | <ul> <li>types of sensors – physical mea<br/>sducers – LVDT – fiber techniques<br/>or materials - piezo electric and elect<br/>– electro ortheological fluids– elect</li> <li>NAL PROCESSING AND CONTI<br/>rocessing–signalprocessingandcontro<br/>pcessing–control system– linear and to<br/>RODUCTION TO STRUCTURAL</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s - fiber optic strain sens<br>ctro resistive material – r<br>ro magnetic actuation – r<br><b>ROL SYSTEMS</b><br>lforsmartstructures–senso<br>nonlinear.<br>L HEALTH MONITOR                                                                           | sors - A<br>magneto<br>role of a<br>rs<br>ING                                   | ctuato<br>struc<br>ctuato<br>as                    | neasu<br>or tech<br>ture n<br>rs and<br><b>9 Per</b><br><b>9 Per</b>                       | rement -<br>nniques -<br>naterial -<br>l actuator<br><b>iods</b><br>ometrica                                        |
| Sensing technol<br>inductively read<br>Actuator and A<br>shape memory a<br>materials<br><b>UNIT – IV</b><br>DataAcquisition<br>processors– sigr<br><b>UNIT – V</b><br>Definition & me                       | logy<br>l trar<br>ctuat<br>alloys<br><b>SIC</b><br>aandp<br>nal pr<br><b>IN</b><br>( <b>SH</b><br>otiva | <ul> <li>types of sensors – physical mea<br/>sducers – LVDT – fiber techniques<br/>or materials - piezo electric and electric<br/>electro ortheological fluids– electric</li> <li>NAL PROCESSING AND CONTINATION CONTINUES</li> <li>vocessing–signalprocessingandcontro<br/>pocessing–control system– linear and not control system– linear and not contr</li></ul> | s - fiber optic strain sens<br>ctro resistive material – r<br>ro magnetic actuation – r<br><b>ROL SYSTEMS</b><br>Iforsmartstructures–senson<br>nonlinear.<br>L HEALTH MONITOR                                                                          | sors - A<br>magneto<br>role of a<br>rs<br>ING<br>es – SHI                       | ctuato<br>struc<br>ctuato<br>as<br>M and           | neasu<br>or tech<br>ture n<br>rs and<br><b>9 Per</b><br>ge<br><b>9 Per</b><br><b>9 Per</b> | rement -<br>nniques -<br>naterial -<br>l actuato:<br><b>iods</b><br>ometrica<br><b>iods</b>                         |
| Sensing technol<br>inductively read<br>Actuator and A<br>shape memory a<br>materials<br><b>UNIT – IV</b><br>DataAcquisition<br>processors– sigr<br><b>UNIT – V</b><br>Definition & me<br>analog between     | logy<br>I trar<br>ctuat<br>alloy:<br>SIC<br>andp<br>nal pr<br>IN<br>(SH<br>otiva<br>the 1               | <ul> <li>types of sensors – physical measures</li> <li>types of sensors – physical measures</li> <li>techniques</li> <li>materials - piezo electric and electric</li> <li>electro ortheological fluids– electric</li> <li>NAL PROCESSING AND CONTINATION</li> <li>rocessing–signalprocessingandcontro</li> <li>pocessing–control system– linear and not sensing and the system for the system of the s</li></ul>                                     | s - fiber optic strain sens<br>ctro resistive material – r<br>ro magnetic actuation – r<br><b>ROL SYSTEMS</b><br>Iforsmartstructures–senso<br>nonlinear.<br>L HEALTH MONITOR<br>art materials and structure<br>ure with SHM,SHM as a                   | sors - A<br>magneto<br>role of a<br>rs<br>ING<br>es – SHI<br>part of            | ctuato<br>struc<br>ctuato<br>as<br>M and<br>system | neasu<br>or tech<br>ture n<br>rs and<br><b>9 Per</b><br><b>9 Per</b><br>bio n<br>n man     | rement -<br>naiques -<br>naterial -<br>l actuato<br><b>iods</b><br>ometrica<br><b>iods</b><br>nimetic -<br>agement  |
| Sensing technol<br>inductively read<br>Actuator and A<br>shape memory a<br>materials<br>UNIT – IV<br>DataAcquisition<br>processors– sigr<br>UNIT – V<br>Definition & me<br>analog between<br>Passive and Ac | logy<br>l trar<br>ctuat<br>alloys<br>SIC<br>andp<br>al pr<br>al pr<br>(SH<br>otivation<br>the r<br>tive | <ul> <li>types of sensors – physical measures</li> <li>types of sensors – physical measures</li> <li>techniques</li> <li>piezo electric and electric</li> <li>electro ortheological fluids– electro</li> </ul> <b>NAL PROCESSING AND CONTI</b> Processing–signalprocessingandcontro processing–control system– linear and near and                                               | s - fiber optic strain sens<br>ctro resistive material – r<br>ro magnetic actuation – r<br>ROL SYSTEMS<br>Iforsmartstructures–senso<br>nonlinear.<br>L HEALTH MONITOR<br>art materials and structure<br>ure with SHM,SHM as a<br>sic components of SHM | sors - A<br>magneto<br>role of a<br>rs<br>ING<br>es – SHI<br>part of<br>– Appli | ctuato<br>struc<br>ctuato<br>as<br>M and<br>system | neasu<br>or tech<br>ture n<br>rs and<br><b>9 Per</b><br><b>9 Per</b><br>bio n<br>n man     | rement -<br>naiques -<br>naterial -<br>l actuato<br><b>iods</b><br>ometrica<br><b>iods</b><br>nimetic -<br>agement  |
| Sensing technol<br>inductively read<br>Actuator and A<br>shape memory a<br>materials<br>UNIT – IV<br>DataAcquisition<br>processors– sign<br>UNIT – V<br>Definition & me<br>analog between<br>Passive and Ac | logy<br>I trar<br>ctuat<br>alloys<br>SIC<br>andp<br>al pr<br>IN<br>(SH<br>otiva<br>the r<br>tive s      | <ul> <li>types of sensors – physical measures</li> <li>types of sensors – physical measures</li> <li>techniques</li> <li>materials - piezo electric and electric</li> <li>electro ortheological fluids– electric</li> <li>nAL PROCESSING AND CONTINATION</li> <li>cocessing–signalprocessingandcontro</li> <li>pocessing–control system– linear and not struct</li> <li>mon for SHM, SHM – a way for smaler</li> <li>on for SHM, SHM – a way for smaler</li> <li>mous system of a man and a struct</li> <li>HM, NDE, SHM and NDECS – ba</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s - fiber optic strain sens<br>ctro resistive material – r<br>ro magnetic actuation – r<br>ROL SYSTEMS<br>Iforsmartstructures–senso<br>nonlinear.<br>L HEALTH MONITOR<br>art materials and structure<br>ure with SHM,SHM as a<br>sic components of SHM | sors - A<br>magneto<br>role of a<br>rs<br>ING<br>es – SHI<br>part of<br>– Appli | ctuato<br>struc<br>ctuato<br>as<br>M and<br>system | neasu<br>or tech<br>ture n<br>rs and<br><b>9 Per</b><br><b>9 Per</b><br>bio n<br>n man     | rement -<br>nniques -<br>naterial -<br>l actuator<br><b>iods</b><br>ometrica<br><b>iods</b><br>nimetic -<br>agement |

| 1 | Brain Culshaw, "Smart structures and materials Artech–Borton", London.                                                                                        |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | L.S.Srinath, "Experimental stress analysis", Tata McGraw Hill, 1998.                                                                                          |
| 3 | J.W.Dally & W.F. "Riley, Experimental stress analysis", Tata McGrawHill, 1998.                                                                                |
| 4 | Daniel Balageas, Claus-Peter FritzenamI Alfredo Guemes, "Structural Health Monitoring", Published by ISTE Ltd., U.K. 2006                                     |
| 5 | Hand book on "Repair and Rehabilitation of RCC Buildings", Published by Director General, CPWD, Govt. of India, 2002.                                         |
| 6 | Hand Book on Seismic Retro fitting of Buildings, Published by CPWD & Indian Building Congress in Association with IIT, Madras, Narosa Publishing House, 2008. |

| COUR       | SE OUTCOMES:                                                                 | Bloom's<br>Taxonomy |
|------------|------------------------------------------------------------------------------|---------------------|
| Upon c     | ompletion of the course, the students will be able to:                       | Mapped              |
| CO1        | Gain knowledge on smart materials, function and response sensing systems     | K1                  |
| CO2        | Apply the various strain measuring techniques                                | K2                  |
| CO3        | Know the working mechanism of sensors and actuators.                         | K2                  |
| <b>CO4</b> | Use data acquisition signal processing and control systems effectively.      | К3                  |
| CO5        | Familiarize about Structural Health Monitoring system and its application in | K3                  |
|            | civil Engineering field.                                                     |                     |

| COURSE ARTICULATION MATRIX |               |     |     |     |     |     |  |  |
|----------------------------|---------------|-----|-----|-----|-----|-----|--|--|
| COs/POs                    | PO1           | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |
| CO1                        | 1             | -   | 2   | 1   | 1   | -   |  |  |
| CO2                        | 2             | -   | 2   | 1   | 1   | -   |  |  |
| CO3                        | 2             | -   | 2   | 3   | 2   | 1   |  |  |
| CO4                        | 2             | -   | 3   | 3   | 3   | 2   |  |  |
| CO5                        | 3             | -   | 3   | 3   | 3   | 3   |  |  |
| 23SEPE23                   | 3             | -   | 3   | 3   | 3   | 3   |  |  |
| 1 – Slight, 2 – Moderate,  | 3 – Substanti | al  | •   |     |     |     |  |  |

| ASSESSMENT I   | PATTERN – THI | EORY          |          |           |            |          |       |
|----------------|---------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering   | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %        | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 30            | 40            | 30       | -         | -          | -        | 100   |
| CAT2           | 30            | 40            | 30       | -         | -          | -        | 100   |
| Individual     | 30            | 40            | 30       | -         | -          | -        | 100   |
| Assessment 1 / |               |               |          |           |            |          |       |
| Case Study 1/  |               |               |          |           |            |          |       |
| Seminar 1 /    |               |               |          |           |            |          |       |
| Project1       |               |               |          |           |            |          |       |
| Individual     | 30            | 40            | 30       | -         | -          | -        | 100   |
| Assessment 2 / |               |               |          |           |            |          |       |
| Case Study 2/  |               |               |          |           |            |          |       |
| Seminar 2 /    |               |               |          |           |            |          |       |
| Project 2      |               |               |          |           |            |          |       |
| ESE            | 30            | 40            | 30       | -         | -          | -        | 100   |

| 23SEPE24                                                                                 | SOIL STRUCTURE                                                                                                                                                                                                                 | E INTERACTION                                              |                   |                                            |                  |     |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------|--------------------------------------------|------------------|-----|
| 258EI E24                                                                                | (Common with M.E. Geo                                                                                                                                                                                                          | otechnical Engineering)                                    |                   |                                            |                  |     |
| PREREQUISITE                                                                             | S                                                                                                                                                                                                                              | CATEGORY                                                   | L                 | Т                                          | Р                | C   |
|                                                                                          | NIL                                                                                                                                                                                                                            | PE                                                         | 3                 | 0                                          | 0                | 3   |
| Course                                                                                   | To inculcate the knowledge on soil foundation int                                                                                                                                                                              | teraction, soil models a                                   | nd ela            | astic                                      | anal             | ysi |
| Objectives                                                                               | of piles and piled raft.                                                                                                                                                                                                       |                                                            |                   |                                            |                  |     |
| UNIT – I                                                                                 | SOIL - FOUNDATION INTERACTION                                                                                                                                                                                                  |                                                            |                   | 9 Pe                                       | riods            | 5   |
| Introduction to so                                                                       | il - Foundation interaction problems - Soil beha                                                                                                                                                                               | viour - Foundation be                                      | haviou            | ır –                                       | Inter            | fac |
| behaviour - Scope                                                                        | e of soil-foundation interaction analysis - Soil respo                                                                                                                                                                         | onse models – Winkler,                                     | Elast             | ic co                                      | ontinu           | um  |
| Two parameter ela                                                                        | stic models, Elastic – Plastic behaviour – Time depe                                                                                                                                                                           | endent behaviour.                                          |                   |                                            |                  |     |
| UNIT – II                                                                                | <b>BEAMS ON ELASTIC FOUNDATION - SOIL</b>                                                                                                                                                                                      | MODELS                                                     |                   | 9 Pe                                       | riods            | 5   |
| Infinite beam –                                                                          | Two parameters - Isotropic elastic half space -                                                                                                                                                                                | - Analysis of beams                                        | of fi             | nite                                       | lengt            | h · |
| Classification of fi                                                                     | nite beams in relation to their stiffness – Analysis th                                                                                                                                                                        | hrough application pack                                    | ages              |                                            | -                |     |
| UNIT – III                                                                               | PLATE ON ELASTIC MEDIUM                                                                                                                                                                                                        |                                                            |                   | 9 Pe                                       | riods            | 5   |
| Infinite plate – W                                                                       | inkler, Two parameters, Isotropic elastic medium,                                                                                                                                                                              | Thin and thick plates                                      | – Ana             | lysis                                      | of fi            | nit |
| plates – Rectangu                                                                        | lar and circular plates – Numerical analysis of fini                                                                                                                                                                           | ite plates – Simple solu                                   | tions             | – Ar                                       | nalysi           |     |
| -                                                                                        |                                                                                                                                                                                                                                |                                                            |                   |                                            |                  | s c |
| braced cuts - Appl                                                                       | lication packages.                                                                                                                                                                                                             |                                                            |                   |                                            | 5                | s o |
| braced cuts – Appl<br>UNIT – IV                                                          | lication packages. ELASTIC ANALYSIS OF PILE                                                                                                                                                                                    |                                                            |                   |                                            | riods            |     |
| UNIT – IV                                                                                | ELASTIC ANALYSIS OF PILE                                                                                                                                                                                                       | nd load distribution – Ar                                  |                   | 9 Pe                                       | riods            | ;   |
| UNIT – IV<br>Elastic analysis of                                                         |                                                                                                                                                                                                                                |                                                            | nalysis           | <b>9 Pe</b><br>of p                        | riods            | ;   |
| UNIT – IV<br>Elastic analysis of                                                         | ELASTIC ANALYSIS OF PILE<br>single pile – Theoretical solutions for settlement and                                                                                                                                             |                                                            | nalysis<br>ckages | <b>9 Pe</b><br>of p<br>s.                  | riods            | ou  |
| UNIT – IV<br>Elastic analysis of<br>– Interaction analy<br>UNIT – V                      | ELASTIC ANALYSIS OF PILE<br>single pile – Theoretical solutions for settlement and<br>sis – Load distribution in groups with rigid cap – Pi<br>LATERALLY LOADED PILE                                                           | ile raft – Application pa                                  | nalysis           | <b>9 Pe</b><br>6 of p<br>5.<br><b>9 Pe</b> | riods<br>pile gr | rou |
| UNIT – IV<br>Elastic analysis of<br>– Interaction analy<br>UNIT – V<br>Load deflection p | <b>ELASTIC ANALYSIS OF PILE</b><br>single pile – Theoretical solutions for settlement and<br>sis – Load distribution in groups with rigid cap – Pi                                                                             | ile raft – Application particular reaction and elastic and | nalysis           | <b>9 Pe</b><br>6 of p<br>5.<br><b>9 Pe</b> | riods<br>pile gr | ou  |
| UNIT – IV<br>Elastic analysis of<br>– Interaction analy<br>UNIT – V<br>Load deflection p | ELASTIC ANALYSIS OF PILE<br>single pile – Theoretical solutions for settlement and<br>rsis – Load distribution in groups with rigid cap – Pit<br>LATERALLY LOADED PILE<br>orediction for laterally loaded piles – Subgrade re- | ile raft – Application particular reaction and elastic and | nalysis           | <b>9 Pe</b><br>6 of p<br>5.<br><b>9 Pe</b> | riods<br>pile gr | ou  |

| 1 | Saran, S., "Analysis and design of substructures", Taylor & Francis Publishers, 2006.                 |
|---|-------------------------------------------------------------------------------------------------------|
| 2 | Hemsley, J.A., "Elastic Analysis of Raft Foundations", Thomas Telford, 1998                           |
| 3 | Poulos, H.G., and Davis, E.H., "Pile Foundation Analysis and Design", John Wiley, 2008                |
| 4 | Murthy, V.N.S., "Advanced Foundation Engineering", CBS Publishers, New Delhi, 2007                    |
| 5 | McCarthy, R.N., "Essentials of Soil Mechanics and Foundations: Basic Geotechnics", Sixth Edition,     |
|   | Prentice Hall, 2002                                                                                   |
| 6 | Selvadurai, A.P.S., "Elastic Analysis of Soil Foundation Interaction", Elsevier, 1979.                |
| 7 | Scott, R.F., "Foundation Analysis", Prentice Hall, 1981                                               |
| 8 | Structure Soil Interaction – State of Art Report, Institution of structural Engineers, 1978. ACI 336, |
|   | Suggested Analysis and Design Procedures for Combined Footings and Mats, American Concrete            |

Suggestea Anaiysis a Institute, Delhi, 1988

| COUR       | SE OUTCOMES:                                                                              | Bloom's<br>Taxonomy |
|------------|-------------------------------------------------------------------------------------------|---------------------|
| Upon c     | ompletion of the course, the students will be able to:                                    | Mapped              |
| <b>CO1</b> | Understand various soil response models applicable to soil-foundation interaction         | K2                  |
|            | analysis.                                                                                 |                     |
| CO2        | Come up with elastic solutions for problems of pile, pile-raft system                     | K3                  |
| CO3        | Use software packages to analyze soil-foundation system including laterally loaded piles. | K3                  |
| CO4        | Acquire knowledge on elastic analysis of pile and pile group                              | К3                  |
| CO5        | Acquire knowledge on analysis of laterally loaded piles                                   | K3                  |

| COURSE ARTICULATION MATRIX |                |        |     |     |     |     |  |  |  |  |
|----------------------------|----------------|--------|-----|-----|-----|-----|--|--|--|--|
| COs/Pos                    | PO1            | PO2    | PO3 | PO4 | PO5 | PO6 |  |  |  |  |
| CO1                        | 3              | -      | 2   | 1   | 2   | 1   |  |  |  |  |
| CO2                        | 3              | -      | 2   | 1   | 2   | 1   |  |  |  |  |
| CO3                        | 3              | -      | 2   | 1   | 2   | 1   |  |  |  |  |
| CO4                        | 3              | -      | 2   | 1   | 2   | 1   |  |  |  |  |
| CO5                        | 3              | -      | 2   | 1   | 2   | 1   |  |  |  |  |
| 22SEPE24                   | 3              | -      | 2   | 1   | 2   | 1   |  |  |  |  |
| 1 - Slight, 2 - Modera     | te, 3 – Substa | intial | -   | -   |     | •   |  |  |  |  |

| Test / Bloom's | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|----------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Category*      | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 30          | 40            | 30       |           |            |          | 100   |
| CAT2           | 30          | 40            | 30       |           |            |          | 100   |
| Individual     |             | 50            | 50       |           |            |          | 100   |
| Assessment 1 / |             |               |          |           |            |          |       |
| Case Study 1/  |             |               |          |           |            |          |       |
| Seminar 1 /    |             |               |          |           |            |          |       |
| Project1       |             |               |          |           |            |          |       |
| Individual     |             | 50            | 50       |           |            |          | 100   |
| Assessment 2 / |             |               |          |           |            |          |       |
| Case Study 2/  |             |               |          |           |            |          |       |
| Seminar 2 /    |             |               |          |           |            |          |       |
| Project 2      |             |               |          |           |            |          |       |
| ESE            | 30          | 40            | 30       |           |            |          | 100   |

| 23SEPE25                                                                                                                                                                                                                                                                                                                                       | FUNDAMENTALS OF CONCRETE 3D PRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NTI                                                                                           | NG                                                                                       |                                                                                                    |                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| PREREQUIS                                                                                                                                                                                                                                                                                                                                      | ITES CATEGORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L                                                                                             | Т                                                                                        | Р                                                                                                  | С                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                | NIL PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3                                                                                             | 0                                                                                        | 0                                                                                                  | 3                                                                                                               |
| Course                                                                                                                                                                                                                                                                                                                                         | To possess knowledge on materials, mix design approaches, testing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , equ                                                                                         | ipmer                                                                                    | nts, sta                                                                                           | ges,                                                                                                            |
| Objectives                                                                                                                                                                                                                                                                                                                                     | various printing technologies, applications and impact of concrete 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BD pr                                                                                         | inting                                                                                   | •                                                                                                  |                                                                                                                 |
| UNIT – I                                                                                                                                                                                                                                                                                                                                       | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                               |                                                                                          | 9 I                                                                                                | Period                                                                                                          |
| the 3D printin<br>Advantages – I<br>- Polar printer<br><b>UNIT – II</b>                                                                                                                                                                                                                                                                        | erations for 3D printing and additive fabrication - main concepts on<br>ag of cement-based materials - Classification of 3D printing n<br>Limitations - Gantry printers - Delta Printers - Robotic arm printers -<br>Optimal selection of printers.<br>MATERIALS, TESTING AND EQUIPMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | netho<br>· Crav                                                                               | ds fo<br>wler b                                                                          | r cond<br>boom p<br><b>9 I</b>                                                                     | crete<br>orinter<br>Period                                                                                      |
| approaches – p<br>problems occu<br>Components -                                                                                                                                                                                                                                                                                                | - supplementary cementitious materials, admixtures, cement and<br>erformance requirement of 3DPC - Pumping - Extrusion - Bulidabili<br>urring during concrete extrusion printing - Shrinkage and crac<br>Concrete pump and mixing unit - Production Unit- Control Unit - T<br>umatic Extruder - Types of nozzle - Effect of nozzle shape, size, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ity - l<br>cking<br>`ypes                                                                     | Printa<br>duri<br>of ex                                                                  | bility ·<br>ng dr<br>truder                                                                        | - Other<br>ying                                                                                                 |
| UNIT – III                                                                                                                                                                                                                                                                                                                                     | MECHANICAL BEHAVIOR OF 3D PRINTED MATERIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                                                          | 9 I                                                                                                | Period                                                                                                          |
| printed cemen<br>composites - H<br>materials - an                                                                                                                                                                                                                                                                                              | rformance of the cement material printing using extrusion - Mecha<br>t materials - Effect of extrusion on the mechanical characterist<br>Effects of the additive fabrication method on the mechanical beha<br>isotropic stratified materials: possible causes - Effects of the to<br>posits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | istics<br>aviou                                                                               | of c<br>r of c                                                                           | ement<br>ement                                                                                     | -based<br>-based                                                                                                |
| printed cemen<br>composites - I<br>materials - an<br>successive dep<br>UNIT – IV<br>Stages of 3D p<br>between succes                                                                                                                                                                                                                           | t materials - Effect of extrusion on the mechanical characteries<br>Effects of the additive fabrication method on the mechanical beha<br>isotropic stratified materials: possible causes - Effects of the to<br>osits.<br><b>EXTRUSION AND CASTING</b><br>printing process - criteria for pumping material in a fresh state -<br>ssive deposits and effect of water content - change of rheology: physical strategies of the state - the stategies of the stategies | istics<br>iviou<br>time<br>effec<br>ysico                                                     | of c<br>r of c<br>interv<br>t of t<br>- cher                                             | eement<br>eement<br>vals bo<br><b>9 I</b><br>ime in<br>nical a                                     | -based<br>-based<br>etween<br>Period<br>terval                                                                  |
| printed cemen<br>composites - H<br>materials - an<br>successive dep<br>UNIT – IV<br>Stages of 3D p<br>between succes<br>over time – pu                                                                                                                                                                                                         | t materials - Effect of extrusion on the mechanical characteries<br>Effects of the additive fabrication method on the mechanical beha<br>isotropic stratified materials: possible causes - Effects of the to<br>osits.<br>EXTRUSION AND CASTING<br>printing process - criteria for pumping material in a fresh state -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | istics<br>iviou<br>time<br>effec<br>ysico                                                     | of c<br>r of c<br>interv<br>t of t<br>- cher                                             | eement<br>eement<br>vals bo<br><b>9 I</b><br>ime in<br>nical a                                     | -basec<br>-basec<br>etweer<br>Period<br>tervals                                                                 |
| printed cemen<br>composites - H<br>materials - an<br>successive dep<br>UNIT – IV<br>Stages of 3D p<br>between succes<br>over time – pu                                                                                                                                                                                                         | t materials - Effect of extrusion on the mechanical characteries<br>Effects of the additive fabrication method on the mechanical beha<br>isotropic stratified materials: possible causes - Effects of the to<br>osits.<br><b>EXTRUSION AND CASTING</b><br>printing process - criteria for pumping material in a fresh state -<br>ssive deposits and effect of water content - change of rheology: phy<br>mping – extrusion - other problems occurring during concrete extrust                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | istics<br>aviou:<br>time<br>effec<br>ysico<br>sion j                                          | of c<br>r of c<br>interv<br>t of t<br>- cher                                             | eement<br>eement<br>vals b<br>9 H<br>ime in<br>nical a<br>ng – ef                                  | -basec<br>-basec<br>etween<br>Period<br>tervals<br>activity<br>ffect o                                          |
| printed cemen<br>composites - I<br>materials - an<br>successive dep<br>UNIT – IV<br>Stages of 3D p<br>between succes<br>over time – pu<br>bond between 1<br>UNIT – V<br>Application of<br>adoption of 3D<br>printing technol                                                                                                                   | t materials - Effect of extrusion on the mechanical characteries<br>Effects of the additive fabrication method on the mechanical beha<br>isotropic stratified materials: possible causes - Effects of the to<br>osits.<br><b>EXTRUSION AND CASTING</b><br>printing process - criteria for pumping material in a fresh state -<br>ssive deposits and effect of water content - change of rheology: phy<br>mping – extrusion - other problems occurring during concrete extrus<br>ayers - shrinkage and cracking during drying of concrete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | istics<br>aviou<br>time<br>effec<br>ysico<br>sion p<br>ING<br>velop<br>y - Ir                 | of c<br>r of c<br>interv<br>t of t<br>- cher<br>printin                                  | ement<br>rement<br>vals b<br>9 I<br>ime in<br>nical a<br>ng – ef<br>9 I<br>– Inc<br>of em          | -based<br>-based<br>etween<br>Period<br>tervals<br>activity<br>ffect o<br>Period<br>lustria<br>herging          |
| printed cemen<br>composites - I<br>materials - an<br>successive dep<br>UNIT – IV<br>Stages of 3D p<br>between succes<br>over time – pu<br>bond between I<br>UNIT – V<br>Application of<br>adoption of 3D<br>printing techno<br>Future of concer<br>Contact Perio                                                                               | t materials - Effect of extrusion on the mechanical characteries<br>Effects of the additive fabrication method on the mechanical beha<br>isotropic stratified materials: possible causes - Effects of the to<br>osits.<br><b>EXTRUSION AND CASTING</b><br>printing process - criteria for pumping material in a fresh state -<br>ssive deposits and effect of water content - change of rheology: phy<br>mping – extrusion - other problems occurring during concrete extrust<br>ayers - shrinkage and cracking during drying of concrete.<br><b>APPLICATIONS AND IMPACT OF CONCRETE 3D PRINT</b><br><sup>7</sup> 3D printing in construction industry and concrete product deposite<br>of printing - Impact of 3D printing on the construction and economy<br>plogy on society - cost benefits of 3D printing in construction –<br>rete 3D printing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | istics<br>aviou<br>time<br>effec<br>ysico<br>sion p<br><b>ING</b><br>velop<br>y - Ir<br>recei | of c<br>r of c<br>interv<br>t of t<br>- cher<br>printin<br>ment<br>mpact<br>nt adv       | ement<br>rement<br>vals b<br>9 I<br>ime in<br>nical a<br>ng – ef<br>9 I<br>– Inc<br>of em          | -based<br>-based<br>etween<br>Period<br>terval<br>activity<br>ffect o<br>Period<br>lustria<br>herging           |
| printed cemen<br>composites - I<br>materials - an<br>successive dep<br>UNIT – IV<br>Stages of 3D p<br>between succes<br>over time – pu<br>bond between 1<br>UNIT – V<br>Application of<br>adoption of 3D<br>printing technol                                                                                                                   | t materials - Effect of extrusion on the mechanical characteries<br>Effects of the additive fabrication method on the mechanical beha<br>isotropic stratified materials: possible causes - Effects of the to<br>osits.<br><b>EXTRUSION AND CASTING</b><br>printing process - criteria for pumping material in a fresh state -<br>ssive deposits and effect of water content - change of rheology: phy<br>mping – extrusion - other problems occurring during concrete extrust<br>ayers - shrinkage and cracking during drying of concrete.<br><b>APPLICATIONS AND IMPACT OF CONCRETE 3D PRINT</b><br><sup>7</sup> 3D printing in construction industry and concrete product deposite<br>of printing - Impact of 3D printing on the construction and economy<br>plogy on society - cost benefits of 3D printing in construction –<br>rete 3D printing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | istics<br>aviou<br>time<br>effec<br>ysico<br>sion p<br><b>ING</b><br>velop<br>y - Ir<br>recei | of c<br>r of c<br>interv<br>t of t<br>- cher<br>printin<br>ment<br>mpact<br>nt adv       | ement<br>rement<br>vals b<br>9 I<br>ime in<br>nical a<br>ng – ef<br>9 I<br>– Inc<br>of em          | -basec<br>-basec<br>etweer<br>Period<br>tervals<br>activity<br>ffect of<br>Period<br>lustria<br>herging         |
| printed cemen<br>composites - I<br>materials - an<br>successive dep<br>UNIT – IV<br>Stages of 3D p<br>between succes<br>over time – pu<br>bond between 1<br>UNIT – V<br>Application of<br>adoption of 3E<br>printing techno<br>Future of conce<br>Contact Perio<br>Lecture: 45 Perio<br>REFERENC                                               | t materials - Effect of extrusion on the mechanical characteries<br>Effects of the additive fabrication method on the mechanical behavisotropic stratified materials: possible causes - Effects of the trosits.<br>EXTRUSION AND CASTING<br>printing process - criteria for pumping material in a fresh state - sive deposits and effect of water content - change of rheology: phymping – extrusion - other problems occurring during concrete extrust<br>ayers - shrinkage and cracking during drying of concrete.<br>APPLICATIONS AND IMPACT OF CONCRETE 3D PRINT<br>T 3D printing in construction industry and concrete product devo<br>opprinting - Impact of 3D printing on the construction and economy<br>ology on society - cost benefits of 3D printing in construction –<br>rete 3D printing.<br>ds:<br>eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | istics<br>aviou<br>time<br>effec<br>ysico<br>sion p<br>velop<br>y - Ir<br>recen               | of c<br>r of c<br>interv<br>t of t<br>- cher<br>printin<br>ment<br>npact<br>nt adv       | ement<br>ement<br>vals b<br>9 I<br>ime in<br>nical a<br>ng – ef<br>9 I<br>– Inc<br>of em<br>vancen | -based<br>-based<br>etween<br>Period<br>terval<br>activity<br>ffect o<br>Period<br>lustria<br>herging<br>nents  |
| printed cemen<br>composites - I<br>materials - an<br>successive dep<br>UNIT – IV<br>Stages of 3D p<br>between succes<br>over time – pu<br>bond between D<br>UNIT – V<br>Application of<br>adoption of 3D<br>printing techno<br>Future of conce<br>Contact Perio<br>Lecture: 45 Perio<br>Lecture: 45 Perio<br>Lecture: 45 Perio<br>2019 (ISBN - | t materials - Effect of extrusion on the mechanical characteries<br>and the additive fabrication method on the mechanical behavisotropic stratified materials: possible causes - Effects of the troosits.<br><b>EXTRUSION AND CASTING</b><br>printing process - criteria for pumping material in a fresh state - assive deposits and effect of water content - change of rheology: phymping - extrusion - other problems occurring during concrete extrust<br>ayers - shrinkage and cracking during drying of concrete.<br><b>APPLICATIONS AND IMPACT OF CONCRETE 3D PRINT</b><br>T 3D printing in construction industry and concrete product dev<br>printing - Impact of 3D printing on the construction and economy<br>along on society - cost benefits of 3D printing in construction - arete 3D printing.<br><b>ds:</b><br><b>eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 P</b><br><b>CES :</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | effec<br>ysico<br>sion j<br>ING<br>yelop<br>y - Ir<br>recer                                   | of c<br>r of c<br>interv<br>t of t<br>- cher<br>printin<br>ment<br>mpact<br>nt adv<br>ds | ement<br>ement<br>vals b<br>9 H<br>ime in<br>nical a<br>ng – ef<br>9 H<br>– Inc<br>of em<br>vancen | -based<br>-based<br>etwees<br>Period<br>terval<br>activity<br>ffect of<br>Period<br>lustria<br>herginy<br>nents |

3 Bakker R, "Smart Buildings: Technology and the design of the Built Environment", RIBA Publications, 2020.

4 Wangler R and R.J Flatt, "Concrete and Digital fabrication: Digital Concrete 2018", Conference Proceedings RILEM Book series, 2019.

| COUI | COURSE OUTCOMES:                                                                    |        |  |  |  |  |
|------|-------------------------------------------------------------------------------------|--------|--|--|--|--|
| Upon | completion of the course, the students will be able to:                             | Mapped |  |  |  |  |
| CO1  | Illustrate the genereal considerations, concepts and classifications of concrete 3D | K2     |  |  |  |  |
|      | printing                                                                            |        |  |  |  |  |
| CO2  | Identify materials, testing and equipments for concrete 3D printing                 | K2     |  |  |  |  |
| CO3  | Evaluate the Mechanical behaviour of 3D printed material                            | K2     |  |  |  |  |
| CO4  | To analyse the extrusion and casting process involved in 3D printing process        | K2     |  |  |  |  |
| CO5  | Utilize 3D printing technologies based on its applications and impact               | K2     |  |  |  |  |

| COURSE ARTICU        | COURSE ARTICULATION MATRIX |          |     |     |     |     |  |  |  |  |  |
|----------------------|----------------------------|----------|-----|-----|-----|-----|--|--|--|--|--|
| COs/POs              | PO1                        | PO2      | PO3 | PO4 | PO5 | PO6 |  |  |  |  |  |
| CO1                  | 3                          | 2        | 3   | 3   | 3   | 3   |  |  |  |  |  |
| CO2                  | 3                          | 2        | 3   | 3   | 3   | 3   |  |  |  |  |  |
| CO3                  | 3                          | 2        | 3   | 3   | 3   | 3   |  |  |  |  |  |
| CO4                  | 3                          | 2        | 3   | 3   | 3   | 3   |  |  |  |  |  |
| CO5                  | 3                          | 2        | 3   | 3   | 3   | 3   |  |  |  |  |  |
| 23SEPE25             | 3                          | 2        | 3   | 3   | 3   | 3   |  |  |  |  |  |
| 1 - Slight, 2 - Mode | erate, 3 – Sub             | stantial |     |     |     |     |  |  |  |  |  |

| Test / Bloom's | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Fotal % |
|----------------|-------------|---------------|----------|-----------|------------|----------|---------|
| Category*      | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   |         |
| CAT1           | 40          | 50            | 10       | -         | -          | -        | 100     |
| CAT2           | 40          | 50            | 10       | -         | -          | -        | 100     |
| Individual     | 30          | 50            | 20       | -         | -          | -        | 100     |
| Assessment 1 / |             |               |          |           |            |          |         |
| Case Study 1/  |             |               |          |           |            |          |         |
| Seminar 1 /    |             |               |          |           |            |          |         |
| Project1       |             |               |          |           |            |          |         |
| Individual     | 30          | 50            | 20       | -         | -          | -        | 100     |
| Assessment 2 / |             |               |          |           |            |          |         |
| Case Study 2/  |             |               |          |           |            |          |         |
| Seminar 2 /    |             |               |          |           |            |          |         |
| Project 2      |             |               |          |           |            |          |         |
| ESE            | 40          | 50            | 10       | -         | -          | -        | 100     |

| 23SEPE26                                                                                     | NANO TEC                                                                                                                     | HNOLOGY                                  |                |             |                   |        |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|-------------|-------------------|--------|
| PREREQUIS                                                                                    | ITES                                                                                                                         | CATEGORY                                 | L              | Т           | Р                 | С      |
|                                                                                              | NIL                                                                                                                          | 0                                        | 0              | 3           |                   |        |
| Course                                                                                       | To know the fundamentals of Nanomaterials                                                                                    | and applications of Na                   | anote          | chno        | logy iı           | 1      |
| objectives                                                                                   | Civil Engineering.                                                                                                           |                                          |                |             | 0.                |        |
| UNIT – I                                                                                     | INTRODUCTION TO NANOMATERIA                                                                                                  | LS                                       |                |             | 9 Pe              | eriod  |
| Fundamentals                                                                                 | of materials science and Structure: Introdu                                                                                  | ction - microstructure                   | e, ar          | d na        | nostru            | cture  |
| Importance an                                                                                | nd examples for Nanomaterials, ceramic a                                                                                     | nd glass materials,                      | com            | posite      | e mat             | erials |
| polymeric ma                                                                                 | terials, metals and alloys- rheological fluid                                                                                | ls, metallic glasses,                    | adva           | nced        | ceran             | nics   |
| Applications o                                                                               | f modern engineering materials.                                                                                              | -                                        |                |             |                   |        |
| UNIT – II                                                                                    | NANOTECHNOLOGY IN CEMENT AN                                                                                                  | D CONCRETE                               |                |             | 9 Pe              | eriod  |
| Introduction t                                                                               | o Nanomaterials in Cement and Concrete,                                                                                      | different Nanomateria                    | als u          | sed         | in cor            | crete  |
| Development -                                                                                | of Nano concrete, Application of Nanomateri                                                                                  | als in UHPC, Nano s                      | ilica          | , den       | sificati          | ion c  |
| -                                                                                            | Nano silica, Nano alumina, Carbon Nanotube                                                                                   |                                          |                |             |                   |        |
| Nanotube (SW                                                                                 | (CNT) and Other Nanomaterials on Cement Hy                                                                                   | dration and Reinforce                    | men            | t.          |                   |        |
| UNIT – III                                                                                   | APPLICATIONS OF NANOMATERIAL                                                                                                 | S IN SMART AND                           |                |             | 9 Pe              | eriod  |
|                                                                                              | GREEN BUILDINGS                                                                                                              |                                          |                |             |                   |        |
| Nanomaterials                                                                                | -based self-healing concrete and its Sustainal                                                                               | oility – Application ar                  | eas            | of Na       | anoma             | terial |
|                                                                                              | lings -safety and security- indoor quality-mater                                                                             | • ••                                     |                |             |                   |        |
| -                                                                                            | vironmental impact control -Sustainable build                                                                                |                                          |                |             |                   |        |
| UNIT – IV                                                                                    | NANOTECHNOLOGY IN STRUCTURA                                                                                                  | L STEEL                                  |                |             | 9 Pe              | eriod  |
| Nanotechnolog                                                                                | y and Steel- Applications in steel structures for                                                                            | or strength and corro                    | sion           | resis       | tance,            | effe   |
|                                                                                              | noparticles on strength of steel- Applications                                                                               | •                                        |                |             | -                 | -      |
| fracture, stren                                                                              | gthening of steel bolts, vanadium and molyl                                                                                  | odenum Nanoparticies                     | s to           | impro       | ove de            | elaye  |
| UNIT – V                                                                                     | ADVANCES IN NANO TECHNOLOGY                                                                                                  |                                          |                |             | 9 P4              | eriod  |
|                                                                                              | on Nano -based Concrete and Steel Const                                                                                      | ruction Products: Or                     | timi           | zatio       |                   |        |
|                                                                                              | ent Materials- Functional Nanomaterials and the                                                                              | •                                        | , un m         | Latio       |                   | Nanc   |
|                                                                                              |                                                                                                                              | ien applications.                        |                |             |                   |        |
|                                                                                              | de                                                                                                                           |                                          |                |             |                   |        |
| <b>Contact Perio</b>                                                                         |                                                                                                                              | • 0 Periods Tots                         | <u>ما</u> ، 44 | Per         | ohoi              |        |
| <b>Contact Perio</b>                                                                         |                                                                                                                              | : 0 Periods Tota                         | al: 45         | 5 Per       | iods              |        |
| Contact Perio<br>Lecture:45 Pe                                                               | eriods Tutorial: 0 Periods Practical                                                                                         | : 0 Periods Tota                         | al: 45         | 5 Per       | iods              |        |
| Contact Perio<br>Lecture:45 Pe<br>REFE                                                       | eriods Tutorial: 0 Periods Practical<br>RENCES:                                                                              |                                          |                |             |                   | ontif  |
| Contact Perio<br>Lecture:45 Pe<br>REFE                                                       | eriods Tutorial: 0 Periods Practical                                                                                         |                                          |                |             |                   | entif  |
| Contact Perio<br>Lecture:45 Perio<br>REFE<br>1 Dinesh<br>Publishir                           | eriods Tutorial: 0 Periods Practical<br>RENCES:<br>C Agrawal, "Introduction to Nanoscience                                   | e And Nanomateria                        | ls"            | Worl        | 'd Sci            | Ū      |
| Contact Perio<br>Lecture:45 Perio<br>REFE<br>1 Dinesh<br>Publishir<br>2 Fernando<br>Pruna,Se | eriods Tutorial: 0 Periods Practical<br>RENCES:<br>C Agrawal, "Introduction to Nanoscience<br>ag Company; 1st edition, 2013. | e And Nanomateria<br>Ali Nazari,Claes Go | ls"<br>oran    | Worl<br>Gra | 'd Sci<br>inqvist | ,Alin  |

- 4 Małgorzata Krystek, Leszek Szojda, Marcin Górski **"Nanomaterials in Structural Engineering"** Intech Open, 2018.
- 5 M.S. Ramachandra Rao, Shubra Singh, "Nanoscience and Nanotechnology: fundamentals to Frontiers", Wiley, 2013

|     | COURSE OUTCOMES:<br>Upon completion of the course, the students will be able to: |    |  |  |
|-----|----------------------------------------------------------------------------------|----|--|--|
| C01 | Acquire the knowledge on Nanomaterials and its properties.                       | K2 |  |  |
| CO2 | Utilize the Nano materials in Concrete construction.                             | K3 |  |  |
| CO3 | Implement the Nanomaterials in Smart and Green Buildings.                        | K3 |  |  |
| CO4 | Utilize the nanoparticles in Structural Steel.                                   | K3 |  |  |
| CO5 | Implement the advancement in Nanotechnology.                                     | К3 |  |  |

## COURSE ARTICULATION MATRIX

|                       | 1               | 1       | 1   |     |     |     |
|-----------------------|-----------------|---------|-----|-----|-----|-----|
| COs/POs               | PO1             | PO2     | PO3 | PO4 | PO5 | PO6 |
| CO1                   | 2               | 1       | 2   | 2   | 1   | 2   |
| CO2                   | 2               | 1       | 2   | 2   | 2   | 2   |
| CO3                   | 3               | 2       | 2   | 2   | 3   | 3   |
| CO4                   | 3               | 2       | 2   | 2   | 3   | 2   |
| CO5                   | 2               | 2       | 2   | 3   | 3   | 3   |
| 23SEPE26              | 3               | 2       | 2   | 3   | 3   | 3   |
| 1 - Slight, $2 - Mod$ | erate, 3 – Subs | tantial |     |     |     |     |

# ASSESSMENT PATTERN – THEORY

| Test / Bloom's | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|----------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Category*      | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 40          | 40            | 20       | -         | -          | -        | 100   |
| CAT2           | 40          | 40            | 20       | -         | -          | -        | 100   |
| Individual     | -           | 40            | 40       | 20        | -          | -        | 100   |
| Assessment 1 / |             |               |          |           |            |          |       |
| Case Study 1/  |             |               |          |           |            |          |       |
| Seminar 1 /    |             |               |          |           |            |          |       |
| Project1       |             |               |          |           |            |          |       |
| Individual     | -           | 40            | 40       | 20        | -          | -        | 100   |
| Assessment 2 / |             |               |          |           |            |          |       |
| Case Study 2/  |             |               |          |           |            |          |       |
| Seminar 2 /    |             |               |          |           |            |          |       |
| Project 2      |             |               |          |           |            |          |       |
| ESE            | 40          | 40            | 20       | -         | -          | -        | 100   |

| 23SEOE01                                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                              |                                                                                                             |                                  | ICE                                                |                                                                                              |                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------|
|                                                                                                                                                                                       |                                                                                                              | (C                                                                                                                                                                                                                                                                                                                   | Common to all I                                                                                                                                                              | Branches)<br>CATEGORY                                                                                       |                                  |                                                    | 1                                                                                            | •                                                   |
| PREREQUIS                                                                                                                                                                             | Т                                                                                                            | Р                                                                                                                                                                                                                                                                                                                    | C                                                                                                                                                                            |                                                                                                             |                                  |                                                    |                                                                                              |                                                     |
| NIL OE 3                                                                                                                                                                              |                                                                                                              |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                              |                                                                                                             |                                  |                                                    | 0                                                                                            | 3                                                   |
| Course                                                                                                                                                                                | To im                                                                                                        | part knowledge on the building                                                                                                                                                                                                                                                                                       | g bye –laws and                                                                                                                                                              | l to emphasize th                                                                                           | e sig                            | nifica                                             | nce of                                                                                       | codes                                               |
| Objectives                                                                                                                                                                            | of prac                                                                                                      | tice in construction sector.                                                                                                                                                                                                                                                                                         |                                                                                                                                                                              |                                                                                                             |                                  |                                                    |                                                                                              |                                                     |
| UNIT – I                                                                                                                                                                              | INTR                                                                                                         | ODUCTION TO BUILDING                                                                                                                                                                                                                                                                                                 | <b>G BYE-LAWS</b>                                                                                                                                                            |                                                                                                             |                                  | Ş                                                  | 9 Perio                                                                                      | ods                                                 |
| Introduction to                                                                                                                                                                       | Buildi                                                                                                       | ng Bye Laws and regulation,                                                                                                                                                                                                                                                                                          | their need and                                                                                                                                                               | l relevance, Gen                                                                                            | eral                             | defini                                             | tions s                                                                                      | such a                                              |
| building heigh                                                                                                                                                                        | nt, build                                                                                                    | ing line, FAR, Ground Cove                                                                                                                                                                                                                                                                                           | erage, set back                                                                                                                                                              | line. Introducti                                                                                            | on to                            | o Mas                                              | ster Pl                                                                                      | an an                                               |
| understanding                                                                                                                                                                         | various                                                                                                      | land uses like institutional, res                                                                                                                                                                                                                                                                                    | idential etc T                                                                                                                                                               | Cerminologies of                                                                                            | Build                            | ling b                                             | ye-law                                                                                       | /S.                                                 |
| UNIT – II                                                                                                                                                                             | ROLI                                                                                                         | OF STATUTORY BODIES                                                                                                                                                                                                                                                                                                  | 5                                                                                                                                                                            |                                                                                                             |                                  | Ģ                                                  | 9 Perio                                                                                      | ods                                                 |
|                                                                                                                                                                                       |                                                                                                              |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                              |                                                                                                             |                                  |                                                    |                                                                                              |                                                     |
| Role of vario                                                                                                                                                                         | ous stat                                                                                                     | tory bodies governing build                                                                                                                                                                                                                                                                                          | ding works lil                                                                                                                                                               | ke development                                                                                              | auth                             | noritie                                            | es, mu                                                                                       | nicipa                                              |
|                                                                                                                                                                                       |                                                                                                              | atory bodies governing build<br>I Planning Authority, Town a                                                                                                                                                                                                                                                         | 0                                                                                                                                                                            | •                                                                                                           |                                  |                                                    |                                                                                              | -                                                   |
|                                                                                                                                                                                       |                                                                                                              |                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                            | •                                                                                                           |                                  |                                                    |                                                                                              | -                                                   |
| corporations e                                                                                                                                                                        | tc. Loca                                                                                                     |                                                                                                                                                                                                                                                                                                                      | and Country p                                                                                                                                                                | •                                                                                                           |                                  | Mini                                               |                                                                                              | f urba                                              |
| corporations e<br>development.<br>UNIT – III                                                                                                                                          | tc. Loca                                                                                                     | l Planning Authority, Town a                                                                                                                                                                                                                                                                                         | and Country p                                                                                                                                                                | lanning organisa                                                                                            | ition,                           | Mini                                               | stry of<br>9 Perio                                                                           | f urbai                                             |
| corporations e<br>development.<br>UNIT – III<br>Interpretation                                                                                                                        | tc. Loca<br>APPL<br>of infor                                                                                 | I Planning Authority, Town a                                                                                                                                                                                                                                                                                         | and Country p <b>BYE-LAWS</b> luding ongoing                                                                                                                                 | lanning organisa                                                                                            | tion,                            | Mini<br>9<br>n vari                                | stry of<br><b>Peric</b><br>ous an                                                            | f urban<br>ods                                      |
| corporations e<br>development.<br>UNIT – III<br>Interpretation<br>and appendice                                                                                                       | tc. Loca<br>APPL<br>of infor<br>s. Appl                                                                      | l Planning Authority, Town a<br>ICATION OF BUILDING B<br>mation given in bye laws incl                                                                                                                                                                                                                               | and Country p<br>BYE-LAWS<br>luding ongoing<br>ctural safety, fi                                                                                                             | lanning organisa<br>changes as sho<br>ire safety, eartho                                                    | tion,                            | Mini<br>9<br>n vari                                | stry of<br><b>Peric</b><br>ous an                                                            | f urban<br>ods                                      |
| corporations e<br>development.<br><b>UNIT – III</b><br>Interpretation<br>and appendice<br>electricity, wat                                                                            | tc. Loca<br>APPL<br>of infor<br>s. Appl<br>er, and                                                           | I Planning Authority, Town a<br>ICATION OF BUILDING B<br>mation given in bye laws incl<br>ication of Bye-laws like struct                                                                                                                                                                                            | and Country p<br>BYE-LAWS<br>luding ongoing<br>ctural safety, fi<br>s building types                                                                                         | lanning organisa<br>changes as sho<br>ire safety, eartho                                                    | tion,                            | Mini<br>9<br>n vari<br>e safet                     | stry of<br><b>Peric</b><br>ous an                                                            | f urban<br>ods<br>nexure<br>sement                  |
| corporations e<br>development.<br>UNIT – III<br>Interpretation<br>and appendice<br>electricity, wat<br>UNIT – IV                                                                      | tc. Loca<br>APPL<br>of infor<br>s. Appl<br>ter, and<br>INTR                                                  | I Planning Authority, Town a<br>ICATION OF BUILDING B<br>mation given in bye laws include<br>ication of Bye-laws like struct<br>communication lines in various                                                                                                                                                       | and Country p<br>BYE-LAWS<br>luding ongoing<br>ctural safety, fi<br>s building types<br>F PRACTICE                                                                           | lanning organisa<br>g changes as sho<br>ire safety, eartho<br>s.                                            | ution,<br>wn in<br>quake         | Mini<br>9<br>n varie<br>9 safet                    | stry of<br><b>9 Perio</b><br>ous an<br>ty, bas<br><b>9 Perio</b>                             | f urban<br>ods<br>nexure<br>sement                  |
| corporations e<br>development.<br>UNIT – III<br>Interpretation<br>and appendice<br>electricity, wat<br>UNIT – IV<br>Introduction to                                                   | tc. Loca<br><b>APPL</b><br>of infor<br>s. Appl<br>ter, and<br><b>INTR</b><br>o various                       | I Planning Authority, Town a<br>ICATION OF BUILDING B<br>mation given in bye laws incl<br>ication of Bye-laws like struc<br>communication lines in various<br>ODUCTION TO CODES OF<br>a building codes in professiona                                                                                                | and Country p<br><b>BYE-LAWS</b><br>luding ongoing<br>ctural safety, fi<br>s building types<br><b>F PRACTICE</b><br>al practice - Co                                         | lanning organisa<br>g changes as sho<br>ire safety, eartho<br>s.<br>odes, regulations                       | tion,<br>wn ii<br>quake<br>to pr | Mini<br>9<br>n varie<br>9 safet                    | stry of<br><b>9 Perio</b><br>ous an<br>ty, bas<br><b>9 Perio</b>                             | f urban<br>ods<br>nexure<br>sement                  |
| corporations e<br>development.<br>UNIT – III<br>Interpretation<br>and appendice<br>electricity, wat<br>UNIT – IV<br>Introduction to                                                   | tc. Loca<br>of infor<br>os. Appl<br>er, and<br><b>INTR</b><br>o various<br>fare - Co                         | I Planning Authority, Town a<br>ICATION OF BUILDING B<br>mation given in bye laws incl<br>ication of Bye-laws like struct<br>communication lines in various<br>ODUCTION TO CODES OF                                                                                                                                  | and Country p<br>BYE-LAWS<br>luding ongoing<br>ctural safety, fi<br>s building types<br>F PRACTICE<br>al practice - Co<br>npliance with th                                   | lanning organisa<br>g changes as sho<br>ire safety, eartho<br>s.<br>odes, regulations                       | tion,<br>wn ii<br>quake<br>to pr | Mini<br>9<br>n varie<br>8 safet<br>9<br>otect 1    | stry of<br><b>9 Perio</b><br>ous an<br>ty, bas<br><b>9 Perio</b>                             | f urbas<br>ods<br>nexur<br>sement<br>ods<br>health  |
| corporations e<br>development.<br>UNIT – III<br>Interpretation<br>and appendice<br>electricity, wat<br>UNIT – IV<br>Introduction to<br>safety and well<br>UNIT – V                    | tc. Loca<br>of infor<br>s. Appl<br>er, and<br><b>INTR</b><br>various<br>fare - Co<br><b>APPL</b>             | I Planning Authority, Town a<br>ICATION OF BUILDING B<br>mation given in bye laws include<br>communication lines in various<br>ODUCTION TO CODES OF<br>a building codes in professional<br>odes, regulations to ensure com                                                                                           | and Country p<br><b>EXE-LAWS</b><br>luding ongoing<br>ctural safety, fi<br>s building types<br><b>F PRACTICE</b><br>al practice - Co<br>npliance with the<br><b>PRACTICE</b> | lanning organisa<br>g changes as sho<br>ire safety, eartho<br>s.<br>odes, regulations<br>ne local authority | tion,<br>wn ii<br>quake<br>to pr | Mini<br>9<br>n varie<br>9<br>safet<br>9<br>otect 1 | stry of<br><b>9 Perio</b><br>ous an<br>ty, bas<br><b>9 Perio</b><br>public<br><b>9 Perio</b> | f urban<br>ods<br>nexur<br>sement<br>ods<br>health  |
| corporations e<br>development.<br>UNIT – III<br>Interpretation<br>and appendice<br>electricity, wat<br>UNIT – IV<br>Introduction to<br>safety and well<br>UNIT – V<br>Applications of | tc. Loca<br>of infor<br>of infor<br>er, and<br>intr<br>ovarious<br>fare - Co<br>APPL<br>of vario             | I Planning Authority, Town a<br>ICATION OF BUILDING B<br>mation given in bye laws included<br>ication of Bye-laws like struct<br>communication lines in various<br>ODUCTION TO CODES OF<br>building codes in professionate<br>odes, regulations to ensure com<br>ICATION OF CODES OF P                               | and Country p<br><b>EXE-LAWS</b><br>luding ongoing<br>ctural safety, fi<br>s building types<br><b>F PRACTICE</b><br>al practice - Co<br>npliance with the<br><b>PRACTICE</b> | lanning organisa<br>g changes as sho<br>ire safety, eartho<br>s.<br>odes, regulations<br>ne local authority | tion,<br>wn ii<br>quake<br>to pr | Mini<br>9<br>n varie<br>9<br>safet<br>9<br>otect 1 | stry of<br><b>9 Perio</b><br>ous an<br>ty, bas<br><b>9 Perio</b><br>public<br><b>9 Perio</b> | f urban<br>ods<br>nexur<br>sement<br>ods<br>health  |
| corporations e<br>development.<br>UNIT – III<br>Interpretation<br>and appendice<br>electricity, wat<br>UNIT – IV<br>Introduction to<br>safety and well<br>UNIT – V<br>Applications of | tc. Loca<br>of infor<br>s. Appl<br>er, and<br><b>INTR</b><br>various<br>fare - Co<br><b>APPL</b><br>of vario | I Planning Authority, Town a<br>ICATION OF BUILDING B<br>mation given in bye laws inclu-<br>ication of Bye-laws like struct<br>communication lines in various<br>ODUCTION TO CODES OF<br>building codes in professionar<br>odes, regulations to ensure com<br>ICATION OF CODES OF P<br>us codes as per various build | and Country p<br><b>EXE-LAWS</b><br>luding ongoing<br>ctural safety, fi<br>s building types<br><b>F PRACTICE</b><br>al practice - Co<br>npliance with the<br><b>PRACTICE</b> | lanning organisa<br>g changes as sho<br>ire safety, eartho<br>s.<br>odes, regulations<br>ne local authority | tion,<br>wn ii<br>quake<br>to pr | Mini<br>9<br>n varie<br>9<br>safet<br>9<br>otect 1 | stry of<br><b>9 Perio</b><br>ous an<br>ty, bas<br><b>9 Perio</b><br>public<br><b>9 Perio</b> | f urban<br>ods<br>nexuro<br>sement<br>ods<br>health |

| 1 | "National Building Code of India 2016 – SP 7", NBC 2016, Bureau of Indian Standards.         |
|---|----------------------------------------------------------------------------------------------|
| 2 | "Model Building Bye-Laws (MBBL) – 2016", Town and Country Planning Organization, Ministry of |
|   | Housing and Urban Affairs, Government of India.                                              |
| 3 | "Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.                        |
| 4 | Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.                     |

| COUF   | RSE OUTCOMES:                                                                 | Bloom's  |
|--------|-------------------------------------------------------------------------------|----------|
|        |                                                                               | Taxonomy |
| Upon o | completion of the course, the students will be able to:                       | Mapped   |
| CO1    | Apply the building bye-laws in planning, design and construction works.       | K3       |
| CO2    | Familiarize with the role of various statutory bodies.                        | K2       |
| CO3    | Execute safety related work practices in the construction sector.             | K3       |
| CO4    | Ensure compliance with the rules and regulations in design and construction   | K3       |
|        | practices.                                                                    |          |
| CO5    | Perform design and construction practices based on national and international | K3       |
|        | codal provisions.                                                             |          |

| COURSE ARTICULATION MATRIX |                 |     |     |     |     |     |  |  |  |
|----------------------------|-----------------|-----|-----|-----|-----|-----|--|--|--|
| COs/POs                    | PO1             | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                        | 1               | 3   | 1   | 1   | 2   | 3   |  |  |  |
| CO2                        | 1               | 3   | 1   | 1   | 2   | 3   |  |  |  |
| CO3                        | 1               | 3   | 1   | 1   | 2   | 3   |  |  |  |
| CO4                        | 2               | 3   | 1   | 1   | 2   | 3   |  |  |  |
| CO5                        | 2               | 3   | 1   | 1   | 2   | 3   |  |  |  |
| 23SEOE01                   | 2               | 3   | 1   | 1   | 2   | 3   |  |  |  |
| 1 - Slight, 2 - Moderate,  | 3 – Substantial | •   |     | •   | •   | •   |  |  |  |

| ASSESSMENT P   | ATTERN – THI | EORY          |          |           |            |          |       |
|----------------|--------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering  | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %       | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 40           | 40            | 20       | -         | -          | -        | 100   |
| CAT2           | 40           | 40            | 20       | -         | -          | -        | 100   |
| Individual     | 40           | 40            | 20       | -         | -          | -        | 100   |
| Assessment 1 / |              |               |          |           |            |          |       |
| Case Study 1/  |              |               |          |           |            |          |       |
| Seminar 1 /    |              |               |          |           |            |          |       |
| Project1       |              |               |          |           |            |          |       |
| Individual     | 40           | 40            | 20       | -         | -          | -        | 100   |
| Assessment 2 / |              |               |          |           |            |          |       |
| Case Study 2/  |              |               |          |           |            |          |       |
| Seminar 2 /    |              |               |          |           |            |          |       |
| Project 2      |              |               |          |           |            |          |       |
| ESE            | 40           | 40            | 20       | -         | -          | -        | 100   |

| <b>23SEOE02</b>                                                                                                                                                                                                                    | PLANNING OF SN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                                   |                                                                                              |                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------|
|                                                                                                                                                                                                                                    | (Common to all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                   |                                                                                              | -                                                          |
| PREREQUISITE                                                                                                                                                                                                                       | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CATEGORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                                          | Т                                                 | Р                                                                                            | С                                                          |
|                                                                                                                                                                                                                                    | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | OE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                          | 0                                                 | 0                                                                                            | 3                                                          |
| Course                                                                                                                                                                                                                             | To have an exposure on planning of smart cities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | with consideration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | of the                                                     | recer                                             | nt chall                                                                                     | enge                                                       |
| Objectives                                                                                                                                                                                                                         | and to address the importance of sustainable deve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | elopment of urban an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rea.                                                       |                                                   |                                                                                              |                                                            |
| UNIT – I                                                                                                                                                                                                                           | SMART CITIES DEVELOPMENT<br>CHALLENGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | POTENTIALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AND                                                        |                                                   | 9 Peri                                                                                       | ods                                                        |
| Perspectives of Sm                                                                                                                                                                                                                 | nart Cities: Introduction and Overview - Implement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tation Challenges -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Metho                                                      | dolog                                             | gical is                                                                                     | sues                                                       |
| Spatial distribution                                                                                                                                                                                                               | n of startup cities – Re imagining postindustri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | al cities - Impleme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | entatio                                                    | n Ch                                              | allenge                                                                                      | es fo                                                      |
| Establishing Smart                                                                                                                                                                                                                 | Urban Information and Knowledge Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | System.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                            |                                                   | -                                                                                            |                                                            |
| UNIT – II                                                                                                                                                                                                                          | SUSTAINABLE URBAN PLANNING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                                   | 9 Peri                                                                                       | ods                                                        |
| Optimising Green                                                                                                                                                                                                                   | Spaces for Sustainable Urban Planning - 3D City 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Models for Extractir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ng Urb                                                     | an Er                                             | vironn                                                                                       | nenta                                                      |
| Quality Indicators                                                                                                                                                                                                                 | - Assessing the Rainwater Harvesting Potentia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l - The Strategic R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Role of                                                    | f Gre                                             | en Spa                                                                                       | aces                                                       |
| Monitoring Urban                                                                                                                                                                                                                   | Expansion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                            |                                                   | _                                                                                            |                                                            |
| monitoring crown                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                                   |                                                                                              |                                                            |
| UNIT – III                                                                                                                                                                                                                         | ENERGY MANAGEMENT AND SUSTAINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BLE DEVELOPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IENT                                                       |                                                   | 0 Dowi                                                                                       | oda                                                        |
| <u> </u>                                                                                                                                                                                                                           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | BLE DEVELOPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IENT                                                       |                                                   | 9 Peri                                                                                       | ods                                                        |
| UNIT – III                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |                                                   |                                                                                              |                                                            |
| UNIT – III<br>Alternatives for I                                                                                                                                                                                                   | ENERGY MANAGEMENT AND SUSTAINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of Energy - Effici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ient Li                                                    | ghtin                                             | ig - E                                                                                       | nerg                                                       |
| UNIT – III<br>Alternatives for I<br>Management - Ur                                                                                                                                                                                | Energy Stressed Cities - Social Acceptability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of Energy - Effici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ient Li                                                    | ghtin                                             | ig - E                                                                                       | nerg                                                       |
| UNIT – III<br>Alternatives for I<br>Management - Url<br>Green Buildings: E                                                                                                                                                         | <b>ENERGY MANAGEMENT AND SUSTAINA</b><br>Energy Stressed Cities - Social Acceptability<br>oan Dynamics and Resource Consumption - Issue                                                                                                                                                                                                                                                                                                                                                                                                                       | of Energy - Effici<br>es and Challenges o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ient Li                                                    | ightin<br>ainabl                                  | ig - E                                                                                       | nerg<br>rism                                               |
| UNIT – III<br>Alternatives for I<br>Management - Url<br>Green Buildings: F<br>UNIT – IV                                                                                                                                            | <b>ENERGY MANAGEMENT AND SUSTAINA</b><br>Energy Stressed Cities - Social Acceptability<br>oan Dynamics and Resource Consumption - Issue<br>Eco-friendly Technique for Modern Cities.                                                                                                                                                                                                                                                                                                                                                                          | of Energy - Efficies and Challenges o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ient Li                                                    | ightin<br>ainabl                                  | lg - E<br>le Tour<br><b>9 Peri</b> é                                                         | nerg<br>rism<br>o <b>ds</b>                                |
| UNIT – III<br>Alternatives for I<br>Management - Url<br>Green Buildings: E<br>UNIT – IV<br>Assessment of Do                                                                                                                        | <b>ENERGY MANAGEMENT AND SUSTAINA</b><br>Energy Stressed Cities - Social Acceptability<br>oan Dynamics and Resource Consumption - Issue<br>Eco-friendly Technique for Modern Cities.<br><b>MULTIFARIOUS MANAGEMENT FOR SM</b>                                                                                                                                                                                                                                                                                                                                 | of Energy - Efficies<br>and Challenges of<br>ART CITIES<br>ce in Urban Water 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ient Li<br>f Susta<br>Supply                               | ightin<br>ainabl                                  | lg - E<br>le Tour<br><b>9 Peri</b> essessme                                                  | nerg<br>rism<br>ods<br>ent c                               |
| UNIT – III<br>Alternatives for I<br>Management - Url<br>Green Buildings: E<br>UNIT – IV<br>Assessment of Do<br>Water Consumption                                                                                                   | ENERGY MANAGEMENT AND SUSTAINA<br>Energy Stressed Cities - Social Acceptability<br>oan Dynamics and Resource Consumption - Issue<br>Eco-friendly Technique for Modern Cities.<br>MULTIFARIOUS MANAGEMENT FOR SM<br>mestic Water Use Practices - Issue of Governance                                                                                                                                                                                                                                                                                           | of Energy - Efficies<br>and Challenges of<br>ART CITIES<br>ce in Urban Water of<br>bility - Socio-economic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ient Li<br>f Susta<br>Supply                               | ightin<br>ainabl                                  | lg - E<br>le Tour<br><b>9 Peri</b> essessme                                                  | nerg<br>rism<br>ods<br>ent c                               |
| UNIT – III<br>Alternatives for I<br>Management - Url<br>Green Buildings: E<br>UNIT – IV<br>Assessment of Do<br>Water Consumption                                                                                                   | ENERGY MANAGEMENT AND SUSTAINA<br>Energy Stressed Cities - Social Acceptability<br>oan Dynamics and Resource Consumption - Issue<br>Eco-friendly Technique for Modern Cities.<br>MULTIFARIOUS MANAGEMENT FOR SM<br>mestic Water Use Practices - Issue of Governanc<br>on at Urban Household Level - Water Sustaina                                                                                                                                                                                                                                            | of Energy - Efficies<br>and Challenges of<br>ART CITIES<br>ce in Urban Water of<br>bility - Socio-economic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ient Li<br>f Susta<br>Supply                               | ightin<br>ainabl<br>y - As<br>Deter               | lg - E<br>le Tour<br><b>9 Peri</b> essessme                                                  | nerg<br>rism<br>ods<br>ent c<br>s an                       |
| UNIT – III<br>Alternatives for I<br>Management - Url<br>Green Buildings: E<br>UNIT – IV<br>Assessment of Do<br>Water Consumptio<br>Reproductive Heal<br>UNIT – V                                                                   | ENERGY MANAGEMENT AND SUSTAINA<br>Energy Stressed Cities - Social Acceptability<br>oan Dynamics and Resource Consumption - Issue<br>Eco-friendly Technique for Modern Cities.<br>MULTIFARIOUS MANAGEMENT FOR SM<br>mestic Water Use Practices - Issue of Governance<br>on at Urban Household Level - Water Sustaina<br>thcare System - Problems and Development of Slu                                                                                                                                                                                        | of Energy - Efficies<br>and Challenges of<br>ART CITIES<br>ce in Urban Water S<br>bility - Socio-economis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ient Li<br>f Susta<br>Supply<br>omic 1                     | ightin<br>ainabl<br>- As<br>Deter                 | ig - E<br>le Tour<br>9 Perio<br>ssessmo<br>minant<br>9 Perio                                 | nerg<br>rism<br>ods<br>ent c<br>s an<br>ods                |
| UNIT – III<br>Alternatives for I<br>Management - Url<br>Green Buildings: E<br>UNIT – IV<br>Assessment of Do<br>Water Consumption<br>Reproductive Heal<br>UNIT – V<br>Introduction to Int                                           | ENERGY MANAGEMENT AND SUSTAINA<br>Energy Stressed Cities - Social Acceptability<br>oan Dynamics and Resource Consumption - Issue<br>Eco-friendly Technique for Modern Cities.<br>MULTIFARIOUS MANAGEMENT FOR SM<br>mestic Water Use Practices - Issue of Governand<br>on at Urban Household Level - Water Sustaina<br>thcare System - Problems and Development of Slu<br>INTELLIGENT TRANSPORT SYSTEM                                                                                                                                                         | of Energy - Efficies and Challenges of <b>ART CITIES</b><br>(ART CITIES)<br>(Construction of the second | ient Li<br>f Susta<br>Supply<br>omic 1<br>Netwo            | ightin<br>ainabl<br>/ - As<br>Deter               | g - E<br>le Tour<br>9 Perio<br>ssessmo<br>minant<br>9 Perio<br>otimiza                       | nerg<br>rism<br>ods<br>ent c<br>s an<br>ods<br>tion        |
| UNIT – III<br>Alternatives for I<br>Management - Url<br>Green Buildings: E<br>UNIT – IV<br>Assessment of Do<br>Water Consumption<br>Reproductive Heal<br>UNIT – V<br>Introduction to Int<br>Sensing Traffic us                     | ENERGY MANAGEMENT AND SUSTAINA<br>Energy Stressed Cities - Social Acceptability<br>oan Dynamics and Resource Consumption - Issue<br>Eco-friendly Technique for Modern Cities.<br>MULTIFARIOUS MANAGEMENT FOR SM<br>mestic Water Use Practices - Issue of Governand<br>on at Urban Household Level - Water Sustaina<br>thcare System - Problems and Development of Slu<br>INTELLIGENT TRANSPORT SYSTEM<br>elligent Transport Systems (ITS) - The Range of                                                                                                      | of Energy - Efficies and Challenges of Energy - Efficies and Challenges of EART CITIES (Construction) (Construc           | ient Li<br>f Susta<br>Supply<br>omic 1<br>Netwo<br>ation - | ightin<br>ainabl<br>- As<br>Deter<br>rk Op<br>The | ng - E<br>le Tour<br><b>9 Peri</b><br>ssessme<br>minant<br><b>9 Peri</b><br>otimiza<br>Smart | nerg<br>rism<br>ods<br>ent o<br>s an<br>ods<br>tion<br>Car |
| UNIT – III<br>Alternatives for I<br>Management - Url<br>Green Buildings: E<br>UNIT – IV<br>Assessment of Do<br>Water Consumption<br>Reproductive Heal<br>UNIT – V<br>Introduction to Int<br>Sensing Traffic us<br>Commercial Routi | ENERGY MANAGEMENT AND SUSTAINA<br>Energy Stressed Cities - Social Acceptability<br>oan Dynamics and Resource Consumption - Issue<br>Eco-friendly Technique for Modern Cities.<br>MULTIFARIOUS MANAGEMENT FOR SM<br>mestic Water Use Practices - Issue of Governand<br>on at Urban Household Level - Water Sustaina<br>thcare System - Problems and Development of Slu<br>INTELLIGENT TRANSPORT SYSTEM<br>elligent Transport Systems (ITS) - The Range of<br>ing Virtual Detectors - Vehicle Routing and Per                                                   | of Energy - Efficies and Challenges of Energy - Efficies and Challenges of EART CITIES (Construction) (Construc           | ient Li<br>f Susta<br>Supply<br>omic 1<br>Netwo<br>ation - | ightin<br>ainabl<br>- As<br>Deter<br>rk Op<br>The | ng - E<br>le Tour<br><b>9 Peri</b><br>ssessme<br>minant<br><b>9 Peri</b><br>otimiza<br>Smart | nerg<br>rism<br>ods<br>ent o<br>s an<br>ods<br>tion<br>Car |
| UNIT – III<br>Alternatives for I<br>Management - Url<br>Green Buildings: E<br>UNIT – IV<br>Assessment of Do<br>Water Consumption<br>Reproductive Heal<br>UNIT – V<br>Introduction to Int<br>Sensing Traffic us<br>Commercial Routi | ENERGY MANAGEMENT AND SUSTAINA<br>Energy Stressed Cities - Social Acceptability<br>oan Dynamics and Resource Consumption - Issue<br>Eco-friendly Technique for Modern Cities.<br>MULTIFARIOUS MANAGEMENT FOR SM<br>mestic Water Use Practices - Issue of Governand<br>on at Urban Household Level - Water Sustaina<br>thcare System - Problems and Development of Slu<br>INTELLIGENT TRANSPORT SYSTEM<br>elligent Transport Systems (ITS) - The Range of<br>ing Virtual Detectors - Vehicle Routing and Per<br>ng and Delivery - Electronic Toll Collection - | of Energy - Efficies and Challenges of Energy - Efficies and Challenges of EART CITIES (Construction) (Construc           | ient Li<br>f Susta<br>Supply<br>omic 1<br>Netwo<br>ation - | ightin<br>ainabl<br>- As<br>Deter<br>rk Op<br>The | ng - E<br>le Tour<br><b>9 Peri</b><br>ssessme<br>minant<br><b>9 Peri</b><br>otimiza<br>Smart | nerg<br>rism<br>ods<br>ent c<br>s an<br>ods<br>tion<br>Car |

| 1 | Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future            |
|---|--------------------------------------------------------------------------------------------------|
|   | Perspectives", Springer 2017 Co.(P) Ltd. 2013.                                                   |
| 2 | Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva", 2016.        |
| 3 | Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,     |
|   | Standards", and Driving Factors-Springer International Publishing, 2018.                         |
| 4 | Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems |
|   | And Smart Cities", Springer, 2015.                                                               |
| 5 | Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.     |

| COUR   | COURSE OUTCOMES:                                                       |        |  |
|--------|------------------------------------------------------------------------|--------|--|
| Upon c | ompletion of the course, the students will be able to:                 | Mapped |  |
| CO1    | Indicate the potential challenges in smart city development.           | K2     |  |
| CO2    | Select the different tools for sustainable urban planning.             | K3     |  |
| CO3    | Choose appropriate energy conservation system for smart cities.        | K3     |  |
| CO4    | Identify the proper method of water management system.                 | K3     |  |
| CO5    | Apply Intelligent Transport System concepts in planning of smart city. | K3     |  |

| COs/POs  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|----------|-----|-----|-----|-----|-----|-----|
| CO1      | 1   | -   | 2   | 3   | 1   | 1   |
| CO2      | 1   | 1   | 1   | 3   | 2   | 1   |
| CO3      | 1   | 1   | -   | 2   | 2   | 1   |
| CO4      | 1   | -   | 1   | 2   | 1   | 1   |
| CO5      | 1   | -   | 1   | 3   | 1   | -   |
| 23SEOE02 | 1   | 1   | 2   | 3   | 2   | 1   |

| ASSESSMENT PA                                                             | TTERN – THEC          | DRY                     |                    |                     |                      |                    |            |
|---------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category*                                               | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                                                                      | 25                    | 45                      | 30                 | -                   | -                    | -                  | 100        |
| CAT2                                                                      | 25                    | 45                      | 30                 | -                   | -                    | -                  | 100        |
| Individual<br>Assessment 1 /                                              | 15                    | 40                      | 45                 | -                   | -                    | -                  | 100        |
| Case Study 1/<br>Seminar 1 /<br>Project1                                  |                       |                         |                    |                     |                      |                    |            |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | 10                    | 45                      | 45                 | -                   | -                    | -                  | 100        |
| ESE                                                                       | 20                    | 40                      | 40                 | -                   | -                    | -                  | 100        |

| 23SEOE03                                                                                                                                                                                                                                                                     | GREEN BUILDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                     |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--|--|
| 255E0E05                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Common to all                                                                                                                                                                                              | Branches)                                                                                                                                                          |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                     |  |  |
| PREREQUISITE                                                                                                                                                                                                                                                                 | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                             | CATEGORY                                                                                                                                                           | L                                                         | Т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Р                                                                                         | С                                                                   |  |  |
|                                                                                                                                                                                                                                                                              | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                             | OE                                                                                                                                                                 | 3                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                         | 3                                                                   |  |  |
| Course                                                                                                                                                                                                                                                                       | To introduce the different con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ncepts of energy e                                                                                                                                                                                          | fficient buildings                                                                                                                                                 | , indo                                                    | or e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nviron                                                                                    | menta                                                               |  |  |
| Objectives                                                                                                                                                                                                                                                                   | quality management, green build                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ty management, green buildings and its design.                                                                                                                                                              |                                                                                                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                     |  |  |
| UNIT – I                                                                                                                                                                                                                                                                     | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                           | 9 Periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                           |                                                                     |  |  |
| Life cycle impact                                                                                                                                                                                                                                                            | s of materials and products -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | sustainable design                                                                                                                                                                                          | concepts - strat                                                                                                                                                   | egies                                                     | of de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | esign                                                                                     | for the                                                             |  |  |
| Environment -The                                                                                                                                                                                                                                                             | sun-earth relationship and the e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | energy balance on t                                                                                                                                                                                         | the earth's surface                                                                                                                                                | e, clim                                                   | nate, <sup>•</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | wind -                                                                                    | – Sola                                                              |  |  |
| radiation and solar                                                                                                                                                                                                                                                          | temperature – Sun shading and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | solar radiation on s                                                                                                                                                                                        | urfaces – Energy                                                                                                                                                   | impac                                                     | t on t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | he sha                                                                                    | pe and                                                              |  |  |
| orientation of build                                                                                                                                                                                                                                                         | lings – Thermal properties of buil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lding materials.                                                                                                                                                                                            |                                                                                                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                     |  |  |
| UNIT – II                                                                                                                                                                                                                                                                    | <b>ENERGY EFFICIENT BUILD</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DINGS                                                                                                                                                                                                       |                                                                                                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 Peri                                                                                    | ods                                                                 |  |  |
| Passive cooling an                                                                                                                                                                                                                                                           | nd day lighting – Active solar an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nd photovoltaic- Bu                                                                                                                                                                                         | ilding energy ana                                                                                                                                                  | lysis 1                                                   | netho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ods- B                                                                                    | uildin                                                              |  |  |
| energy simulation                                                                                                                                                                                                                                                            | - Building energy efficiency st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tandards-Lighting                                                                                                                                                                                           | system design- I                                                                                                                                                   | ightin                                                    | g ec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | onomi                                                                                     | cs and                                                              |  |  |
| aesthetics- Impact                                                                                                                                                                                                                                                           | s of lighting efficiency – Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | audit and energy ta                                                                                                                                                                                         | rgeting- Technolo                                                                                                                                                  | ogical                                                    | optio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ns for                                                                                    | energ                                                               |  |  |
|                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                     |  |  |
| management.                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                             |                                                                                                                                                                    |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                     |  |  |
|                                                                                                                                                                                                                                                                              | INDOOR ENVIRONMENTAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | L QUALITY MAN                                                                                                                                                                                               | AGEMENT                                                                                                                                                            |                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 Peri                                                                                    | ods                                                                 |  |  |
| UNIT – III                                                                                                                                                                                                                                                                   | <b>INDOOR ENVIRONMENTAI</b><br>mfort conditions- Thermal comfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                           |                                                                                                                                                                    | onditio                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                     |  |  |
| UNIT – III<br>Psychrometry- Co                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ort- Ventilation and                                                                                                                                                                                        | air quality-Air co                                                                                                                                                 |                                                           | oning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | requir                                                                                    | ement                                                               |  |  |
| <b>UNIT – III</b><br>Psychrometry- Co<br>Visual perceptior                                                                                                                                                                                                                   | mfort conditions- Thermal comfo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ort- Ventilation and<br>Auditory requirement                                                                                                                                                                | air quality-Air co<br>ent- Energy ma                                                                                                                               | nagem                                                     | oning<br>ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | requir<br>option                                                                          | ement<br>s- Ai                                                      |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perceptior<br>conditioning syste                                                                                                                                                                                                    | mfort conditions- Thermal comfore<br>- Illumination requirement- A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ort- Ventilation and<br>Auditory requirement                                                                                                                                                                | air quality-Air co<br>ent- Energy ma                                                                                                                               | nagem                                                     | oning<br>ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | requir<br>option                                                                          | ement<br>s- Ai                                                      |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perceptior<br>conditioning syste<br>equipment- Energy                                                                                                                                                                               | mfort conditions- Thermal comfort<br>- Illumination requirement- A<br>ms- Energy conservation in pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blowe                                                                                                                                          | air quality-Air co<br>ent- Energy ma                                                                                                                               | nagem                                                     | ent<br>ent<br>nes- F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | requir<br>option                                                                          | ement<br>s- Ai<br>jection                                           |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perceptior<br>conditioning syste<br>equipment- Energy<br>UNIT – IV                                                                                                                                                                  | mfort conditions- Thermal comfort<br>- Illumination requirement- A<br>ms- Energy conservation in pumpy<br>g efficient motors- Insulation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blower<br>PTS                                                                                                                                  | air quality-Air co<br>ent- Energy ma<br>rs- Refrigerating n                                                                                                        | nagem<br>nachir                                           | ent<br>ent<br>nes- F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | requir<br>option<br>Ieat re<br>9 Peri                                                     | ement<br>s- Ai<br>jection<br>ods                                    |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perceptior<br>conditioning syste<br>equipment- Energy<br>UNIT – IV<br>Green building co                                                                                                                                             | mfort conditions- Thermal comfort<br>in- Illumination requirement- A<br>ms- Energy conservation in pump<br>officient motors- Insulation.<br><b>GREEN BUILDING CONCER</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blower<br>PTS<br>pls- Leeds and IGE                                                                                                            | air quality-Air co<br>ent- Energy mar<br>rs- Refrigerating r<br>BC codes. – Mate                                                                                   | nagem<br>nachir                                           | ent<br>ent<br>nes- H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | requir<br>option<br>Ieat re<br>9 Peri<br>on Em                                            | ement<br>s- Ai<br>jection<br>ods<br>bodied                          |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perceptior<br>conditioning syste<br>equipment- Energy<br>UNIT – IV<br>Green building co<br>energy- Operating                                                                                                                        | mfort conditions- Thermal comfort<br>in- Illumination requirement- A<br>ms- Energy conservation in pump<br>y efficient motors- Insulation.<br><b>GREEN BUILDING CONCEP</b><br>ncept- Green building rating too<br>energy- Façade systems- Ventila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blower<br>PTS<br>pls- Leeds and IGE                                                                                                            | air quality-Air co<br>ent- Energy mar<br>rs- Refrigerating r<br>BC codes. – Mate                                                                                   | nagem<br>nachir                                           | ent<br>ent<br>nes- H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | requir<br>option<br>Ieat re<br>9 Peri<br>on Em                                            | ement<br>s- Ai<br>jection<br>ods<br>bodied                          |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perception<br>conditioning syste<br>equipment- Energy<br>UNIT – IV<br>Green building co<br>energy- Operating<br>efficiency- Buildir                                                                                                 | mfort conditions- Thermal comfort<br>in- Illumination requirement- A<br>ms- Energy conservation in pump<br>y efficient motors- Insulation.<br><b>GREEN BUILDING CONCEP</b><br>ncept- Green building rating too<br>energy- Façade systems- Ventila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blower<br>PTS<br>ols- Leeds and IGE<br>tion systems-Transp                                                                                     | air quality-Air co<br>ent- Energy mar<br>rs- Refrigerating r<br>BC codes. – Mate                                                                                   | nagem<br>nachir                                           | ent of the second secon | requir<br>option<br>Ieat re<br>9 Peri<br>on Em                                            | ement<br>s- Ai<br>jection<br>ods<br>bodied<br>Wate                  |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perceptior<br>conditioning syste<br>equipment- Energy<br>UNIT – IV<br>Green building co<br>energy- Operating<br>efficiency- Buildir<br>UNIT – V                                                                                     | mfort conditions- Thermal comfore-<br>Illumination requirement- A<br>ms- Energy conservation in pump<br>officient motors- Insulation.<br><b>GREEN BUILDING CONCEP</b><br>Incept- Green building rating too<br>energy- Façade systems- Ventila<br>ang economics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blower<br>PTS<br>ols- Leeds and IGE<br>tion systems-Transp<br>- CASE STUDY                                                                     | air quality-Air co<br>ent- Energy mar<br>rs- Refrigerating n<br>BC codes. – Mate<br>portation- Water t                                                             | nagem<br>nachir<br>rial se<br>reatme                      | ent ones- H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | requir<br>option<br>leat re<br><b>9 Peri</b><br>on Em<br>stems-<br><b>9 Peri</b>          | ement<br>s- Ai<br>jection<br>ods<br>bodie<br>Wate<br>ods            |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perception<br>conditioning syste<br>equipment- Energy<br>UNIT – IV<br>Green building co<br>energy- Operating<br>efficiency- Buildin<br>UNIT – V<br>Case studies - Bu                                                                | mfort conditions- Thermal comfore-<br>in- Illumination requirement- A<br>ms- Energy conservation in pump<br>officient motors- Insulation.<br><b>GREEN BUILDING CONCEP</b><br>ncept- Green building rating too<br>energy- Façade systems- Ventila<br>and economics<br><b>GREEN BUILDING DESIGN</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blower<br>PTS<br>ols- Leeds and IGE<br>tion systems-Transp<br>- CASE STUDY<br>e considerations; c                                              | air quality-Air co<br>ent- Energy mar<br>rs- Refrigerating r<br>BC codes. – Mate<br>portation- Water t                                                             | nagem<br>machir<br>rial se<br>reatme<br>sures;            | ent ones- H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | requir<br>option<br>leat re<br><b>9 Peri</b><br>on Em<br>stems-<br><b>9 Peri</b>          | ement<br>s- Ai<br>jection<br>ods<br>bodie<br>Wate<br>ods            |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perceptior<br>conditioning syste<br>equipment- Energy<br>UNIT – IV<br>Green building co<br>energy- Operating<br>efficiency- Buildir<br>UNIT – V<br>Case studies - Bu<br>heating system and                                          | mfort conditions- Thermal comfore-<br>Illumination requirement- A<br>ms- Energy conservation in pump<br>officient motors- Insulation.<br><b>GREEN BUILDING CONCEP</b><br>Incept- Green building rating too<br>energy- Façade systems- Ventila<br>and economics<br><b>GREEN BUILDING DESIGN</b><br>wilding form, orientation and sit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blower<br>PTS<br>ols- Leeds and IGE<br>tion systems-Transp<br>- CASE STUDY<br>e considerations; c                                              | air quality-Air co<br>ent- Energy mar<br>rs- Refrigerating r<br>BC codes. – Mate<br>portation- Water t                                                             | nagem<br>machir<br>rial se<br>reatme<br>sures;            | ent ones- H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | requir<br>option<br>leat re<br><b>9 Peri</b><br>on Em<br>stems-<br><b>9 Peri</b>          | ement<br>s- Ai<br>jection<br>ods<br>bodied<br>Wate<br>ods           |  |  |
| Visual perception<br>conditioning syste<br>equipment- Energy<br>UNIT – IV<br>Green building co<br>energy- Operating<br>efficiency- Buildin<br>UNIT – V<br>Case studies - Bu                                                                                                  | mfort conditions- Thermal comfore-<br>Illumination requirement- A<br>ms- Energy conservation in pump<br>officient motors- Insulation.<br><b>GREEN BUILDING CONCEP</b><br>Incept- Green building rating too<br>energy- Façade systems- Ventila<br>and economics<br><b>GREEN BUILDING DESIGN</b><br>wilding form, orientation and sitt<br>of fuel choices; renewable energy s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blower<br>PTS<br>ols- Leeds and IGE<br>tion systems-Transp<br>- CASE STUDY<br>e considerations; c                                              | air quality-Air co<br>ent- Energy mar<br>rs- Refrigerating r<br>BC codes. – Mate<br>portation- Water t<br>conservation meas<br>noices - constructi                 | nagem<br>machir<br>rrial se<br>reatme<br>sures;<br>on buc | ent of the second secon | requir<br>option<br>leat re<br><b>9 Peri</b><br>on Em<br>stems-<br><b>9 Peri</b><br>gy mo | ement<br>s- Ai<br>jection<br>ods<br>bodied<br>Wate<br>ods           |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perception<br>conditioning syste<br>equipment- Energy<br>UNIT – IV<br>Green building co<br>energy- Operating<br>efficiency- Buildin<br>UNIT – V<br>Case studies - Bu<br>heating system and<br>Contact Periods:                      | mfort conditions- Thermal comfore-<br>Illumination requirement- A<br>ms- Energy conservation in pump<br>officient motors- Insulation.<br><b>GREEN BUILDING CONCEP</b><br>Incept- Green building rating too<br>energy- Façade systems- Ventila<br>and economics<br><b>GREEN BUILDING DESIGN</b><br>wilding form, orientation and sitt<br>of fuel choices; renewable energy s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blower<br>PTS<br>ols- Leeds and IGE<br>tion systems-Transp<br>- CASE STUDY<br>e considerations; c<br>systems; material ch                      | air quality-Air co<br>ent- Energy mar<br>rs- Refrigerating r<br>BC codes. – Mate<br>portation- Water t<br>conservation meas<br>noices - constructi                 | nagem<br>machir<br>rrial se<br>reatme<br>sures;<br>on buc | ent of the second secon | requir<br>option<br>leat re<br><b>9 Peri</b><br>on Em<br>stems-<br><b>9 Peri</b><br>gy mo | ement<br>s- Ai<br>jection<br>ods<br>bodied<br>Wate<br>ods           |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perception<br>conditioning syste<br>equipment- Energy<br>UNIT – IV<br>Green building co<br>energy- Operating<br>efficiency- Buildin<br>UNIT – V<br>Case studies - Bu<br>heating system and<br>Contact Periods:                      | mfort conditions- Thermal comforement conditions requirement- A must Energy conservation in pump officient motors- Insulation.<br><b>GREEN BUILDING CONCEP</b><br>Incept- Green building rating toor energy- Façade systems- Ventilar of energy- Façade systems- Ventilar of economics<br><b>GREEN BUILDING DESIGN</b><br>milding form, orientation and sitted fuel choices; renewable energy set the systems of the systems of the system | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blower<br>PTS<br>ols- Leeds and IGE<br>tion systems-Transp<br>- CASE STUDY<br>e considerations; c<br>systems; material ch                      | air quality-Air co<br>ent- Energy mar<br>rs- Refrigerating r<br>BC codes. – Mate<br>portation- Water t<br>conservation meas<br>noices - constructi                 | nagem<br>machir<br>rrial se<br>reatme<br>sures;<br>on buc | ent of the second secon | requir<br>option<br>leat re<br><b>9 Peri</b><br>on Em<br>stems-<br><b>9 Peri</b><br>gy mo | ement<br>s- Ai<br>jection<br>ods<br>bodie<br>Wate<br>ods            |  |  |
| UNIT – III<br>Psychrometry- Co<br>Visual perception<br>conditioning syste<br>equipment- Energy<br>UNIT – IV<br>Green building co<br>energy- Operating<br>efficiency- Buildin<br>UNIT – V<br>Case studies - Bu<br>heating system and<br>Contact Periods:<br>Lecture: 45 Perio | mfort conditions- Thermal comforement conditions requirement- A must Energy conservation in pump officient motors- Insulation.<br><b>GREEN BUILDING CONCEP</b><br>Incept- Green building rating toor energy- Façade systems- Ventilar of energy- Façade systems- Ventilar of economics<br><b>GREEN BUILDING DESIGN</b><br>milding form, orientation and sitted fuel choices; renewable energy set the systems of the systems of the system | ort- Ventilation and<br>Auditory requirement<br>ps- Fans and blower<br>PTS<br>ols- Leeds and IGE<br>tion systems-Transp<br>- CASE STUDY<br>re considerations; c<br>systems; material ch<br>Practical: 0 Per | air quality-Air co<br>ent- Energy mar<br>rs- Refrigerating n<br>BC codes. – Mate<br>portation- Water t<br>conservation meas<br>noices - constructi<br>riods Total: | rial se<br>reatme<br>sures;<br>on buc                     | ent sy<br>energ<br>energ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | requir<br>option<br>Heat re<br><b>9 Peri</b><br>stems-<br><b>9 Peri</b><br>gy mo          | ement<br>s- Ai<br>jection<br>ods<br>bodied<br>Wate<br>ods<br>deling |  |  |

| 2 | Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010                |
|---|--------------------------------------------------------------------------------------------|
| 3 | Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and |

**Delivery**", 3rd Edition, 2012

4 R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

| COURS   | SE OUTCOMES:                                                                    | Bloom's  |
|---------|---------------------------------------------------------------------------------|----------|
|         |                                                                                 | Taxonomy |
| Upon co | ompletion of the course, the students will be able to:                          | Mapped   |
| CO1     | Apply the concepts of sustainable design in building construction.              | К3       |
| CO2     | Execute green building techniques including energy efficiency management in the | K3       |
|         | building design.                                                                |          |
| CO3     | Establish indoor environmental quality in green building.                       | K3       |
| CO4     | Perform the green building rating using various tools.                          | K3       |
| CO5     | Create drawings and models of green buildings.                                  | К3       |

| COURSE ARTICULATION MATRIX |                |          |     |     |     |     |  |  |  |
|----------------------------|----------------|----------|-----|-----|-----|-----|--|--|--|
| COs/POs                    | PO1            | PO2      | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                        | 3              | 3        | 2   | 3   | 3   | 3   |  |  |  |
| CO2                        | 3              | 3        | 2   | 3   | 3   | 3   |  |  |  |
| CO3                        | 2              | 2        | 2   | 2   | 3   | 3   |  |  |  |
| CO4                        | 2              | 3        | 1   | 3   | 3   | 3   |  |  |  |
| CO5                        | 3              | 3        | 1   | 3   | 3   | 3   |  |  |  |
| 23SEOE03                   | 3              | 3        | 2   | 3   | 3   | 3   |  |  |  |
| 1 – Slight, 2 – Mode       | rate, 3 – Subs | stantial |     |     |     | •   |  |  |  |

| ASSESSMENT P                                                              | ASSESSMENT PATTERN – THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |
|---------------------------------------------------------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|
| Test / Bloom's<br>Category*                                               | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |
| CAT1                                                                      | 40                          | 40                      | 20                 | -                   | -                    | -                  | 100        |  |  |  |  |
| CAT2                                                                      | 40                          | 40                      | 20                 | -                   | -                    | -                  | 100        |  |  |  |  |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | 40                          | 40                      | 20                 | -                   | -                    | -                  | 100        |  |  |  |  |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | 40                          | 40                      | 20                 | -                   | -                    | -                  | 100        |  |  |  |  |
| ESE                                                                       | 40                          | 40                      | 20                 | -                   | -                    | -                  | 100        |  |  |  |  |

| <b>23EEOE04</b>                                                                                                 | ENVIRONMENT HEALTH AN                                                                        | D SAFETY MANA         | GEM                    | ENT     |         |         |  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------|------------------------|---------|---------|---------|--|--|
| 25EEUEU4                                                                                                        | (Common to al                                                                                | l Branches)           |                        |         |         |         |  |  |
| PREREQUIS                                                                                                       | ITES                                                                                         | CATEGORY              | L                      | Т       | Р       | С       |  |  |
|                                                                                                                 | NIL                                                                                          | OE                    | 3                      | 0       | 0       | 3       |  |  |
| Course                                                                                                          | To impart knowledge on occupational health                                                   | hazards, safety m     | measures at work place |         |         |         |  |  |
| Objectives                                                                                                      | accident prevention, safety management and safe                                              | ety measures in indus | res in industries.     |         |         |         |  |  |
| UNIT – I                                                                                                        | OCCUPATIONAL HEALTH HAZARDS                                                                  |                       | 9 Periods              |         |         |         |  |  |
| Occupation, H                                                                                                   | Occupation, Health and Hazards - Safety Health and Management: Occupational Health Hazards - |                       |                        |         |         |         |  |  |
| Ergonomics -                                                                                                    | Importance of Industrial Safety - Radiation and                                              | nd Industrial Hazar   | ds: Ty                 | pes a   | nd ef   | fects - |  |  |
| Vibration - Inc                                                                                                 | dustrial Hygiene - Different air pollutants in indu                                          | stries and their effe | ects - H               | Electri | cal, fi | re and  |  |  |
| Other Hazards                                                                                                   |                                                                                              |                       |                        |         |         |         |  |  |
| UNIT – II                                                                                                       | SAFETY AT WORKPLACE 9 Periods                                                                |                       |                        |         |         |         |  |  |
| Safety at Worl                                                                                                  | xplace - Safe use of Machines and Tools: Safety                                              | in use of different t | ypes of                | f unit  | opera   | tions - |  |  |
| Ergonomics of                                                                                                   | Machine guarding - working in different workpla                                              | ces - Operation, Ins  | pection                | n and i | naint   | enance  |  |  |
| - Housekeepin                                                                                                   | g, Industrial lighting, Vibration and Noise.                                                 |                       |                        |         |         |         |  |  |
| UNIT – III                                                                                                      | ACCIDENT PREVENTION                                                                          |                       |                        | 9 P     | eriod   | 5       |  |  |
| Accident Prevention Techniques - Principles of accident prevention - Hazard identification and analysis,        |                                                                                              |                       |                        |         |         | alysis, |  |  |
| Event tree anal                                                                                                 | lysis, Hazop studies, Job safety analysis - Theories                                         | s and Principles of A | Accide                 | nt caus | sation  | - First |  |  |
| Aid: Body stru                                                                                                  | cture and functions - Fracture and Dislocation, Inj                                          | uries to various bod  | y parts                | •       |         |         |  |  |
| UNIT – IV                                                                                                       | SAFETY MANAGEMENT                                                                            |                       |                        | 9 P     | eriod   | 5       |  |  |
| Safety Manag                                                                                                    | ement System and Law - Legislative measures                                                  | in Industrial Safety  | / - Oc                 | cupati  | onal    | safety, |  |  |
| Health and En                                                                                                   | vironment Management, Bureau of Indian Standar                                               | ds on Health and Sa   | fety, I                | S 1448  | 39 sta  | ndards  |  |  |
| - OSHA, Proce                                                                                                   | ess safety management (PSM) and its principles - I                                           | EPA standards         |                        |         |         |         |  |  |
| UNIT – V                                                                                                        | GENERAL SAFETY MEASURES                                                                      |                       |                        | 9 P     | eriod   | 5       |  |  |
| Plant Layout for Safety - design and location, distance between hazardous units, lighting, colour coding, pilot |                                                                                              |                       |                        |         |         |         |  |  |
| plant studies,                                                                                                  | Housekeeping - Accidents Related with Mainten                                                | ance of Machines ·    | Work                   | e Pern  | nit Sy  | stem -  |  |  |
| Significance o                                                                                                  | f Documentation - Case studies involving imple                                               | mentation of health   | and s                  | afety   | measu   | ires in |  |  |
| Industries.                                                                                                     |                                                                                              |                       |                        |         |         |         |  |  |
| <b>Contact Perio</b>                                                                                            | ds:                                                                                          |                       |                        |         |         |         |  |  |
| Lecture: 45 P                                                                                                   | eriods Tutorial: 0 Periods Practical                                                         | : 0 Periods           | Fotal:                 | 45 Pei  | riods   |         |  |  |
|                                                                                                                 |                                                                                              |                       |                        |         |         |         |  |  |
| REFEREN                                                                                                         |                                                                                              |                       |                        |         |         |         |  |  |
| 1 "Physic                                                                                                       | c <b>al Hazards of the Workplace"</b> , Barry Spurlock, <b>(</b>                             | CRC Press, 2017.      |                        |         |         |         |  |  |

- 2 "Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications, 2019
- 3 "Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
- 4 "Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao,

PharmaMed Press, 1st edition, 2021.

| COUR   | Bloom's<br>Taxonomy                                    |        |
|--------|--------------------------------------------------------|--------|
| Upon c | ompletion of the course, the students will be able to: | Mapped |
| CO1    | Identify the occupational health hazards.              | K3     |
| CO2    | Execute various safety measures at workplace.          | K3     |
| CO3    | Analyze and execute accident prevention techniques.    | K3     |
| CO4    | Implement safety management as per various standards.  | K3     |
| CO5    | Develop awareness on safety measures in Industries.    | K3     |

| COs/POs             | PO1         | PO2 | PO3 | PO4 | PO5 | PO6 |
|---------------------|-------------|-----|-----|-----|-----|-----|
| CO1                 | 1           | 2   | 2   | 2   | 3   | 2   |
| CO2                 | 2           | 2   | 2   | 1   | 2   | 2   |
| CO3                 | 2           | 3   | 2   | 1   | 2   | 2   |
| CO4                 | 1           | 1   | 1   | 2   | 2   | 2   |
| CO5                 | 1           | 1   | 1   | 1   | 1   | 2   |
| <b>23EEOE04</b>     | 1           | 2   | 2   | 1   | 2   | 2   |
| 2 - Moderate, 3 - S | Substantial |     |     |     |     |     |

| ASSESSMENT                                                               | PATTERN – THE | ORY           |          |           |            |          |       |
|--------------------------------------------------------------------------|---------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's                                                           | Remembering   | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*                                                                | (K1) %        | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1                                                                     | 25            | 35            | 20       | 10        | 5          | 5        | 100   |
| CAT2                                                                     | 25            | 35            | 20       | 10        | 5          | 5        | 100   |
| Individual<br>Assessment 1/<br>Case Study 1/<br>Seminar 1 /<br>Project 1 | 20            | 40            | 30       | 10        | -          | -        | 100   |
| Individual<br>Assessment 2/<br>Case Study 2/<br>Seminar 2/<br>Project 2  | 20            | 40            | 30       | 10        | -          | -        | 100   |
| ESE                                                                      | 25            | 35            | 20       | 10        | 5          | 5        | 100   |

#### CLIMATE CHANGE AND ADAPTATION

(Common to all Branches)

| PREREQUISITE                                                                                                                                                                                                                                               | S                                                                                                                                                                                                                | CATEGORY                                | L               | Т                 | P              | С                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------|-------------------|----------------|-------------------|
|                                                                                                                                                                                                                                                            | NIL                                                                                                                                                                                                              | OE                                      | 3               | 0                 | 0              | 3                 |
| CourseTo understand the Earth's climate system, changes and their effects on the earth, identifyin<br>the impacts, adaptation, mitigation of climate change and for gaining knowledge on clear<br>technology, carbon trading and alternate energy sources. |                                                                                                                                                                                                                  |                                         |                 |                   |                |                   |
| UNIT – I                                                                                                                                                                                                                                                   | EARTH'S CLIMATE SYSTEM                                                                                                                                                                                           |                                         |                 | 9 P               | eriod          | S                 |
| Introduction-Clima                                                                                                                                                                                                                                         | ate in the spotlight - The Earth's Climate Machine                                                                                                                                                               | e – Climate Class                       | ificati         | on- G             | lobal          | Wind              |
| and Hurricanes - T                                                                                                                                                                                                                                         | Winds and the Hadley Cell – The Westerlies – Cloud<br>The Hydrological Cycle – Global Ocean Circulation –<br>I Green House Effect – Green House Gases and Globa                                                  | El Nino and its Ef                      | ffect -         | Solar             |                |                   |
| UNIT – II                                                                                                                                                                                                                                                  | OBSERVED CHANGES AND ITS CAUSES                                                                                                                                                                                  |                                         |                 | 9 P               | eriod          | .S                |
| effects of Climate<br>Sensitivity and Fe                                                                                                                                                                                                                   | mate Change – Changes in patterns of temperature, p<br>e Changes – Patterns of Large-Scale Variability<br>edbacks – The Montreal Protocol –UNFCCC – IPCC<br>a Global Scale and in India – climate change modelin | -Drivers of Clim<br>C – Evidences of (  | ate C           | hange             | – C            | limate            |
| UNIT – III                                                                                                                                                                                                                                                 | IMPACTS OF CLIMATE CHANGE                                                                                                                                                                                        |                                         |                 | 9 P               | eriod          | S                 |
| Impacts of Climate                                                                                                                                                                                                                                         | Change on various sectors - Agriculture, Forestry ar                                                                                                                                                             | nd Ecosystem – Wa                       | ater Re         | esourc            | es – I         | Humar             |
| •                                                                                                                                                                                                                                                          | Settlement and Society – Methods and Scenarios –<br>Projected Impacts of Climate Change – Risk of Irrev                                                                                                          | <b>v</b>                                | for Di          | fferen            | t Reg          | gions -           |
| UNIT – IV                                                                                                                                                                                                                                                  | CLIMATE CHANGE ADAPTATION AND<br>MEASURES                                                                                                                                                                        | ) MITIGATION                            | 1               | 9 P               | eriod          | S                 |
| coastal zones – Hu<br>Energy Supply –                                                                                                                                                                                                                      | y/Options in various sectors – Water – Agriculture<br>uman Health – Tourism – Transport – Energy – Key<br>Transport – Buildings – Industry –Agriculture – F<br>e (CCS) – Waste (MSW & Bio waste, Biomedical, Ind | y Mitigation Techn<br>Forestry - Carbon | ologie<br>seque | es and<br>stratio | Pract<br>n – C | tices -<br>Carbor |
| UNIT – V                                                                                                                                                                                                                                                   | CLEAN TECHNOLOGY AND ENERGY                                                                                                                                                                                      |                                         |                 | 9 P               | eriod          | S                 |
| Clean Developmer                                                                                                                                                                                                                                           | nt Mechanism – Carbon Trading - examples of futur                                                                                                                                                                | e Clean Technolog                       | gy –B           | iodiese           | el - N         | Vatura            |
| Compost – Eco- Fi                                                                                                                                                                                                                                          | riendly Plastic – Alternate Energy – Hydrogen – Biofu                                                                                                                                                            | uels-Solar Energy                       | – Wir           | nd – H            | ydroe          | electric          |
| Derror Mitter                                                                                                                                                                                                                                              | n Efforts in India and Adaptation funding.                                                                                                                                                                       |                                         |                 |                   |                |                   |
| rower – Mitigation                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  |                                         |                 |                   |                |                   |

| 1 | "Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,      |
|---|---------------------------------------------------------------------------------------------------|
|   | Cambridge University Press, 2003.                                                                 |
| 2 | IPCC fourth assessment report - The AR4 synthesis report, 2007                                    |
| 3 | IPCC fourth assessment report – Working Group I Report, "The physical sciencebasis", 2007         |
| 4 | IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability", |
|   | 2007                                                                                              |
| 5 | IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007     |
| 6 | "Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate Change,     |
|   | Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.     |

| COURS   | E OUTCOMES:                                                                             | Bloom's<br>Taxonomy |
|---------|-----------------------------------------------------------------------------------------|---------------------|
| Upon co | mpletion of the course, the students will be able to:                                   | Mapped              |
| Opon co | inpletion of the course, the students will be able to.                                  | Mappeu              |
| CO1     | Classify the Earths climatic system and factors causing climate change and global       | K2                  |
|         | warming.                                                                                |                     |
| CO2     | Relate the Changes in patterns of temperature, precipitation and sea level rise and     | K2                  |
|         | Observed effects of Climate Changes                                                     |                     |
| CO3     | Illustrate the uncertainty and impact of climate change and risk of reversible changes. | K3                  |
| CO4     | Articulate the strategies for adaptation and mitigation of climatic changes.            | K3                  |
| CO5     | Discover clean technologies and alternate energy source for sustainable growth.         | K3                  |

| COs/POs  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|----------|-----|-----|-----|-----|-----|-----|
| CO1      | 2   | 2   | 3   | 2   | 3   | 1   |
| CO2      | 3   | 2   | 2   | 2   | 3   | 2   |
| CO3      | 2   | 2   | 2   | 2   | 3   | 2   |
| CO4      | 3   | 2   | 2   | 2   | 2   | 2   |
| CO5      | 3   | 3   | 2   | 3   | 3   | 3   |
| 23EEOE05 | 3   | 3   | 3   | 3   | 3   | 3   |

| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Category                    | (111) /0              | (112) /0                | (113) /0           | (114) /0            | (110) /0             | (110) /0           | 70         |
| CAT1                        | 25                    | 30                      | 35                 | 10                  | -                    | -                  | 100        |
| CAT2                        | 25                    | 30                      | 35                 | 10                  | -                    | -                  | 100        |
| Individual                  |                       |                         |                    |                     |                      |                    |            |
| Assessment 1/               |                       |                         |                    |                     |                      |                    |            |
| Case Study 1/               | 20                    | 30                      | 40                 | 10                  | -                    | -                  | 100        |
| Seminar 1 /                 |                       |                         |                    |                     |                      |                    |            |
| Project 1                   |                       |                         |                    |                     |                      |                    |            |
| Individual                  |                       |                         |                    |                     |                      |                    |            |
| Assessment 2/               |                       |                         |                    |                     |                      |                    |            |
| Case Study 2/               | 20                    | 30                      | 40                 | 10                  | -                    | -                  | 100        |
| Seminar 2/                  |                       |                         |                    |                     |                      |                    |            |
| Project 2                   |                       |                         |                    |                     |                      |                    |            |
| ESE                         | 25                    | 30                      | 35                 | 10                  | -                    | -                  | 100        |

| <b>23EEOE06</b>                                      | WASTE TO ENE                                             | CRGY                                                                 |                           |                      |                          |                     |
|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------|---------------------------|----------------------|--------------------------|---------------------|
| 23EEUEU0                                             | (Common to all Bra                                       | anches)                                                              |                           |                      |                          |                     |
| PREREQUISI                                           | TES                                                      | CATEGORY                                                             | L                         | Т                    | P                        | С                   |
|                                                      | NIL                                                      | OE                                                                   | 3                         | 0                    | 0                        | 3                   |
| Course                                               | To classify waste as fuel, introduce conversion de       | evices, gain knowle                                                  | dge                       | abou                 | t Bio                    | omas                |
| Objectives                                           | Pyrolysis, demonstrate methods, factors for biomass g    | asification, and acqu                                                | ire kı                    | nowl                 | edge                     | aboı                |
|                                                      | biogas and its development in India.                     |                                                                      |                           |                      |                          |                     |
| UNIT – I                                             | INTRODUCTION                                             |                                                                      |                           | 9 F                  | Perio                    | ds                  |
| Introduction to                                      | Energy from Waste: Classification of waste as fuel -     | - Agro based, Fores                                                  | st res                    | idue,                | Indu                     | ustria              |
| waste - MSW -                                        | Conversion devices - Incinerators, Gasifiers, Digestors  | <b>.</b>                                                             |                           |                      |                          |                     |
| UNIT – II                                            | BIOMASS PYROLYSIS                                        |                                                                      |                           | 9 F                  | Perio                    | ds                  |
| <b>Biomass Pyroly</b>                                | ysis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis - | – Manufacture of ch                                                  | arco                      | al – 1               | Meth                     | ods                 |
| Yields and App                                       | lications - Manufacture of Pyrolytic oils and gases, Yie | lds and Applications                                                 |                           |                      |                          |                     |
| UNIT – III                                           | BIOMASS GASIFICATION                                     |                                                                      |                           | 9 F                  | Perio                    | ds                  |
| Gasifiers – Fi                                       | xed bed system - Downdraft and updraft gasifiers         | - Fluidized bed                                                      | gasif                     | iers                 | – D                      | esigr               |
| Construction ar                                      | nd Operation - Gasifier burner arrangement for thermal   | l heating – Gasifier                                                 | Engi                      | ne ar                | range                    | emer                |
| and electrical p                                     | ower – Equilibrium and Kinetic Considerations in gasifi  | er operation.                                                        |                           |                      |                          |                     |
| UNIT – IV                                            | BIOMASS COMBUSTION                                       |                                                                      |                           | 9 F                  | Perio                    | ds                  |
| Biomass Comb                                         | oustion - Biomass Stoves - Improved Chullahs, ty         | ypes, some exotic                                                    | desig                     | ns,                  | Fixed                    | 1 be                |
| • •                                                  | pes - Inclined grate combustors - Fluidized bed combu    | stors, design, constru                                               | uction                    | n and                | l ope                    | ratio               |
| of all the above                                     | biomass combustors.                                      |                                                                      |                           |                      |                          |                     |
| UNIT – V                                             | BIOENERGY SYSTEM                                         |                                                                      |                           |                      | Perio                    |                     |
| energy system<br>conversion prod<br>and liquefaction |                                                          | urces and their class<br>stion – biomass gas<br>Types of biogas plar | sifica<br>ificat<br>nts – | tion<br>ion -<br>App | - Bio<br>- pyr<br>licati | omas<br>olys<br>ons |
| energy program                                       |                                                          |                                                                      |                           |                      |                          |                     |
| energy program<br>Contact Period<br>Lecture: 45 Pe   |                                                          | eriods Total: 45                                                     |                           |                      |                          |                     |

| 1 | <i>"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P Jayaram Reddy, Taylor and Francis Publications, 2016.</i>     |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | <i>"Waste – to – Energy: Technologies and project Implementations",</i> Marc J Rogoff, Francois Screve, ELSEVIER Publications, Third Edition, 2019. |
| 3 | <b>"Biogas Technology and Principles"</b> , Brad Hill, NY RESEARCH PRESS Publications, Illustrated Edition, 2015.                                   |
| 4 | "Biomass Gasification and Pyrolysis Practical Design and Theory", PrabirELSEVIER Publications, 2010.                                                |

|     | SE OUTCOMES:<br>ompletion of the course, the students will be able to:                 | Bloom's<br>Taxonomy<br>Mapped |
|-----|----------------------------------------------------------------------------------------|-------------------------------|
| CO1 | Investigate solid waste management techniques.                                         | K2                            |
| CO2 | Get knowledge about biomass pyrolysis.                                                 | К3                            |
| CO3 | Demonstrate methods and factors considered for biomass gasification.                   | K3                            |
| CO4 | Identify the features of different facilities available for biomass combustion.        | K4                            |
| CO5 | Analyze the potential of different Bioenergy systems with respect to Indian condition. | K2                            |

| COs/POs         | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----------------|-----|-----|-----|-----|-----|-----|
| CO1             | 2   | 3   | 3   | 2   | 3   | 1   |
| CO2             | 3   | 2   | 2   | 2   | 3   | 1   |
| CO3             | 3   | 3   | 2   | 3   | 2   | 1   |
| CO4             | 3   | 2   | 2   | 3   | 3   | 1   |
| CO5             | 2   | 3   | 3   | 3   | 2   | 1   |
| <b>23EEOE06</b> | 3   | 3   | 3   | 3   | 3   | 1   |

| ASSESSMENT                                                               | PATTERN – THI         | EORY                    |                    |                     |                      |                    |            |
|--------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category*                                              | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                                                                     | 10                    | 20                      | 20                 | 25                  | 15                   | 10                 | 100        |
| CAT2                                                                     | 10                    | 25                      | 20                 | 10                  | 25                   | 10                 | 100        |
| Individual<br>Assessment 1/<br>Case Study 1/<br>Seminar 1 /<br>Project 1 | -                     | 15                      | 35                 | 50                  | -                    | -                  | 100        |
| Individual<br>Assessment 2/<br>Case Study 2/<br>Seminar 2/<br>Project 2  | -                     | 10                      | 40                 | 50                  | -                    | -                  | 100        |
| ESE                                                                      | 10                    | 25                      | 25                 | 20                  | 10                   | 10                 | 100        |

| NILCourse<br>ObjectiveTo understand constructional energy requirements of bui<br>and conservation of energy.UNIT-IINTRODUCTIONIndoor activities and environmental control - Internal and external factors on<br>energy use and its management -Macro aspect of energy use in dwellings<br>comfort-Ventilation and air quality-Air-conditioning requirement-Vi<br>requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDINGThe sun-earth relationship - Climate, wind, solar radiation and temperat<br>radiation on surfaces-Energy impact on the shape and orientation of building<br>Characteristics and estimation, methods of day-lighting-Architectural consided<br>UNIT-IIIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standar<br>building envelope- Evaluation of the overall thermal transfer- Thermal ga<br>energy requirements-Status of energy use in buildings-Estimation of energy uUNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy man<br>ventilation-Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IMENT           |       |       |        |          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------|-------|--------|----------|--|--|
| NILCourse<br>ObjectiveTo understand constructional energy requirements of bui<br>and conservation of energy.UNIT-IINTRODUCTIONIndoor activities and environmental control - Internal and external factors on<br>energy use and its management -Macro aspect of energy use in dwellings<br>comfort-Ventilation and air quality-Air-conditioning requirement-Vi<br>requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDINGThe sun-earth relationship - Climate, wind, solar radiation and temperat<br>radiation on surfaces-Energy impact on the shape and orientation of building<br>Characteristics and estimation, methods of day-lighting-Architectural consided<br>UNIT-IIIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standar<br>building envelope- Evaluation of the overall thermal transfer- Thermal ga<br>energy requirements-Status of energy use in buildings-Estimation of energy uUNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy man<br>ventilation-Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |       |       |        |          |  |  |
| Course<br>ObjectiveTo understand constructional energy requirements of bui<br>and conservation of energy.UNIT-IINTRODUCTIONIndoor activities and environmental control - Internal and external factors on<br>energy use and its management -Macro aspect of energy use in dwellings a<br>comfort-Ventilation and air quality-Air-conditioning requirement-Vi<br>requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDINGThe sun-earth relationship - Climate, wind, solar radiation and temperat<br>radiation on surfaces-Energy impact on the shape and orientation of building<br>Characteristics and estimation, methods of day-lighting-Architectural consided<br>UNIT-IIIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standar<br>building envelope-<br>Evaluation of the overall thermal transfer- Thermal ga<br>energy requirements-Status of energy use in buildings-Estimation of energy u<br>UNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy man<br>ventilation-Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TEGORY          | L     | Т     | Р      | C        |  |  |
| ObjectiveIt of understand constructional energy requirements of our<br>and conservation of energy.UNIT-IINTRODUCTIONIndoor activities and environmental control - Internal and external factors on<br>energy use and its management -Macro aspect of energy use in dwellings a<br>comfort-Ventilation and air quality-Air-conditioning requirement-Vi<br>requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDINGThe sun-earth relationship - Climate, wind, solar radiation and temperat<br>radiation on surfaces-Energy impact on the shape and orientation of building<br>Characteristics and estimation, methods of day-lighting-Architectural conside<br>UNIT-IIIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standar<br>building envelope- Evaluation of the overall thermal transfer- Thermal ga<br>energy requirements-Status of energy use in buildings-Estimation of energy uUNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy mar<br>ventilation-Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OE              | 3     | 0     | 0      | 3        |  |  |
| UNIT-IINTRODUCTIONIndoor activities and environmental control - Internal and external factors on<br>energy use and its management -Macro aspect of energy use in dwellings a<br>comfort-Ventilation and air quality-Air-conditioning requirement-Vi<br>requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDINGThe sun-earth relationship - Climate, wind, solar radiation and temperat<br>radiation on surfaces-Energy impact on the shape and orientation of building<br>Characteristics and estimation, methods of day-lighting-Architectural consided<br>UNIT-IIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standar<br>building envelope- Evaluation of the overall thermal transfer- Thermal ga<br>energy requirements-Status of energy use in buildings-Estimation of energy u<br>UNIT-IVUNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy man<br>ventilation-Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | uildings, ener  | rgy   | audi  | it me  | ethod    |  |  |
| Indoor activities and environmental control - Internal and external factors on<br>energy use and its management -Macro aspect of energy use in dwellings<br>comfort-Ventilation and air quality-Air-conditioning requirement-Vi<br>requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDINGThe sun-earth relationship - Climate, wind, solar radiation and temperat<br>radiation on surfaces-Energy impact on the shape and orientation of building<br>Characteristics and estimation, methods of day-lighting-Architectural conside<br>UNIT-IIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standar<br>building envelope- Evaluation of the overall thermal transfer- Thermal ga<br>energy requirements-Status of energy use in buildings-Estimation of energy uUNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy man<br>ventilation-Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |       |       |        |          |  |  |
| energy use and its management -Macro aspect of energy use in dwellings a<br>comfort-Ventilation and air quality-Air-conditioning requirement-Vi<br>requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDINGThe sun-earth relationship - Climate, wind, solar radiation and temperat<br>radiation on surfaces-Energy impact on the shape and orientation of building<br>Characteristics and estimation, methods of day-lighting-Architectural considerUNIT-IIIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standar<br>building envelope- Evaluation of the overall thermal transfer- Thermal ga<br>energy requirements-Status of energy use in buildings-Estimation of energy uUNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy mar<br>ventilation-Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |       | 9     | Peri   | ods      |  |  |
| comfort-Ventilationandairquality-Air-conditioningrequirement-Virequirement-Auditory requirement.IIGHTING REQUIREMENTS IN BUILDINGUNIT-IILIGHTING REQUIREMENTS IN BUILDINGThe sun-earthrelationship - Climate, wind, solar radiation and temperatradiation on surfaces-Energy impact on the shape and orientation of buildingCharacteristicsand estimation, methods of day-lighting-Architectural consideUNIT-IIIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standarbuilding envelope-Evaluation of the overall thermal transfer-Thermal gaenergy requirements-Status of energy use in buildings-Estimation of energy uUNIT-IVENERGY AUDITEnergy auditand energy targeting-Technological options for energy manyventilation-Indoor environment and air quality-Air flow and air pressure oneffect.UNIT-IVCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n energy use    | -Ch   | narac | cteris | stics of |  |  |
| requirement-Auditory requirement.         UNIT-II       LIGHTING REQUIREMENTS IN BUILDING         The sun-earth relationship - Climate, wind, solar radiation and temperat radiation on surfaces-Energy impact on the shape and orientation of building Characteristics and estimation, methods of day-lighting-Architectural considered on the shape and orientation of building Characteristics and estimation, methods of day-lighting-Architectural considered on the shape and orientation of building Characteristics and estimation, methods of day-lighting-Architectural considered on the shape and orientation of building Characteristics and estimation, methods of day-lighting-Architectural considered on the shape and orientation of building Characteristics and estimation, methods of day-lighting-Architectural considered on the shape and orientation of building Characteristics and estimation, methods of day-lighting-Architectural considered on the shape and orientation of building Characteristics and estimation, methods of day-lighting-Architectural considered on the shape and orientation of building Characteristics and estimation, methods of day-lighting-Architectural considered on the shape and unsteady heat transfer through wall and glazed window-Standar building envelope- Evaluation of the overall thermal transfer- Thermal ga energy requirements-Status of energy use in buildings-Estimation of energy use unstructed on the shape and orientation of energy and unsteady targeting-Technological options for energy matrix ventilation-Indoor environment and air quality-Air flow and air pressure on effect.         UNIT-V       COOLING IN BUILT ENVIRONMENT | and its impl    | licat | tions | -Tl    | nerma    |  |  |
| UNIT-IILIGHTING REQUIREMENTS IN BUILDINGThe sun-earth relationship - Climate, wind, solar radiation and temperat<br>radiation on surfaces-Energy impact on the shape and orientation of building<br>Characteristics and estimation, methods of day-lighting–Architectural consided<br>UNIT-IIIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standar<br>building envelope- Evaluation of the overall thermal transfer- Thermal ga<br>energy requirements-Status of energy use in buildings-Estimation of energy u<br>UNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy man<br>ventilation–Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | visual perce    | eptic | on-Il | llumi  | inatio   |  |  |
| The sun-earthrelationship - Climate, wind, solar radiation and temperat<br>radiation on surfaces-Energy impact on the shape and orientation of building<br>Characteristics and estimation, methods of day-lighting–Architectural conside<br>UNIT–IIIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standar<br>building envelope-<br>Evaluation of the overall thermal transfer-<br>Thermal ga<br>energy requirements-Status of energy use in buildings-Estimation of energy u<br>UNIT–IVENERGY AUDIT<br>Energy audit and energy targeting-Technological options for energy man<br>ventilation–Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT–VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |       |       |        |          |  |  |
| radiation on surfaces-Energy impact on the shape and orientation of building<br>Characteristics and estimation, methods of day-lighting–Architectural consideUNIT–IIIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standar<br>building envelope- Evaluation of the overall thermal transfer- Thermal ga<br>energy requirements-Status of energy use in buildings-Estimation of energy uUNIT–IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy man<br>ventilation–Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT–VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |       |       |        |          |  |  |
| Characteristics and estimation, methods of day-lighting–Architectural conside         UNIT–III       ENERGY REQUIREMENTS IN BUILDING         Steady and unsteady heat transfer through wall and glazed window-Standar         building envelope-       Evaluation of the overall thermal transfer- Thermal ga         energy requirements-Status of energy use in buildings-Estimation of energy u         UNIT–IV       ENERGY AUDIT         Energy audit and energy targeting-Technological options for energy man         ventilation–Indoor environment and air quality-Air flow and air pressure on         effect.       UNIT–V         COOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ature - Sun     | shac  | ding  | and    | l sola   |  |  |
| UNIT-IIIENERGY REQUIREMENTS IN BUILDINGSteady and unsteady heat transfer through wall and glazed window-Standar<br>building envelope- Evaluation of the overall thermal transfer- Thermal ga<br>energy requirements-Status of energy use in buildings-Estimation of energy uUNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy man<br>ventilation-Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ngs-Lighting    | ; and | d day | y lig  | hting    |  |  |
| Steady and unsteady heat transfer through wall and glazed window-Standar         building envelope-       Evaluation of the overall thermal transfer- Thermal ga         energy requirements-Status of energy use in buildings-Estimation of energy u         UNIT-IV       ENERGY AUDIT         Energy audit and energy targeting-Technological options for energy man         ventilation–Indoor environment and air quality-Air flow and air pressure on         effect.         UNIT-V       COOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lerations for ( | day-  | -ligh | ting.  | ,        |  |  |
| building envelope-Evaluation of the overall thermal transfer-Thermal gaenergy requirements-Status of energy use in buildings-Estimation of energy uUNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy man<br>ventilation-Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |       | 9     | Peri   | ods      |  |  |
| energy requirements-Status of energy use in buildings-Estimation of energy uUNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy man<br>ventilation-Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rds for therm   | nal p | perfo | orma   | nce o    |  |  |
| UNIT-IV         ENERGY AUDIT           Energy audit and energy targeting-Technological options for energy man ventilation—Indoor environment and air quality-Air flow and air pressure on effect.           UNIT-V         COOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ain and net l   | heat  | t gai | n-Er   | ıd-Us    |  |  |
| Energy audit and energy targeting-Technological options for energy man<br>ventilation–Indoor environment and air quality-Air flow and air pressure on<br>effect.UNIT-VCOOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | use in a build  | ling. | •     |        |          |  |  |
| ventilation–Indoor environment and air quality-Air flow and air pressure on<br>effect.<br>UNIT–V COOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |       | 9     | Peri   | ods      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | anagement-N     | latur | ral a | and t  | forced   |  |  |
| UNIT-V COOLING IN BUILT ENVIRONMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n buildings-I   | Flov  | v du  | le to  | Stacl    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       |       |        |          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |       | 9     | Peri   | ods      |  |  |
| Passive building architecture- Radiative cooling-Solar cooling techniques-So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | olar desiccan   | t del | hum   | idifi  | catio    |  |  |
| for ventilation-Natural and active cooling with adaptive comfort-Evapor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rative coolir   | ng –  | – Ze  | ero e  | energ    |  |  |
| building concept.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |       |       |        |          |  |  |
| Contact Periods:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |       |       |        |          |  |  |
| Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total: 45 I     | Peri  | iods  |        |          |  |  |

| 1 | J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill, |
|---|-----------------------------------------------------------------------------------------------|
|   | 2000.                                                                                         |
| 2 | S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.   |
| 3 | A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.                               |
| 4 | ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.                              |
| 5 | Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of        |
|   | California, and Blast, University of Illinoi ,USA.                                            |

| COUI | COURSE OUTCOMES:                                             |          |  |  |  |  |
|------|--------------------------------------------------------------|----------|--|--|--|--|
|      |                                                              | Taxonomy |  |  |  |  |
| Upon | Upon completion of the course, the students will be able to: |          |  |  |  |  |
| CO1  | Understand energy and its usage                              | K2       |  |  |  |  |
| CO2  | Know lighting to be given to a building                      | K1       |  |  |  |  |
| CO3  | Analyse the energy requirements in a building                | K3       |  |  |  |  |
| CO4  | Apply the energy audit concepts.                             | K3       |  |  |  |  |
| CO5  | Study architectural specifications of a building             | K1       |  |  |  |  |

| COURSE ARTICULATION MATRIX |                 |     |     |     |     |     |  |  |  |
|----------------------------|-----------------|-----|-----|-----|-----|-----|--|--|--|
| COs/POs                    | PO1             | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                        | 2               | -   | 3   | 1   | 2   | 1   |  |  |  |
| CO2                        | 2               | -   | 3   | 1   | 2   | 1   |  |  |  |
| CO3                        | 2               | -   | 3   | 1   | 2   | 1   |  |  |  |
| CO4                        | 2               | -   | 3   | 1   | 2   | 1   |  |  |  |
| CO5                        | 2               | -   | 3   | 1   | 2   | 1   |  |  |  |
| 23GEOE07                   | 2               | -   | 3   | 1   | 2   | 1   |  |  |  |
| l–Slight, 2–Moderate       | e, 3–Substantia | l   |     |     |     |     |  |  |  |

| ASSESSMENT                                                                | PATTERN – T            | THEORY                  |                    |                     |                       |                    |            |
|---------------------------------------------------------------------------|------------------------|-------------------------|--------------------|---------------------|-----------------------|--------------------|------------|
| Test / Bloom's<br>Category*                                               | Rememberin<br>g (K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluatin<br>g (K5) % | Creating<br>(K6) % | Total<br>% |
| CAT 1                                                                     | 40                     | 40                      | 20                 | -                   | -                     | -                  | 100        |
| CAT 2                                                                     | 40                     | 40                      | 20                 | -                   | -                     | -                  | 100        |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | 50                     | 50                      | -                  | -                   | -                     | -                  | 100        |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | 50                     | 50                      | -                  | -                   | -                     | -                  | 100        |
| ESE                                                                       | 40                     | 40                      | 20                 | -                   | -                     | -                  | 100        |

| 23GEOE08               |           | EAR                          | TH AND ITS ENVI          | EARTH AND ITS ENVIRONMENT |       |           |          |  |  |  |  |  |
|------------------------|-----------|------------------------------|--------------------------|---------------------------|-------|-----------|----------|--|--|--|--|--|
|                        |           |                              | (Common to all Bran      | iches)                    |       |           |          |  |  |  |  |  |
| PREREQUISIT            | <b>ES</b> |                              |                          | CATEGORY                  | L     | T P       | С        |  |  |  |  |  |
|                        | NIL       |                              |                          | OE                        | 3     | 0 0       | 3        |  |  |  |  |  |
| Course                 | To kno    | ow about the planet earth, t | the geosystems and th    | ne resources like         | gro   | ound wa   | ter and  |  |  |  |  |  |
| Objective              | air and   | to learn about the Enviror   | nmental Assessment a     | nd sustainability         | 1.    |           |          |  |  |  |  |  |
| UNIT–I                 | EVOL      | UTION OF EARTH               | JTION OF EARTH9 Periods  |                           |       |           |          |  |  |  |  |  |
| Evolution of ear       | rth as h  | abitable planet-Evolution    | of continents-oceans     | s and landforms           | s-ev  | olution   | of life  |  |  |  |  |  |
| through geologic       | cal time  | s - Exploring the earth's    | interior - thermal a     | nd chemical str           | uctu  | ire - oi  | igin of  |  |  |  |  |  |
| gravitational and      | magnet    | ic fields.                   |                          |                           |       |           |          |  |  |  |  |  |
| UNIT-II                |           | GEOSYSTEMS                   |                          |                           |       | 9 Per     | iods     |  |  |  |  |  |
| Plate tectonics -      | working   | and shaping the earth - In   | nternal geosystems –     | earthquakes - v           | olca  | anoes -c  | limatic  |  |  |  |  |  |
| excursions throu       | gh time   | - Basic Geological process   | es - igneous, sedimen    | tation – metamo           | orph  | ic proce  | sses.    |  |  |  |  |  |
| UNIT-III               |           | <b>GROUND WATER GEO</b>      | DLOGY                    |                           |       | 9 Periods |          |  |  |  |  |  |
| Geology of grou        | nd wate   | r occurrence –recharge pro   | ocess-Ground water n     | novement-Grou             | nd v  | vater di  | scharge  |  |  |  |  |  |
| and catchment h        | ydrology  | v – Ground water as a reso   | ource - Natural ground   | d water quality a         | and o | contami   | nation-  |  |  |  |  |  |
| Modelling and m        | nanaging  | ground water systems.        |                          |                           |       |           |          |  |  |  |  |  |
| UNIT-IV                |           | ENVIRONMENTAL AS             | SESMENT AND SUS          | STAINABILITY              | Z     | 9 Per     | iods     |  |  |  |  |  |
| Engineering and        | d sustai  | nable development - pop      | ulation and urbaniza     | tion - toxic ch           | emi   | cals an   | d finite |  |  |  |  |  |
| resources - wate       | r scarcit | y and conflict - Environme   | ental risk - risk assess | sment and chara           | cter  | ization   | -hazarc  |  |  |  |  |  |
| assessment-expo        | osure ass | essment.                     |                          |                           |       |           |          |  |  |  |  |  |
| UNIT-V                 |           | AIR AND SOLIDWAST            | ГЕ                       |                           |       | 9 Per     | iods     |  |  |  |  |  |
| Air resources          | enginee   | ring-introduction to atm     | nospheric compositi      | on-behaviour-a            | tmo   | spheric   | photo    |  |  |  |  |  |
| chemistry-Solid        | waste m   | anagement-characterizatio    | on-management conce      | pts.                      |       |           |          |  |  |  |  |  |
| <b>Contact Periods</b> | :         |                              |                          |                           |       |           |          |  |  |  |  |  |
| Lecture: 45 Peri       | ada       | Tutorial: 0 Periods          | Practical: 0 Period      | Ja Tatal                  | . 15  | Period    | a        |  |  |  |  |  |

| 1 | John Grotzinger and Thomas H.Jordan, "Understanding Earth", Sixth Edition, W.H.Freeman, 2010.  |
|---|------------------------------------------------------------------------------------------------|
| 2 | Younger, P.L., "Ground water in the Environment: An introduction", Blackwell Publishing, 2007. |
| 3 | Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,                    |
|   | Sustainability and Design", Wiley, NJ, 2010.                                                   |

|            | RSE OUTCOMES:                                                                     | Bloom's<br>Taxonomy<br>Mapped |  |  |  |  |
|------------|-----------------------------------------------------------------------------------|-------------------------------|--|--|--|--|
| Upon       | Upon completion of the course, the students will be able to:                      |                               |  |  |  |  |
| CO1        | To know about evolution of earth and the structure of the earth.                  | K2                            |  |  |  |  |
| CO2        | To understand the internal geosystems like earthquakes and volcanoes and the      | K2                            |  |  |  |  |
|            | Various geological processes.                                                     |                               |  |  |  |  |
| CO3        | To able to find the geological process of occurrence and movement of Ground water | K3                            |  |  |  |  |
|            | and the modeling systems.                                                         |                               |  |  |  |  |
| <b>CO4</b> | To assess the Environmental risks and the sustainability developments.            | K3                            |  |  |  |  |
| CO5        | To learn about the photochemistry of atmosphere and the solid waste               | K1                            |  |  |  |  |
|            | Management concepts.                                                              |                               |  |  |  |  |

| COURSE ARTICULATION MATRIX |               |       |     |     |     |     |  |  |  |
|----------------------------|---------------|-------|-----|-----|-----|-----|--|--|--|
| COs/POs                    | PO1           | PO2   | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                        | 1             | -     | -   | 2   | 2   | -   |  |  |  |
| CO2                        | 3             | -     | 3   | 3   | -   | 3   |  |  |  |
| CO3                        | 2             | -     | -   | -   | -   | -   |  |  |  |
| CO4                        | -             | 2     | -   | -   | 1   | -   |  |  |  |
| CO5                        | 2             | 2     | -   | 1   | -   | -   |  |  |  |
| 23GEOE08                   | 2             | 2     | 3   | 3   | 2   | 3   |  |  |  |
| 1-Slight, 2-Modera         | te, 3–Substar | ntial |     |     |     |     |  |  |  |

| Test / Bloom's | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|----------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Category*      | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT 1          | 40          | 40            | 20       | -         | -          | -        | 100   |
| CAT 2          | 40          | 40            | 20       | -         | -          | -        | 100   |
| Individual     |             |               |          |           |            |          |       |
| Assessment 1 / |             |               |          |           |            |          |       |
| Case Study 1/  | -           | 50            | 50       | -         | -          | -        | 100   |
| Seminar 1 /    |             |               |          |           |            |          |       |
| Project1       |             |               |          |           |            |          |       |
| Individual     |             |               |          |           |            |          |       |
| Assessment 2 / |             |               |          |           |            |          |       |
| Case Study 2/  | -           | 50            | 50       | -         | -          | -        | 100   |
| Seminar 2 /    |             |               |          |           |            |          |       |
| Project 2      |             |               |          |           |            |          |       |
| ESE            | 40          | 40            | 20       | -         | -          | -        | 100   |

| 23GEOE09                               | 23GEOE09 NATURAL HAZARDS AND MITIGATI<br>(Common to all Branches)              |                               |        |         |         |         |
|----------------------------------------|--------------------------------------------------------------------------------|-------------------------------|--------|---------|---------|---------|
| PREREQUISITE                           | `                                                                              | CATEGORY                      | L      | Т       | Р       | С       |
| -                                      | NIL OE 3                                                                       |                               |        |         |         |         |
| Course<br>Objective                    | To get idea on the causes, effects and case studies.                           | mitigation measures of diffe  | erent  | types o | of haza | rds wit |
| UNIT–I                                 | EARTH QUAKES                                                                   |                               |        | 9 I     | Period  | s       |
|                                        | sic concepts-different kinds of hazard<br>s-plate tectonics-seismic waves-meas | -                             |        | -       |         |         |
| UNIT–II                                | SLOPE STABILITY                                                                |                               |        | 9 I     | Period  | s       |
| Slope stability and measures for slope | landslides-causes of landslides-print<br>stabilization.                        | ciples of stability analysis- | remed  | dial an | d corr  | ective  |
| UNIT-III                               | FLOODS                                                                         |                               |        | 9 I     | Period  | s       |
|                                        | Floods-causes of flooding-regional f forecasting-warning systems.              | flood frequency analysis-f    | lood   | contro  | l mea   | sures-  |
| UNIT-IV                                | DROUGHTS                                                                       |                               |        | 9 I     | Period  | s       |
| -                                      | types of droughts –effects of drought<br>sessment–mitigation-management.       | -hazard assessment – decis    | sion n | naking  | -Use o  | of GIS  |
| UNIT-V                                 | TSUNAMI                                                                        |                               |        | 9 I     | Period  | s       |
|                                        | fects–under sea earthquakes–landsli<br>-precautions–case studies.              | des-volcanic eruptions-im     | pact   | of sea  | mete    | orite-  |
| Contact Periods:<br>Lecture: 45 Period | ls Tutorial: 0 Periods Practic                                                 | al: 0 Periods Total:          | 45 P   | eriods  |         |         |

| _ |                                                                                                |
|---|------------------------------------------------------------------------------------------------|
| 1 | Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage         |
|   | Learning, 2008.                                                                                |
| 2 | Edward Bryant, "Natural Hazards", Cambridge University Press, 2005.                            |
| 3 | J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley & Sons, |
|   | Inc,2005.                                                                                      |
| 4 | AmrS.Elnashai and Luigi Di Sarno, "Fundamentals of Earthquake Engineering", John Wiley &       |
|   | Sons,Inc,2008                                                                                  |

| COURSE OUTCOMES: |                                                                               |          |  |  |
|------------------|-------------------------------------------------------------------------------|----------|--|--|
|                  |                                                                               | Taxonomy |  |  |
| Upon com         | pletion of the course, the students will be able to:                          | Mapped   |  |  |
| CO1              | Learn the basic concepts of earthquakes and the design concepts of earthquake | K2       |  |  |
|                  | Resistant buildings.                                                          |          |  |  |
| CO2              | Acquire knowledge on the causes and remedial measures of slope stabilization. | K3       |  |  |
| CO3              | As certain the causes and control measures of flood.                          | K3       |  |  |
| CO4              | Know the types, causes and mitigation of droughts.                            | K2       |  |  |
| CO5              | Study the causes, effects and precautionary measures of Tsunami.              | K2       |  |  |

| COURSE AI     | COURSE ARTICULATION MATRIX          |     |     |     |     |     |  |  |  |  |
|---------------|-------------------------------------|-----|-----|-----|-----|-----|--|--|--|--|
| COs/POs       | PO1                                 | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |  |
| CO1           | 3                                   | 1   | -   | 3   | 2   | 3   |  |  |  |  |
| CO2           | 3                                   | 1   | 2   | 3   | 3   | 3   |  |  |  |  |
| CO3           | 3                                   | 2   | 3   | -   | -   | 3   |  |  |  |  |
| CO4           | 3                                   | -   | -   | 3   | 2   | 3   |  |  |  |  |
| CO5           | 3                                   | -   | 2   | 2   | -   | 3   |  |  |  |  |
| 23GEOE09      | 3                                   | 1   | 2   | 3   | 2   | 3   |  |  |  |  |
| 1-Slight, 2-M | 1–Slight, 2–Moderate, 3–Substantial |     |     |     |     |     |  |  |  |  |

| ASSESSMENT                                                                | PATTERN –             | THEORY                  |                    |                     |                      |                    |         |
|---------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|---------|
| Test / Bloom's<br>Category*                                               | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total % |
| CAT 1                                                                     | 40                    | 40                      | 20                 | -                   | -                    | -                  | 100     |
| CAT 2                                                                     | 40                    | 40                      | 20                 | -                   | -                    | -                  | 100     |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | -                     | 50                      | 50                 | -                   | -                    | -                  | 100     |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | -                     | 50                      | 50                 | -                   | -                    | -                  | 100     |
| ESE                                                                       | 40                    | 40                      | 20                 | -                   | -                    | -                  | 100     |

| 23EDOE10                                                                                 | EDOE10 BUSINESS ANALYTICS<br>(Common to all Branches)                                                                                                                                                                                |                                                          |                               |                           |          |                   |  |  |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------|---------------------------|----------|-------------------|--|--|
| PREREQUIS                                                                                |                                                                                                                                                                                                                                      | CATEGORY                                                 | L                             | Т                         | Р        | С                 |  |  |
|                                                                                          | NIL                                                                                                                                                                                                                                  | OE                                                       | 3                             | 0                         | 0        | 3                 |  |  |
| Course                                                                                   | • To apprehend the fundamentals of business                                                                                                                                                                                          |                                                          |                               |                           | le.      |                   |  |  |
| Objectives                                                                               | • To gain knowledge about fundamental bus                                                                                                                                                                                            | •                                                        |                               | - ) -                     |          |                   |  |  |
| Ū                                                                                        | <ul> <li>To study modeling for uncertainty and stat</li> </ul>                                                                                                                                                                       | -                                                        |                               |                           |          |                   |  |  |
| <ul> <li>To apprehend analytics the usage of Hadoop and Map Reduce frameworks</li> </ul> |                                                                                                                                                                                                                                      |                                                          |                               |                           |          |                   |  |  |
|                                                                                          | • To acquire insight on other analytical fram                                                                                                                                                                                        |                                                          |                               |                           |          |                   |  |  |
| UNIT – I                                                                                 | BUSINESS ANALYTICS AND PROCESS                                                                                                                                                                                                       |                                                          |                               | 9 P                       | erio     | ds                |  |  |
| Business analy                                                                           | tics: Overview of Business analytics, Scope of Bus                                                                                                                                                                                   | siness analytics, H                                      | Busir                         | ness                      | Ana      | lytics            |  |  |
| Process, Relat                                                                           | ionship of Business Analytics Process and organ                                                                                                                                                                                      | ization, competit                                        | ive a                         | adva                      | ntag     | es of             |  |  |
| <b>Business Anal</b>                                                                     | ytics. Statistical Tools: Statistical Notation, Descrip                                                                                                                                                                              | tive Statistical m                                       | etho                          | ds, I                     | Revie    | ew of             |  |  |
| probability dis                                                                          | tribution and data modelling, sampling and estimati                                                                                                                                                                                  | on methods overv                                         | view                          |                           |          |                   |  |  |
| UNIT – II                                                                                | REGRESSION ANALYSIS                                                                                                                                                                                                                  |                                                          |                               | 9 P                       | erio     | ds                |  |  |
| Trendiness an                                                                            | d Regression Analysis: Modelling Relationships a                                                                                                                                                                                     | and Trends in Da                                         | ata, s                        | simp                      | le L     | inear             |  |  |
| Regression. Ir                                                                           | nportant Resources, Business Analytics Personne                                                                                                                                                                                      | el, Data and mo                                          | dels                          | for                       | Bus      | siness            |  |  |
| analytics, prob                                                                          | lem solving, Visualizing and Exploring Data, Busin                                                                                                                                                                                   | less Analytics Teo                                       | chno                          | logy                      | <i>.</i> |                   |  |  |
| UNIT – III                                                                               | STRUCTURE OF BUSINESS ANALYTICS                                                                                                                                                                                                      |                                                          |                               | 9 P                       | erio     | ds                |  |  |
|                                                                                          | Structures of Business analytics, Team manageme                                                                                                                                                                                      | nt. Management                                           |                               |                           |          |                   |  |  |
| e                                                                                        | olicy, Outsourcing, Ensuring Data Quality, Me                                                                                                                                                                                        |                                                          |                               |                           |          |                   |  |  |
|                                                                                          | naging Changes. Descriptive Analytics, predictive                                                                                                                                                                                    | -                                                        |                               |                           |          |                   |  |  |
| •                                                                                        | lytics analysis, Data Mining, Data Mining Method                                                                                                                                                                                     | • •                                                      |                               |                           |          | •                 |  |  |
|                                                                                          | pusiness analytics Process, Prescriptive Modelling, 1                                                                                                                                                                                |                                                          |                               |                           | rytic    | s and             |  |  |
| UNIT – IV                                                                                | FORECASTING TECHNIQUES                                                                                                                                                                                                               |                                                          | Latio                         |                           | erio     | ds                |  |  |
|                                                                                          | echniques: Qualitative and Judgmental Forecastir                                                                                                                                                                                     | og Statistical Fo                                        | reca                          |                           |          |                   |  |  |
| e                                                                                        | odels for Stationary Time Series, Forecasting Mo                                                                                                                                                                                     | •                                                        |                               | -                         | -        |                   |  |  |
| -                                                                                        | sting Time Series with Seasonality, Regression F                                                                                                                                                                                     |                                                          |                               |                           |          |                   |  |  |
|                                                                                          | ropriate Forecasting Models. Monte Carlo Simulati                                                                                                                                                                                    | -                                                        |                               |                           |          |                   |  |  |
| Simulation Us                                                                            | ing Analytic Solver Platform, New-Product Develo                                                                                                                                                                                     | pment Model, No                                          | ewsv                          | vend                      | or M     | lodel,            |  |  |
| Overbooking N                                                                            | Model, Cash Budget Model.                                                                                                                                                                                                            | •                                                        |                               |                           |          |                   |  |  |
| UNIT – V                                                                                 | DECISION ANALYSIS AND RECENT TREN                                                                                                                                                                                                    | DS IN BUSINE                                             | SS                            | 91                        | Perio    | ods               |  |  |
|                                                                                          | ANALYTICS                                                                                                                                                                                                                            |                                                          |                               |                           |          |                   |  |  |
| Decision Anal                                                                            | ysis: Formulating Decision Problems, Decision St                                                                                                                                                                                     | rategies with the                                        | with                          | nout                      | Out      | come              |  |  |
|                                                                                          | Decision Trees, The Value of Information, Util                                                                                                                                                                                       | •                                                        |                               |                           | -        |                   |  |  |
|                                                                                          | dded and collaborative business intelligence, Visu                                                                                                                                                                                   | al data recovery,                                        | Dat                           | a St                      | oryte    | elling            |  |  |
| and Data journ                                                                           |                                                                                                                                                                                                                                      |                                                          |                               |                           |          |                   |  |  |
| Contact Perio                                                                            | )ds:                                                                                                                                                                                                                                 |                                                          |                               |                           |          |                   |  |  |
| Lecture: 45 P                                                                            |                                                                                                                                                                                                                                      |                                                          |                               | 4 <i>5</i> D              |          | 1                 |  |  |
|                                                                                          |                                                                                                                                                                                                                                      | 0Periods Tot                                             | al : 4                        | 45 P                      | erio     | ds                |  |  |
| REFERENCE                                                                                | eriods Tutorial: 0 Periods Practical :                                                                                                                                                                                               | 0Periods Tot                                             | al : 4                        | 45 P                      | erio     | ds                |  |  |
| <b>REFERENCI</b><br>1 VigneshPr                                                          | eriods Tutorial: 0 Periods Practical :                                                                                                                                                                                               |                                                          |                               |                           | erio     | ds                |  |  |
| 1 VigneshPr                                                                              | eriods Tutorial: 0 Periods Practical : 0                                                                                                                                                                                             | Packt Publishing                                         | , 201                         | 3.                        |          |                   |  |  |
| 1 VigneshPr                                                                              | eriods Tutorial: 0 Periods Practical : 0<br>ES<br>ajapati, "Big Data Analytics with R and Hadoop",<br>Hodeghatta, UmeshaNayak, "Business Analytics of                                                                                | Packt Publishing                                         | , 201                         | 3.                        |          |                   |  |  |
| 1VigneshPr2Umesh RApress, 20                                                             | eriods Tutorial: 0 Periods Practical : 0<br>ES<br>ajapati, "Big Data Analytics with R and Hadoop",<br>Hodeghatta, UmeshaNayak, "Business Analytics of                                                                                | Packt Publishing<br>Using R – A Pro                      | , 201<br>actic                | '3.<br><b>al</b> A        | ppro     | oach",            |  |  |
| <ol> <li>VigneshPr</li> <li>Umesh R</li> <li>Apress, 20</li> </ol>                       | eriods Tutorial: 0 Periods Practical : 0<br>ES<br>ajapati, <b>"Big Data Analytics with R and Hadoop",</b><br>Hodeghatta, UmeshaNayak, <b>"Business Analytics of</b><br>17.<br>uraman, Jeffrey David Ullman, <b>"Mining of Massiv</b> | Packt Publishing<br>Using R – A Pro                      | , 201<br>actic                | '3.<br><b>al</b> A        | ppro     | oach",            |  |  |
| 1VigneshPr2Umesh RApress, 203AnandRajaPress, 201                                         | eriods Tutorial: 0 Periods Practical : 0<br>ES<br>ajapati, <b>"Big Data Analytics with R and Hadoop",</b><br>Hodeghatta, UmeshaNayak, <b>"Business Analytics of</b><br>17.<br>uraman, Jeffrey David Ullman, <b>"Mining of Massiv</b> | Packt Publishing<br>Using R – A Pro<br>ve Datasets", Can | , 201<br><b>ictic</b><br>mbri | '3.<br><b>al</b> A<br>dge | ppro     | oach",<br>versity |  |  |

5 U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making", Wiley, 2017.

6 Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

| COUR       | COURSE OUTCOMES:                                                                |          |  |  |
|------------|---------------------------------------------------------------------------------|----------|--|--|
|            |                                                                                 | Taxonomy |  |  |
| Upon o     | completion of the course, the students will be able to:                         | Mapped   |  |  |
| CO1        | Identify the real world business problems and model with analytical solutions.  | K4       |  |  |
| CO2        | Solve analytical problem with relevant mathematics background knowledge.        | K4       |  |  |
| CO3        | Convert any real world decision making problem to hypothesis and apply suitable | K4       |  |  |
|            | statistical testing.                                                            |          |  |  |
| <b>CO4</b> | Write and Demonstrate simple applications involving analytics using Hadoop and  | K4       |  |  |
|            | Map Reduce                                                                      |          |  |  |
| CO5        | Use open source frameworks for modeling and storing data.                       | K4       |  |  |

| COURSE ARTICULATION MATRIX  |                                           |     |     |     |     |  |  |  |  |
|-----------------------------|-------------------------------------------|-----|-----|-----|-----|--|--|--|--|
| COs/POs                     | PO1                                       | PO2 | PO3 | PO4 | PO5 |  |  |  |  |
| CO1                         | 1                                         | 2   | 1   | 2   | 1   |  |  |  |  |
| CO2                         | 1                                         | 1   | 1   | 2   | 1   |  |  |  |  |
| CO3                         | 2                                         | 2   | 1   | 1   | -   |  |  |  |  |
| CO4                         | 2                                         | 2   | 1   | -   | -   |  |  |  |  |
| CO5                         | 1                                         | 2   | -   | -   | -   |  |  |  |  |
| 23EDOE10                    | 1                                         | 2   | 1   | 2   | 1   |  |  |  |  |
| 1 - Slight, 2 - Moderate, 1 | 1 – Slight, 2 – Moderate, 3 – Substantial |     |     |     |     |  |  |  |  |

| ASSESSMENT     | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |       |  |  |  |  |
|----------------|-----------------------------|---------------|----------|-----------|------------|----------|-------|--|--|--|--|
| Test / Bloom's | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |  |
| Category*      | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |  |
| CAT1           | 25                          | 25            | 25       | 25        |            |          | 100   |  |  |  |  |
| CAT2           | 20                          | 25            | 25       | 30        |            |          | 100   |  |  |  |  |
| Assignment 1   | 25                          | 30            | 25       | 20        |            |          | 100   |  |  |  |  |
| Assignment 2   | 30                          | 20            | 30       | 20        |            |          | 100   |  |  |  |  |
| ESE            | 20                          | 30            | 20       | 30        |            |          | 100   |  |  |  |  |

| <b>23EDOE11</b>                                                                                                                                                                                                                                                                                                                      | INTRODUCTION TO INDUSTRIAL SAFET<br>(Common to all Branches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Y                                                                            |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| PREREQUIS                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L                                                                            | Т                                                                                                   | Р                                                                                                                                                                                                                                         | С                                                                                  |
| <b>t</b>                                                                                                                                                                                                                                                                                                                             | NIL OE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                            | 0                                                                                                   | 0                                                                                                                                                                                                                                         | 3                                                                                  |
| Course                                                                                                                                                                                                                                                                                                                               | • Summarize basics of industrial safety.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                                                            | -                                                                                                   | -                                                                                                                                                                                                                                         | -                                                                                  |
| Objectives                                                                                                                                                                                                                                                                                                                           | <ul> <li>Describe fundamentals of maintenance engineering.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                              |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Explain wear and corrosion.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                      | <ul><li>Illustrate fault tracing.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                      | <ul><li>Identify preventive and periodic maintenance.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
| UNIT – I                                                                                                                                                                                                                                                                                                                             | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              | 9                                                                                                   | Perio                                                                                                                                                                                                                                     | ds                                                                                 |
|                                                                                                                                                                                                                                                                                                                                      | ses, types, results and control, mechanical and electrical hazards                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tvr                                                                          |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                      | ps/procedure, describe salient points of factories act 1948 for heal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • •                                                                          |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
| •                                                                                                                                                                                                                                                                                                                                    | ng water layouts, light, cleanliness, fire, guarding, pressure vessels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              |                                                                                                     | •                                                                                                                                                                                                                                         |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                      | evention and firefighting, equipment and methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5, Ct                                                                        | e., bi                                                                                              | liety                                                                                                                                                                                                                                     | 2010                                                                               |
| UNIT – II                                                                                                                                                                                                                                                                                                                            | FUNDAMENTALS OF MAINTENANCE ENGINEERING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | G                                                                            | 9                                                                                                   | Perio                                                                                                                                                                                                                                     | de                                                                                 |
|                                                                                                                                                                                                                                                                                                                                      | l aim of maintenance engineering, Primary and secondary function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                            |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                      | ce department, Types of maintenance, Types and applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                      | Maintenance cost & its relation with replacement economy, Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
| UNIT – III                                                                                                                                                                                                                                                                                                                           | WEAR AND CORROSION AND THEIR PREVENTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | me                                                                           |                                                                                                     | Perio                                                                                                                                                                                                                                     |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                      | causes, effects, wear reduction methods, lubricants-types and applic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ontic                                                                        |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                      | rention methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              |                                                                                                     |                                                                                                                                                                                                                                           |                                                                                    |
| LINIT IV                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              | 0                                                                                                   | Donio                                                                                                                                                                                                                                     | da                                                                                 |
|                                                                                                                                                                                                                                                                                                                                      | FAULT TRACING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ation                                                                        |                                                                                                     | Perio                                                                                                                                                                                                                                     |                                                                                    |
| Fault tracing-                                                                                                                                                                                                                                                                                                                       | FAULT TRACING<br>concept and importance, decision tree concept, need and applica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              | is, se                                                                                              | quenc                                                                                                                                                                                                                                     | e o                                                                                |
| fault-finding                                                                                                                                                                                                                                                                                                                        | FAULT TRACING<br>concept and importance, decision tree concept, need and applica<br>activities, show as decision tree, draw decision tree for problems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s in                                                                         | is, se<br>macl                                                                                      | quenc<br>nine t                                                                                                                                                                                                                           | e o<br>ools                                                                        |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne                                                                                                                                                                                                                                                                                  | <b>FAULT TRACING</b><br>concept and importance, decision tree concept, need and applica<br>activities, show as decision tree, draw decision tree for problems<br>numatic, automotive, thermal and electrical equipment's like, I. Any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s in<br>y on                                                                 | ns, se<br>macl<br>e ma                                                                              | quenc<br>nine t<br>chine                                                                                                                                                                                                                  | ce o<br>ools<br>tool                                                               |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A                                                                                                                                                                                                                                                               | FAULT TRACING<br>concept and importance, decision tree concept, need and applica<br>activities, show as decision tree, draw decision tree for problems<br>numatic, automotive, thermal and electrical equipment's like, I. Any<br>ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s in<br>y on                                                                 | ns, se<br>macl<br>e ma                                                                              | quenc<br>nine t<br>chine                                                                                                                                                                                                                  | ce o<br>ools<br>tool                                                               |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach                                                                                                                                                                                                                                             | FAULT TRACING<br>concept and importance, decision tree concept, need and applica<br>activities, show as decision tree, draw decision tree for problems<br>numatic, automotive, thermal and electrical equipment's like, I. Any<br>ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric<br>ine tools and their general causes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | s in<br>y on                                                                 | ns, se<br>macl<br>e ma<br>notors                                                                    | equence<br>nine t<br>chine<br>s, Typ                                                                                                                                                                                                      | xe o<br>ools<br>tool<br>es o                                                       |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br><b>UNIT – V</b>                                                                                                                                                                                                                          | FAULT TRACING           concept and importance, decision tree concept, need and applicance           activities, show as decision tree, draw decision tree for problems           pumatic, automotive, thermal and electrical equipment's like, I. Any           ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric           ine tools and their general causes.           PERIODIC AND PREVENTIVE MAINTENANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s in<br>y on<br>cal m                                                        | ns, se<br>macl<br>e ma<br>notors                                                                    | quenc<br>hine t<br>chine<br>s, Typ<br><b>Perio</b>                                                                                                                                                                                        | xe o<br>ools<br>tool<br>es o<br>ods                                                |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br><b>UNIT – V</b><br>Periodic inspe                                                                                                                                                                                                        | FAULT TRACING           concept and importance, decision tree concept, need and applica           activities, show as decision tree, draw decision tree for problems           numatic, automotive, thermal and electrical equipment's like, I. Any           ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric           ine tools and their general causes.           PERIODIC AND PREVENTIVE MAINTENANCE           ection-concept and need, degreasing, cleaning and repairing scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s in<br>y on<br>cal m<br>nes,                                                | ns, se<br>macl<br>e ma<br>notors<br><b>9</b><br>over                                                | quenc<br>nine t<br>chine<br>s, Typ<br><b>Perio</b><br>haulir                                                                                                                                                                              | xe o<br>ools<br>tool<br>es o<br>ods<br>ng o                                        |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br><b>UNIT – V</b><br>Periodic inspe<br>mechanical co                                                                                                                                                                                       | FAULT TRACING           concept and importance, decision tree concept, need and applica           activities, show as decision tree, draw decision tree for problems           pumatic, automotive, thermal and electrical equipment's like, I. Any           ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric           ine tools and their general causes.           PERIODIC AND PREVENTIVE MAINTENANCE           ection-concept and need, degreasing, cleaning and repairing scheme           omponents, overhauling of electrical motor, common troubles and the                                                                                                                                                                                                                                                                                                                                                                                                       | s in<br>y on<br>cal m<br>nes,<br>reme                                        | ns, se<br>macl<br>e ma<br>notors<br><b>9</b><br>over<br>edies                                       | quenc<br>nine t<br>chine<br>s, Typ<br><b>Perio</b><br>haulir<br>of ele                                                                                                                                                                    | ce o<br>ools<br>tool<br>es o<br>ods<br>ng o<br>cctri                               |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br><b>UNIT – V</b><br>Periodic inspe<br>mechanical co<br>motor, repair                                                                                                                                                                      | FAULT TRACING           concept and importance, decision tree concept, need and applicance           activities, show as decision tree, draw decision tree for problems           activities, show as decision tree, draw decision tree for problems           activities, show as decision tree, draw decision tree for problems           activities, show as decision tree, draw decision tree for problems           activities, show as decision tree, draw decision tree for problems           activities, automotive, thermal and electrical equipment's like, I. Any           ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric           ine tools and their general causes.           PERIODIC AND PREVENTIVE MAINTENANCE           action-concept and need, degreasing, cleaning and repairing scheme           action-concept and need, degreasing, cleaning and repairing scheme           action-concept and its use, definition, need, steps and advantance | s in<br>y on<br>cal m<br>nes,<br>reme<br>ages                                | ns, se<br>macl<br>e manotors<br>otors<br><b>9</b><br>over<br>edies<br>of                            | quenc<br>nine t<br>chine<br>s, Typ<br><b>Perio</b><br>haulir<br>of ele<br>preve                                                                                                                                                           | ce o<br>ools<br>tool<br>es o<br>ods<br>ng o<br>cctri                               |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br><b>UNIT – V</b><br>Periodic inspe<br>mechanical co<br>motor, repair<br>maintenance.                                                                                                                                                      | FAULT TRACING           concept and importance, decision tree concept, need and applicance           activities, show as decision tree, draw decision tree for problems           activities, show as decision tree, draw decision tree for problems           activities, automotive, thermal and electrical equipment's like, I. Any           ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric           ine tools and their general causes.           PERIODIC AND PREVENTIVE MAINTENANCE           exction-concept and need, degreasing, cleaning and repairing scheme           omponents, overhauling of electrical motor, common troubles and repairing scheme           omplexities and its use, definition, need, steps and advantance           Steps/procedure for periodic and preventive maintenance of: I.                                                                                                                                                   | s in<br>y on<br>cal m<br>nes,<br>reme<br>ages<br>Ma                          | ns, se<br>macl<br>e main<br>notors<br>otors<br>over<br>edies<br>of<br>chine                         | quenc<br>nine t<br>chine<br>s, Typ<br><b>Perio</b><br>haulir<br>of ele<br>preve                                                                                                                                                           | ce o<br>ools<br>too<br>es o<br>ods<br>ng o<br>ectri<br>ntiv<br>s, i                |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br><b>UNIT – V</b><br>Periodic inspe<br>mechanical co<br>motor, repair<br>maintenance.<br>Pumps, iii. A                                                                                                                                     | FAULT TRACING           concept and importance, decision tree concept, need and applica           activities, show as decision tree, draw decision tree for problems           umatic, automotive, thermal and electrical equipment's like, I. Any           ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric           ine tools and their general causes.           PERIODIC AND PREVENTIVE MAINTENANCE           ection-concept and need, degreasing, cleaning and repairing scheme           omponents, overhauling of electrical motor, common troubles and their complexities and its use, definition, need, steps and advanta           Steps/procedure for periodic and preventive maintenance of: I.           ar compressors, iv. Diesel generating (DG) sets, Program and scheme                                                                                                                                                                                 | s in<br>y on<br>cal m<br>nes,<br>reme<br>ages<br>Ma<br>edul                  | ns, se<br>macl<br>e mach<br>notors<br>otors<br>over<br>edies<br>of<br>chine<br>e of                 | quenc<br>nine t<br>chine<br>s, Typ<br><b>Perio</b><br>haulir<br>of ele<br>preve<br>e tool<br>preve                                                                                                                                        | ce o<br>ools<br>tool<br>es o<br>ods<br>ng o<br>ectri<br>ntiv                       |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br><b>UNIT – V</b><br>Periodic inspe<br>mechanical co<br>motor, repair<br>maintenance.<br>Pumps, iii. A<br>maintenance o                                                                                                                    | FAULT TRACING           concept and importance, decision tree concept, need and applicance           activities, show as decision tree, draw decision tree for problems           activities, show as decision tree, draw decision tree for problems           activities, show as decision tree, draw decision tree for problems           activities, automotive, thermal and electrical equipment's like, I. Any           ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric           ine tools and their general causes.           PERIODIC AND PREVENTIVE MAINTENANCE           activities and need, degreasing, cleaning and repairing scheme           activities and its use, definition, need, steps and advanta           Steps/procedure for periodic and preventive maintenance of: I.           ar compressors, iv. Diesel generating (DG) sets, Program and scheme           of mechanical and electrical equipment, advantages of preventive notice          | s in<br>y on<br>cal m<br>nes,<br>reme<br>ages<br>Ma<br>edul                  | ns, se<br>macl<br>e mach<br>notors<br>otors<br>over<br>edies<br>of<br>chine<br>e of                 | quenc<br>nine t<br>chine<br>s, Typ<br><b>Perio</b><br>haulir<br>of ele<br>preve<br>e tool<br>preve                                                                                                                                        | ce o<br>ools<br>tool<br>es o<br>ods<br>ng o<br>ectri<br>ntiv                       |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br><b>UNIT – V</b><br>Periodic inspe<br>mechanical co<br>motor, repair<br>maintenance.<br>Pumps, iii. A<br>maintenance o<br>cycle concept                                                                                                   | FAULT TRACING         concept and importance, decision tree concept, need and applica         activities, show as decision tree, draw decision tree for problems         umatic, automotive, thermal and electrical equipment's like, I. Any         ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric         ine tools and their general causes.         PERIODIC AND PREVENTIVE MAINTENANCE         ection-concept and need, degreasing, cleaning and repairing scheme         omponents, overhauling of electrical motor, common troubles and need, steps and advanta         Steps/procedure for periodic and preventive maintenance of: I.         ar compressors, iv. Diesel generating (DG) sets, Program and scheme         of mechanical and electrical equipment, advantages of preventive maintenance                                                                                                                                                            | s in<br>y on<br>cal m<br>nes,<br>reme<br>ages<br>Ma<br>edul                  | ns, se<br>macl<br>e mach<br>notors<br>otors<br>over<br>edies<br>of<br>chine<br>e of                 | quenc<br>nine t<br>chine<br>s, Typ<br><b>Perio</b><br>haulir<br>of ele<br>preve<br>e tool<br>preve                                                                                                                                        | ce co<br>ools<br>too<br>es c<br>ods<br>ng c<br>ectri<br>ntiv<br>s, i<br>ntiv       |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br><b>UNIT – V</b><br>Periodic inspe<br>mechanical co<br>motor, repair<br>maintenance.<br>Pumps, iii. A<br>maintenance of                                                                                                                   | FAULT TRACING         concept and importance, decision tree concept, need and applicate activities, show as decision tree, draw decision tree for problems and activities, show as decision tree, draw decision tree for problems and activities, automotive, thermal and electrical equipment's like, I. Any ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electrication tools and their general causes.         PERIODIC AND PREVENTIVE MAINTENANCE         activities and need, degreasing, cleaning and repairing schemer components, overhauling of electrical motor, common troubles and a complexities and its use, definition, need, steps and advanta Steps/procedure for periodic and preventive maintenance of: I. I. I. I. Compressors, iv. Diesel generating (DG) sets, Program and schemer for mechanical and electrical equipment, advantages of preventive maintenance         ods:                                                                               | s in<br>y on<br>cal m<br>mes,<br>reme<br>ages<br>Ma<br>edul<br>nain          | s, se<br>macl<br>e man<br>notors<br>otors<br>over<br>edies<br>of<br>chine<br>e of<br>tenan          | quenc<br>nine t<br>chine<br>s, Typ<br><b>Perio</b><br>haulir<br>of ele<br>preve<br>e tool<br>preve                                                                                                                                        | ce co<br>ools<br>too<br>es c<br>ods<br>ng c<br>ectri<br>ntiv<br>s, i<br>ntiv       |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br><b>UNIT – V</b><br>Periodic inspe<br>mechanical co<br>motor, repair<br>maintenance.<br>Pumps, iii. A<br>maintenance o<br>cycle concept<br><b>Contact Peri</b>                                                                            | FAULT TRACING         concept and importance, decision tree concept, need and applicate activities, show as decision tree, draw decision tree for problems and activities, show as decision tree, draw decision tree for problems and activities, automotive, thermal and electrical equipment's like, I. Any ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electrication tools and their general causes.         PERIODIC AND PREVENTIVE MAINTENANCE         activities and need, degreasing, cleaning and repairing schemer components, overhauling of electrical motor, common troubles and a complexities and its use, definition, need, steps and advanta Steps/procedure for periodic and preventive maintenance of: I. I. I. I. Compressors, iv. Diesel generating (DG) sets, Program and schemer for mechanical and electrical equipment, advantages of preventive maintenance         ods:                                                                               | s in<br>y on<br>cal m<br>mes,<br>reme<br>ages<br>Ma<br>edul<br>nain          | s, se<br>macl<br>e man<br>notors<br>otors<br>over<br>edies<br>of<br>chine<br>e of<br>tenan          | quenc<br>nine t<br>chine<br>s, Typ<br>Perio<br>haulir<br>of ele<br>prevez<br>tool<br>prevez<br>cce. Ro                                                                                                                                    | ce co<br>ools<br>too<br>es c<br>ods<br>ng c<br>ectri<br>ntiv<br>s, i<br>ntiv       |
| Fault tracing-<br>fault-finding i<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br><b>UNIT – V</b><br>Periodic inspe<br>mechanical co<br>motor, repair<br>maintenance.<br>Pumps, iii. A<br>maintenance o<br>cycle concept<br><b>Contact Peri</b><br><b>Lecture: 45 F</b>                                                    | FAULT TRACING         concept and importance, decision tree concept, need and applicate activities, show as decision tree, draw decision tree for problems of the problem is activities, automotive, thermal and electrical equipment's like, I. Any ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electrication tools and their general causes.         PERIODIC AND PREVENTIVE MAINTENANCE         extion-concept and need, degreasing, cleaning and repairing schemer of problems and its use, definition, need, steps and advantate Steps/procedure for periodic and preventive maintenance of: I. r compressors, iv. Diesel generating (DG) sets, Program and schemer of mechanical and electrical equipment, advantages of preventive maintenance of the mechanical and electrical equipment, advantages of preventive maintenance         Odds:       Tutorial: 0 Periods       Practical:0Periods       Tot                                                               | s in<br>y on<br>cal m<br>mes,<br>reme<br>ages<br>Ma<br>edul<br>nain          | s, se<br>macl<br>e man<br>notors<br>otors<br>over<br>edies<br>of<br>chine<br>e of<br>tenan<br>5 Per | quenc<br>nine t<br>chine<br>s, Typ<br><b>Perio</b><br>haulir<br>of ele<br>preve<br>tool<br>preve<br>ce. Ro                                                                                                                                | e c<br>ools<br>too<br>es c<br>ods<br>ng c<br>ectri<br>ntiv<br>s, i<br>ntiv<br>epai |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in machUNIT – VPeriodic inspe<br>mechanical co<br>motor, repair<br>maintenance.Pumps, iii. A<br>maintenance o<br>cycle conceptContact Peri<br>Lecture: 45 FREFERENCI<br>11Hans F. W                                                                 | FAULT TRACING         concept and importance, decision tree concept, need and applicate activities, show as decision tree, draw decision tree for problems numatic, automotive, thermal and electrical equipment's like, I. Any ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric ine tools and their general causes.         PERIODIC AND PREVENTIVE MAINTENANCE         extion-concept and need, degreasing, cleaning and repairing schemer of complexities and its use, definition, need, steps and advantate Steps/procedure for periodic and preventive maintenance of: I.                                                                                                                                                                                                                                                                                                                                                          | s in<br>y on<br>cal m<br>mes,<br>reme<br>ages<br>Ma<br>edul<br>nain<br>tal:4 | s, se<br>macl<br>e ma<br>notors<br>otors<br>over<br>edies<br>of<br>chine<br>e of<br>tenan<br>5 Per  | quenc<br>nine t<br>chine<br>s, Typ<br><b>Perio</b><br>haulir<br>of ele<br>preve<br>tool<br>preve<br>ce. Ro<br>riods                                                                                                                       | e c<br>ools<br>too<br>es c<br>ods<br>ng c<br>ectri<br>ntiv<br>s, i<br>ntiv<br>epai |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in machUNIT – VPeriodic inspe<br>mechanical co<br>motor, repair<br>maintenance.Pumps, iii. A<br>maintenance.Pumps, iii. A<br>maintenance o<br>cycle conceptContact Peri<br>Lecture: 45 FREFERENCI<br>11Hans F. W                                    | FAULT TRACING         concept and importance, decision tree concept, need and applicate activities, show as decision tree, draw decision tree for problems of the problem is activities, automotive, thermal and electrical equipment's like, I. Any ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electrication tools and their general causes.         PERIODIC AND PREVENTIVE MAINTENANCE         extion-concept and need, degreasing, cleaning and repairing schemer of problems and its use, definition, need, steps and advantate Steps/procedure for periodic and preventive maintenance of: I. r compressors, iv. Diesel generating (DG) sets, Program and schemer of mechanical and electrical equipment, advantages of preventive maintenance of the mechanical and electrical equipment, advantages of preventive maintenance         Odds:       Tutorial: 0 Periods       Practical:0Periods       Tot                                                               | s in<br>y on<br>cal m<br>mes,<br>reme<br>ages<br>Ma<br>edul<br>nain<br>tal:4 | s, se<br>macl<br>e ma<br>notors<br>otors<br>over<br>edies<br>of<br>chine<br>e of<br>tenan<br>5 Per  | quenc<br>nine t<br>chine<br>s, Typ<br><b>Perio</b><br>haulir<br>of ele<br>preve<br>tool<br>preve<br>ce. Ro<br>riods                                                                                                                       | e c<br>ool:<br>too<br>es c<br>ods<br>ng c<br>ectri<br>ntiv<br>s, i<br>ntiv<br>epa  |
| Fault tracing-<br>fault-finding a<br>hydraulic, pne<br>ii. Pump iii. A<br>faults in mach<br>UNIT - V<br>Periodic inspe<br>mechanical co<br>motor, repair<br>maintenance.<br>Pumps, iii. A<br>maintenance of<br>cycle concept<br><b>Contact Peri</b><br><b>Lecture: 45 F</b><br><b>REFERENCI</b><br>1 Hans F. W<br>2 "Mainten<br>2017 | FAULT TRACING         concept and importance, decision tree concept, need and applicate activities, show as decision tree, draw decision tree for problems numatic, automotive, thermal and electrical equipment's like, I. Any ir compressor, iv. Internal combustion engine, v. Boiler, vi. Electric ine tools and their general causes.         PERIODIC AND PREVENTIVE MAINTENANCE         extion-concept and need, degreasing, cleaning and repairing schemer of complexities and its use, definition, need, steps and advantate Steps/procedure for periodic and preventive maintenance of: I.                                                                                                                                                                                                                                                                                                                                                          | s in<br>y on<br>cal m<br>mes,<br>reme<br>ages<br>Ma<br>edul<br>nain<br>nain  | s, se<br>macl<br>e man<br>notors<br>over<br>edies<br>of<br>chine<br>e of<br>tenan<br><b>5 Per</b>   | quenc<br>nine t<br>chine<br>s, Typ<br>Perio<br>haulir<br>of ele<br>preve<br>tool<br>preve<br>tool<br>preve<br>tool<br>preve<br>tool<br>preve<br>tool<br>preve<br>tool<br>preve<br>tool<br>preve<br>tool<br>preve<br>tool<br>preve<br>tool | e o<br>ools<br>too<br>ods<br>og o<br>ectri<br>ntiv<br>s, ii<br>ntiv<br>epai        |

- 4 **"Industrial Engineering And Production Management",** S. Chand Publishing; Third edition ,2018
- 5 "Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

| COU        | COURSE OUTCOMES:                                            |                    |  |  |
|------------|-------------------------------------------------------------|--------------------|--|--|
| Upon       | completion of the course, the students will be able to:     | Taxonomy<br>Mapped |  |  |
| <b>CO1</b> | Ability to summarize basics of industrial safety            | K4                 |  |  |
| CO2        | Ability to describe fundamentals of maintenance engineering | K4                 |  |  |
| CO3        | Ability to explain wear and corrosion                       | K4                 |  |  |
| <b>CO4</b> | Ability to illustrate fault tracing                         | K4                 |  |  |
| CO5        | Ability to identify preventive and periodic maintenance     | K4                 |  |  |

| COURSE ARTICULATION MATRIX            |            |     |     |     |     |  |  |  |  |
|---------------------------------------|------------|-----|-----|-----|-----|--|--|--|--|
| COs/POs                               | PO1        | PO2 | PO3 | PO4 | PO5 |  |  |  |  |
| CO1                                   | 2          | 1   | 1   | -   | -   |  |  |  |  |
| CO2                                   | 2          | 2   | 1   | -   | 1   |  |  |  |  |
| CO3                                   | 1          | 2   | 1   | 1   | 1   |  |  |  |  |
| CO4                                   | 2          | 1   | 1   | 1   | 1   |  |  |  |  |
| CO5                                   | 2          | 1   | 2   | 1   | 1   |  |  |  |  |
| 23EDOE11                              | 2          | 1   | 1   | 1   | 1   |  |  |  |  |
| 1 - Slight, $2 - $ Moderate, $3 - $ S | ubstantial |     | •   |     | •   |  |  |  |  |

| Test / Bloom's | Remembering | 0      | Applying | Analyzing | Evaluating | Creating | Total |
|----------------|-------------|--------|----------|-----------|------------|----------|-------|
| Category*      | (K1) %      | (K2) % | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 25          | 25     | 25       | 25        |            |          | 100   |
| CAT2           | 20          | 25     | 25       | 30        |            |          | 100   |
| Assignment 1   | 25          | 30     | 25       | 20        |            |          | 100   |
| Assignment 2   | 30          | 20     | 30       | 20        |            |          | 100   |
| ESE            | 20          | 30     | 20       | 30        |            |          | 100   |

| <b>23EDOE12</b>                                                                                                                                                          | <b>OPERATIONS R</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ESEARCH                                     |               |                                     |                       |                                                   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------|-------------------------------------|-----------------------|---------------------------------------------------|--|
| 25EDUE12                                                                                                                                                                 | (Common to all Branches)                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |               |                                     |                       |                                                   |  |
| PREREQUISIT                                                                                                                                                              | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CATEGORY                                    | L             | Т                                   | Р                     | С                                                 |  |
|                                                                                                                                                                          | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OE                                          | 3             | 0                                   | 0                     | 3                                                 |  |
| Course                                                                                                                                                                   | Solve linear programming problem and solv                                                                                                                                                                                                                                                                                                                                                                                                                           | e using graphical met                       | thod.         |                                     |                       |                                                   |  |
| Objectives                                                                                                                                                               | • Solve LPP using simplex method.                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |               |                                     |                       |                                                   |  |
|                                                                                                                                                                          | • Solve transportation, assignment problems.                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |               |                                     |                       |                                                   |  |
|                                                                                                                                                                          | • Solve project management problems.                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |               |                                     |                       |                                                   |  |
|                                                                                                                                                                          | • Solve scheduling problems.                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |               |                                     |                       |                                                   |  |
| UNIT – I                                                                                                                                                                 | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             |               | 9                                   | Peri                  | iods                                              |  |
| Optimization Tec                                                                                                                                                         | chniques, Model Formulation, models, General L.R Fo                                                                                                                                                                                                                                                                                                                                                                                                                 | ormulation, Simplex '                       | Tech          | nique                               | es, Se                | ensitivity                                        |  |
| Analysis, Invento                                                                                                                                                        | ory Control Models                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |               |                                     |                       |                                                   |  |
| UNIT – II LINEAR PROGRAMMING PROBLEM                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |               |                                     | 9 Periods             |                                                   |  |
|                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |               |                                     |                       | 0.00                                              |  |
|                                                                                                                                                                          | a LPP - Graphical solution revised simplex method                                                                                                                                                                                                                                                                                                                                                                                                                   | - duality theory - d                        | iual s        |                                     | -                     |                                                   |  |
| Formulation of a                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - duality theory - c                        | dual s        |                                     | -                     |                                                   |  |
| Formulation of a                                                                                                                                                         | a LPP - Graphical solution revised simplex method                                                                                                                                                                                                                                                                                                                                                                                                                   | - duality theory - o                        | lual s        | simp                                | -                     | nethod                                            |  |
| Formulation of a sensitivity analys <b>UNIT – III</b>                                                                                                                    | a LPP - Graphical solution revised simplex method<br>is - parametric programming                                                                                                                                                                                                                                                                                                                                                                                    |                                             |               | simp<br>9                           | lex n<br>Peri         | nethod<br>iods                                    |  |
| Formulation of a sensitivity analys <b>UNIT – III</b>                                                                                                                    | A LPP - Graphical solution revised simplex method<br>is - parametric programming<br>NON-LINEAR PROGRAMMING PROBLEM                                                                                                                                                                                                                                                                                                                                                  |                                             |               | simp<br>9                           | lex n<br>Peri         | nethod<br>iods                                    |  |
| Formulation of a sensitivity analys<br>UNIT – III<br>Nonlinear progra                                                                                                    | A LPP - Graphical solution revised simplex method<br>is - parametric programming<br>NON-LINEAR PROGRAMMING PROBLEM                                                                                                                                                                                                                                                                                                                                                  |                                             |               | simp<br>9<br>flo                    | lex n<br>Peri         | iods                                              |  |
| Formulation of a<br>sensitivity analys<br>UNIT – III<br>Nonlinear progra<br>CPM/PERT<br>UNIT – IV                                                                        | A LPP - Graphical solution revised simplex method<br>is - parametric programming<br>NON-LINEAR PROGRAMMING PROBLEM<br>amming problem - Kuhn-Tucker conditions min c                                                                                                                                                                                                                                                                                                 | ost flow problem -                          | max           | simp<br>9<br>flo                    | lex n<br>Peri<br>w pr | iods<br>iods                                      |  |
| Formulation of a<br>sensitivity analys<br><b>UNIT – III</b><br>Nonlinear progra<br>CPM/PERT<br><b>UNIT – IV</b><br>Scheduling and                                        | A LPP - Graphical solution revised simplex method         is - parametric programming         NON-LINEAR PROGRAMMING PROBLEM         amming problem - Kuhn-Tucker conditions min c         SEQUENCING AND INVENTORY MODEL                                                                                                                                                                                                                                           | ost flow problem -                          | max           | simp<br>9<br>flo                    | lex n<br>Peri<br>w pr | iods<br>iods                                      |  |
| Formulation of a<br>sensitivity analys<br><b>UNIT – III</b><br>Nonlinear progra<br>CPM/PERT<br><b>UNIT – IV</b><br>Scheduling and                                        | A LPP - Graphical solution revised simplex method<br>is - parametric programming<br>NON-LINEAR PROGRAMMING PROBLEM<br>amming problem - Kuhn-Tucker conditions min c<br>SEQUENCING AND INVENTORY MODEL<br>sequencing - single server and multiple server m                                                                                                                                                                                                           | ost flow problem -                          | max           | simp<br>9<br>flo<br>9<br>vento      | lex n<br>Peri<br>w pr | nethod<br>iods<br>oblem<br>iods<br>nodels         |  |
| Formulation of a<br>sensitivity analys<br>UNIT – III<br>Nonlinear progra<br>CPM/PERT<br>UNIT – IV<br>Scheduling and<br>Probabilistic inve<br>UNIT – V                    | a LPP - Graphical solution revised simplex method         is - parametric programming         NON-LINEAR PROGRAMMING PROBLEM         amming problem - Kuhn-Tucker conditions min c         SEQUENCING AND INVENTORY MODEL         sequencing - single server and multiple server mentory control models - Geometric Programming.                                                                                                                                    | ost flow problem -<br>nodels - deterministi | max<br>ic inv | simp<br>9<br>flo<br>9<br>vento<br>9 | Periory n             | nethod<br>iods<br>oblem<br>iods<br>nodels<br>iods |  |
| Formulation of a<br>sensitivity analys<br>UNIT – III<br>Nonlinear progra<br>CPM/PERT<br>UNIT – IV<br>Scheduling and<br>Probabilistic inve<br>UNIT – V<br>Competitive Mod | A LPP - Graphical solution revised simplex method<br>is - parametric programming<br>NON-LINEAR PROGRAMMING PROBLEM<br>amming problem - Kuhn-Tucker conditions min c<br>SEQUENCING AND INVENTORY MODEL<br>sequencing - single server and multiple server mentory control models - Geometric Programming.<br>GAME THEORY                                                                                                                                              | ost flow problem -<br>nodels - deterministi | max<br>ic inv | simp<br>9<br>flo<br>9<br>vento<br>9 | Periory n             | nethod<br>iods<br>oblem<br>iods<br>nodels<br>iods |  |
| Formulation of a<br>sensitivity analys<br>UNIT – III<br>Nonlinear progra<br>CPM/PERT<br>UNIT – IV<br>Scheduling and<br>Probabilistic inve<br>UNIT – V<br>Competitive Mod | a LPP - Graphical solution revised simplex method         is - parametric programming         NON-LINEAR PROGRAMMING PROBLEM         amming problem - Kuhn-Tucker conditions min c         SEQUENCING AND INVENTORY MODEL         sequencing - single server and multiple server mentory control models - Geometric Programming.         GAME THEORY         dels, Single and Multi-channel Problems, Sequencing         ntary Graph Theory, Game Theory Simulation | ost flow problem -<br>nodels - deterministi | max<br>ic inv | simp<br>9<br>flo<br>9<br>vento<br>9 | Periory n             | iods<br>oblem<br>iods<br>nodels<br>iods           |  |

| 1 | H.A. Taha "Operations Research, An Introduction", PHI, 2017.                    |
|---|---------------------------------------------------------------------------------|
| 2 | "Industrial Engineering and Management", O. P. Khanna, 2017.                    |
| 3 | "Operations Research", S.K. Patel, 2017.                                        |
| 4 | "Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021. |

| COURS   | E OUTCOMES:                                                            | Bloom's  |
|---------|------------------------------------------------------------------------|----------|
|         |                                                                        | Taxonomy |
| Upon co | mpletion of the course, the students will be able to:                  | Mapped   |
| CO1     | Formulate linear programming problem and solve using graphical method. | K4       |
| CO2     | Solve LPP using simplex method.                                        | K4       |
| CO3     | Formulate and solve transportation, assignment problems.               | K4       |
| CO4     | Solve project management problems.                                     | K4       |
| CO5     | Solve scheduling problems                                              | K4       |

| COURSE ARTICULATION MATRIX        |           |     |     |     |     |  |  |
|-----------------------------------|-----------|-----|-----|-----|-----|--|--|
| COs/POs                           | PO1       | PO2 | PO3 | PO4 | PO5 |  |  |
| CO1                               | 2         | 1   | 1   | -   | -   |  |  |
| CO2                               | 2         | 2   | 1   | -   | -   |  |  |
| CO3                               | 1         | 1   | 2   | 1   | 1   |  |  |
| CO4                               | 1         | 1   | -   | -   | -   |  |  |
| CO5                               | 2         | 1   | -   | -   | -   |  |  |
| 23EDOE12                          | 2         | 1   | 1   | 1   | 1   |  |  |
| 1 - Slight, 2 - Moderate, 3 - Sub | ostantial |     |     |     | •   |  |  |

| ASSESSMEN                      | ASSESSMENT PATTERN – THEORY |                         |                    |                     |                      |                    |            |  |  |  |  |
|--------------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|--|
| Test /<br>Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |  |
| CAT1                           | 25                          | 25                      | 25                 | 25                  |                      |                    | 100        |  |  |  |  |
| CAT2                           | 20                          | 25                      | 25                 | 30                  |                      |                    | 100        |  |  |  |  |
| Assignment 1                   | 25                          | 30                      | 25                 | 20                  |                      |                    | 100        |  |  |  |  |
| Assignment 2                   | 30                          | 20                      | 30                 | 20                  |                      |                    | 100        |  |  |  |  |
| ESE                            | 20                          | 30                      | 20                 | 30                  |                      |                    | 100        |  |  |  |  |

| <b>23MFOE13</b>                                                                                                                                                                                                                              | OCCUPATIONAL HEATH A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                |                                                              |                                                                                          |                                                                                                      |                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                                                                                                                                                                                                                                              | (Common to all Brand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ches)                                                                                                                                                                                          |                                                              |                                                                                          |                                                                                                      |                                                                          |
| PREREQUISI                                                                                                                                                                                                                                   | TES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CATEGORY                                                                                                                                                                                       | L                                                            | Т                                                                                        | Р                                                                                                    | С                                                                        |
|                                                                                                                                                                                                                                              | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OE                                                                                                                                                                                             | 3                                                            | 3 0 0                                                                                    |                                                                                                      | 3                                                                        |
| Course                                                                                                                                                                                                                                       | • To gain knowledge about occupational health hazard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | and safety measure                                                                                                                                                                             | es at                                                        | work                                                                                     | c plac                                                                                               | ce.                                                                      |
| Objectives                                                                                                                                                                                                                                   | • To learn about accident prevention and safety manag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ement.                                                                                                                                                                                         |                                                              |                                                                                          |                                                                                                      |                                                                          |
|                                                                                                                                                                                                                                              | • To learn about general safety measures in industries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                |                                                              |                                                                                          |                                                                                                      |                                                                          |
| UNIT – I                                                                                                                                                                                                                                     | OCCUPATIONAL HEALTH AND HAZARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | 9 P                                                          | erio                                                                                     | ds                                                                                                   |                                                                          |
| Safety- History                                                                                                                                                                                                                              | y and development, National Safety Policy- Occupatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nal Health Hazard                                                                                                                                                                              | ls -                                                         | Ergo                                                                                     | nom                                                                                                  | ics                                                                      |
| • •                                                                                                                                                                                                                                          | ndustrial Safety Radiation and Industrial Hazards- Machin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                |                                                              | •                                                                                        |                                                                                                      |                                                                          |
| UNIT – II                                                                                                                                                                                                                                    | SAFETY AT WORKPLACE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                              | 9 P                                                                                      | erioo                                                                                                | ds                                                                       |
| Safety at Work                                                                                                                                                                                                                               | cplace - Safe use of Machines and Tools: Safety in use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of different types of                                                                                                                                                                          | of un                                                        | it op                                                                                    | erati                                                                                                | ons                                                                      |
| •                                                                                                                                                                                                                                            | Machine guarding - working in different workplaces - O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • •                                                                                                                                                                                            |                                                              | -                                                                                        |                                                                                                      |                                                                          |
| e e                                                                                                                                                                                                                                          | nd Housekeeping, Industrial lighting, Vibration and Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | • •                                                                                                                                                                                            |                                                              |                                                                                          |                                                                                                      |                                                                          |
| -                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                |                                                              |                                                                                          |                                                                                                      |                                                                          |
| UNIT – III                                                                                                                                                                                                                                   | ACCIDENT PREVENTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                |                                                              | 9 Pe                                                                                     | eriod                                                                                                | ls                                                                       |
|                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                | Princ                                                        |                                                                                          |                                                                                                      |                                                                          |
| Accident Preve                                                                                                                                                                                                                               | ntion Techniques - Principles of accident prevention - Def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | initions, Theories, I                                                                                                                                                                          |                                                              | iples                                                                                    | -Ha                                                                                                  | azar                                                                     |
| Accident Preve<br>identification a                                                                                                                                                                                                           | ntion Techniques - Principles of accident prevention - Def<br>nd analysis, Event tree analysis, Hazop studies, Job safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | initions, Theories, I<br>analysis - Theorie                                                                                                                                                    | es and                                                       | iples<br>1 Pri                                                                           | – Ha<br>ncipl                                                                                        | azar<br>les o                                                            |
| Accident Preve<br>identification at<br>Accident causa                                                                                                                                                                                        | ntion Techniques - Principles of accident prevention - Def                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | initions, Theories, I<br>analysis - Theorie                                                                                                                                                    | es and                                                       | iples<br>1 Pri                                                                           | – Ha<br>ncipl                                                                                        | azar<br>les o                                                            |
| Accident Preve<br>identification a                                                                                                                                                                                                           | ntion Techniques - Principles of accident prevention - Def<br>nd analysis, Event tree analysis, Hazop studies, Job safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | initions, Theories, I<br>analysis - Theorie                                                                                                                                                    | es and                                                       | iples<br>1 Pri<br>ries t                                                                 | – Ha<br>ncipl                                                                                        | azar<br>les c<br>riou                                                    |
| Accident Preve<br>identification at<br>Accident causa<br>body parts.<br>UNIT – IV                                                                                                                                                            | ntion Techniques - Principles of accident prevention - Def<br>nd analysis, Event tree analysis, Hazop studies, Job safety<br>tion - First Aid : Body structure and functions - Fractur<br><b>SAFETY MANAGEMENT</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | initions, Theories, 1<br>7 analysis - Theorie<br>e and Dislocation,                                                                                                                            | es and<br>Inju                                               | iples<br>1 Pri<br>ries t<br><b>9 P</b>                                                   | – Ha<br>ncipl<br>to va<br>Perio                                                                      | azar<br>les c<br>riou<br><b>ds</b>                                       |
| Accident Preve<br>identification at<br>Accident causa<br>body parts.<br><b>UNIT – IV</b><br>Safety Manage                                                                                                                                    | ntion Techniques - Principles of accident prevention - Def<br>nd analysis, Event tree analysis, Hazop studies, Job safety<br>tion - First Aid : Body structure and functions - Fractur<br><b>SAFETY MANAGEMENT</b><br>ement System and Law - Legislative measures in Indust                                                                                                                                                                                                                                                                                                                                                                                                                    | initions, Theories, I<br>analysis - Theorie<br>e and Dislocation,<br>rial Safety: Variou                                                                                                       | es and<br>Injui                                              | iples<br>1 Pri<br>ries t<br><b>9 P</b><br>ts in                                          | – Ha<br>ncipl<br>to va<br><b>Perio</b><br>volve                                                      | azar<br>les c<br>riou<br><b>ds</b><br>ed i                               |
| Accident Preve<br>identification at<br>Accident causa<br>body parts.<br><b>UNIT – IV</b><br>Safety Manage<br>Detail- Occupa                                                                                                                  | ntion Techniques - Principles of accident prevention - Def<br>nd analysis, Event tree analysis, Hazop studies, Job safety<br>tion - First Aid : Body structure and functions - Fractur<br><b>SAFETY MANAGEMENT</b><br>ement System and Law - Legislative measures in Indust<br>tional safety, Health and Environment Management: Bure                                                                                                                                                                                                                                                                                                                                                          | initions, Theories, 1<br>7 analysis - Theorie<br>e and Dislocation,<br>rial Safety: Variou<br>eau of Indian Stand                                                                              | es and<br>Injur<br>Is ac<br>ards                             | iples<br>d Prin<br>ries t<br><b>9 P</b><br>ts in<br>on H                                 | – Ha<br>ncipl<br>to va<br><b>Perio</b><br>volve                                                      | azar<br>les o<br>riou<br><b>ds</b><br>ed in                              |
| Accident Preve<br>identification at<br>Accident causa<br>body parts.<br>UNIT – IV<br>Safety Manage<br>Detail- Occupa<br>Safety, 14489,                                                                                                       | ntion Techniques - Principles of accident prevention - Def<br>nd analysis, Event tree analysis, Hazop studies, Job safety<br>tion - First Aid : Body structure and functions - Fractur<br>SAFETY MANAGEMENT<br>ement System and Law - Legislative measures in Indust<br>tional safety, Health and Environment Management: Bure<br>15001 - OSHA, Process safety management (PSM) and                                                                                                                                                                                                                                                                                                            | initions, Theories, I<br>analysis - Theorie<br>e and Dislocation,<br>rial Safety: Variou<br>cau of Indian Stand<br>its principles - EPA                                                        | es and<br>Injur<br>Is ac<br>ards                             | iples<br>d Prin<br>ries t<br><b>9 P</b><br>ts in<br>on H                                 | – Ha<br>ncipl<br>to va<br><b>Perio</b><br>volve                                                      | azar<br>les c<br>riou<br><b>ds</b><br>ed i<br>n an                       |
| Accident Preve<br>identification at<br>Accident causa<br>body parts.<br>UNIT – IV<br>Safety Manage<br>Detail- Occupa<br>Safety, 14489,                                                                                                       | ntion Techniques - Principles of accident prevention - Def<br>nd analysis, Event tree analysis, Hazop studies, Job safety<br>tion - First Aid : Body structure and functions - Fractur<br><b>SAFETY MANAGEMENT</b><br>ement System and Law - Legislative measures in Indust<br>tional safety, Health and Environment Management: Bure                                                                                                                                                                                                                                                                                                                                                          | initions, Theories, I<br>analysis - Theorie<br>e and Dislocation,<br>rial Safety: Variou<br>cau of Indian Stand<br>its principles - EPA                                                        | es and<br>Injur<br>Is ac<br>ards                             | iples<br>1 Pri-<br>ries t<br>9 P<br>ts in<br>on H<br>ndare                               | – Ha<br>ncipl<br>to va<br><b>Perio</b><br>volve                                                      | azar<br>les c<br>riou<br><b>ds</b><br>ed i<br>n an<br>afet               |
| Accident Preve<br>identification a<br>Accident causa<br>body parts.<br>UNIT – IV<br>Safety Manage<br>Detail- Occupa<br>Safety, 14489,<br>Management: O<br>UNIT – V                                                                           | ntion Techniques - Principles of accident prevention - Defind analysis, Event tree analysis, Hazop studies, Job safety<br>tion - First Aid : Body structure and functions - Fractur<br>SAFETY MANAGEMENT<br>ement System and Law - Legislative measures in Indust<br>tional safety, Health and Environment Management: Bure<br>15001 - OSHA, Process safety management (PSM) and<br>Organisational & Safety Committee - its structure and funct<br>GENERAL SAFETY MEASURES                                                                                                                                                                                                                     | initions, Theories, I<br>analysis - Theorie<br>e and Dislocation,<br>rial Safety: Variou<br>eau of Indian Stand<br>its principles - EPA<br>tions.                                              | es and<br>Injur<br>Is ac<br>ards<br>A star                   | iples<br>1 Print<br>ries t<br><b>9 P</b><br>ts in<br>on H<br>ndarc<br><b>9 P</b>         | — Ha<br>ncipl<br>to va<br><b>Perio</b><br>Volvo<br>Iealth<br>ds- S                                   | azar<br>les c<br>riou<br><b>ds</b><br>ed i<br>h and<br>afet<br><b>ds</b> |
| Accident Preve<br>identification at<br>Accident causa<br>body parts.<br>UNIT – IV<br>Safety Manage<br>Detail- Occupa<br>Safety, 14489,<br>Management: O<br>UNIT – V<br>Plant Layout for                                                      | ntion Techniques - Principles of accident prevention - Def<br>nd analysis, Event tree analysis, Hazop studies, Job safety<br>tion - First Aid : Body structure and functions - Fractur<br><b>SAFETY MANAGEMENT</b><br>ment System and Law - Legislative measures in Indust<br>tional safety, Health and Environment Management: Bure<br>15001 - OSHA, Process safety management (PSM) and<br>Drganisational & Safety Committee - its structure and func<br><b>GENERAL SAFETY MEASURES</b><br>or Safety -design and location, distance between hazardoo                                                                                                                                         | initions, Theories, I<br>7 analysis - Theorie<br>e and Dislocation,<br>rial Safety: Variou<br>cau of Indian Stand<br>its principles - EPA<br>tions.                                            | es and<br>Injun<br>is ac<br>ards<br>A star                   | iples<br>d Prin<br>ries t<br><b>9 P</b><br>ts in<br>on H<br>ndaro<br><b>9 P</b><br>r coo | – Hancipl<br>ncipl<br>to va<br>Perio<br>Volve<br>Iealth<br>ds- S<br>Perio<br>ling,                   | azar<br>les c<br>riou<br>ds<br>ed i<br>n and<br>afet<br>ds<br>pilc       |
| Accident Preve<br>identification at<br>Accident causa<br>body parts.<br>UNIT – IV<br>Safety Manage<br>Detail- Occupa<br>Safety, 14489,<br>Management: C<br>UNIT – V<br>Plant Layout fo<br>plant studies,                                     | ntion Techniques - Principles of accident prevention - Defind analysis, Event tree analysis, Hazop studies, Job safety<br>tion - First Aid : Body structure and functions - Fractur<br>SAFETY MANAGEMENT<br>ment System and Law - Legislative measures in Indust<br>tional safety, Health and Environment Management: Bure<br>15001 - OSHA, Process safety management (PSM) and<br>Organisational & Safety Committee - its structure and func<br>GENERAL SAFETY MEASURES<br>or Safety -design and location, distance between hazardoo<br>Housekeeping - Accidents Related with Maintenance of                                                                                                  | initions, Theories, I<br>analysis - Theorie<br>e and Dislocation,<br>rial Safety: Variou<br>eau of Indian Stand<br>its principles - EPA<br>tions.<br>us units, lighting, c<br>of Machines - Wo | es and<br>Injur<br>Is ac<br>ards<br>A star<br>colour<br>rk P | iples<br>d Pri<br>ries t<br><b>9 P</b><br>ts in<br>on H<br>ndard<br><b>9 P</b><br>r coc  | – Ha<br>ncipl<br>to va<br><b>Perio</b><br>Volvo<br>Iealth<br>ds- S<br><b>Perio</b><br>ling,<br>t Sys | azar<br>azar<br>riou<br>ds<br>ed i<br>n an<br>afet<br>ds<br>pilo         |
| Accident Preve<br>identification at<br>Accident causa<br>body parts.<br><b>UNIT – IV</b><br>Safety Manage<br>Detail- Occupa<br>Safety, 14489,<br>Management: C<br><b>UNIT – V</b><br>Plant Layout for<br>plant studies, I<br>Significance of | ntion Techniques - Principles of accident prevention - Def<br>nd analysis, Event tree analysis, Hazop studies, Job safety<br>tion - First Aid : Body structure and functions - Fractur<br><b>SAFETY MANAGEMENT</b><br>ement System and Law - Legislative measures in Indust<br>tional safety, Health and Environment Management: Bure<br>15001 - OSHA, Process safety management (PSM) and<br>Organisational & Safety Committee - its structure and func<br><b>GENERAL SAFETY MEASURES</b><br>or Safety -design and location, distance between hazardoo<br>Housekeeping - Accidents Related with Maintenance of<br>Documentation Directing Safety, Leadership -Case studie                     | initions, Theories, I<br>analysis - Theorie<br>e and Dislocation,<br>rial Safety: Variou<br>eau of Indian Stand<br>its principles - EPA<br>tions.<br>us units, lighting, c<br>of Machines - Wo | es and<br>Injur<br>Is ac<br>ards<br>A star<br>colour<br>rk P | iples<br>d Pri<br>ries t<br><b>9 P</b><br>ts in<br>on H<br>ndard<br><b>9 P</b><br>r coc  | – Ha<br>ncipl<br>to va<br><b>Perio</b><br>Volvo<br>Iealth<br>ds- S<br><b>Perio</b><br>ling,<br>t Sys | azar<br>azar<br>riou<br>ds<br>ed i<br>n an<br>afet<br>ds<br>pilo         |
| Accident Preve<br>identification at<br>Accident causa<br>body parts.<br><b>UNIT – IV</b><br>Safety Manage<br>Detail- Occupa<br>Safety, 14489,<br>Management: O<br><b>UNIT – V</b><br>Plant Layout for<br>plant studies, I<br>Significance of | ntion Techniques - Principles of accident prevention - Defind analysis, Event tree analysis, Hazop studies, Job safety<br>tion - First Aid : Body structure and functions - Fractur<br><b>SAFETY MANAGEMENT</b><br>ment System and Law - Legislative measures in Indust<br>tional safety, Health and Environment Management: Bure<br>15001 - OSHA, Process safety management (PSM) and<br>Organisational & Safety Committee - its structure and func<br><b>GENERAL SAFETY MEASURES</b><br>or Safety -design and location, distance between hazardou<br>Housekeeping - Accidents Related with Maintenance of<br>Documentation Directing Safety, Leadership -Case studie<br>sures in Industries. | initions, Theories, I<br>analysis - Theorie<br>e and Dislocation,<br>rial Safety: Variou<br>eau of Indian Stand<br>its principles - EPA<br>tions.<br>us units, lighting, c<br>of Machines - Wo | es and<br>Injur<br>Is ac<br>ards<br>A star<br>colour<br>rk P | iples<br>d Pri<br>ries t<br><b>9 P</b><br>ts in<br>on H<br>ndard<br><b>9 P</b><br>r coc  | – Ha<br>ncipl<br>to va<br><b>Perio</b><br>Volvo<br>Iealth<br>ds- S<br><b>Perio</b><br>ling,<br>t Sys | azar<br>azar<br>riou<br>ds<br>ed i<br>n and<br>afet<br>ds<br>pilo        |

| 1 | Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.                      |
|---|----------------------------------------------------------------------------------------------------------|
| 2 | Danuta Koradecka, Handbook of Occupational Health and Safety, CRC, 2010.                                 |
| 3 | Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017            |
| 4 | Deshmukh. L.M., Industrial Safety Management, 3 <sup>rd</sup> Edition, Tata McGraw Hill, NewDelhi, 2008. |
| 5 | https://nptel.ac.in/courses/110105094                                                                    |
| 6 | https://archive.nptel.ac.in/courses/110/105/110105094/                                                   |

| COUR   | RSE OUTCOMES:                                                                          | Bloom's  |
|--------|----------------------------------------------------------------------------------------|----------|
|        |                                                                                        | Taxonomy |
| Upon o | completion of the course, the students will be able to:                                | Mapped   |
| CO1    | Gain the knowledge about occupational health hazard and safety measures at work place. | K3       |
| CO2    | Learn about accident prevention and safety management.                                 | K2       |
| CO3    | Understand occupational health hazards and general safety measures in industries.      | K3       |
| CO4    | Know various laws, standards and legislations.                                         | K2       |
| CO5    | Implement safety and proper management of industries.                                  | K4       |

| Cos/Pos  | PO1 | PO2 | PO3 | PO4 | PO5 |
|----------|-----|-----|-----|-----|-----|
| CO1      | 2   | 1   | 1   | 1   | 1   |
| CO2      | 2   | 2   | 1   | 1   | 1   |
| CO3      | 1   | 2   | 1   | 1   | 1   |
| CO4      | 2   | 1   | 1   | 1   | 1   |
| CO5      | 2   | 1   | 2   | 1   | 1   |
| 23MFOE13 | 2   | 1   | 1   | 1   | 1   |

| ASSESSMENT     | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |       |  |  |  |  |
|----------------|-----------------------------|---------------|----------|-----------|------------|----------|-------|--|--|--|--|
| Test / Bloom's | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |  |
| Category*      | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |  |
| CAT1           |                             | 50            | 50       |           |            |          | 100   |  |  |  |  |
| CAT2           |                             | 50            | 30       | 20        |            |          | 100   |  |  |  |  |
| Individual     |                             | 50            | 50       |           |            |          | 100   |  |  |  |  |
| Assessment 1/  |                             |               |          |           |            |          |       |  |  |  |  |
| Case Study 1/  |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 1 /    |                             |               |          |           |            |          |       |  |  |  |  |
| Project1       |                             |               |          |           |            |          |       |  |  |  |  |
| Individual     |                             | 50            | 30       | 20        |            |          | 100   |  |  |  |  |
| Assessment 2/  |                             |               |          |           |            |          |       |  |  |  |  |
| Case Study 2/  |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 2 /    |                             |               |          |           |            |          |       |  |  |  |  |
| Project 2      |                             |               |          |           |            |          |       |  |  |  |  |
| ESE            |                             | 40            | 40       | 20        |            |          | 100   |  |  |  |  |

| <b>23MFOE14</b>                                                                                                                                                                                                                                                                            | COST MANAGEMENT OF ENGINEERING PROJE<br>(Common to all Branches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UIS                                                                                    |                                                                                |                                                                                    |                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| PREREQUISIT                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L                                                                                      | Т                                                                              | Р                                                                                  | C                                                                               |
|                                                                                                                                                                                                                                                                                            | NIL OE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                      | 0                                                                              | 0                                                                                  | 3                                                                               |
| Course                                                                                                                                                                                                                                                                                     | • To understand the costing concepts and their role in decision making.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        |                                                                                |                                                                                    |                                                                                 |
| Objectives                                                                                                                                                                                                                                                                                 | • To acquire the project management concepts and their various aspects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in selec                                                                               | tion.                                                                          |                                                                                    |                                                                                 |
|                                                                                                                                                                                                                                                                                            | • To gain the knowledge in costing concepts with project execution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |                                                                                |                                                                                    |                                                                                 |
|                                                                                                                                                                                                                                                                                            | • To develop knowledge of costing techniques in service sector and var                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ous bud                                                                                | getar                                                                          | y co                                                                               | ntro                                                                            |
|                                                                                                                                                                                                                                                                                            | techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                                                                |                                                                                    |                                                                                 |
|                                                                                                                                                                                                                                                                                            | • To familiarize with quantitative techniques in cost management.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |                                                                                |                                                                                    |                                                                                 |
| UNIT – I                                                                                                                                                                                                                                                                                   | INTRODUCTION TO COSTING CONCEPTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        | 9 I                                                                            | Perio                                                                              | ds                                                                              |
| ntroduction and                                                                                                                                                                                                                                                                            | Overview of the Strategic Cost Management Process, Cost concepts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in dec                                                                                 | ision                                                                          | -mał                                                                               | ting                                                                            |
|                                                                                                                                                                                                                                                                                            | fferential cost, Incremental cost and Opportunity cost. Objectives of a Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •••                                                                                    | em; l                                                                          | nven                                                                               | tor                                                                             |
| valuation; Creation                                                                                                                                                                                                                                                                        | on of a Database for operational control; Provision of data for Decision - Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | king.                                                                                  |                                                                                |                                                                                    |                                                                                 |
| UNIT – II                                                                                                                                                                                                                                                                                  | PROJECT PLANNING ACTIVITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        | 9 I                                                                            | Perio                                                                              | ds                                                                              |
| Project: meaning                                                                                                                                                                                                                                                                           | , Different types, why to manage, cost overruns centers, various stages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of proj                                                                                | ect e                                                                          | xecu                                                                               | ior                                                                             |
| conception to co                                                                                                                                                                                                                                                                           | ommissioning. Project execution as conglomeration of technical and n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ontechni                                                                               | cal a                                                                          | octivi                                                                             | tie                                                                             |
| Detailed Enginee                                                                                                                                                                                                                                                                           | ring activities. Pre project execution main clearances and documents Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ct team                                                                                | Rol                                                                            | e of                                                                               | eac                                                                             |
| -                                                                                                                                                                                                                                                                                          | nce Project site: Data required with significance. Project contracts. Types                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                        |                                                                                |                                                                                    | -                                                                               |
| execution Project                                                                                                                                                                                                                                                                          | cost control. Bar charts and Network diagram. Project commissioning: med                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hamiaal                                                                                | 1 -                                                                            |                                                                                    |                                                                                 |
| enceution riojeet                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | namcai                                                                                 | and p                                                                          | oroce                                                                              | ss.                                                                             |
| -                                                                                                                                                                                                                                                                                          | COST ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nanicai                                                                                |                                                                                | oroce<br>Perio                                                                     |                                                                                 |
| UNIT – III                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                        | 9 I                                                                            | Perio                                                                              | ds                                                                              |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-e                                                                                                                                                                                                                                           | COST ANALYSIS<br>and Profit Planning Marginal Costing; Distinction between Marginal Co<br>even Analysis, Cost-Volume-Profit Analysis. Various decision-making                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sting ar                                                                               | <b>9</b> I<br>Id A                                                             | <b>Perio</b><br>osorp                                                              | <b>ds</b><br>otio                                                               |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-e                                                                                                                                                                                                                                           | COST ANALYSIS<br>and Profit Planning Marginal Costing; Distinction between Marginal Co<br>even Analysis, Cost-Volume-Profit Analysis. Various decision-making                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sting ar                                                                               | <b>9</b> I<br>Id A                                                             | <b>Perio</b><br>osorp                                                              | <b>ds</b><br>otio                                                               |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-o<br>Costing and Varia                                                                                                                                                                                                                      | COST ANALYSIS<br>and Profit Planning Marginal Costing; Distinction between Marginal Co<br>even Analysis, Cost-Volume-Profit Analysis. Various decision-making                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sting ar                                                                               | <b>9 I</b><br>nd Al<br>ms.                                                     | <b>Perio</b><br>osorp                                                              | o <b>ds</b><br>otio<br>dar                                                      |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-<br>Costing and Varia                                                                                                                                                                                                                       | <b>COST ANALYSIS</b><br>and Profit Planning Marginal Costing; Distinction between Marginal Co<br>even Analysis, Cost-Volume-Profit Analysis. Various decision-making<br>ance Analysis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sting ar<br>proble                                                                     | <b>9 I</b><br>nd Al<br>ms.<br><b>9 I</b>                                       | <b>Perio</b><br>Disorp<br>Stan<br><b>Perio</b>                                     | ods<br>otio<br>dar<br>ods                                                       |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-o<br>Costing and Vari<br>UNIT – IV<br>Pricing strategies                                                                                                                                                                                    | COST ANALYSISand Profit Planning Marginal Costing; Distinction between Marginal Coeven Analysis, Cost-Volume-Profit Analysis. Various decision-makingance Analysis.PRICING STRATEGIES AND BUDGETORY CONTROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sting ar<br>proble                                                                     | <b>9 I</b><br>nd Al<br>ms.<br><b>9 I</b><br>Just                               | Perio<br>Disorp<br>Stan<br>Perio<br>-in -                                          | ds<br>otio<br>dar<br>dar                                                        |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-<br>Costing and Vari<br>UNIT – IV<br>Pricing strategies<br>approach, Materi                                                                                                                                                                 | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Coleven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis.         PRICING STRATEGIES AND BUDGETORY CONTROL         s: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sting ar<br>proble<br>sector,<br>rol; Flex                                             | 9 I<br>nd Al<br>ms.<br>9 I<br>Just<br>ible                                     | Perio<br>osorp<br>Stan<br>Perio<br>-in -<br>Budg                                   | dar<br>dar<br>dar                                                               |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-<br>Costing and Vari<br>UNIT – IV<br>Pricing strategies<br>approach, Materi<br>Performance bud                                                                                                                                              | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Costeven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis.         PRICING STRATEGIES AND BUDGETORY CONTROL         S: Pareto Analysis. Target costing, Life Cycle Costing, Costing of servic al Requirement Planning, Enterprise Resource Planning. Budgetary Control                                                                                                                                                                                                                                                                                                                                                                                                                                             | sting ar<br>proble<br>sector,<br>rol; Flex                                             | 9 I<br>nd Al<br>ms.<br>9 I<br>Just<br>ible                                     | Perio<br>osorp<br>Stan<br>Perio<br>-in -<br>Budg                                   | ds<br>otio<br>dar<br>dar<br>ds<br>tim                                           |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-o<br>Costing and Varia<br>UNIT – IV<br>Pricing strategies<br>approach, Materi<br>Performance bud<br>transfer pricing.                                                                                                                       | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Costeven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis.         PRICING STRATEGIES AND BUDGETORY CONTROL         S: Pareto Analysis. Target costing, Life Cycle Costing, Costing of servic al Requirement Planning, Enterprise Resource Planning. Budgetary Control                                                                                                                                                                                                                                                                                                                                                                                                                                             | sting ar<br>proble<br>sector,<br>rol; Flex                                             | 9 I<br>nd Al<br>ms.<br>9 I<br>Just<br>ible<br>ons i                            | Perio<br>osorp<br>Stan<br>Perio<br>-in -<br>Budg                                   | ds<br>otio<br>dar<br>dar<br>dim<br>gets<br>din                                  |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-<br>Costing and Varia<br>UNIT – IV<br>Pricing strategies<br>approach, Materi<br>Performance bud<br>transfer pricing.<br>UNIT – V                                                                                                            | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Colleven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis.         PRICING STRATEGIES AND BUDGETORY CONTROL         s: Pareto Analysis. Target costing, Life Cycle Costing, Costing of servic al Requirement Planning, Enterprise Resource Planning. Budgetary Contlegets; Zero-based budgets. Measurement of Divisional profitability pricir                                                                                                                                                                                                                                                                                                                                                                      | sting ar<br>proble<br>sector,<br>rol; Flex<br>g decisi                                 | 9 I<br>nd Al<br>ms.<br>9 I<br>Just<br>ible<br>ons i                            | Perio<br>Stan<br>Perio<br>-in -<br>Budg<br>inclu                                   | ds<br>otio<br>dar<br>dar<br>ds<br>tim<br>gets<br>din                            |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-o<br>Costing and Varia<br>UNIT – IV<br>Pricing strategies<br>approach, Materi<br>Performance bud<br>transfer pricing.<br>UNIT – V<br>Total Quality M                                                                                        | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Costeven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis. <b>PRICING STRATEGIES AND BUDGETORY CONTROL</b> s: Pareto Analysis. Target costing, Life Cycle Costing, Costing of servic al Requirement Planning, Enterprise Resource Planning. Budgetary Content ligets; Zero-based budgets. Measurement of Divisional profitability pricir <b>TQM AND OPERATIONS REASEARCH TOOLS</b>                                                                                                                                                                                                                                                                                                                                 | sting ar<br>proble<br>sector,<br>rol; Flex<br>g decisi                                 | 9 I<br>nd Al<br>ms.<br>9 I<br>Just<br>ible<br>ons i<br>9 I<br>nch              | Perio<br>Stan<br>Perio<br>-in -<br>Budg<br>inclu<br>Perio<br>Mark                  | ds<br>otio<br>dar<br>dar<br>ds<br>tim<br>gets<br>din<br>ds                      |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-<br>Costing and Varia<br>UNIT – IV<br>Pricing strategies<br>approach, Materi<br>Performance bud<br>transfer pricing.<br>UNIT – V<br>Total Quality M<br>Balanced Score                                                                       | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Coleven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis.         PRICING STRATEGIES AND BUDGETORY CONTROL         s: Pareto Analysis. Target costing, Life Cycle Costing, Costing of servic al Requirement Planning, Enterprise Resource Planning. Budgetary Contlegets; Zero-based budgets. Measurement of Divisional profitability pricir         TQM AND OPERATIONS REASEARCH TOOLS         Ianagement and Theory of constraints, Activity-Based Cost Management                                                                                                                                                                                                                                               | sting ar<br>proble<br>sector,<br>ol; Fley<br>g decisi<br>ent, Be<br>manage             | 9 I<br>d A<br>ms.<br>9 I<br>Just<br>ible<br>ons<br>9 I<br>nch<br>ment          | Perio<br>osorp<br>Stan<br>Perio<br>-in -<br>Budg<br>inclu<br>Perio<br>Mark<br>, Li | ds<br>otio<br>dar<br>dar<br>das<br>tim<br>gets<br>din<br>din<br>ing             |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-o<br>Costing and Varia<br>UNIT – IV<br>Pricing strategies<br>approach, Materi<br>Performance bud<br>transfer pricing.<br>UNIT – V<br>Total Quality M<br>Balanced Score<br>Programming, PE                                                   | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Costeven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis.         PRICING STRATEGIES AND BUDGETORY CONTROL         s: Pareto Analysis. Target costing, Life Cycle Costing, Costing of servic al Requirement Planning, Enterprise Resource Planning. Budgetary Contegets; Zero-based budgets. Measurement of Divisional profitability pricir         TQM AND OPERATIONS REASEARCH TOOLS         Ianagement and Theory of constraints, Activity-Based Cost Management Card and Value-Chain Analysis. Quantitative techniques for cost ERT/CPM, Transportation problems, Assignment problems, Simulation, Lear                                                                                                       | sting ar<br>proble<br>sector,<br>ol; Fley<br>g decisi<br>ent, Be<br>manage             | 9 I<br>d A<br>ms.<br>9 I<br>Just<br>ible<br>ons<br>9 I<br>nch<br>ment          | Perio<br>osorp<br>Stan<br>Perio<br>-in -<br>Budg<br>inclu<br>Perio<br>Mark<br>, Li | ds<br>otio<br>dar<br>dar<br>ds<br>tim<br>gets<br>din<br>din<br>ing              |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-<br>Costing and Varia<br>UNIT – IV<br>Pricing strategies<br>approach, Materi<br>Performance bud<br>transfer pricing.<br>UNIT – V<br>Total Quality M<br>Balanced Score<br>Programming, PE<br>Contact Periods                                 | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Costeven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis.         PRICING STRATEGIES AND BUDGETORY CONTROL         s: Pareto Analysis. Target costing, Life Cycle Costing, Costing of servic al Requirement Planning, Enterprise Resource Planning. Budgetary Contegets; Zero-based budgets. Measurement of Divisional profitability pricir         TQM AND OPERATIONS REASEARCH TOOLS         Ianagement and Theory of constraints, Activity-Based Cost Managem         Card and Value-Chain Analysis. Quantitative techniques for cost         ERT/CPM, Transportation problems, Assignment problems, Simulation, Least                                                                                         | sting ar<br>proble<br>sector,<br>ol; Fley<br>g decisi<br>ent, Be<br>manage             | 9 I<br>d A<br>ms.<br>9 I<br>Just<br>ible<br>ons<br>9 I<br>nch<br>ment          | Perio<br>osorp<br>Stan<br>Perio<br>-in -<br>Budg<br>inclu<br>Perio<br>Mark<br>, Li | ds<br>otio<br>dar<br>dar<br>das<br>tim<br>gets<br>din<br>din                    |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-<br>Costing and Varia<br>UNIT – IV<br>Pricing strategies<br>approach, Materi<br>Performance bud<br>transfer pricing.<br>UNIT – V<br>Total Quality M<br>Balanced Score                                                                       | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Costeven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis.         PRICING STRATEGIES AND BUDGETORY CONTROL         s: Pareto Analysis. Target costing, Life Cycle Costing, Costing of servic al Requirement Planning, Enterprise Resource Planning. Budgetary Contegets; Zero-based budgets. Measurement of Divisional profitability pricir         TQM AND OPERATIONS REASEARCH TOOLS         Ianagement and Theory of constraints, Activity-Based Cost Managem         Card and Value-Chain Analysis. Quantitative techniques for cost         ERT/CPM, Transportation problems, Assignment problems, Simulation, Least                                                                                         | sting ar<br>proble<br>sector,<br>ol; Fley<br>g decisi<br>ent, Be<br>manage             | 9 I<br>d A<br>ms.<br>9 I<br>Just<br>ible<br>ons<br>9 I<br>nch<br>ment          | Perio<br>osorp<br>Stan<br>Perio<br>-in -<br>Budg<br>inclu<br>Perio<br>Mark<br>, Li | ds<br>otic<br>dar<br>dar<br>ds<br>tim<br>get<br>din<br>ds<br>cin<br>tin         |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-<br>Costing and Varia<br>UNIT – IV<br>Pricing strategies<br>approach, Materi<br>Performance bud<br>transfer pricing.<br>UNIT – V<br>Total Quality M<br>Balanced Score<br>Programming, PE<br>Contact Periods                                 | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Colleven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis.         PRICING STRATEGIES AND BUDGETORY CONTROL         s: Pareto Analysis. Target costing, Life Cycle Costing, Costing of servic al Requirement Planning, Enterprise Resource Planning. Budgetary Contenders; Zero-based budgets. Measurement of Divisional profitability pricir         TQM AND OPERATIONS REASEARCH TOOLS         Ianagement and Theory of constraints, Activity-Based Cost Management Card and Value-Chain Analysis. Quantitative techniques for cost ERT/CPM, Transportation problems, Assignment problems, Simulation, Least         S:         ods       Tutorial: 0 Periods       Practical: 0 Periods       Total: 45 Periods | sting ar<br>proble<br>sector,<br>ol; Fley<br>g decisi<br>ent, Be<br>manage             | 9 I<br>d A<br>ms.<br>9 I<br>Just<br>ible<br>ons<br>9 I<br>nch<br>ment          | Perio<br>osorp<br>Stan<br>Perio<br>-in -<br>Budg<br>inclu<br>Perio<br>Mark<br>, Li | ds<br>otic<br>dar<br>dar<br>ds<br>tim<br>get<br>din<br>ds<br>cin<br>tin         |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-G<br>Costing and Varia<br>UNIT – IV<br>Pricing strategies<br>approach, Materi<br>Performance bud<br>transfer pricing.<br>UNIT – V<br>Total Quality M<br>Balanced Score<br>Programming, PE<br>Contact Periods<br>Lecture: 45 Peri<br>REFEREN | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Costeven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis.         PRICING STRATEGIES AND BUDGETORY CONTROL         s: Pareto Analysis. Target costing, Life Cycle Costing, Costing of servic al Requirement Planning, Enterprise Resource Planning. Budgetary Cont legets; Zero-based budgets. Measurement of Divisional profitability pricir         TQM AND OPERATIONS REASEARCH TOOLS         Ianagement and Theory of constraints, Activity-Based Cost Management Card and Value-Chain Analysis. Quantitative techniques for cost ERT/CPM, Transportation problems, Assignment problems, Simulation, Least Cost Management and Theory of Practical: 0 Periods Total: 45 Periods         NCES:                 | sting ar<br>proble<br>sector,<br>rol; Flex<br>g decisi<br>ent, Be<br>manage<br>rning C | 9 I<br>d A<br>ms.<br>9 I<br>Just<br>ible<br>ons<br>9 I<br>nch<br>ment          | Perio<br>osorp<br>Stan<br>Perio<br>-in -<br>Budg<br>inclu<br>Perio<br>Mark<br>, Li | ds<br>otic<br>dar<br>dar<br>ds<br>tim<br>get<br>din<br>ds<br>cin<br>tin         |
| UNIT – III<br>Cost Behaviour<br>Costing; Break-<br>Costing and Vari<br>UNIT – IV<br>Pricing strategies<br>approach, Materi<br>Performance bud<br>transfer pricing.<br>UNIT – V<br>Total Quality M<br>Balanced Score<br>Programming, PE<br>Contact Periods<br>Lecture: 45 Peri<br>REFEREN   | COST ANALYSIS         and Profit Planning Marginal Costing; Distinction between Marginal Colleven Analysis, Cost-Volume-Profit Analysis. Various decision-making ance Analysis.         PRICING STRATEGIES AND BUDGETORY CONTROL         s: Pareto Analysis. Target costing, Life Cycle Costing, Costing of servic al Requirement Planning, Enterprise Resource Planning. Budgetary Contenders; Zero-based budgets. Measurement of Divisional profitability pricir         TQM AND OPERATIONS REASEARCH TOOLS         Ianagement and Theory of constraints, Activity-Based Cost Management Card and Value-Chain Analysis. Quantitative techniques for cost ERT/CPM, Transportation problems, Assignment problems, Simulation, Least         S:         ods       Tutorial: 0 Periods       Practical: 0 Periods       Total: 45 Periods | sting ar<br>proble<br>sector,<br>ol; Flex<br>g decisi<br>ent, Be<br>manage<br>rning C  | 9 I<br>d Al<br>ms.<br>9 I<br>Just<br>ible<br>ons<br>9 I<br>nch<br>ment<br>urve | Perio<br>Stan<br>Perio<br>-in -<br>Budg<br>inclu<br>Perio<br>Mark<br>, Li<br>Theo  | da<br>da<br>da<br>da<br>da<br>da<br>da<br>da<br>da<br>da<br>da<br>da<br>da<br>d |

Nigel J, Engineering Project Management, John Wiley and Sons Ltd, Smith 2015.

https://archive.nptel.ac.in/courses/110/104/110104073/

Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall of

3

4

5

India, New Delhi, 2011.

| COURS   | SE OUTCOMES:                                                                 | Bloom's  |
|---------|------------------------------------------------------------------------------|----------|
|         |                                                                              | Taxonomy |
| Upon co | ompletion of the course, the students will be able to:                       | Mapped   |
| CO1     | Apply the costing concepts and their role in decision making.                | K3       |
| CO2     | Apply the project management concepts and analyze their various aspects in   | K4       |
|         | selection.                                                                   |          |
| CO3     | Interpret costing concepts with project execution.                           | K4       |
| CO4     | Gain knowledge of costing techniques in service sector and various budgetary | K2       |
|         | control techniques.                                                          |          |
| CO5     | Become familiar with quantitative techniques in cost management.             | K3       |

# COURSE ARTICULATION MATRIX:

| COs/Pos  | PO1 | PO2 | PO3 | PO4 | PO5 |
|----------|-----|-----|-----|-----|-----|
| CO1      | 1   | 1   | 2   | 1   | 1   |
| CO2      | 2   | 1   | 1   | 1   | -   |
| CO3      | 2   | 2   | 2   | -   | -   |
| CO4      | 1   | 1   | 1   | 1   | 1   |
| CO5      | 1   | 2   | 1   | 1   | -   |
| 23MFOE14 | 1   | 1   | 1   | 1   | 1   |

| ASSESSMENT     | PATTERN – TH | EORY          |          |           |            |          |       |
|----------------|--------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering  | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %       | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           |              |               | 40       | 60        |            |          | 100   |
| CAT2           |              | 30            | 30       | 40        |            |          | 100   |
| Individual     |              |               | 40       | 60        |            |          | 100   |
| Assessment 1 / |              |               |          |           |            |          |       |
| Case Study 1/  |              |               |          |           |            |          |       |
| Seminar 1 /    |              |               |          |           |            |          |       |
| Project1       |              |               |          |           |            |          |       |
| Individual     |              | 30            | 30       | 40        |            |          | 100   |
| Assessment 2 / |              |               |          |           |            |          |       |
| Case Study 2/  |              |               |          |           |            |          |       |
| Seminar 2 /    |              |               |          |           |            |          |       |
| Project 2      |              |               |          |           |            |          |       |
| ESE            |              | 20            | 40       | 40        |            |          | 100   |

| <b>23MFOE15</b>                                                                                                                                                                                                                       | COMPOSITE MAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TERIALS                                                                                                                                                                                                                                       |                                                                |                                                                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25MI 0E15                                                                                                                                                                                                                             | (Common to all B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ranches)                                                                                                                                                                                                                                      |                                                                |                                                                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PREREQUIS                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CATEGORY                                                                                                                                                                                                                                      | L                                                              | Τ                                                                                                  | Р                                                                             | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                       | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OE                                                                                                                                                                                                                                            | 3                                                              | 0                                                                                                  | 0                                                                             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Course                                                                                                                                                                                                                                | • To summarize the characteristics of composite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | materials and effect                                                                                                                                                                                                                          | of rei                                                         | nfor                                                                                               | cem                                                                           | ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Objectives                                                                                                                                                                                                                            | in composite materials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                               |                                                                |                                                                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                       | • To identify the various reinforcements used in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | composite materials.                                                                                                                                                                                                                          |                                                                |                                                                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                       | • To compare the manufacturing process of meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | al matrix composites.                                                                                                                                                                                                                         |                                                                |                                                                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                       | • To understand the manufacturing processes of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | polymer matrix com                                                                                                                                                                                                                            | posite                                                         | s.                                                                                                 |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                       | • To analyze the strength of composite materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                               |                                                                |                                                                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UNIT – I                                                                                                                                                                                                                              | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                               | 9                                                              | P Pe                                                                                               | riod                                                                          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Definition – C                                                                                                                                                                                                                        | Classification and characteristics of Composite mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | erials. Advantages a                                                                                                                                                                                                                          | nd ap                                                          | plica                                                                                              | tion                                                                          | of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| composites. Fu                                                                                                                                                                                                                        | unctional requirements of reinforcement and matri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x. Effect of reinforce                                                                                                                                                                                                                        | ement                                                          | on                                                                                                 | ovei                                                                          | rall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                               |                                                                |                                                                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| composite perf                                                                                                                                                                                                                        | formance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                               |                                                                |                                                                                                    |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UNIT – II                                                                                                                                                                                                                             | REINFORCEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | bers, carbon fibers, I                                                                                                                                                                                                                        |                                                                | <b>Pe</b> r                                                                                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H                                                                                                                                                                                       | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fil<br>Properties and applications of whiskers, particle rei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nforcements. Mechai                                                                                                                                                                                                                           | Kevlar<br>nical 1                                              | r fib                                                                                              | ers a                                                                         | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru                                                                                                                                                                     | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fil<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nforcements. Mechan<br>nd Isosterescondition                                                                                                                                                                                                  | Kevlan<br>nical 1<br>s.                                        | r fib<br>Beha                                                                                      | ers a<br>vior                                                                 | and<br>• of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru<br>UNIT – III                                                                                                                                                       | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fil<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a<br><b>MANUFACTURING OF METAL MATRIX C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nforcements. Mechan<br>nd Isosterescondition<br>OMPOSITES                                                                                                                                                                                     | Kevlan<br>nical 1<br>s.                                        | r fib<br>Beha<br><b>9 Pe</b> i                                                                     | ers a<br>vior<br>riod                                                         | and<br>• of<br>s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru<br>UNIT – III<br>Casting – Solid                                                                                                                                    | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fil<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a<br><b>MANUFACTURING OF METAL MATRIX C</b><br>d State diffusion technique, Cladding – Hot isostation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nforcements. Mechan<br>nd Isosterescondition<br>OMPOSITES<br>c pressing- Manufact                                                                                                                                                             | Kevlan<br>nical 1<br>s.                                        | r fib<br>Beha<br><b>) Pe</b> r<br>of C                                                             | ers a<br>vior<br>riod                                                         | and<br>• of<br>s<br>nic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru<br>UNIT – III<br>Casting – Solic<br>Matrix Compo                                                                                                                    | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fil<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a<br><b>MANUFACTURING OF METAL MATRIX C</b><br>d State diffusion technique, Cladding – Hot isostation<br>posites: Liquid Metal Infiltration – Liquid phase s                                                                                                                                                                                                                                                                                                                                                                                                                                                | nforcements. Mechan<br>nd Isosterescondition<br>OMPOSITES<br>c pressing- Manufactur<br>intering–Manufactur                                                                                                                                    | Kevlan<br>nical 1<br>s.                                        | r fib<br>Beha<br><b>) Pe</b> r<br>of C                                                             | ers a<br>vior<br>riod                                                         | and<br>• of<br>s<br>nic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru<br>UNIT – III<br>Casting – Solid<br>Matrix Compo<br>Carbon compo                                                                                                    | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fil<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a<br><b>MANUFACTURING OF METAL MATRIX C</b><br>d State diffusion technique, Cladding – Hot isostation<br>osites: Liquid Metal Infiltration – Liquid phase so<br>posites: Knitting, Braiding, Weaving- Properties and a                                                                                                                                                                                                                                                                                                                                                                                      | nforcements. Mechan<br>nd Isosterescondition<br>OMPOSITES<br>c pressing- Manufact<br>intering–Manufactur<br>applications.                                                                                                                     | Kevlan<br>nical l<br>s.<br>y<br>uring<br>ing o                 | r fib<br>Beha<br><b>) Pe</b> r<br>of C<br>f Ca                                                     | ers a<br>vior<br>riod<br>Cerar                                                | and<br>of<br>s<br>nic<br>n –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru<br>UNIT – III<br>Casting – Solid<br>Matrix Compo<br>Carbon compo<br>UNIT – IV                                                                                       | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fil<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a<br><b>MANUFACTURING OF METAL MATRIX C</b><br>d State diffusion technique, Cladding – Hot isostation<br>osites: Liquid Metal Infiltration – Liquid phase so<br>osites: Knitting, Braiding, Weaving- Properties and a<br><b>MANUFACTURING OF POLYMER MATRIX</b>                                                                                                                                                                                                                                                                                                                                             | nforcements. Mechan<br>nd Isosterescondition<br>OMPOSITES<br>c pressing- Manufactur<br>intering–Manufactur<br>applications.<br>K COMPOSITE                                                                                                    | Kevlan<br>nical l<br>s.<br>uring<br>ing o                      | r fib<br>Beha<br><b>) Pe</b> r<br>of C<br>f Ca                                                     | ers a<br>vior<br>riod<br>Cerar<br>irbor<br>riod                               | and<br>of<br>s<br>nic<br>n –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru<br>UNIT – III<br>Casting – Solid<br>Matrix Compo<br>Carbon compo<br>UNIT – IV<br>Preparation of                                                                     | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fil<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a<br><b>MANUFACTURING OF METAL MATRIX C</b><br>d State diffusion technique, Cladding – Hot isostation<br>osites: Liquid Metal Infiltration – Liquid phase so<br>posites: Knitting, Braiding, Weaving- Properties and a                                                                                                                                                                                                                                                                                                                                                                                      | nforcements. Mechan<br>nd Isosterescondition<br>OMPOSITES<br>c pressing- Manufactur<br>intering–Manufactur<br>applications.<br>K COMPOSITE<br>nethod – Autoclave n                                                                            | Kevlan<br>nical l<br>s.<br>uring<br>ing o                      | r fib<br>Beha<br><b>) Pe</b> r<br>of C<br>f Ca<br><b>) Pe</b> r<br>d –Fi                           | ers a<br>vior<br>riod<br>Cerar<br>urbor<br>riod                               | and<br>• of<br>s<br>mic<br>n –<br>s<br>ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru<br>UNIT – III<br>Casting – Solid<br>Matrix Compo<br>Carbon compo<br>UNIT – IV<br>Preparation of                                                                     | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fil<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a<br><b>MANUFACTURING OF METAL MATRIX C</b><br>d State diffusion technique, Cladding – Hot isostation<br>osites: Liquid Metal Infiltration – Liquid phase so<br>osites: Knitting, Braiding, Weaving- Properties and a<br><b>MANUFACTURING OF POLYMER MATRIX</b><br>Moulding compounds and prepregs – hand layup n                                                                                                                                                                                                                                                                                           | nforcements. Mechan<br>nd Isosterescondition<br>OMPOSITES<br>c pressing- Manufactur<br>intering–Manufactur<br>applications.<br>K COMPOSITE<br>nethod – Autoclave n                                                                            | Kevlan<br>nical l<br>s.<br>uring<br>ing o<br>onethoo<br>id app | r fib<br>Beha<br><b>) Pe</b> r<br>of C<br>f Ca<br><b>) Pe</b> r<br>d –Fi                           | ers a<br>vior<br>riod<br>Cerar<br>riod<br>ilam                                | and<br>$\cdot$ of<br>$\mathbf{s}$<br>mic<br>$\mathbf{n} - \mathbf{s}$<br>ent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru<br>UNIT – III<br>Casting – Solid<br>Matrix Compo<br>Carbon compo<br>UNIT – IV<br>Preparation of<br>winding metho<br>UNIT – V                                        | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fil<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a<br><b>MANUFACTURING OF METAL MATRIX C</b><br>d State diffusion technique, Cladding – Hot isostati-<br>osites: Liquid Metal Infiltration – Liquid phase s<br>osites: Knitting, Braiding, Weaving- Properties and a<br><b>MANUFACTURING OF POLYMER MATRIX</b><br><sup>T</sup> Moulding compounds and prepregs – hand layup n<br>od – Compression moulding – Reaction injection mo                                                                                                                                                                                                                           | nforcements. Mechan<br>nd Isosterescondition<br>OMPOSITES<br>c pressing- Manufactur<br>intering–Manufactur<br>applications.<br>K COMPOSITE<br>nethod – Autoclave n<br>pulding. Properties an                                                  | Kevlan<br>nical l<br>s.<br>uring<br>ing o<br>hethoo<br>d app   | r fibe<br>Beha<br>of C<br>f Ca<br>J Per<br>d – Fr<br>licat                                         | ers a<br>vior<br>riod<br>Cerar<br>rbor<br>riod<br>ilam<br>ions<br><b>riod</b> | and<br>of<br>s<br>nic<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru<br>UNIT – III<br>Casting – Solic<br>Matrix Compo<br>Carbon compo<br>UNIT – IV<br>Preparation of<br>winding metho<br>UNIT – V<br>Laminar Failur                      | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fil<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a<br><b>MANUFACTURING OF METAL MATRIX C</b><br>d State diffusion technique, Cladding – Hot isostatio<br>osites: Liquid Metal Infiltration – Liquid phase s<br>osites: Knitting, Braiding, Weaving- Properties and a<br><b>MANUFACTURING OF POLYMER MATRIX</b><br>Moulding compounds and prepregs – hand layup n<br>od – Compression moulding – Reaction injection mo<br><b>STRENGTH ANALYSIS OF COMPOSITES</b>                                                                                                                                                                                              | nforcements. Mechan<br>nd Isosterescondition<br>OMPOSITES<br>c pressing- Manufactur<br>intering–Manufactur<br>opplications.<br>A COMPOSITE<br>nethod – Autoclave n<br>oulding. Properties an                                                  | Kevlan<br>nical l<br>s.<br>uring<br>ing o<br>hethoo<br>id app  | r fib<br>Beha<br><b>) Pe</b> r<br>of C<br>f Ca<br><b>) Pe</b> r<br>d –F <sup>1</sup><br>licat      | ers a<br>vior<br>riod<br>Cerar<br>rbor<br>riod<br>ilam<br>ions<br>riod        | and<br>s<br>nic<br>n –<br>s<br>ent<br>s<br>ing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru<br>UNIT – III<br>Casting – Solid<br>Matrix Compo<br>Carbon compo<br>UNIT – IV<br>Preparation of<br>winding metho<br>UNIT – V<br>Laminar Failur<br>failure criteria, | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fill<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a<br><b>MANUFACTURING OF METAL MATRIX C</b><br>d State diffusion technique, Cladding – Hot isostati-<br>osites: Liquid Metal Infiltration – Liquid phase s<br>osites: Knitting, Braiding, Weaving- Properties and a<br><b>MANUFACTURING OF POLYMER MATRIX</b><br>Moulding compounds and prepregs – hand layup n<br>od – Compression moulding – Reaction injection mot<br><b>STRENGTH ANALYSIS OF COMPOSITES</b><br>re Criteria-strength ratio, maximum stress criteria,                                                                                                                                    | nforcements. Mechan<br>nd Isosterescondition<br>OMPOSITES<br>c pressing- Manufactur<br>intering–Manufactur<br>opplications.<br>K COMPOSITE<br>nethod – Autoclave n<br>oulding. Properties an<br>maximum strain cr<br>nsight strength; Lami    | Kevlan<br>nical l<br>s.<br>uring<br>ing o<br>nethoo<br>d app   | r fib<br>Beha<br><b>) Pe</b> r<br>of C<br>f Ca<br><b>) Pe</b> r<br>ilicat<br><b>) Pe</b> r<br>inte | riod<br>Cerar<br>riod<br>ilam<br>ions<br>riod<br>gth-j                        | and<br>• of<br>s<br>mic<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| UNIT – II<br>Preparation-lay<br>Boron fibers. H<br>composites: Ru<br>UNIT – III<br>Casting – Solid<br>Matrix Compo<br>Carbon compo<br>UNIT – IV<br>Preparation of<br>winding metho<br>UNIT – V<br>Laminar Failur<br>failure criteria, | <b>REINFORCEMENT</b><br>yup, curing, properties and applications of glass fill<br>Properties and applications of whiskers, particle rei<br>ule of mixtures, Inverse rule of mixtures. Isostrain a<br><b>MANUFACTURING OF METAL MATRIX CO</b><br>d State diffusion technique, Cladding – Hot isostation<br>osites: Liquid Metal Infiltration – Liquid phase s<br>osites: Knitting, Braiding, Weaving- Properties and a<br><b>MANUFACTURING OF POLYMER MATRIX</b><br>Moulding compounds and prepregs – hand layup n<br>od – Compression moulding – Reaction injection mo<br><b>STRENGTH ANALYSIS OF COMPOSITES</b><br>re Criteria-strength ratio, maximum stress criteria,<br>, hygrothermal failure. Laminate first play failure-in<br>ated maximum strain criterion; strength design using<br><b>ods</b> : | nforcements. Mechan<br>nd Isosterescondition<br>OMPOSITES<br>c pressing- Manufactur<br>applications.<br>COMPOSITE<br>nethod – Autoclave n<br>bulding. Properties an<br>maximum strain cr<br>nsight strength; Lami<br>g caplet plots; stress c | Kevlan<br>nical l<br>s.<br>uring<br>ing o<br>nethoo<br>d app   | r fib<br>Beha<br><b>) Pe</b> r<br>of C<br>f Ca<br><b>) Pe</b> r<br>ilicat<br><b>) Pe</b> r<br>inte | riod<br>Cerar<br>riod<br>ilam<br>ions<br>riod<br>gth-j                        | and<br>$\cdot$ of<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$<br>$\mathbf{s}$ |

- 1 Chawla K.K., Composite Materials, Springer, 2013.
- 2 Lubin.G, Hand Book of Composite Materials, Springer New York, 2013.

3 Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.

- 4 uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz, 2013.
- 5 https://nptel.ac.in/courses/112104168

| COU        | RSE OUTCOMES:                                                                  | Bloom's  |
|------------|--------------------------------------------------------------------------------|----------|
|            |                                                                                | Taxonomy |
| Upon       | completion of the course, the students will be able to:                        | Mapped   |
| CO1        | Know the characteristics of composite materials and effect of reinforcement in | K2       |
|            | composite materials.                                                           |          |
| CO2        | Know the various reinforcements used in composite materials.                   | K2       |
| CO3        | Understand and apply the manufacturing processes of metal matrix composites    | K3       |
| <b>CO4</b> | Understand and apply the manufacturing processes of polymer matrix             | K3       |
|            | composites.                                                                    |          |
| CO5        | Analyze the strength of composite materials.                                   | K4       |

| COURSE ARTICULATION             | N MATRIX:   |     |     |     |     |
|---------------------------------|-------------|-----|-----|-----|-----|
| COs/Pos                         | PO1         | PO2 | PO3 | PO4 | PO5 |
| CO1                             | 1           | 2   | 1   | 1   | 1   |
| CO2                             | 2           | 2   | 1   | 1   | 2   |
| CO3                             | 2           | 1   | 2   | 1   | 1   |
| CO4                             | 1           | 2   | 2   | 2   | 1   |
| CO5                             | 1           | 2   | 1   | 1   | 1   |
| 23MFOE15                        | 1           | 2   | 2   | 1   | 1   |
| 1 - Slight, 2 - Moderate, 3 - S | Substantial | •   |     | •   | •   |

| ASSESSMENT I   | PATTERN – THI | EORY          |          |           |            |          |       |
|----------------|---------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering   | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %        | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           |               | 60            | 40       |           |            |          | 100   |
| CAT2           |               |               | 60       | 40        |            |          | 100   |
| Individual     |               | 60            | 40       |           |            |          | 100   |
| Assessment 1 / |               |               |          |           |            |          |       |
| Case Study 1/  |               |               |          |           |            |          |       |
| Seminar 1 /    |               |               |          |           |            |          |       |
| Project1       |               |               |          |           |            |          |       |
| Individual     |               |               | 60       | 40        |            |          | 100   |
| Assessment 2 / |               |               |          |           |            |          |       |
| Case Study 2/  |               |               |          |           |            |          |       |
| Seminar 2 /    |               |               |          |           |            |          |       |
| Project 2      |               |               |          |           |            |          |       |
| ESE            |               | 40            | 40       | 20        |            |          | 100   |

**23TEOE16** 

#### **GLOBAL WARMING SCIENCE**

(Common to all Branches)

|                    | NIL                                                  | CATEGORY<br>OE        | L           | Т      | Р      | С       |
|--------------------|------------------------------------------------------|-----------------------|-------------|--------|--------|---------|
|                    |                                                      | OE                    | 2           |        |        |         |
|                    | $T_{1} = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$      | 01                    | 3           | 0      | 0      | 3       |
| Objectives         | To make the students learn about the material cons   | sequences of climate  | change,     | sea le | evel a | hange   |
|                    | due to increase in the emission of greenhouse gases  | s and to examine the  | science b   | ehind  | l miti | igation |
|                    | and adaptation proposals.                            |                       |             |        |        |         |
| UNIT – I           | INTRODUCTION                                         |                       |             | 9      | 9 Per  | riods   |
| Terminology relat  | ing to atmospheric particles - Aerosols - Types,     | characteristics, meas | surements   | – Pa   | rticle | e mass  |
| spectrometry - An  | thropogenic-sources, effects on humans.              |                       |             |        |        |         |
| UNIT – II          | CLIMATE MODELS                                       |                       |             | 9      | 9 Per  | riods   |
| General climate n  | nodeling- Atmospheric general circulation model      | - Oceanic general of  | circulatior | mo     | del, s | sea ice |
| model, land mode   | l concept, paleo-climate - Weather prediction by n   | umerical process. In  | pacts of    | clima  | te ch  | ange -  |
| Climate Sensitivit | y - Forcing and feedback.                            |                       |             |        |        |         |
| UNIT – III         | EARTH CARBON CYCLE AND FORECAST                      |                       |             | 9      | 9 Per  | riods   |
| Carbon cycle-proc  | ess, importance, advantages - Carbon on earth - G    | lobal carbon reservo  | irs - Inter | ractio | ns be  | etween  |
| human activities a | nd carbon cycle - Geologic time scales - Fossil fuel | s and energy - Pertur | bed carbo   | on cyc | ele.   |         |
| UNIT – IV          | GREENHOUSE GASES                                     |                       |             | 9      | 9 Per  | riods   |
| Blackbody radiati  | on - Layer model - Earth's atmospheric compositi     | ion and Green house   | gases ef    | fects  | on w   | eather  |
| and climate - Radi | oactive equilibrium - Earth's energy balance.        |                       |             |        |        |         |
| UNIT – V           | GEO ENGINEERING                                      |                       |             | 9      | 9 Per  | riods   |
| Solar mitigation - | Strategies - Carbon dioxide removal - Solar radia    | ation management -    | Recent ob   | serve  | ed tre | nds in  |
| global warming fo  | r sea level rise, drought, glacier extent.           |                       |             |        |        |         |
| Contact Periods:   |                                                      |                       |             |        |        |         |
| Lecture: 45 Perio  | ds Tutorial: 0 Periods Practical: 0 Pe               | eriods Total: 4       | 5 Period    | 5      |        |         |

| 1 | Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and Its                      |
|---|--------------------------------------------------------------------------------------------------------------------|
|   | <b>Consequences</b> ", Princeton University Press, 1 <sup>st</sup> Edition, 2022.                                  |
| 2 | John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5 <sup>th</sup> Edition, 2015. |
| 3 | David Archer, "Global warming: Understanding the Forecast", Wiley, 2 <sup>nd</sup> Edition, 2011.                  |
| 4 | David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions for Global           |
|   | <i>Warming</i> ", <i>Elsevier</i> , 1 <sup>st</sup> <i>Edition</i> , 2021.                                         |
| 5 | Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1 <sup>st</sup> edition, 2000.          |
| 6 | Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global energybalance",              |
|   | Springer, 1996.                                                                                                    |
| 7 | Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.                              |

| COUR   | SE OUTCOMES:                                                                       | Bloom's  |
|--------|------------------------------------------------------------------------------------|----------|
|        |                                                                                    | Taxonomy |
| Upon c | completion of the course, the students will be able to:                            | Mapped   |
| CO1    | Understand the global warming in relation to climate changes throughout the earth. | K2       |
| CO2    | Assess the best predictions of current climate models.                             | K4       |
| CO3    | Understand the importance of carbon cycle and its implication on fossil fuels.     | K2       |
| CO4    | Know about current issues, including impact from society, environment, economy as  | К4       |
| 04     | well as ecology related to greenhouse gases.                                       | Κ4       |
| CO5    | Know the safety measures and precautions regarding global warming.                 | K5       |

| COURSE ART        | TICULATION       | MATRIX    |     |     |     |     |
|-------------------|------------------|-----------|-----|-----|-----|-----|
| COs/POs           | PO1              | PO2       | PO3 | PO4 | PO5 | PO6 |
| CO1               | 2                | 1         | 2   | 1   | 1   | 2   |
| CO2               | 1                | 1         | 2   | 1   | 1   | 1   |
| CO3               | 1                | 2         | 1   | 1   | 1   | 2   |
| CO4               | 1                | 1         | 1   | 1   | 1   | 2   |
| CO5               | 2                | 1         | 2   | 1   | 1   | 2   |
| <b>23TEOE16</b>   | 1                | 1         | 1   | 1   | 1   | 2   |
| 1 - Slight, 2 - N | Aoderate, 3 – Su | bstantial | •   | •   | •   | •   |

| ASSESSMENT P.  | ATTERN – THEO | RY            |          |           |            |          |       |
|----------------|---------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering   | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %        | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 20            | 35            | 35       | 10        | -          | -        | 100   |
| CAT2           | 15            | 25            | 25       | 20        | 15         | -        | 100   |
| Individual     |               |               |          |           |            |          |       |
| Assessment 1/  |               |               |          |           |            |          |       |
| Case Study 1/  | 25            | 20            | 20       | 35        | -          | -        | 100   |
| Seminar 1 /    |               |               |          |           |            |          |       |
| Project 1      |               |               |          |           |            |          |       |
| Individual     |               |               |          |           |            |          |       |
| Assessment 2/  |               |               |          |           |            |          |       |
| Case Study 2/  | 20            | 20            | 35       | 15        | 10         | -        | 100   |
| Seminar 2/     |               |               |          |           |            |          |       |
| Project 2      |               |               |          |           |            |          |       |
| ESE            | 25            | 20            | 25       | 20        | 10         | -        | 100   |

**23TEOE17** 

### INTRODUCTION TO NANO ELECTRONICS

(Common to all Branches)

| PREREQUISI                                                                                                                                                                  | TES                                                                                                                                                    |                                                                                                                                                                           |                                                         | CATEGORY                                                           | L                | Τ                                            | Р                                                     | С                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|------------------|----------------------------------------------|-------------------------------------------------------|---------------------------------------------|
| ENGINEERIN                                                                                                                                                                  | G PHYSIC                                                                                                                                               | CS                                                                                                                                                                        |                                                         | OE                                                                 | 3                | 0                                            | 0                                                     | 3                                           |
| Course                                                                                                                                                                      | To make                                                                                                                                                | the students provide s                                                                                                                                                    | strong, essential, importa                              | nt methods and fou                                                 | ndatio           | ons o                                        | f qua                                                 | ntun                                        |
| Objectives                                                                                                                                                                  | mechanic                                                                                                                                               | s and apply quantum m                                                                                                                                                     | nechanics on engineering                                | fields.                                                            |                  |                                              |                                                       |                                             |
| UNIT – I                                                                                                                                                                    | INTROL                                                                                                                                                 | UCTION                                                                                                                                                                    |                                                         |                                                                    |                  | 9 I                                          | Perio                                                 | ds                                          |
| Particles and W                                                                                                                                                             | vaves - Oper                                                                                                                                           | rators in quantum mec                                                                                                                                                     | hanics - The Postulates of                              | f quantum mechani                                                  | cs - T           | he S                                         | chroc                                                 | linge                                       |
| equation values                                                                                                                                                             | and wave p                                                                                                                                             | acket Solutions - Ehren                                                                                                                                                   | nfest's Theorem.                                        |                                                                    |                  |                                              |                                                       |                                             |
| UNIT – II                                                                                                                                                                   | ELECTE                                                                                                                                                 | RONIC STRUCTURE                                                                                                                                                           | E AND MOTION                                            |                                                                    |                  | 9 I                                          | Perio                                                 | ds                                          |
| Atoms- The Hy                                                                                                                                                               | drogen Ato                                                                                                                                             | m - Many-Electron At                                                                                                                                                      | toms - Pseudopotentials,                                | Nuclear Structure,                                                 | Molec            | ules,                                        | Crys                                                  | stals                                       |
| Translational mo                                                                                                                                                            | otion – Pen                                                                                                                                            | etration through barrie                                                                                                                                                   | ers – Particle in a box - T                             | wo terminal quantu                                                 | m dot            | t devi                                       | ices -                                                | Two                                         |
|                                                                                                                                                                             |                                                                                                                                                        |                                                                                                                                                                           |                                                         |                                                                    |                  |                                              |                                                       |                                             |
| terminal quantur                                                                                                                                                            | m wire devi                                                                                                                                            | ces.                                                                                                                                                                      |                                                         |                                                                    |                  |                                              |                                                       |                                             |
| terminal quantur<br>UNIT – III                                                                                                                                              |                                                                                                                                                        | ces.<br>CRING THEORY                                                                                                                                                      |                                                         |                                                                    |                  | 9 I                                          | Perio                                                 | ds                                          |
| UNIT – III                                                                                                                                                                  | SCATTE                                                                                                                                                 | CRING THEORY                                                                                                                                                              | cross section - Stationary                              | scattering state - Pa                                              | artial           |                                              |                                                       |                                             |
| <b>UNIT – III</b><br>The formulation                                                                                                                                        | <b>SCATTE</b><br>n of scatterin                                                                                                                        | CRING THEORY                                                                                                                                                              | cross section - Stationary<br>tion for Schrodinger equa | e                                                                  |                  | wave                                         | stati                                                 | onar                                        |
| <b>UNIT – III</b><br>The formulation                                                                                                                                        | <b>SCATTE</b><br>n of scatterin                                                                                                                        | CRING THEORY                                                                                                                                                              | •                                                       | e                                                                  |                  | wave                                         | stati                                                 | onar                                        |
| <b>UNIT – III</b><br>The formulation<br>scattering events                                                                                                                   | SCATTE<br>n of scatterin<br>s - multi-ch                                                                                                               | CRING THEORY                                                                                                                                                              | •                                                       | e                                                                  |                  | wave<br>atior                                | stati                                                 | onary                                       |
| UNIT – III<br>The formulation<br>scattering events<br>function.<br>UNIT – IV                                                                                                | SCATTE<br>n of scatterin<br>s - multi-ch<br>CLASSI                                                                                                     | CRING THEORY<br>ng events - Scattering<br>annel scattering - Solut                                                                                                        | •                                                       | tion- Radial and wa                                                | ve equ           | wave<br>ation<br>91                          | stati<br>n - Gr<br>Perio                              | onar<br>eens<br>ds                          |
| UNIT – III<br>The formulation<br>scattering events<br>function.<br>UNIT – IV                                                                                                | SCATTE<br>n of scatterin<br>s - multi-ch<br>CLASSI<br>d microscop                                                                                      | CRING THEORY<br>ng events - Scattering<br>annel scattering - Solut<br>CAL STATISTICS<br>pic behaviours - Kineti                                                           | tion for Schrodinger equa                               | tion- Radial and wa                                                | ve equ           | wave<br>ation<br>91                          | stati<br>n - Gr<br>Perio                              | onary<br>reens<br><b>ds</b>                 |
| UNIT – III<br>The formulation<br>scattering events<br>function.<br>UNIT – IV<br>Probabilities and                                                                           | SCATTE<br>n of scatterin<br>s - multi-ch<br>CLASSI<br>d microscop<br>partition fur                                                                     | CRING THEORY<br>ng events - Scattering<br>annel scattering - Solut<br>CAL STATISTICS<br>pic behaviours - Kineti                                                           | tion for Schrodinger equa                               | tion- Radial and wa                                                | ve equ           | wave<br>atior<br>91<br>ic pr                 | stati<br>n - Gr<br>Perio                              | onary<br>reens<br>ds<br>ies o               |
| UNIT – III<br>The formulation<br>scattering events<br>function.<br>UNIT – IV<br>Probabilities and<br>materials - The p<br>UNIT – V                                          | SCATTE<br>n of scatterin<br>s - multi-ch<br>CLASSI<br>d microscop<br>partition fur<br>QUANT                                                            | CRING THEORY<br>ng events - Scattering<br>annel scattering - Solut<br>CAL STATISTICS<br>bic behaviours - Kineti<br>action.                                                | tion for Schrodinger equa                               | tion- Radial and wa                                                | ve equ<br>lagnet | wave<br>nation<br>9 I<br>ic pr<br>9 I        | station<br>- Gr<br>Perio<br>Opert<br>Perio            | onar<br>eens<br>ds<br>ies o<br>ds           |
| UNIT – III<br>The formulation<br>scattering events<br>function.<br>UNIT – IV<br>Probabilities and<br>materials - The p<br>UNIT – V<br>Statistical mech                      | SCATTE         n of scattering         s - multi-ch         CLASSIG         d microscop         partition function         QUANT         nanics - Base | CRING THEORY<br>ng events - Scattering -<br>annel scattering - Solut<br>CAL STATISTICS<br>bic behaviours - Kineti<br>nction.<br>UM STATISTICS<br>sic Concepts - Statistic | tion for Schrodinger equa                               | tion- Radial and war<br>ocesses in gases - N<br>etals and semicond | ve equ<br>lagnet | wave<br>nation<br>9 I<br>ic pr<br>9 I<br>9 I | station<br>r - Gr<br>Perio<br>opert<br>Perio<br>ne th | onar<br>ceens<br>ds<br>ies o<br>ds<br>erma  |
| UNIT – III<br>The formulation<br>scattering events<br>function.<br>UNIT – IV<br>Probabilities and<br>materials - The p<br>UNIT – V<br>Statistical mech                      | SCATTE         n of scattering         s - multi-ch         CLASSIG         d microscop         partition function         QUANT         nanics - Base | CRING THEORY<br>ng events - Scattering -<br>annel scattering - Solut<br>CAL STATISTICS<br>bic behaviours - Kineti<br>nction.<br>UM STATISTICS<br>sic Concepts - Statistic | tion for Schrodinger equa                               | tion- Radial and war<br>ocesses in gases - N<br>etals and semicond | ve equ<br>lagnet | wave<br>nation<br>9 I<br>ic pr<br>9 I<br>9 I | station<br>r - Gr<br>Perio<br>opert<br>Perio<br>ne th | onary<br>reens<br>ds<br>ies o<br>ds<br>erma |
| UNIT – III<br>The formulation<br>scattering events<br>function.<br>UNIT – IV<br>Probabilities and<br>materials - The p<br>UNIT – V<br>Statistical mech<br>properties of sol | SCATTE<br>n of scatterin<br>s - multi-ch<br>CLASSIC<br>d microscop<br>partition fur<br>QUANT<br>nanics - Bas<br>lids- The ele                          | CRING THEORY<br>ng events - Scattering -<br>annel scattering - Solut<br>CAL STATISTICS<br>bic behaviours - Kineti<br>nction.<br>UM STATISTICS<br>sic Concepts - Statistic | tion for Schrodinger equa                               | tion- Radial and war<br>ocesses in gases - N<br>etals and semicond | ve equ<br>lagnet | wave<br>nation<br>9 I<br>ic pr<br>9 I<br>9 I | station<br>r - Gr<br>Perio<br>opert<br>Perio<br>ne th | onary<br>reens<br>ds<br>ies o<br>ds<br>erma |

| 1 | Vladimi V.Mitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "Introduction to Nanoelectronics:       |
|---|----------------------------------------------------------------------------------------------------------|
|   | Science, Nanotechnology, Engineering, and Applications", Cambridge University Press, 1st Edition, 2007.  |
| 2 | Vinod Kumar Khanna, "Introductory Nanoelectronics: Physical Theory and Device Analysis", Routledge,      |
|   | 1st Edition, 2020.                                                                                       |
| 3 | George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States Edition, 2007.    |
| 4 | Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.                    |
| 5 | Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian Edition,     |
|   | 2009.                                                                                                    |
| 6 | Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum Statistical |
|   | Mechanics", Wiley, 2004.                                                                                 |
| 7 | A. F. J. Levi, "Applied Quantum Mechanics", 2 <sup>nd</sup> Edition, Cambridge, 2012.                    |

|     | SE OUTCOMES:                                                            | Bloom's<br>Taxonomy<br>Mapped |
|-----|-------------------------------------------------------------------------|-------------------------------|
| CO1 | Understand the postulates of quantum mechanics.                         | K2                            |
| CO2 | Know about nano electronic systems and building blocks.                 | K2                            |
| CO3 | Solve the Schrodinger equation in 1D, 2D and 3D different applications. | K4                            |
| CO4 | Learn the concepts involved in kinetic theory of gases.                 | K2                            |
| CO5 | Know about statistical models applies to metals and semiconductor.      | К3                            |

| COURSE ARTICULATION MATRIX |               |             |     |     |     |     |
|----------------------------|---------------|-------------|-----|-----|-----|-----|
| COs/POs                    | PO1           | PO2         | PO3 | PO4 | PO5 | PO6 |
| CO1                        | 1             | 1           | 1   | 1   | 1   | 1   |
| CO2                        | 2             | 2           | 1   | 1   | 1   | 1   |
| CO3                        | 2             | 2           | 2   | 1   | 1   | 1   |
| CO4                        | 1             | 1           | 1   | 1   | 1   | 1   |
| CO5                        | 1             | 1           | 1   | 1   | 1   | 1   |
| <b>23TEOE17</b>            | 1             | 1           | 1   | 1   | 1   | 1   |
| 1 – Slight, 2 –            | Moderate, 3 – | Substantial |     |     |     |     |

| ASSESSMENT     | PATTERN – TH | EORY          |          |           |            |          |       |
|----------------|--------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering  | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %       | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 30           | 30            | 20       | 20        | -          | -        | 100   |
| CAT2           | 30           | 30            | 20       | 20        | -          | -        | 100   |
| Individual     |              |               |          |           |            |          |       |
| Assessment 1/  |              |               |          |           |            |          |       |
| Case Study 1/  | 35           | 25            | 20       | 20        | -          | -        | 100   |
| Seminar 1/     |              |               |          |           |            |          |       |
| Project 1      |              |               |          |           |            |          |       |
| Individual     |              |               |          |           |            |          |       |
| Assessment 2/  |              |               |          |           |            |          |       |
| Case Study 2/  | 30           | 25            | 20       | 25        | -          | -        | 100   |
| Seminar 2/     |              |               |          |           |            |          |       |
| Project 2      |              |               |          |           |            |          |       |
| ESE            | 20           | 30            | 30       | 20        | -          | -        | 100   |

| <b>23TEOE18</b>                                                                                                                                                                     | GREEN SUPPLY CHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IN MANAGEME                                                                                                     | INT                      |                                        |                                                                                              |                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                                                                                                                                                                     | (Common to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ll Branches)                                                                                                    |                          |                                        |                                                                                              |                                                               |
| PREREQUIS                                                                                                                                                                           | ITES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CATEGORY                                                                                                        | L                        | Т                                      | Р                                                                                            | С                                                             |
|                                                                                                                                                                                     | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OE                                                                                                              | 3                        | 0                                      | 0                                                                                            | 3                                                             |
| Course                                                                                                                                                                              | To make the students learn and focus on the f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | fundamental strates                                                                                             | gies,                    | tools a                                | nd tech                                                                                      | niques                                                        |
| Objectives                                                                                                                                                                          | required to analyze and design environmentally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sustainable supply                                                                                              | chain                    | system                                 | ns.                                                                                          |                                                               |
| UNIT – I                                                                                                                                                                            | INTRODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                 |                          |                                        | 9 Peri                                                                                       | ods                                                           |
| Intro to SCM                                                                                                                                                                        | - complexity in SCM, Facility location - Logis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tics – Aim, activit                                                                                             | ies, i                   | mporta                                 | nce, pr                                                                                      | ogress,                                                       |
| current trends -                                                                                                                                                                    | Integrating logistics with an organization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                 |                          |                                        |                                                                                              |                                                               |
| UNIT – II                                                                                                                                                                           | ESSENTIALS OF SUPPLY CHAIN MANAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | GEMENT                                                                                                          |                          |                                        | 9 Peri                                                                                       | ods                                                           |
| Basic concepts                                                                                                                                                                      | of supply chain management - Supply chain oper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ations – Planning a                                                                                             | and so                   | ourcing                                | - Maki                                                                                       | ing and                                                       |
| delivering - Su                                                                                                                                                                     | pply chain coordination and use of technology - D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Developing supply c                                                                                             | chain                    | system                                 | s.                                                                                           |                                                               |
| UNIT – III                                                                                                                                                                          | PLANNING THE SUPPLY CHAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                          |                                        | 0 D '                                                                                        | - J                                                           |
| UNII – III                                                                                                                                                                          | PLANNING THE SUPPLY CHAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |                          |                                        | 9 Peri                                                                                       | oas                                                           |
|                                                                                                                                                                                     | sions – strategic, tactical, operational - Logist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ics strategies, imp                                                                                             | oleme                    | nting t                                |                                                                                              |                                                               |
| Types of deci                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                          | -                                      | he stra                                                                                      | ategy -                                                       |
| Types of deci                                                                                                                                                                       | sions – strategic, tactical, operational - Logist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                          | -                                      | he stra                                                                                      | ategy -                                                       |
| Types of deci<br>Planning resor                                                                                                                                                     | sions – strategic, tactical, operational - Logist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |                          | ring ar                                | he stra                                                                                      | ategy -<br>proving                                            |
| Types of deci<br>Planning resor<br>performance.<br>UNIT – IV<br>Procurement –                                                                                                       | sions – strategic, tactical, operational - Logist<br>arces – types, capacity, schedule, controlling<br><b>ACTIVITIES IN THE SUPPLY CHAIN</b><br>cycle, types of purchase – Framework of e-pro                                                                                                                                                                                                                                                                                                                                                  | material flow, m                                                                                                | tory r                   | ring ar                                | he stra<br>nd imp<br><b>9 Peri</b><br>ment –                                                 | ategy -<br>proving<br>ods<br>- EOQ                            |
| Types of deci<br>Planning resor<br>performance.<br>UNIT – IV<br>Procurement –                                                                                                       | sions – strategic, tactical, operational - Logist<br>arces – types, capacity, schedule, controlling<br>ACTIVITIES IN THE SUPPLY CHAIN                                                                                                                                                                                                                                                                                                                                                                                                          | material flow, m                                                                                                | tory r                   | ring ar                                | he stra<br>nd imp<br><b>9 Peri</b><br>ment –                                                 | ategy -<br>proving<br>ods<br>- EOQ                            |
| Types of deci<br>Planning resor<br>performance.<br>UNIT – IV<br>Procurement –<br>uncertain dema<br>layout, packag                                                                   | sions – strategic, tactical, operational - Logist<br>arces – types, capacity, schedule, controlling<br><b>ACTIVITIES IN THE SUPPLY CHAIN</b><br>cycle, types of purchase – Framework of e-pro-<br>and and safety stock, stock control - Material hand<br>ging - Transport – mode, ownership, vehicle a                                                                                                                                                                                                                                         | material flow, m<br>ocurement - Invent<br>dling – Purpose of                                                    | tory r                   | ring ar<br>nanage                      | he stra<br>nd imp<br><b>9 Peri</b><br>ment –<br>nd owr                                       | ategy -<br>proving<br>ods<br>- EOQ,<br>hership,               |
| Types of deci<br>Planning resor<br>performance.<br>UNIT – IV<br>Procurement –<br>uncertain dema<br>layout, packag                                                                   | sions – strategic, tactical, operational - Logist<br>arces – types, capacity, schedule, controlling<br><b>ACTIVITIES IN THE SUPPLY CHAIN</b><br>cycle, types of purchase – Framework of e-pro-<br>and and safety stock, stock control - Material hand<br>fing - Transport – mode, ownership, vehicle for<br>ems - Exact and heuristic methods.                                                                                                                                                                                                 | material flow, m<br>ocurement - Invent<br>dling – Purpose of<br>routing and sched                               | tory r                   | ring ar<br>nanage                      | he stra<br>nd imp<br><b>9 Peri</b><br>ment –<br>nd owr                                       | ategy -<br>proving<br>ods<br>- EOQ,<br>hership,               |
| Types of deci<br>Planning resor<br>performance.<br>UNIT – IV<br>Procurement –<br>uncertain dema<br>layout, packag                                                                   | sions – strategic, tactical, operational - Logist<br>arces – types, capacity, schedule, controlling<br><b>ACTIVITIES IN THE SUPPLY CHAIN</b><br>cycle, types of purchase – Framework of e-pro-<br>and and safety stock, stock control - Material hand<br>ging - Transport – mode, ownership, vehicle a                                                                                                                                                                                                                                         | material flow, m<br>ocurement - Invent<br>dling – Purpose of<br>routing and sched                               | tory r                   | ring ar<br>nanage                      | he stra<br>nd imp<br><b>9 Peri</b><br>ment –<br>nd owr                                       | oroving<br>ods<br>- EOQ,<br>hership,<br>welling               |
| Types of deci<br>Planning resor<br>performance.<br>UNIT – IV<br>Procurement –<br>uncertain dema<br>layout, packag<br>salesman probl<br>UNIT – V                                     | sions – strategic, tactical, operational - Logist<br>arces – types, capacity, schedule, controlling<br><b>ACTIVITIES IN THE SUPPLY CHAIN</b><br>cycle, types of purchase – Framework of e-pro-<br>and and safety stock, stock control - Material hand<br>fing - Transport – mode, ownership, vehicle for<br>ems - Exact and heuristic methods.                                                                                                                                                                                                 | material flow, m<br>ocurement - Invent<br>dling – Purpose of<br>routing and sched                               | tory r<br>wareh<br>uling | ring ar<br>nanage<br>nouse ar<br>model | he stra<br>nd imp<br><b>9 Peri</b><br>ment –<br>nd owr<br>ls- Tra<br><b>9 Peri</b>           | ods<br>ods<br>- EOQ,<br>hership,<br>welling<br>ods            |
| Types of deci<br>Planning resor<br>performance.<br>UNIT – IV<br>Procurement –<br>uncertain dema<br>layout, packag<br>salesman probl<br>UNIT – V<br>Five key conf                    | sions – strategic, tactical, operational - Logist<br>arces – types, capacity, schedule, controlling<br><b>ACTIVITIES IN THE SUPPLY CHAIN</b><br>cycle, types of purchase – Framework of e-pro-<br>and and safety stock, stock control - Material hand<br>ging - Transport – mode, ownership, vehicle r<br>ems - Exact and heuristic methods.<br><b>SUPPLY CHAIN MANAGEMENT STRATE</b>                                                                                                                                                          | material flow, m<br>ocurement - Invent<br>dling – Purpose of<br>routing and sched<br>CGIES<br>supply chain stra | tory r<br>wareh<br>uling | nanage<br>nouse an<br>model<br>s - Ne  | he stra<br>nd imp<br><b>9 Peri</b><br>ment –<br>nd owr<br>ls- Tra<br><b>9 Peri</b><br>xt gen | ods<br>ods<br>- EOQ<br>nership<br>welling<br>ods<br>eration   |
| Types of deci<br>Planning resor<br>performance.<br>UNIT – IV<br>Procurement –<br>uncertain dema<br>layout, packag<br>salesman probl<br>UNIT – V<br>Five key conf<br>strategies- New | sions – strategic, tactical, operational - Logist<br>arces – types, capacity, schedule, controlling<br><b>ACTIVITIES IN THE SUPPLY CHAIN</b><br>cycle, types of purchase – Framework of e-pro-<br>and and safety stock, stock control - Material hand<br>ting - Transport – mode, ownership, vehicle r<br>ems - Exact and heuristic methods.<br><b>SUPPLY CHAIN MANAGEMENT STRATE</b><br>Figuration components - Four criteria of good                                                                                                         | material flow, m<br>ocurement - Invent<br>dling – Purpose of<br>routing and sched<br>CGIES<br>supply chain stra | tory r<br>wareh<br>uling | nanage<br>nouse an<br>model<br>s - Ne  | he stra<br>nd imp<br><b>9 Peri</b><br>ment –<br>nd owr<br>ls- Tra<br><b>9 Peri</b><br>xt gen | ods<br>ods<br>- EOQ<br>nership<br>welling<br>ods<br>eration   |
| Types of deci<br>Planning resor<br>performance.<br>UNIT – IV<br>Procurement –<br>uncertain dema<br>layout, packag<br>salesman probl<br>UNIT – V<br>Five key conf<br>strategies- New | sions – strategic, tactical, operational - Logist<br>arces – types, capacity, schedule, controlling<br><b>ACTIVITIES IN THE SUPPLY CHAIN</b><br>cycle, types of purchase – Framework of e-pro-<br>and and safety stock, stock control - Material hand<br>fing - Transport – mode, ownership, vehicle re-<br>ems - Exact and heuristic methods.<br><b>SUPPLY CHAIN MANAGEMENT STRATE</b><br>figuration components - Four criteria of good<br>v roles for end-to-end supply chain management<br>sues in SCM – Regional differences in logistics. | material flow, m<br>ocurement - Invent<br>dling – Purpose of<br>routing and sched<br>CGIES<br>supply chain stra | tory r<br>wareh<br>uling | nanage<br>nouse an<br>model<br>s - Ne  | he stra<br>nd imp<br><b>9 Peri</b><br>ment –<br>nd owr<br>ls- Tra<br><b>9 Peri</b><br>xt gen | ods<br>ods<br>- EOQ,<br>hership,<br>welling<br>ods<br>eration |

| 1 | Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply Chain    |
|---|---------------------------------------------------------------------------------------------------------|
|   | Management", Routledge, 1 <sup>st</sup> Edition, 2019.                                                  |
| 2 | Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle                 |
|   | Approach", McGraw-Hill Education, 1 <sup>st</sup> Edition, 2011.                                        |
| 3 | Joseph Sarkis and Yijie Dou, "Green Supply Chain Management", Routledge, 1 <sup>st</sup> Edition, 2017. |
| 4 | Arunachalam Rajagopal, "Green Supply Chain Management: A Practical Approach", Replica, 2021.            |
| 5 | Mehmood Khan, Matloub Hussain and Mian M. Ajmal, "Green Supply Chain Management for                     |
|   | Sustainable Business Practice", IGI Global, 1 <sup>st</sup> Edition, 2016.                              |
| 6 | S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.                      |
| 7 | Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction",                   |
|   | Routledge, 1 <sup>st</sup> Edition, 2017.                                                               |

|            | <b>RSE OUTCOMES:</b><br>completion of the course, the students will be able to:                    | Bloom's<br>Taxonomy<br>Mapped |
|------------|----------------------------------------------------------------------------------------------------|-------------------------------|
| CO1        | Integrate logistics with an organization.                                                          | K2                            |
| CO2        | Evaluate complex qualitative and quantitative data to support strategic and operational decisions. | K5                            |
| CO3        | Develop self-leadership strategies to enhance personal and professional effectiveness.             | K3                            |
| <b>CO4</b> | Analyze inventory management models and dynamics of supply chain.                                  | K4                            |
| CO5        | Identify issues in international supply chain management and outsources strategies.                | K3                            |

| COURSE ARTICU         | LATION MA        | TRIX   |     |     |     |     |
|-----------------------|------------------|--------|-----|-----|-----|-----|
| COs/POs               | PO1              | PO2    | PO3 | PO4 | PO5 | PO6 |
| CO1                   | 1                | 1      | 1   | 1   | 1   | 3   |
| CO2                   | 2                | 2      | 1   | 1   | 1   | 1   |
| CO3                   | 2                | 1      | 2   | 1   | 1   | 1   |
| CO4                   | 2                | 2      | 1   | 1   | 2   | 2   |
| CO5                   | 1                | 1      | 2   | 1   | 1   | 3   |
| 23TEOE18              | 2                | 1      | 1   | 1   | 1   | 2   |
| 1 – Slight, 2 – Moder | rate, 3 – Substa | antial | •   |     |     | •   |

| ASSESSMENT    | T PATTERN – TH | IEORY         |          |           |            |          |       |
|---------------|----------------|---------------|----------|-----------|------------|----------|-------|
| Test /        | Remembering    | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Bloom's       | (K1) %         | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| Category*     |                |               |          |           |            |          |       |
| CAT1          | 25             | 25            | 30       | 10        | 10         | -        | 100   |
| CAT2          | 30             | 40            | 20       | 10        | -          | -        | 100   |
| Individual    |                |               |          |           |            |          |       |
| Assessment 1/ |                |               |          |           |            |          |       |
| Case Study 1/ | 30             | 20            | 25       | 15        | 10         | -        | 100   |
| Seminar 1/    |                |               |          |           |            |          |       |
| Project 1     |                |               |          |           |            |          |       |
| Individual    |                |               |          |           |            |          |       |
| Assessment 2/ |                |               |          |           |            |          |       |
| Case Study 2/ | 35             | 30            | 25       | 10        | -          | -        | 100   |
| Seminar 2/    |                |               |          |           |            |          |       |
| Project 2     |                |               |          |           |            |          |       |
| ESE           | 30             | 30            | 20       | 10        | 10         | -        | 100   |

| 23PSOE19            | DISTRIBUTION AUTOMATION SYS<br>(Common to all Branches)                        | STEM                | SEN             | IEST   | ER I    | Π      |
|---------------------|--------------------------------------------------------------------------------|---------------------|-----------------|--------|---------|--------|
| PREREQUISIT         |                                                                                | CATEGORY            | L               | Т      | Р       | C      |
| IREREQUISI          | NIL                                                                            | OE                  | 3               | 0      | 0       | 3      |
| Course              |                                                                                |                     | -               |        | -       | _      |
| Objectives          | To study about the distributed automation and econom                           | ne evaluation scher | nes of p        | ower   | netwo   | OLK    |
| UNIT – I            | INTRODUCTION                                                                   |                     |                 |        | 9 Per   | inde   |
|                     | Distribution Automation (DA) - Control system into                             | erfaces- Control a  | nd data         |        |         |        |
|                     | decentralized control- DA system-DA hardware-DAS                               |                     | nu uata         | icqu   | menic   | /1105- |
| UNIT – II           | DISTRIBUTION AUTOMATION FUNCTIONS                                              | Joit Wale.          |                 |        | 9 Per   | inds   |
|                     | - Automation system computer facilities- Manageme                              | ent processes- Info | rmation         |        |         |        |
| •                   | y management- System efficiency management- Voltag                             | •                   |                 |        | •       | ent    |
| UNIT – III          | COMMUNICATION SYSTEMS                                                          | 6                   |                 | -      | 9 Per   | iods   |
| Communication       | requirements - reliability- Cost effectiveness- Da                             | ta requirements-    | Two w           |        |         |        |
|                     | during outages and faults - Ease of operation and mai                          |                     |                 |        |         |        |
|                     | ution line carrier- Ripple control-Zero crossing tech                          |                     | •               |        |         |        |
| broadcast, FM S     | CA,VHF radio, microwave satellite, fiber optics-Hyb                            | rid communication   | system          | ns use | ed in f | field  |
| tests.              |                                                                                |                     |                 |        |         |        |
| UNIT – IV           | ECONOMIC EVALUATION METHODS                                                    |                     |                 |        | 9 Per   | iods   |
| Development an      | d evaluation of alternate plans- select study area - S                         | elect study period  | - Projec        | t loa  | d grov  | wth-   |
| Develop alternat    | ives- Calculate operating and maintenance costs-Evaluation                     | ate alternatives.   |                 |        |         |        |
| UNIT – V            | ECONOMIC COMPARISON                                                            |                     |                 |        | 9 Per   |        |
| •                   | parison of alternate plans-Classification of expenses                          | · ·                 |                 | -      |         |        |
| -                   | ments of alternative plans-Book life and continuing                            |                     | -               | -      |         |        |
| -                   | lysis, Short term analysis- End of study adjustment-B                          | reak even analysis  | s, sensit       | ivity  | analy   | sis -  |
| Computational a     |                                                                                |                     |                 |        |         |        |
| Contact Periods     |                                                                                |                     | _               |        |         |        |
| Lecture: 45 Per     | iods Tutorial: 0 Periods Practical: 0 Periods                                  | Total: 45 Period    | is              |        |         |        |
|                     | NORG                                                                           |                     |                 |        |         |        |
|                     |                                                                                | Lation Antomation   | . <b>??</b> T   | : D.   | 1.1:    |        |
|                     | r, G.M. Dhole, "A Textbook of Electric Power Distri                            | oution Automation   | <b>i</b> , Laxi | пі Ри  | Duca    | ions   |
| <i>Ltd.</i> , 2010. | Paolo Emilio, "Data Acquisition Systems: From Fu                               | ndamantals to Ann   | liad De         | siar'  | " Cn"   | inas   |
|                     | raolo Emilio, "Data Acquisition Systems: From Ful<br>siness Media, 21-Mar-2013 | uumeniuis io App    | ueu De          | sign   | , spri  | nge    |
|                     |                                                                                |                     |                 |        |         |        |
|                     | Il course "Distribution Automation", IEEE Working                              | 1                   |                 |        |         |        |
| -                   | eering Society. Power Engineering Education Comm                               |                     | -               |        | ıg Soo  | ciety  |
| Transmission        | and Distribution Committee. Institute of Electrical and                        | d Electronics Engin | eers 10         | 88     |         |        |

Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
 Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

|     | SE OUTCOMES:<br>ompletion of the course, the students will be able to:         | Bloom's<br>Taxonomy<br>Mapped |
|-----|--------------------------------------------------------------------------------|-------------------------------|
| CO1 | Analyse the requirements of distributed automation                             | K1                            |
| CO2 | Know the functions of distributed automation                                   | K2                            |
| CO3 | Perform detailed analysis of communication systems for distributed automation. | K3                            |
| CO4 | Study the economic evaluation method                                           | K4                            |
| CO5 | Understand the comparison of alternate plans                                   | K5                            |

| COs/Pos  | PO1 | PO2 | PO3 | PO4 |
|----------|-----|-----|-----|-----|
| CO1      | 2   | -   | 1   | 3   |
| CO2      | 3   | -   | 3   | 2   |
| CO3      | 3   | -   | 3   | 2   |
| CO4      | 3   | -   | 3   | 1   |
| CO5      | 2   | -   | 1   | 2   |
| 23PSOE19 | 3   | -   | 3   | 2   |

| ASSESSMENT                                                            | PATTERN – TH          | EORY                    |                    |                     |                      |                    |            |
|-----------------------------------------------------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category*                                           | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                                                                  | 20%                   | 30%                     | 20%                | 10%                 | 20%                  | -                  | 100%       |
| CAT2                                                                  | 20%                   | 20%                     | 20%                | 20%                 | 20%                  | -                  | 100%       |
| Individual<br>Assessment1/<br>Case study1/<br>Seminar 1/<br>Project1  | 20%                   | 10%                     | 30%                | 20%                 | 20%                  | -                  | 100%       |
| Individual<br>Assessment2/<br>Case study2/<br>Seminar 2 /<br>Project2 | 20%                   | 30%                     | 10%                | 20%                 | 20%                  | -                  | 100%       |
| ESE                                                                   | 30%                   | 20%                     | 20%                | 20%                 | 10%                  | -                  | 100%       |

| <b>23PSOE20</b>                                                                                                                      | ELECTRICITY TRADING AND                                                                                                                                                                                                                                                                                                                                                                                                                  | ELECTRICITY A                                                                                                 | CTS                                  |                                        |                                          |                              |  |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|------------------------------------------|------------------------------|--|
|                                                                                                                                      | (Common to all Bra                                                                                                                                                                                                                                                                                                                                                                                                                       | anches)                                                                                                       |                                      |                                        |                                          |                              |  |
| PREREQUISI                                                                                                                           | res                                                                                                                                                                                                                                                                                                                                                                                                                                      | CATEGORY                                                                                                      | L                                    | Т                                      | Р                                        | С                            |  |
|                                                                                                                                      | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                      | OE                                                                                                            | 3                                    | 0                                      | 0                                        | 3                            |  |
| Course                                                                                                                               | To acquire expertise on Electric supply and demand                                                                                                                                                                                                                                                                                                                                                                                       | of Indian Grid, gair                                                                                          | n expos                              | ure o                                  | n ene                                    | ergy                         |  |
| Objectives                                                                                                                           | trading in the Indian market and infer the electricity ac                                                                                                                                                                                                                                                                                                                                                                                | ts and regulatory aut                                                                                         | thorities                            | S.                                     |                                          |                              |  |
| UNIT – I                                                                                                                             | ENERGY DEMAND                                                                                                                                                                                                                                                                                                                                                                                                                            | ENERGY DEMAND 9 Period                                                                                        |                                      |                                        |                                          |                              |  |
| Basic concepts                                                                                                                       | in Economics - Descriptive Analysis of Energy D                                                                                                                                                                                                                                                                                                                                                                                          | Demand - Decompo                                                                                              | osition                              | Anal                                   | ysis                                     | and                          |  |
| Parametric App                                                                                                                       | roach - Demand Side Management - Load Managemen                                                                                                                                                                                                                                                                                                                                                                                          | nt - Demand Side N                                                                                            | Ianager                              | nent                                   | - Ene                                    | ergy                         |  |
| Efficiency - Reb                                                                                                                     | oound Effect                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                      |                                        |                                          |                              |  |
| UNIT – II                                                                                                                            | ENERGY SUPPLY                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                                      | 9                                      | Peri                                     | iods                         |  |
| Supply Behavio                                                                                                                       | r of a Producer - Energy Investment - Economics of N                                                                                                                                                                                                                                                                                                                                                                                     | on-renewable Resor                                                                                            | urces -                              | Econ                                   | omic                                     | s of                         |  |
| Renewable Ene                                                                                                                        | rgy Supply Setting the context - Economics of Ren                                                                                                                                                                                                                                                                                                                                                                                        | ewable Energy Sup                                                                                             | oply - I                             | Econ                                   | omics                                    | s of                         |  |
| Electricity Supp                                                                                                                     | ly                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                               |                                      |                                        |                                          |                              |  |
| UNIT – III                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               |                                      |                                        |                                          |                              |  |
| $\mathbf{U}$                                                                                                                         | ENERGY MARKET                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                                      | 9                                      | Peri                                     | iods                         |  |
|                                                                                                                                      | <b>ENERGY MARKET</b><br>ition as a Market Form - Why is the Energy Market not                                                                                                                                                                                                                                                                                                                                                            | Perfectly Competit                                                                                            | ive? - N                             |                                        |                                          |                              |  |
| Perfect Compet                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                          | • •                                                                                                           |                                      |                                        |                                          |                              |  |
| Perfect Compet                                                                                                                       | ition as a Market Form - Why is the Energy Market not                                                                                                                                                                                                                                                                                                                                                                                    | • •                                                                                                           |                                      | Aarke                                  |                                          | lure                         |  |
| Perfect Compet<br>and Monopoly -<br>UNIT – IV                                                                                        | ition as a Market Form - Why is the Energy Market not<br>Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E                                                                                                                                                                                                                                                                                                                             | ra II - Oil Market: O                                                                                         | PEC                                  | Aarke                                  | et Fai<br>Peri                           | lure                         |  |
| Perfect Competend<br>and Monopoly -<br><b>UNIT – IV</b><br>Introduction of                                                           | ition as a Market Form - Why is the Energy Market not<br>Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E<br>LAW ON ELECTRICITY                                                                                                                                                                                                                                                                                                       | ra II - Oil Market: O                                                                                         | PEC<br>ty Salie                      | Marke<br>9<br>2011 Fe                  | et Fai<br>Peri                           | lure                         |  |
| Perfect Compet<br>and Monopoly -<br><b>UNIT – IV</b><br>Introduction of                                                              | ition as a Market Form - Why is the Energy Market not<br>Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E<br><b>LAW ON ELECTRICITY</b><br>the Electricity Law; Constitutional Design - Evolution of                                                                                                                                                                                                                                   | ra II - Oil Market: O<br>of Laws on Electricites<br>of the Electricity                                        | PEC<br>ty Salie                      | Marke<br>9<br>ent Fe<br>3              | et Fai<br>Peri                           | lure<br>iods<br>s of         |  |
| Perfect Compet<br>and Monopoly -<br><b>UNIT – IV</b><br>Introduction of<br>Electricity Act,<br><b>UNIT – V</b>                       | ition as a Market Form - Why is the Energy Market not<br>Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E<br><b>LAW ON ELECTRICITY</b><br>the Electricity Law; Constitutional Design - Evolution of<br>2003 - Evolution of Laws on Electricity - Salient Feature                                                                                                                                                                      | ra II - Oil Market: O<br>of Laws on Electricit<br>es of the Electricity<br>CITY ACT                           | PEC<br>ty Salie<br>Act 200           | Marke<br>9<br>ent Fe<br>3<br>9         | et Fai<br>Peri<br>ature                  | lure<br>iods<br>s of<br>iods |  |
| Perfect Compet<br>and Monopoly -<br><b>UNIT – IV</b><br>Introduction of<br>Electricity Act,<br><b>UNIT – V</b><br>Regulatory Com     | ition as a Market Form - Why is the Energy Market not<br>Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E<br><b>LAW ON ELECTRICITY</b><br>the Electricity Law; Constitutional Design - Evolution of<br>2003 - Evolution of Laws on Electricity - Salient Feature<br><b>REGULATORY COMMISSIONS FOR ELECTRI</b>                                                                                                                         | ra II - Oil Market: O<br>of Laws on Electricit<br>es of the Electricity<br>CITY ACT<br>er the Act - Electrici | PEC<br>ty Salie<br>Act 200<br>ty (Am | Marke<br>9<br>ont Fe<br>3<br>9<br>endm | et Fai<br>Peri<br>ature<br>Peri<br>nent) | iods<br>s of<br>Bill         |  |
| Perfect Compet<br>and Monopoly -<br>UNIT – IV<br>Introduction of<br>Electricity Act,<br>UNIT – V<br>Regulatory Con                   | ition as a Market Form - Why is the Energy Market not<br>Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E<br><b>LAW ON ELECTRICITY</b><br>the Electricity Law; Constitutional Design - Evolution of<br>2003 - Evolution of Laws on Electricity - Salient Feature<br><b>REGULATORY COMMISSIONS FOR ELECTRI</b><br>missions - Appellate Tribunal - Other Institutions unde<br>Critical Comment - Renewable Energy - Role of Civil       | ra II - Oil Market: O<br>of Laws on Electricit<br>es of the Electricity<br>CITY ACT<br>er the Act - Electrici | PEC<br>ty Salie<br>Act 200<br>ty (Am | Marke<br>9<br>ont Fe<br>3<br>9<br>endm | et Fai<br>Peri<br>ature<br>Peri<br>nent) | iods<br>s of<br>Bill         |  |
| Perfect Compet<br>and Monopoly -<br>UNIT – IV<br>Introduction of<br>Electricity Act,<br>UNIT – V<br>Regulatory Com<br>2020/2021. A C | ition as a Market Form - Why is the Energy Market not<br>Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E<br><b>LAW ON ELECTRICITY</b><br>the Electricity Law; Constitutional Design - Evolution of<br>2003 - Evolution of Laws on Electricity - Salient Feature<br><b>REGULATORY COMMISSIONS FOR ELECTRI</b><br>nmissions - Appellate Tribunal - Other Institutions unde<br>Critical Comment - Renewable Energy - Role of Civil<br>5 | ra II - Oil Market: O<br>of Laws on Electricit<br>es of the Electricity<br>CITY ACT<br>er the Act - Electrici | PEC<br>ty Salie<br>Act 200<br>ty (Am | Marke<br>9<br>ont Fe<br>3<br>9<br>endm | et Fai<br>Peri<br>ature<br>Peri<br>nent) | iods<br>s of<br>Bill         |  |

| 1 | Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".     |
|---|-----------------------------------------------------------------------------------------------------|
|   | Springer.London, UK                                                                                 |
| 2 | Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of      |
|   | Energy", Vol.1, Edward Elgar, Cheltenham, UK.                                                       |
| 3 | Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018                                  |
| 4 | Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands, 2017.  |
| 5 | Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012. |
| 6 | Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and           |
|   | <b>Practices</b> ", Cambridge Univesity Press, 2014.                                                |

| COURSE OUTCOMES: |                                                                                       | Bloom's<br>Taxonomy |  |  |
|------------------|---------------------------------------------------------------------------------------|---------------------|--|--|
| Upon c           | Upon completion of the course, the students will be able to:                          |                     |  |  |
| CO1              | Describe electric supply and demand of power grid                                     | K1                  |  |  |
| CO2              | Summarize various energy trading strategies                                           | K2                  |  |  |
| CO3              | Relate the electricity acts practically                                               | K3                  |  |  |
| CO4              | Cite the electricity regulatory authorities                                           | K2                  |  |  |
| CO5              | Analyze/check the existing power grid for its technical and economical sustainability | K4                  |  |  |

| COs/Pos  | PO1 | PO2 | PO3 | PO4 |
|----------|-----|-----|-----|-----|
| CO1      | 3   | -   | 3   | 3   |
| CO2      | 3   | -   | 1   | 1   |
| CO3      | 3   | -   | 2   | 2   |
| CO4      | 3   | -   | 1   | 2   |
| CO5      | 3   | -   | 3   | 3   |
| 23PSOE20 | 3   | -   | 2   | 2   |

| ASSESSMENT     | PATTERN – TH | EORY          |          |           |            |          |       |
|----------------|--------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering  | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %       | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 20%          | 30%           | 20%      | 30%       | -          | -        | 100%  |
| CAT2           | 20%          | 20%           | 20%      | 20%       | 20%        | -        | 100%  |
| Individual     | 20%          | 30%           | 30%      | 20%       | -          | -        | 100%  |
| Assessment1/   |              |               |          |           |            |          |       |
| Case study1/   |              |               |          |           |            |          |       |
| Seminar 1/     |              |               |          |           |            |          |       |
| Project1       |              |               |          |           |            |          |       |
| Individual     | 20%          | 30%           | -        | 20%       | -          | 40%      | 100%  |
| Assessment2/   |              |               |          |           |            |          |       |
| Case study2/   |              |               |          |           |            |          |       |
| Seminar 2 /    |              |               |          |           |            |          |       |
| Project2       |              |               |          |           |            |          |       |
| ESE            | 30%          | 30%           | -        | 20%       | 20%        | -        | 100%  |

| <b>23PSOE21</b>                                                                                  | MODERN AUTOMOTIV                                                                                                           |                       |         |        |         |       |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|--------|---------|-------|
| 251 SOE21                                                                                        | (Common to all Br                                                                                                          | anches)               |         |        |         |       |
| PREREQUISI                                                                                       | ГЕS                                                                                                                        | CATEGORY              | L       | Т      | Р       | С     |
|                                                                                                  | NIL                                                                                                                        | OE                    | 3       | 0      | 0       | 3     |
| Course                                                                                           | To expose the students with theory and applications                                                                        | of Automotive Elec    | ctrical | and    | Elect   | oni   |
| Objectives                                                                                       | Systems.                                                                                                                   |                       |         |        |         |       |
| UNIT – I                                                                                         | INTRODUCTION TO MODERN AUTOMOTIVE                                                                                          | ELECTRONICS           |         |        | 9 Per   | riod  |
| Introduction to                                                                                  | modern automotive systems and need for electronics                                                                         | in automobiles- Ro    | le of   | electi | onics   | and   |
| microcontroller                                                                                  | s- Sensors and actuators- Possibilities and challen                                                                        | ges in automotive     | indu    | stry-  | Enal    | oling |
| technologies and                                                                                 | d industry trends.                                                                                                         |                       |         |        |         |       |
| UNIT – II                                                                                        | SENSORS AND ACTUATORS                                                                                                      |                       |         |        | 9 Per   | riod  |
| Introduction- ba                                                                                 | asic sensor arrangement- Types of sensors- Oxygen se                                                                       | ensor, engine cranks  | haft a  | ngula  | ir pos  | itio  |
| sensor - Engine                                                                                  | e cooling water temperature sensor- Engine oil pressu                                                                      | are sensor- Fuel me   | tering  | - veh  | icle s  | peed  |
| sensor and det                                                                                   | onation sensor- Pressure Sensor- Linear and angle s                                                                        | sensors- Flow sense   | or- Te  | emper  | ature   | and   |
| humidity sensor                                                                                  | rs- Gas sensor- Speed and Acceleration sensors- Knock                                                                      | sensor- Torque sens   | sor- Y  | aw ra  | ate sei | nsor  |
| Tyre Pressure se                                                                                 | ensor- Actuators - Stepper motors – Relays.                                                                                |                       |         |        |         |       |
| UNIT – III                                                                                       | POWERTRAIN CONTROL SYSTEMS IN AUTO                                                                                         | MOBILE                |         |        | 9 Pei   | riod  |
| Electronic Tran                                                                                  | smission Control - Digital engine control system: Op                                                                       | en loop and close l   | oop co  | ontro  | l syst  | ems   |
| Engine cooling                                                                                   | and warm up control- Acceleration- Detonation and idle                                                                     | e speed control - Exh | aust e  | missi  | on co   | ntro  |
| engineering- Or                                                                                  | board diagnostics- Future automotive powertrain system                                                                     | ns.                   |         |        |         |       |
| UNIT – IV                                                                                        | SAFETY, COMFORT AND CONVENIENCE SYS                                                                                        | STEMS                 |         |        | 9 Pei   | riod  |
| Cruise Control-                                                                                  | Anti-lock Braking Control- Traction and Stability cor                                                                      | ntrol- Airbag control | l syste | em- S  | usper   | nsion |
| control-Steering                                                                                 | g control- HVAC Control.                                                                                                   |                       |         |        |         |       |
| UNIT – V                                                                                         | ELECTRONIC CONTROL UNITS (ECU)                                                                                             |                       |         |        | 9 Pei   | riod  |
| Introduction to                                                                                  | Energy Sources for ECU, Need for ECUs- Advance                                                                             | ces in ECUs for a     | utomo   | tives  | - De    | esigi |
| complexities of                                                                                  | ECUs- V-Model for Automotive ECU's- Architecture                                                                           | of an advanced mic    | crocon  | trolle | er (XO  | C166  |
|                                                                                                  | Fricore) used in the design of automobile ECUs- On chi                                                                     | ip peripherals, proto | col int | erfac  | es, ar  | alog  |
| •                                                                                                |                                                                                                                            |                       |         |        |         |       |
| and digital inter                                                                                | faces.                                                                                                                     |                       |         |        |         |       |
| and digital inter<br>Contact Period                                                              | faces.                                                                                                                     |                       |         |        |         |       |
| and digital inter                                                                                | faces.                                                                                                                     | Total: 45 Periods     |         |        |         |       |
| and digital inter<br>Contact Period<br>Lecture: 45 Per<br>REFERE                                 | faces.<br>s:<br>riods Tutorial: 0 Periods Practical: 0 Periods<br>NCES                                                     |                       |         |        |         |       |
| and digital inter<br>Contact Period<br>Lecture: 45 Per<br>REFERE                                 | faces.<br>s:<br>riods Tutorial: 0 Periods Practical: 0 Periods<br>NCES<br>ha, Manuel Madrigal, "Power System Harmonics: Ce |                       |         | naly   | sis",   | Johi  |
| and digital inter<br>Contact Period<br>Lecture: 45 Per<br>REFERE<br>1 Enrique Act<br>Wiley and S | faces.<br>s:<br>riods Tutorial: 0 Periods Practical: 0 Periods<br>NCES<br>ha, Manuel Madrigal, "Power System Harmonics: Ce | omputer Modeling      | and A   |        |         | John  |

- 3 Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
- 4 G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

| COURSE OUTCOMES:                                             |                                                                                        |          |  |  |
|--------------------------------------------------------------|----------------------------------------------------------------------------------------|----------|--|--|
|                                                              |                                                                                        | Taxonomy |  |  |
| Upon completion of the course, the students will be able to: |                                                                                        |          |  |  |
| CO1                                                          | Acquire knowledge about conventional automotive control units and devices.             | K1       |  |  |
| CO2                                                          | Recognize the practical issues in the automotive control systems                       | K2       |  |  |
| CO3                                                          | Analyze the impact of modern automotive techniques in various Engineering applications | K4       |  |  |
| CO4                                                          | Develop modern automotive control system for electrical and electronics systems        | K6       |  |  |
| CO5                                                          | Understand the function of sensors and actuators                                       | K2       |  |  |

| COs/Pos         | PO1 | PO2 | PO3 | PO4 |
|-----------------|-----|-----|-----|-----|
| CO1             | 3   | -   | 1   | 3   |
| CO2             | 3   | -   | 3   | 2   |
| CO3             | 3   | -   | 3   | 2   |
| CO4             | 2   | -   | 3   | 1   |
| CO5             | 2   | -   | 1   | 2   |
| <b>23PSOE21</b> | 3   | -   | 2   | 2   |

| ASSESSMENT     | PATTERN – TH | EORY          |          |           |            |          |       |
|----------------|--------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering  | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %       | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 20%          | 30%           | 20%      | 30%       | -          | -        | 100%  |
| CAT2           | 20%          | 20%           | 20%      | 20%       | 20%        | -        | 100%  |
| Individual     | 20%          | 30%           | -        | 20%       | -          | 30%      | 100%  |
| Assessment1/   |              |               |          |           |            |          |       |
| Case study1/   |              |               |          |           |            |          |       |
| Seminar 1/     |              |               |          |           |            |          |       |
| Project1       |              |               |          |           |            |          |       |
| Individual     | 20%          | 30%           | -        | 20%       | -          | 40%      | 100%  |
| Assessment2/   |              |               |          |           |            |          |       |
| Case study2/   |              |               |          |           |            |          |       |
| Seminar 2 /    |              |               |          |           |            |          |       |
| Project2       |              |               |          |           |            |          |       |
| ESE            | 30%          | 30%           | 20%      | 20%       | -          | -        | 100%  |

| 23PEOE22                           | VIRTUAL INSTRUM<br>(Common to all H                                                                                                                             |                               |                |         |         |         |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------|---------|---------|---------|
| PREREQUISI                         | TES                                                                                                                                                             | CATEGORY                      | L              | Т       | Р       | C       |
|                                    | NIL                                                                                                                                                             | OE                            | 3              | 0       | 0       | 3       |
| Course                             | To comprehend the Virtual instrumentation programm                                                                                                              | ning concepts toward          | s mea          | sure    | ments   | and     |
| Objectives                         | control and to instill knowledge on DAQ, signal cond                                                                                                            | itioning and its assoc        | iated          | softv   | ware to | ools    |
| UNIT – I                           | INTRODUCTION                                                                                                                                                    | -                             |                |         | 7]      | Periods |
|                                    | advantages - Block diagram and architecture of a vir<br>nal Instruments - Data-flow techniques, graphical pr<br>ogramming.                                      |                               |                |         |         |         |
| UNIT – II                          | <b>GRAPHICAL PROGRAMMING AND LabVIEW</b>                                                                                                                        | 7                             |                |         | 9       | Periods |
| Analog - Chart<br>and dialog cont  |                                                                                                                                                                 |                               | -              |         | ring -  | Timers  |
| UNIT – III                         | MANAGING FILES & DESIGN PATTERNS                                                                                                                                |                               |                |         |         | Periods |
| e e                                | low-level file I/O functions available in LabVIEW –                                                                                                             |                               |                |         |         |         |
|                                    | files - Binary Files - TDMS - sequential progra                                                                                                                 | -                             |                | -       | -       | -       |
|                                    | n between parallel loops -Race conditions - Notifier                                                                                                            | rs & Queues – Prod            | lucer          | Con     | sumer   | desig   |
| patterns                           |                                                                                                                                                                 |                               |                |         |         |         |
| UNIT – IV                          | PC BASED DATA ACQUISITION<br>data acquisition on PC, Sampling fundamentals, ADC                                                                                 |                               |                |         |         | Period  |
| interface requir                   | uts - Single-ended and differential inputs - Digital I/O,<br>ements - Issues involved in selection of Data acquisit<br>universal DAQ card.                      |                               |                |         | -       |         |
| ÚNIT – V                           | DATA ACQUISITION AND SIGNAL CONDITION                                                                                                                           | DNING                         |                |         | 9]      | Period  |
| Measurement o<br>conditioning sy   |                                                                                                                                                                 | quisition- analog out         | put g<br>r qua | enera   | ation - | - Signa |
| REFER1Jeffrey TEdition),2Jovitha J | ENCES :<br>ravis, Jim Kring, <b>"LabVIEW for Everyone: Graphica</b><br>Prentice Hall, 2006 <b>.</b><br>erome, <b>"Virtual Instrumentation using LabVIEW",</b> P | d Programming Mac<br>HI, 2010 | de Ea          | -       |         |         |
| Publishin                          | Johnson, Richard Jennings, <b>"LabVIEW Graphical</b><br>9g, 2019<br>. Bishop, <b>"Learning with LabVIEW"</b> , Prentice Hall, 2                                 |                               | Graw           | Hill    | l Prof  | essiond |
|                                    | . 0                                                                                                                                                             |                               | + I            | +++++++ | nontat  | ion a-  |
| 5 Kevin Jai                        | mes, "PC Interfacing and Data Acquisition: Techniq                                                                                                              | ues jor measuremen            | u, 11          | sırun   | renidi  | ion an  |

*Control*", Newness, 2000

|     | SE OUTCOMES:<br>ompletion of the course, the students will be able to:                      | Bloom's<br>Taxonomy<br>Mapped |
|-----|---------------------------------------------------------------------------------------------|-------------------------------|
| CO1 | Describe the graphical programming techniques using LabVIEW software.                       | K2                            |
| CO2 | Explore the basics of programming and interfacing using related hardware.                   | K4                            |
| CO3 | Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces. | K4                            |
| CO4 | Create programs and Select proper instrument interface for a specific application.          | K6                            |
| CO5 | Familiarize and experiment with DAQ and Signal Conditioning                                 | K3                            |

| COs/POs         | PO1 | PO2 | PO3 | PO4 | PO5 |
|-----------------|-----|-----|-----|-----|-----|
| CO1             | 3   | -   | 3   | 2   | 1   |
| CO2             | 3   | -   | 3   | 2   | 1   |
| CO3             | 3   | -   | 2   | 2   | 2   |
| CO4             | 3   | 1   | 3   | 3   | 1   |
| CO5             | 3   | 1   | 3   | 3   | 2   |
| <b>23PEOE22</b> | 3   | 1   | 3   | 2   | 1   |

| ASSESSMENT   | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |       |  |  |  |  |
|--------------|-----------------------------|---------------|----------|-----------|------------|----------|-------|--|--|--|--|
| Test /       | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |  |
| Bloom's      | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |  |
| Category*    |                             |               |          |           |            |          |       |  |  |  |  |
| CAT1         | 30                          | 40            | 15       | 15        | -          | -        | 100   |  |  |  |  |
| CAT2         | 15                          | 10            | 25       | 30        | 20         | -        | 100   |  |  |  |  |
| Individual   | 10                          | 10            | 20       | 30        | 20         | 10       | 100   |  |  |  |  |
| Assessment1/ |                             |               |          |           |            |          |       |  |  |  |  |
| Case study1/ |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 1/   |                             |               |          |           |            |          |       |  |  |  |  |
| Project1     |                             |               |          |           |            |          |       |  |  |  |  |
| Individual   | 25                          | 40            | 20       | 15        | -          | -        | 100   |  |  |  |  |
| Assessment2/ |                             |               |          |           |            |          |       |  |  |  |  |
| Case study2/ |                             |               |          |           |            |          |       |  |  |  |  |
| Seminar 2 /  |                             |               |          |           |            |          |       |  |  |  |  |
| Project2     |                             |               |          |           |            |          |       |  |  |  |  |
| ESE          | 30                          | 25            | 15       | 20        | 5          | 5        | 100   |  |  |  |  |

| <b>220EOE22</b>                                                               | ENERGY MANAGEMENT                                              | SYSTEMS            |          |        |        |          |  |  |  |
|-------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------|----------|--------|--------|----------|--|--|--|
| <b>23PEOE23</b>                                                               | (Common to all Brand                                           | ches)              |          |        |        |          |  |  |  |
| PREREQUISI                                                                    | TES                                                            | CATEGORY           | L        | Т      | Р      | С        |  |  |  |
| NIL OE 3 0                                                                    |                                                                |                    |          |        |        |          |  |  |  |
| Course To Comprehend energy management schemes, perform energy audit and exec |                                                                |                    |          |        |        |          |  |  |  |
| Objectives                                                                    | analysis and load management in electrical systems.            |                    |          |        |        |          |  |  |  |
| UNIT – I                                                                      | - I GENERAL ASPECTS OF ENERGY AUDIT AND MANAGEMENT 9 Perio     |                    |          |        |        |          |  |  |  |
| Energy Conservation                                                           | ation Act 2001 and policies – Eight National Missions - B      | asics of Energy ar | nd its   | for    | ns (T  | 'hermal  |  |  |  |
| and Electrical) ·                                                             | - Energy Management and Audit - Energy Managers an             | d Auditors - Typ   | es a     | nd N   | letho  | dology   |  |  |  |
| Audit Report - 1                                                              | Material and energy balance diagramsEnergy Monitorin           | g and Targeting.   |          |        |        |          |  |  |  |
| UNIT – II                                                                     | STUDY OF BOILERS, FURNACES AND COGENE                          | RATION             |          |        | 9 I    | Periods  |  |  |  |
| Boiler Systems                                                                | - Types - Performance Evaluation of boilers - Energ            | y Conservation (   | Oppo     | ortun  | ity -  | Steam    |  |  |  |
| Distribution - E                                                              | Efficient Steam Utilisation - Furnaces:types and classifi      | cation - Performa  | ance     | eval   | luatio | on of a  |  |  |  |
| typical fuel fire                                                             | ed furnace. Cogeneration: Need - Principle - Technica          | 1 options - classi | ificat   | ion    | - Te   | chnical  |  |  |  |
| parameters and f                                                              | Factors influencing cogeneration choice - Prime Movers - T     | Frigeneration.     |          |        |        |          |  |  |  |
| UNIT – III                                                                    | ENERGY STUDY OF ELECTRICAL SYSTEMS                             |                    |          |        | 9 I    | Periods  |  |  |  |
| Electricity Billin                                                            | ng – Electricity load management - Maximum Demand Co           | ontrol - Power Fac | tor i    | mpro   | ovem   | ent and  |  |  |  |
| its benefits - pf                                                             | controllers - capacitors - Energy efficient transformers       | and Induction mo   | tors     | - rev  | windi  | ng and   |  |  |  |
| other factors inf                                                             | luencing energy efficiency - Standards and labeling progra     | amme of distribut  | ion t    | ransf  | orme   | ers and  |  |  |  |
| IM - Analysis of                                                              | distribution losses - demand side management - harmoni         | cs - filters - VFD | and      | its se | electi | on.      |  |  |  |
| UNIT – IV                                                                     | STUDY OF ELECTRICAL UTILITIES                                  |                    |          |        | 9 F    | Periods  |  |  |  |
| Compressor typ                                                                | es - Performance - Air system components - Efficient           | operation of com   | pres     | sed a  | air sy | ystems-  |  |  |  |
| Compressor cap                                                                | pacity assessment - HVAC: psychrometrics and air               | -conditioning pro  | ocess    | es -   | · Ty   | pes of   |  |  |  |
| refrigeration sys                                                             | tem - Compressor types and applications - Performan            | ce assessment of   | refri    | gerat  | ion p  | plants - |  |  |  |
| Lighting System                                                               | s: Energy efficient lighting controls - design of interior lig | hting - Case study | <i>.</i> |        |        |          |  |  |  |
| UNIT – V                                                                      | PERFORMANCE ASSESSMENT FOR EQUIPMEN                            |                    |          |        |        | Periods  |  |  |  |
| Performing Fina                                                               | ncial analysis: Fixed and variable costs - Payback perio       | d – ROI - method   | 1s –     | facto  | ors af | fecting  |  |  |  |
| analysis. Energy                                                              | Performance Assessment: Heat exchangers - Fans and H           | Blowers - Pumps.   | Ener     | gy C   | Conse  | rvation  |  |  |  |
| in buildings and                                                              | ECBC.                                                          |                    |          |        |        |          |  |  |  |
| <b>Contact Period</b>                                                         | S:                                                             |                    |          |        |        |          |  |  |  |
| Lecture: 45 Per                                                               | iods Tutorial: 0 Periods Practical: 0 Periods                  | Fotal: 45 Periods  |          |        |        |          |  |  |  |

| 1 | Murphy W.R. and G.Mckay Butter worth, "Energy Management", Heinemann Publications, 2007                  |
|---|----------------------------------------------------------------------------------------------------------|
| 2 | Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River      |
|   | Publishers, 2012.                                                                                        |
| 3 | Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second          |
|   | edition, Technical Publications, 2019.                                                                   |
| 4 | S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali |
|   | Prakashan Publications, 2021.                                                                            |
| 5 | www.em-ea.org/gbook1.asp                                                                                 |
| L |                                                                                                          |

| COUI | RSE OUTCOMES:                                                                | Bloom's  |  |
|------|------------------------------------------------------------------------------|----------|--|
|      |                                                                              | Taxonomy |  |
| Upon | Upon completion of the course, the students will be able to:                 |          |  |
| CO1  | Analyze the feature of energy audit methodology and documentation of report. | K3       |  |
| CO2  | Perform action plan and financial analysis                                   | K4       |  |
| CO3  | Familiarize with thermal utilities.                                          | K4       |  |
| CO4  | Familiarize with electrical utilities.                                       | K4       |  |
| CO5  | Perform assessment of different systems.                                     | K5       |  |

| COURSE ARTICULATION MATRIX    |             |     |     |     |     |  |  |  |  |
|-------------------------------|-------------|-----|-----|-----|-----|--|--|--|--|
| COs/POs                       | PO1         | PO2 | PO3 | PO4 | PO5 |  |  |  |  |
| C01                           | 3           | 2   | 2   | 1   | 1   |  |  |  |  |
| CO2                           | 3           | 2   | 2   | 1   | 1   |  |  |  |  |
| CO3                           | 3           | 2   | 2   | 1   | 1   |  |  |  |  |
| CO4                           | 3           | 2   | 2   | 1   | 1   |  |  |  |  |
| CO5                           | 3           | 2   | 2   | 1   | 1   |  |  |  |  |
| <b>23PEOE23</b>               | 3           | 2   | 2   | 1   | 1   |  |  |  |  |
| 1 - Slight, 2 - Moderate, 3 - | Substantial | ·   | •   | •   |     |  |  |  |  |

| ASSESSMEN                                                             | ASSESSMENT PATTERN – THEORY |                         |                    |                     |                      |                    |         |  |  |  |  |
|-----------------------------------------------------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|---------|--|--|--|--|
| Test /<br>Bloom's<br>Category*                                        | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total % |  |  |  |  |
| CAT1                                                                  | 10                          | 30                      | 30                 | 20                  | 10                   | -                  | 100     |  |  |  |  |
| CAT2                                                                  | 10                          | 30                      | 30                 | 20                  | 10                   | -                  | 100     |  |  |  |  |
| Individual<br>Assessment1/<br>Case study1/<br>Seminar 1/<br>Project1  | -                           | 30                      | 30                 | 20                  | 20                   | -                  | 100     |  |  |  |  |
| Individual<br>Assessment2/<br>Case study2/<br>Seminar 2 /<br>Project2 | -                           | 30                      | 30                 | 20                  | 20                   | -                  | 100     |  |  |  |  |
| ESE                                                                   | 10                          | 30                      | 30                 | 20                  | 10                   | -                  | 100     |  |  |  |  |

| <b>23PEOE24</b>                                                                                                                                                                                                                                                                                                                                   | ADVANCED ENERGY STORAGE TECHNOLOGY<br>(Common to all Branches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                                                                                  |                                                                                                                                                       |                                                                                                                                        |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PREREQUISI                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CATEGORY                                                                                                                                                                                                                                                                                    | L                                                                                                                              | Т                                                                                                                | Р                                                                                                                                                     | С                                                                                                                                      |  |  |  |
| TREREQUIST                                                                                                                                                                                                                                                                                                                                        | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OE                                                                                                                                                                                                                                                                                          | <u>L</u><br>3                                                                                                                  | 0                                                                                                                | 0                                                                                                                                                     | 3                                                                                                                                      |  |  |  |
| Course                                                                                                                                                                                                                                                                                                                                            | To explore the fundamentals, technologies and application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                             | -                                                                                                                              | U                                                                                                                | U                                                                                                                                                     | 5                                                                                                                                      |  |  |  |
| Objectives                                                                                                                                                                                                                                                                                                                                        | To explore the fundamentals, technologies and appreado                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | its of energy store                                                                                                                                                                                                                                                                         | age                                                                                                                            |                                                                                                                  |                                                                                                                                                       |                                                                                                                                        |  |  |  |
| UNIT – I                                                                                                                                                                                                                                                                                                                                          | ENERGY STORAGE: HISTORICAL PERSPECTIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VE INTRODU                                                                                                                                                                                                                                                                                  | CTIO                                                                                                                           | N                                                                                                                | 9 Per                                                                                                                                                 | inde                                                                                                                                   |  |  |  |
| 01111-1                                                                                                                                                                                                                                                                                                                                           | AND CHANGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | VE, INTRODU                                                                                                                                                                                                                                                                                 |                                                                                                                                |                                                                                                                  | <i>7</i> 1 Cl                                                                                                                                         | IUUS                                                                                                                                   |  |  |  |
| Storage Needs-                                                                                                                                                                                                                                                                                                                                    | Variations in Energy Demand- Variations in Energy Su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pply- Interruption                                                                                                                                                                                                                                                                          | ns in                                                                                                                          | Energ                                                                                                            | gy Sup                                                                                                                                                | oply                                                                                                                                   |  |  |  |
| Transmission C                                                                                                                                                                                                                                                                                                                                    | Congestion - Demand for Portable Energy-Demand and sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ale requirements                                                                                                                                                                                                                                                                            | - En                                                                                                                           | vironi                                                                                                           | nental                                                                                                                                                | l and                                                                                                                                  |  |  |  |
| sustainability is                                                                                                                                                                                                                                                                                                                                 | sues-conventional energy storage methods: battery-types.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                                                                                  |                                                                                                                                                       |                                                                                                                                        |  |  |  |
| UNIT – II                                                                                                                                                                                                                                                                                                                                         | TECHNICAL METHODS OF STORAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                                                                                  | 9 Per                                                                                                                                                 | riods                                                                                                                                  |  |  |  |
| Introduction: E                                                                                                                                                                                                                                                                                                                                   | nergy and Energy Transformations, Potential energy (pun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nped hydro, com                                                                                                                                                                                                                                                                             | press                                                                                                                          | ed air                                                                                                           | , spri                                                                                                                                                | ngs)                                                                                                                                   |  |  |  |
| Kinetic energy                                                                                                                                                                                                                                                                                                                                    | (mechanical flywheels)- Thermal energy without phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e change passivo                                                                                                                                                                                                                                                                            | e (ad                                                                                                                          | obe)                                                                                                             | and a                                                                                                                                                 | ctive                                                                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                   | l energy with phase change (ice, molten salts, steam)- C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                                                                                  |                                                                                                                                                       |                                                                                                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                   | oil)- Electrochemical energy (batteries, fuel cells)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                | -                                                                                                                |                                                                                                                                                       |                                                                                                                                        |  |  |  |
| -                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                             |                                                                                                                                |                                                                                                                  | •                                                                                                                                                     |                                                                                                                                        |  |  |  |
| Electromagnetic                                                                                                                                                                                                                                                                                                                                   | c energy (superconducting magnets)- Different Types of En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ergy Storage Sys                                                                                                                                                                                                                                                                            | tems.                                                                                                                          |                                                                                                                  |                                                                                                                                                       |                                                                                                                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                   | c energy (superconducting magnets)- Different Types of En<br>PERFORMANCE FACTORS OF ENERGY STORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                             | tems.                                                                                                                          |                                                                                                                  | 9 Pei                                                                                                                                                 | riods                                                                                                                                  |  |  |  |
| UNIT – III                                                                                                                                                                                                                                                                                                                                        | PERFORMANCE FACTORS OF ENERGY STORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GE SYSTEMS                                                                                                                                                                                                                                                                                  |                                                                                                                                |                                                                                                                  |                                                                                                                                                       |                                                                                                                                        |  |  |  |
| <b>UNIT – III</b><br>Energy capture                                                                                                                                                                                                                                                                                                               | PERFORMANCE FACTORS OF ENERGY STORAGE rate and efficiency- Discharge rate and efficiency-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GE SYSTEMS<br>Dispatch abilit                                                                                                                                                                                                                                                               | y an                                                                                                                           | d loa                                                                                                            | d flo                                                                                                                                                 | wing                                                                                                                                   |  |  |  |
| <b>UNIT – III</b><br>Energy capture<br>characteristics, s                                                                                                                                                                                                                                                                                         | <b>PERFORMANCE FACTORS OF ENERGY STORA</b><br>e rate and efficiency- Discharge rate and efficiency-<br>scale flexibility, durability – Cycle lifetime, mass and safe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire                                                                                                                                                                                                                                        | y an<br>e, exp                                                                                                                 | d loa<br>plosio                                                                                                  | d flo<br>n, toxi                                                                                                                                      | wing<br>icity                                                                                                                          |  |  |  |
| <b>UNIT – III</b><br>Energy capture<br>characteristics, s<br>Ease of materia                                                                                                                                                                                                                                                                      | <b>PERFORMANCE FACTORS OF ENERGY STORA</b><br>e rate and efficiency- Discharge rate and efficiency-<br>scale flexibility, durability – Cycle lifetime, mass and safe<br>ils, recycling and recovery- Environmental consideration a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire                                                                                                                                                                                                                                        | y an<br>e, exp                                                                                                                 | d loa<br>plosio                                                                                                  | d flo<br>n, toxi                                                                                                                                      | wing<br>icity                                                                                                                          |  |  |  |
| <b>UNIT – III</b><br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types of                                                                                                                                                                                                                                                | <b>PERFORMANCE FACTORS OF ENERGY STORA</b><br>e rate and efficiency- Discharge rate and efficiency-<br>scale flexibility, durability – Cycle lifetime, mass and safe<br>ils, recycling and recovery- Environmental consideration a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire                                                                                                                                                                                                                                        | y an<br>e, exp                                                                                                                 | d loa<br>plosio                                                                                                  | d flo<br>n, toxi                                                                                                                                      | wing<br>city<br>ts o                                                                                                                   |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types o<br>UNIT – IV                                                                                                                                                                                                                                           | PERFORMANCE FACTORS OF ENERGY STORAe rate and efficiency-bischarge rate and efficiency-scale flexibility, durability – Cycle lifetime, mass and safells, recycling and recovery-Environmental consideration aof Storage.APPLICATION CONSIDERATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling , M                                                                                                                                                                                                                   | y an<br>e, exp<br>Ierits                                                                                                       | d loa<br>plosion<br>and c                                                                                        | d flo <sup>r</sup><br>n, toxi<br>lemeri<br><b>9 Pe</b> i                                                                                              | wing<br>icity<br>its of<br>riods                                                                                                       |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types o<br>UNIT – IV<br>Comparing Stor                                                                                                                                                                                                                         | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ls, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling, N                                                                                                                                                                                                                    | y an<br>e, exp<br>Ierits<br>Effic                                                                                              | d loa<br>blosion<br>and c                                                                                        | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En                                                                                                   | wing<br>icity<br>its of<br>riods                                                                                                       |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types o<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ                                                                                                                                                                                                       | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ils, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling, M<br>ors and metrics-<br>th focus on Lead                                                                                                                                                                            | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci                                                                                     | d loa<br>plosion<br>and c<br>iency                                                                               | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>l Lith                                                                                         | wing<br>icity<br>its of<br>riods<br>iergy<br>ium                                                                                       |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types o<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B                                                                                                                                                                                     | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ls, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction wit         Battery Operation, Power storage calculations, Reversible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fir<br>and recycling , N<br>ors and metrics-<br>h focus on Lead<br>reactions, Charg                                                                                                                                                         | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging p                                                                           | d loa<br>plosion<br>and c<br>iency<br>id and<br>pattern                                                          | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>d Lith                                                                                         | wing<br>icity<br>its of<br>riods<br>nergy<br>ium                                                                                       |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types of<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B<br>Management sy                                                                                                                                                                   | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ls, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction wit         Battery Operation, Power storage calculations, Reversible         stems, System Performance, Areas of Application of Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling , M<br>ors and metrics-<br>th focus on Lead<br>reactions, Charg<br>gy Storage: Wast                                                                                                                                   | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging p<br>e hea                                                                  | d loa<br>blosion<br>and c<br>iency<br>id and<br>pattern<br>t reco                                                | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>d Lith<br>ns, Ba<br>very, S                                                                    | wing<br>icity<br>its of<br>riods<br>nergy<br>ium<br>ittery<br>Solar                                                                    |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types o<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B<br>Management sy<br>energy storage,                                                                                                                                                 | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ils, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction wit         Battery Operation, Power storage calculations, Reversible         rstems, System Performance, Areas of Application of Energy         Green house heating, Power plant applications, Drying and                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling , M<br>ors and metrics-<br>th focus on Lead<br>reactions, Charg<br>gy Storage: Wast                                                                                                                                   | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging p<br>e hea                                                                  | d loa<br>blosion<br>and c<br>iency<br>id and<br>pattern<br>t reco                                                | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>d Lith<br>ns, Ba<br>very, S                                                                    | wing<br>icity<br>its of<br>riods<br>nergy<br>ium<br>ittery<br>Solar                                                                    |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types of<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B<br>Management sy<br>energy storage,<br>storage in auton                                                                                                                            | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ls, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction wit         Battery Operation, Power storage calculations, Reversible         rstems, System Performance, Areas of Application of Energy         Green house heating, Power plant applications, Drying and         notive applications in hybrid and electric vehicles.                                                                                                                                                                                                                                                                                                                                                                                                | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling, M<br>ors and metrics-<br>h focus on Lead<br>reactions, Charg<br>gy Storage: Wast<br>I heating for proc                                                                                                               | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging p<br>e hea                                                                  | d loa<br>blosion<br>and c<br>iency<br>id and<br>pattern<br>t reco                                                | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>d Lith<br>ns, Ba<br>very, S<br>ies, en                                                         | wing<br>icity<br>its of<br>riods<br>nergy<br>ium<br>ittery<br>Solan<br>nergy                                                           |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types of<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B<br>Management sy<br>energy storage,<br>storage in auton<br>UNIT – V                                                                                                                | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ils, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction wit         Battery Operation, Power storage calculations, Reversible         rstems, System Performance, Areas of Application of Energy         Green house heating, Power plant applications, Drying and         notive applications in hybrid and electric vehicles.         HYDROGEN FUEL CELLS AND FLOW BATTERING                                                                                                                                                                                                                                                                                                                                                | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling , M<br>ors and metrics-<br>th focus on Lead<br>reactions, Charg<br>gy Storage: Wast<br>I heating for proc                                                                                                             | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging p<br>e hea<br>cess in                                                       | d loa<br>blosion<br>and d<br>iency<br>id and<br>pattern<br>t reco<br>ndustr                                      | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>l Lith<br>ns, Ba<br>very, S<br>ies, en<br><b>9 Per</b>                                         | wing<br>icity of<br>riods<br>nergy<br>ium<br>ttery<br>Solar<br>nergy                                                                   |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types of<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B<br>Management sy<br>energy storage,<br>storage in auton<br>UNIT – V<br>Hydrogen Econ                                                                                               | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ls, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction with         Battery Operation, Power storage calculations, Reversible         rstems, System Performance, Areas of Application of Energy         Green house heating, Power plant applications, Drying and         notive applications in hybrid and electric vehicles.         HYDROGEN FUEL CELLS AND FLOW BATTERING         nomy and Generation Techniques, Storage of Hydrogen, I                                                                                                                                                                                                                                                                                 | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling , M<br>ors and metrics-<br>h focus on Lead<br>reactions, Charg<br>gy Storage: Wast<br>I heating for proc<br>ES<br>Energy generatio                                                                                    | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging p<br>e hea<br>sess in                                                       | d loa<br>plosion<br>and c<br>iency<br>id and<br>pattern<br>t reco<br>ndustr                                      | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>l Lith<br>ns, Ba<br>very, S<br>ies, en<br><b>9 Per</b><br>capaci                               | winą<br>dcity<br>tts o<br>riod<br>nergy<br>ium<br>ttery<br>Sola<br>nergy<br>riod                                                       |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types of<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B<br>Management sy<br>energy storage,<br>storage in auton<br>UNIT – V<br>Hydrogen Econ<br>properties, pow                                                                            | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ils, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction wite         Battery Operation, Power storage calculations, Reversible         stems, System Performance, Areas of Application of Energe         Green house heating, Power plant applications, Drying and         notive applications in hybrid and electric vehicles.         HYDROGEN FUEL CELLS AND FLOW BATTERING         nomy and Generation Techniques, Storage of Hydrogen, I         er calculations – Operation and Design methods - Hybrid                                                                                                                                                                                                                 | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling , M<br>ors and metrics-<br>th focus on Lead<br>reactions, Charg<br>gy Storage: Wast<br>I heating for proc<br>ES<br>Energy generation                                                                                  | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging p<br>e hea<br>e hea<br>e ss in<br>m - S<br>: Mar                            | d loa<br>blosion<br>and c<br>eiency<br>id and<br>pattern<br>t recondustr                                         | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>l Lith<br>ns, Ba<br>very, S<br>ies, en<br><b>9 Per</b><br>capaci<br>g peak                     | winą<br>city<br>tts o<br>riod<br>ium<br>ttery<br>Sola<br>ergy<br>riod<br>itors                                                         |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types of<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B<br>Management sy<br>energy storage,<br>storage in auton<br>UNIT – V<br>Hydrogen Econ<br>properties, pow<br>Continuous po                                                           | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ls, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction wit         Battery Operation, Power storage calculations, Reversible         rstems, System Performance, Areas of Application of Energy         Green house heating, Power plant applications, Drying and         notive applications in hybrid and electric vehicles.         HYDROGEN FUEL CELLS AND FLOW BATTERING         nomy and Generation Techniques, Storage of Hydrogen, I         er calculations – Operation and Design methods - Hybrid         wer needs, options - Level 1: (Hybrid Power generation)                                                                                                                                                  | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling , M<br>ors and metrics-<br>th focus on Lead<br>reactions, Charg<br>gy Storage: Wast<br>I heating for proc<br>ES<br>Energy generation<br>I Energy Storage<br>tion) Bacitor "H                                          | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging p<br>e hea<br>e hea<br>is ess in<br>m - S<br>: Man<br>Batter                | d loa<br>blosion<br>and c<br>and c<br>viency<br>id and<br>pattern<br>t reco<br>ndustr<br>buper<br>naging<br>y +  | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>l Lith<br>ns, Ba<br>very, S<br>ies, en<br><b>9 Per</b><br>capaci<br>g peak<br>Capac            | winą<br>city<br>riod<br>ium<br>ium<br>ttery<br>Sola<br>aergy<br>riod<br>itors<br>ano<br>itors                                          |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types of<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B<br>Management sy<br>energy storage,<br>storage in auton<br>UNIT – V<br>Hydrogen Econ<br>properties, pow<br>Continuous por                                                          | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ls, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction with         Battery Operation, Power storage calculations, Reversible         rstems, System Performance, Areas of Application of Energy         Green house heating, Power plant applications, Drying and         notive applications in hybrid and electric vehicles.         HYDROGEN FUEL CELLS AND FLOW BATTERING         normy and Generation Techniques, Storage of Hydrogen, I         er calculations – Operation and Design methods - Hybrid         wer needs, options - Level 1: (Hybrid Power generar         need, operation and Merits; Level 2: (Hybrid Power Generar                                                                                 | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling , M<br>ors and metrics-<br>th focus on Lead<br>reactions, Charg<br>gy Storage: Wast<br>I heating for proc<br>ES<br>Energy generation<br>I Energy Storage<br>tion) Bacitor "H<br>neration) Bacitor                     | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging J<br>e hea<br>e hea<br>e ss in<br>m - S<br>: Man<br>Batter<br>+ Fu          | d loa<br>blosion<br>and c<br>eiency<br>id and<br>pattern<br>t reco<br>ndustr<br>Super<br>naging<br>y +<br>iel Ce | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>l Lith<br>ns, Ba<br>very, S<br>ies, en<br><b>9 Per</b><br>capaci<br>g peak<br>Capac<br>ll or l | winą<br>city<br>its o<br>riod<br>ium<br>ttery<br>Sola<br>ergy<br>riod<br>itors<br>a and<br>itors<br>flow                               |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types of<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B<br>Management sy<br>energy storage,<br>storage in auton<br>UNIT – V<br>Hydrogen Econ<br>properties, pow<br>Continuous por<br>Combinations: T                                       | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         ls, recycling and recovery- Environmental consideration a         of Storage.         APPLICATION CONSIDERATION         rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction wit         Battery Operation, Power storage calculations, Reversible         rstems, System Performance, Areas of Application of Energy         Green house heating, Power plant applications, Drying and         notive applications in hybrid and electric vehicles.         HYDROGEN FUEL CELLS AND FLOW BATTERING         nomy and Generation Techniques, Storage of Hydrogen, I         er calculations – Operation and Design methods - Hybrid         wer needs, options - Level 1: (Hybrid Power generation         need, operation and Merits; Level 2: (Hybrid Power Generation         on-Applications: Storage for Hybrid Electric Vehicles, Regeneration | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling , M<br>ors and metrics-<br>th focus on Lead<br>reactions, Charg<br>gy Storage: Wast<br>I heating for proc<br>ES<br>Energy generation<br>I Energy Storage<br>tion) Bacitor "H<br>neration) Bacitor                     | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging J<br>e hea<br>e hea<br>e ss in<br>m - S<br>: Man<br>Batter<br>+ Fu          | d loa<br>blosion<br>and c<br>eiency<br>id and<br>pattern<br>t reco<br>ndustr<br>Super<br>naging<br>y +<br>iel Ce | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>l Lith<br>ns, Ba<br>very, S<br>ies, en<br><b>9 Per</b><br>capaci<br>g peak<br>Capac<br>ll or l | winą<br>city<br>its o<br>riod<br>ium<br>ttery<br>Sola<br>ergy<br>riod<br>itors<br>a and<br>itors<br>flow                               |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types of<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B<br>Management sy<br>energy storage,<br>storage in auton<br>UNIT – V<br>Hydrogen Econ<br>properties, pow<br>Continuous por<br>Combinations: B<br>Battery operatio<br>Contact Period | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         lisk, recycling and recovery- Environmental consideration a         of Storage. <b>APPLICATION CONSIDERATION</b> rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction wit         Battery Storage System: Introduction wit         Battery Operation, Power storage calculations, Reversible         resemption of Energy         Green house heating, Power plant applications, Drying and         notive applications in hybrid and electric vehicles.         HYDROGEN FUEL CELLS AND FLOW BATTERID         nomy and Generation Techniques, Storage of Hydrogen, I         actualitions – Operation and Design methods - Hybrid         wer needs, options - Level 1: (Hybrid Power generation         need, operation and Merits; Level 2: (Hybrid Power Generation         on Applications: Storage for Hybrid Electric Vehicles, Regeneration | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling , M<br>ors and metrics-<br>th focus on Lead<br>reactions, Charg<br>gy Storage: Wast<br>I heating for proc<br>ES<br>Energy generation<br>I Energy Storage<br>tion) Bacitor "H<br>neration) Bacitor<br>enerative Power, | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging p<br>e hea<br>e hea<br>e ss in<br>m - S<br>: Man<br>Batter<br>+ Fu<br>captu | d loa<br>blosion<br>and c<br>eiency<br>id and<br>pattern<br>t reco<br>ndustr<br>Super<br>naging<br>y +<br>iel Ce | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>l Lith<br>ns, Ba<br>very, S<br>ies, en<br><b>9 Per</b><br>capaci<br>g peak<br>Capac<br>ll or l | wing<br>city<br>its o<br>riod<br>ium<br>ttery<br>Sola<br>ergy<br>riod<br>itors<br>c and<br>itors<br>c and<br>itor?                     |  |  |  |
| UNIT – III<br>Energy capture<br>characteristics, s<br>Ease of materia<br>different types of<br>UNIT – IV<br>Comparing Stor<br>Systems- Energ<br>Chemistry of B<br>Management sy<br>energy storage,<br>storage in auton<br>UNIT – V<br>Hydrogen Econ<br>properties, pow<br>Continuous por<br>Combinations: T                                       | PERFORMANCE FACTORS OF ENERGY STORAGE         e rate and efficiency- Discharge rate and efficiency-         scale flexibility, durability – Cycle lifetime, mass and safe         lisk, recycling and recovery- Environmental consideration a         of Storage. <b>APPLICATION CONSIDERATION</b> rage Technologies- Technology options- Performance fact         gy Recovery - Battery Storage System: Introduction wit         Battery Storage System: Introduction wit         Battery Operation, Power storage calculations, Reversible         resemption of Energy         Green house heating, Power plant applications, Drying and         notive applications in hybrid and electric vehicles.         HYDROGEN FUEL CELLS AND FLOW BATTERID         nomy and Generation Techniques, Storage of Hydrogen, I         actualitions – Operation and Design methods - Hybrid         wer needs, options - Level 1: (Hybrid Power generation         need, operation and Merits; Level 2: (Hybrid Power Generation         on Applications: Storage for Hybrid Electric Vehicles, Regeneration | GE SYSTEMS<br>Dispatch abilit<br>ety – Risks of fire<br>and recycling , M<br>ors and metrics-<br>th focus on Lead<br>reactions, Charg<br>gy Storage: Wast<br>I heating for proc<br>ES<br>Energy generation<br>I Energy Storage<br>tion) Bacitor "H<br>neration) Bacitor                     | y an<br>e, exp<br>Ierits<br>Effic<br>d Aci<br>ging p<br>e hea<br>e hea<br>e ss in<br>m - S<br>: Man<br>Batter<br>+ Fu<br>captu | d loa<br>blosion<br>and c<br>eiency<br>id and<br>pattern<br>t reco<br>ndustr<br>Super<br>naging<br>y +<br>iel Ce | d flo<br>n, toxi<br>lemeri<br><b>9 Per</b><br>of En<br>l Lith<br>ns, Ba<br>very, S<br>ies, en<br><b>9 Per</b><br>capaci<br>g peak<br>Capac<br>ll or l | wing<br>city<br>its of<br>riods<br>ergy<br>ium<br>ttery<br>Sola:<br>ergy<br>riods<br>itors<br>c and<br>itors<br>c and<br>itor?<br>Flow |  |  |  |

| 1 | DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.                                                     |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy Storage and Conversion", John Wiley and Sons, 2012. |
| 3 | Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.                                                                                |
| 4 | Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical Society, New Jersy, 2010.                           |

| COUI | COURSE OUTCOMES:                                                              |          |  |  |
|------|-------------------------------------------------------------------------------|----------|--|--|
|      |                                                                               | Taxonomy |  |  |
| Upon | completion of the course, the students will be able to:                       | Mapped   |  |  |
| CO1  | Recollect the historical perspective and technical methods of energy storage. | K1       |  |  |
| CO2  | Explain the basics of different storage methods.                              | K2       |  |  |
| CO3  | Determine the performance factors of energy storage systems.                  | K2       |  |  |
| CO4  | Identify applications for renewable energy systems.                           | K4       |  |  |
| CO5  | Outline the basics of Hydrogen cell and flow batteries.                       | K2       |  |  |

| COURSE ARTICULATION MATRIX            |             |     |     |     |     |  |  |  |
|---------------------------------------|-------------|-----|-----|-----|-----|--|--|--|
| COs/POs                               | PO1         | PO2 | PO3 | PO4 | PO5 |  |  |  |
| CO1                                   | 3           | 1   | 3   | 3   | 3   |  |  |  |
| CO2                                   | 3           | 1   | 3   | 3   | 3   |  |  |  |
| CO3                                   | 3           | 1   | 3   | 3   | 3   |  |  |  |
| CO4                                   | 3           | 1   | 3   | 3   | 3   |  |  |  |
| CO5                                   | 3           | 1   | 3   | 3   | 3   |  |  |  |
| <b>23PEOE24</b>                       | 3           | 1   | 3   | 3   | 3   |  |  |  |
| 1 - Slight, $2 - $ Moderate, $3 - $ S | Substantial |     |     |     |     |  |  |  |

| Test /                                                                | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|-----------------------------------------------------------------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Bloom's<br>Category*                                                  | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1                                                                  | 10          | 30            | 30       | 20        | 10         | -        | 100   |
| CAT2                                                                  | 10          | 30            | 30       | 20        | 10         | -        | 100   |
| Individual<br>Assessment1/<br>Case study1/<br>Seminar 1/<br>Project1  | -           | 30            | 30       | 20        | 10         | 10       | 100   |
| Individual<br>Assessment2/<br>Case study2/<br>Seminar 2 /<br>Project2 | -           | 30            | 30       | 20        | 20         | -        | 100   |
| ESE                                                                   | 10          | 30            | 30       | 20        | 10         | -        | 100   |

### DESIGN OF DIGITAL SYSTEMS

(Common to all Branches)

|                                                                                                                                                        | (Collino)                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                                                                   |                                                      |                                      |                                                                         |                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------|
| PREREQUISI                                                                                                                                             | TES                                                                                                                                                                                                                                                                                                                                                                                          | CATEGORY                                                                                                                            | L                                                    | Т                                    | Р                                                                       | С                                                 |
|                                                                                                                                                        | NIL                                                                                                                                                                                                                                                                                                                                                                                          | OE                                                                                                                                  | 3                                                    | 0                                    | 0                                                                       | 3                                                 |
| Course                                                                                                                                                 | To gain knowledge in the design and VHDL p                                                                                                                                                                                                                                                                                                                                                   | rogramming of sync                                                                                                                  | chronous                                             | and as                               | synchro                                                                 | nous                                              |
| Objectives                                                                                                                                             | sequential circuits, PLD's and the basic concepts of                                                                                                                                                                                                                                                                                                                                         | testing in VLSI circu                                                                                                               | uits                                                 |                                      |                                                                         |                                                   |
| UNIT-                                                                                                                                                  | I SYNCHRONOUS SEQUENTIAL CIRCUIT                                                                                                                                                                                                                                                                                                                                                             | DESIGN                                                                                                                              |                                                      |                                      | 9 Per                                                                   | riods                                             |
| Analysis of Cl                                                                                                                                         | ocked Synchronous Sequential Circuits - Modeling                                                                                                                                                                                                                                                                                                                                             | g, state table reductio                                                                                                             | n, state as                                          | ssignm                               | ent, De                                                                 | sign                                              |
| of Synchronou                                                                                                                                          | s Sequential circuits, Design of iterative circuits- AS                                                                                                                                                                                                                                                                                                                                      | SM chart –ASM reali                                                                                                                 | zation.                                              |                                      |                                                                         |                                                   |
| UNIT-II                                                                                                                                                | ASYNCHRONOUS SEQUENTIAL CIRCUIT                                                                                                                                                                                                                                                                                                                                                              | DESIGN                                                                                                                              |                                                      |                                      | 9 Per                                                                   | riods                                             |
| Analysis of As                                                                                                                                         | synchronous Sequential Circuits - Races in ASC -                                                                                                                                                                                                                                                                                                                                             | - Primitive Flow Tab                                                                                                                | ole - Flov                                           | v Table                              | Reduc                                                                   | ction                                             |
| Techniques, St                                                                                                                                         | tate Assignment Problem and the Transition Table –                                                                                                                                                                                                                                                                                                                                           | Design of ASC – St                                                                                                                  | atic and D                                           | ynami                                | c Hazaı                                                                 | rds –                                             |
| Essential Haza                                                                                                                                         | rds– Data Synchronizers.                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                     |                                                      |                                      |                                                                         |                                                   |
| UNIT-III                                                                                                                                               | SYSTEM DESIGN USING PLDS                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                     |                                                      |                                      | 9 Per                                                                   | riods                                             |
|                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     |                                                      |                                      |                                                                         |                                                   |
| Basic concepts                                                                                                                                         | s – Programming Technologies - Programmable Log                                                                                                                                                                                                                                                                                                                                              | gic Element (PLE) -                                                                                                                 | Program                                              | nable A                              | Array L                                                                 | ogic                                              |
| -                                                                                                                                                      | s – Programming Technologies - Programmable Log<br>nmable Array Logic (PAL) –Design of combination                                                                                                                                                                                                                                                                                           |                                                                                                                                     | -                                                    |                                      | -                                                                       | -                                                 |
| -                                                                                                                                                      | nmable Array Logic (PAL) –Design of combination                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     | -                                                    |                                      | -                                                                       | -                                                 |
| (PLA)-Program                                                                                                                                          | nmable Array Logic (PAL) –Design of combination                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     | -                                                    |                                      | -                                                                       | plex                                              |
| (PLA)-Program<br>PLDs (CPLDs)<br>UNIT-IV                                                                                                               | nmable Array Logic (PAL) –Design of combination).                                                                                                                                                                                                                                                                                                                                            | hal and sequential cir                                                                                                              | cuits usin                                           | g PLD:                               | s– Com<br><b>9 Pe</b> r                                                 | plex<br>riods                                     |
| (PLA)-Program<br>PLDs (CPLDs)<br>UNIT-IV<br>Design flow                                                                                                | nmable Array Logic (PAL) –Design of combination<br>).<br>INTRODUCTION TO VHDL                                                                                                                                                                                                                                                                                                                | nal and sequential cir<br>ypes – Operators -                                                                                        | cuits usin                                           | g PLD<br>and A                       | s– Com<br>9 Per<br>Architec                                             | riods<br>tures                                    |
| (PLA)-Program<br>PLDs (CPLDs)<br><b>UNIT-IV</b><br>Design flow<br>Components a                                                                         | nmable Array Logic (PAL) –Design of combination<br>).<br>INTRODUCTION TO VHDL<br>-Software tools – VHDL: Data Objects-Data t                                                                                                                                                                                                                                                                 | nal and sequential cir<br>ypes – Operators -<br>urrent and Sequentia                                                                | -Entities<br>al stateme                              | g PLDs<br>and A<br>ents —            | s– Com<br>9 Per<br>Architec<br>-Behavi                                  | riods<br>tures<br>ioral,                          |
| (PLA)-Program<br>PLDs (CPLDs)<br><b>UNIT-IV</b><br>Design flow<br>Components a                                                                         | nmable Array Logic (PAL) –Design of combination<br>).<br>INTRODUCTION TO VHDL<br>-Software tools – VHDL: Data Objects-Data t<br>and Configurations – Signal Assignment – Conce                                                                                                                                                                                                               | nal and sequential cir<br>ypes – Operators -<br>urrent and Sequentia                                                                | -Entities<br>al stateme                              | g PLDs<br>and A<br>ents —            | s– Com<br>9 Per<br>Architec<br>-Behavi                                  | riods<br>tures<br>ioral,                          |
| (PLA)-Program<br>PLDs (CPLDs)<br>UNIT-IV<br>Design flow<br>Components a<br>Dataflow and S                                                              | nmable Array Logic (PAL) –Design of combination<br>).<br>INTRODUCTION TO VHDL<br>-Software tools – VHDL: Data Objects-Data t<br>and Configurations – Signal Assignment – Conce                                                                                                                                                                                                               | nal and sequential cir<br>ypes – Operators -<br>urrent and Sequentia<br>-Delta delays-Attribu                                       | -Entities<br>al stateme                              | g PLDs<br>and A<br>ents —            | s– Com<br>9 Per<br>Architec<br>-Behavi<br>ackages                       | riods<br>tures<br>ioral,<br>s and                 |
| (PLA)-Program<br>PLDs (CPLDs)<br>UNIT-IV<br>Design flow<br>Components a<br>Dataflow and S<br>Libraries.<br>UNIT-V                                      | nmable Array Logic (PAL) –Design of combination<br>).<br>INTRODUCTION TO VHDL<br>-Software tools – VHDL: Data Objects-Data t<br>and Configurations – Signal Assignment – Conce<br>Structural modeling– Transport and Inertial delays –                                                                                                                                                       | nal and sequential cir<br>ypes – Operators -<br>urrent and Sequentia<br>-Delta delays-Attribu<br>E <b>DESIGN</b>                    | -Entities<br>al stateme<br>tes - Gene                | g PLDs<br>and A<br>ents —<br>erics—P | s– Com<br>9 Per<br>Architec<br>-Behavi<br>ackages<br>9 Pe               | riods<br>tures<br>ioral,<br>s and<br>riods        |
| (PLA)-Program<br>PLDs (CPLDs)<br>UNIT-IV<br>Design flow<br>Components a<br>Dataflow and S<br>Libraries.<br>UNIT-V<br>Digital logic c                   | nmable Array Logic (PAL) –Design of combination<br>).<br>INTRODUCTION TO VHDL<br>-Software tools – VHDL: Data Objects-Data t<br>and Configurations – Signal Assignment – Conce<br>Structural modeling– Transport and Inertial delays –<br>LOGIC CIRCUIT TESTING AND TESTABLE                                                                                                                 | aal and sequential cir<br>ypes – Operators -<br>urrent and Sequentia<br>-Delta delays-Attribu<br>E DESIGN<br>circuit testing - Sequ | -Entities<br>al stateme<br>tes - Gene<br>rential log | g PLD:<br>and A<br>ents —<br>erics—P | s– Com<br>9 Per<br>Architec<br>-Behavi<br>ackages<br>9 Per<br>uit testi | riods<br>tures<br>ioral,<br>s and<br>riods<br>ng- |
| (PLA)-Program<br>PLDs (CPLDs)<br>UNIT-IV<br>Design flow<br>Components a<br>Dataflow and S<br>Libraries.<br>UNIT-V<br>Digital logic c                   | nmable Array Logic (PAL) –Design of combination<br>).<br>INTRODUCTION TO VHDL<br>-Software tools – VHDL: Data Objects-Data t<br>and Configurations – Signal Assignment – Concu<br>Structural modeling– Transport and Inertial delays –<br>LOGIC CIRCUIT TESTING AND TESTABLE<br>circuit testing - Fault models - Combinational logic                                                         | aal and sequential cir<br>ypes – Operators -<br>urrent and Sequentia<br>-Delta delays-Attribu<br>E DESIGN<br>circuit testing - Sequ | -Entities<br>al stateme<br>tes - Gene<br>rential log | g PLD:<br>and A<br>ents —<br>erics—P | s– Com<br>9 Per<br>Architec<br>-Behavi<br>ackages<br>9 Per<br>uit testi | riods<br>tures<br>ioral,<br>s and<br>riods<br>ng- |
| (PLA)-Program<br>PLDs (CPLDs)<br>UNIT-IV<br>Design flow<br>Components a<br>Dataflow and S<br>Libraries.<br>UNIT-V<br>Digital logic c<br>Design for Tes | nmable Array Logic (PAL) –Design of combination<br>).<br>INTRODUCTION TO VHDL<br>-Software tools – VHDL: Data Objects-Data t<br>and Configurations – Signal Assignment – Concu<br>Structural modeling– Transport and Inertial delays –<br>LOGIC CIRCUIT TESTING AND TESTABLE<br>circuit testing - Fault models - Combinational logic<br>stability - Built-in Self-test, Board and System Lev | aal and sequential cir<br>ypes – Operators -<br>urrent and Sequentia<br>-Delta delays-Attribu<br>E DESIGN<br>circuit testing - Sequ | -Entities<br>al stateme<br>tes - Gene<br>rential log | g PLD:<br>and A<br>ents —<br>erics—P | s– Com<br>9 Per<br>Architec<br>-Behavi<br>ackages<br>9 Per<br>uit testi | riods<br>tures<br>ioral,<br>s and<br>riods<br>ng- |

 Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design", Prentice Hall International, Inc., NewJersey, 1995.

3 VolneiA.Pedroni, "Circuit Design withVHDL", PHILearning, 2011.

4 ParagK Lala, "Digital Circuit Testing and Testability", AcademicPress, 1997.

5 *CharlesHRoth,* "Digital Systems Design Using VHDL", Cencage 2<sup>nd</sup> Edition2012.

6 NripendraN.Biswas, "Logic Design Theory" Prentice Hall of India, 2001.

| COUR   | RSEOUTCOMES:                                                                        | Bloom's |  |  |  |  |  |  |
|--------|-------------------------------------------------------------------------------------|---------|--|--|--|--|--|--|
| Upon c | Upon completion of the course ,students will be able to/have:                       |         |  |  |  |  |  |  |
| CO1    | To design synchronous sequential circuits based on specifications.                  | K3      |  |  |  |  |  |  |
| CO2    | To design asynchronous sequential circuits based on specifications                  | K3      |  |  |  |  |  |  |
| CO3    | Ability to illustrate digital design implementation using PLDs.                     | K2      |  |  |  |  |  |  |
| CO4    | To develop algorithm and VHDL code for design of digital circuits.                  | K3      |  |  |  |  |  |  |
| CO5    | Understand the different testing methods for combinational and sequential circuits. | K2      |  |  |  |  |  |  |

| COs/POs  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |
|----------|-----|-----|-----|-----|-----|-----|--|--|
| CO1      | 3   | -   | 2   | -   | -   | 1   |  |  |
| CO2      | 3   | -   | 2   | -   | -   | 1   |  |  |
| CO3      | 3   | -   | 2   | -   | -   | 1   |  |  |
| CO4      | 3   | -   | 2   | -   | -   | 1   |  |  |
| CO5      | 3   | -   | 2   | -   | -   | 1   |  |  |
| 23AEOE25 | 3   | -   | 2   | -   | -   | 1   |  |  |

| ASSESSMENT     | PATTERN – TH | IEORY         |          |           |            |          |       |
|----------------|--------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering  | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %       | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 40%          | 40%           | 20%      |           |            |          | 100%  |
| CAT2           | 40%          | 40%           | 20%      |           |            |          | 100%  |
| Individual     |              | 50%           | 50%      |           |            |          | 100%  |
| Assessment 1 / |              |               |          |           |            |          |       |
| Case Study 1/  |              |               |          |           |            |          |       |
| Seminar 1 /    |              |               |          |           |            |          |       |
| Project1       |              |               |          |           |            |          |       |
| Individual     |              | 50%           | 50%      |           |            |          | 100%  |
| Assessment 2 / |              |               |          |           |            |          |       |
| Case Study 2/  |              |               |          |           |            |          |       |
| Seminar 2 /    |              |               |          |           |            |          |       |
| Project 2      |              |               |          |           |            |          |       |
| ESE            | 20%          | 45%           | 35%      |           |            |          | 100%  |

**23AEOE26** 

#### **BASICS OF NANO ELECTRONICS**

(Common to all Branches)

| (Common to an Branches) |                                                           |                                                                                          |           |         |          |         |  |  |  |  |  |  |  |  |  |
|-------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|-----------|---------|----------|---------|--|--|--|--|--|--|--|--|--|
| PREREQUISI              | TES                                                       | CATEGORY                                                                                 | L         | Т       | Р        | С       |  |  |  |  |  |  |  |  |  |
|                         | NIL                                                       | OE                                                                                       | 3         | 0       | 0        | 3       |  |  |  |  |  |  |  |  |  |
| Course                  | The students will be able to acquire knowledge ab         | out nano device fa                                                                       | abricatio | n tech  | nology,  | nano    |  |  |  |  |  |  |  |  |  |
| Objective               | structures, nano technology for memory devices a          | uctures, nano technology for memory devices and applications of nano electronics in data |           |         |          |         |  |  |  |  |  |  |  |  |  |
|                         | transmission.                                             |                                                                                          |           |         |          |         |  |  |  |  |  |  |  |  |  |
| UNIT – I                | - I TECHNOLOGY AND ANALYSIS 9 Periods                     |                                                                                          |           |         |          |         |  |  |  |  |  |  |  |  |  |
| Fundamentals            | : Dielectric, Ferroelectric and Optical properties - Film | n Deposition Metho                                                                       | ods – Lit | hograp  | ohy      |         |  |  |  |  |  |  |  |  |  |
| Material remo           | ving techniques - Etching and Chemical Mechanical         | l Polishing - Scan                                                                       | ning Pro  | obeTec  | hniques  | •       |  |  |  |  |  |  |  |  |  |
| UNIT – II               | NIT – IICARBON NANO STRUCTURES9 Periods                   |                                                                                          |           |         |          |         |  |  |  |  |  |  |  |  |  |
| Principles and          | l concepts of Carbon Nano tubes - Fabrication - E         | Electrical, Mechanio                                                                     | cal and   | Vibra   | tionProp | perties |  |  |  |  |  |  |  |  |  |
| - Applications          | of Carbon Nano tubes.                                     |                                                                                          |           |         |          |         |  |  |  |  |  |  |  |  |  |
| UNIT – III              | LOGIC DEVICES                                             |                                                                                          |           |         | 9 Pe     | eriods  |  |  |  |  |  |  |  |  |  |
| Silicon MOSE            | FET's: Novel materials and alternative concepts - S       | ingle electron dev                                                                       | ices for  | logic   | applicat | ions -  |  |  |  |  |  |  |  |  |  |
| Super conduct           | or digital electronics - Carbon Nano tubes for data proc  | essing.                                                                                  |           |         |          |         |  |  |  |  |  |  |  |  |  |
| UNIT – IV               | MEMORY DEVICES AND MASS STORAGE DE                        | EVICES                                                                                   |           |         | 9 Pe     | eriods  |  |  |  |  |  |  |  |  |  |
| Flash memorie           | es - Capacitor based Random Access Memories - Mag         | gnetic Random Acc                                                                        | ess Mei   | nories  | - Inform | nation  |  |  |  |  |  |  |  |  |  |
| storage based of        | on phase change materials - Resistive Random Access I     | Memories - Hologra                                                                       | phicDat   | a stora | ige.     |         |  |  |  |  |  |  |  |  |  |
| UNIT – V                | DATA TRANSMISSION AND INTERFACING D                       | ISPLAYS                                                                                  |           |         | 9 Pe     | eriods  |  |  |  |  |  |  |  |  |  |
| Photonic Netw           | works - RF and Microwave Communication Syster             | n - Liquid Crysta                                                                        | l Displ   | ays -   | Organic  | Light   |  |  |  |  |  |  |  |  |  |
| emitting diode          | S.                                                        |                                                                                          |           |         |          |         |  |  |  |  |  |  |  |  |  |
| Contact Perio           | ds:                                                       |                                                                                          |           |         |          |         |  |  |  |  |  |  |  |  |  |
| Lecture: 45 F           | Periods Tutorial: 0 Periods Practical: 0 Per              | riods Total: 45                                                                          | Periods   |         |          |         |  |  |  |  |  |  |  |  |  |

| 1 | Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronicmaterials and novel         |
|---|------------------------------------------------------------------------------------------------------------|
|   | devices", 3rd Edition, Wiley VCH, 2012.                                                                    |
| 2 | T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.                                                |
| 3 | Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003                                 |
| 4 | Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics Science, |
|   | Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.                           |
| 5 | C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer, 2001.       |
| 6 | Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher, California", 2003.   |

| COUR   | SE OUTCOMES:                                                  | Bloom's<br>Taxonomy |
|--------|---------------------------------------------------------------|---------------------|
| Upon c | ompletion of the course, students will be able to/have:       | Mapped              |
| CO1    | Explain principles of nano device fabrication technology.     | K2                  |
| CO2    | Describe the concept of Nano tube and Nano structure.         | K2                  |
| CO3    | Explain the function and application of various nano devices  | К3                  |
| CO4    | Reproduce the concepts of advanced memory technologies.       | K2                  |
| CO5    | Emphasize the need for data transmission and display systems. | K2                  |

| COURSE AR       | RTICULA  | TION MA      | TRIX   |     |     |                |   |      |      |
|-----------------|----------|--------------|--------|-----|-----|----------------|---|------|------|
| COs/POs         | PO1      | PO2          | PO3    | PO4 | PO5 | PO5 PO6 PSO1 P |   | PSO2 | PSO3 |
| CO1             | 3        | -            | 2      | -   | -   | 1              | 3 | -    | 1    |
| CO2             | 3        | -            | 2      | -   | -   | 1              | 3 | -    | 1    |
| CO3             | 3        | -            | 2      | -   | -   | 1              | 3 | -    | 1    |
| CO4             | 3        | -            | 2      | -   | -   | 1              | 3 | -    | 1    |
| CO5             | 3        | -            | 2      | -   | -   | 1              | 3 | -    | 1    |
| 22AEOE26        | 3        | -            | 2      | -   | -   | 1              | 3 | -    | 1    |
| 1 – Slight, 2 – | Moderate | e, 3 – Subst | antial |     |     |                |   |      |      |

| ASSESSMENT P   | PATTERN – THE | ORY           |          |           |            |          |       |
|----------------|---------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering   | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %        | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 50%           | 25%           | 25%      |           |            |          | 100%  |
| CAT2           | 50%           | 25%           | 25%      |           |            |          | 100%  |
| Individual     | 50%           | 25%           | 25%      |           |            |          | 100%  |
| Assessment 1/  |               |               |          |           |            |          |       |
| Case Study 1/  |               |               |          |           |            |          |       |
| Seminar 1 /    |               |               |          |           |            |          |       |
| Project1       |               |               |          |           |            |          |       |
| Individual     | 50%           | 25%           | 25%      |           |            |          | 100%  |
| Assessment 2/  |               |               |          |           |            |          |       |
| Case Study 2/  |               |               |          |           |            |          |       |
| Seminar 2 /    |               |               |          |           |            |          |       |
| Project 2      |               |               |          |           |            |          |       |
| ESE            | 50%           | 25%           | 25%      |           |            |          | 100%  |

| <b>23AEOE27</b>        |      |             |            |             |       |       |            |       |       |      | AL   | DV          |      |      |                |            |     |     |      |      |      | SOR       |          |     |      |      |      |       |        |                  |            |           |
|------------------------|------|-------------|------------|-------------|-------|-------|------------|-------|-------|------|------|-------------|------|------|----------------|------------|-----|-----|------|------|------|-----------|----------|-----|------|------|------|-------|--------|------------------|------------|-----------|
| DEDEOLUSITES           |      |             |            |             |       |       |            |       |       |      |      |             | ((   | Co   | mn             | 101        | n t |     |      |      |      | che<br>OR | ,        |     | T    | -    | -    | Г     | $\top$ | Р                |            | С         |
| PREREQUISITES          | ,    |             |            |             |       |       |            |       |       |      |      |             |      |      |                |            |     | C   |      |      | ĿĠ   | UK        | I        |     | L    |      |      |       |        | r                |            | C         |
|                        |      |             |            |             | NI    |       |            |       |       |      |      |             |      |      |                |            |     |     |      |      | DE   |           |          |     | 3    |      |      | )     |        | 0                |            | 3         |
|                        | stu  | ude         | ents       | wi          | ll be | e ab  | le t       | to a  | icqu  | ire  | kn   | 101         | W    | led  | lge            | ał         | 00  | ut  | : tł | ne l | hig  | h po      | erfo     | orn | nano | ce   | RIS  | SC,   | CI     | ISC a            | n          | l special |
| <b>Objective</b> purpo |      |             |            |             |       |       |            |       |       |      |      |             |      |      |                |            |     |     |      |      |      |           |          |     |      |      |      |       |        |                  |            |           |
| UNIT – I MIC           | CR   | RC          | )PI        | <b>RO</b> ( | ES    | SOI   | R A        | RC    | 'HI'  | TE   | СТ   | ГU          | UF   | RE   | 4              |            |     |     |      |      |      |           |          |     |      |      |      |       |        | 9 Pe             | eri        | ods       |
| Instruction set – Da   | ata  | ta f        | forr       | nats        | - Iı  | nstru | ucti       | on    | forn  | nats | s –  | A           | ٩d   | ldre | essi           | ng         | g n | no  | ode  | es – | - M  | [em       | ory      | hi  | erar | ch   | ıy – | reg   | ist    | erfile           | <u>)</u> – | Cache     |
| - Virtual memory       | / a  | an          | d j        | bagi        | ng -  | - S   | egn        | nen   | tatio | on - | — ]  | Pi          | ipe  | eli  | nin            | g          | _   | Т   | he   | e ir | ıstr | ucti      | on       | pi  | peli | ine  | e –  | pip   | eli    | ine h            | az         | ards –    |
| Instruction level pa   | ara  | all         | elis       | m –         | red   | uce   | d in       | istri | uctio | on s | set  | _           | - C  | Cor  | mpı            | ıte        | r   | pri | inc  | cipl | les  | – R       | ISC      | Cve | ersu | s (  | CIS  | С –   | RI     | ISC <sub>F</sub> | orc        | perties   |
| - RISC evaluation.     | •    |             |            |             |       |       |            |       |       |      |      |             |      |      |                |            |     |     |      |      |      |           |          |     |      |      |      |       |        |                  |            |           |
| UNIT – II HIG          | Η    | HF          | PE         | RFC         | RN    | IAN   | <b>ICE</b> | E C   | ISC   | CAI  | RC   | CH          | H    | TF   | EC             | ΓU         | JR  | RE  | ] —  | PE   | NI   | TU        | Μ        |     |      |      |      |       |        | 9 Pe             | eri        | ods       |
| The software mode      |      |             |            |             |       |       |            | -     |       |      |      |             | -    |      |                |            | -   |     |      |      |      |           |          |     | -    |      |      |       |        |                  |            | Ū         |
| Instruction set – Bu   | us   | s o         | pei        | atic        | ns –  | - Su  | per        | sca   | ılar  | arc  | hite | tec         | ctı  | ure  | <del>)</del> – | Piţ        | pe  | li  | ini  | ng   | – I  | Brar      | ich      | pr  | edic | cti  | on - | - Th  | ie i   | nstru            | ct         | on and    |
| caches – Floating p    |      |             |            |             |       | -     |            | -     |       |      |      |             |      |      |                |            |     |     |      |      |      |           |          |     |      |      |      |       |        |                  |            |           |
| UNIT – III HIG         | H    | HF          | PE         | RFC         | RN    | IAN   | <b>ICE</b> | E C   | ISC   | CAI  | RC   | CH          | H    | TF   | EC             | ΓU         | JR  | RE  | 2 —  | PF   | ΕN   | ГIU       | M        | IN  | ТЕ   | R    | FA   | CE    |        | 9 Pe             | eri        | ods       |
| Protected mode op      | ber  | erat        | ion        | - 5         | Segr  | nent  | tatic      | on -  | – pa  | agin | ng - |             | P    | rot  | tect           | ior        | 1 - | - 1 | mı   | ulti | tasl | king      | <u> </u> | Ey  | cep  | otio | on a | nd    | int    | terrup           | ots        | - Input   |
| /Output – Virtual 8    |      |             |            |             |       |       |            | -     |       |      | -    |             |      |      |                |            |     |     |      |      |      |           |          |     |      |      |      |       |        |                  |            |           |
| UNIT – IV HIG          |      |             |            |             |       |       |            |       |       |      |      |             |      |      |                |            |     |     |      |      |      |           |          |     |      |      |      |       |        | 9 Pe             |            |           |
| ARM architecture       |      |             |            |             |       |       |            | lang  | guaş  | ge   | pro  | og          | gra  | am   | ı —            | A          | R   | M   | 1 (  | org  | ani  | zati      | on       | ar  | id i | m    | pler | nen   | tat    | ion              | _          | ARM       |
| instruction set - The  | un   | ımt         | o in       | stru        | ctio  | n se  | t.         |       |       |      |      |             |      |      |                |            |     |     |      |      |      |           |          |     |      |      |      |       |        |                  |            |           |
| UNIT – V SPE           |      | CIA         | ۱L         | PU          | RPC   | )SE   | PR         | RO    | CES   | SSO  | )RS  | S           |      |      |                |            |     |     |      |      |      |           |          |     |      |      |      |       |        | 9 Pe             | eri        | ods       |
| Altera Cyclone Pro     | oce  | ces         | sor        | — A         | Audi  | o co  | odec       | c –   | Vic   | deo  | co   | ode         | ec   | e de | esig           | gn         | _   | P   | lat  | tfor | ms   | — (       | Ger      | ner | al p | ur   | pos  | e pr  | OC     | essor            |            | Digital   |
| signal processor -     | E    | Em          | be         | ldeo        | l pro | oces  | sor        | · _ ] | Mea   | dia  | Pro  | oc          | ce   | ssc  | or -           | - \        | /ic | de  | o    | sig  | nal  | Pro       | oce      | sso | or – | С    | ust  | om    | Hε     | ardwa            | are        | - Co-     |
| Processor.             |      |             |            |             |       |       |            |       |       |      |      |             |      |      |                |            |     |     |      |      |      |           |          |     |      |      |      |       |        |                  |            |           |
| Contact Periods:       |      |             |            |             |       |       |            |       |       |      |      |             |      |      |                |            |     |     |      |      |      |           |          |     |      |      |      |       |        |                  |            |           |
| Lecture: 45 Perio      | )ds  | ls          |            | Τι          | itor  | ial:  | 0 F        | Peri  | iods  | S    | ]    | Pı          | ra   | ıcti | ical           | l: (       | ) I | Pe  | erio | ods  | 5    | Т         | ota      | l:  | 45 I | Per  | riod | s     |        |                  |            |           |
| REFERENCE              | S:   | 5:          |            |             |       |       |            |       |       |      |      |             |      |      |                |            |     |     |      |      |      |           |          |     |      |      |      |       |        |                  |            |           |
| 1 Daniel Tabak,        | , "  | "A          | dva        | ince        | ed M  | licra | opro       | oce   | ssor  | rs", | Ma   | lc(         | Gr   | raw  | v H            | ill        | In  | ıc. | ., 2 | 201  | 1.   |           |          |     |      |      |      |       |        |                  |            |           |
| 2 James L. Anto        | m    | ıak         | cos,       | "T          | he P  | enti  | um         | Mi    | icro  | pro  | oces | ss          | 501  | r",  | Pe             | ar.        | so  | n   | Εc   | duc  | ati  | on,       | 199      | 97. |      |      |      |       |        |                  |            |           |
| 3 Steve Furber,        | "/   | "Al         | RM         | Sys         | tem   | -0    | n -        | Chi   | ip a  | rch  | iteo | ct          | tur  | re"  | ", A           | dd         | lis | on  | n V  | Ves  | ley  | , 20      | 09.      |     |      |      |      |       |        |                  |            |           |
| 4 Gene. H. Mille       | er,  | r, <b>'</b> | " <b>M</b> | icro        | Cor   | npu   | ter        | En    | gina  | eeri | ing  | <b>;"</b> , | ', I | Pec  | arse           | on         | E   | du  | исс  | itio | n, 1 | 200.      | 3.       |     |      |      |      |       |        |                  |            |           |
| 5 Barry. B. Brey       | y, ' | "]          | The        | Int         | el M  | licro | opro       | oce   | SS 01 | rs A | rcl  | hi          | ite  | ecti | ure            | , <b>P</b> | ra  | )g  | ra   | mn   | nin  | g ai      | nd.      | Int | erf  | ıci  | ing' | ', Pl | HI,    | , 200            | 8.         |           |
|                        |      |             |            |             |       |       |            |       | a     |      | ••   |             | ~    |      |                | 7          |     |     |      |      | 1.   | D         | T        | 1   | 101  | 1    | -    |       |        |                  |            |           |

6 Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7 Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

| COUR       | SE OUTCOMES:                                                                 | Bloom's  |  |  |
|------------|------------------------------------------------------------------------------|----------|--|--|
| Upon c     | completion of the course, students will be able to                           | Taxonomy |  |  |
|            |                                                                              | Mapped   |  |  |
| CO1        | Describe the fundamentals of various processor architecture.                 | K2       |  |  |
| CO2        | Interpret and understand the high performance features in CISC architecture. | K2       |  |  |
| CO3        | Describe the concepts of Exception and interrupt processing.                 | K2       |  |  |
| <b>CO4</b> | Develop programming skill for ARM processor.                                 | K3       |  |  |
| CO5        | Explain various special purpose processor                                    | K2       |  |  |

| COs/POs  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|----------|-----|-----|-----|-----|-----|-----|
| C01      | 3   | -   | 2   | -   | -   | 1   |
| CO2      | 3   | -   | 2   | -   | -   | 1   |
| CO3      | 3   | -   | 2   | -   | -   | 1   |
| CO4      | 3   | -   | 2   | -   | -   | 1   |
| CO5      | 3   | -   | 2   | -   | -   | 1   |
| 22AEOE27 | 3   | -   | 2   | -   | -   | 1   |

| ASSESSMENT P                | ATTERN – THE          | CORY                    |                    |                     |                      |                        |            |
|-----------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|------------------------|------------|
| Test / Bloom's<br>Category* | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creatin<br>g (K6)<br>% | Total<br>% |
| CAT1                        | 40%                   | 40%                     | 20%                |                     |                      |                        | 100%       |
| CAT2                        | 40%                   | 40%                     | 20%                |                     |                      |                        | 100%       |
| Individual                  |                       | 50%                     | 50%                |                     |                      |                        | 100%       |
| Assessment 1 /              |                       |                         |                    |                     |                      |                        |            |
| Case Study 1/               |                       |                         |                    |                     |                      |                        |            |
| Seminar 1 /                 |                       |                         |                    |                     |                      |                        |            |
| Project1                    |                       |                         |                    |                     |                      |                        |            |
| Individual                  |                       | 50%                     | 50%                |                     |                      |                        | 100%       |
| Assessment 2 /              |                       |                         |                    |                     |                      |                        |            |
| Case Study 2/               |                       |                         |                    |                     |                      |                        |            |
| Seminar 2 /                 |                       |                         |                    |                     |                      |                        |            |
| Project 2                   |                       |                         |                    |                     |                      |                        |            |
| ESE                         | 30%                   | 40%                     | 30%                |                     |                      |                        | 100%       |

| 23VLOE28 |
|----------|
|          |

# HDL PROGRAMMING LANGUAGES

(Common to all Branches)

| (Common to all Branches) |                                                     |                      |        |        |       |            |  |
|--------------------------|-----------------------------------------------------|----------------------|--------|--------|-------|------------|--|
| PREREQUISITE             | S                                                   | CATEGORY             | L      | Т      | Р     | С          |  |
|                          | NIL                                                 | OE                   | 3      | 0      | 0     | 3          |  |
| Course                   | To code and simulate any digital function in        | Verilog HDL and u    | nders  | tand   | the   | difference |  |
| Objective                | between synthesizable and non-synthesizable code    | S.                   |        |        |       |            |  |
| UNIT – I                 | VERILOG INTRODUCTION AND MODELIN                    | ١G                   |        |        |       | 9 Periods  |  |
| Introduction to Ve       | rilog HDL, Language Constructs and Conventions,     | Gate Level Modelin   | ıg, M  | odeli  | ng at | Dataflow   |  |
| Level, Behavioral I      | Modeling, Switch Level Modeling, System Tasks, Fu   | unctions and Compile | r Dir  | ective | es.   |            |  |
| UNIT – II                | SEQUENTIAL MODELING AND TESTING                     |                      |        |        |       | 9 Periods  |  |
| Sequential Models        | - Feedback Model, Capacitive Model, Implicit Me     | odel, Basic Memory   | Com    | pone   | nts,  | Functional |  |
| Register, Static M       | achine Coding, Sequential Synthesis. Test Bench     | - Combinational Cir  | cuits  | Test   | ing,  | Sequential |  |
| Circuit Testing, Te      | st Bench Techniques, Design Verification, Assertion | Verification.        |        |        |       |            |  |
| UNIT – III               | SYSTEM VERILOG                                      |                      |        |        |       | 9 Periods  |  |
| Introduction, Syste      | em Verilog declaration spaces, System Verilog Lite  | eral Values and Buil | t-in l | Data   | Туре  | es, System |  |
| Verilog User-Defi        | ned and Enumerated Types, system Verilog Arr        | ays, Structures and  | Unic   | ons, a | syste | m verilog  |  |
| Procedural Blocks,       | Tasks and Functions.                                |                      |        |        |       |            |  |
| UNIT – IV                | SYSTEM VERILOG MODELING                             |                      |        |        |       | 9 Periods  |  |
| System Verilog Pr        | rocedural Statements, Modeling Finite State Mach    | ines with System Ve  | erilog | , Sys  | tem   | Verilog    |  |
| Design Hierarchy.        |                                                     |                      |        |        |       |            |  |
| UNIT – V                 | INTERFACES AND DESIGN MODEL                         |                      |        |        |       | 9 Periods  |  |
| System Verilog In        | terfaces, A Complete Design Modeled with Syster     | n Verilog, Behaviora | al and | 1 Tra  | nsact | tion Level |  |
| Modeling.                |                                                     |                      |        |        |       |            |  |
| <b>Contact Periods</b> : |                                                     |                      |        |        |       |            |  |
| Lecture: 45 Perio        | ds Tutorial:0 Periods Practical:0 Periods           | Total: 45 Periods    |        |        |       |            |  |
|                          |                                                     |                      |        |        |       |            |  |

| 1 | T.R.Padmanabhan, B Bala Tripura Sundari, "Design through Verilog HDL", Wiley 2009.                   |
|---|------------------------------------------------------------------------------------------------------|
| 2 | Stuart Sutherland, Simon Davidmann, Peter Flake, Foreword by Phil Moorby, "System Verilog For Design |
|   | Second Edition A Guide to Using System Verilog for Hardware Design and Modelling", Springer 2006.    |
| 3 | Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.                                |
| 4 | ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.                          |
| 5 | System Verilog 3.1a, Language Reference Manual, Accellera, 2004                                      |
| 6 | Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of Projects on    |
|   | FPGAs and ASICs Using Verilog", Springer, 2007.                                                      |
| 7 | Chris Spear, "System verilog for verification a guide to learning the test bench Language Features", |
|   | Springer 2006.                                                                                       |
| 6 | Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using System |
|   | Verilog for Hardware Design and Modeling" 1st Edition, 2003                                          |

|     | SE OUTCOMES:<br>ompletion of the course, the students will be able to:              | Bloom's<br>Taxonomy<br>Mapped |
|-----|-------------------------------------------------------------------------------------|-------------------------------|
| CO1 | Explain the verilog coding and simulate any digital function using Verilog HDL      | K2                            |
| CO2 | Develop sequential modeling based Verilog HDL code and develop the test bench for   | K3                            |
|     | the modeling                                                                        |                               |
| CO3 | Explain the system verilog modeling                                                 | K2                            |
| CO4 | Differentiate the synthesizable and non-synthesizable code                          | K3                            |
| CO5 | Apply good coding techniques on system verilog interfaces and complete design model | K3                            |

| COURSE ARTICULATION MATRIX |                   |     |     |     |     |     |  |
|----------------------------|-------------------|-----|-----|-----|-----|-----|--|
| COs/POs                    | PO1               | PO2 | PO3 | PO4 | PO5 | PO6 |  |
| CO1                        | 3                 | 3   |     | 2   |     | 2   |  |
| CO2                        | 3                 | 3   |     | 2   |     | 2   |  |
| CO3                        | 3                 | 3   |     | 2   |     | 2   |  |
| CO4                        | 3                 | 3   |     | 2   |     | 2   |  |
| CO5                        | 3                 | 3   |     | 2   |     | 2   |  |
| 23VLOE28                   | 3                 | 3   |     | 2   |     | 2   |  |
| 1 – Slight, 2 – Modera     | ate, 3 – Substant | ial | •   |     |     | •   |  |

| ASSESSMENT     | PATTERN – THI | EORY          |          |           |            |          |       |
|----------------|---------------|---------------|----------|-----------|------------|----------|-------|
| Test / Bloom's | Remembering   | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
| Category*      | (K1) %        | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| CAT1           | 40%           | 40%           | 20%      | -         | -          | -        | 100%  |
| CAT2           | 40%           | 40%           | 20%      | -         | -          | -        | 100%  |
| Individual     | -             | 50%           | 50%      | -         | -          | -        | 100%  |
| Assessment 1 / |               |               |          |           |            |          |       |
| Case Study 1/  |               |               |          |           |            |          |       |
| Seminar 1 /    |               |               |          |           |            |          |       |
| Project1       |               |               |          |           |            |          |       |
| Individual     | -             | 50%           | 50%      | -         | -          | -        | 100%  |
| Assessment 2 / |               |               |          |           |            |          |       |
| Case Study 2/  |               |               |          |           |            |          |       |
| Seminar 2 /    |               |               |          |           |            |          |       |
| Project 2      |               |               |          |           |            |          |       |
| ESE            | 40%           | 40%           | 20%      | -         | -          | -        | 100%  |

| 23VLOE29                    | CMOS VLSI                                                     | DESIGN                  |           |          |        |      |  |  |
|-----------------------------|---------------------------------------------------------------|-------------------------|-----------|----------|--------|------|--|--|
| (Common to all Branches)    |                                                               |                         |           |          |        |      |  |  |
| PREREQUI                    | SITES                                                         | CATEGORY                | L         | Т        | P      | C    |  |  |
| NIL                         |                                                               | OE                      | 3         | 0        | 0      | 3    |  |  |
| Course                      | To gain knowledge on CMOS Circuits with its char              | acterization and to des | sign CM   | OS logi  | c and  | sub  |  |  |
| Objective                   | stem with low power                                           |                         |           |          |        |      |  |  |
| UNIT – I                    | NTRODUCTION TO MOS CIRCUITS 9 Periods                         |                         |           |          |        |      |  |  |
| MOS Transis                 | stor Theory -Introduction MOS Device Design Equ               | ations -MOS Transis     | stor as a | Swite    | hes -  | Pas  |  |  |
| Transistor - 0              | CMOS Transmission Gate -Complementary CMOS In                 | nverter - Static Load   | MOS In    | verters  | - Inve | rter |  |  |
| with NMOS I                 | loads - Differential Inverter - Tri State Inverter - BiCM     | IOS Inverter.           |           |          |        |      |  |  |
| UNIT – II                   | CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION 9 Periods |                         |           |          |        |      |  |  |
| Delay Estima                | ation, Logical Effort and Transistor Sizing, Power Dis        | ssipation, Sizing Rout  | ing Con   | ductors  | Char   | ge   |  |  |
| •                           | ign Margin and Reliability.                                   |                         | C         |          |        | 0    |  |  |
| UNIT – III                  | CMOS CIRCUIT AND LOGIC DESIGN                                 |                         |           |          | 9 Per  | riod |  |  |
| CMOS Logic                  | Gate Design, Physical Design of CMOS Gate, Design             | gning with Transmissi   | on Gate   | s, CMC   | S Log  | gic  |  |  |
| Structures, C               | locking Strategies, I/O Structures.                           |                         |           |          | _      |      |  |  |
| UNIT – IV                   | CMOS SUBSYSTEM DESIGN                                         |                         |           |          | 9 Per  | riod |  |  |
| DataPath O                  | perations-Addition/Subtraction, Parity Generators,            | Comparators, Zero/C     | One De    | tectors, | Bina   | ry   |  |  |
| Counters, AL                | Us, Multipliers, Shifters, Memory Elements, Control-I         | FSM, Control Logic In   | nplemen   | tation.  |        | •    |  |  |
| UNIT – V                    | LOWPOWERCMOS VLSIDESIGN                                       |                         |           |          | 9 Per  | iod  |  |  |
| Introduction                | to Low Power Design, Power Dissipation in FET Devi            | ices, Power Dissipation | n in CM   | OS, Lov  | w-Pow  | ver  |  |  |
|                             | igh Voltage Scaling – VTCMOS Circuits, MTCMO                  | ·                       |           |          |        |      |  |  |
| -                           | d Parallel Processing Approaches, Low Power Basics            |                         |           |          |        |      |  |  |
|                             |                                                               |                         | 0         |          |        |      |  |  |
|                             |                                                               |                         |           |          |        |      |  |  |
| Contact Peri<br>Lecture: 45 |                                                               | ods Total: 45 Perio     |           |          |        |      |  |  |

| 1 | Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata Mc-Graw Hill, |
|---|----------------------------------------------------------------------------------------------------------|
|   | 2011.                                                                                                    |
| 2 | N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley, 1998.                        |
| 3 | Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective",   |
|   | Pearson Education 2013.                                                                                  |
| 4 | Kiat-Seng Yeo, Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill Professional, 2004.    |
| 5 | Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.                     |
| 6 | Jan M.Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.              |

| COUR       | SE OUTCOMES:                                           | Bloom's  |
|------------|--------------------------------------------------------|----------|
|            |                                                        | Taxonomy |
| Upon c     | ompletion of the course, the students will be able to: | Mapped   |
| CO1        | Explain the MOS circuits and Transmission gates        | K2       |
| CO2        | Illustrate the CMOS Circuits with its characterization | K2       |
| CO3        | Design CMOS logic circuits                             | K3       |
| <b>CO4</b> | Design CMOS sub-system                                 | K3       |
| CO5        | Discuss low power CMOS VLSI Design                     | K2       |

| COURSE ARTICULATION MATRIX |                |           |     |     |     |     |  |  |  |
|----------------------------|----------------|-----------|-----|-----|-----|-----|--|--|--|
| COs/POs                    | PO1            | PO2       | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                        | 2              | 1         | -   | 2   | -   | 3   |  |  |  |
| CO2                        | 2              | 1         | -   | 2   | -   | 3   |  |  |  |
| CO3                        | 2              | 1         | -   | 2   | -   | 3   |  |  |  |
| CO4                        | 3              | 1         | -   | 2   | -   | 3   |  |  |  |
| CO5                        | 3              | 1         | -   | 2   | -   | 3   |  |  |  |
| 23VLOE29                   | 3              | 1         | -   | 2   | -   | 3   |  |  |  |
| 1 - Slight, 2 - Mos        | derate, 3 – Su | bstantial | 1   | •   |     |     |  |  |  |

| ASSESSMENT PATTERN – THEORY |             |               |          |           |            |          |       |  |  |  |  |
|-----------------------------|-------------|---------------|----------|-----------|------------|----------|-------|--|--|--|--|
| Test / Bloom's              | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |  |
| Category*                   | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |  |
| CAT1                        | 40%         | 40%           | 20%      | -         | -          | -        | 100%  |  |  |  |  |
| CAT2                        | 40%         | 40%           | 20%      | -         | -          | -        | 100%  |  |  |  |  |
| Individual                  | -           | 50%           | 50%      | -         | -          | -        | 100%  |  |  |  |  |
| Assessment 1/               |             |               |          |           |            |          |       |  |  |  |  |
| Case Study 1/               |             |               |          |           |            |          |       |  |  |  |  |
| Seminar 1/                  |             |               |          |           |            |          |       |  |  |  |  |
| Project1                    |             |               |          |           |            |          |       |  |  |  |  |
| Individual                  | -           | 50%           | 50%      | -         | -          | -        | 100%  |  |  |  |  |
| Assessment 2 /              |             |               |          |           |            |          |       |  |  |  |  |
| Case Study 2/               |             |               |          |           |            |          |       |  |  |  |  |
| Seminar 2/                  |             |               |          |           |            |          |       |  |  |  |  |
| Project 2                   |             |               |          |           |            |          |       |  |  |  |  |
| ESE                         | 40%         | 40%           | 20%      | -         | -          | -        | 100%  |  |  |  |  |

|                                                                                                                                       | HIGH LEVEL SYNTHESIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                         |                                    |                                 |                                  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|------------------------------------|---------------------------------|----------------------------------|--|--|--|
| 23VLOE30                                                                                                                              | (Common to all Branches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Common to all Branches)     |                         |                                    |                                 |                                  |  |  |  |
| PREREQUISI                                                                                                                            | TES CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TEGORY                       | L                       | Т                                  | Р                               | С                                |  |  |  |
| NIL                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | OE                           | 3                       | 0                                  | 0                               | 3                                |  |  |  |
| <b>Course</b> To provide students with foundations in High level synthesis, verification and                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                         |                                    |                                 |                                  |  |  |  |
| Objective                                                                                                                             | ctive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |                         |                                    |                                 |                                  |  |  |  |
| UNIT – I                                                                                                                              | HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS 9 Perio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                         |                                    |                                 | ods                              |  |  |  |
| Overview HLS                                                                                                                          | flow, Scheduling Techniques, Resource sharing and Binding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | g Technique                  | s, D                    | ata-p                              | ath                             | and                              |  |  |  |
| Controller Gene                                                                                                                       | eration Techniques.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                         |                                    |                                 |                                  |  |  |  |
| UNIT – II                                                                                                                             | HIGH LEVEL SYNTHESIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |                         | 9                                  | Peri                            | ods                              |  |  |  |
| Introduction to                                                                                                                       | HDL, HDL to DFG, operation scheduling: constrained and unc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | onstrained sc                | chedu                   | ıling,                             | AS                              | AP,                              |  |  |  |
| ALAP, List sch                                                                                                                        | neduling, Force directed Scheduling, operator binding, Static Tir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ning Analysi                 | is: D                   | elay                               | mod                             | els,                             |  |  |  |
| setup time, hold                                                                                                                      | time, cycle time, critical paths, Topological mvs. Logical timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g analysis, Fa               | alse p                  | oaths,                             | Arri                            | ival                             |  |  |  |
| time (AT), Requ                                                                                                                       | vined amival Time (DAT) Sheales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                         |                                    |                                 |                                  |  |  |  |
|                                                                                                                                       | uired arrival Time (RAT), Slacks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                         |                                    |                                 |                                  |  |  |  |
| UNIT – III                                                                                                                            | HIGH-LEVEL SYNTHESIS VERIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                         | 9                                  | Peri                            | ods                              |  |  |  |
|                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | based appro                  | oache                   |                                    | -                               |                                  |  |  |  |
| Simulation bas                                                                                                                        | HIGH-LEVEL SYNTHESIS VERIFICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | based appro                  | oache                   |                                    | -                               |                                  |  |  |  |
| Simulation bas                                                                                                                        | HIGH-LEVEL SYNTHESIS VERIFICATION<br>ed verification - Formal Verification of digital systems- BDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | based appro                  | bache                   | s, fu                              | -                               | onal                             |  |  |  |
| Simulation bas<br>equivalence, fin<br>UNIT – IV                                                                                       | HIGH-LEVEL SYNTHESIS VERIFICATION<br>ed verification - Formal Verification of digital systems- BDD<br>ite state automata, ω-automata, FSM verification.                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                         | es, fu<br>9                        | nctio<br>Peri                   | onal<br>ods                      |  |  |  |
| Simulation bas<br>equivalence, fin<br>UNIT – IV<br>CAD tools for                                                                      | HIGH-LEVEL SYNTHESIS VERIFICATIONweed verification - Formal Verification of digital systems- BDDite state automata, ω-automata, FSM verification.CAD TOOLS FOR SYNTHESIS                                                                                                                                                                                                                                                                                                                                                                                                    | various leve                 | els as                  | 9<br>8 we                          | nctic<br>Perio                  | onal<br>ods<br>for               |  |  |  |
| Simulation bas<br>equivalence, fin<br>UNIT – IV<br>CAD tools for<br>special realizati                                                 | HIGH-LEVEL SYNTHESIS VERIFICATIONed verification - Formal Verification of digital systems- BDDite state automata, ω-automata, FSM verification.CAD TOOLS FOR SYNTHESISsynthesis, optimization, simulation and verification of design at                                                                                                                                                                                                                                                                                                                                     | various leve                 | els as                  | 9<br>8 we                          | nctic<br>Perio                  | onal<br>ods<br>for               |  |  |  |
| Simulation bas<br>equivalence, fin<br>UNIT – IV<br>CAD tools for<br>special realizati                                                 | HIGH-LEVEL SYNTHESIS VERIFICATIONed verification - Formal Verification of digital systems- BDDite state automata, ω-automata, FSM verification.CAD TOOLS FOR SYNTHESISsynthesis, optimization, simulation and verification of design atons and structures such as microprogrammes, PLAs, gate arrays                                                                                                                                                                                                                                                                        | various leve                 | els as                  | 9<br>9<br>8 wel<br>map             | nctic<br>Perio                  | onal<br>ods<br>for<br>for        |  |  |  |
| Simulation bas<br>equivalence, fin<br>UNIT – IV<br>CAD tools for<br>special realizati<br>FPGAs. Low po<br>UNIT – V                    | HIGH-LEVEL SYNTHESIS VERIFICATIONeed verification - Formal Verification of digital systems- BDDite state automata, ω-automata, FSM verification.CAD TOOLS FOR SYNTHESISsynthesis, optimization, simulation and verification of design atons and structures such as microprogrammes, PLAs, gate arraysower issues in high level synthesis and logic synthesis.                                                                                                                                                                                                               | various leve<br>etc. Technol | els as<br>logy          | 9<br>9<br>8 wei<br>map<br>9        | Perio<br>ll as<br>ping<br>Perio | onal<br>ods<br>for<br>for<br>ods |  |  |  |
| Simulation bas<br>equivalence, fin<br>UNIT – IV<br>CAD tools for<br>special realizati<br>FPGAs. Low po<br>UNIT – V<br>Relative Schedu | HIGH-LEVEL SYNTHESIS VERIFICATIONeed verification - Formal Verification of digital systems- BDDite state automata, ω-automata, FSM verification.CAD TOOLS FOR SYNTHESISsynthesis, optimization, simulation and verification of design atons and structures such as microprogrammes, PLAs, gate arraysower issues in high level synthesis and logic synthesis.ADVANCED TOPICS                                                                                                                                                                                                | various leve<br>etc. Technol | els as<br>logy<br>ıling | 9<br>9<br>8 wel<br>map<br>9<br>mod | Perio<br>ll as<br>ping<br>Perio | onal<br>ods<br>for<br>for<br>ods |  |  |  |
| Simulation bas<br>equivalence, fin<br>UNIT – IV<br>CAD tools for<br>special realizati<br>FPGAs. Low po<br>UNIT – V<br>Relative Schedu | HIGH-LEVEL SYNTHESIS VERIFICATION         aed verification - Formal Verification of digital systems- BDD         ite state automata, ω-automata, FSM verification.         CAD TOOLS FOR SYNTHESIS         synthesis, optimization, simulation and verification of design at ons and structures such as microprogrammes, PLAs, gate arrays ower issues in high level synthesis and logic synthesis.         ADVANCED TOPICS         nling, IO scheduling modes - cycle fixed scheduling modes, super ing mode, Pipelining, Handshaking, System Design, High-Level Synthesis | various leve<br>etc. Technol | els as<br>logy<br>ıling | 9<br>9<br>8 wel<br>map<br>9<br>mod | Perio<br>ll as<br>ping<br>Perio | onal<br>ods<br>for<br>for<br>ods |  |  |  |

| 1 | Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit", Springer, |
|---|--------------------------------------------------------------------------------------------------------|
|   | 2008.                                                                                                  |
| 2 | Sherwani, N., "Algorithms for VLSI Physical Design Automation", Springer, 3rd ed., 2005.               |
| 3 | D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.                       |
| 4 | Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.                                   |
| 5 | Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)                                 |
| 6 | David. C. Ku and G. De Micheli, "High-level Syntheses of ASICs Under Timing and                        |
|   | Synchronization Constraints", Kluwer Academic Publishers, 1992.                                        |
| 7 | K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999, Wiley.        |
| 8 | Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System Design and     |
|   | Analysis", Springer,2006.                                                                              |

| COUR    | COURSE OUTCOMES:                                             |          |  |  |
|---------|--------------------------------------------------------------|----------|--|--|
|         |                                                              | Taxonomy |  |  |
| Upon co | Upon completion of the course, the students will be able to: |          |  |  |
| CO1     | Understand the fundamentals of High level synthesis          | K2       |  |  |
| CO2     | Synthesis the HDL for operation scheduling                   | K2       |  |  |
| CO3     | Simulate and verify any digital systems                      | K2       |  |  |
| CO4     | Apply CAD tools for synthesis                                | K2       |  |  |
| CO5     | Have knowledge on various scheduling modes                   | K2       |  |  |

## COURSE ARTICULATION MATRIX:

| COs/POs  | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|----------|-----|-----|-----|-----|-----|-----|
| C01      | 2   | 2   | -   | 2   | 2   | -   |
| CO2      | 2   | 2   | -   | 2   | 2   | -   |
| CO3      | 2   | 2   | -   | 2   | 2   | -   |
| CO4      | 2   | 2   | -   | 2   | 2   | -   |
| CO5      | 2   | 2   | -   | 2   | 2   | -   |
| 23VLOE30 | 2   | 2   | -   | 2   | 2   | -   |

| ASSESSMENT     | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |         |  |
|----------------|-----------------------------|---------------|----------|-----------|------------|----------|---------|--|
| Test / Bloom's | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total % |  |
| Category*      | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   |         |  |
| CAT1           | 50%                         | 50%           |          | -         | -          | -        | 100%    |  |
| CAT2           | 50%                         | 50%           |          | -         | -          | -        | 100%    |  |
| Individual     | -                           | 50%           | 50%      | -         | -          | -        | 100%    |  |
| Assessment 1/  |                             |               |          |           |            |          |         |  |
| Case Study 1/  |                             |               |          |           |            |          |         |  |
| Seminar 1 /    |                             |               |          |           |            |          |         |  |
| Project1       |                             |               |          |           |            |          |         |  |
| Individual     | -                           | 50%           | 50%      | -         | -          | -        | 100%    |  |
| Assessment 2/  |                             |               |          |           |            |          |         |  |
| Case Study 2/  |                             |               |          |           |            |          |         |  |
| Seminar 2/     |                             |               |          |           |            |          |         |  |
| Project 2      |                             |               |          |           |            |          |         |  |
| ESE            | 50%                         | 50%           |          | -         | -          | -        | 100%    |  |

| 23CSOE31                                                                              |                                              | ARTIFICIAL INTELLIGENCE<br>(Common to all Branches) |                       |         |          |            |         |  |
|---------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------|-----------------------|---------|----------|------------|---------|--|
| PREREQUISIT                                                                           | FS                                           | (Common to a                                        |                       |         |          |            |         |  |
| TREADQUIST                                                                            | 120                                          | NIL                                                 |                       |         |          |            |         |  |
| <b>Course</b> Identify and apply AI techniques in the design of systems that act inte |                                              |                                                     |                       |         |          | v. m       | aking   |  |
| Objectives                                                                            |                                              | matic decisions and learn from experience.          | 5                     |         | U        | <b>J</b> ' | U       |  |
| UNIT – I                                                                              |                                              | ARCH STRATEGIES                                     |                       |         |          | 9 Pe       | eriods  |  |
| Uninformed Stra                                                                       | ategie                                       | s – BFS, DFS, Djisktra, Informed Strategi           | es – A* search, He    | euristi | c func   | tions      | s, Hill |  |
| Climbing, Adver                                                                       | rsaria                                       | Search – Min-max algorithm, Alpha-beta Pru          | ining                 |         |          |            |         |  |
| UNIT – II                                                                             | PLA                                          | NNING AND REASONING                                 |                       |         |          | 9 Pe       | eriods  |  |
| State Space sear                                                                      | ch, P                                        | lanning Graphs, Partial order planning, Unce        | ertain Reasoning – P  | robabi  | listic 1 | Reas       | oning,  |  |
| Bayesian Networ                                                                       | rks, E                                       | Dempster Shafer Theory, Fuzzy logic                 |                       |         |          |            |         |  |
| UNIT – III                                                                            | PRO                                          | DBABILISTIC REASONING                               |                       |         |          | 9 Pe       | eriods  |  |
| Probabilistic Rea                                                                     | asoni                                        | ng over Time - Hidden Markov Models, Kal            | man Filters, Dynam    | ic Bay  | yesian   | Netv       | works.  |  |
| Knowledge Repr                                                                        | resent                                       | ations – Ontological Engineering, Semantic N        | letworks and descript | ion lo  | gics.    |            |         |  |
| UNIT – IV                                                                             | DEC                                          | CISION MAKING                                       |                       |         |          | 9 Pe       | eriods  |  |
| Utility Theory, U                                                                     | Utility                                      | Functions, Decision Networks - Sequential           | Decision Problems     | – Part  | tially ( | Obset      | rvable  |  |
| MDPs – Game T                                                                         | MDPs – Game Theory.                          |                                                     |                       |         |          |            |         |  |
| UNIT – V REINFORCEMENT LEARNING 9 Perio                                               |                                              |                                                     |                       |         | eriods   |            |         |  |
| Reinforcement L                                                                       | Learni                                       | ng - Passive and active reinforcement learning      | g - Generations in Re | inforc  | ement    | Lear       | ning -  |  |
| Policy Search –                                                                       | Policy Search – Deep Reinforcement Learning. |                                                     |                       |         |          |            |         |  |
| <b>Contact Periods</b>                                                                | s:                                           |                                                     |                       |         |          |            |         |  |
| Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods        |                                              |                                                     |                       |         |          |            |         |  |

| 1 | Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013               |
|---|-------------------------------------------------------------------------------------------------------------|
| 2 | Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006              |
| 3 | Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice Hall, 2010. |
| 4 | Elaine Rich, Kevin Knight, Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill,   |
|   | 2009.                                                                                                       |

| COUR       | Bloom's<br>Taxonomy<br>Mapped                                                                        |          |
|------------|------------------------------------------------------------------------------------------------------|----------|
| CO1        | ompletion of the course, the students will be able to:<br>Use search techniques to solve AI problems | K2       |
| CO1<br>CO2 | Reason facts by constructing plans and understand uncertainty efficiently.                           | K2<br>K3 |
| CO2<br>CO3 | Examine data using statistical codes and solve complex AI problems                                   | K6       |
| CO4        | Apply techniques to make apt decisions.                                                              | K4       |
| CO5        | Use deep reinforcement learning to solve complex AI problems                                         | K6       |

| COURSE ARTICULATION MATRIX                |      |     |      |      |     |     |  |  |
|-------------------------------------------|------|-----|------|------|-----|-----|--|--|
| COs/ POs                                  | PO 1 | PO2 | PO 3 | PO 4 | PO5 | PO6 |  |  |
| C01                                       | 3    |     | 2    |      | 3   | 3   |  |  |
| CO2                                       | 3    |     | 2    |      | 3   | 3   |  |  |
| CO3                                       | 3    |     | 3    |      | 3   | 3   |  |  |
| CO4                                       | 3    |     | 3    |      | 3   | 3   |  |  |
| CO5                                       | 3    |     | 3    |      | 3   | 3   |  |  |
| 23CSOE31                                  | 3    |     | 3    |      | 3   | 3   |  |  |
| 1 – Slight, 2 – Moderate, 3 – Substantial |      |     |      |      |     |     |  |  |

| ASSESSMENT     | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |       |  |  |
|----------------|-----------------------------|---------------|----------|-----------|------------|----------|-------|--|--|
| Test / Bloom's | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |
| Category*      | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |
| CAT1           |                             | 20            | 40       | 20        | 20         |          | 100   |  |  |
| CAT2           |                             | 10            | 20       | 40        | 10         | 20       | 100   |  |  |
| Individual     |                             |               |          |           |            |          |       |  |  |
| Assessment 1/  |                             |               |          |           |            |          |       |  |  |
| Case study 1/  |                             |               |          |           | 50         | 50       | 100   |  |  |
| Seminar 1/     |                             |               |          |           |            |          |       |  |  |
| Project 1      |                             |               |          |           |            |          |       |  |  |
| Individual     |                             |               |          |           |            |          |       |  |  |
| Assessment 2/  |                             |               |          |           |            |          |       |  |  |
| Case study 2/  |                             |               |          |           | 50         | 50       | 100   |  |  |
| Seminar 2/     |                             |               |          |           |            |          |       |  |  |
| Project 2      |                             |               |          |           |            |          |       |  |  |
| ESE            | 30                          | 30            | 40       |           |            |          | 100   |  |  |

| 23CSOE32                                                                                                 | COMPUTER NETWOR                                           |                     | T        |         |        |          |  |
|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------|----------|---------|--------|----------|--|
| PREREQU                                                                                                  | (Common to all                                            | CATEGORY            | L        | Т       | Р      | С        |  |
| THERE                                                                                                    | NIL                                                       | OE                  | 3        | 0       | 0      | 3        |  |
| <b>Course</b> After the completion of the course, the students will be able to understand the concept of |                                                           |                     |          |         |        |          |  |
| Objectives                                                                                               | layering in networks, functions of protocols of ea        |                     |          |         |        | •        |  |
| o sjeen (es                                                                                              | related to network addressing and routing                 | •                   | •        |         |        | -        |  |
|                                                                                                          | configurations for routers and switches, and imp          | -                   |          | -       |        |          |  |
|                                                                                                          | using Cisco Packet Tracer.                                |                     |          |         | 0      |          |  |
| UNIT – I                                                                                                 | INTRODUCTION AND APPLICATION LA                           | YER                 |          |         | 91     | Periods  |  |
| Building net                                                                                             | work – Network Edge and Core – Layered Archite            | ecture – OSI Mode   | 1 – Inte | ernet   | Arch   | itecture |  |
| (TCP/IP) Ne                                                                                              | tworking Devices: Hubs, Bridges, Switches, Route          | ers, and Gateways   | - Perfo  | rman    | nce M  | etrics - |  |
|                                                                                                          | tworking – Introduction to Sockets – Application          | -                   |          |         |        |          |  |
| Protocols – I                                                                                            |                                                           |                     |          |         |        |          |  |
| UNIT – II                                                                                                | TRANSPORT LAYER AND ROUTING                               |                     |          |         | 91     | Periods  |  |
| Transport La                                                                                             | yer functions –User Datagram Protocol – Transm            | nission Control Pro | tocol -  | - Flo   | w Co   | ntrol –  |  |
| Retransmissi                                                                                             | on Strategies - Congestion Control - Routing Pri          | nciples – Distance  | Vecto    | r Ro    | uting  | – Link   |  |
| State Routin                                                                                             | g - RIP - OSPF - BGP - Introduction to Quality            | of Service (QoS).   | Case St  | udy:    | Conf   | iguring  |  |
| RIP, OSPF E                                                                                              | GP using Packet tracer                                    |                     |          |         |        |          |  |
| UNIT – III                                                                                               | NETWORK LAYER                                             |                     |          |         | 91     | Periods  |  |
| Network Lay                                                                                              | er: Switching concepts – Internet Protocol – IPV4 F       | Packet Format – IP  | Addres   | sing    | – Sut  | onetting |  |
| – Classless                                                                                              | Inter Domain Routing (CIDR) - Variable Length             | Subnet Mask (VL     | SM) –    | DHO     | СР –   | ARP -    |  |
| Network Ad                                                                                               | dress Translation (NAT) - ICMP - Concept of SD            | N.Case Study: Con   | figurin  | g VL    | LAN,   | DHCP,    |  |
| NAT using F                                                                                              | Packet tracer                                             |                     |          |         |        |          |  |
| UNIT – IV                                                                                                | INTERNETWORK MANAGEMENT                                   |                     |          |         | 91     | Periods  |  |
|                                                                                                          | to the Cisco IOS - Router User Interface – CLI - Ro       |                     |          |         |        |          |  |
|                                                                                                          | faces - Viewing, Saving, and Erasing Configura            | -                   |          |         |        |          |  |
|                                                                                                          | lanaging Configuration Registers - Backing Up and         | -                   | -        | Up a    | nd Re  | estoring |  |
| the Configur                                                                                             | ation - Using Discovery Protocol (CDP) - Checking         | Network Connecti    | vity     |         |        |          |  |
| UNIT – V                                                                                                 | TRAFFIC MANAGEMENT AND WAN PRO                            |                     |          |         |        | Periods  |  |
| Managing T                                                                                               | raffic with Access Lists: Introduction to Access          | Lists - Standard A  | Access   | Lists   | - Ex   | tended   |  |
| Access Lists                                                                                             | s - Named Access Lists - Monitoring Access L              | lists - Wide Area   | Netwo    | orkin   | g Pro  | otocols: |  |
|                                                                                                          | to Wide Area Networks - Cabling the Wide Area             | -                   |          |         |        |          |  |
|                                                                                                          | otocol - Point-to-Point Protocol (PPP) - Frame            | •                   | •        |         |        |          |  |
| -                                                                                                        | Integrated Services Digital Network (ISDN) - Dia          | ll-on-Demand Rout   | ing (D   | DR):    | Conf   | iguring  |  |
| DDR                                                                                                      |                                                           |                     |          |         |        |          |  |
| Contact Per                                                                                              |                                                           |                     |          |         |        |          |  |
| Lecture: 45                                                                                              | Periods Tutorial: 0 Periods Practical: 0 P                | eriods Total:       | 45 Peri  | ods     |        |          |  |
| DEEEDE                                                                                                   | NCES .                                                    |                     |          |         |        |          |  |
| <b>REFERE</b> 1James                                                                                     | F. Kurose, Keith W. Ross, "Computer Networking:           | A Ton-Down Ann      | oach"    | Seve    | onth F | dition   |  |
|                                                                                                          | <i>n Education</i> , 2017.                                | 21 10p-Down 21pp    | ouch ,   | Deve    | min L  | annon,   |  |
|                                                                                                          | n Stallings, <b>"Data and Computer Communications</b> "   | ". Tenth Edition Pa | earson   | Educ    | ation  | 2014     |  |
|                                                                                                          | L. Peterson, Bruce S. Davie, "Computer Network            |                     |          |         |        |          |  |
| -                                                                                                        | n Kaufmann Publishers Inc., 2011.                         |                     | r. such  | , 1     | ., L   |          |  |
| Ū                                                                                                        | ammle, "CCNA <sup>TM</sup> : Cisco® Certified Network As. | sociate Study Gui   | 1e". 5th | h Edi   | ition  | Syher    |  |
| 2003                                                                                                     |                                                           | Secure Dunny Oun    | , 50     |         |        | 5увсл,   |  |
|                                                                                                          | ar Lin, Ren-Hung Hwang, Fred Baker, "Computer             | r Networks An O     | nen So   | urco    | Annr   | oach"    |  |
| 0                                                                                                        | w Hill, 2012.                                             |                     | , en 501 | *** ( ( | -ppr   | ouch y   |  |
|                                                                                                          | leter Leff Discourse and Kenin Illete d "CONA for         | <b>D</b>            | 1 117    | 11      | • 1    | 2000     |  |

6 Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

| COURSE   | COUTCOMES:                                                                     | Bloom's  |
|----------|--------------------------------------------------------------------------------|----------|
|          |                                                                                | Taxonomy |
| Upon con | pletion of the course, the students will be able to:                           | Mapped   |
| CO1      | Highlight the significance of the functions of each layer in the network.      | K1       |
| CO2      | Identify the devices and protocols to design a network and implement it.       | K4       |
| CO3      | Apply addressing principles such as subnetting and VLSM for efficient routing. | K3       |
| CO4      | Build simple LANs, perform basic configurations for routers and switches       | K6       |
| CO5      | Illustrate various WAN protocols                                               | K2       |

| COs/POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|---------|-----|-----|-----|-----|-----|-----|
| CO1     | 3   |     | 3   |     | 2   | 1   |
| CO2     | 3   |     | 3   |     | 2   | 2   |
| CO3     | 3   |     | 3   |     | 3   | 2   |
| CO4     | 3   |     | 3   |     | 3   | 3   |
| CO5     | 3   |     | 3   |     | 3   | 3   |
| 3CSOE32 | 3   |     | 3   |     | 3   | 2   |

| ASSESSMENT    | ASSESSMENT PATTERN – THEORY (Times New Roman, Size 11) |               |          |           |            |          |       |  |  |  |  |  |
|---------------|--------------------------------------------------------|---------------|----------|-----------|------------|----------|-------|--|--|--|--|--|
| Test /        | Remembering                                            | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |  |  |
| Bloom's       | (K1) %                                                 | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |  |  |
| Category*     |                                                        |               |          |           |            |          |       |  |  |  |  |  |
| CAT1          | 30                                                     | 30            | 20       | 20        |            |          | 100   |  |  |  |  |  |
| CAT2          |                                                        | 30            | 20       | 30        | 10         | 10       | 100   |  |  |  |  |  |
| Individual    | 10                                                     | 30            | 20       | 20        | 20         |          | 100   |  |  |  |  |  |
| Assessment 1/ |                                                        |               |          |           |            |          |       |  |  |  |  |  |
| Case Study 1/ |                                                        |               |          |           |            |          |       |  |  |  |  |  |
| Seminar 1/    |                                                        |               |          |           |            |          |       |  |  |  |  |  |
| Project 1     |                                                        |               |          |           |            |          |       |  |  |  |  |  |
| Individual    |                                                        | 20            | 20       | 20        | 20         | 20       | 100   |  |  |  |  |  |
| Assessment 2/ |                                                        |               |          |           |            |          |       |  |  |  |  |  |
| Case Study 2/ |                                                        |               |          |           |            |          |       |  |  |  |  |  |
| Seminar 2/    |                                                        |               |          |           |            |          |       |  |  |  |  |  |
| Project 2     |                                                        |               |          |           |            |          |       |  |  |  |  |  |
| ESE           | 20                                                     | 40            | 40       |           |            |          | 100   |  |  |  |  |  |

| 23CSOE33 BLOCKCHAIN TECHNOLOGIES |             |                               |                          |                    |       |       |        |        |  |
|----------------------------------|-------------|-------------------------------|--------------------------|--------------------|-------|-------|--------|--------|--|
| 23CSOE3                          |             |                               |                          |                    |       |       |        |        |  |
| PREREQUIS                        | ITES        |                               |                          | CATEGORY           | L     | Т     | Р      | С      |  |
|                                  |             | NIL                           |                          | OE                 | 3     | 0     | 0      | 3      |  |
| Course                           | The object  | ctive of the course is to exp | olore basics of block ch | ain technology an  | d its | appl  | licati | on ir  |  |
| Objectives                       | various d   | omaiin                        |                          |                    |       |       |        |        |  |
| UNIT – I                         | NTROD       | UCTION OF CRYPTOG             | RAPHY AND BLOCK          | KCHAIN             |       |       | 9 Pe   | riod   |  |
| History of Blo                   | ckchain     | - Types of blockchain- C      | CAP theorem and block    | chain – benefits   | and   | Limi  | tatio  | ns o   |  |
| Blockchain – I                   | Decentali   | zation using blockchain –     | Blockchain implementa    | tions- Block chain | n in  | pract | tical  | use    |  |
| Legal and Gov                    | ernance I   | Jse Cases                     |                          |                    |       |       |        |        |  |
| UNIT – II                        | BITCOI      | N AND CRYPTOCURRE             | NCY                      |                    |       |       | 9 Pe   | riod   |  |
| Introduction to                  | Bitcoin     | , The Bitcoin Network, Tl     | ne Bitcoin Mining Prod   | cess, Mining Dev   | elopi | nent  | s, Bi  | itcoiı |  |
| Wallets, Decei                   | ntralizatio | on and Hard Forks, Ethere     | eum Virtual Machine (    | EVM), Merkle T     | ree,  | Dou   | ble-S  | Spen   |  |
| Problem, Bloc                    | kchain a    | and Digital Currency, Tra     | nsactional Blocks, Imp   | pact of Blockcha   | in T  | echn  | olog   | y or   |  |
| Cryptocurrency                   | 7           |                               |                          |                    |       |       |        |        |  |
| UNIT – III                       | ETHERI      | EUM                           |                          |                    |       |       | 9 Pe   | riod   |  |
| Introduction to                  | b Ethere    | um, Consensus Mechanism       | ns, Metamask Setup, 1    | Ethereum Accoun    | ts, , | Tra   | nsac   | tions  |  |
| Receiving Ethe                   | ers, Smar   | t Contracts                   |                          |                    |       |       |        |        |  |
| UNIT – IV                        | HYPERI      | LEDGER AND SOLIDITY           | Y PROGRAMMING            |                    |       |       | 9 Pe   | riod   |  |
| Introduction to                  | Hyperl      | edger, Distributed Ledger     | Technology & its Ch      | allenges, Hyperle  | dger  | &     | Dist   | ribute |  |
| Ledger Techno                    | logy, Hy    | perledger Fabric, Hyperledg   | ger Composer. Solidity - | – Programming wi   | th so | lidit | у      |        |  |
| UNIT – V                         | BLOCK       | CHAIN APPLICATIONS            |                          |                    |       |       | 9 Pe   | riod   |  |
| Ten Steps to                     | build y     | our Blockchain applicati      | on – Application: In     | nternet of Things  | , M   | edica | al R   | ecord  |  |
| Management S                     | ystem, D    | omain Name Service and F      | uture of Blockchain, Alt | t Coins            |       |       |        |        |  |
| <b>Contact Perio</b>             | ds:         |                               |                          |                    |       |       |        |        |  |
| Lecture: 45 Pe                   | eriods      | <b>Tutorial: 0 Periods</b>    | Practical: 0 Periods     | Total: 45 Pe       | riods | 5     |        |        |  |
|                                  |             |                               |                          |                    |       |       |        |        |  |
| REFER                            |             |                               |                          |                    |       |       |        |        |  |

| 1 | Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart        |
|---|--------------------------------------------------------------------------------------------------------|
|   | Contracts Explained", Second Edition, Packt Publishing, 2018.                                          |
| 2 | Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and        |
|   | Technology Solutions", McGraw Hill Education ,2018.                                                    |
| 3 | Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A |
|   | Comprehensive Introduction" Princeton University Press, 2016.                                          |
| 4 | Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.                                        |
| 5 | Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly           |
|   | Publishing, 2018                                                                                       |
| 6 | NETEL Courses, Blackelerin and its multipations, litera // multipantel as in/annas/106/105/10610525/   |

| 6 | NPTEL Course : Blockchain and its applications | https://archive.nptel.ac.in/courses/106/105/106105235/ |
|---|------------------------------------------------|--------------------------------------------------------|
|---|------------------------------------------------|--------------------------------------------------------|

| COUR   | SE OUTCOMES:                                                                                    | Bloom's<br>Taxonomy |
|--------|-------------------------------------------------------------------------------------------------|---------------------|
| Upon c | ompletion of the course, the students will be able to:                                          | Mapped              |
| CO1    | Comprehend the working of Blockchain technology                                                 | K2                  |
| CO2    | Narrate working principle of smart contracts and create them using solidity for given scenario. | K3                  |
| CO3    | Comprehend the working of Hyperledger in an real time application                               | K2                  |
| CO4    | Apply the learning of solidity to build de-centralized apps on Ethereum                         | K3                  |
| CO5    | Develop applications on Blockchain                                                              | K3                  |

| COURSE ARTICULATION MATRIX |            |           |       |     |     |     |  |  |  |  |
|----------------------------|------------|-----------|-------|-----|-----|-----|--|--|--|--|
| COs/POs                    | PO1        | PO2       | PO3   | PO4 | PO5 | PO6 |  |  |  |  |
| CO1                        | 2          |           | 3     | 2   |     | 3   |  |  |  |  |
| CO2                        | 2          | 3         | 3     | 3   | 2   | 3   |  |  |  |  |
| CO3                        | 3          |           | 3     | 2   |     | 3   |  |  |  |  |
| CO4                        | 3          | 3         | 3     | 3   | 2   | 3   |  |  |  |  |
| CO5                        | 3          | 3         | 3     | 3   | 2   | 3   |  |  |  |  |
| 23CSOE33                   | 3          | 3         | 3     | 3   | 2   | 3   |  |  |  |  |
| 1 - Slight, $2 - Me$       | oderate, 3 | – Substar | ıtial | ·   |     |     |  |  |  |  |

| Test /        | Remembering | Understanding | Applying | Analyzing | Evaluating | Creating | Total |
|---------------|-------------|---------------|----------|-----------|------------|----------|-------|
| Bloom's       | (K1) %      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |
| Category*     |             |               |          |           |            |          |       |
| CAT1          | 20          | 40            | 40       |           |            |          | 100   |
| CAT2          | 20          | 30            | 50       |           |            |          | 100   |
| Individual    |             |               |          |           |            |          |       |
| Assessment 1/ |             | 30            | 70       |           |            |          | 100   |
| Case Study 1/ |             |               |          |           |            |          |       |
| Seminar 1 /   |             |               |          |           |            |          |       |
| Project1      |             |               |          |           |            |          |       |
| Individual    |             |               |          |           |            |          |       |
| Assessment 2/ |             | 40            | 60       |           |            |          | 100   |
| Case Study 2/ |             |               |          |           |            |          |       |
| Seminar 2 /   |             |               |          |           |            |          |       |
| Project 2     |             |               |          |           |            |          |       |
| ESE           | 10          | 60            | 30       |           |            |          | 100   |

| 23SEACZ1                                                                                                          | ENGLISH FOR RESEARCH PAPER WRITING                      |                       |           |        |       |         |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|-----------|--------|-------|---------|--|--|--|--|--|
| 255EACZ1                                                                                                          | (Common to all Br                                       | ranches)              |           |        |       |         |  |  |  |  |  |
| PREREQUISI                                                                                                        | ГЕS                                                     | CATEGORY              | L         | Т      | Р     | С       |  |  |  |  |  |
|                                                                                                                   | NIL                                                     | AC                    | 2         | 0      | 0     | 0       |  |  |  |  |  |
| Course                                                                                                            | The objective of the course is to make the learn        | ners understand the   | e forma   | t and  | intr  | icacies |  |  |  |  |  |
| Objectives                                                                                                        | involved in writing a research paper.                   |                       |           |        |       |         |  |  |  |  |  |
| UNIT – I                                                                                                          | PLANNING AND PREPARATION6 Periods                       |                       |           |        |       |         |  |  |  |  |  |
| Need for publishing articles, Choosing the journal, Identifying a model journal paper, Creation of files for each |                                                         |                       |           |        |       |         |  |  |  |  |  |
| section, Expecta                                                                                                  | tions of Referees, Online Resources.                    |                       |           |        |       |         |  |  |  |  |  |
| UNIT – II                                                                                                         | SENTENCES AND PARAGRAPHS                                |                       |           | 6      | Peri  | iods    |  |  |  |  |  |
| Basic word in                                                                                                     | English, Word order in English and Vernacular, plac     | ing nouns, Verbs,     | Adjecti   | ves, a | and A | Adverb  |  |  |  |  |  |
| suitably in a se                                                                                                  | ntence, Using Short Sentences, Discourse Markers a      | nd Punctuations- S    | tructure  | of a   | Para  | graph,  |  |  |  |  |  |
| Breaking up len                                                                                                   | gthy Paragraphs.                                        |                       |           |        |       |         |  |  |  |  |  |
| UNIT – III                                                                                                        | ACCURACY, BREVITY AND CLARITY (ABC)                     | ) OF WRITING          |           | 6      | Peri  | iods    |  |  |  |  |  |
| Accuracy, Brev                                                                                                    | ity and Clarity in Writing, Reducing the linking words  | s, Avoiding redunda   | ancy, Aj  | pprop  | riate | use of  |  |  |  |  |  |
| Relative and R                                                                                                    | eflexive Pronouns, Monologophobia, verifying the jo     | ournal style, Logic   | al Conr   | nectio | ns be | etween  |  |  |  |  |  |
| others author's                                                                                                   | indings and yours.                                      |                       |           |        |       |         |  |  |  |  |  |
| UNIT – IV                                                                                                         | HIGHLIGHTING FINDINGS, HEDGING AND                      | PARAPHRASING          | Ť         | 6      | Peri  | iods    |  |  |  |  |  |
| Making your fir                                                                                                   | dings stand out, Using bullet points headings, Tables a | nd Graphs- Availin    | g non-    | exper  | ts op | inions, |  |  |  |  |  |
| Hedging, Tonin                                                                                                    | g Down Verbs, Adjectives, Not over hedging, Limitatio   | ons of your research. |           |        |       |         |  |  |  |  |  |
| UNIT – V                                                                                                          | SECTIONS OF A PAPER                                     |                       |           | 6      | Peri  | iods    |  |  |  |  |  |
| Titles, Abstracts                                                                                                 | , Introduction, Review of Literature, Methods, Results, | Discussion, Conclu    | isions, F | Refere | nces. |         |  |  |  |  |  |
| <b>Contact Period</b>                                                                                             | s:                                                      |                       |           |        |       |         |  |  |  |  |  |
| Lecture: 30 Pe                                                                                                    | riods Tutorial: 0 Periods Practical: 0 Periods          | s Total: 30 Perio     | ods       |        |       |         |  |  |  |  |  |

Goldbort R, "Writing for Science", Yale University Press (available on GoogleBooks),2006 1 2 Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006. 3 Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998. Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht Heidelberg 4 London, 2011.

| COURS   | E OUTCOMES :                                                                   | Bloom's<br>Taxonomy |
|---------|--------------------------------------------------------------------------------|---------------------|
| Upon co | mpletion of this course the learners will be able to                           | Mapped              |
| CO1     | Understand the need for writing good research paper.                           | K2                  |
| CO2     | Practice the appropriate word order, sentence structure and paragraph writing. | K4                  |
| CO3     | Practice unambiguous writing.                                                  | K3                  |
| CO4     | Avoid wordiness in writing.                                                    | K2                  |
| CO5     | Exercise the elements involved in writing journal paper.                       | K3                  |

| COURSE ARTICULATION MATRIX : |                  |     |     |     |     |     |  |  |  |  |
|------------------------------|------------------|-----|-----|-----|-----|-----|--|--|--|--|
| COs/POs                      | PO1              | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |  |
| CO1                          | 3                | 3   | 1   | 1   | 1   | 1   |  |  |  |  |
| CO2                          | 3                | 3   | 1   | 1   | 1   | 1   |  |  |  |  |
| CO3                          | 3                | 3   | 1   | 1   | 1   | 1   |  |  |  |  |
| CO4                          | 3                | 3   | 1   | 1   | 1   | 1   |  |  |  |  |
| CO5                          | 3                | 3   | 1   | 1   | 1   | 1   |  |  |  |  |
| 23SEACZ1                     | 3                | 3   | 1   | 1   | 1   | 1   |  |  |  |  |
| 1 – Slight, 2 – Moderate     | e, 3 – Substanti | al  |     |     |     |     |  |  |  |  |

| ASSESSMENT P   | ASSESSMENT PATTERN – THEORY |               |          |           |            |          |       |  |  |  |  |  |
|----------------|-----------------------------|---------------|----------|-----------|------------|----------|-------|--|--|--|--|--|
| Test / Bloom's | Remembering                 | Understanding | Applying | Analyzing | Evaluating | Creating | Total |  |  |  |  |  |
| Category*      | (K1) %                      | (K2) %        | (K3) %   | (K4) %    | (K5) %     | (K6) %   | %     |  |  |  |  |  |
| CAT1           | 40                          | 40            | 20       | -         | -          | -        | 100   |  |  |  |  |  |
| CAT2           | 40                          | 40            | 20       | -         | -          | -        | 100   |  |  |  |  |  |
| Individual     |                             |               |          |           |            |          |       |  |  |  |  |  |
| Assessment 1/  |                             |               |          |           |            |          |       |  |  |  |  |  |
| Case Study 1/  | -                           | 50            | 50       | -         | -          | -        | 100   |  |  |  |  |  |
| Seminar 1/     |                             |               |          |           |            |          |       |  |  |  |  |  |
| Project 1      |                             |               |          |           |            |          |       |  |  |  |  |  |
| Individual     |                             |               |          |           |            |          |       |  |  |  |  |  |
| Assessment 2/  |                             |               |          |           |            |          |       |  |  |  |  |  |
| Case Study 2/  | -                           | 50            | 50       | -         | -          | -        | 100   |  |  |  |  |  |
| Seminar 2/     |                             |               |          |           |            |          |       |  |  |  |  |  |
| Project 2      |                             |               |          |           |            |          |       |  |  |  |  |  |
| ESE            | 30                          | 30            | 40       | -         | -          | -        | 100   |  |  |  |  |  |

| 23SEACZ2                                                                                                                                                                                                                                                         |                                                                                                                             | DISASTER MANAGEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 255EACZ2                                                                                                                                                                                                                                                         |                                                                                                                             | (Common to all Branches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Course                                                                                                                                                                                                                                                           | •                                                                                                                           | To become familiar in key concepts and consequences about hazar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ds, disaster and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Objectives                                                                                                                                                                                                                                                       |                                                                                                                             | area of occurrence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                  | •                                                                                                                           | • To know the various steps in disaster planning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                  | •                                                                                                                           | To create awareness on disaster preparedness and management.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| UNIT – I                                                                                                                                                                                                                                                         | INTI                                                                                                                        | RODUCTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6 Periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Disaster: Definiti                                                                                                                                                                                                                                               | on, Fa                                                                                                                      | ctors and Significance; Difference between Hazard and Disaster; Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tural and Manmad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Disasters: Differe                                                                                                                                                                                                                                               | ence, N                                                                                                                     | Nature, Types and Magnitude. Areas proneto, sekauqhtraEFloods, Dro                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oughts, Landslides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Avalanches,Cycl                                                                                                                                                                                                                                                  | lone an                                                                                                                     | nd Coastal Hazards with Special Reference to Tsunami.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| UNIT – II                                                                                                                                                                                                                                                        | REP                                                                                                                         | ERCUSSIONS OF DISASTERS AND HAZARDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 Periods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Economic Damas                                                                                                                                                                                                                                                   | ge. Los                                                                                                                     | ss of Human and Animal Life, Destruction of Ecosystem. Natural Disa                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | asters: Earthquakes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| •                                                                                                                                                                                                                                                                | -                                                                                                                           | Tsunamis, Floods, Droughts and Famines, Landslides and Aval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | anches, Man-mad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Volcanisms, Cyc                                                                                                                                                                                                                                                  | clones,                                                                                                                     | Tsunamis, Floods, Droughts and Famines, Landslides and Aval<br>tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbrea                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Volcanisms, Cyc                                                                                                                                                                                                                                                  | clones,<br>React                                                                                                            | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbrea                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear                                                                                                                                                                                                                             | clones,<br>React<br>and Co                                                                                                  | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbrea                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear<br>Epidemics, War a<br>UNIT – III                                                                                                                                                                                           | clones,<br>React<br>and Co<br><b>DIS</b> A                                                                                  | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreamflicts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aks of Disease and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear<br>Epidemics, War a<br>UNIT – III<br>Disaster Plannin                                                                                                                                                                       | clones,<br>React<br>and Co<br><b>DIS</b> A<br>g-Disa                                                                        | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbrea<br>onflicts.<br>ASTER PLANNING                                                                                                                                                                                                                                                                                                                                                                                                                                              | aks of Disease and<br>6 Periods<br>Goals, Pre-Disaste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear<br>Epidemics, War a<br><b>UNIT – III</b><br>Disaster Plannin,<br>Mitigation Plan, I                                                                                                                                         | clones,<br>React<br>and Co<br><b>DIS</b> A<br>g-Disa<br>Person                                                              | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbrea<br>onflicts.<br>ASTER PLANNING<br>ster Response Personnel roles and duties, Community Mitigation                                                                                                                                                                                                                                                                                                                                                                            | aks of Disease and<br>6 Periods<br>Goals, Pre-Disaste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear<br>Epidemics, War a<br>UNIT – III<br>Disaster Plannin,<br>Mitigation Plan, I<br>UNIT – IV                                                                                                                                   | clones,<br>React<br>and Co<br><b>DIS</b> A<br>g-Disa<br>Person                                                              | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbrea<br>onflicts.<br>ASTER PLANNING<br>ster Response Personnel roles and duties, Community Mitigation<br>nel Training, Comprehensive Emergency Management, Early Warning                                                                                                                                                                                                                                                                                                         | aks of Disease and<br><b>6 Periods</b><br>Goals, Pre-Disaste<br>g Systems.<br><b>6 Periods</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear<br>Epidemics, War a<br><b>UNIT – III</b><br>Disaster Plannin<br>Mitigation Plan, I<br><b>UNIT – IV</b><br>Preparedness: Mo                                                                                                  | clones,<br>React<br>and Co<br>DISA<br>g-Disa<br>Person<br>DISA<br>onitori                                                   | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbrea<br>onflicts.<br>ASTER PLANNING<br>ster Response Personnel roles and duties, Community Mitigation<br>nel Training, Comprehensive Emergency Management, Early Warning<br>ASTER PREPAREDNESS AND MANAGEMENT                                                                                                                                                                                                                                                                    | Aks of Disease and<br>6 Periods<br>Goals, Pre-Disaste<br>g Systems.<br>6 Periods<br>Risk: Application o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear<br>Epidemics, War a<br>UNIT – III<br>Disaster Plannin,<br>Mitigation Plan, I<br>UNIT – IV<br>Preparedness: Ma<br>Remote Sensing,                                                                                            | clones,<br>React<br>and Co<br>DISA<br>g-Disa<br>Person<br>DISA<br>onitori                                                   | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbrea<br>onflicts.<br>ASTER PLANNING<br>ster Response Personnel roles and duties, Community Mitigation<br>nel Training, Comprehensive Emergency Management, Early Warning<br>ASTER PREPAREDNESS AND MANAGEMENT<br>ng of Phenomena Triggering a Disaster or Hazard; Evaluation of R                                                                                                                                                                                                | Aks of Disease and<br>6 Periods<br>Goals, Pre-Disaste<br>g Systems.<br>6 Periods<br>Risk: Application o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear<br>Epidemics, War a<br><b>UNIT – III</b><br>Disaster Plannin<br>Mitigation Plan, I<br><b>UNIT – IV</b><br>Preparedness: Mo                                                                                                  | clones,<br>React<br>and Co<br>DISA<br>g-Disa<br>Person<br>DISA<br>onitori<br>Data f                                         | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbrea<br>onflicts.<br>ASTER PLANNING<br>ster Response Personnel roles and duties, Community Mitigation<br>nel Training, Comprehensive Emergency Management, Early Warning<br>ASTER PREPAREDNESS AND MANAGEMENT<br>ng of Phenomena Triggering a Disaster or Hazard; Evaluation of R                                                                                                                                                                                                | Aks of Disease and<br>6 Periods<br>Goals, Pre-Disaste<br>g Systems.<br>6 Periods<br>Risk: Application o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear<br>Epidemics, War a<br>UNIT – III<br>Disaster Plannin,<br>Mitigation Plan, I<br>UNIT – IV<br>Preparedness: Ma<br>Remote Sensing,<br>Preparedness.<br>UNIT – V                                                               | elones,<br>React<br>and Co<br>DISA<br>g-Disa<br>Personi<br>DISA<br>onitori<br>Data f                                        | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreamflicts. ASTER PLANNING ster Response Personnel roles and duties, Community Mitigationenel Training, Comprehensive Emergency Management, Early Warning ASTER PREPAREDNESS AND MANAGEMENT ng of Phenomena Triggering a Disaster or Hazard; Evaluation of R from Meteorological and other Agencies, Media Reports: Governmen                                                                                                                                                   | Aks of Disease and<br><b>6 Periods</b><br>Goals, Pre-Disaste<br>g Systems.<br><b>6 Periods</b><br>Risk: Application o<br>Application |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear<br>Epidemics, War a<br><b>UNIT – III</b><br>Disaster Plannin<br>Mitigation Plan, I<br><b>UNIT – IV</b><br>Preparedness: Me<br>Remote Sensing,<br>Preparedness.<br><b>UNIT – V</b><br>Disaster Risk: C                       | elones,<br>React<br>and Co<br>DISA<br>g-Disa<br>Person<br>DISA<br>onitori<br>Data f<br>RISH<br>oncept                       | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbrea<br>onflicts.<br>ASTER PLANNING<br>ster Response Personnel roles and duties, Community Mitigation<br>nel Training, Comprehensive Emergency Management, Early Warning<br>ASTER PREPAREDNESS AND MANAGEMENT<br>Ing of Phenomena Triggering a Disaster or Hazard; Evaluation of R<br>from Meteorological and other Agencies, Media Reports: Governmen<br>KASSESSMENT                                                                                                            | <b>6 Periods</b> Goals, Pre-Disaste         g Systems. <b>6 Periods</b> Risk: Application on tal and Community <b>6 Periods</b> ster Risk Situation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear<br>Epidemics, War a<br><b>UNIT – III</b><br>Disaster Plannin,<br>Mitigation Plan, I<br><b>UNIT – IV</b><br>Preparedness: Ma<br>Remote Sensing,<br>Preparedness.<br><b>UNIT – V</b><br>Disaster Risk: Ca<br>Techniques of Ri | elones,<br>React<br>and Co<br>DISA<br>g-Disa<br>g-Disa<br>Personi<br>DISA<br>onitori<br>Data f<br>RISH<br>oncept            | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreamflicts.          ASTER PLANNING         ster Response Personnel roles and duties, Community Mitigation         nel Training, Comprehensive Emergency Management, Early Warning         ASTER PREPAREDNESS AND MANAGEMENT         ng of Phenomena Triggering a Disaster or Hazard; Evaluation of R         from Meteorological and other Agencies, Media Reports: Governmen         K ASSESSMENT         and Elements, Disaster Risk Reduction, Global and National Disaster | Aks of Disease and<br><b>6 Periods</b><br>Goals, Pre-Disaste<br>g Systems.<br><b>6 Periods</b><br>Risk: Application of<br>Atal and Communit<br><b>6 Periods</b><br>ster Risk Situation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Volcanisms, Cyc<br>disaster: Nuclear<br>Epidemics, War a<br>UNIT – III<br>Disaster Plannin,<br>Mitigation Plan, I<br>UNIT – IV<br>Preparedness: Ma<br>Remote Sensing,<br>Preparedness.<br>UNIT – V<br>Disaster Risk: Ca<br>Techniques of Ri                      | clones,<br>React<br>and Co<br>DISA<br>g-Disa<br>Person<br>DISA<br>onitori<br>Data f<br>RISH<br>oncept<br>sk Ass<br>ent, Str | tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreamflicts. ASTER PLANNING ster Response Personnel roles and duties, Community Mitigationenel Training, Comprehensive Emergency Management, Early Warning ASTER PREPAREDNESS AND MANAGEMENT Ing of Phenomena Triggering a Disaster or Hazard; Evaluation of R from Meteorological and other Agencies, Media Reports: Government KASSESSMENT and Elements, Disaster Risk Reduction, Global and National Disastessessment, Global Co-Operation in Risk Assessment and Warning, Pe | <b>6 Periods</b> Goals, Pre-Disaste         g Systems. <b>6 Periods</b> Risk: Application o         atal and Community <b>6 Periods</b> ster Risk Situation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |

| 1 | R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies", New Royal        |
|---|-------------------------------------------------------------------------------------------------------------|
|   | Company, 2007.                                                                                              |
| 2 | Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New |
|   | Delhi, 2010                                                                                                 |
| 3 | Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep & Deep Publication          |
|   | Pvt. Ltd., New Delhi, 2008.                                                                                 |
| 4 | Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International Publishing     |
|   | House Pvt. Ltd., New Delhi, 2007.                                                                           |
| 5 | Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015              |
| 6 | Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.                       |

| COU  | RSE OUTCOMES:                                                            | Bloom's  |
|------|--------------------------------------------------------------------------|----------|
|      |                                                                          | Taxonomy |
| Upon | completion of the course, the students will be able to:                  | Mapped   |
| CO1  | Differentiate hazard and disaster with their significance.               | K4       |
| CO2  | Analyse the causes and impact of natural and manmade disaster.           | K4       |
| CO3  | Execute the steps involved in disaster planning.                         | K4       |
| CO4  | Predict vulnerability of disaster and to prevent, mitigate their impact. | K4       |
| CO5  | Prepare risk assessment strategy for national and global disaster.       | K4       |

| COURSE ARTICULATIO            | ON MATRIX     |     |     |     |     |
|-------------------------------|---------------|-----|-----|-----|-----|
| COs/POs                       | PO1           | PO2 | PO3 | PO4 | PO5 |
| CO1                           | 2             | 1   | 1   | 2   | 2   |
| CO2                           | 1             | 2   | 1   | 1   | 1   |
| CO3                           | 1             | 1   | 1   | 2   | 2   |
| CO4                           | 1             | 1   | 1   | 2   | 2   |
| CO5                           | 2             | 1   | 1   | 2   | 2   |
| 23SEACZ2                      | 1             | 1   | 1   | 2   | 2   |
| 1 – Slight, 2 – Moderate, 3 – | - Substantial |     |     |     | •   |

| Test / Bloom's<br>Category*                                              | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
|--------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| CAT1                                                                     | 50                    | 50                      |                    |                     |                      |                    | 100        |
| CAT2                                                                     |                       |                         | 100                |                     |                      |                    | 100        |
| Individual<br>Assessment 1/<br>Case Study 1/<br>Seminar 1/<br>Project 1  | 50                    | 50                      |                    |                     |                      |                    | 100        |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2/<br>Project 2 |                       |                         | 100                |                     |                      |                    | 100        |
| ESE                                                                      | 25                    | 25                      | 50                 |                     |                      |                    | 100        |

23SEACZ3

# VALUE EDUCATION

(Common to all Branches)

|                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ranches)              |                 |              |                                              |                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|--------------|----------------------------------------------|------------------------------------------------------------------|
| PREREQUISIT                                                                                                                              | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CATEGORY              | L               | Т            | Р                                            | С                                                                |
|                                                                                                                                          | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AC                    | 2               | 0            | 0                                            | 0                                                                |
| Course                                                                                                                                   | Value of education and self- development                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nt                    |                 |              |                                              |                                                                  |
| Objectives                                                                                                                               | • Requirements of good values in students                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                 |              |                                              |                                                                  |
|                                                                                                                                          | • Importance of character                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |                 |              |                                              |                                                                  |
| UNIT – I                                                                                                                                 | ETHICS AND SELF-DEVELOPMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                 |              | 6                                            | Period                                                           |
| Social values an                                                                                                                         | d individual attitudes. Work ethics, Indian visio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on of humanism.       | Mora            | 1 and        | 1 nor                                        | n-moral                                                          |
| valuation. Standa                                                                                                                        | rds and principles. Value judgements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                 |              |                                              |                                                                  |
| UNIT – II                                                                                                                                | PERSONALITY AND BEHAVIOR DEVELO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>PMENT</b>          |                 |              | 6                                            | Periods                                                          |
|                                                                                                                                          | ntific attitude. Positive Thinking. Integrity as fault Thinking. Free from anger, Dignity of labor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                     |                 | •            |                                              |                                                                  |
| UNIT – III                                                                                                                               | VALUES IN HUMAN LIFE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                 |              | 6                                            | Periods                                                          |
|                                                                                                                                          | Letter and the second se |                       |                 |              |                                              | l ci iou                                                         |
| Truthfulness, Cle                                                                                                                        | ultivation of values, Sense of duty. Devotion, S<br>eanliness. Honesty, Humanity. Power of faith, Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |                 | -            | oncen                                        | tration.                                                         |
| •                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                 | -            | oncen<br>e for                               | tration.<br>nature,                                              |
| Truthfulness, Cle<br>Discipline.<br>UNIT – IV<br>True friendship.                                                                        | eanliness. Honesty, Humanity. Power of faith, Nat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tional Unity. Patric  | otism.          | Lov          | oncen<br>e for<br>6 ]                        | tration.<br>nature,<br><b>Period</b> s                           |
| Truthfulness, Cle<br>Discipline.<br>UNIT – IV<br>True friendship.                                                                        | eanliness. Honesty, Humanity. Power of faith, Nat<br>VALUES IN SOCIETY<br>Happiness Vs suffering, love for truth. Aware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tional Unity. Patric  | otism.          | Lov          | oncen<br>e for<br>6 I<br>Asso                | tration.<br>nature,<br>Periods                                   |
| Truthfulness, Cle<br>Discipline.<br>UNIT – IV<br>True friendship.<br>andCooperation.<br>UNIT – V                                         | VALUES IN SOCIETY         Happiness Vs suffering, love for truth. Aware         Doing best for saving nature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tional Unity. Patric  | otism.<br>ve ha | Lov<br>bits. | oncen<br>e for<br>6 l<br>Asso<br>6 l         | tration.<br>nature,<br>Periods<br>ociation<br>Periods            |
| Truthfulness, Cle<br>Discipline.<br>UNIT – IV<br>True friendship.<br>andCooperation.<br>UNIT – V<br>Character and C                      | values       Numarity. Power of faith, Nate         VALUES IN SOCIETY         Happiness Vs suffering, love for truth. Aware         Doing best for saving nature.         POSITIVE VALUES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e of self-destruction | ve ha           | Lov<br>bits. | oncen<br>e for<br>6 d<br>Asso<br>6 d<br>Scie | tration.<br>nature,<br>Periods<br>ociation<br>Periods<br>ence of |
| Truthfulness, Cle<br>Discipline.<br>UNIT – IV<br>True friendship.<br>andCooperation.<br>UNIT – V<br>Character and C<br>reincarnation. Eq | VALUES IN SOCIETY         Happiness Vs suffering, love for truth. Aware         Doing best for saving nature.         POSITIVE VALUES         competence –Holy books vs Blind faith. Self-mage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e of self-destruction | ve ha           | Lov<br>bits. | oncen<br>e for<br>6 d<br>Asso<br>6 d<br>Scie | tration.<br>nature,<br>Periods<br>ociation<br>Periods<br>ence of |
| Truthfulness, Cle<br>Discipline.<br>UNIT – IV<br>True friendship.<br>andCooperation.<br>UNIT – V<br>Character and C<br>reincarnation. Eq | VALUES IN SOCIETY         Happiness Vs suffering, love for truth. Aware         Doing best for saving nature.         POSITIVE VALUES         ompetence –Holy books vs Blind faith. Self-ma         uality, Nonviolence, Humility, Role of Women. Al         ol. Honesty, Studying effectively.                                                                                                                                                                                                                                                                                                                                                                                                     | e of self-destruction | ve ha           | Lov<br>bits. | oncen<br>e for<br>6 d<br>Asso<br>6 d<br>Scie | tration.<br>nature,<br>Periods<br>ociation<br>Periods<br>ence of |

| 1 | Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, |
|---|-------------------------------------------------------------------------------------------------------|
|   | New Delhi,1998                                                                                        |
| 2 | Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010              |
| 3 | R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi, 2004                        |
| 4 | https://nptel.ac.in/courses/109104068/36                                                              |

| COUR | COURSE OUTCOMES :                                       |        |
|------|---------------------------------------------------------|--------|
| Upon | completion of the course, the students will be able to: | Mapped |
| CO1  | Know the values and work ethics.                        | K3     |
| CO2  | Enhance personality and 157ehavior development.         | K3     |
| CO3  | Apply the values in human life.                         | K3     |
| CO4  | Gain Knowledge of values in society.                    | K3     |
| CO5  | Learn the importance of positive values in human life.  | K3     |

| COURSE ARTICULATION                   | MATRIX     |     |     |     |     |     |
|---------------------------------------|------------|-----|-----|-----|-----|-----|
| Cos/Pos                               | PO1        | PO2 | PO3 | PO4 | PO5 | PO6 |
| CO1                                   | -          | -   | 3   | -   | -   | 1   |
| CO2                                   | -          | -   | 3   | -   | -   | 1   |
| CO3                                   | -          | -   | 3   | -   | -   | 1   |
| CO4                                   | -          | -   | 3   | -   | -   | 1   |
| CO5                                   | -          | -   | 3   | -   | -   | 1   |
| 23SEACZ3                              | -          | -   | 3   | -   | -   | 1   |
| 1 - Slight, $2 - $ Moderate, $3 - $ S | ubstantial | •   | •   |     | •   |     |

| Test / Bloom's<br>Category*                                               | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
|---------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| CAT1                                                                      | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| CAT2                                                                      | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| ESE                                                                       | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |

| 23SEACZ4             | <b>CONSTITUTION OF INDIA</b><br>(Common to all Branches)                                                                                                                                                     |                      | SE     | SEMESTER |      |         |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|----------|------|---------|--|
| PREREQUISITES        |                                                                                                                                                                                                              | CATEGORY             | L      | Т        | Р    | С       |  |
|                      | NIL                                                                                                                                                                                                          | AC                   | 2      | 0        | 0    | 0       |  |
| Course               | • To address the importance of constitutional rights and du                                                                                                                                                  | ities                |        | I        |      | ·       |  |
| Objectives           | • To familiarize about Indian governance and local admini                                                                                                                                                    | stration.            |        |          |      |         |  |
|                      | • To know about the functions of election commission.                                                                                                                                                        |                      |        |          |      |         |  |
| UNIT – I             | INDIAN CONSTITUTION                                                                                                                                                                                          |                      |        | 6 P      | eric | ds      |  |
| -                    | of the Indian Constitution: History Drafting Committee, (Compo-<br>ion: Preamble Salient Features.                                                                                                           | sition & Working     | ) - Ph | ilosc    | ophy | / 0     |  |
| UNIT – II            | CONSTITUTIONAL RIGHTS & DUTIES                                                                                                                                                                               |                      |        | 6 P      | eric | ds      |  |
| Exploitation, Right  | utional Rights & Duties: Fundamental Rights, Right to Equalit<br>to Freedom of Religion, Cultural and Educational Rights, I<br>of State Policy, Fundamental Duties.                                          |                      |        | -        | -    |         |  |
| <b>^</b>             | ORGANS OF GOVERNANCE                                                                                                                                                                                         |                      |        | 6 P      | eric | -<br>de |  |
|                      | ance: Parliament, Composition, Qualifications and Disquali                                                                                                                                                   | fightions Dowors     | and    |          |      |         |  |
| e e                  | t, Governor, Council of Ministers, Judiciary, Appointment and                                                                                                                                                |                      |        |          |      |         |  |
| UNIT – IV            | LOCAL ADMINISTRATION                                                                                                                                                                                         |                      |        | 6 P      | eric | ds      |  |
| Local Administration | on: District's Administration head: Role and Importance, Munic                                                                                                                                               | cipalities: Introduc | ction, | May      | or a | anc     |  |
|                      | presentative, CEO of Municipal Corporation. Panchayat raj: I                                                                                                                                                 |                      |        |          |      |         |  |
|                      | nd their roles, CEO Zila Panchayat: Position and role. Block nts), Village level: Role of Elected and Appointed officials, Imp                                                                               | •                    |        |          |      |         |  |
| UNIT – V             | ELECTION COMMISSION                                                                                                                                                                                          |                      |        | 6 P      | eric | ods     |  |
|                      | <ul> <li>on: Role and Functioning. Chief Election Commissioner an on: Role and Functioning. Institute and Bodies for the welfare of</li> <li>s Tutorial: 0 Periods Practical: 0 Periods Total: 30</li> </ul> | SC/ST/OBC and        |        |          | . S1 | tat     |  |
| <b>REFERENCES:</b>   |                                                                                                                                                                                                              |                      |        |          |      |         |  |

2 Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.

3 *M. P. Jain,* "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.

4 D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

| COUR   | COURSE OUTCOMES:                                                                |    |  |  |  |
|--------|---------------------------------------------------------------------------------|----|--|--|--|
| Upon c | Upon completion of the course, the students will be able to:                    |    |  |  |  |
| CO1    | K2                                                                              |    |  |  |  |
| CO2    | Discuss the intellectual origins of the framework of argument that informed the | K2 |  |  |  |
|        | conceptualization of social reforms leading to revolution in India.             |    |  |  |  |
| CO3    | Understand the various organs of Indian governance.                             | K2 |  |  |  |
| CO4    | Familiarize with the various levels of local administration.                    | K2 |  |  |  |
| CO5    | Gain knowledge on election commission of india.                                 | K2 |  |  |  |

| COURSE ARTICULATION MATRIX |                   |     |     |     |     |     |  |  |  |  |
|----------------------------|-------------------|-----|-----|-----|-----|-----|--|--|--|--|
| COs/POs                    | PO1               | PO2 | PO3 | PO4 | PO5 | PO6 |  |  |  |  |
| CO1                        | -                 | -   | 1   | 1   | 1   | 1   |  |  |  |  |
| CO2                        | -                 | -   | 1   | 1   | 1   | 2   |  |  |  |  |
| CO3                        | -                 | -   | 1   | 1   | 2   | 1   |  |  |  |  |
| CO4                        | -                 | -   | 1   | 1   | 1   | 1   |  |  |  |  |
| CO5                        | -                 | -   | 1   | 1   | 1   | 1   |  |  |  |  |
| 23SEACZ4                   | -                 | -   | 1   | 1   | 1   | 1   |  |  |  |  |
| 1 – Slight, 2 – Moderate   | , 3 – Substantial |     |     |     |     |     |  |  |  |  |

| ASSESSMENT                                                                | ASSESSMENT PATTERN – THEORY |                         |                    |                     |                      |                    |            |  |  |  |
|---------------------------------------------------------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|
| Test / Bloom's<br>Category*                                               | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |
| CAT1                                                                      | 20%                         | 50%                     | 30%                | -                   | -                    | -                  | 100%       |  |  |  |
| CAT2                                                                      | 20%                         | 50%                     | 30%                | -                   | -                    | -                  | 100%       |  |  |  |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | 20%                         | 50%                     | 30%                | -                   | -                    | -                  | 100%       |  |  |  |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | 20%                         | 50%                     | 30%                | -                   | -                    | -                  | 100%       |  |  |  |
| ESE                                                                       | 20%                         | 50%                     | 30%                | -                   | -                    | -                  | 100%       |  |  |  |

|                                                                                                                                                                           | .5                                                                                                                                  | PEDAGOGY STUDIES                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                               | ER                                            |                                                         |                                                             |                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|
| PREREQUISITI                                                                                                                                                              | ES                                                                                                                                  | (Common to all Branches)                                                                                                                                                                                                                                                                                                                                                                                                          | CATEGO                                                                                   | RV                                                            | L                                             | Т                                                       | Р                                                           | С                                             |
| NIL                                                                                                                                                                       | 20                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                   | AC                                                                                       | <b>, , , , , , , , , , , , , , , , , , , </b>                 | 2                                             | 0                                                       | 0                                                           | 0                                             |
| Course<br>Objectives                                                                                                                                                      | de<br>• Aj                                                                                                                          | o understand of various theories of learning<br>sign of curriculum in engineering studies.<br>pplication of knowledge in modification<br>troduction of innovation in teaching methodolo                                                                                                                                                                                                                                           | of curricul                                                                              |                                                               | -                                             | -                                                       |                                                             |                                               |
| UNIT – I                                                                                                                                                                  | INTROD                                                                                                                              | UCTION                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          |                                                               |                                               | 61                                                      | Perio                                                       | ds                                            |
| Theories of learn<br>methodology and                                                                                                                                      | ing, Currio                                                                                                                         | ogy: Aims and rationale, Policy background, C<br>culum, Teacher education. Conceptual framew                                                                                                                                                                                                                                                                                                                                      | •                                                                                        |                                                               |                                               |                                                         |                                                             |                                               |
| UNIT – II                                                                                                                                                                 | PEDAGO                                                                                                                              | GICAL PRACTICES                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                          |                                                               |                                               | 6 I                                                     | Perio                                                       | ds                                            |
|                                                                                                                                                                           | the in dept                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                          | 5 OI P                                                        | cuago                                         | gical                                                   | prac                                                        | ice                                           |
| UNIT – III                                                                                                                                                                | PEDAGO                                                                                                                              | h stage: quality assessment of included studies<br>GICAL APPROACHES                                                                                                                                                                                                                                                                                                                                                               |                                                                                          | •                                                             |                                               | 61                                                      | Perio                                                       |                                               |
| UNIT – III<br>How can teacher<br>support effective                                                                                                                        | PEDAGO<br>education<br>pedagogy<br>trices. Ped                                                                                      | h stage: quality assessment of included studies                                                                                                                                                                                                                                                                                                                                                                                   | urriculum and the body                                                                   | nd gui                                                        | dance                                         | 6 I<br>mate<br>e for                                    | Perio<br>rials<br>effec                                     | <b>ds</b><br>best                             |
| UNIT – III<br>How can teacher<br>support effective<br>pedagogical prac<br>Pedagogic strateg                                                                               | PEDAGO<br>education<br>pedagogy<br>trices. Ped<br>ies.                                                                              | h stage: quality assessment of included studies<br><b>GICAL APPROACHES</b><br>(curriculum and practicum) and the school of<br>? Theory of change. Strength and nature of                                                                                                                                                                                                                                                          | urriculum and the body                                                                   | nd gui                                                        | dance                                         | 6 I<br>mate<br>e for<br>d be                            | Perio<br>rials<br>effec                                     | <b>ds</b><br>bes<br>ctive<br>and              |
| UNIT – III<br>How can teacher<br>support effective<br>pedagogical prac<br>Pedagogic strateg<br>UNIT – IV                                                                  | PEDAGO<br>education<br>pedagogy<br>etices. Ped<br>ies.<br>PROFESS<br>elopment:                                                      | h stage: quality assessment of included studies<br><b>GICAL APPROACHES</b><br>(curriculum and practicum) and the school of<br>? Theory of change. Strength and nature of<br>lagogic theory and pedagogical approaches.                                                                                                                                                                                                            | eurriculum an<br>of the body<br>Teacher's                                                | nd guid<br>of ev<br>attitud                                   | dance<br>idence<br>les an                     | 6 I<br>mate<br>for<br>d be<br>6 I<br>port               | Perio<br>rials<br>effec<br>liefs<br>Perio<br>, Sup          | ds<br>bes<br>ctive<br>and<br>ds<br>por        |
| UNIT – III<br>How can teacher<br>support effective<br>pedagogical prac<br>Pedagogic strateg<br>UNIT – IV<br>Professional deve<br>from the head teac<br>large class sizes. | PEDAGO<br>education<br>pedagogy<br>etices. Ped<br>ies.<br>PROFESS<br>elopment:<br>cher and th                                       | h stage: quality assessment of included studies<br><b>GICAL APPROACHES</b><br>(curriculum and practicum) and the school of<br>? Theory of change. Strength and nature of<br>agogic theory and pedagogical approaches.<br><b>SIONAL DEVELOPMENT</b><br>alignment with classroom practices and follow                                                                                                                               | eurriculum an<br>of the body<br>Teacher's                                                | nd guid<br>of ev<br>attitud                                   | dance<br>idence<br>les an                     | 6 I<br>mate<br>for<br>d be<br>6 I<br>port               | Perio<br>rials<br>effec<br>liefs<br>Perio<br>, Sup          | ds<br>bes<br>ctive<br>and<br>ds<br>por<br>and |
| UNIT – IIIHow can teachersupport effectivepedagogical pracPedagogic strategUNIT – IVProfessional devefrom the head teaclarge class sizes.UNIT – VResearch gaps ar         | PEDAGO<br>education<br>pedagogy<br>etices. Ped<br>ies.<br>PROFESS<br>elopment:<br>cher and the<br>CURRIC                            | h stage: quality assessment of included studies<br><b>GICAL APPROACHES</b><br>(curriculum and practicum) and the school of<br>? Theory of change. Strength and nature of<br>lagogic theory and pedagogical approaches.<br><b>SIONAL DEVELOPMENT</b><br>alignment with classroom practices and follow<br>the community. Curriculum and assessment Ba                                                                               | eurriculum an<br>of the body<br>Teacher's<br>ow-up suppo<br>rriers to lear               | nd guid<br>of ev<br>attitud<br>ort. Pee                       | dance<br>idence<br>les an<br>er sup<br>imited | 6 I<br>mate<br>for<br>ad be<br>6 I<br>port<br>resources | Perio<br>rials<br>effec<br>liefs<br>Perio<br>Perio<br>Perio | ds<br>bes<br>and<br>ds<br>por<br>and<br>ds    |
| UNIT – IIIHow can teachersupport effectivepedagogical pracPedagogic strategUNIT – IVProfessional devefrom the head teaclarge class sizes.UNIT – VResearch gaps ar         | PEDAGO<br>education<br>pedagogy<br>etices. Ped<br>ies.<br>PROFESS<br>elopment:<br>cher and the<br>CURRIC<br>nd future<br>mination a | h stage: quality assessment of included studies<br><b>GICAL APPROACHES</b><br>(curriculum and practicum) and the school of<br>(? Theory of change. Strength and nature of<br>lagogic theory and pedagogical approaches.<br><b>SIONAL DEVELOPMENT</b><br>alignment with classroom practices and follow<br>the community. Curriculum and assessment Bac<br><b>ULUM AND ASSESSMENT</b><br>directions Research design Contexts Pedago | eurriculum an<br>of the body<br>Teacher's<br>ow-up suppo<br>rriers to lear<br>gy Teacher | nd guid<br>of ev<br>attitud<br>ort. Pee<br>ning: li<br>educat | dance<br>idence<br>les an<br>er sup<br>imited | 6 I<br>mate<br>for<br>ad be<br>6 I<br>port<br>resources | Perio<br>rials<br>effec<br>liefs<br>Perio<br>Perio<br>Perio | ds<br>bes<br>and<br>ds<br>por<br>and<br>ds    |

| 1 | Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261, 2001.     |
|---|-----------------------------------------------------------------------------------------------------------|
| 2 | Alexander RJ, Culture and pedagogy: International comparisons in primary education. Oxford and Boston:    |
|   | Blackwell, 2001                                                                                           |
| 3 | Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and         |
|   | reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): |
|   | 272–282, 2013.                                                                                            |
| 4 | Agrawal M, Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36  |
|   | (3): 361-379, 2004                                                                                        |

|     | RSE OUTCOMES:<br>completion of the course, the students will be able to:                      | Bloom's<br>Taxonomy<br>Mapped |
|-----|-----------------------------------------------------------------------------------------------|-------------------------------|
|     |                                                                                               |                               |
| CO1 | Explain the concept of curriculum, formal and informal education systems and teacher          | K3                            |
|     | education.                                                                                    |                               |
| CO2 | Explain the present pedagogical practices and the changes occurring in pedagogical approaches | K3                            |
| CO3 | Understand the relation between teacher and community, support from various levels of         | K3                            |
|     | teachers to students and limitation in resources and size of the class.                       |                               |
| CO4 | Perform research in design a problem in pedagogy and curriculum development.                  | K3                            |

# COURSE ARTICULATION MATRIX

| COs/POs               | PO1               | PO2   | PO3 | PO4 | PO5 | PO6 |
|-----------------------|-------------------|-------|-----|-----|-----|-----|
| CO1                   | -                 | -     | 1   | 1   | 2   | 1   |
| CO2                   | -                 | -     | 1   | 1   | 1   | 2   |
| CO3                   | -                 | -     | 1   | 1   | 2   | 1   |
| CO4                   | -                 | -     | 1   | 1   | 2   | 1   |
| 23SEACZ5              | -                 | -     | 1   | 1   | 2   | 1   |
| 1 - Slight, 2 - Moder | rate, 3 – Substar | ntial |     |     |     |     |

| ASSESSMENT                                                                | PATTERN – THE         | CORY                    |                    |                     |                      |                    |            |
|---------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| Test / Bloom's<br>Category*                                               | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
| CAT1                                                                      | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| CAT2                                                                      | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| ESE                                                                       | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |

| 23SEACZ               | 23SEACZ6 STRESS MANAGEMENT BY YOGA<br>(Common to all Branches) |                                                                                                                 |             |       |      |           |        |  |
|-----------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------|-------|------|-----------|--------|--|
| PREREQUISI            | ГES                                                            |                                                                                                                 | CATEGORY    | L     | Т    | Р         | С      |  |
|                       |                                                                | NIL                                                                                                             | AC          | 2     | 0    | 0         | 0      |  |
| Course                | • To create awareness on the benefits of yoga and meditation.  |                                                                                                                 |             |       |      |           |        |  |
| Objectives            | •                                                              | To understand the significance of Asana and Pr                                                                  | anayama.    |       |      |           |        |  |
| UNIT – I              | PHY                                                            | SICAL STRUCTURE AND ITS FUNCTIONS                                                                               |             |       |      | 6 P       | eriods |  |
| •                     | leg e                                                          | rre, Importance of physical exercise, Rules and re-<br>xercise, breathing exercise, eye exercise, kap<br>ation. | e 1         | -     | •    |           |        |  |
| UNIT – II             | YOG                                                            | A TERMINOLOGIES                                                                                                 |             |       |      | 6 Periods |        |  |
| Yamas - Ahimsa        | a, satya                                                       | , astheya, bramhacharya, aparigraha                                                                             |             |       |      |           |        |  |
| Niyamas- Sauch        | ia, santo                                                      | osha, tapas, svadhyaya, Ishvara pranidhana.                                                                     |             |       |      |           |        |  |
| UNIT – III            | ASAI                                                           | NA                                                                                                              |             |       |      | 6 Periods |        |  |
| Asana - Rules &       | Regul                                                          | ations – Types & Benefits                                                                                       |             |       |      |           |        |  |
| UNIT – IV             | PRA                                                            | NAYAMA                                                                                                          |             |       |      | 6 P       | eriods |  |
| Regularization of     | of breat                                                       | hing techniques and its effects-Types of pranayam                                                               | а           |       |      |           |        |  |
| UNIT – V              | MIN                                                            | D                                                                                                               |             |       |      | 6 P       | eriods |  |
| -                     |                                                                | - imprinting & magnifying – eight essential factor<br>efits of meditation, such as perspicacity, magnanin       |             |       |      | -         | -      |  |
| <b>Contact Period</b> | s:                                                             |                                                                                                                 |             |       |      |           |        |  |
| Lecture: 30 Per       | riods                                                          | Tutorial: 0 Periods Practical: 0 Perio                                                                          | ds Total: 3 | 0 Per | iods |           |        |  |

| 1 | Janardan Swami Yogabhyasi Mandal , <b>"Yogic Asanas for Group Training-Part-I"</b> , Nagpur.       |
|---|----------------------------------------------------------------------------------------------------|
| 2 | Swami Vivekananda, "Rajayoga or conquering the Internal Nature", Advaita Ashrama (Publication      |
|   | Department), Kolkata.                                                                              |
| 3 | Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New Dawn          |
|   | Press, New Delhi, 2016.                                                                            |
| 4 | K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi, 2007. |

|     | SE OUTCOMES:<br>ompletion of the course, the students will be able to: | Bloom's<br>Taxonomy<br>Mapped |
|-----|------------------------------------------------------------------------|-------------------------------|
| CO1 | Practice physical exercises and maintain good health.                  | K3                            |
| CO2 | Attain knowledge on the various concepts of Yoga.                      | K2                            |
| CO3 | Perform various asanas with an understanding on their benefits.        | K3                            |
| CO4 | Practice breathing techniques in a precise manner.                     | K3                            |
| CO5 | Attain emotional stability and higher level of consciousness.          | K2                            |

| COs/POs  | PO1 | PO2 | PO3 | PO4 | PO5 |
|----------|-----|-----|-----|-----|-----|
| CO1      | -   | -   | -   | -   | 2   |
| CO2      | -   | -   | -   | -   | 3   |
| CO3      | -   | -   | -   | -   | 2   |
| CO4      | -   | -   | -   | -   | 1   |
| CO5      | -   | -   | -   | -   | 1   |
| 23SEACZ6 | -   | -   | -   | -   | 2   |

| ASSESSMENT                  | ASSESSMENT PATTERN – THEORY |                         |                    |                     |                      |                    |            |  |  |  |
|-----------------------------|-----------------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|--|--|--|
| Test / Bloom's<br>Category* | Remembering<br>(K1) %       | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |  |  |  |
|                             |                             |                         |                    |                     |                      |                    |            |  |  |  |
| CAT1                        | 40%                         | 30%                     | 30%                | -                   | -                    | -                  | 100%       |  |  |  |
| CAT2                        | 30%                         | 40%                     | 30%                | -                   | -                    | -                  | 100%       |  |  |  |
| Individual                  | 40%                         | 40%                     | 20%                | -                   | -                    | -                  | 100%       |  |  |  |
| Assessment1/                |                             |                         |                    |                     |                      |                    |            |  |  |  |
| Case study1/                |                             |                         |                    |                     |                      |                    |            |  |  |  |
| Seminar 1/                  |                             |                         |                    |                     |                      |                    |            |  |  |  |
| Project1                    |                             |                         |                    |                     |                      |                    |            |  |  |  |
| Individual                  | 30%                         | 30%                     | 40%                | -                   | -                    | -                  | 100%       |  |  |  |
| Assessment2/                |                             |                         |                    |                     |                      |                    |            |  |  |  |
| Case study2/                |                             |                         |                    |                     |                      |                    |            |  |  |  |
| Seminar 2 /                 |                             |                         |                    |                     |                      |                    |            |  |  |  |
| Project2                    |                             |                         |                    |                     |                      |                    |            |  |  |  |
| ESE                         | 30%                         | 30%                     | 40%                | -                   | -                    | -                  | 100%       |  |  |  |

| 23SEACZ7                 | PERSONALITY DEVELOPMENT THROUGH LIFE<br>ENLIGHTENMENT SKILLS |                          |        |           |       |         |
|--------------------------|--------------------------------------------------------------|--------------------------|--------|-----------|-------|---------|
|                          | (Common to all Branches)                                     |                          |        |           |       |         |
| PREREQUISIT              | ES :                                                         | CATEGORY                 | L      | Т         | Р     | С       |
| NIL                      |                                                              | AC                       | 2      | 0         | 0     | 0       |
| Course                   | • To familiar with Techniques to achieve the hig             |                          |        |           |       |         |
| Objectives               | • To become a person with stable mind, pleasing              | g personality and deter  | minat  | ion.      |       |         |
| UNIT – I                 |                                                              |                          |        | 6 Periods |       |         |
| Neetisatakam-Hol         | istic development of personality-Verses- 19,20,21,22 (v      | wisdom)-Verses29,31,3    | 32 (pi | ide &     | & hei | roism)- |
| Verses- 26,28,6.         |                                                              |                          |        |           |       |         |
| UNIT – II                | NIT – II                                                     |                          |        |           |       |         |
| Verses- 52,53,59         | (dont's)-Verses- 71,73,75,78 (do's) Approach to              | day to day work a        | and d  | uties     | S     | hrimad  |
| BhagwadGeeta - G         | Chapter 2-Verses 41, 47,48,                                  |                          |        |           |       |         |
| UNIT – III               |                                                              |                          |        |           | 6 Pe  | riods   |
| Shrimad Bhagwad          | dGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Ver       | rses 5,13,17, 23, 35,- 0 | Chapt  | er 18     | -Ver  | ses 45, |
| 46, 48.                  |                                                              |                          |        |           |       |         |
| UNIT – IV                |                                                              |                          |        |           | 6 Pe  | riods   |
| Statements of basi       | c knowledgeShrimad BhagwadGeeta: -Chapter2-Verse             | es 56, 62, 68 -Chapter   | 12 -V  | erses     | : 13, | 14, 15, |
| 16,17, 18-Persona        | lity of Role model.                                          |                          |        |           |       |         |
| UNIT – V                 |                                                              |                          |        |           | 6 Pe  | riods   |
| Shrimad Bhagwad          | dGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,4         | 2, Chapter 4-Verses 1    | 8, 38  | ,39-0     | Chapt | er18 –  |
| Verses 37,38,63.         |                                                              |                          |        |           |       |         |
| <b>Contact Periods</b> : |                                                              |                          |        |           |       |         |
| Lecture: 30 Perio        | ods Tutorial: 0 Periods Practical: 0 Periods                 | Total: 30 Periods        |        |           |       |         |

| 1 | Swami SwarupanandaAdvaita Ashram "Srimad Bhagavad Gita", AdvaitaAshrama, Kolkata,2016                |
|---|------------------------------------------------------------------------------------------------------|
| 2 | P.Gopinath, Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Satakam" (Niti-sringar-vairagya), New |
|   | Delhi, 1986.                                                                                         |
| 3 | Swami Mukundananda, JagadguruKripalujiYog "Bhagavad Gita: The Song Of God", USA,2019                 |
| 4 | A.C. Bhaktivedanta Swami Prabhupada "Bhagavad-Gita As It Is",Bhaktivedanta Book Trust                |
|   | Publications,2001                                                                                    |

| COURSE OUTCOMES: |                                                         | Bloom's<br>Taxonomy |
|------------------|---------------------------------------------------------|---------------------|
| Upon c           | completion of the course, the students will be able to: | Mapped              |
| CO1              | Apply the Holistic development in life                  | K4                  |
| CO2              | Effective Planning of day to day work and duties        | K4                  |
| CO3              | Identify mankind to peace and prosperity                | K4                  |
| CO4              | Develop versatile personality.                          | K4                  |
| CO5              | Awakening wisdom in life                                | K4                  |

| COURSE ARTICULATION MATRIX |                 |          |     |     |     |     |  |  |  |
|----------------------------|-----------------|----------|-----|-----|-----|-----|--|--|--|
| COs/POs                    | PO1             | PO2      | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                        | -               | -        | 1   | -   | -   | -   |  |  |  |
| CO2                        | -               | -        | 1   | -   | -   | -   |  |  |  |
| CO3                        | -               | -        | 1   | -   | -   | -   |  |  |  |
| CO4                        | -               | -        | 1   | -   | -   | -   |  |  |  |
| CO5                        | -               | -        | 1   | -   | -   | -   |  |  |  |
| 23SEACZ7                   | -               | -        | 1   | -   | -   | -   |  |  |  |
| 1 - Slight, 2 - Mod        | derate, 3 – Sub | stantial |     |     |     |     |  |  |  |

| Test / Bloom's<br>Category*                                               | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluating<br>(K5) % | Creating<br>(K6) % | Total<br>% |
|---------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|---------------------|----------------------|--------------------|------------|
| CAT1                                                                      | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| CAT2                                                                      | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |
| ESE                                                                       | 20%                   | 50%                     | 30%                | -                   | -                    | -                  | 100%       |

| 23SEACZ8             | CZ8 SANSKRIT FOR TECHNICAL KNOWLEDGE<br>(Common to all Branches)                                                                 |                                                                                                                                                                    |       |       | SEMESTER |     |  |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----------|-----|--|--|--|--|
| PREREQUIS            | ITES:                                                                                                                            | CATEGORY                                                                                                                                                           | L     | Т     | Р        | С   |  |  |  |  |
| NIL                  |                                                                                                                                  | AC                                                                                                                                                                 | 2     | 0     | 0        | 0   |  |  |  |  |
| Course<br>Objectives | <ul><li>To get a working knowledge in illustrious Sanskrit,</li><li>Learning of Sanskrit to improve brain functioning.</li></ul> | <ul> <li>To get a working knowledge in illustrious Sanskrit, the scientific language in the</li> <li>Learning of Sanskrit to improve brain functioning.</li> </ul> |       |       |          |     |  |  |  |  |
|                      | • Enhancing the memory power.                                                                                                    |                                                                                                                                                                    |       |       |          |     |  |  |  |  |
|                      | • Learning of Sanskrit to develop the logic in mathem                                                                            | natics, science & ot                                                                                                                                               | her s | ubjec | cts.     |     |  |  |  |  |
| UNIT – I             | BASICS OF SANSKRIT                                                                                                               |                                                                                                                                                                    |       | 6     | Perio    | ods |  |  |  |  |
| Alphabets in S       | anskrit, Past/Present/Future Tense.                                                                                              |                                                                                                                                                                    |       |       |          |     |  |  |  |  |
| UNIT – II            | SENTENCES AND ROOTS                                                                                                              |                                                                                                                                                                    |       | 6     | Perio    | ds  |  |  |  |  |
| Simple Senten        | ces - Order, Introduction of roots                                                                                               |                                                                                                                                                                    | •     |       |          |     |  |  |  |  |
| UNIT – III           | SANSKRIT LITERATURE                                                                                                              |                                                                                                                                                                    |       | 6 ]   | Perio    | ods |  |  |  |  |
| Technical info       | rmation about Sanskrit Literature                                                                                                |                                                                                                                                                                    |       |       |          |     |  |  |  |  |
| UNIT – IV            | TECHNICAL CONCEPTS -1                                                                                                            |                                                                                                                                                                    |       | 6     | Perio    | ods |  |  |  |  |
| Technical cond       | cepts of Engineering-Electrical, Mechanical                                                                                      |                                                                                                                                                                    |       |       |          |     |  |  |  |  |
| UNIT – V             | TECHNICAL CONCEPTS -2                                                                                                            |                                                                                                                                                                    |       | 6     | Perio    | ods |  |  |  |  |
| Technical cond       | cepts of Engineering-Architecture, Mathematics                                                                                   |                                                                                                                                                                    |       |       |          |     |  |  |  |  |
| <b>Contact Perio</b> | ds:                                                                                                                              |                                                                                                                                                                    |       |       |          |     |  |  |  |  |
| Lecture: 30 F        | Periods Tutorial: 0 Periods Practical: 0 Periods                                                                                 | Total: 30 Period                                                                                                                                                   | S     |       |          |     |  |  |  |  |

1 Dr. Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.

2 Prathama Deeksha Vempati Kutumbshastri, "**Teach Yourself Sanskrit**", Rashtriya Sanskrit Sansthanam, New Delhi, Publication, 2009.

3 Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi, 2006.

| COURS   | E OUTCOMES:                                                                    | Bloom's  |
|---------|--------------------------------------------------------------------------------|----------|
|         |                                                                                | Taxonomy |
| Upon co | mpletion of the course, the students will be able to:                          | Mapped   |
| CO1     | Recognize ancient literature and their basics                                  | K3       |
| CO2     | Formulate the sentences with order and understand the roots of Sanskrit        | K2       |
| CO3     | Acquire familiarity of the major traditions of literatures written in Sanskrit | К3       |
| CO4     | Distinguish the Technical concepts of Electrical & Mechanical Engineering      | K2       |
| CO5     | Categorize the Technical concepts of Architecture & Mathematics                | K2       |

| COURSE ARTICULATION MATRIX |                 |        |     |     |     |     |  |  |  |
|----------------------------|-----------------|--------|-----|-----|-----|-----|--|--|--|
| COs/POs                    | PO1             | PO2    | PO3 | PO4 | PO5 | PO6 |  |  |  |
| CO1                        | -               | -      | -   | 1   | 2   | 1   |  |  |  |
| CO2                        | -               | -      | -   | 1   | 2   | -   |  |  |  |
| CO3                        | -               | -      | -   | 1   | 1   | 1   |  |  |  |
| CO4                        | -               | -      | -   | 2   | 1   | 1   |  |  |  |
| CO5                        | -               | -      | -   | 1   | 2   | 1   |  |  |  |
| 23SEACZ8                   | -               | -      | -   | 1   | 2   | 1   |  |  |  |
| 1 - Slight, $2 - $ Mode    | rate, 3 – Subst | antial |     |     |     | •   |  |  |  |

| Test /<br>Bloom's                                                         | Remembering<br>(K1) % | Understanding<br>(K2) % | Applying<br>(K3) % | Analyzing<br>(K4) % | Evaluatin<br>g (K5) % | Creating<br>(K6) % | Total<br>% |
|---------------------------------------------------------------------------|-----------------------|-------------------------|--------------------|---------------------|-----------------------|--------------------|------------|
| Category*                                                                 |                       |                         |                    |                     |                       |                    |            |
| CAT1                                                                      | 20%                   | 50%                     | 30%                | -                   | -                     | -                  | 100%       |
| CAT2                                                                      | 20%                   | 50%                     | 30%                | -                   | -                     | -                  | 100%       |
| Individual<br>Assessment 1 /<br>Case Study 1/<br>Seminar 1 /<br>Project1  | 20%                   | 50%                     | 30%                | -                   | -                     | -                  | 100%       |
| Individual<br>Assessment 2 /<br>Case Study 2/<br>Seminar 2 /<br>Project 2 | 20%                   | 50%                     | 30%                | -                   | -                     | -                  | 100%       |
| ESE                                                                       | 20%                   | 50%                     | 30%                | -                   | -                     | -                  | 100%       |