

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum For M. E. MANUFACTURING ENGINEERING

2023
Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

(An Autonomous Institution Affiliated to Anna University)

VISION

To create outstanding Mechanical Engineers with strong domain knowledge and skills capable of working in an Interdisciplinary environment with exemplary ethical values contributing to society through Innovation, Entrepreneurship and Leadership.

MISSION

- To develop in each student, a strong theoretical and practical knowledge, a global outlook for a sustainable future and problem solving skills.
- To make productive members of interdisciplinary teams, capable of adapting to changing environments of Engineering, technology and society.
- To inculcate critical thinking abilities among students to enhance innovative ideas and entrepreneurial skills, leadership qualities.
- To imbibe moral and ethical values along with leadership qualities in students.

(An Autonomous Institution Affiliated to Anna University)

M.E. MANUFACTURING ENGINEERING

PROGRAMME EDUCATIONAL OUTCOMES (PEOs)

The PEO's are to facilitate graduating students to

- PEO1: Develop the skills for examining the real life problems and to identify the mechanism for finding the feasible solution.
- PEO2 : Prepare a technical report to imply the Manufacturing Engineering principles and concepts on Local and Global societial needs.
- PEO3 : Become effective and excellent need based engineer, to provide solutions for social and technical Challenges through innovative technologies and modern machineries.

(An Autonomous Institution Affiliated to Anna University)

M.E. MANUFACTURING ENGINEERING

PROGRAMME OUTCOMES (POs)

On successful completion of the programme the graduates will be able,

- PO1: Independently conduct investigation and develop methodology to solve practical problems.
- PO2: Prepare, write and present comprehensive technical reports / documents.
- PO3: Demonstrate the degree of Mastery of Expertise in Manufacturing Engineering.
- PO4: Develop the sustainable research attitude through lifelong learning to full fill the global needs.
- PO5: Acquire the competency for resolving the societal issues in Product Geometry / Environment/ Recyclable / Disposal through inter disciplinary activities.

FIRST SEMESTER

C	Course			CA	E d C	Total	Н	lours/	Week	ζ
S. No	Code	Course Title	Category	CA Marks	End Sem Marks	Total Marks	L	T	P	С
		T	HEORY CO	URSES						•
		RESEARCH METHODOLOGY								
1.	23MFFCZ1	AND IPR	FC	40	60	100	3	0	0	3
		(Common to all branches)								
		APPLIED MATHEMATICS FOR								
2.	23MFFC02	MANUFACTURING	FC	40	60	100	3	1	0	4
		ENGINEERING								
3.	23MFPC01	THEORY OF METAL CUTTING	PC	40	60	100	3	1	0	4
٥.	23MITC01	AND PRACTICES	1 C	40	00	100	3	1	0	4
4.	23MFPC02	ADVANCES IN CASTING AND	PC	40	60	100	3	0	0	3
7.	23MIT C02	WELDING TECHNOLOGIES	1 C	40	00	100	3	U	0	3
5.	23MFPC03	CORROSION AND SURFACE	PC	40	60	100	3	1	0	4
٥.	23MIT C03	ENGINEERING	r C	40	00	100	3	1	U	4
6.	23MFPEXX	PROFESSIONAL ELECTIVE - I	PE	40	60	100	3	0	0	3
7.	23MFACXX	AUDIT COURSE - I	AC	40	60	100	2*	0	0	0
PRACTICAL COURSES							l l		,	
Ω	8. 23MFPC04 PROCESS MODELING AND			60	40	100	0	0	4	2
0.	8. 23MFPC04 SIMULATION LABORATORY		PC	00	40	100	U	U	4	
	TOTAL			340	460	800	20	3	4	23

SECOND SEMESTER

S.	Course	Common Tible	Catalana	CA	End Sem	Total	Н	lours/	Weel	ζ .				
No	Code	Course Title	Category	Marks	Marks	Marks	L	T	P	C				
	1	7	THEORY CO	URSES						•				
1.	IN MANUFACTURING													
2	23MFPC06	MATERIAL TESTING AND CHARACTERIZATION	PC	40	60	100	3	1	0	4				
3.	23MFPC07	INDUSTRIAL AUTOMATION	PC	40	60	100	3	0	0	3				
4.	23MFPEXX	PROFESSIONAL ELECTIVE - II	PE	40	60	100	3	0	0	3				
5.	23MFPEXX	PROFESSIONAL ELECTIVE - III	PE	40	60	100	3	0	0	3				
6.	23MFACXX	AUDIT COURSE - II	AC	40	60	100	2*	0	0	0				
		PR	RACTICAL C	OURSES										
7.	7. 23MFPC08 MODERN MANUFACTURING ENGINEERING LABORATORY PC				40	100	0	0	4	2				
8.	23MFEE01	MINI PROJECT	EEC	40	60	100	0	0	4	2				
	TOTAL				460	800	17	2	8	21				

THIRD SEMESTER

S.	Course Code	Course Title Ca	Catagory	CA Marks	End Sem	Total	Hours/Week				
No	Code	course ritte	Category	CA Mai NS	Marks	Marks	L	T	P	C	
	THEORY COURSES										
1	23MFPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3	
2	23MFOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3	
		PR	ACTICAL (COURSES							
3	23MFEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	-	100	•	-	*	2	
4	23MFEE03	PROJECT PHASE I	EEC	100	100	200	0	0	12	6	
		TOTAL		280	220	500	6	0	12	14	

^{* -} FOUR WEEKS OF INTERNSHIP / INDUSTRIAL TRAINING

FOURTH SEMESTER

S.	Course	Course Title	Catagory	CA	End Sem	Total		Hou	rs/W	eek	
No	Code	course True		Marks	Marks	Marks	L	Т	P	C	
PRA	RACTICAL COURSES										
1	23MFEE04	PROJECT PHASE II	EEC	200	200	400	0	0	24	12	
		TOTAL		200	200	400	0	0	24	12	

TOTAL CREDITS: 70

Note:* No Credit Courses

		LIST OF PRO	FESSIONAL	ELECTIVE	S					
S. No	Course Code	Course Title	Category	CA Marks	End Sem Marks	Total Marks	L	Т	P	С
		PROFESS	SIONAL ELEC	CTIVE I						
1	23MFPE01	DIGITAL MANUFACTURING	PE	40	60	100	3	0	0	3
2	23MFPE02	ADVANCES IN METROLOGY AND MEASUREMENTS	PE	40	60	100	3	0	0	3
3	23MFPE03	INDUSTRY 4.0 AND IOT	PE	40	60	100	3	0	0	3
4	23MFPE04	ADVANCED ENGINEERING MATERIALS AND METALLURGY	PE	40	60	100	3	0	0	3
5	23MFPE05	ADVANCED FINITE ELEMENT METHODS	PE	40	60	100	3	0	0	3
		PROFESS	IONAL ELEC	TIVE II						
6	23MFPE06	WEAR ANALYSIS AND CONTROL	PE	40	60	100	3	0	0	3
7	23MFPE07	MACHINE TOOL DRIVES AND CONTROL	PE	40	60	100	3	0	0	3
8	23MFPE08	SENSORS FOR INTELLIGENT MANUFACTURING	PE	40	60	100	3	0	0	3
9	23MFPE09	MEMS AND NEMS	PE	40	60	100	3	0	0	3
10	23MFPE10	LEAN MANUFACTURING SYSTEMS AND IMPLEMENTATION	PE	40	60	100	3	0	0	3
		PROFESSI	ONAL ELEC	TIVE III						
11	23MFPE11	HIGH SPEED MACHINING	PE	40	60	100	3	0	0	3
12	23MFPE12	SUPPLY CHAIN MANAGEMENT	PE	40	60	100	3	0	0	3
13	23MFPE13	DESIGN FOR MANUFACTURE, ASSEMBLY AND MANUFACTURING ENVIRONMENT	PE	40	60	100	3	0	0	3
14	23MFPE14	THEORY OF METAL FORMING	PE	40	60	100	3	0	0	3
15	23MFPE15	NON-DESTRUCTIVE EVALUATION	PE	40	60	100	3	0	0	3

	PROFESSIONAL ELECTIVE IV												
S. No	Course Code	Course Title	Category	CA Marks	End Sem Marks	Total Marks	L	Т	P	С			
16	23MFPE16	GREEN MANUFACTURING	PE	40	60	100	3	0	0	3			
17	23MFPE17	VIBRATION CONTROL AND CONDITION MONITORING	PE	40	60	100	3	0	0	3			
18	23MFPE18	PRODUCT DESIGN AND DEVELOPMENT	PE	40	60	100	3	0	0	3			
19	23MFPE19	RELIABILITY AND QUALITY ENGINEERING	PE	40	60	100	3	0	0	3			
20	23MFPE20	ADVANCES IN MANUFACTURING PROCESSES	PE	40	60	100	3	0	0	3			

LIST OF OPEN ELECTIVE COURSES

SI.	Course	Course Title	Catagomy	CA	End	Total	Но	ours	/Wee	ek
No	Code	course ritte	Category	Marks	Sem Marks	Marks	L	Т	P	С
1	23SE0E01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3
2	23SE0E02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3
3	23SEOE03	GREEN BUILDING	OE	40	60	100	3	0	0	3
4	23EE0E04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3
5	23EE0E05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3
6	23EEOE06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3
7	23GEOE07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3
8	23GEOE08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3
9	23GE0E09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3
10	23EDOE10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3
11	23ED0E11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3
12	23EDOE12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3
13	23MF0E13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3
14	23MFOE14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3
15	23MFOE15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3
16	23TE0E16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3
17	23TE0E17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3

SI.	Course	Course Tible	Catagogg	CA	End	Total	Н	ours/	/Wee	k
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	С
18	23TE0E18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3
19	23PSOE19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3
20	23PSOE20	ELECTRICITY TRADING AND ELECTRICITY ACTS	OE	40	60	100	3	0	0	3
21	23PSOE21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3
22	23PE0E22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PEOE23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PEOE24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AE0E25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AE0E26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3
27	23AE0E27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3
31	23CSOE31	ARTIFICIAL INTELLIGENCE	OE	40	60	100	3	0	0	3
32	23CSOE32	COMPUTER NETWORK MANAGEMENT	OE	40	60	100	3	0	0	3
33	23CSOE33	BLOCKCHAIN TECHNOLOGIES	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSES

(Common to all branches)

S. No	Course	Course Title	Category	CA	End Sem	Total		HOU	RS	
	Code	3011100 11110	dutegory	Marks	Marks	Marks	L	T	P	С
1	23MFACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0
2	23MFACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0
3	23MFACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0
4	23MFACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0
5	23MFACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0
6	23MFACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0
7	23MFACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT	AC	40	60	100	2	0	0	0
8	23MFACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0

SUMMARY OF CREDIT DISTRIBUTION

C No	Course /			Credits			Dongontogo
S.No	Subject Area	I SEM	IISEM	IIISEM	IVSEM	Total	Percentage
1.	FC	7	1	-	-	07	10 %
2.	PC	13	13	-	-	26	37.14%
3.	PE	3	6	3	-	12	17.14 %
4.	OE	-	-	3	-	03	4.29 %
5.	AC	0	0	-	-	(Non Credit)	0%
6.	EEC	-	2	8	12	22	31.43 %
	Total Credits	23	21	14	12	70	100.00%

CATEGORY-WISE CREDIT DISTRIBUTION

FUNDAMENTAL COURSE (FC)

S.	Course	Course Title	Category	CA	End Sem	Total	ŀ	lours/	Week	
No	Code			Marks	Marks	Marks	L	T	P	C
1.	22MFFC71	RESEARCH METHODOLOGY AND IPR	FC	40	60	100	3	0	0	3
2.	251.11 1 002	APPLIED MATHEMATICS FOR MANUFACTURING	FC	40	60	100	3	1	0	4
		Total		80	120	200	6	1	0	7

PROFESSIONAL CORE (PC)

S.	Course Code	Course Title	Category	CA	End	Total	Н	ours/	Week	
No	course coue	Course Title	category	Marks	Sem Marks	Marks	L	T	P	С
1.	23MFPC01	THEORY OF METAL CUTTING AND PRACTICES	PC	40	60	100	3	1	0	4
2.	23MFPC02	ADVANCES IN CASTING AND WELDING TECHNOLOGIES	PC	40	60	100	3	0	0	3
3.	23MFPC03	CORROSION AND SURFACE ENGINEERING	PC	40	60	100	3	1	0	4
4.	23MFPC04	PROCESS MODELING AND SIMULATION LABORATORY	PC	60	40	100	0	0	4	2
5.	23MFPC05	OPTIMIZATION TECHNIQUES IN MANUFACTURING	PC	40	60	100	3	1	0	4
6.	23MFPC06	MATERIAL TESTING AND CHARACTERIZATION	PC	40	60	100	3	1	0	4
7.	23MFPC07	INDUSTRIAL AUTOMATION	PC	40	60	100	3	0	0	3
8.	23MFPC08	MODERN MANUFACTURING ENGINEERING LABORATORY	PC	60	40	100	0	0	4	2
	Total			360	440	800	18	4	8	26

PROFESSIONAL ELECTIVE (PE)

S.	Course	Course Title	Category	CA	End Sem	Total	Н	Hours/Week			
No	Code	course True	category	Marks	Marks	Marks	L	T	P	С	
1.	23MFPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3	
2.	23MFPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3	
3.	23MFPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3	
4.	23MFPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3	
		Total		160	240	400	12	0	0	12	

OPEN ELECTIVE (OE)

S.	Lourse little Category		End Sem		Hours/Week					
No	Code	de Course ride Category	category	Marks	Marks	Marks	L	T	P	С
1.	23MFOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3
	,	Total		40	60	100	3	0	0	3

AUDIT COURSE (AC)

				CA End .	l _{Total}		Hours/Week			
S. No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	С
1.	23MFACXX	AUDIT COURSE - I	AC	40	60	100	2	0	0	0
2.	23MFACXX	AUDIT COURSE - II	AC	40	60	100	2	0	0	0
		Total		80	120	200	4	0	0	0

EMPLOYABILITY ENHANCEMENT COURSE (EEC)

	_	G Will		CA	End	End Total		Hours/Week			
S. No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	С	
1	23MFEE01	MINI PROJECT	EEC	40	60	100	0	0	4	2	
2	23MFEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	0	100	0	0	**	2	
3	23MFEE03	PROJECT PHASEI	EEC	100	100	200	0	0	12	6	
4	23MFEE04	PROJECT PHASE II	EEC	200	200	400	0	0	24	12	
				440	360	800	0	0	40	22	

^{**4} WEEKS OF INTERNSHIP / INDUSTRIAL TRAINING

221/1	FFCZ1
43 [VI]	rruzi

RESEARCH METHODOLOGY AND IPR (Common to all branches)

I

PREREQUISITES	CATEGORY	L	T	P	С
NIL	FC	3	0	0	3

Course Objectives	1.To impart knowledge on research methodology ,Quantitative methodology solving, data interpretation and report writing2. To know the importance of IPR and patent rights.	nods for					
UNIT – I	INTRODUCTION	9 Periods					
Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question-Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code.							
UNIT – II	QUANTITATIVE METHODS FOR PROBLEM SOLVING	9 Periods					
Statistical Modelling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis.							
UNIT – III	DATA DESCRIPTION AND REPORT WRITING	9 Periods					
and graphs tha and other grap	Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables, Relation between frequency distributions and other graphs, preparing data for analysis. Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic						
UNIT – IV	INTELLECTUAL PROPERTY	9 Periods					
Development: t International S	Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.						
UNIT – V	PATENT RIGHTS	9 Periods					
databases. Geo	Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Contact Periods:						

REFERENCES

Lecture: 45 Periods

1 Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students", Juta Academic, 1996.

Practical: 0 Periods

Total: 45 Periods

2 Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, engageLearning, 2013.

Tutorial: 0 Periods

- 3 RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2014.
- 4 Dr. C. R. Kotharia and GauravGarg, "Research Methodology: Methods and Trends", New age international publishers, Fourth Edition, 2018.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Formulate research question for conducting research.	K4
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K4
CO4	Develop a structured content to write technical report.	K4
CO5	Summarize the importance of IPR and protect their research work through intellectual property.	K4

Course Articulat	Course Articulation Matrix									
COs/POs	Os/POs PO1 PO		PO2 PO3		P05					
CO1	1	2	1	1	2					
CO2	2	-	-	-	-					
CO3	3	3	3	2	2					
CO4	2	2	2	2	2					
CO5	1	1	1	1	1					
23MFFCZ1	2	2	1	2	2					
1 – Slight, 2 – Mo	- Slight, 2 - Moderate, 3 - Substantial									

ASSESSMENT PA	ATTERN - THEOF	RY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual							
Assessment 1							
/Case Study 1/	-	50	30	20	-	-	100
Seminar 1 /							
Project1							
Individual							
Assessment 2							
/Case Study 2/	-	50	30	20	-	-	100
Seminar 2 /							
Project 2							
ESE	30	30	20	20	-	-	100

23MFFC02	APPLIED MATHEMATICS FOR MANUFACTURING	T
	ENGINEERING	1

PREREQUISITES	CATEGORY	L	T	P	С
NIL	FC	3	1	0	4

Course	To gain the concepts of probability, random variables, test of hy	ypothesis, numerical			
Objectives	interpolation, numerical differentiation, numerical integration, n	umerical solution of			
	ordinary differential equations and partial differential equations.				
UNIT – I	PROBABILITY AND RANDOM VARIABLES	9+3 Periods			
Sample Space	es, Events, Probability Axioms, Conditional Probability, Indepen	dent Events, Bayes'			
Theorem. Ra	ndom Variables: Distribution Functions, Expectation, Moments,	Moment Generating			
Functions.					
UNIT – II	TESTING OF HYPOTHESIS	9+3 Periods			
Large sample	es: Tests for Mean and Proportions, Small Samples: Tests for	Mean, Variance and			
Attributes usi	ng t, F, Chi–Square Distribution.				
UNIT – III	INTERPOLATION, NUMERICAL DIFFERENTIATION AND	9+3 Periods			
ONII - III	INTEGRATION				
	with equal interval: Newton's forward and backward difference me				
	al intervals: Newton's divided difference and Lagrange's				
	n: Newton's methods-Numerical integration: Trapezoidal rule and	Simpson's 1/3 rd and			
3/8 rules.					
UNIT – IV	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS	9+3 Periods			
Ordinary diffe	erential equations: Taylor's series method-Euler and modified Euler	r's methods – Runge-			
Kutta method	d of fourth order for solving first and second order equations-	Milne's and Adam's			
predicator-co	rrector methods				
UNIT – V	NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL	9+3 Periods			
	EQUATIONS				
Partial differential equations: Finite difference solution two dimensional Laplace equation and					
Poisson equation- Implicit and explicit methods for one dimensional heat equation (Bender-Schmidt					
and Crank-Nicholson methods)-Finite difference explicit method for wave equation.					
Contact Periods:					
Lecture: 45 F	Periods Tutorial: 15 Periods Practical: 0 Periods Total: 6	0 Periods			

1	B.S. Grewal, " Higher Engineering Mathematics" , Khanna Publishers, New Delhi, 44 th Edition,
	2018.
2	Veerarajan T, " Probability and Random Processes:, (with Queuing Theory and Queuing
	Networks), McGraw Hill Education(India) Pvt Ltd., New Delhi, 4th Edition,2016.
3	Gupta S.C and Kapoor V.K., "Fundamentals of Mathematical Statistics" , Sultan Chand &
	Sons, New Delhi, 2015.
4	S.S. Sastry, "Introductory Methods of Numerical Analysis", PHI, New Delhi, 5th Edition, 2015.
5	Ward Cheney, David Kincaid, "Numerical Methods and Computin", Cengage Learning,
	Delhi, 7 th Edition 2013.
6	P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3 rd
	Edition, Reprint 2013.
7	S. Larsson, V. Thomee, "Partial Differential Equations with Numerical Methods", Springer,
	2003.
8	Trivedi K.S, " Probability and Statistics with Reliability, Queuing and Computer Science
	Applications", Prentice Hall of India, New Delhi.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Acquire fluency in solving probability oriented problems	K4
CO2	Test for significance of hypothesis connected to small and large samples using different parameters.	K4
CO3	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations, derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations.	K4
CO4	Construct one-step and linear multistep methods for the numerical solution of initial-value problems for ordinary differential equations and systems of such equations.	K4
CO5	Acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes, interpret solutions in a physical context of wave and heat equation in specified techniques.	K4

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05
CO1	3	2	1	2	1
CO2	1	1	2	1	3
CO3	3	3	1	1	1
CO4	1	2	3	1	2
CO5	3	1	1	2	1
23MFFC02	3	2	1	1	1

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1	20	30	30	20	-	-	100	
CAT2	20	30	30	20	-	-	100	
Individual								
Assessment 1								
/Case Study	20	30	30	20	-	-	100	
1/ Seminar 1								
/ Project1								
Individual								
Assessment 2								
/Case Study	20	30	30	20	-	-	100	
2/ Seminar 2								
/ Project 2								
ESE	20	30	30	20	-	-	100	

23MFPC01	THEORY OF METAL CUTTING AND PRACTICES	I
----------	---------------------------------------	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	1	0	4

Course	To acquire knowledge in orthogonal cutting, oblique cutti	ng, thermal aspects,			
Objectives	cutting fluids, cutting tool materials, tool life, tool wear a	nd design of cutting			
	tools.				
UNIT – I	ORTHOGONAL CUTTING	9+3 Periods			
	- Machining fundamentals – Metal Cutting - Chip formation - t				
	pression for Shear plane angle - Cutting force and velocity rela				
	per bound solution - Lee and Shaffer Lower bound solution	-			
zone model -	Stress and Strain in the chip - Energy consideration in machini				
UNIT- II	OBLIQUE CUTTING	9+3 Periods			
Direction of C	Chip flow - Normal, Velocity and Effective Rake angles - Relation	onship between rake			
angles - Cuttir	angles - Cutting ratio in oblique cutting - Shear angle and Velocity relationship - Stabler's rule.				
UNIT – III	THERMAL ASPECTS AND CUTTING FLUIDS	9+3 Periods			
Heat distribut	tions in machining - Experimental determination and Analytica	al calculation of			
Cutting tool to	emperature -Methods of Controlling Cutting Temperature - Co	utting fluids - Effects			
of cutting flui	d - Functions - Requirements -Types and Selection of Cutting F	luids.			
UNIT – IV	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL	9+3 Periods			
	WEAR				
	irements of tool materials – Desirable Properties of tool mate				
	ool Materials, Indexable inserts Coated tools - Tool we				
_	- Economics of metal machining - Theory of Chatter – ISO spec	cifications for inserts			
and tool holde					
UNIT – V	DESIGN OF CUTTING TOOLS	9+3 Periods			
Geometry of single-point cutting tool: Tool-in hand system, ASA system, Significance of various					
angles of single point cutting tools, Orthogonal Rake System (ORS), Conversions between ASA					
and ORS systems – Graphical and Analytical Methods, Normal Rake System (NRS) & relation					
with ORS. Drill Geometry and Mechanics of Drilling Process, Geometry of Milling Cutters and					
	Milling process, Mechanics of Grinding (plunge grinding an	d surface grinding),			
Grinding whe	el wear.				

Contact Periods:

Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

- 1 A. Bhattacharyya, "**Metal Cutting Theory and Practice**", Central Book Publishers, Calcutta, 2012.
- 2 Geoffrey Boothroyd and W.A. Knight, "Fundamentals of Machining and Machine Tools", Marcel Dekkor, New York, 2006.
- 3 M C Shaw, "Metal Cutting Principles", Oxford Press, 2005.
- 4 B.LJuneja and G.S. Sekhon, "Fundamentals of Metal Cutting and Machine Tools", New Age International Publishers Limited, 2003.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the metal cutting theory in engineering materials and employ the	К3
	various aspects in orthogonal cutting activities.	
CO2	Evaluate the oblique cutting principle in machinability and practice its	K4
	various aspects.	K4
CO3	Select cutting fluids for different machining conditions	КЗ
CO4	Choose appropriate cutting tools and machining conditions for different	К3
	materials.	
CO5	Design the cutting tools for metal removal process.	K4

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	
CO1	2	1	1	1	3	
CO2	1	1	3	2	1	
CO3	3	2	2	1	1	
CO4	1	3	1	1	2	
CO5	3	1	2	3	1	
23MFPC01	3	1	2	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PAT	TTERN - THEOR	Y					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1			50	50			100
CAT2			50	50			100
Individual			50	50			100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual			50	50			100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE			50	50			100

25MFFC02 ADVANCES IN CASTING AND WELDING TECHNOLOGIES 1	23MFPC02	ADVANCES IN CASTING AND WELDING TECHNOLOGIES	I
---	----------	--	---

PREREQUISITES	CATEGORY L		T	P	С
NIL	PC	3	0	0	3

Course	To acquire the metallurgical concepts during solidification of metals & alloys,							
Objectives								
	special welding processes, recent advances in casting and welding.							
UNIT – I	CASTING METALLURGY AND DESIGN	9 Periods						
Heat Transfer Between Metal and Mould – Solidification of Pure Metal and Alloys – Shrinkage in								
Cast Metals -	- Progressive and Directional Solidification - Principles of Gating	g and Rising –						
Degasification	n of the Melt - Design Considerations in Casting - Designing	for Directional						
Solidification	and Minimum Stress – Casting Defects.							
UNIT – II	SPECIAL CASTING PROCESSES	9 Periods						
Shell Molding	- Precision Investment Casting - CO ₂ Molding - Centrifugal Casting	– Die Casting –						
Continuous Ca	asting.							
UNIT - III	WELDING METALLURGY AND DESIGN	9 Periods						
Heat Affected	Zone and its characteristics - Weldability of Steels, Cast Iron,	Stainless Steel,						
Aluminium ar	nd Titanium Alloys – Hydrogen Embrittlement – Lamellar Tearing –	Residual Stress						
- Heat transf	er and Solidification – Analysis of Stress in Welded Structures -	- Pre and Post						
Welding Heat	Treatments - Weld Joint Design - Welding Defects - Testing of Welding	dment.						
UNIT – IV	UNCONVENTIONAL AND SPECIAL WELDING PROCESSES	9 Periods						
Friction Weld	ing –Friction Stir Welding-Friction Stir Processing-Explosive Weld	ing – Diffusion						
Bonding – Hig	gh Frequency Induction Welding – Ultrasonic Welding – Electron B	eam Welding –						
Laser Beam W	Velding.							
UNIT – V	RECENT ADVANCES IN CASTING AND WELDING	9 Periods						
Layout of Med	Layout of Mechanized Foundry – Sand Reclamation – Material Handling in Foundry – Pollution							
Control in Fo	oundry - Recent Trends in Casting - Computer Aided Design of	Castings, Low						
Pressure Die Casting, Squeeze Casting and Full Mould Casting Process – Automation in Welding								
- Welding Robots - Overview of Automation of Welding in Aerospace, Nuclear, Surface								
Transport Vehicles and Under Water Welding.								
Contact Periods:								
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods						

1	Richard W. Heine, Carl R. Loper, Philip C. Rosenthal, "Principles of Metal Casting", McGraw
	Hill Education, 2014.
2	Ghosh, Ghosh Amitabha, Mallik AsokKumar, " Manufacturing Science ", EAST WEST, 2010.
3	Chakrabarti A K, "Casting technology and casting alloys", PHI Publishing Co, New Delhi,
	2015.
4	2015. P.N.Rao, "Manufacturing Technology (Foundry, Forming and Welding)", 2 nd Edition, Tata
4	
4	P.N.Rao, "Manufacturing Technology (Foundry, Forming and Welding)", 2 nd Edition, Tata

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the Thermal, Metallurgical aspects during solidification in Casting.	K2
CO2	Apply on special casting process for specific applications.	КЗ
CO3	Analyze the metallurgical aspects during solidification in welding.	К3
CO4	Relate the Unconventional and Special Welding processes for Industrial production of components.	К3
CO5	Evaluate the recent advances in Casting and Welding in Industrial applications.	К3

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	
C01	1	1	2	1	3	
CO2	3	2	3	2	1	
CO3	2	1	2	2	3	
CO4	3	2	1	2	1	
CO5	1	3	1	2	2	
23MFPC02	2	2	2	2	2	
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1		50	50				100		
CAT2			100				100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50	50				100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2			100				100		
ESE		50	50				100		

23MFPC03	CORROSION AND SURFACE ENGINEERING	I

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	1	0	4

Course	To understand the different types of corrosion on engin	eering structures and							
Objectives	testing and prevention of corrosion.								
UNIT – I	MECHANISMS AND TYPES OF CORROSION	(9+3 Periods)							
Principles of	Principles of direct and Electro Chemical Corrosion, Hydrogen evolution and Oxygen absorption								
mechanisms - Galvanic corrosion, Galvanic series-specific types of corrosion such as uniform,									
Pitting, Inter	granular, Cavitation's, Crevice Fretting, Erosion and Stress	s Corrosion – Factors							
influencing co	orrosion								
UNIT – II	TESTING AND PREVENTION OF CORROSION	(9+3 Periods)							
Corrosion tes	sting techniques and procedures - Prevention of Corros	ion – Design against							
corrosion -M	Iodifications of corrosive environment – Inhibitors – (Catholic Protection -							
Protective sur	face coatings.								
UNIT – III	CORROSION BEHAVIOR OF MATERIALS	(9+3 Periods)							
Corrosion of	steels, stainless steel, Aluminum alloys, copper alloys, Nicke	el and Titanium alloys							
corrosion of F	Polymers, Ceramics and Composite materials.								
UNIT – IV	SURFACE ENGINEERING FOR WEAR AND CORROSION	(9+3 Periods)							
	RESISTANCE								
Diffusion coa	tings - Electro and Electro less Plating - Hot dip coating	- Hard facing, Metal							
spraying, Fla	me and Arc processes - Conversion coating - Selection of	coating for wear and							
Corrosion res	istance.								
UNIT – V	THIN LAYER ENGINEERING PROCESSES	(9+3 Periods)							
Laser and Ele	ctron Beam hardening - Effect of process variables such as	power and scan speed							
– Physical va	- Physical vapor deposition, Thermal evaporation, Arc vaporization, Sputtering, Ion plating -								
Chemical vap	Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating – Properties								
and application	and applications of thin coatings.								
Contact Periods:									
Lecture: 45 F	Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods								

1	Ken N. Strafford, "Surface Engineering: Processes and Applications", A Technomic
_	Publication, Lanchester, Pennsylvania, 2018.
2	P. A. Dearnley, "Surface Engineering Basics", Published online by Cambridge University Press,
	2017.
	J. DuttaMajumdar; I. Manna,"Laser Surface Engineering of Titanium and Its Alloys for Improved Wear, Corrosion and High-Temperature Oxidation Resistance", Indian Institute
3	Improved Wear, Corrosion and High-Temperature Oxidation Resistance", Indian Institute
	of Technology, Kharagpur, India, 2015.
1	Andrew W Batchelor, MargamChandrasekaran Material, "Degradation and Its Control by Surface Engineering", Bio-Scaffold International Pvt, Ltd, Singapore, 2013.
4	Surface Engineering", Bio-Scaffold International Pvt, Ltd, Singapore, 2013.

COUI	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Mapped	
CO1	Identify the mechanisms and types of corrosion	K1	
CO2	Analyze the corrosion and know the prevention of corrosion	K1	
CO3	Select the type of corrosion in the different materials and its behavior	К3	
CO4	Evaluate the surface coating for wear and corrosion resistance	К3	
CO5	Apply thin layer engineering processes for engineering materials	К3	

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05		
CO1	1	1	2	2	2		
CO2	1	1	2	2	2		
CO3	1	1	2	2	3		
CO4	1	1	2	3	3		
CO5	1	2	2	3	3		
23MFPC03	1	1	2	1	3		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PAT	SSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	100						100		
CAT2			100				100		
Individual	100						100		
Assessment 1									
/Case Study 1/									
Seminar 1 /									
Project1									
Individual			100				100		
Assessment 2									
/Case Study 2/									
Seminar 2 /									
Project 2									
ESE	50		50				100		

23MFPC04	PROCESS MODELING AND SIMULATION LABORATORY	I

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	0	0	4	2

Course	To give an overview of various methods of process modeling and different
Objectives	computational techniques for simulation.

List of Exercises:

- 1. Model and simulate the Coupling Joint used in Railway Passenger Coaches
- 2. Model and simulate the Impeller Assembly
- 3. Model and simulate the Stapler Assembly
- 4. Model and simulate the Oldham's Coupling
- 5. Model and analyse the Crane Hook
- 6. Model and analyse the 3D Printed Components
- 7. Conduct stress analysis of Axis Symmetric Components using ANSYS
- 8. Conduct dynamic analysis of Mechanical Engineering Components
- 9. Make CNC Turning and Milling simulations

Contact Periods:			
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 60 Periods	Total: 60 Periods

	completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply the concept of modeling and simulation techniques for different	марреи К3
001	mechanical joints	KS
CO2	Apply the techniques in model and simulation for manufacturing assembly	К3
CO3	Analyze structural problems for mechanical engineering components	K4
CO4	Analyze dynamic problems for mechanical engineering components	K4
CO5	Apply the knowledge in the simulation practices in CNC machining	К3

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05	
CO1	2	3	2	1	1	
CO2	2	3	2	1	1	
CO3	2	3	3	1	1	
CO4	3	3	2	1	1	
CO5	2	3	2	1	1	
23MFPC04	2	3	2	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

23MFPC05	OPTIMIZATION TECHNIQUES IN MANUFACTURING	II

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	1	0	4

Course	1. To impart knowledge on theory of optimization and condition	s for optimality					
Objectives	for unconstrained and constrained optimization problems.						
	2. To inculcate modeling skills necessary to describe a	and formulate					
		optimization problems in design and manufacturing.					
		To familiarize with the working principle of optimization algorithms used to					
	solve linear and non-linear problems.						
	4. To know the basics of non linear programming and integer	r programming					
	techniques to solve Engineering problems.	1 .1 1 6					
	5. To understand and differentiate traditional and non-tradition	nal methods of					
	Optimization.						
UNIT – I	EVOLUTION OF OPTIMIZATION	9+3 Periods					
•	– Historical Development – Engineering applications of optimizati	on – Statement					
	ation problem – Classification of optimization problems.						
UNIT – II	CLASSIC OPTIMIZATION TECHNIQUES	9+3 Periods					
	amming – Graphical method – Simplex method – Dual simplex me						
_	od – Duality in LP – Parametric Linear programming – Goal Progran						
UNIT – III	NON-LINEAR PROGRAMMING	9+3 Periods					
	- Lagrangian Method - Kuhn-Tucker conditions - Quadratic p	programming –					
	ogramming – Stochastic programming – Geometric programming						
UNIT – IV	INTEGERPROGRAMMING, AND DYNAMIC PROGRAMMING	9+3 Periods					
7 .	NETWORK TECHNIQUES	. 1					
	amming – Cutting plane algorithm, Branch and bound technique, Ze						
	- Dynamic Programming - Formulation, Various applications						
	g. Network Techniques – Shortest Path Model – Minimum Spanning '	Tree Problem -					
Maximal flow problem. UNIT - V ADVANCES IN SIMULATION 9+3 Periods							
	ithms – Simulated annealing – Neural Network, Fuzzy systems and						
		rai ucie swam					
	optimization – Data Analytics and optimization using Machine learning approach						
	Contact Periods: Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods						
Lecture. TJ	crious ratorial 15 rerious rratical or crious rotal.	oo i ciious					

1	R. Panneerselvam, Operations Research, Prentice Hall of India Private Limited, New Delhi L,
	2019.
2	P.K. Guptha and Man–Mohan, Problems in Operations Research , Sultan Chand & Sons, 2014.
3	Ravindran, Philips and Solberg, Operations Research Principles and Practice, John Wiley &
	Sons, Singapore, 2017.
4	J.K.Sharma, Operations Research - Theory and Applications, Macmillan India Ltd., 2017.
5	Hamdy A. Taha Operations Research – An Introduction , Pearson Education Ltd., 2017.
6	https://nptel.ac.in/courses/106106139
7	https://nptel.ac.in/courses/111105039

COURSE OUTCOMES: Upon completion of the course, the students will be able to:			
CO1	Apply basic theoretical principles in optimization and formulate the optimization models.	К3	
CO2	2 Implement optimization techniques in engineering problems.		
CO3	Solve the constraints for optimal solution to interface in industrial scenario.	K4	
CO4	Interpret and apply modern heuristic algorithms for solving optimization problems.	К3	
CO5	Understand and apply different evolutionary algorithms for solving engineering problems.	K2	

COURSE ARTICULATION MATRIX:

COs/POs	P01	P02	P03	P04	P05
C01	2	2	1	3	1
CO2	3	2	2	3	2
CO3	3	1	1	2	3
CO4	1	1	2	3	1
CO5	1	2	2	2	1
23MFPC05	2	2	2	3	2
1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT I	PATTERN - THE	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1			50	50			100
CAT2		30	40	30			100
Individual			50	50			100
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual		30	50	20			100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE		20	40	40			100

23MFPC06	MATERIAL TESTING AND CHARACTERIZATION	II

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	1	0	4

Course	1. To make them acquainted with microscopic techniques to	analyse crystal
Objectives	structures.	
	2. To acquire an understanding on the electron microscopic characterization.	c techniques for
	3. To familiarize with a fundamental knowledge on chemic analysis.	cal and thermal
	4. To enable students to widen knowledge on various stacharacterize materials.	atic methods to
	5. To study the failure of materials under dynamic stresses.	
UNIT - I	MICRO AND CRYSTAL STRUCTURE ANALYSIS	9+3 Periods

Principles of Optical Microscopy –Polishing and Etching – Polarization Techniques – Quantitative Metallography – grain size and ASTM number – Microstructure of Engineering Materials – Crystallography – X– ray Diffraction– Geiger Diffractometer – Analysis of patterns – Inter planer spacing – Identification of Crystal Structure, Elements of Electron Diffraction – Estimation of residual stress and grain size.

UNIT - II ELECTRON MICROSCOPY

9+3 Periods

Interaction of Electron Beam with Materials – Transmission Electron Microscopy – Specimen Preparation – Imaging Techniques – BF and DF – SAD – Electron Probe Microanalysis – Scanning. Electron Microscopy – Atomic Force Microscopy – Construction & Applications.

UNIT – III CHEMICAL AND THERMAL ANALYSIS

9+3 Periods

X-Ray Spectrometry- Energy dispersive and Wave Dispersive X-Ray Spectrometry- Auger Spectroscopy- Secondary Ion Mass Spectroscopy- Fourier Transform Infra-Red Spectroscopy (FTIR)- Proton Induced X-Ray Emission Spectroscopy- Differential Thermal Analysis-Differential Scanning Calorimetry (DSC)- Thermo Gravity metric Analysis (TGA)- Dynamic Mechanical Analysis (DMA)

UNIT - IV MECHANICAL TESTING - STATIC TESTS

9+3 Periods

Hardness – Brinell, Vickers, Rockwell and Micro Hardness Test, Rebound hardness and Indendation – Tensile Test – Stress-Strain plot, Proof Stress – Torsion Test – Ductility Measurement – Impact Test – Charpy and Izod – DWTT – Fracture Toughness Test–Codes and standards for testing metallic and composite materials.

UNIT - V MECHANICAL TESTING - DYNAMIC TESTS

9+3 Periods

Fatigue – Low and High Cycle Fatigues – Rotating Beam and Plate Bending HCF tests – S–N curve – LCF tests – Crack Growth studies – Creep Tests – LM parameters – AE Tests–modal analysis – Applications of Dynamic Tests – Fatigue life estimation.

Contact Periods:

Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

- 1 Cullity B.D., Stock S.R and Stock S., **Elements of X ray Diffraction**, 3rdEdition. Prentice Hall, 2018.
- 2 Skoog, Holler and Nieman, **Principles of Instrumental Analysis**, 7th edition, Cengage Learning, 2017.
- 3 Angelo P C, Material characterization, Cengage Learning India, 2016.

4	Yang Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic					
	Methods , Hong Kong University Of Science And Technology, John Wiley and Sons (Asia) Pte					
	<i>Ltd., 2nd Edition, 2013.</i>					
5	Suryanarayana A. V. K., Testing of metallic materials , BSP Books Private Limited					
	publications, 2 nd Edition, 2018.					
6	https://nptel.ac.in/courses/115103030					
7	https://nptel.ac.in/courses/113105101					

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
CO1	Identify the test and quantify the mechanical properties of Engineering	К2
	Materials.	
CO2	Characterize the microstructure of various materials and apply to various	К3
	applications.	
CO3	Perform Chemical and Thermal Analysis on Engineering Materials	К3
CO4	Analyze the behavior of various materials under static and dynamic	K4
	condition.	
CO5	Characterize novel engineering materials using standard tests.	К3

Course Articulation Mat	rix					
COs/POs	P01	P02	P03	P04	P05	
C01	1	2	1	3	1	
CO2	3	3	2	2	2	
CO3	3	2	2	2	1	
CO4	2	3	3	1	1	
CO5	2	1	2	3	1	
23MFPC05	2	3	2	3	1	
1 – Slight, 2 – Moderate, 3	1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT I	PATTERN - THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		30	40	30			100
CAT2			50	50			100
Individual		30	40	30			100
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual			50	50			100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE		20	40	40			100

23MFPC07	INDUSTRIAL AUTOMATION	II

PREREQUISITES	CATEGORY	L	T	P	С
NII.	PC	3	0	0	3

Course	1. To familiarize with the concepts of robot manipulator and buil	d confidence to				
Objectives	choose, evaluate and incorporate robots in engineering system					
Objectives	2. To inculcate the significance of simple sensor systems in automation.					
	3. To understand the basic concept of automation and the Progr					
	controllers.	ammable logic				
	4. To acquire knowledge on supervisory control and data acquisi	tion system				
	5. To gain knowledge about distributed control system.	cion system.				
UNIT – I	AUTOMATION COMPONENTS	9 Periods				
Sensors for te	mperature – pressure – force – displacement – speed – flow– level	– humidity and				
	nent. Actuators – process control valves – power electronic drives					
power MOSFI	ET – IGBT– Introduction to DC and AC servo drives for motion contr	ol				
UNIT – II	ROBOTS AND CONTROLS	9 Periods				
	ne robot motion-Position and velocity sensing devices-Design of					
	d Pneumatic drives-Linear and rotary actuators and control					
_	vo valves, electric drives– Motors–designing of end effectors–Vac	uum, magnetic				
and air opera						
UNIT – III	PROGRAMMABLE LOGIC CONTROLLERS	9 Periods				
	re – PLC programming – Ladder diagram – Sequential flow					
	on and networking – PLC selection – PLC installation – Advantages -	- Application of				
-	s control industries and Robotics.					
UNIT – IV	SCADA	9 Periods				
	- Supervisory Control and Data Acquisition Systems (SCADA)					
	SCADA Components – SCADA Configuration and Software – HMI	hardware and				
software						
UNIT – V						
Overview of DCS – DCS hardware – DCS software configuration – DCS communication – DCS						
supervisory computer tasks – DCS integration with PLC and Computers– Case studies.						
Contact Periods:						
Lecture: 45 F	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Cameron Hughes, Trarey Hughes, Robot Programming , Pearson, 5 th Edition., 2016.
2	Groover, M.P. Industrial Robotics - Technology, Programming and Applications, McGraw-
	Hill, 2012.
3	
	Frank D. Petruzella, Programmable Logic Controllers , 5 th Edition, McGraw Hill, 2016.
4	M. P. Lukcas, Distributed Control Systems, Van Nostrand Reinhold Co., 1986.
5	W. Bolton, Mechatronics, 5 th edition, Addison Wesley Longman Ltd, 2010
6	https://nptel.ac.in/courses/108105063
7	https://archive.nptel.ac.in/courses/108/106/108106022/

	completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain automation components and systems application.	K2
CO2	Appreciate the importance of robot in the emerging trend of manufacturing and to select and design robots for various applications taking kinematic aspects and precision into account	КЗ
CO3	Construct ladder logic diagram using PLC basic functions, timer and counter functions for simple applications	К3
CO4	Describe the basics of SCADA technology	K2
CO5	Illustrate the functionary components and supervisory control of DCS with relevant diagrams	K2

Course Articulation Matrix						
COs/POs	P01	PO2	P03	P04	PO5	
C01	1	1	3	2	3	
CO2	3	2	3	2	1	
CO3	2	1	2	2	3	
CO4	3	2	1	2	1	
CO5	1	3	1	3	2	
23MFPC07	3	2	2	3	2	

ASSESSMENT I	ASSESSMENT PATTERN - THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1		50	50				100		
CAT2		60	40				100		
Individual		50	50				100		
Assessment 1									
/Case Study									
1/ Seminar 1									
/ Project1									
Individual		60	40				100		
Assessment 2									
/Case Study									
2/ Seminar 2									
/ Project 2									
ESE		60	40				100		

23MFPC08	MODERN MANUFACTURING ENGINEERING LABORATORY	II

PRE-REQUISITES	CATEGORY	L	T	P	C
NIL	PC	0	0	4	2

	To familiarize the students with extrusion based additive manufacturing To acquaint the students with nontraditional machining processes.
Course Objectives	 3. To introduce the application of 3D scanners and 3D printing in reverse engineering. 4. To familiarize with the process capabilities of Friction Stir Welding and Stir
	Casting.

List of Exercises

- 1. Study on 3D printing technologies, and its impacts on manufacturing industries.
- 2. Study on commercially available slicing software and its challenges involved.
- 3. Make a 3D model using PLA filament and evaluate the printed properties.
- 4. Make a 3D model using TPU blended with PLA filament and evaluate the printed properties.
- 5. Make a 3D model using Bio-polymer filaments and evaluate the printed properties.
- 6. Make a 3D model using SLS and evaluate its properties.
- 7. Evaluate the performance characteristics of ECDM of Ceramics.
- 8. Scan any commercially available engineering components using high resolution 3D scanners and make a product using available 3D printing technique.
- 9. Determine the tribological characteristics of the given 3D Printed specimens.
- 10. Prepare the composites samples using stir casting/squeeze casting and evaluate their mechanical properties.
- 11. Develop a water hammer setup and evaluate the product formability.
- 12. Conduct images analysis of 3D printed products using metallurgical microscope and SEM.
- 13. Study on joining of dissimilar materials using Friction Stir Welding.

Contact Periods:			
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 60 Periods	Total: 60 Periods

COUR	SE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to	Taxonomy
		Mapped
CO1	Create 3D printed models and evaluate their characteristics	К6
CO2	Analyze the characteristics of ECDM	K4
CO3	Develop and analyze new composite materials for modern	К6
	engineering applications.	NO
CO4	Evaluate the tribological characteristics of mechanical products	K5
CO5	Understand the dissimilar materials joining using Friction Stir	К2
	Welding	IXZ

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	
C01	3	3	2	1	1	
CO2	3	2	3	1	1	
CO3	2	3	3	3	2	
CO4	3	2	3	2	2	
CO5	2	2	2	1	1	
23MFPC08	3	3	2	1	1	
1 – Slight, 2 – Moderate, 3 –	Substantial			•		

23MFEE01	MINI PROJECT	II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	0	0	4	2

Course	To make the student to feel/understand the magnitude of manufacturing
Objectives	engineering and then apply Engineering knowledge to provide feasible solutions.
SYLLABUS	

Students can take up small problems in the field of design engineering as mini project. It can be related to solution to engineering problems, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the feasible solution of engineering problems etc.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1 Get an opportunity to work in actual industrial environment if they opt for internship.		K5
CO2	Solve a live problem using software/analytical/computational tools.	К6
CO3	Learn to write technical reports.	К3
CO4	Develop skills to present and defend their work in front of technically qualified audience.	K4
CO5	Able to do the Project experimental Work	К6

COURSE ARTICULATION MATRIX:						
COs/POs	P01	P02	P03	P04	P05	
CO1	3	3	3	3	3	
CO2	3	2	3	2	1	
CO3	3	2	3	3	3	
CO4	1	1	2	1	2	
CO5	1	2	1	1	1	
23MFEE01	3	2	3	3	2	
1 – Slight, 2 – Moderate, 3 -	- Substantial					

23MFEE02	INDUSTRIAL TRAINING AND PRACTICES	III

PREREQUISITES	CATEGORY	L	T	P	С
NIL	EEC	0	0	0	2

Course
Objectives

- 1. To make students industry ready to become an entrepreneur or an effective administrator.
- 2. To acquire the knowledge about industrial scenario.

LIST OF EXPERIMENTS

- 1. Conduct literature survey on selected technical domain. (Minimum 20 literatures to be reviewed) and prepare a survey report.
- 2. Visit any two industry and prepare a technical report about the visit
- 3. Conduct market survey and prepare report on any selected product by meeting the customers / retailers using any methods. (Questionnaire, Audio / Video recording etc.)
- 4. Assess the risk involved in any industries. (Existing risk or upcoming risk in the market).
- 5. Perform process planning and estimate the cost of production for a product.
- 6. Design an alternate mechanism for an existing product to perform the same function or a function in addition to the existing function.
- 7. Perform tolerance analysis in production and assembly drawings.

Total Periods: 4 Weeks

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Identify gaps in published literatures and find scope of improvement.	K1
CO2	Write technical report about any industrial activity.	K4
CO3	Perform market survey and risk assessment to find an area of scope in the market.	K5
C04	Innovate new mechanism design and estimate cost for a product or	К6
	process.	
CO5	Read Engineering drawings and analyze tolerances.	K4

COURSE ARTICULATION MATRIX:						
COs/POs	P01	PO2	PO3	P04	PO5	
CO1	2	2	2	1	1	
CO1	Z	Z	3	1	1	
CO2	1	3	2	1	1	
CO3	2	1	1	2	1	
CO4	2	1	3	1	2	
CO5	1	2	3	1	1	
23MFEE02	2	2	3	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

23MFEE03	PROJECT PHASE I	III

PREREQUISITES	CATEGORY	L	T	P	С
NIL	EEC	0	0	12	6

Course	To identify a specific problem for the current need of the society and collecting
Objectives	information related to the same through detailed review of literature and to
Objectives	develop the methodology to solve the identified problem then publish paper at
	least in conference.
SYLLABUS	

- 1. The student individually works on a specific topic approved by the head of the division under the guidance of a faculty member who is familiar in this area of interest.
- 2. The student can select any topic which is relevant to the area of Engineering Design. The topic may be theoretical or case studies.
- 3. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work and report on the preliminary study conducted.
- 4. The students will be evaluated through a viva-voce examination.

Lecture: 0 Periods Tutorial: 0 Periods Practical: 180 Periods Total: 180 Periods

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the project work/research gap scientifically in a systematic	K1
	way.	
CO2	Analyze the problem and data of literatures clearly to explore the ideas	К4
	and methods.	Κ4
CO3	Formulate the objectives and methodology to solve the identified	TZE .
	problem.	K5

Course Articulation Matrix					
COs/POs	P01	P02	P03	P04	P05
C01	3	3	3	3	3
CO2	2	2	3	2	2
CO3	3	2	3	3	1
23MFEE03	3	2	3	3	2
1 – Slight, 2 – Moderate, 3 – Substantial					

23MFEE04	PROJECT PHASE II	IV

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	0	0	24	12

Course	ourse To solve the identified problem based on the formulated methodology and t			
Objectives	develop skills to analyze and discuss the test results and make conclusions.			
SYLLABUS				

- 1. The student should continue the phase I work on the selected topic as per the formulated methodology under the same supervisor.
- 2. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department.
- 3. The students will be evaluated based on the report submitted and the viva-voce examination by a panel of examiners including one external examiner

Lecture: 0 Periods Tutorial: 0 Periods Practical: 360 Periods Total: 360 Periods

	RSE OUTCOMES:	Bloom's Taxonomy Mapped	
Upon	Upon completion of the course, the students will be able to:		
CO1	Execute the project work on challenging practical problem in a structured manner.	K4	
CO2	Investigate the findings and infer observations logically.	K5	
CO3	Evaluate the results and confirm the solution to the practical application and social benefit.	К6	

COURSE ARTICULATION MATRIX:					
COs/POs	P01	P02	P03	P04	P05
CO1	3	2	3	3	2
CO2	3	2	2	2	3
CO3	2	3	3	3	3
23MFEE04	3	2	3	3	3
1 – Slight, 2 – Moderate, 3 – Substantial					

23MFPE01	DIGITAL MANUFACTURING	SEMESTER
----------	-----------------------	----------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To gain knowledge in concepts of rapid product development, va	arious software
Objectives	tools, processes, techniques of additive manufacturing, industry	4.0, IoT, cloud
	computing and data analytics.	
UNIT - I	INTRODUCTION	9 Periods
	INTRODUCTION ct Development (RPD) – Product Development Cycle – Detail Des	

AM Process; Issues in AM – IOT.

UNIT - II **ADDITIVE MANUFACTURING (AM)**

Stereo Lithography Systems - Fusion Deposition Modeling - Laminated Object Manufacturing -Selective Laser Sintering - Direct Metal Laser Sintering (DMLS) - Three Dimensional Printing -Reverse Engineering - Engineering Applications - 4D Printing - Medical Applications - Principle Process Parameters - Process Details - Applications - Case Study.

PROCESSING POLYHEDRAL DATA UNIT - III

9 Periods

Polyhedral B-Rep Modeling-STL Format - Defects and Repair of STL Files- Processing STL Files - Overview of the Algorithms Required for RP and RT - Slicing, Support Generation, Feature Recognition.

UNIT - IV **ADDITIVE TOOLING (AT)**

9 Periods

Introduction to AT -Indirect AT Processes - Silicon Rubber Molding, Epoxy Tooling, Spray Metal Tooling and Investment Casting Direct AT Processes - Laminated Tooling, Powder Metallurgy Based Technologies, Welding Based Technologies, Direct Pattern Making (Quick Cast, Full Mold Casting); Emerging Trends in AT.

UNIT - V **INDUSTRY 4.0**

9 Periods

Digitalization and the Networked Economy - Introduction to Industry 4.0 - Comparison of Industry 4.0 Factory and Today's Factory - Internet of Things (IoT) - Industrial Internet of Things (IoT) - Smart Devices and Products - Smart Logistics - Support System for Industry 4.0 -Cyber- Physical Systems Requirements - Data as a New Resource for Organizations - Cloud Computing - Trends of Industrial Big Data and Predictive Analytics for Smart Business-Architecture of Industry 4.0.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- Kaushik Kumar Divya Zindani, J.Paulo Davim., "Digital Manufacturing and Assembly Systems in Industry 4.0", CRC Press, 2022.
- 2 Chee Kai & K F Leong "3D Printing and Additive Manufacturing Principles and *Applications*", 5thEditionBSP Publishers, 2019.
- 3 Kaushik Kumar, Divya Zindani, J.Paulo Davim., "Additive Manufacturing Technologies From an Optimization Perspective", IGI Global. 2019.
- Alp Ustundag, Emre Cevikcan, "Industry 4.0: Managing The Digital Transformation", Springer, 2018.

5	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A Press, 2016.
6	Gibson, I, Rosen, D.W., Stucker, B., "Additive Manufacturing Technologies: 3D Printing,
	Rapid Prototyping, and Direct Digital Manufacturing", 2nd Edition, Springer, 2015.

COUF	COURSE OUTCOMES:			
		Taxonomy		
Upon	Completion of the Course, the Students will be Able to:	Mapped		
C01	Apply the Concept of Liquid, Solid and Powder Based Rapid Prototyping	К3		
	Techniques for Rapid Product Development.	KS		
CO2	Apply the Rapid Tooling and Software for Rapid Manufacturing to Meet	К3		
	International Needs.	KS		
CO3	Select Appropriate Process for Production of a Part/Component that	К3		
	Meet International Standards of Quality and Time Constraints	KS		
CO4	To Demonstrate the Basic Technical Understanding of the Physical	K4		
	Principles, Materials, and Operation of the Types of AM Processes.	1.4		
CO5	Realize the Need of Industry 4.0 and it's Inter- Connectivity.	К2		

COs/POs	P01	PO2	P03	P04	P05
CO1	1	2	1	1	1
CO2	1	1	2	2	1
CO3	2	2	2	1	1
CO4	2	1	2	2	2
CO5	1	2	1	2	3
23MFPE01	1	2	2	2	2
1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT PA	SSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1			100				100	
CAT2			50	50			100	
Individual			100				100	
Assessment 1								
/Case Study								
1/ Seminar 1								
/ Project1								
Individual			50	50			100	
Assessment 2								
/Case Study								
2/ Seminar 2								
/ Project 2	_							
ESE			50	50			100	

23MFPE02	ADVANCES IN METROLOGY AND MEASUREMENTS	SEMESTER
----------	--	----------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	,					
Objectives	instruments, standards of measurement, various measuring	g instrı	uments,			
	accurate and precise measurement of a given quantity.					
UNIT - I	LASER METROLOGY	9 Pe	riods			
	– Types of Lasers – Laser in Engineering Metrology – Metrological					
	ons in Machine Systems – Interferometer Applications – Speckle Ir					
	rometers in Manufacturing and Machine Tool Alignment Testing		bration			
Systems for Ir	ndustrial Robot's Laser Doppler Technique – Laser Doppler Anemor	netry.				
UNIT – II	MEASUREMENT OF SURFACE FINISH AND MEASURING	9 Pe	riods			
	MACHINES					
	Types of Surface Texture: Surface Roughness Measurement Method	s– Comp	oarison,			
Profilometer,	3D Surface Roughness Measurement – Instruments.	1				
UNIT – III	CO-ORDINATE MEASURING MACHINE		riods			
	Metrology – CMM Configurations – Hardware Components – Sof					
	placement Devices – Performance Evaluations – Software – Hardw					
	ermal Effects Diagram – Temperature Variations Environm	ent Coi	ntrol –			
Applications.						
UNIT – IV	OPTO ELECTRONICS AND VISION SYSTEM		riods			
	c Devices – CCD – On-Line and In-Process Monitoring in Production					
	is and Computer Vision - Image Analysis Techniques - Spatial F					
	Segmentation – Digital Image Processing – Vision System for N	Measure	ment –			
	Comparison Laser Scanning with Vision System.					
UNIT – V	QUALITY IN MANUFACTURING ENGINEERING		riods			
Importance of Manufacturing Planning for Quality - Concepts of Controllability - Need or						
Quality Management System and Models – Quality Engineering Tools and Techniques –						
Statistical Process Control – Six Sigma Concepts – Poka Yoke – Computer Controlled Systems Used in Inspection.						
	Contact Periods: Lecture: 45 Periods					
Lecture: 45 F	ciious iutoriaii o renious fiacticaii o renious iotali 43	7 1 61 100	19			

11	EF ERENCES:
1	N.V. Raghavendra, L. Krishnamurthy, "Engineering Metrology and Measurements", Oxford
	University Press, USA, 2013.
2	Brian cantor, "Automotive Engineering: Light Weight, Functional and Novel Materials",
	Taylor and Francis, 2010.
3	S. K. Singh, "Industrial Instrumentation and Control", 3rd Edition, McGraw Hill Education
	(India) Private Limited, New Delhi, 2009.
4	B.C. Nakra and K.K. Choudhary, "Instrumentation measurement and analysis", 3rd Edition,
	McGraw Hill Education (India) Private Limited, New Delhi, 2009.
5	A.K. Sawhney and Puneet Sawhney, "Mechanical Measurement and Instrumentation and
	Control", 12th Edition, Dhanpat Rai& Co, 2009.
6	Thomas G. Beckwith, Roy D. Marangoni and John H. Lienhard V, "Mechanical Measurements"
	6th Edition, by, Published by Addison Wesley, 2007.

COUF	COURSE OUTCOMES:				
Upon	completion of the course, the students will be able to:	Mapped			
CO1	Apply principle of metrology in working of various measuring	K2			
	instruments.				
CO2	Select the different measuring in the manufacturing inspection	К3			
CO3	Use the different measuring instruments to measure the qualitative and	K2			
	quantitative characteristics of components.				
CO4	Analyze the data statistically	К3			
CO5	Evaluate the data and decision to be taken for controlling the quality	К3			
	complying with international standards.				

COs/POs	P01	PO2	P03	P04	P05
CO1	1	1	1	2	1
CO2	1	2	2	2	1
CO3	1	2	3	2	1
CO4	2	1	1	2	1
CO5	1	2	3	2	2
23MFPE02	1	2	2	2	1
1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT PA	ATTERN - THEO	RY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		50	50				100
CAT2		50	50				100
Individual		50	50				100
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual		50	50				100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE		50	50				100

	23MFPE03	INDUSTRY 4.0 AND IOT	SEMESTER
ı			

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	То	introduce	and	familiarize	the	industry	4.0	physical	structure,
Objectives	inter	connectivity,	archi	tecture, IoT,	cloud	computing,	data	analytics,	concepts of
	integ	grated IoT, clo	ud co	mputing and	data a	nalytics.			
UNIT – I	INDU	JSTRY 4.0							9 Periods

Digitalization and the Networked Economy –Introduction to Industry 4.0 - Comparison of Industry 4.0 Factory and Today's Factory –Internet of Things (IoT) –Industrial Internet of Things (IoT) –Smart Devices and Products –Smart Logistics –Support System for Industry 4.0 –Cloud Computing –Trends of Industrial Big Data and Predictive Analytics for Smart Business – Architecture of Industry 4.0.

UNIT - II IOT AND ITS PROTOCOLS

9 Periods

Definitions and Functional Requirements – Motivation – Architecture - Web 3.0 View of IoT – Ubiquitous IoT Applications – Four Pillars of IoT – DNA of IoT – Communication Middleware for IoT – IoT Information Security. IoT Reference Architecture - Unified Data Standards – Protocols – IEEE 802.15.4 – BAC Net Protocol – Modbus –KNX – Zigbee Architecture – Network Layer APS Layer – Security.

UNIT – III CLOUD COMPUTING

9 Periods

Web of Things versus Internet of Things – Two Pillars of the Web – Architecture Standardization for WoT – Platform Middleware for WoT – Unified Multitier WoT Architecture – WoT Portals and Business Intelligence. Cloud of Things: Grid/SOA and Cloud Computing – Cloud Middleware – Cloud Standards – Cloud Providers and Systems – Mobile Cloud Computing – The Cloud of Things Architecture and Data Analytics.

UNIT - IV INTEGRATED IOT

9 Periods

Integrated Billing Solutions in the Internet of Things Business Models for the Internet of Things – Network Dynamics: Population Models – Information Cascades – Network Effects - Network Dynamics: Structural Models – Cascading Behavior in Networks – The Small–World Phenomenon.

UNIT - V APPLICATIONS

9 Periods

The Role of the Internet of Things for Increased Autonomy and Agility in Collaborative Production Environments – Resource Management in the Internet of Things: Clustering, Synchronization and Software Agents–Industry 4.0 in Car Manufacturing – Electronics Manufacturing – IOT Based Building Automation – Agricultural Automation.

Contact Periods:

Lecture 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Kiran Kumar Pabbathi, "Quick Start Guide to Industry 4.0: One-Stop Reference Guide for Industry 4.0", Create space Independent Publishing Platform, 2018.
- 2 Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A Press, 2016.
- 3 Natalie Enright Jerger and Li ShiuanPeh, "On-Chip Networks, Synthesis Lectures on Computer Architecture", Morgan and Claypool Publishers, 2009.
- 4 Duato J, Yalamanchili S, and Lionel Ni, "Interconnection Networks: An Engineering Approach", Morgan Kaufmann Publishers, 2004.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Realize the need of industry 4.0 and its inter-connectivity.	K4
CO2	Interpret the architecture of IoT and its protocols	K4
CO3	Recognize the uses of cloud computing and data analytics	K4
CO4	Familiar the concepts of integrated IoT.	K4
CO5	Plan the uses of IoT, cloud computing, data analytics and Industry 4.0	K4
	technologies.	

COs/POs	P01	PO2	PO3	P04	P05
CO1	2	1	2	1	1
CO2	1	2	2	1	2
CO3	1	2	1	2	3
CO4	1	1	2	1	3
CO5	2	2	3	2	2
23MFPE03	1	2	2	1	3
1 – Slight, 2 – Moderate, 3 – Substantial.					

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1				100			100
CAT2				100			100
Individual				100			100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual				100			100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE				100			100

22MEDE04	ADVANCED ENGINEERING MATERIALS AND	SEMESTER
23MFPE04	METALLURGY	

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To Gain the Concepts, Fracture Behavior, selection of modern me	tallic materials
Objectives	and non - metallic materials.	
UNIT – I	ELASTIC AND PLASTIC BEHAVIOR	9 Periods

Elasticity in Metals and Polymers An Elastic and Visco- Elastic Behavior – Mechanism of Plastic Deformation and Non- Metallic Shear Strength of Perfect and Real Crystals – Strengthening Mechanisms, Work Hardening, Solid Solutioning, Grain Boundary Strengthening, Poly Phase Mixture, Precipitation, Particle, Fiber and Dispersion Strengthening. Effect of Temperature, Strain and Strain Rate on Plastic Behavior – Super Plasticity – Deformation of Non – Crystalline Materials.

UNIT - II FRACTURE BEHAVIOUR

9 Periods

Griffith's theory, Stress Intensity Factor and Fracture Toughness – Toughening Mechanisms – Ductile, Brittle Transition in Steel – High Temperature Fracture, Creep –Larson Miller Parameter – Deformation and Fracture Mechanism Maps – Fatigue, Low and High Cycle Fatigue Test, Crack Initiation and Propagation Mechanisms and Paris Law Effect of Surface and Metallurgical Parameters on Fatigue – Fracture of Non - Metallic Materials – Failure Analysis, Sources of Failure, Procedure of Failure Analysis.

UNIT – III SELECTION OF MATERIALS

9 Periods

Motivation for Selection, Cost Basis and Service Requirements – Selection for Mechanical Properties, Strength, Toughness, Fatigue and Creep – Selection for Surface Durability Corrosion and Wear Resistance – Relationship Between Materials Selection and Processing – Case Studies in Materials Selection With Relevance to Aero, Auto, Marine, Machinery and Nuclear Applications – Computer Aided Materials Selection.

UNIT – IV MODERN METALLIC MATERIALS

9 Periods

Dual Phase Steels, High Strength Low Alloy (HSLA) Steel, Transformation Induced Plasticity (TRIP) Steel, Maraging Steel, Nitrogen Steel – Intermetallics, Ni and Ti-Aluminides – Smart Materials, Shape Memory Alloys – Metallic Glass and Nano Crystalline Materials.

UNIT – V NON - METALLIC MATERIALS

9 Periods

Bio Materials – Polymeric Materials – Formation of Polymer Structure – Production Techniques of Fibers, Foams, Adhesives and Coating – Structure, Properties and Applications of Engineering Polymers – Advanced Structural Ceramics, WC, TiC, TaC, Al_2O_3 , SiC, Si_3N_4 CBN and Diamond – Properties, Processing and Applications.

Contact Periods

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

	1	Pravin Kumar, "Basic Mechanical Engineering", Pearson Education; 2nd Edition. 2018.
	2	Yongchang Liu, Yingquan Peng, "Advanced Material Engineering - Proceedings Of The
		2015 International Conference", World Scientific Publishing Co Pt Ltd, 2015.
Ī	3	R. Balasubramaniam, Callister's, "Materials Science and Engineering", Wiley; 2nd Edition
		2014.
Ī	4	Datta B.K, "Powder Metallurgy: An Advanced Technique of Processing Engineering
		Materials", Prentice Hall India Learning Private Limited; 2ndedition 2013.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Analyze the Concepts of Material Behavior for Specific Applications.	К3
CO2	Identify the Performance Requirements of a Desired Material for a	K2
	Specific Engineering Application.	
CO3	Select Modern Materials for Automotive and Aerospace Applications.	К2
CO4	Identify and Describe Different Types of Material Processing Techniques	К3
	for Advanced Materials	
CO5	Ability to Select Suitable Material for Specific Applications	K2

COs/POs	P01	P02	P03	P04	P05		
CO1	1	2	2	1	3		
CO2	1	1	2	1	1		
CO3	2	1	2	1	2		
CO4	2	1	2	1	3		
CO5	1	2	2	1	3		
23MFPE04	1	2	2	1	3		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PA	ATTERN - THEO	RY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		50	50				100
CAT2		50	50				100
Individual							
Assessment 1							
/Case Study		50	50				100
1/ Seminar 1							
/ Project1							
Individual							
Assessment 2							
/Case Study		50	50				100
2/ Seminar 2							
/ Project 2							
ESE		50	50				100

23MFPE05	ADVANCED FINITE ELEMENT METHODS	SEMESTER
----------	---------------------------------	----------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

	m · . 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 1:1 0			
Course	To introduce non-linear computational methods to solve problems				
Objectives	structure, basic principles of finite element analysis procedure, sol	utions to			
	structural, thermal, dynamic and formulation methods in FEM.				
UNIT – I	MATHEMATICAL MODELS	9 Periods			
Modeling an	d Discretization – Interpolation, Elements, Nodes and degre	es-of-freedom.			
Computationa	al Procedures–Stiffness Matrices – Boundary Conditions–Solution of	Equations Ritz			
Method, Varia	tion Method, Method of Weighted residuals				
UNIT – II	BASIC ELEMENTS	9 Periods			
Interpolation	and Shape Functions - Element Matrices - Linear Triangular Ele	ements (CST) -			
Quadratic Tr	iangular Elements – Bilinear Rectangular Elements – Quadrat	ic Rectangular			
Elements -So	olid Elements – Higher Order Elements – Nodal Loads-Stress	Calculations -			
Example Prob	lems.				
UNIT – III	ISOPARAMETRIC ELEMENTS	9 Periods			
Introduction-	Bilinear Quadrilateral Elements - Quadratic Quadrilaterals	- Hexahedral			
Elements - D	etermination of Shape Functions - Numerical Integration - Quad	rature – Static			
Condensation	- Load Considerations - Stress Calculations - Examples O	f 2D and 3D			
Applications.					
UNIT – IV	FINITE ELEMENT FORMULATION FOR STRUCTURAL	9 Periods			
	APPLICATIONS				
Linear Elastic	: Stress Analysis –2D, 3D and Ax Symmetric Problems – Analysi	s of Structural			
Vibration – M	ass And Damping Matrices - Damping - Harmonic Response - Dir	ect Integration			
Techniques -	Explicit And Implicit Methods.	_			
UNIT – V	HEAT TRANSFER AND FLUID MECHANICS APPLICATIONS	9 Periods			
Nonlinear Pr	oblems – Element Formulation – Heat Conduction, Fluid flow,	etc-Transient			
Thermal Anal	Thermal Analysis-Acoustic Frequencies and Modes-Incompressible and Rotational Flows.				
Contact Perio	ods:				
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 4	5 Periods			

1	Gilbert Strang & George Fix, "An Analysis of the Finite Element Method", Wellesley-
	Cambridge Press,2018.
2	W.B. Bickford, "Advanced Mechanics of Materials", Pearson; 1st Edition, 2015
3	Thomas Apel, "Advanced Finite Element Methods and Applications", Springer; 2013th
	edition 2014.
4	R. D. Cook & W. C. Young, "Advanced Mechanics of Materials", Pearson; 2nd edition, 2003

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply numerical solutions to elasticity and possibly heat transfer	К2
	problems using the finite element method.	
CO2	Describe Energy Theorems and their implementation in the finite	К2
	element setting	
CO3	Evaluate approximations associated with the finite element method	К3
CO4	Apply convergence requirements and associated modeling techniques	K4
	and methods.	
CO5	Select appropriate elements and analysis types given a physical system.	K4

COs/POs	P01	PO2	P03	P04	P05	
C01	1	2	2	1	3	
CO2	1	2	1	3	3	
CO3	1	1	3	2	2	
CO4	1	2	2	3	1	
CO5	1	1	2	2	3	
23MFPE05	1	2	2	2	2	
1 – Slight, 2 – Moderate, 3 – Substantial.						

ASSESSMENT PAT	TTERN - THEOF	RY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		100					100
CAT2			50	50			100
Individual		100					100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual			50	50			100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE		50	25	25			100

23MFPE06	WEAR ANALYSIS AND CONTROL	SEMESTER

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

	·								
Course Objectives	17 To tamiliar with narameters of surface roughness and wear measurements								
UNIT-I	INTRODUCTION TO WEAR	9 Periods							
Types of w	ear, Adhesive wear, two-body and three-body abrasive wear, e	rosive wear,							
	vear, wear due to surface fatigue – Chemical reaction.								
UNIT- II	SURFACE ROUGHNESS AND WEAR MEASUREMENTS	9 Periods							
Multi scale c on-ring (POI	Tribo systems and tribo-elements, Characteristics of surface layers, Roughness parameters, Multi scale characterization of surface topography, Surface roughness measurement using pinon-ring (POR) and pin-on-disc (POD) machines, Advanced techniques for surface topography evaluation, Contact of ideally smooth surfaces, contact of rough surfaces.								
UNIT- III	WEAR IN LUBRICATED CONTACTS	9 Periods							
	lubrication regime, Functional lubrication regime, Fractional film ubricated contacts, Adhesive wear equation, Fatigue wear equation								
UNIT- IV	DIAGNOSIS AND CONTROL OF WEAR	9 Periods							
Wear resista	Diagnosis of wear mechanisms using optical microscopy and scanning electron microscopy, Wear resistant materials, wear resistant coatings, eco-friendly coatings designing for wear, systematic wear analysis, wear coefficients, filtration for wear control.								
UNIT- V	UNIT- V WEAR IN MECHANICAL COMPONENTS 9 Periods								
Component wear, bushings, lubricated piston rings and cylinder bore wear, dry piston rings, rolling bearings, seal wear, gear wear, gear couplings, wear of brake materials, wear of cutting tools, chain wear.									
Contact Peri Lecture: 45		: 45 Periods							
Lecture: 45	renous Lutoriai: O Perious Practicai: O Perious Lotai	: 45 Perioas							

1	B. Pugh, Friction & Wear , Wiley India Pvt. Ltd., New Delhi, 2012.
2	Harish Hirani, Fundamentals of Engineering Tribology with Applications, Cambridge English, 2017.
3	Ludema K C, Friction, Wear, Lubrication: A textbook in Tribology, CRC Press, 2010.
4	Paulo Davim, Tribology for Engineers:A practical guide , Woodhead publishing, 2011
5	Basu, Sen Gupta and Ahuja, Fundamentals of Tribology , PHI, 2000
6	https://nptel.ac.in/courses/113108083
7	https://nptel.ac.in/courses/113105086

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Formulate wear behaviour of materials under different environmental	КЗ
	conditions.	
CO2	Analyze contact behaviour of smooth and rough surfaces and identify	К4
	the type of wear.	K4
CO3	Analyze the friction phenomena and select a suitable lubricant for a	K4
	specific application.	КŦ
CO4	Diagnose and control wear in metallic parts.	К3
CO5	Determine the cause of wear in mechanical components.	K2

COs/POs	P01	P02	P03	P04	P05						
CO1	2	2	2	3	3						
CO2	2	1	1	2	3						
CO3	1	1	1	2	3						
CO4	2	2	1	3	2						
CO5	2	2	2	2	2						
23MFPE06	2	2	1	2	3						
1 – Slight, 2 – Moderate	, 3 – Substant	tial		1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT I	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1			40	60			100		
CAT2		30	40	30			100		
Individual			40	60			100		
Assessment 1									
/Case Study									
1/ Seminar 1									
/ Project1									
Individual		30	40	30			100		
Assessment 2									
/Case Study									
2/ Seminar 2									
/ Project 2									
ESE		20	40	40			100		

23MFPE07	MACHINE TOOL DRIVES AND CONTROL	SEMESTER

PREREQUISITES	CATEGORY		T	P	C
NIL	PE	3	0	0	3

Course	1 To understand the fundamental concents in machine tool de	ai an							
Course	 To understand the fundamental concepts in machine tool design. To be acquainted with different influencing factors, and the methods of 								
Objectives									
		controlling, the quality of products, in particular strength, rigidity and							
	dimensional accuracy.								
	3. To know about various common techniques used in desi	ign of machine							
	components	1							
UNIT – I	INTRODUCTION TO MACHINE TOOL DESIGN	9 Periods							
Introduction	to Machine Tool Drives and Mechanisms - Auxiliary Motions in M	Machine Tools -							
Kinematics of	f Machine Tools - Motion Transmission.	1							
UNIT – II	REGULATION OF SPEEDS AND FEEDS	9 Periods							
Aim of Speed	l and Feed Regulation - Stepped Regulation of Speeds - Multiple	Speed Motors -							
Ray Diagram	s and Design Considerations - Design of Speed Gear Boxes - Feed	l Drives - Feed							
Box Design.									

UNIT – III	DESIGN OF MACHINE TOOL STRUCTURES	9 Periods							
<u> </u>	DESIGN OF MACHINE TOOL STRUCTURES Machine Tool Structures and their Requirements - Design for Str								
Functions of	Machine Tool Structures and their Requirements - Design for Str	ength - Design							
Functions of for Rigidity -		ength - Design							
Functions of for Rigidity -	Machine Tool Structures and their Requirements - Design for Str Materials for Machine Tool Structures - Machine Tool Constructi	ength - Design							
Functions of for Rigidity - Beds and Hou UNIT - IV	Machine Tool Structures and their Requirements - Design for Str Materials for Machine Tool Structures - Machine Tool Constructi usings - Columns and Tables - Saddles and Carriage. DESIGN OF GUIDEWAYS AND POWER SCREWS	ength - Design onal Features -							
Functions of for Rigidity - Beds and Hou UNIT - IV Functions of	Machine Tool Structures and their Requirements - Design for Str Materials for Machine Tool Structures - Machine Tool Constructi usings - Columns and Tables - Saddles and Carriage.	rength - Design onal Features - 9 Periods e on Machining							
Functions of for Rigidity - Beds and Hou UNIT - IV Functions of Accuracy - Do	Machine Tool Structures and their Requirements - Design for Str Materials for Machine Tool Structures - Machine Tool Constructi usings - Columns and Tables - Saddles and Carriage. DESIGN OF GUIDEWAYS AND POWER SCREWS Spindles and Requirements - Effect of Machine Tool Compliance esign of Spindles - Antifriction Bearings - Dynamics of Machine	rength - Design onal Features - 9 Periods e on Machining							
Functions of for Rigidity - Beds and Hou UNIT - IV Functions of Accuracy - Do	Machine Tool Structures and their Requirements - Design for Str Materials for Machine Tool Structures - Machine Tool Constructi usings - Columns and Tables - Saddles and Carriage. DESIGN OF GUIDEWAYS AND POWER SCREWS Spindles and Requirements - Effect of Machine Tool Compliance	rength - Design onal Features - 9 Periods e on Machining							
Functions of for Rigidity - Beds and Hou UNIT - IV Functions of Accuracy - Do Tool Elastic S UNIT - V	Machine Tool Structures and their Requirements - Design for Str Materials for Machine Tool Structures - Machine Tool Constructionsings - Columns and Tables - Saddles and Carriage. DESIGN OF GUIDEWAYS AND POWER SCREWS Spindles and Requirements - Effect of Machine Tool Compliance esign of Spindles - Antifriction Bearings - Dynamics of Machine System - Static and Dynamic Stiffness CONTROL SYSTEMS IN MACHINE TOOLS	rength - Design onal Features - 9 Periods e on Machining Tools: Machine 9 Periods							
Functions of for Rigidity - Beds and Hou UNIT - IV Functions of Accuracy - Do Tool Elastic SUNIT - V Machine tool	Machine Tool Structures and their Requirements - Design for Str Materials for Machine Tool Structures - Machine Tool Constructionsings - Columns and Tables - Saddles and Carriage. DESIGN OF GUIDEWAYS AND POWER SCREWS Spindles and Requirements - Effect of Machine Tool Compliance esign of Spindles - Antifriction Bearings - Dynamics of Machine System - Static and Dynamic Stiffness CONTROL SYSTEMS IN MACHINE TOOLS control systems - Control Systems for Speed and Feed Changing	rength - Design onal Features - 9 Periods e on Machining Tools: Machine 9 Periods							
Functions of for Rigidity - Beds and Hou UNIT - IV Functions of Accuracy - Do Tool Elastic S UNIT - V	Machine Tool Structures and their Requirements - Design for Str Materials for Machine Tool Structures - Machine Tool Constructionsings - Columns and Tables - Saddles and Carriage. DESIGN OF GUIDEWAYS AND POWER SCREWS Spindles and Requirements - Effect of Machine Tool Compliance esign of Spindles - Antifriction Bearings - Dynamics of Machine System - Static and Dynamic Stiffness CONTROL SYSTEMS IN MACHINE TOOLS control systems - Control Systems for Speed and Feed Changings	rength - Design onal Features - 9 Periods e on Machining Tools: Machine 9 Periods							
Functions of for Rigidity - Beds and Hou UNIT - IV Functions of Accuracy - Do Tool Elastic SUNIT - V Machine tool Control Syste	Machine Tool Structures and their Requirements - Design for Str Materials for Machine Tool Structures - Machine Tool Constructionsings - Columns and Tables - Saddles and Carriage. DESIGN OF GUIDEWAYS AND POWER SCREWS Spindles and Requirements - Effect of Machine Tool Compliance esign of Spindles - Antifriction Bearings - Dynamics of Machine System - Static and Dynamic Stiffness CONTROL SYSTEMS IN MACHINE TOOLS control systems - Control Systems for Speed and Feed Changings ods:	rength - Design onal Features - 9 Periods e on Machining Tools: Machine 9 Periods ing - Adaptive							

	I LIKENGES!
1	N.K. Mehta, Machine Tool Design and Numerical Control, McGraw Hill Education, 2017.
2	G.C. Sen and A. Bhattacharya, Principles of Machine Tool, New Central Book Agency, 2009.
3	D. K Pal, S. K. Basu, Design of Machine Tools , Oxford & IBH Publishing Co Pvt.Ltd, 2018.
4	N. Acherkan, Machine Tool Design Vol. 3 & 4, MIR Publishers, Moscow, 1968.
5	https://nptel.ac.in/courses/112105233
6	https://nptel.ac.in/courses/112106424

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Select the different machine tool mechanisms for real time applications.	K5
CO2	Design the Multi speed Gear Box and feed drives for industrial	K4
	applications.	
CO3	Design the machine tool structures for manufacturing of components.	К3
CO4	Design the guide ways and power screws for various machine tools.	КЗ
CO5	Select the suitable control system specific to the machine tool.	K5

COURSE ARTICULATION MATRIX:								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	2	3	3	2	1			
CO2	1	2	3	2	1			
CO3	1	3	1	1	1			
CO4	1	1	2	1	1			
CO5	1	1	3	1	1			
23MFPE07	1	2	2	1	1			
1 – Slight, 2 – Moderate, 3 – Si	ubstantial							

ASSESSMENT PA	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1			30	40	30		100			
CAT2			50		50		100			
Individual			30	40	30		100			
Assessment 1										
/Case Study 1/										
Seminar 1 /										
Project1										
Individual			50		50		100			
Assessment 2										
/Case Study 2/										
Seminar 2 /										
Project 2										
ESE			40	20	40		100			

23MFPE08

SENSORS FOR INTELLIGENT MANUFACTURING

SEMESTER

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	1. To familiarize with the basics of sensors in manufacturing.						
Objectives	2. To acquire knowledge in the concepts of condition monitoring.						
Objectives							
	for hi-tech manufacturing systems.						
	4. 4 To provide the knowledge on sensors used in manufacturing and						
	inspection.	ation					
	5. 5. To gain knowledge on advanced sensors in industrial autom.						
UNIT – I	INTRODUCTION	9 Periods					
	- Role of sensors in manufacturing automation - Operatio						
different sens	sors – Electrical, optical, acoustic, pneumatic, magnetic, Electro op	tical and vision					
sensors		,					
UNIT – II	CONDITION MONITORING OF MANUFACTURING SYSTEMS	9 Periods					
Condition mo	onitoring of manufacturing systems – Principles – Sensors for mo	onitoring force,					
vibration and	noise, selection of sensors and monitoring techniques.	_					
UNIT – III	ACOUSTIC EMISSION SENSORS	9 Periods					
Acoustic emis	ssion – Principles and applications – Concepts of pattern recogniti	on. Sensors for					
	tools – linear and angular position and velocity sensors.						
UNIT – IV	MACHINE VISION SENSORS	9 Periods					
Automatic ide	entification techniques for shop floor control – Bar code scanners, r	radio frequency					
	tical character and machine vision sensors.						
UNIT – V	ADAPTIVE CONTROL OF MACHINE TOOLS	9 Periods					
Smart / intell	igent sensors – Integrated sensors, Robot sensors, Micro sensors, Na	ano sensors-					
	Adaptive control of machine tools.						
Contact Peri	ods:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	Peter E. Orban, George K. Knopf, Sensors and Controls for Intelligent Manufacturing,
	Society of Photo Optical, 2001.
2	Sabrie Salomon, Sensors and Control Systems in Manufacturing, McGraw Hill Int. Edition,
	2010
3	Randy Frank, Understanding Smart Sensors , Artech House, USA, 2011.
4	Regtien, P. P. L., Sensors for mechatronics , Elesevier, USA,2012.
5	Bradley, D. A., Dawson D., Burd, N. C. and Loader A. J., Mechatronics: Electronics in products
	and processes, CRC Press, Florida, USA, 2010
6	Jacob Fraden, Handbook of Modern Sensors Physics, Designs and Applications, Springer -
	Verlag New York, 2004.
7	https://archive.nptel.ac.in/courses/112/103/112103293/

COUI	RSE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
C01	Select the suitable sensors for manufacturing automation.	K4
CO2	Choose the advanced sensors for condition monitoring in shop	K4
	floor.	
CO3	Use special type of sensors for hi-tech manufacturing systems.	К3
CO4	Apply advanced sensor based systems for identification and	К3
	inspection functions in shop floor.	
CO5	Apply smart sensors for industrial automation.	К3

COURSE ARTICULATION MATRIX:							
COs/POs	P01	P02	P03	P04	P05		
CO1	1	1	3	2	1		
CO2	1	1	3	2	1		
CO3	1	1	3	1	2		
CO4	1	2	3	1	1		
CO5	1	1	3	2	1		
23MFPE08	1	1	3	1	1		
1 – Slight, 2 – Moderate, 3 –	Substantial						

ASSESSMENT I	ASSESSMENT PATTERN - THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1			40	60			100			
CAT2			100				100			
Individual			40	60			100			
Assessment 1										
/Case Study										
1/ Seminar 1										
/ Project1										
Individual			100				100			
Assessment 2										
/Case Study										
2/ Seminar 2										
/ Project 2										
ESE			60	40			100			

23MFPE09	MEMS AND NEMS	SEMESTER

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	1. To enlarge knowledge on recent development of science and	technology of					
Objectives	micro and nano systems.						
	2. To familiarize the fabrication and packaging of micro systems.						
	3. To understand the micro devices used in the recent developments.						
	4. To gain knowledge on synthesis of nano materials.						
	5. To familiarize the characterization of nano materials.						
UNIT – I	MEMS AND MICROSYSTEMS	9 Periods					
Definition -	Historical development – fundamentals – Properties, micro fluidi	cs, design and					
	icro-system, microelectronics, working principle, applications and						
	, MEMS Simulation and Design tools - Behavioral modelling simula	ation tools and					
	t simulation tools.	0.0. 1. 1					
UNIT – II	MATERIALS, FABRICATION PROCESSES AND MICRO SYSTEM PACKAGING	9 Periods					
Substrates a	nd wafers- Polymers for MEMS, Conductive polymers- Photolitl	hography- Ion					
	- Diffusion process - Oxidation - Chemical vapor deposition						
	y epitaxy - Etching - Bulk and surface machining - LIGA process -						
packaging		J					
UNIT – III	MICRO DEVICES	9 Periods					
Sensors - Cla	ssification - Signal conversion ideal characterization of sensors m	icro actuators,					
mechanical sensors – Displacement sensors, pressure and flow sensors - Sensitivity, reliability							
		vity, reliability					
and response	of micro-sensor - Applications of micro actuators.						
and response UNIT - IV	of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS	9 Periods					
and response UNIT - IV Classification	of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on variou	9 Periods as properties –					
and response UNIT - IV Classification Structural, Tl	of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on variou nermal, chemical, mechanical, magnetic, optical and electronic pro	9 Periods as properties – operties. Nano					
and response UNIT – IV Classification Structural, Ti particles - So	of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on variou nermal, chemical, mechanical, magnetic, optical and electronic prol-Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tube	9 Periods as properties – operties. Nano					
and response UNIT - IV Classification Structural, Tl particles - So methods - To	of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on variou nermal, chemical, mechanical, magnetic, optical and electronic prol-Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tube pp down Processes – Bottom up process.	9 Periods as properties – operties. Nano es- Fabrication					
and response UNIT - IV Classification Structural, Ti particles - So methods - To UNIT - V	of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on various nermal, chemical, mechanical, magnetic, optical and electronic prol-Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tube op down Processes – Bottom up process. CHARACTERIZATION OF NANO MATERIALS	9 Periods as properties – operties. Nano es- Fabrication 9 Periods					
and response UNIT - IV Classification Structural, Ti particles - So methods - To UNIT - V Nano-process	of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures – Effects of nano scale dimensions on various nermal, chemical, mechanical, magnetic, optical and electronic prol-Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tube op down Processes – Bottom up process. CHARACTERIZATION OF NANO MATERIALS sing systems – Nano measuring systems – Characterization – Analysis	9 Periods as properties – operties. Nano es- Fabrication 9 Periods alytical imaging					
and response UNIT - IV Classification Structural, Tl particles - So methods - To UNIT - V Nano-process techniques -	of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures - Effects of nano scale dimensions on various nermal, chemical, mechanical, magnetic, optical and electronic prol-Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tube op down Processes - Bottom up process. CHARACTERIZATION OF NANO MATERIALS sing systems - Nano measuring systems - Characterization - Anal Microscopy techniques- Diffraction techniques - Spectroscopy te	9 Periods as properties – operties. Nano es- Fabrication 9 Periods lytical imaging echniques - 3D					
and response UNIT - IV Classification Structural, Tl particles - So methods - To UNIT - V Nano-process techniques -	of micro-sensor - Applications of micro actuators. SCIENCE OF SYNTHESIS OF NANO MATERIALS of Nano structures - Effects of nano scale dimensions on various nermal, chemical, mechanical, magnetic, optical and electronic prol-Gel Synthesis - Plasma synthesis - Synthesis of carbon nano tube op down Processes - Bottom up process. CHARACTERIZATION OF NANO MATERIALS sing systems - Nano measuring systems - Characterization - Anal Microscopy techniques - Diffraction techniques - Spectroscopy tesis - Mechanical, Magnetic and thermal properties - Nano positioning	9 Periods as properties – operties. Nano es- Fabrication 9 Periods lytical imaging echniques - 3D					

1	M.H. Fulekar, Nanotechnology: Importance and Applications, Dreamtech Press, 2019.
2	DAS A, An Introduction to Nanomaterials and Nanoscience,CBS, 2020.
3	Thomas Varghese & K.M. Balakrshna, Nanotechnology: An Introduction to Synthesis,
	Properties and Applications of Nanomaterials. Atlantic; Reprint, 2021.
4	Choudhary K K, Nanoscience and Nanotechnolog, Narosa Publishing House Pvt. Ltd, 2016.
5	Jaume Verd, Jaume Segura, Development of CMOS-MEMS/NEMS Device, MDPI AG, 2019.
6	https://nptel.ac.in/courses/117105082
7	https://archive.nptel.ac.in/courses/118/104/118104008/

COUI	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the micro/nano systems in manufacturing industries.	К3
CO2	Identify the materials and fabrication process for micro systems.	К3
CO3	Apply the micro and nano-scale devices in mechanical assemblies.	K4
CO4	Develop the nano materials for industrial applications.	К3
CO5	Analyze the nano materials using advanced microscopy.	К3

COURSE ARTICULATION MATRIX:								
COs/POs	P01	P02	P03	P04	P05			
CO1	1	2	1	1	1			
CO2	2	1	2	1	2			
CO3	2	1	1	3	2			
CO4	2	2	2	1	3			
CO5	2	2	2	2	1			
23MFPE09	2	2	2	2	2			

ASSESSMENT PAT	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1			60	40			100		
CAT2			60	40			100		
Individual			60	40			100		
Assessment 1									
/Case Study 1/									
Seminar 1 /									
Project1									
Individual			60	40			100		
Assessment 2									
/Case Study 2/									
Seminar 2 /									
Project 2									
ESE			60	40			100		

23MFPE10

LEAN MANUFACTURING SYSTEMS AND IMPLEMENTATION

SEMESTER

PREREQUISITES	CATEGORY	L	T	P	C
NIL		3	0	0	3

Course	1. To understand the concepts of lean manufacturing					
Objectives	s 2. To acquire knowledge of design and value stream management					
	3. To familiarize the fundamental lean tools used in industries.					
	4. To familiarize the techniques of lean implementation in manufactures	acturing				
	industries.					
	5. To gain knowledge in lean metrics and lean sustenance.					
UNIT - I	LEAN MANUFACTURING	9 Periods				
Evolution of	Lean - Traditional versus Lean Manufacturing - Business of Surviva	l and Growth -				
Business Mod	del Transformation - Ford Production System - Job Shop Concept					
	's foray in Lean.					
UNIT – II	DESIGN AND VALUE STREAM MANAGEMENT	9 Periods				
	M Types - Product Family Selection - Value Stream Manager - Cur					
	Value Stream Icons - 3 MS - Muda, Mura, Muri - Types of Muda, Fu					
	Plan, Process Stability - Loss Reduction - Major Losses Reduct					
	et Dynamics, Customer Demand, PQ Analysis, PR Analysis; TAK	T Time, Pitch,				
	ds Stock, Cycle Stock, Buffer Stock, Safety Stock. FUNDAMENTAL LEAN TOOLS	9 Periods				
UNIT – III						
	ontinuous Flow - Cell Layout - Line Balancing, Macro and Micro M					
	Work - Concept of Kaizen - Steps involved in Kaizen Deployme					
	- Concepts and Fundamentals, Kanban Concepts, Types of Kanban					
* *	Concept of Pull - Changeover Time Reduction - External and Ininge of Die - Quick Die Change - Quality-Vendor, In Process and Custo	_				
UNIT - IV	LEAN IMPLEMENTATION	9 Periods				
_	-					
Concept of PPM - Pokayoke, Prevention and Detection Types, Maintenance - Preventive, Time						
Based and Condition Based; Human Development for Lean (Training and Involvement through Autonomous Maintenance) Leveling Stage of Lean Implementation, Production Leveling,						
	Concept of Water Spider	tuon Levening,				
UNIT - V	LEAN METRICS AND LEAN SUSTENANCE	9 Periods				
_	Metrics - Steps involved in Goal Setting - Corporate Goals -					
identity Leaf	i Metrics - Steps involved in doar Setting - Corporate doars -					

REFERENCES:

Contact Periods: Lecture: 45 Periods

Targets and Benchmarks.

1	Ronald G. Askin, Jeffrey B. Goldberg Research on Design and Management of Lean Production Systems, Wiley; 1st Edition 2001
2	Akhilesh N. Singh , Lean Manufacturing Concepts, Bibliophile South Asia, 2011.
3	Lonnie Wilson, How to Implement Lean Manufacturing , McGraw-Hill Education ,2009.
4	J. Paulo Davim, Modern Manufacturing Engineering, Springer, 2015.
5	https://nptel.ac.in/courses/110107130

identification in VSM - Lean Assessment, Cultural Change, Reviews, Recognition, Improving

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

COUF	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Taxonomy Mapped	
CO1	Identify the production system for implementing lean principles.	K2	
CO2	Apply lean concepts in manufacturing sector to face globalization and	К3	
	competitiveness		
CO3	Implement the lean tools against the targets for sustainable business	K4	
	growth		
CO4	Develop a roadmap for successful implementation of lean principles	К3	
CO5	Identify and organize the elements of just in time manufacturing	K2	

COURSE ARTICULATION MATRIX:								
COs/POs	P01	P02	P03	P04	P05			
CO1	1	1	3	1	1			
CO2	2	2	2	1	2			
CO3	2	1	1	2	3			
CO4	2	2	2	1	3			
CO5	2	1	1	3	3			
23MFPE10	2	1	2	2	3			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1		30	40	30			100		
CAT2		30	40	30			100		
Individual		30	40	30			100		
Assessment 1									
/Case Study 1/									
Seminar 1 /									
Project1									
Individual		30	40	30			100		
Assessment 2									
/Case Study 2/									
Seminar 2 /									
Project 2									
ESE		40	40	20			100		

23MFPE11	HIGH SPEED MACHINING	SEMESTER

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	1. To know the basics of HSM and identify its advantages.						
Objectives	2. To understand the HSM cutting mechanism and identify the process variables.						
	3. To enumerate the applications of metal working fluids.						
	4. To understand the cutting strategies of HSM.						
	5. To appreciate the invariability of HSM transitioning.						
UNIT - I	INTRODUCTION TO HIGH SPEED MACHINING	9 Periods					
Overview of 1	nachining processes, evolution and significance of HSM, historical p	erspective and					
milestones, to	ool geometry and its impact on cutting forces, temperature effects	s in high-speed					
cutting, tool r	naterial selection.						
UNIT – II	TOOLING AND MACHININE DYNAMICS IN HSM	9 Periods					
Selection of	cutting tools for HSM, tool coatings and their role, optimal cutting	ng parameters.					
	requirements for HSM, vibration control and damping techniq						
machine stiff	ness and rigidity.	<u>-</u>					
UNIT – III	ADVANCES IN COOLING AND LUBRICATION FOR HSM	9 Periods					
Water-based	metalworking fluids, properties of the fluids, influence of the emu	ılsion type and					
particle-size	in metalworking fluid, usages of graphite iron and ductile cast iror	in engineered					
metalworking	g fluids, new metalworking fluid technology.						
UNIT – IV	SURFACE FINISH AND QUALITY	9 Periods					
Strategies for	achieving high-quality surface finish, cutting strategies for comp	lex geometries,					
tool path programming, inspection and measurement techniques, Case studies.							
UNIT – V	CHALLENGES AND ADVANCES IN HSM	9 Periods					
Common issues in HSM, troubleshooting and problem-solving, case studies and real-world							
examples, emerging technologies in HSM, industry trends and future developments.							
Contact Peri	Contact Periods:						
Lecture:45 P	Lecture:45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

1	Kapil Gupta and J Paulo Davim, High-Speed Machining, 1st Edition, Academic Press Inc., 2020,
	ISBN: 978-0-12-815020-7, DOI: https://doi.org/10.1016/C2017-0-02542-9
2	Schmitz Tony L, Smith Kevin S , Machining Dynamics: Frequency Response to Improved
	Productivity , Springer International Publishing, 2009, ISBN-10: 0-387-09644-2
3	Modern Metal Cutting: A Practical Handbook, University of Michigan, Sandvik Coromant
	Publishers,2007, ISBN-13 - 978-9197229906
4	Proceedings of the International Conference on High-Speed Machining (ICHSM), Nanjing
	University, China, Trans Tech Publications Limited,2014, ISBN-10: 3038351423
5	https://nptel.ac.in/courses/112105233

COUF	Bloom's Taxonomy		
Upon	Upon completion of the course, the students will be able to:		
CO1	Understand the need for adoption of HSM process.	К3	
CO2	Describe the HSM cutting mechanism.	K2	
CO3	Identify and control the process variables of HSM.	К3	
CO4	Select the suitable lubricant for HSM.	К3	
CO5	Analyze the challenges involved in HSM	K4	

COURSE ARTICULA	TION MATRIX:				
COs/POs	P01	P02	P03	P04	P05
CO1	1	2	2	2	1
CO2	2	1	3	1	1
CO3	2	2	2	2	2
CO4	1	1	3	2	2
CO5	2	2	2	1	2
23MFPE11	2	2	2	2	2
1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT I	PATTERN - THEC	RY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		40	60				100
CAT2			40	60			100
Individual		40	60				100
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual			40	60			100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE		20	60	20			100

23MFPE12	SUPPLY CHAIN MANAGEMENT	SEMESTER

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	1. To understand the complexity and key issues in supply chain r	nanagement.				
Objectives	s 2. To describe logistics networks, distribution planning, routing design and					
	scheduling models.					
	3. To familiarize with dynamics of supply chain and the role of	information in				
	supply chain.					
	4. To understand the issues related to strategic alliances, globa	al supply chain				
*********	management, procurement and outsourcing strategies.	0.0				
UNIT – I	INTRODUCTION	9 Periods				
	Logistics and SCM: Evolution, Scope, Importance and Decision Ph					
	oly chain - Supply chain flows- Examples of supply chains- Competi					
	es- Achieving strategic fit- Expanding strategic scope- Drivers o	f supply chain				
_	Framework for structuring drivers–Obstacles to achieving fit.					
UNIT – II	LOGISTICS MANAGEMENT	9 Periods				
	odes of Transportation - Design options for Transportation Net g – Inbound and outbound logistics- Reverse Logistics – 3PL- Integ					
-	egrated Logistics Model – Activities - Measuring logistics cost and	performance -				
	anagement - Case Analysis.					
UNIT – III	SUPPLY CHAIN NETWORK DESIGN	9 Periods				
	Distribution in Supply Chain – Factors in Distribution network design –Design options-NetworkDesign in Supply Chain – Framework for network Decisions - Managing cycle inventory					
UNIT – IV	SOURCING AND PRICING IN SUPPLY CHAIN	9 Periods				
Supplier sele	ction and Contracts - Design collaboration - Procurement pro	cess. Revenue				
management. In supply chain.						
UNIT - V	COORDINATION AND TECHNOLOGY IN SUPPLY CHAIN	9 Periods				
Supply chain coordination - Bullwhip effect - Effect of lack of co-ordination and obstacles - IT						
and SCM - supply chain IT frame work. E-Business and SCM. Metrics for SC performance -						
CaseAnalysis.	CaseAnalysis.					
Contact Peri	ods:					
Lecture:45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods				

1	Chopra, Kalra, Supply Chain Management, Pearson Education India; Sixth edition, 2016
2	G. Srinivasan, Quantitative Models In Operations And Supply Chain Management, PHI
	Learning; 2nd edition, 2018
3	Mr. Vikash Kumar Vivek Kumar, Mr. Hari Bhagat, The basics of supply chain management,
	Bluerose Publishers Pvt. Ltd.; FIRST edition, 2021
4	Richard B. Chase , Ravi Shankar ,F. Robert Jacobs, Operations and Supply Chain
	Management (SIE), 15th Edition, McGraw Hill Education, 2018
5	Joel D. Wisner, Keah-Choon Tan, G. Keong Leong, Principles of Supply Chain Management: A
	Balanced Approach, Cengage Learning India Pvt. Ltd.; 5th edition 2019.
6	https://nptel.ac.in/courses/110106045

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify and analyze supply chain problems in various business sectors.	K4
CO2	Devise strategies, plans and operations to solve supply chain problems	K5
	and/or to improve supply chain efficiency.	
CO3	Apply information technology in e-business for corporate demand.	К3
CO4	Develop analytical and critical understanding & skills for planning,	K5
	designing and operations of supply chain.	
CO5	Develop an understanding of basic concepts and role of Logistics and	K4
	supply chain management in business.	

COURSE ARTICULA	ΓΙΟΝ MATRIX:				
COs/POs	P01	PO2	P03	P04	P05
CO1	1	2	2	1	1
CO2	1	1	3	1	1
CO3	3	2	2	2	2
CO4	1	1	3	3	3
CO5	2	1	2	1	2
23MFPE12	1	1	2	2	2
1 – Slight, 2 – Modera	ate, 3 – Substan	tial			

ASSESSMENT PA	ATTERN - THEO	RY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1			30	40	30		100
CAT2			30	40	30		100
Individual			30	40	30		100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual			30	40	30		100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE			30	40	30		100

23MFPE13	DESIGN FOR MANUFACTURE, ASSEMBLY AND ENVIRONMENT	SEMESTER

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course 1. To acquire knowledge about design principles and possible methodology to **Objectives** accomplish feasibility in manufacturing environment. 2. To enhance specified design concepts and skill in material selection, form design and castings. 3. To analyze factors for selection of metals and alloys and relationship to manufacturing processes 4. To apply the concepts of design for manufacturing and assembly for product manufacturing. 5. To compare various manufacturing processes and assembly techniques required for product development. 9 Periods

UNIT - I **INTRODUCTION**

General design principles for manufacturability - Evaluation of customer's requirements-Systematic working plan for the designer- Process capability - Geometric Dimensioning and Tolerancing- Assembly limits -Datum features - Tolerance stacks-Interchangeable part manufacture and selective assembly.

UNIT - II **FACTORS INFLUENCING FORM DESIGN** 9 Periods Materials choice - Influence of basic design, mechanical loading, material, production method,

size and weight on form design- form design of welded members and forgings-case studies.

UNIT - III **COMPONENT DESIGN - CASTING CONSIDERATION** 9 Periods Form design of grey iron, steel, malleable iron and aluminium castings. Redesign of castings

based on parting line considerations - Minimizing core requirements, machined holes, redesign of cast members to obviate cores-case studies.

UNIT - IV COMPONENT DESIGN - MACHINING CONSIDERATION 9 Periods

Design features to facilitate machining - drills - milling cutters - keyways - Doweling procedures, counter sunk screws - Reduction of machined area- simplification by separation - simplification by amalgamation - Design for machinability - Design for economy - Design for clampability -Design for accessibility - Design for assembly. Identification of uneconomical design - Modifying the design - group technology -Computer Applications for DFMA- case studies.

DESIGN FOR ENVIRONMENT UNIT - V 9 Periods

Introduction - Importance of DFE - Global issues - Regional and local issues - Design guidelines -Lifecycle assessment - EPS system - Responsible product assessment - Weighted sum assessment method- Design to minimize material usage -Design for disassembly - Design for recyclability - Design for remanufacture -Design for energy efficiency - Design to regulations and standards.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Harry peck, Designing for Manufacture , Pitman publishing, 2015.
2	Dickson, John. R, and Corroda Poly, Engineering Design and Design for Manufacture and
	Structural Approach, Field Stone Publisher, USA, 2013.
3	Graedel T. Allen By. B, Design for the Environment , Angle Wood Cliff, Prentice Hall. Reason
	Pub.2017.
4	Boothroyd, G, Design for Assembly Automation and Product Design , New York, Marcel
	Dekker, 2015.
5	Kevien Otto and Kristin Wood, Product Design , Pearson Publication, 2017.
6	https://nptel.ac.in/courses/107103012.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy
opon	completion of the course, the students will be able to.	Mapped
C01	Formulate the feasibility of design features in manufacturing area and smart development in manufacturability.	K4
CO2	Develop new concepts and methods for re-design of castings and simplified machining process.	K4
CO3	Develop artifact and translate the concepts of economics in design, optimization of design and human factors approach in manufacturing.	K4
CO4	Understand the principles of selection of materials for product development.	K2
CO5	Remember the basic principles of designing for economical production-creativity in design.	K1

COURSE ARTICULATION MATRIX:								
COs/POs	P01	P02	P03	P04	PO5			
CO1	1	1	2	2	2			
CO2	1	1	2	2	3			
CO3	1	2	2	3	3			
CO4	1	2	2	2	3			
CO5	1	2	2	3	3			
23MFPE13	1	2	2	3	3			
1 – Slight, 2 – Moderate, 3 – Su	ıbstantial				_			

ASSESSMENT PA	ATTERN - THEO	RY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1				100			100
CAT2	30	30		40			100
Individual				100			100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual	30	30		40			100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20	20		60			100

23MFPE14	THEORY OF METAL FORMING	SEMESTER

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

TINITE I	TO T	TEODY OF DIACONOMY	0 D	. 1
	5.	To study the surface treatment and metal forming applications	S.	
		requirements of powder metallurgy and special forming proce	esses.	
	4.	To study the powder metallurgy and special forming pro-		and its
	3.	To study the requirements of sheet metal forming.		
	2.	To study the theory and practice of bulk forming processes.		
Objectives		calculation in metal forming process.		
Course	1.	To study the basic concepts of metal forming techniques and t	to develo	p force
			, ,	-

UNIT - I THEORY OF PLASTICITY

9 Periods

Theory of plastic deformation – Yield criteria – Tresca and Von-mises – Distortion energy – Stress-strain relation – Mohr's circle representation of a state of stress – cylindrical and spherical co-ordinate system – upper and lower bound solution methods – Overview of FEM applications in Metal Forming analysis.

UNIT - II THEORY AND PRACTICE OF BULK FORMING PROCESSES

9 Periods

Analysis of plastic deformation in Forging, Rolling, Extrusion, rod/wire drawing and tube drawing – Effect of friction – calculation of forces, work done – Process parameters, equipment used – Defects – applications – Recent advances in Forging, Rolling, Extrusion and Drawing processes – Design consideration in forming.

UNIT - III SHEET METAL FORMING

9 Periods

Formability studies – Conventional processes – HERF techniques – Superplastic forming techniques – Hydro forming – Stretch forming – Water hammer forming – Principles and process parameters – Advantage, Limitations and application.

UNIT - IV POWDER METALLURGY AND SPECIAL FORMING PROCESSES 9 Periods

Overview of P/M technique – Advantages – applications – Powder preform forging – powder rolling – Tooling, process parameters and applications. - Orbital forging – Isothermal forging – Hot and cold isostatic pressing – High speed extrusion – Rubber pad forming – Fine blanking – LASER beam forming.

UNIT - V SURFACE TREATMENT AND METAL FORMING APPLICATIONS

9 Periods

Experiment techniques of evaluation of friction in metal forming selection – influence of temperature and gliding velocity – Friction heat generation –Surface treatment for drawing, sheet metal forming, Extrusion, hot and cold forging- Processing of thin Al tapes – Cladding of Al alloys – Duplex and triplex steel rolling – Thermo mechanical regimes of Ti and Al alloys during deformation – Formability of welded blank sheet – Laser structured steel sheet - Formability of laminated sheet.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	B. L. Juneja., Fundamentals of Metal Forming Processes, New Age Publishers; Second
	edition: 2018
2	Swapnil Prakash Raut, Priyank Madhukar Vartak, Metal Forming Technology, Tech-Neo
	Publications.2022.
3	Hingole R S ., Advances In Metal Forming Expert System For Metal Forming, Springer 2014
4	H S Shan ., Manufacturing Processes : Casting Forming And Welding, Cambridge University
	Press. 2017
5	Wang, Z. R., Hu, Weilong, Yuan, S. J., Wang, Xiaosong., Engineering Plasticity: Theory and
	Applications in Metal Forming., Wiley., 2018.
6	https://nptel.ac.in/courses/112106153

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Outline tooling and equipments required for important metal forming	K2
	processes.	
CO2	Analyze effect of parameters influencing metal forming and compare hot	К3
	working and cold working with applications.	
CO3	Explain capabilities and applications of bulk metal forming processes	K4
	and sheet metal work.	
CO4	Examine the process capabilities of powder metallurgy processes.	K4
CO5	Apply the knowledge of surface treatment on formed components	К3

COs/POs	P01	PO2	PO3	P04	PO5
CO1	1	1	3	1	1
CO2	1	1	3	2	2
CO3	1	1	2	1	2
CO4	1	2	2	1	2
CO5	1	1	3	1	1
23MFPE14	1	2	3	2	2

ASSESSMENT I	PATTERN - THE	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		30	40	30			100
CAT2			50	50			100
Individual		30	40	30			100
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual			50	50			100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE		20	40	40			100

23MFPE15	NON-DESTRUCTIVE EVALUATION	SEMESTER

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	1. To familiarize with the principles of nondestructive tech	niques and to							
Objectives	introduce non-destructive evaluation in engineering applications.								
	2. To familiarize with various ultrasonic hardness tests.	2. To familiarize with various ultrasonic hardness tests.							
	3. To gain knowledge about X-ray radiography.								
	4. To acquire knowledge on penetrant and magnetic particle tests	5.							
	5. To educate students on Holography and applications of NDT.								
UNIT – I	CONCEPTS OF NDT	9 Periods							
Relative mer	its and limitations of NDT Vs Conventional testing –Visual inspe	ection, thermal							
inspection me	ethods. Liquid penetrate Inspection								
UNIT – II	LIQUID PENETRANT AND MAGNETIC PARTICLE TESTS	9 Periods							
Characteristic	s of liquid penetrates - different washable systems - Developers	- applications -							
Methods of p	roduction of magnetic fields - Principles of operation of magnetic	particle test -							
Applications -	Advantages and limitations.								
UNIT – III	RADIOGRAPHY	9 Periods							
	y-X-ray production - properties of d and X rays - film characteris	tics - exposure							
charts - contr	asts - operational characteristics of X ray equipment - applications.								
UNIT – IV	ULTRASONIC AND ACOUSTIC EMISSION TECHNIQUES	9 Periods							
Production of	f ultrasonic waves - different types of waves - general characteris	tics of waves -							
pulse echo m	ethod – A, B, C scans - Principles of acoustic emission techniques - A	Advantages and							
limitations - I	nstrumentation - applications.								
UNIT - V THERMOGRAPHY 9 Periods									
	Thermography - Principles, types, applications, advantages and limitations. Optical and								
Acoustical holography- Principles, types, applications, advantages and limitations. Case studies:									
weld, cast and formed components.									
Contact Periods:									
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0 Periods Tota	l: 45 Periods							

1	Barry Hull and Vernon John, Non Destructive Testing , MacMillan, 1988									
2	American Society for Metals, Metals Hand Book , Vol.II, 1976									
3	Hull., . ELBS Edition. 1991									
4	ASM Metals Hand Book. Vol. (9). Non-destructive Testing and Inspection, 1988									
5	C.Hellier, Hand Book Non-Destructive Evaluation , McGraw-Hill Professional,1st									
	Edition,2001.									
6	https://archive.nptel.ac.in/courses/113/106/113106070									

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the difference in the different methods of nondestructive	K2
	techniques.	
CO2	Apply the appropriate technique for a given application	К3
CO3	Analyze the defects formed by nondestructive techniques	K4
CO4	Demonstrate the knowledge about different acoustic flaw detection	K4
	techniques and holography techniques.	
CO5	Familiarize with basic principles of electromagnetic NDT methods, X-ray	К3
	and gamma ray radiography inspection process.	

COs/POs	P01	P02	P03	P04	P05
CO1	1	1	1	3	1
CO2	1	1	1	3	2
CO3	1	1	1	2	2
CO4	1	2	2	2	2
CO5	1	1	1	3	1
23MFPE15	1	2	2	3	2

ASSESSMENT I	ASSESSMENT PATTERN - THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1		30	40	30			100			
CAT2			50	50			100			
Individual		30	40	30			100			
Assessment 1										
/Case Study										
1/ Seminar 1										
/ Project1										
Individual			50	50			100			
Assessment 2										
/Case Study										
2/ Seminar 2										
/ Project 2										
ESE		20	40	40			100			

23MFPE16	GREEN MANUFACTURING	SEMESTER

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	1. To familiarize students with the concept of sustainability manufacturing with							
Objectives	tools and techniques							
	2. To gain knowledge on Quality initiatives towards green manufacturing.							
	3. To acquaint with the framework of recycling policies							
	4. To promote awareness on the environmental attributes of man	nufacturing						
	5. To inculcate knowledge on performing life cycle analysis							
UNIT – I	SUSTAINABLE MANUFACTURING AND EMS	9 Periods						
	Janufacturing - Concepts and Methodologies to Help Promote Indu							
	series standards - Concepts of ISO 14001 - requirements of							
	al Management System benefits - Environmentally Conscious Manuf							
UNIT – II	GREEN MANUFACTURING	9 Periods						
	and Quality Initiatives - Environmental Cost Accounting and Busi or an Environmentally Conscious Setting - The Development o							
UNIT – III	RECYCLING	9 Periods						
Recycling as	Universal Resource Policy - Innovation towards Environmental S	ustainability in						
Industry - A S	ystematic Framework for Environmentally Conscious Design							
UNIT – IV	ENVIRONMENTAL ATTRIBUTES OF MANUFACTURING	9 Periods						
Environmental Attributes of Manufacturing Processes - Environmental Decision Support Systems -Decision Models for Reverse Production System Design - Environmentally Sound Supply ChainManagement								
UNIT – V	LIFE CYCLE ASSESSMENT	9 Periods						
Life Cycle Assessment - Multipath way and Cumulative Risk Assessment - Reclamation and								
Recycling of V	Vaste							
Contact Peri	ods:							
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 0 P	eriods						

1	Mrityunjay Singh, Tatsuki Ohji, Rajiv Asthana, Green and Sustainable Manufacturing of									
	Advanced Material, , Elsevier 1st Edition - August 18, 2015									
2	Besterfield, D.H., Besterfield, C.M., Besterfield, G.H. and Besterfield, M.S., Total Quality									
	Management , Pearson Education ,2015									
3	S.Vinodh , Sustainable Manufacturing Concepts, Tools, Methods and Case Studies,CRC									
	Press; 1st edition, 2021									
4	Dr. Kaliyan Mathiyazhagan, Dr. K. E. K. Vimal, Dr. Harish Kumar, Veronica Agarwal,									
	Dr. Anbanandam Ramesh, Lean and Green Manufacturing , Springer; 1 st edition, 2022									
5	https://nptel.ac.in/courses/110104119									

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Utilise tools and techniques of sustainable manufacturing	К3
CO2	Comprehend the green manufacturing tools.	K2
CO3	Analyse eco-friendliness of products considering recycling principles	K4
CO4	Evaluate the environmental attributes of manufacturing.	К3
CO5	Perform life cycle assessment and assess environmental impacts of manufacturing processes	K5

COURSE ARTICULATION MATRIX:								
COs/POs	PO1	P02	PO3	P04	P05			
CO1	1	2	2	1	3			
CO2	1	2	2	3	2			
CO3	2	3	1	1	3			
CO4	1	2	1	2	2			
CO5	2	3	2	3	3			
23MFPE16	1	2	2	3	3			
1 – Slight, 2 – Moderate, 3 –	- Substantial							

ASSESSMENT I	ASSESSMENT PATTERN - THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1		30	40	30			100			
CAT2			30	40	30		100			
Individual		30	40	30			100			
Assessment 1										
/Case Study										
1/ Seminar 1										
/ Project1										
Individual			30	40	30		100			
Assessment 2										
/Case Study										
2/ Seminar 2										
/ Project 2										
ESE		20	40	20	20		100			

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	1. To appreciate the basic concepts of vibration in damped a	and undamped		
Objectives	5,5005.			
	2. To understand and implement techniques of vibration control.			
	3. To learn the vibration is undesirable in system structure.			
	4. To learn the fundamentals of control techniques of vibrat	ion levels and		
	maintenance.			
	5. To learn to use the measuring instruments for analyzing the vib	ration levels in		
	a body.			
UNIT – I	INTRODUCTION	9 Periods		
	ndamentals of single Degree Freedom Systems-Two Degree Freedom			
	om systems, Continuous systems, Determination of Natural frequer	icies and mode		
	rical methods in Vibration Analysis.			
UNIT – II	VIBRATION CONTROL	9 Periods		
	Reduction of Vibration at the source-Control of vibration-by stru			
	Material selection- Localized Additions-Artificial Damping-Resilient isolation, Vibration isolation,			
Vibration abs	ACTIVE VIBRATION CONTROL	9 Periods		
	- Concepts and Applications, Review of smart materials-Types and art structures - Characteristic Active vibration control in smart struct			
UNIT - IV	CONDITION BASED MAINTENANCE PRINCIPLES AND	9 Periods		
0	APPLICATIONS) i ciious		
Introduction-	Introduction-condition monitoring methods- Design of Information system, Selecting methods of			
monitoring, Machine condition monitoring and diagnosis-Vibration severity criteria-Machine				
Maintenance Techniques-Machine condition monitoring techniques-Vibration monitoring				
techniques-Instrumentation systems-choice of monitoring parameters.				
UNIT – V	DYNAMIC BALANCING AND ALIGNMENT OF MACHINERY	9 Periods		
	Introduction, Dynamic balancing of Rotors, Field Balancing in one plane, two planes and in			
several planes, Machinery alignment, Rough Alignment methods, The Face Peripheral Dial				
	hod, Reverse indicator Method, Shaft-to-coupling spool method.			
Contact Period Lecture: 45 P		Poriode		
Lecture: 45 F	citous futoriali o reflous flatticali o reflous fotali 45 f	C1 10U3		

1	Giridhar P, Machinery vibration analysis and predictive maintenance, Elsevier publications
	2012
2	Rao J S, Vibratory Condition Monitoring of Machines, Narosa Publishing House, 2000
3	Singiresu S.Rao, Mechanical vibrations, Addison - Wesley Publishing Co., 1995
4	Rao, B., Handbook of condition monitoring, Elsevier advanced technology, Oxford, 1996.
5	A Davis, Handbook of condition monitoring, Springer series, 1997.
6	https://nptel.ac.in/courses/112105232

	completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Derive equation of motion for systems under translational and rotational motions.	K4
CO2		К3
	control.	
CO3	Apply the techniques of vibration control in smart structures.	К3
CO4	Select the suitable technique for condition monitoring and maintenance.	К3
CO5	CO5 Perform static and dynamic balancing of machine components.	

COURSE ARTICULATION MATRIX:						
COs/Pos	P01	PO2	PO3	P04	P05	
CO1	2	2	2	2	2	
CO2	1	2	1	2	2	
CO3	1	2	1	1	1	
CO4	2	2	2	2	1	
CO5	2	2	1	1	2	
23MFPE17	2	2	2	2	2	
1 – Slight, 2 – Moderate, 3 – Substar	ntial					

ASSESSMENT F	PATTERN - THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1			60	40			100
CAT2			60	40			100
Individual			60	40			100
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual			60	40			100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE	_		60	40			100

23MFPE18	PRODUCT DESIGN AND DEVELOPMENT	SEMESTER

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	0	0	3

Course	1. To Understand the principles of generic development pro-	ocess; product		
Objectives	planning; customer need analysis for new product design and o	development.		
	2. To enhance the understanding of setting product specification	s and generate,		
	select, screen, and test concepts for new product design and de	evelopment.		
	3. To apply the principles of product architecture and the	•		
	industrial design principles and DFM principles for	-		
	development.	new product		
	4. To expose the different Prototyping techniques, Design	of Evnoriment		
	principles to develop a robust design and importance to pate	_		
		nit a developed		
	new product.			
	5. To apply the concepts of economics principles; project manage	ement practices		
	in development of new product.			
UNIT – I	INTRODUCTION TO PRODUCT DESIGN AND IDENTIFICATION	9 Periods		
	OF CUSTOMER NEED			
	D - Strategic importance of Product development -Duration and C			
_	- Challenges in Product Development - Product Development	Processes and		
UNIT - II	s – Activities in Identifying Customer Needs PRODUCT SPECIFICATIONS, CONCEPT GENERATION,	9 Periods		
UNII - II	PRODUCT SPECIFICATIONS, CONCEPT GENERATION, SELECTION AND TESTING	9 Perious		
Plan and esta	ablish Target and Final product specifications – Activities of Conce	nt Ceneration -		
	ept Selection methodology – Concept Screening and Scoring - Co			
Methodologie		oncept resums		
UNIT - III	PRODUCT ARCHITECTURE , INDUSTRIAL DESIGN AND	9 Periods		
	DESIGN FOR MANUFACTURE			
Product Arch	itecture - Implications and establishing the architecture - Delayed	Differentiation		
– Platform Pl	- Platform Planning - Industrial design DFM- Estimation of Manufacturing cost- Reducing the			
	osts, costs of supporting function and assembly costs – Impact of Di	FM decision on		
other factors.				
UNIT – IV	PROTOTYPING, ROBUST DESIGN AND INTELLECTUAL PROPERTY	9 Periods		
	sics - Principles of prototyping - Planning for prototypes - Robust			
	of Robust Design through Design of Experiments- Need and	Importance of		
	roperty – Seven step process of preparing a patent document.			
UNIT – V	PRODUCT DEVELOPMENT ECONOMICS AND MANAGING PROJECTS	9 Periods		
	alysis - Elements of Economic Analysis - Understanding and repr			
baseline project planning - accelerating the project - project execution - postmortem project				
evaluation.				
Contact Peri				
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods		

1	Karl T.Ulrich, Steven D.Eppinger, Anita Goyal, Product Design and Development , McGraw –
	Hill Education (India) Pvt. Ltd, 4th Edition, 2012.
2	Kevin N Otto, Kristin L Wood, Product Design - Techniques in Reverse Engineering and
	New Product Development, Pearson Education, Inc, 2016.
3	Stephen Rosenthal, Effective Product Design and Development, Business One Orwin,Homewood,
	1992.
4	Stuart Pugh, Total Design - Integrated Methods for successful Product Engineering,
	Addison Wesley Publishing, Neyourk, NY, 1991.
5	https://archive.nptel.ac.in/courses/112/107/112107217/

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the principles of generic development process.	К3
CO2	Set product specifications and generate, select, screen, test concepts for new product design and development.	K4
CO3	Apply the principles of product architecture, industrial design and design for manufacturing principles in new product development	К3
CO4	Adopt Prototyping techniques and Design of Experiment principles to develop a robust design and document a new product for patent.	K2
CO5	Apply of the concepts of economics principles; project management practices in accelerating the new product development activity.	К4

COURSE ARTICULATION MATRIX:							
COs/Pos	P01	P02	P03	P04	PO5		
CO1	1	1	1	2	3		
CO2	1	2	3	2	1		
CO3	2	1	2	3	2		
CO4	3	2	1	2	1		
CO5	1	3	2	2	2		
23MFPE18	2	2	2	3	2		
1 – Slight, 2 – Moderate, 3 – Su	ıbstantial						

ASSESSMENT I	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1			60	40			100		
CAT2		30	40	30			100		
Individual			60	40			100		
Assessment 1									
/Case Study									
1/ Seminar 1									
/ Project1									
Individual		30	40	30			100		
Assessment 2									
/Case Study									
2/ Seminar 2									
/ Project 2									
ESE		20	40	40			100		

23MFPE19	RELIABILITY AND QUALITY ENGINEERING	SEMESTER

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

F						
Course						
Objectives	process and product quality and reliability.					
	2. To introduce the principles and techniques of Statistical Qual	ity Control and				
	their practical uses in product and/or process design and mon	itoring.				
	3. To illustrate the basic concepts and techniques of mod	lern reliability				
	engineering tools.	,				
	4. To develop skills to analyses quality culture in companies.					
	5. To provide basic knowledge of quality and reliability in engine	ering.				
UNIT – I	QUALITY CONCEPTS	9 Periods				
	tives - Quality control - Quality Assurance - Quality systems, econor	mics, Statistical				
	ality loss functions.					
UNIT – II	STATISTICAL PROCESS CONTROL	9 Periods				
	bility - Control charts for variables and attributes, Moving average					
	chart- Cumulative chart - demerit control chart - process capability					
UNIT – III	UNIT - III DESIGN OF EXPERIMENTS 9 Periods					
	eriments - fractional replication - Taguchi methods - Use of ortho	gonal arrays –				
	face methodology- Cases.					
UNIT – IV	RELIABILITY AND QUALITY MANAGEMENT	9 Periods				
	nction – failure rate – mean time between failures (MTBF) – mean					
	priori and a posteriori concept - mortality curve - useful life -					
maintainability – system effectiveness Reliability prediction and testing - Quality circles - Zero						
defects program - ISO 9000 and TQM - Total quality organization.						
UNIT - V RELIABILITY MANAGEMENT AND RISK ASSESSMENT 9 Periods						
Reliability testing – Reliability growth monitoring – Non-parametric methods – Reliability and						
life cycle costs – Reliability allocation – Replacement model-Definition and measurement of risk						
	– risk analysis techniques – risk reduction resources – industrial safety and risk assessment.					
	Contact Periods:					
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods				

1	Douglas, C.Montgomery, Introduction to Statistical quality control, Second Edition John
	Wiley &Sons,2019.
2	Mangey Ram, Reailability engineering methods and application, CRC press, 2019.
3	Modarres, Reliability and Risk analysis, Maral Dekker Inc.,CRC Press, 2018.
4	Dale H.besterfield, Quality improvement, PHI, 2013.
5	D.R. Kiran, Total quality management, BS Publications, 2017.
6	https://nptel.ac.in/courses/110105088

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Attain fundamental knowledge on the basic techniques of quality	K2
	improvement.	
CO2	Use control charts to analyze for improving the process quality.	K4
CO3	Describe different sampling plans.	K4
CO4	Acquire and implement quality principles in industries.	К3
CO5	Understand the concepts of reliability and maintainability.	K2

COURSE ARTICULATION MATRIX:							
COs/POs	P01	P02	PO3	P04	PO5		
C01	1	1	1	2	2		
CO2	1	1	2	2	2		
CO3	1	1	2	2	3		
CO4	1	1	2	2	3		
CO5	1	2	2	3	3		
23MFPE19	1	2	2	3	3		
1 – Slight, 2 – Moderate, 3 –	Substantial						

ASSESSMENT I	ASSESSMENT PATTERN - THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1		20	30	20	30		100		
CAT2			20	40	40		100		
Individual		20	30	20	30		100		
Assessment 1									
/Case Study									
1/ Seminar 1									
/ Project1									
Individual			20	40	40		100		
Assessment 2									
/Case Study									
2/ Seminar 2									
/ Project 2									
ESE		20	20	30	30		100		

23MFPE20	ADVANCES IN MANUFACTURING PROCESSES	SEMESTER

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

	4 m · · · · · · · · · · · · · · · · · ·	c . 1 1
Course	1. To acquire the metallurgical concepts during solidification	of metals and
Objectives	alloys in recent casting and welding processes.	
	2. To provide students with an understanding of skills relating	to the modern
	manufacturing industry within both global and local contexts.	
	3. To acquire the knowledge on principles, operations and	applications of
	different welding processes and analyze the effects of process	parameters on
	the quality of weld products.	
	4. To learn the concepts of rapid product development, a	apply acquired
	knowledge to meet global challenges in changing design in tir	me compressed
	mode.	•
UNIT – I	INTRODUCTION	9 Periods
Manufacturin	g and manufacturing systems- Manufacturing Trends and	Challenges -
Manufacturin	g Aspects, Selection and Classification- Description and	Taxonomy of
Manufacturin		
UNIT – II	ADVANCED METAL CASTING PROCESSES	9 Periods
	THE THIRD PIETTIE CHOTHING THE CESSES	9 Ferrous
	g basics, Gating and risering Design, Evaporative Pattern Casting I	
Metal Casting	g basics, Gating and risering Design, Evaporative Pattern Casting Find Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding	Process (EPC) -
Metal Casting	g basics, Gating and risering Design, Evaporative Pattern Casting I	Process (EPC) -
Metal Casting Hybrid EPC a UNIT - III	g basics, Gating and risering Design, Evaporative Pattern Casting Find Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding	Process (EPC) - g Process 9 Periods
Metal Casting Hybrid EPC at UNIT - III Abrasive Flow Micro USM, E	basics, Gating and risering Design, Evaporative Pattern Casting Find Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding ADVANCED MACHINING PROCESSES W Machining-Abrasive Jet Machining, Water Jet Machining, Ultrasocalectric Discharge Machining, Die Sinker EDM and Wire Cut EDM, E	Process (EPC) - g Process 9 Periods onic Machining, Electrochemical
Metal Casting Hybrid EPC at UNIT - III Abrasive Flow Micro USM, E Machining, I	basics, Gating and risering Design, Evaporative Pattern Casting Find Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding ADVANCED MACHINING PROCESSES W Machining-Abrasive Jet Machining, Water Jet Machining, Ultrasocalectric Discharge Machining, Die Sinker EDM and Wire Cut EDM, Electrochemical Discharge Machining, Electron Beam Machini	Process (EPC) - g Process 9 Periods onic Machining, Electrochemical
Metal Casting Hybrid EPC a UNIT - III Abrasive Flow Micro USM, E Machining, I Machining, La	basics, Gating and risering Design, Evaporative Pattern Casting Find Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding ADVANCED MACHINING PROCESSES W Machining-Abrasive Jet Machining, Water Jet Machining, Ultrasociety Discharge Machining, Die Sinker EDM and Wire Cut EDM, Electrochemical Discharge Machining, Electron Beam Machiningser Beam Machining	Process (EPC) - g Process 9 Periods onic Machining, Electrochemical ng, Ion Beam
Metal Casting Hybrid EPC at UNIT - III Abrasive Flow Micro USM, E Machining, I	basics, Gating and risering Design, Evaporative Pattern Casting Find Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding ADVANCED MACHINING PROCESSES W Machining-Abrasive Jet Machining, Water Jet Machining, Ultrasocalectric Discharge Machining, Die Sinker EDM and Wire Cut EDM, Electrochemical Discharge Machining, Electron Beam Machini	Process (EPC) - g Process 9 Periods onic Machining, Electrochemical
Metal Casting Hybrid EPC at UNIT - III Abrasive Flow Micro USM, E Machining, E Machining, La UNIT - IV Submerged A	basics, Gating and risering Design, Evaporative Pattern Casting Ind Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding ADVANCED MACHINING PROCESSES W Machining-Abrasive Jet Machining, Water Jet Machining, Ultrasocal Clectric Discharge Machining, Die Sinker EDM and Wire Cut EDM, Electrochemical Discharge Machining, Electron Beam Machining Ser Beam Machining ADVANCED WELDING PROCESSES Arc Welding, Resistance Welding, Solid State Welding processes, F	Process (EPC) - g Process 9 Periods onic Machining, Electrochemical ng, Ion Beam 9 Periods
Metal Casting Hybrid EPC at UNIT - III Abrasive Flow Micro USM, E Machining, E Machining, La UNIT - IV Submerged A	basics, Gating and risering Design, Evaporative Pattern Casting End Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding ADVANCED MACHINING PROCESSES W Machining-Abrasive Jet Machining, Water Jet Machining, Ultrasoclectric Discharge Machining, Die Sinker EDM and Wire Cut EDM, Electrochemical Discharge Machining, Electron Beam Machiningser Beam Machining ADVANCED WELDING PROCESSES	Process (EPC) - g Process 9 Periods onic Machining, Electrochemical ng, Ion Beam 9 Periods riction welding
Metal Casting Hybrid EPC a UNIT - III Abrasive Flow Micro USM, E Machining, I Machining, La UNIT - IV Submerged A processes, Be UNIT - V	basics, Gating and risering Design, Evaporative Pattern Casting Find Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding ADVANCED MACHINING PROCESSES W Machining-Abrasive Jet Machining, Water Jet Machining, Ultrasocilectric Discharge Machining, Die Sinker EDM and Wire Cut EDM, Electrochemical Discharge Machining, Electron Beam Machiningser Beam Machining ADVANCED WELDING PROCESSES arc Welding, Resistance Welding, Solid State Welding processes, Fam Welding, Diffusion Welding Processes OTHER ADVANCED PROCESSES	Process (EPC) - g Process 9 Periods onic Machining, Electrochemical ng, Ion Beam 9 Periods riction welding
Metal Casting Hybrid EPC a UNIT - III Abrasive Flow Micro USM, E Machining, La UNIT - IV Submerged A processes, Be UNIT - V High Energy	basics, Gating and risering Design, Evaporative Pattern Casting Ind Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding ADVANCED MACHINING PROCESSES W Machining-Abrasive Jet Machining, Water Jet Machining, Ultrasocal Clectric Discharge Machining, Die Sinker EDM and Wire Cut EDM, Electrochemical Discharge Machining, Electron Beam Machiningser Beam Machining ADVANCED WELDING PROCESSES Arc Welding, Resistance Welding, Solid State Welding processes, Fam Welding, Diffusion Welding Processes OTHER ADVANCED PROCESSES rate forming processes, Rapid Prototyping Technology, Rapid	Process (EPC) - g Process 9 Periods onic Machining, Electrochemical ng, Ion Beam 9 Periods riction welding 9 Periods
Metal Casting Hybrid EPC at UNIT - III Abrasive Flow Micro USM, E Machining, La UNIT - IV Submerged A processes, Be UNIT - V High Energy Microwave Processes	basics, Gating and risering Design, Evaporative Pattern Casting Ind Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding ADVANCED MACHINING PROCESSES W Machining-Abrasive Jet Machining, Water Jet Machining, Ultrasocal Clectric Discharge Machining, Die Sinker EDM and Wire Cut EDM, Electrochemical Discharge Machining, Electron Beam Machining Ser Beam Machining ADVANCED WELDING PROCESSES ACT Welding, Resistance Welding, Solid State Welding processes, Fam Welding, Diffusion Welding Processes OTHER ADVANCED PROCESSES rate forming processes, Rapid Prototyping Technology, Rapid rocessing of materials.	Process (EPC) - g Process 9 Periods onic Machining, Electrochemical ng, Ion Beam 9 Periods riction welding 9 Periods
Metal Casting Hybrid EPC a UNIT - III Abrasive Flow Micro USM, E Machining, La UNIT - IV Submerged A processes, Be UNIT - V High Energy	basics, Gating and risering Design, Evaporative Pattern Casting Ind Vaccuum EPC, Ceramic Shell Investment Process- Shell moulding ADVANCED MACHINING PROCESSES W Machining-Abrasive Jet Machining, Water Jet Machining, Ultrasocal Clectric Discharge Machining, Die Sinker EDM and Wire Cut EDM, Electrochemical Discharge Machining, Electron Beam Machining Ser Beam Machining ADVANCED WELDING PROCESSES Arc Welding, Resistance Welding, Solid State Welding processes, Fam Welding, Diffusion Welding Processes OTHER ADVANCED PROCESSES rate forming processes, Rapid Prototyping Technology, Rapid rocessing of materials. ods:	Process (EPC) - g Process 9 Periods onic Machining, Electrochemical ng, Ion Beam 9 Periods riction welding 9 Periods Manufacturing,

1	Carl sommer, Nontraditional machining processes handbook Advance Publishing Inc,2000
2	C K Chua, K F Leong, C S Lim, Rapid Prototyping Principles and Applications, World
	Scientific, New Delhi, 2010.
3	P.N.Rao, Manufacturing Technology (Foundry, Forming and Welding), Second Edition,
	Tata McGraw Hill Pub.Co. Ltd, 2004.
4	John Campbell, 10 rules of casting, Elsevier Publications, Boston, 2004.
5	Serope Kalpak jian, Manufacturing Engineering and Technology, Third Edition, Addison
	Wesley Publishing Co.1995
6	https://archive.nptel.ac.in/courses/112/107/112107078/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Relate the casting methods for industrial production of components.	K4
CO2	Apply special welding process for specific applications.	К3
CO3	Analyse and simulate various industrial problems in advanced machining processes.	K5
CO4	Understand the major advancements in Manufacturing processes.	K2
CO5	Select appropriate process for production of a part/component that	K5
	meet international standards of quality and time constraints	

COURSE ARTICULATION MATRIX:							
COs/Pos	P01	P02	P03	PO4	PO5		
C01	1	1	3	2	2		
CO2	1	1	3	2	2		
CO3	1	1	3	2	3		
CO4	1	1	3	2	3		
CO5	1	2	3	3	3		
23MFPE20	1	2	3	3	3		
1 – Slight, 2 – Moderate, 3 – Sı	ıbstantial	1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMEN	ASSESSMENT PATTERN - THEORY						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1			30	30	20		100
CAT2		30			70		100
Individual			30	30	20		100
Assessmen							
t 1 /Case							
Study 1/							
Seminar 1							
/ Project1							
Individual		30			70		100
Assessmen							
t 2 /Case							
Study 2/							
Seminar 2							
/ Project 2							
ESE		20	20	20	40		100

23SEOE01 BUILDING BYE-LAWS AND CODES OF PRACTICE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To impart knowledge on the building bye –laws and to emphasize the significance of		
Objectives	codes of practice in construction sector.		
UNIT – I	INTRODUCTION TO BUILDING BYE-LAWS	9 Periods	

Introduction to Building Bye Laws and regulation, their need and relevance, General definitions such as building height, building line, FAR, Ground Coverage, set back line. Introduction to Master Plan and understanding various land uses like institutional, residential etc. - Terminologies of Building bye-laws.

UNIT - II ROLE OF STATUTORY BODIES

9 Periods

Role of various statutory bodies governing building works like development authorities, municipal corporations etc. Local Planning Authority, Town and Country planning organisation, Ministry of urban development.

UNIT – III APPLICATION OF BUILDING BYE-LAWS

9 Periods

Interpretation of information given in bye laws including ongoing changes as shown in various annexure and appendices. Application of Bye-laws like structural safety, fire safety, earthquake safety, basement, electricity, water, and communication lines in various building types.

UNIT - IV INTRODUCTION TO CODES OF PRACTICE

9 Periods

Introduction to various building codes in professional practice - Codes, regulations to protect public health, safety and welfare - Codes , regulations to ensure compliance with the local authority.

UNIT - V APPLICATION OF CODES OF PRACTICE

9 Periods

Applications of various codes as per various building types. Bureau of Indian Standards, Eurocode – Introduction to other international codes.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

REFERENCES:

"National Building Code of India 2016 - SP 7", NBC 2016, Bureau of Indian Standards.
 "Model Building Bye-Laws (MBBL) - 2016", Town and Country Planning Organization, Ministry of Housing and Urban Affairs, Government of India.
 "Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
 Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the building bye-laws in planning, design and construction works.	К3
CO2	Familiarize with the role of various statutory bodies.	K2
CO3	Execute safety related work practices in the construction sector.	К3
CO4	Ensure compliance with the rules and regulations in design and construction	К3
	practices.	
CO5	Perform design and construction practices based on national and	КЗ
	international codal provisions.	

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
CO1	1	3	1	1	2	3
CO2	1	3	1	1	2	3
CO3	1	3	1	1	2	3
CO4	2	3	1	1	2	3
CO5	2	3	1	1	2	3
23SE0E01	2	3	1	1	2	3
1 – Slight, 2 – Moderate	, 3 – Substantia	l		•		

ASSESSMENT PAT	TTERN - THEOR	Y					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual	40	40	20	-	-	-	100
Assessment 1 /							
Case Study 1/							
Seminar 1 /							
Project1							
Individual	40	40	20	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

23SE0E02	PLANNING OF SMART CITIES
235EUEU2	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

challenges and to address the importance of sustainable development of urban area. UNIT - I SMART CITIES DEVELOPMENT POTENTIALS AND CHALLENGES 9 Periods Perspectives of Smart Cities: Introduction and Overview - Implementation Challenges - Methodological issues - Spatial distribution of startup cities - Re imagining postindustrial cities - Implementation Challenges for Establishing Smart Urban Information and Knowledge Management System. UNIT - II SUSTAINABLE URBAN PLANNING 9 Periods Optimising Green Spaces for Sustainable Urban Planning - 3D City Models for Extracting Urban Environmental Quality Indicators - Assessing the Rainwater Harvesting Potential - The Strategic Role of Green Spaces - Monitoring Urban Expansion. UNIT - III ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT 9 Periods Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainable Tourism - Green Buildings: Eco-friendly Technique for Modern Cities. UNIT - IV MULTIFARIOUS MANAGEMENT FOR SMART CITIES 9 Periods Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socioeconomic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Car - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development.								
area. UNIT - I SMART CITIES DEVELOPMENT POTENTIALS AND CHALLENGES 9 Periods Perspectives of Smart Cities: Introduction and Overview - Implementation Challenges - Methodological issues - Spatial distribution of startup cities - Re imagining postindustrial cities - Implementation Challenges for Establishing Smart Urban Information and Knowledge Management System. UNIT - II SUSTAINABLE URBAN PLANNING 9 Periods Optimising Green Spaces for Sustainable Urban Planning - 3D City Models for Extracting Urban Environmental Quality Indicators - Assessing the Rainwater Harvesting Potential - The Strategic Role of Green Spaces - Monitoring Urban Expansion. UNIT - III ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT 9 Periods Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainable Tourism - Green Buildings: Eco-friendly Technique for Modern Cities. UNIT - IV MULTIFARIOUS MANAGEMENT FOR SMART CITIES 9 Periods Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socioeconomic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications - Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Course	To have an exposure on planning of smart cities with consideration	of the recent					
Perspectives of Smart Cities: Introduction and Overview - Implementation Challenges - Methodological issues - Spatial distribution of startup cities - Re imagining postindustrial cities - Implementation Challenges for Establishing Smart Urban Information and Knowledge Management System. Voltage	Objectives	challenges and to address the importance of sustainable developr	nent of urban					
Perspectives of Smart Cities: Introduction and Overview - Implementation Challenges - Methodological issues - Spatial distribution of startup cities - Re imagining postindustrial cities - Implementation Challenges for Establishing Smart Urban Information and Knowledge Management System. UNIT - II SUSTAINABLE URBAN PLANNING 9 Periods Optimising Green Spaces for Sustainable Urban Planning - 3D City Models for Extracting Urban Environmental Quality Indicators - Assessing the Rainwater Harvesting Potential - The Strategic Role of Green Spaces - Monitoring Urban Expansion. UNIT - III ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT 9 Periods Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainable Tourism - Green Buildings: Eco-friendly Technique for Modern Cities. UNIT - IV MULTIFARIOUS MANAGEMENT FOR SMART CITIES 9 Periods Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socioeconomic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications - Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:		area.						
Methodological issues - Spatial distribution of startup cities - Re imagining postindustrial cities - Implementation Challenges for Establishing Smart Urban Information and Knowledge Management System. UNIT - II SUSTAINABLE URBAN PLANNING 9 Periods Optimising Green Spaces for Sustainable Urban Planning - 3D City Models for Extracting Urban Environmental Quality Indicators - Assessing the Rainwater Harvesting Potential - The Strategic Role of Green Spaces - Monitoring Urban Expansion. UNIT - III ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT 9 Periods Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainable Tourism - Green Buildings: Eco-friendly Technique for Modern Cities. UNIT - IV MULTIFARIOUS MANAGEMENT FOR SMART CITIES 9 Periods Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socioeconomic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications - Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	UNIT – I	SMART CITIES DEVELOPMENT POTENTIALS AND CHALLENGES	9 Periods					
Implementation Challenges for Establishing Smart Urban Information and Knowledge Management System. UNIT - II SUSTAINABLE URBAN PLANNING 9 Periods Optimising Green Spaces for Sustainable Urban Planning - 3D City Models for Extracting Urban Environmental Quality Indicators - Assessing the Rainwater Harvesting Potential - The Strategic Role of Green Spaces - Monitoring Urban Expansion. UNIT - III ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT 9 Periods Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainable Tourism - Green Buildings: Eco-friendly Technique for Modern Cities. UNIT - IV MULTIFARIOUS MANAGEMENT FOR SMART CITIES 9 Periods Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socioeconomic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Perspectives of	Smart Cities: Introduction and Overview - Implementation	Challenges -					
System. UNIT - II SUSTAINABLE URBAN PLANNING 9 Periods Optimising Green Spaces for Sustainable Urban Planning - 3D City Models for Extracting Urban Environmental Quality Indicators - Assessing the Rainwater Harvesting Potential - The Strategic Role of Green Spaces - Monitoring Urban Expansion. UNIT - III ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT 9 Periods Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainable Tourism - Green Buildings: Eco-friendly Technique for Modern Cities. UNIT - IV MULTIFARIOUS MANAGEMENT FOR SMART CITIES 9 Periods Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socio- economic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Methodological issues - Spatial distribution of startup cities - Re imagining postindustrial cities -							
UNIT - II SUSTAINABLE URBAN PLANNING 9 Periods Optimising Green Spaces for Sustainable Urban Planning - 3D City Models for Extracting Urban Environmental Quality Indicators - Assessing the Rainwater Harvesting Potential - The Strategic Role of Green Spaces - Monitoring Urban Expansion. UNIT - III ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT 9 Periods Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainable Tourism - Green Buildings: Eco-friendly Technique for Modern Cities. UNIT - IV MULTIFARIOUS MANAGEMENT FOR SMART CITIES 9 Periods Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socioeconomic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Implementation	Challenges for Establishing Smart Urban Information and Knowledge	e Management					
Optimising Green Spaces for Sustainable Urban Planning - 3D City Models for Extracting Urban Environmental Quality Indicators - Assessing the Rainwater Harvesting Potential - The Strategic Role of Green Spaces - Monitoring Urban Expansion. UNIT - III	System.							
Environmental Quality Indicators - Assessing the Rainwater Harvesting Potential - The Strategic Role of Green Spaces - Monitoring Urban Expansion. UNIT - III	UNIT – II	SUSTAINABLE URBAN PLANNING	9 Periods					
Of Green Spaces - Monitoring Urban Expansion. UNIT - III	Optimising Gree	n Spaces for Sustainable Urban Planning - 3D City Models for Ext	racting Urban					
UNIT - III ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT 9 Periods Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainable Tourism - Green Buildings: Eco-friendly Technique for Modern Cities. UNIT - IV MULTIFARIOUS MANAGEMENT FOR SMART CITIES 9 Periods Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socio- economic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Environmental (Quality Indicators - Assessing the Rainwater Harvesting Potential - The	Strategic Role					
Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainable Tourism - Green Buildings: Eco-friendly Technique for Modern Cities. UNIT - IV	of Green Spaces	- Monitoring Urban Expansion.						
Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainable Tourism - Green Buildings: Eco-friendly Technique for Modern Cities. UNIT - IV MULTIFARIOUS MANAGEMENT FOR SMART CITIES 9 Periods Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socio-economic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	UNIT – III	ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT	9 Periods					
Tourism - Green Buildings: Eco-friendly Technique for Modern Cities. UNIT - IV MULTIFARIOUS MANAGEMENT FOR SMART CITIES Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socio-economic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications - Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Alternatives for	Energy Stressed Cities - Social Acceptability of Energy - Efficient Ligh	hting - Energy					
Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socio-economic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Management - U	Jrban Dynamics and Resource Consumption - Issues and Challenges	of Sustainable					
Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socio-economic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Tourism - Green	Buildings: Eco-friendly Technique for Modern Cities.						
Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socio- economic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications - Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	UNIT – IV	MULTIFARIOUS MANAGEMENT FOR SMART CITIES	9 Periods					
economic Determinants and Reproductive Healthcare System - Problems and Development of Slums. UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications - Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Assessment of	Domestic Water Use Practices - Issue of Governance in Urban W	ater Supply -					
UNIT - V INTELLIGENT TRANSPORT SYSTEM 9 Periods Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Assessment of	Water Consumption at Urban Household Level - Water Sustainal	oility - Socio-					
Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	economic Deterr	ninants and Reproductive Healthcare System - Problems and Developr	nent of Slums.					
Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	UNIT – V	INTELLIGENT TRANSPORT SYSTEM	9 Periods					
information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Introduction to	Intelligent Transport Systems (ITS) - The Range of ITS Applicati	ons -Network					
Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development. Contact Periods:	Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route							
Development. Contact Periods:								
Development. Contact Periods:	Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic							
Contact Periods:	Development.							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	-							
	Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods					

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva" , 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems
	And Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.

COUR	COURSE OUTCOMES:	
		Taxonomy
Upon	Upon completion of the course, the students will be able to:	
CO1	Indicate the potential challenges in smart city development.	K2
CO2	Select the different tools for sustainable urban planning.	К3
CO3	Choose appropriate energy conservation system for smart cities.	К3
CO4	Identify the proper method of water management system.	К3
CO5	Apply Intelligent Transport System concepts in planning of smart city.	К3

COURSE ARTICULATION MATRIX									
COs/POs PO1 PO2 PO3 PO4 PO5 P									
CO1	1	-	2	3	1	1			
CO2	1	1	1	3	2	1			
CO3	1	1		2	2	1			
CO4	1	-	1	2	1	1			
CO5	1	-	1	3	1	-			
23SE0E02	1	1	2	3	2	1			
1 – Slight, 2 – Moderate	3 – Substan	itial							

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	25	45	30	-	-	-	100				
CAT2	25	45	30	-	-	-	100				
Individual	15	40	45	-	-	-	100				
Assessment 1 /											
Case Study 1/											
Seminar 1 /											
Project1											
Individual	10	45	45	-	-	-	100				
Assessment 2 /											
Case Study 2/											
Seminar 2 /											
Project 2											
ESE	20	40	40	-	-	-	100				

23SE0E03	GREEN BUILDING
235EUEU3	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To introduce the different concepts of energy efficient by	uildinge indoor				
Objectives	environmental quality management, green buildings and its design.	unumgs, muoor				
UNIT - I	INTRODUCTION	9 Periods				
Life cycle impacts of materials and products – sustainable design concepts – strategies of design for the						
	e sun-earth relationship and the energy balance on the earth's surface					
Solar radiation an	d solar temperature – Sun shading and solar radiation on surfaces – I	Energy impact on				
the shape and orio	entation of buildings – Thermal properties of building materials.					
UNIT – II	ENERGY EFFICIENT BUILDINGS	9 Periods				
Passive cooling a	nd day lighting – Active solar and photovoltaic- Building energy a	nalysis methods-				
Building energy	simulation- Building energy efficiency standards-Lighting system	design- Lighting				
economics and	nesthetics- Impacts of lighting efficiency - Energy audit and e	nergy targeting-				
Technological opt	ions for energy management.					
UNIT – III	INDOOR ENVIRONMENTAL QUALITY MANAGEMENT	9 Periods				
Psychrometry- C	omfort conditions- Thermal comfort- Ventilation and air quality-	Air conditioning				
requirement- Visu	al perception- Illumination requirement- Auditory requirement- Ene	rgy management				
options- Air cond	litioning systems- Energy conservation in pumps- Fans and blowe	rs- Refrigerating				
machines- Heat re	jection equipment- Energy efficient motors- Insulation.					
UNIT – IV	GREEN BUILDING CONCEPTS	9 Periods				
Green building c	oncept- Green building rating tools- Leeds and IGBC codes M	aterial selection				
Embodied energy	7- Operating energy- Façade systems- Ventilation systems-Transp	ortation- Water				
treatment system	s- Water efficiency- Building economics					
UNIT – V	GREEN BUILDING DESIGN - CASE STUDY	9 Periods				
Case studies - Building form, orientation and site considerations; conservation measures; energy						
modeling; heating system and fuel choices; renewable energy systems; material choices - construction						
budget						
Contact Periods:						
Lecture: 45 Perio	ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Po	eriods				

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", , Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery ", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

COURSI	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Apply the concepts of sustainable design in building construction.	КЗ
CO2	Execute green building techniques including energy efficiency management in	КЗ
	the building design.	
CO3	Establish indoor environmental quality in green building.	К3
CO4	Perform the green building rating using various tools.	КЗ
CO5	Create drawings and models of green buildings.	К3

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	3	3	2	3	3	3			
CO2	3	3	2	3	3	3			
CO3	2	2	2	2	3	3			
CO4	2	3	1	3	3	3			
CO5 3 3 1 3 3 3									
23SEOE03	3	3	2	3	3	3			
1 – Slight, 2 – Moderate, 3	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSME	NT PATTERN – T	HEORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual	40	40	20	-	-	-	100
Assessment 1 /							
Case Study 1/							
Seminar 1 /							
Project1							
Individual	40	40	20	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

23EE0E04

ENVIRONMENT HEALTH AND SAFETY MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

r							
Course	To impart knowledge on occupational health hazards, safety mea	asures at work					
Objectives	place, accident prevention, safety management and safety measure	es in industries.					
UNIT – I	OCCUPATIONAL HEALTH HAZARDS	9 Periods					
Occupation, H	lealth and Hazards - Safety Health and Management: Occupational	Health Hazards					
- Ergonomics - Importance of Industrial Safety - Radiation and Industrial Hazards: Types and							
effects - Vibra	ntion - Industrial Hygiene - Different air pollutants in industries and	d their effects -					
Electrical, fire	and Other Hazards.						
UNIT – II	SAFETY AT WORKPLACE	9 Periods					
Safety at Wor	rkplace - Safe use of Machines and Tools: Safety in use of differer	nt types of unit					
operations -	Ergonomics of Machine guarding - working in different workplac	es - Operation,					
Inspection an	d maintenance - Housekeeping, Industrial lighting, Vibration and No	oise.					
UNIT – III	ACCIDENT PREVENTION	9 Periods					
Accident Prev	vention Techniques - Principles of accident prevention - Hazard ide	entification and					
analysis, Eve	nt tree analysis, Hazop studies, Job safety analysis - Theories an	d Principles of					
Accident caus	ation - First Aid: Body structure and functions - Fracture and Dislo	cation, Injuries					
to various boo	dy parts.						
UNIT - IV	SAFETY MANAGEMENT	9 Periods					
Safety Manag	ement System and Law - Legislative measures in Industrial Safety	- Occupational					
safety, Health	and Environment Management, Bureau of Indian Standards on Hea	alth and Safety,					
IS 14489 sta	indards - OSHA, Process safety management (PSM) and its pr	inciples - EPA					
standards	standards						
UNIT – V	GENERAL SAFETY MEASURES	9 Periods					
Plant Layout	Plant Layout for Safety - design and location, distance between hazardous units, lighting, colour						
coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines -							
Work Permit	System - Significance of Documentation - Case studies involving imp	olementation of					
health and sat	fety measures in Industries.						

REFERENCES:

Contact Periods: Lecture: 45 Periods

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications,2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao
	PharmaMed Press, 1st edition, 2021.

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Identify the occupational health hazards.	К3
CO2	Execute various safety measures at workplace.	К3
CO3	Analyze and execute accident prevention techniques.	К3
CO4	Implement safety management as per various standards.	К3
CO5	Develop awareness on safety measures in Industries.	К3

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	1	2	2	2	3	2			
CO2	2	2	2	1	2	2			
CO3	2	3	2	1	2	2			
CO4	1	1	1	2	2	2			
CO5 1 1 1 1 1 2									
23EE0E04	1	2	2	1	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PA	TTERN - THEOF	RY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

23EE0E05

CLIMATE CHANGE AND ADAPTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To understand the Earth's climate system, changes and their effect	s on the earth,				
Objectives	identifying the impacts, adaptation, mitigation of climate change a	and for gaining				
	knowledge on clean technology, carbon trading and alternate energy s	sources.				
UNIT – I	EARTH'S CLIMATE SYSTEM	9 Periods				
Introduction-0	Climate in the spotlight - The Earth's Climate Machine - Climate Classi	fication- Global				
Wind Systems – Trade Winds and the Hadley Cell – The Westerlies – Cloud Formation and Monsoon						
Rains - Storm	s and Hurricanes - The Hydrological Cycle – Global Ocean Circulation –	El Nino and its				
Effect - Solar	Radiation – The Earth's Natural Green House Effect – Green House Ga	ases and Global				
Warming – Ca	rbon Cycle.					
UNIT – II	OBSERVED CHANGES AND ITS CAUSES	9 Periods				
Observation o	f Climate Change – Changes in patterns of temperature, precipitation ar	nd sea level rise				
- Observed e	ffects of Climate Changes - Patterns of Large-Scale Variability -Driv	vers of Climate				
	ate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC					
Changes in Cli	mate and Environment – on a Global Scale and in India – climate change	e modeling.				
UNIT – III	IMPACTS OF CLIMATE CHANGE	9 Periods				
Impacts of Cl	imate Change on various sectors – Agriculture, Forestry and Ecosy	ystem – Water				
Resources - H	luman Health – Industry, Settlement and Society – Methods and Scena	rios –Projected				
Impacts for D	ifferent Regions – Uncertainties in the Projected Impacts of Climate Cl	hange – Risk of				
Irreversible C	nanges.					
UNIT – IV	CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES	9 Periods				
-	trategy/Options in various sectors – Water – Agriculture – Infr					
	cluding coastal zones – Human Health – Tourism – Transport – Energy –	, ,				
Technologies	and Practices - Energy Supply - Transport - Buildings - Industry	-Agriculture -				
Forestry - Car	bon sequestration – Carbon capture and storage (CCS) – Waste (MSV	W & Bio waste,				
Biomedical, In	dustrial waste – International and Regional cooperation.					
UNIT – V	CLEAN TECHNOLOGY AND ENERGY	9 Periods				
Clean Development Mechanism – Carbon Trading - examples of future Clean Technology –Biodiesel –						
Natural Compost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Biofuels– Solar Energy –						
Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding.						
Contact Perio	ods:					
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total	: 45 Periods				

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report –Working Group I Report, "The physical sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability",
	2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007

COURSI	E OUTCOMES:	Bloom's			
		Taxonomy			
Upon co	Upon completion of the course, the students will be able to:				
CO1	Classify the Earths climatic system and factors causing climate change and	K2			
	global warming.				
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise	К2			
	and Observed effects of Climate Changes				
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible	КЗ			
	changes.				
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	КЗ			
CO5	Discover clean technologies and alternate energy source for sustainable growth.	КЗ			

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	P03	P04	P05	P06			
CO1	2	2	3	2	3	1			
CO2	3	2	2	2	3	2			
CO3	2	2	2	2	3	2			
CO4	3	2	2	2	2	2			
CO5 3 3 2 3 3 3									
23EE0E05	3	3	3	3	3	3			
1 – Slight, 2 – Moderate,	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN'	ASSESSMENT PATTERN - THEORY							
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
Category*								
CAT1	25	30	35	10	-	-	100	
CAT2	25	30	35	10	-	-	100	
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	•	-	100	
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100	
ESE	25	30	35	10	-		100	

22550506	WASTE TO ENERGY
23EE0E06	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

	NIL	OE	3	U	0	3
Course	To classify waste as fuel, introduce conversion devi	ces, gain knowledg	ge ab	out	Bion	nass
Objectives	Pyrolysis, demonstrate methods, factors for b	iomass gasificatio	n, a	and	acq	luire
	knowledge about biogas and its development in Indi	a				
UNIT – I	INTRODUCTION		•	9 Pe	riod	ls
	to Energy from Waste: Classification of waste as	_	, For	rest	resi	due,
Industrial was	te - MSW – Conversion devices – Incinerators, Gasifier	s, Digestors.				
UNIT – II	BIOMASS PYROLYSIS		•	9 Pe	riod	ls
Biomass Pyrol	ysis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis -	Manufacture of ch	arco	al –	Meth	nods
 Yields and A_l 	oplications – Manufacture of Pyrolytic oils and gases, Y	ields and Applicati	ons.			
UNIT – III	BIOMASS GASIFICATION		(9 Pe	riod	ls
Gasifiers – Fix	ted bed system - Downdraft and updraft gasifiers	– Fluidized bed ga	sifie	rs -	Des	sign,
Construction	and Operation - Gasifier burner arrangement for	thermal heating -	Gas	sifier	· En	gine
arrangement a	nd electrical power – Equilibrium and Kinetic Conside	rations in gasifier o	pera	atior	1.	
UNIT – IV	BIOMASS COMBUSTION		•	9 Pe	riod	ls
Biomass Comb	Biomass Combustion - Biomass Stoves - Improved Chullahs, types, some exotic designs, Fixed bed			bed		
combustors, ty	pes – Inclined grate combustors – Fluidized bed co	mbustors, design,	cons	truc	tion	and
operation of al	operation of all the above biomass combustors.					
UNIT – V	BIOENERGY SYSTEM		•	9 Pe	riod	ls
Biogas: Properties of biogas (Calorific value and composition) – Biogas plant technology and status – Bio						
energy system - Design and constructional features - Biomass resources and their classification -						
Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass						
gasification – pyrolysis and liquefaction – biochemical conversion – anaerobic digestion – Types of						
biogas plants – Applications – Alcohol production from biomass – Bio diesel production – Urban waste						
to energy conversion – Biomass energy programme in India.						

Contact Periods:

Lecture: 45 Periods

1	"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P
	Jayaram Reddy, Taylor and Francis Publications, 2016.
2	"Waste - to - Energy: Technologies and project Implementations", Marc J Rogoff, Francois
	Screve,ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications, Illustrated
	Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", Prabir ELSEVIER Publications,
	2010.

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	К3
CO3	Demonstrate methods and factors considered for biomass gasification.	К3
CO4	Identify the features of different facilities available for biomass combustion.	K4
CO5	Analyze the potential of different Bioenergy systems with respect to Indian condition.	K2

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
CO1	2	3	3	2	3	1
CO2	3	2	2	2	3	1
CO3	3	3	2	3	2	1
CO4	3	2	2	3	3	1
CO5	2	3	3	3	2	1
23EE0E06	3	3	3	3	3	1
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMEN'	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	10	20	20	25	15	10	100	
CAT2	10	25	20	10	25	10	100	
Individual								
Assessment								
1/ Case		15	35	50			100	
Study 1/	-	15	33	50	-	-	100	
Seminar 1 /								
Project 1								
Individual								
Assessment								
2/ Case		10	40	50			100	
Study 2/	-	10	40	30	-	_	100	
Seminar 2/								
Project 2								
ESE	10	25	25	20	10	10	100	

22650507	ENERGY IN BUILT ENVIRONMENT
23GEOE07	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Г				
Course	To understand constructional energy requirements of buildings, en	ergy audit		
Objective	methods and conservation of energy.			
UNIT-I	INTRODUCTION	9 Periods		
Indoor activities	and environmental control - Internal and external factors on	energy use –		
Characteristics of	f energy use and its management -Macro aspect of energy use in dwe	ellings and its		
implications -Tl	nermal comfort-Ventilation and air quality-Air-conditioning requir	ement-Visual		
perception-Illum	ination requirement-Auditory requirement.			
UNIT-II	LIGHTING REQUIREMENTS IN BUILDING	9 Periods		
The sun-earth r	elationship - Climate, wind, solar radiation and temperature - Sun	shading and		
solar radiation o	n surfaces-Energy impact on the shape and orientation of buildings-	-Lighting and		
day lighting :Cha	racteristics and estimation, methods of day-lighting-Architectural co	onsiderations		
for day-lighting.				
UNIT-III	ENERGY REQUIREMENTS IN BUILDING	9 Periods		
Steady and uns	steady heat transfer through wall and glazed window-Standards	for thermal		
performance of	building envelope- Evaluation of the overall thermal transfer- Ther	mal gain and		
net heat gain-En	d-Use energy requirements-Status of energy use in buildings-Estimat	tion of energy		
use in a building				
UNIT-IV	ENERGY AUDIT	9 Periods		
Energy audit a	and energy targeting-Technological options for energy managemer	nt-Natural and		
forced ventilatio	n–Indoor environment and air quality-Air flow and air pressure on l	ouildings-Flow		
due to Stack effe	ct.			
UNIT-V	COOLING IN BUILT ENVIRONMENT	9 Periods		
Passive building	g architecture–Radiative cooling-Solar cooling techniques-So	lar desiccant		
dehumidification for ventilation-Natural and active cooling with adaptive comfort-Evaporative				
cooling –Zero en	ergy building concept.			
Contact Periods	:			
Lecture: 45 Per	iods Tutorial: 0 Period Practical: 0 Period Total: 45 Pe	riods		

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill,
	2000.
2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinois ,USA.

COUR	SE OUTCOMES:	Bloom's		
		Taxonomy		
Upon	Upon completion of the course, the students will be able to:			
CO1	Understand energy and its usage	K2		
CO2	Know lighting to be given to a building	K1		
CO3	Analyse the energy requirements in a building	К3		
CO4	Apply the energy audit concepts.	К3		
CO5	Study architectural specifications of a building	K1		

COURSE ARTICULATION MATRIX										
COs/POs	P01	PO2	P03	P04	PO5	P06				
CO1	2	-	3	1	2	1				
CO2	2	-	3	1	2	1				
CO3	2	-	3	1	2	1				
CO4	2	-	3	1	2	1				
CO5	2	-	3	1	2	1				
23GEOE07	2	-	3	1	2	1				
1–Slight, 2–Moderate, 3–Substantial										

ASSESSMENT P	ATTERN - THEC	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100
ESE	40	40	20	-	-	-	100

23GEOE08	EARTH AND ITS ENVIRONMENT
23GEUEU0	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To know about the planet earth, the geosystems and the resourc	es like ground
Objective	water and air and to learn about the Environmental Assessment and	sustainability.
UNIT-I	EVOLUTION OF EARTH	9 Periods
Evolution of ear	th as habitable planet-Evolution of continents-oceans and landforms-	volution of life
through geologi	cal times - Exploring the earth's interior - thermal and chemical struc	ture - origin of
gravitational an	d magnetic fields.	
UNIT-II	GEOSYSTEMS	9 Periods
Plate tectonics	working and shaping the earth - Internal geosystems – earthquake	s – volcanoes -
climatic excurs	ions through time - Basic Geological processes - igneous, se	dimentation -
metamorphic pr	rocesses.	
UNIT-III	GROUND WATER GEOLOGY	9 Periods
Geology of gro	and water occurrence -recharge process-Ground water movement	Ground water
discharge and d	atchment hydrology – Ground water as a resource - Natural ground	l water quality
and contaminat	ion-Modelling and managing ground water systems.	
UNIT-IV	ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY	9 Periods
Engineering an	d sustainable development - population and urbanization - toxic chen	nicals and finite
resources - wat	er scarcity and conflict - Environmental risk - risk assessment and cha	aracterization –
hazard assessm	ent-exposure assessment.	
UNIT-V	9 Periods	
Air resources e	ngineering-introduction to atmospheric composition–behaviour-atmo	ospheric photo
chemistry-Solid	waste management-characterization-management concepts.	
Contact Period	S:	
Lecture: 45 Per	riods Tutorial: 0 Period Practical: 0 Period Total: 45	5 Periods

1	John Grotzinger and Thomas H.Jordan, " Understanding Earth" , Sixth Edition, W.H.Freeman, 2010.									
2	Younger,P.L., "Ground water in the Environment: An introduction", Blackwell Publishing,2007.									
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,									
	Sustainability and Design", Wiley, NJ, 2010.									

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	impletion of the course, the students will be able to:	Mapped
CO1	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and	K2
	the Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground	К3
	water and the modeling systems.	
CO4	To assess the Environmental risks and the sustainability developments.	К3
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COURSE ARTICULATION MATRIX										
COs/POs	P01	PO2	P03	P04	P05	P06				
CO1	1	-	-	2	2	-				
CO2	3	-	3	3	-	3				
CO3	2	-	-	-	-	-				
CO4	-	2	-	-	1	-				
CO5	2	2	-	1	-	-				
23GEOE08	2	2	3	3	2	3				
1-Slight, 2-Moderate,	1–Slight, 2–Moderate, 3–Substantial									

ASSESSMENT	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT 1	40	40	20	-	-	-	100				
CAT 2	40	40	20	-	-	-	100				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100				
ESE	40	40	20	-	-	-	100				

23GE0E09	NATURAL HAZARDS AND MITIGATION
23GEUEU9	(Common to all Branches)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To get idea on the causes, effects and mitigation measures of diff	forent types of hazards						
Objective	with case studies.							
UNIT-I	EARTH QUAKES	9 Periods						
Definitions and	Definitions and basic concepts-different kinds of hazards-causes-Geologic Hazards-Earthquakes-							
causes of earth	nquakes-effects-plate tectonics-seismic waves-measures of	size of earthquakes-						
earthquake resis	stant design concepts.							
UNIT-II	SLOPE STABILITY	9 Periods						
Slope stability	and landslides-causes of landslides-principles of stability	analysis-remedial and						
corrective meas	ures for slope stabilization.							
UNIT-III	FLOODS	9 Periods						
Climatic Hazar	ds–Floods-causes of flooding-regional flood frequency	analysis-flood control						
measures-flood	routing-flood forecasting-warning systems.							
UNIT-IV	DROUGHTS	9 Periods						
Droughts -cause	es - types of droughts –effects of drought -hazard assessment	- decision making-Use						
of GIS in natural	hazard assessment-mitigation-management.							
UNIT-V	TSUNAMI	9 Periods						
Tsunami-causes-effects-under sea earthquakes-landslides-volcanic eruptions-impact of sea								
meteorite-remedial measures-precautions-case studies.								
Contact Period	s:							
Lecture: 45 Per	riods Tutorial: 0 Period Practical: 0 Period T	otal: 45 Periods						

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage
	Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press,2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley &
	Sons, Inc,2005.
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering", John Wiley &
	Sons,Inc,2008

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon cor	npletion of the course, the students will be able to:	Mapped
CO1	Learn the basic concepts of earthquakes and the design concepts of	K2
	earthquake Resistant buildings.	
CO2	Acquire knowledge on the causes and remedial measures of slope	КЗ
	stabilization.	
CO3	As certain the causes and control measures of flood.	КЗ
CO4	Know the types, causes and mitigation of droughts.	K2
CO5	Study the causes, effects and precautionary measures of Tsunami.	K2

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	PO3	P04	PO5	P06		
CO1	3	1	-	3	2	3		
CO2	3	1	2	3	3	3		
CO3	3	2	3	-	-	3		
CO4	3	-	-	3	2	3		
CO5	3	-	2	2	-	3		
23GEOE09	3	1	2	3	2	3		
1–Slight, 2–Moderate, 3–Substantial								

ASSESSMENT P	ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT 1	40	40	20	-	-	-	100	
CAT 2	40	40	20	-	-	-	100	
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100	
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100	
ESE	40	40	20	-	-	-	100	

23EDOE10	BUSINESS ANALYTICS
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	1. To apprehend the fundamentals of business analytics and its life cycle.			
Objectives	2. To gain knowledge about fundamental business analytics.			
	3. To study modeling for uncertainty and statistical inference.			
	4. To apprehend analytics the usage of Hadoop and Map Reduce frameworks.			
	5. To acquire insight on other analytical frameworks.			
UNIT – I	BUSINESS ANALYTICS AND PROCESS	9 Periods		

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling andestimation methods overview.

UNIT – II REGRESSION ANALYSIS

9 Periods

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

UNIT – III STRUCTURE OF BUSINESS ANALYTICS

9 Periods

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

UNIT – IV FORECASTING TECHNIQUES

9 Periods

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

UNIT – V	DECISION	ANALYSIS	AND	RECENT	TRENDS	IN	BUSINESS	9 Periods
	ANALYTIC	S						

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.Recent Trends: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism

ıtact	

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak , "Business Analytics Using R - A Practical
	Approach",Apress, 2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge
	University Press, 2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R.
	Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition, 2016.
5	U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making",
	Wiley, 2017.
6	Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the real world business problems and model with analytical	K4
	solutions.	
CO2	Solve analytical problem with relevant mathematics background	K4
	knowledge.	
CO3	Convert any real world decision making problem to hypothesis and apply	K4
	suitable statistical testing.	
CO4	Write and Demonstrate simple applications involving analytics using	K4
	Hadoop and Map Reduce	
CO5	Use open source frameworks for modeling and storing data.	K4

Course Articulation Matrix						
COs/POs	P01	P02	PO3	P04	P05	
CO1	1	2	1	2	1	
CO2	1	1	1	2	1	
CO3	2	2	1	1	-	
CO4	2	2	1	-	-	
CO5	1	2	-	-	-	
23ED0E10	1	2	1	2	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23ED0E11

INTRODUCTION TO INDUSTRIAL SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

IINIT – I	INTRODUCTION	9 Periods		
	5. Identify preventive and periodic maintenance.			
	4. Illustrate fault tracing.			
	3. Explain wear and corrosion.			
Objectives	2. Describe fundamentals of maintenance engineering.			
Course	1. Summarize basics of industrial safety.			

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc., Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT - II FUNDAMENTALS OF MAINTENANCE ENGINEERING

9 Periods

Definition and aim of maintenance engineering, Primary and secondary functions andresponsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT - III WEAR AND CORROSION AND THEIR PREVENTION

9 Periods

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications,

Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT - IV FAULT TRACING

9 Periods

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault-finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT - V PERIODIC AND PREVENTIVE MAINTENANCE

9 Periods

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods

1	Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London,2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers,
	2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing; Third edition
	,2018
5	"Industrial Safety and Maintenance Engineering",Parth B. Shah, 2021.

COUR	COURSE OUTCOMES:				
		Taxonomy			
Upon	completion of the course, the students will be able to:	Mapped			
CO1	Ability to summarize basics of industrial safety	K4			
CO2	Ability to describe fundamentals of maintenance engineering	K4			
CO3	Ability to explain wear and corrosion	K4			
CO4	Ability to illustrate fault tracing	K4			
CO5	Ability to identify preventive and periodic maintenance	K4			

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	PO5	
CO1	2	1	1	-	-	
CO2	2	2	1	-	1	
CO3	1	2	1	1	1	
CO4	2	1	1	1	1	
CO5	2	1	2	1	1	
23ED0E11	2	1	1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	25	25	25	25			100		
CAT2	20	25	25	30			100		
Assignment 1	25	30	25	20			100		
Assignment 2	30	20	30	20			100		
ESE	20	30	20	30			100		

22ED0E12	OPERATIONS RESEARCH
23EDOE12	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	1. Solve linear programming problem and solve using graphical method.					
Objectives	2. Solve LPP using simplex method.					
Objectives	3. Solve transportation, assignment problems.					
	4. Solve project management problems.					
	• / • •					
IINIIT I	5. Solve scheduling problems.	O Dordo do				
UNIT – I	INTRODUCTION	9 Periods				
-	Techniques, Model Formulation, models, General L.R Formulation, Sim	iplex Techniques,				
Sensitivity An	alysis, Inventory Control Models					
UNIT – II	LINEAR PROGRAMMING PROBLEM	9 Periods				
Formulation of	f a LPP - Graphical solution revised simplex method - duality theory - dual	simplex method -				
sensitivity ana	ılysis - parametric programming					
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM	9 Periods				
Nonlinear pro	gramming problem - Kuhn-Tucker conditions min cost flow problem - m	ax flow problem -				
CPM/PERT						
UNIT – IV	SEQUENCING AND INVENTORY MODEL	9 Periods				
Scheduling and sequencing - single server and multiple server models - deterministic inventory models -						
Probabilistic inventory control models - Geometric Programming.						
UNIT - V	GAME THEORY	9 Periods				
Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow						
_	Elementary Graph Theory, Game Theory Simulation					
in Networks, I	memericary draph rineory, dame rineory simulation					
in Networks, I Contact Per						

1	H.A. Taha"Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", Anup Goel, Ruchi Agarwal, Technical Publications, Jan 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy
		Mapped
Upon	completion of the course, the students will be able to:	
CO1	Formulate linear programming problem and solve using graphical	K4
	method.	
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
CO4	Solve project management problems.	K4
CO5	Solve scheduling problems	K4

COURSE ARTICULATION MATRIX						
COs/POs	P01	PO2	P03	P04	P05	
CO1	2	1	1	-	-	
CO2	2	2	1	-	-	
CO3	1	1	2	1	1	
CO4	1	1	-	-	-	
CO5	2	1	-	-	-	
23ED0E12	2	1	1	1	1	
1 – Slight, 2 – Moderate, 3 – S	Substantial		•	•	•	

ASSESSMENT	PATTERN - THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23MF0E13

OCCUPATIONAL HEATH AND SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

UNIT – I		CCUPATIONAL HEALTH AND HAZARDS	9 Periods
	2	To learn about general safety measures in industries.	
	2.	To learn about accident prevention and safety management.	
Objectives		work place.	
Course	1.	To gain knowledge about occupational health hazard and safe	ety measures at

Safety- History and development, National Safety Policy- Occupational Health Hazards - Ergonomics - Importance of Industrial Safety Radiation and Industrial Hazards- Machine Guards and its types, Automation.

UNIT – II SAFETY AT WORKPLACE

9 Periods

Safety at Workplace - Safe use of Machines and Tools: Safety in use of different types of unit operations -

Ergonomics of Machine guarding - working in different workplaces - Operation, Inspection and maintenance, Plant Design and Housekeeping, Industrial lighting, Vibration and Noise Case studies.

UNIT - III ACCIDENT PREVENTION

9 Periods

Accident Prevention Techniques - Principles of accident prevention - Definitions, Theories, Principles - Hazard identification and analysis, Event tree analysis, Hazop studies, Job safety analysis - Theories and Principles of Accident causation - First Aid : Body structure and functions - Fracture and Dislocation, Injuries to various body parts.

UNIT – IV SAFETY MANAGEMENT

9 Periods

Safety Management System and Law - Legislative measures in Industrial Safety: Various acts involved in Detail- Occupational safety, Health and Environment Management: Bureau of Indian Standards on Health and Safety, 14489, 15001 - OSHA, Process safety management (PSM) and its principles - EPA standards- Safety Management: Organisational & Safety Committee - its structure and functions.

UNIT - V GENERAL SAFETY MEASURES

9 Periods

Plant Layout for Safety -design and location, distance between hazardous units, lighting, colour coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work Permit System: Significance of Documentation Directing Safety, Leadership -Case studies involving implementation of health and safety measures in Industries.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods

REFERENCES:

Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
 Danuta Koradecka, Handbook of Occupational Health and Safety, CRC, 2010.
 Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
 Deshmukh. L.M., Industrial Safety Management, 3rd Edition, Tata McGraw Hill, New Delhi, 2008.
 https://nptel.ac.in/courses/110105094

6 https://archive.nptel.ac.in/courses/110/105/110105094/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Gain the knowledge about occupational health hazard and safety measures	К3
	at work place.	
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures in	К3
	industries.	
CO4	Know various laws, standards and legislations.	K2
CO5	Implement safety and proper management of industries.	K4

COURSE ARTICULATION MATRIX:					
Cos/Pos	P01	P02	P03	P04	P05
C01	2	1	1	1	1
CO2	2	2	1	1	1
CO3	1	2	1	1	1
CO4	2	1	1	1	1
CO5	2	1	2	1	1
23MF0E13	2	1	1	1	1
1 – Slight, 2 – Moderate, 3 – S	Substantial	•	•	•	

ASSESSMENT I	PATTERN - THE	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		50	50				100
CAT2		50	30	20			100
Individual		50	50				100
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual		50	30	20			100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE		40	40	20			100

23MF0E14

COST MANAGEMENT OF ENGINEERING PROJECTS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course 1. To a 2. To sele

- 1. To understand the costing concepts and their role in decision making.
- 2. To acquire the project management concepts and their various aspects in selection.
- 3. To gain the knowledge in costing concepts with project execution.
- 4. To develop knowledge of costing techniques in service sector and various budgetary control techniques.
- 5. To familiarize with quantitative techniques in cost management.

UNIT - I INTRODUCTION TO COSTING CONCEPTS

9 Periods

Introduction and Overview of the Strategic Cost Management Process, Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision - Making.

UNIT - II PROJECT PLANNING ACTIVITIES

9 Periods

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

UNIT – III COST ANALYSIS

9 Periods

Cost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.

UNIT - IV PRICING STRATEGIES AND BUDGETORY CONTROL

9 Periods

Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Justin -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

UNIT - V TOM AND OPERATIONS REASEARCH TOOLS

9 Periods

Total Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period

Total: 45 Periods

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor
	&Francis, 2016
3	Nigel J, Engineering Project Management , John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall
	of India, New Delhi, 2011.
5	https://archive.nptel.ac.in/courses/110/104/110104073/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the costing concepts and their role in decision making.	К3
CO2	Apply the project management concepts and analyze their various aspects	K4
	in selection.	
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various	К2
	budgetary control techniques.	
CO5	Become familiar with quantitative techniques in cost management.	К3

COs/Pos	P01	PO2	PO3	P04	P05
CO1	1	1	2	1	1
CO2	2	1	1	1	-
CO3	2	2	2	-	-
CO4	1	1	1	1	1
CO5	1	2	1	1	-
23MF0E14	1	1	1	1	1

ASSESSMENT PA	ASSESSMENT PATTERN - THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1			40	60			100			
CAT2		30	30	40			100			
Individual			40	60			100			
Assessment 1										
/Case Study 1/										
Seminar 1 /										
Project1										
Individual		30	30	40			100			
Assessment 2										
/Case Study 2/										
Seminar 2 /										
Project 2										
ESE		20	40	40			100			

22ME0E4E	COMPOSITE MATERIALS
23MF0E15	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	1. To summarize the characteristics of composite materials and effect of							
Objectives	reinforcement in composite materials.							
	2. To identify the various reinforcements used in composite materials.							
	3. To compare the manufacturing process of metal matrix composites.							
	To understand the manufacturing processes of polymer matrix composites.							
	5. To analyze the strength of composite materials.							
UNIT – I	INTRODUCTION 9 Periods							

Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement on overall composite performance.

UNIT – II REINFORCEMENT

9 Periods

Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isosteresconditions.

UNIT – III MANUFACTURING OF METAL MATRIX COMPOSITES

9 Periods

Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing- Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering–Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving- Properties and applications.

UNIT – IV MANUFACTURING OF POLYMER MATRIX COMPOSITE

9 Periods

Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

UNIT - V STRENGTH ANALYSIS OF COMPOSITES

9 Periods

Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials , Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz,
	2013.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Know the characteristics of composite materials and effect of reinforcement in	K2
	composite materials.	
CO2	Know the various reinforcements used in composite materials.	K2
CO3	Understand and apply the manufacturing processes of metal matrix	КЗ
	composites	
CO4	Understand and apply the manufacturing processes of polymer matrix	К3
	composites.	
CO5	Analyze the strength of composite materials.	K4

COURSE ARTICULATION MATRIX:							
COs/Pos	P01	P02	P03	P04	P05		
CO1	1	2	1	1	1		
CO2	2	2	1	1	2		
CO3	2	1	2	1	1		
CO4	1	2	2	2	1		
CO5	1	2	1	1	1		
23MF0E15	1	2	2	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMEN	T PATTERN - THI	EORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1		60	40				100
CAT2			60	40			100
Individual		60	40				100
Assessmen							
t 1 /Case							
Study 1/							
Seminar 1							
/ Project1							
Individual			60	40			100
Assessmen							
t 2 /Case							
Study 2/							
Seminar 2							
/ Project 2							
ESE		40	40	20			100

23TE0E1	۲
23 I EUE I	Э

GLOBAL WARMING SCIENCE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	1									
Objectives	level change due to increase in the emission of greenhouse gases and to examine the									
	science behind mitigation and adaptation proposals.									
UNIT – I	INTRODUCTION	9 Periods								
Terminology 1	Terminology relating to atmospheric particles – Aerosols - Types, characteristics, measurements –									
Particle mass	spectrometry - Anthropogenic-sources, effects on humans.									
UNIT – II	CLIMATE MODELS	9 Periods								
General clima	te modeling- Atmospheric general circulation model - Oceanic ge	neral circulation								
model, sea ice	model, land model concept, paleo-climate - Weather prediction by no	umerical process.								
Impacts of clin	nate change - Climate Sensitivity - Forcing and feedback.									
UNIT – III	EARTH CARBON CYCLE AND FORECAST	9 Periods								
Carbon cycle-	process, importance, advantages - Carbon on earth - Global car	bon reservoirs -								
Interactions b	etween human activities and carbon cycle - Geologic time scales -	Fossil fuels and								
energy - Pertu	rbed carbon cycle.									
UNIT – IV	GREENHOUSE GASES	9 Periods								
Blackbody rad	liation - Layer model - Earth's atmospheric composition and Green ho	ouse gases effects								
on weather an	d climate - Radioactive equilibrium - Earth's energy balance.									
UNIT – V	GEO ENGINEERING	9 Periods								
Solar mitigation - Strategies - Carbon dioxide removal - Solar radiation management - Recent										
observed trends in global warming for sea level rise, drought, glacier extent.										
Contact Periods:										
Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total: 45 Periods										

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and
	Its Consequences", Princeton University Press, 1st Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5 th
	Edition, 2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions
	for Global Warming", Elsevier, 1st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change" ,Routledge, 1 st edition, 2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global
	energybalance", Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand the global warming in relation to climate changes throughout	K2
COI	the earth.	KZ
CO2	Assess the best predictions of current climate models.	K4
CO3	Understand the importance of carbon cycle and its implication on fossil	К2
603	fuels.	K2
CO4	Know about current issues, including impact from society, environment,	K4
604	economy as well as ecology related to greenhouse gases.	N4
CO5	Know the safety measures and precautions regarding global warming.	K5

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	PO5	P06			
CO1	2	1	2	1	1	2			
CO2	1	1	2	1	1	1			
CO3	1	2	1	1	1	2			
CO4	1	1	1	1	1	2			
CO5	2	1	2	1	1	2			
23TEOE16	1	1	1	1	1	2			
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN - THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	20	35	35	10	-	-	100		
CAT2	15	25	25	20	15	-	100		
Individual									
Assessment									
1 / Case	25	20	20	25			100		
Study 1 /	25	20	20	35	-	-	100		
Seminar 1 /									
Project 1									
Individual									
Assessment									
2 / Case	20	20	35	15	10		100		
Study 2 /	20	20	35	15	10	-	100		
Seminar 2 /									
Project 2									
ESE	25	20	25	20	10	-	100		

23TEOE17

INTRODUCTION TO NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To make the students provide strong, essential, important methods	and foundations						
Objectives	of quantum mechanics and apply quantum mechanics on engineering fields.							
UNIT – I	INTRODUCTION	9 Periods						
Particles and V	Waves - Operators in quantum mechanics - The Postulates of quantum	n mechanics - The						
Schrodinger e	quation values and wave packet Solutions - Ehrenfest's Theorem.							
UNIT – II	ELECTRONIC STRUCTURE AND MOTION	9 Periods						
Atoms- The Hy	ydrogen Atom - Many-Electron Atoms – Pseudopotentials, Nuclear Stru	ucture, Molecules,						
Crystals - Tra	nslational motion – Penetration through barriers – Particle in a bo	x - Two terminal						
quantum dot o	devices - Two terminal quantum wire devices.							
UNIT – III	SCATTERING THEORY	9 Periods						
The formulati	on of scattering events - Scattering cross section - Stationary scatter	ing state - Partial						
wave stationa	ry scattering events - multi-channel scattering - Solution for Schrö	dinger equation-						
Radial and wa	ve equation - Greens' function.							
UNIT – IV	CLASSICAL STATISTICS	9 Periods						
Probabilities a	and microscopic behaviours - Kinetic theory and transport processes in	n gases - Magnetic						
properties of 1	naterials - The partition function.							
UNIT – V	QUANTUM STATISTICS	9 Periods						
Statistical mechanics - Basic Concepts - Statistical models applied to metals and semiconductors - The								
thermal properties of solids- The electrical properties of materials - Black body radiation - Low								
temperatures and degenerate systems.								
Contact Periods:								
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								

1	Vladimi V.Mitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "Introduction to
	Nanoelectronics: Science, Nanotechnology, Engineering, and Applications", Cambridge
	University Press, 1st Edition, 2007.
2	Vinod Kumar Khanna, "Introductory Nanoelectronics: Physical Theory and Device Analysis",
	Routledge, 1st Edition, 2020.
3	George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States
	Edition, 2007.
4	Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.
5	Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian
	Edition, 2009.

- 6 Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum Statistical Mechanics", Wiley, 2004.
- 7 A. F. J. Levi, "Applied Quantum Mechanics", 2nd Edition, Cambridge, 2012.

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped	
CO1	Understand the postulates of quantum mechanics.	K2	
CO2	Know about nano electronic systems and building blocks.	K2	
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4	
CO4	Learn the concepts involved in kinetic theory of gases.	K2	
CO5	Know about statistical models applies to metals and semiconductor.	КЗ	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	P04	PO5	P06			
CO1	1	1	1	1	1	1			
CO2	2	2	1	1	1	1			
CO3	2	2	2	1	1	1			
CO4	1	1	1	1	1	1			
CO5	1	1	1	1	1	1			
23TEOE17	1	1	1	1	1	1			
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT	PATTERN - THEO	RY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	30	20	20	-	-	100
CAT2	30	30	20	20	-	-	100
Individual							
Assessment 1							
/ Case Study	35	25	20	20	-	-	100
1 / Seminar 1							
/ Project 1							
Individual							
Assessment 2							
/ Case Study	30	25	20	25	-	-	100
2 / Seminar 2							
/ Project 2							
ESE	20	30	30	20	-	-	100

23TE0E18	GREEN SUPPLY CHAIN MANAGEMENT
231EUE18	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To make the students learn and focus on the fundamental stra	tegies, tools and				
Objectives	tives techniques required to analyze and design environmentally sustainable supply chain					
•	systems.	11.0				
UNIT – I	INTRODUCTION	9 Periods				
Intro to SCM -	Intro to SCM – complexity in SCM, Facility location - Logistics – Aim, activities, importance, progress,					
current trends	s - Integrating logistics with an organization.					
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAGEMENT	9 Periods				
Basic concept	s of supply chain management - Supply chain operations - Plannin	g and sourcing -				
Making and d	elivering - Supply chain coordination and use of technology - Develop	ping supply chain				
systems.						
UNIT - III	PLANNING THE SUPPLY CHAIN	9 Periods				
Types of decis	sions – strategic, tactical, operational - Logistics strategies, implement	ing the strategy -				
Planning reso	urces - types, capacity, schedule, controlling material flow, measuring	ng and improving				
performance.						
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN	9 Periods				
	Procurement – cycle, types of purchase – Framework of e-procurement - Inventory management –					
Procurement	- cycle, types of purchase - Framework of e-procurement - Inventor					
	– cycle, types of purchase – Framework of e-procurement - Inventor n demand and safety stock, stock control - Material handling – Purpo	ry management –				
EOQ, uncertai		ry management – ose of warehouse				
EOQ, uncertain and ownership	n demand and safety stock, stock control - Material handling – Purpo	ry management – ose of warehouse				
EOQ, uncertain and ownership	n demand and safety stock, stock control - Material handling - Purpo p, layout, packaging - Transport - mode, ownership, vehicle routing	ry management – ose of warehouse				
EOQ, uncertai and ownershi models- Trave UNIT - V	n demand and safety stock, stock control - Material handling – Purpo p, layout, packaging - Transport – mode, ownership, vehicle routing elling salesman problems - Exact and heuristic methods.	ry management – ose of warehouse g and scheduling 9 Periods				
EOQ, uncertai and ownershi models- Trave UNIT - V Five key confi	n demand and safety stock, stock control - Material handling - Purpole, layout, packaging - Transport - mode, ownership, vehicle routing salesman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES	ry management – ose of warehouse g and scheduling 9 Periods - Next generation				
EOQ, uncertai and ownershi models- Trave UNIT - V Five key confi strategies- N	n demand and safety stock, stock control - Material handling - Purpole, layout, packaging - Transport - mode, ownership, vehicle routing elling salesman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES guration components - Four criteria of good supply chain strategies	ry management – ose of warehouse g and scheduling 9 Periods - Next generation				
EOQ, uncertai and ownershi models- Trave UNIT - V Five key confi strategies- N	n demand and safety stock, stock control - Material handling - Purporp, layout, packaging - Transport - mode, ownership, vehicle routing elling salesman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES guration components - Four criteria of good supply chain strategies ew roles for end-to-end supply chain management - Evolution - International issues in SCM - Regional differences in logistics.	ry management – ose of warehouse g and scheduling 9 Periods - Next generation				

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply
	Chain Management" , Routledge, 1 st Edition, 2019.
2	Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle
	Approach ",McGraw-Hill Education, 1 st Edition, 2011.
3	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management" , Routledge, 1stEdition, 2017.

4	Arunachalam Rajagopal," Green Supply Chain Management: A Practical Approach ", Replica, 2021.
5	Mehmood Khan, Matloub Hussain and Mian M. Ajmal, "Green Supply Chain Management for Sustainable Business Practice", IGI Global, 1st Edition, 2016.
6	S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.
7	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction", Routledge, 1st Edition, 2017.

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon con	apletion of the course, the students will be able to:	Mapped
CO1	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and	K5
	operational decisions.	KJ
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	К3
CO4	Analyze inventory management models and dynamics of supply chain.	K4
CO5	Identify issues in international supply chain management and outsources strategies.	К3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	P06	
CO1	1	1	1	1	1	3	
CO2	2	2	1	1	1	1	
CO3	2	1	2	1	1	1	
CO4	2	2	1	1	2	2	
CO5	1	1	2	1	1	3	
23TEOE18	2	1	1	1	1	2	
1 – Slight, 2 – Modei	1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PA	ATTERN - THEOF	RY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	25	25	30	10	10	-	100
CAT2	30	40	20	10	-	-	100
Individual							
Assessment 1 /							
Case Study 1 /	30	20	25	15	10	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment 2 /							
Case Study 2 /	35	30	25	10	-	-	100
Seminar 2 /							
Project 2							
ESE	30	30	20	10	10	-	100

22DC0E10	DISTRIBUTION AUTOMATION SYSTEM
23PSOE19	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To study about the distributed automation and economic evaluation schemes	of power
Objectives	network	
UNIT – I	INTRODUCTION	9 Periods
Introduction to	Distribution Automation (DA) - Control system interfaces- Control and data re	quirements-
Centralized (vs	e) decentralized control- DA system-DA hardware-DAS software.	
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS	9 Periods
DA capabilitie	es - Automation system computer facilities- Management processes-	Information
management-	System reliability management- System efficiency management- Voltage manag	ement- Load
management.		
UNIT – III	COMMUNICATION SYSTEMS	9 Periods
Communication	n requirements - reliability- Cost effectiveness- Data requirements- Two wa	y capability-
Communication	n during outages and faults - Ease of operation and maintenance- Confor	ming to the
architecture of	flow. Distribution line carrier- Ripple control-Zero crossing technique- Telepho	ne, cableTV,
radio, AM broa	dcast, FM SCA,VHF radio, microwave satellite, fiber optics-Hybrid communication	tion systems
used in field te	sts.	
UNIT – IV	ECONOMIC EVALUATION METHODS	9 Periods
Development a	and evaluation of alternate plans- select study area - Select study period-	Project load
growth-Develo	p alternatives- Calculate operating and maintenance costs-Evaluate alternatives	S.
UNIT – V	ECONOMIC COMPARISON	9 Periods
Economic com	parison of alternate plans-Classification of expenses - capital expenditures-Co	mparison of
revenue requir	rements of alternative plans-Book life and continuing plant analysis- Year by y	ear revenue
requirement a	nalysis, Short term analysis- End of study adjustment-Break even analysis	s, sensitivity
analysis - Com	putational aids.	
Contact Perio	ds:	
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications,
	Ltd., 2010.
2	Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design",
	Springer Science & Business Media, 21-Mar-2013
3	IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE
	Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society.
	Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
4	Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	К2
CO3	Perform detailed analysis of communication systems for distributed	К3
	automation.	
CO4	Study the economic evaluation method	K4
CO5	Understand the comparison of alternate plans	K5

COURSE ARTICULATION MATRIX						
COs/Pos	P01	P02	P03	P04		
CO1	2	-	1	3		
CO2	3	-	3	2		
CO3	3	-	3	2		
CO4	3	-	3	1		
CO5	2	-	1	2		
23PS0E19	3	-	3	2		
1 – Slight, 2 – Moderate, 3 – Subst	antial			•		

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	20%	30%	20%	10%	20%	-	100%	
CAT2	20%	20%	20%	20%	20%	-	100%	
Individual	20%	10%	30%	20%	20%	-	100%	
Assessment1								
/ Case								
study1/								
Seminar								
1/Project1								
Individual	20%	30%	10%	20%	20%	-	100%	
Assessment2								
/ Case								
study2/								
Seminar 2								
/Project2								
ESE	30%	20%	20%	20%	10%	-	100%	

23PSOE20

ELECTRICITY TRADING AND ELECTRICITY ACTS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To acquire expertise on Electric supply and demand of Indian Grid, gain e	xnosure on			
Objectives					
Objectives	9,	regulatory			
	authorities.				
UNIT – I	ENERGY DEMAND	9 Periods			
Basic concepts	in Economics - Descriptive Analysis of Energy Demand - Decomposition A	nalysis and			
Parametric Ap	proach - Demand Side Management - Load Management - Demand Side Ma	nagement -			
Energy Efficien	cy - Rebound Effect				
UNIT – II	ENERGY SUPPLY	9 Periods			
Supply Behavio	or of a Producer - Energy Investment - Economics of Non-renewable Resources	- Economics			
of Renewable I	Energy Supply Setting the context - Economics of Renewable Energy Supply - E	conomics of			
Electricity Supp	ply				
UNIT – III	ENERGY MARKET	9 Periods			
Perfect Compe	tition as a Market Form - Why is the Energy Market not Perfectly Competitiv	e? - Market			
Failure and Mo	nopoly - Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC Era II - Oil Market: O	PEC			
UNIT – IV	LAW ON ELECTRICITY	9 Periods			
Introduction o	Introduction of the Electricity Law; Constitutional Design - Evolution of Laws on Electricity Salient				
Features of Ele	Features of Electricity Act, 2003 - Evolution of Laws on Electricity - Salient Features of the Electricity Act				
2003					
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRICITY ACT	9 Periods			

UNIT - V REGULATORY COMMISSIONS FOR ELECTRICITY ACT

Regulatory Commissions - Appellate Tribunal - Other Institutions under the Act - Electricity (Amendment) Bill 2020/2021. A Critical Comment - Renewable Energy - Role of Civil Society; Comments on Draft Renewable Energy Act, 2015

Contact Periods:

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods **Lecture: 45 Periods**

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of
	Energy", Vol.1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
4	Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands,
	2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
6	Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and
	Practices", Cambridge Univesity Press, 2014.

COURS	COURSE OUTCOMES:			
		Taxonomy		
Upon c	ompletion of the course, the students will be able to:	Mapped		
CO1	Describe electric supply and demand of power grid	K1		
CO2	Summarize various energy trading strategies	K2		
CO3	Relate the electricity acts practically	К3		
CO4	Cite the electricity regulatory authorities	K2		
CO5	Analyze/check the existing power grid for its technical and economical	K4		
	sustainability			

COURSE ARTICULATION MATRIX						
COs/Pos	P01	PO2	PO3	P04		
C01	3	-	3	3		
CO2	3	-	1	1		
CO3	3	-	2	2		
CO4	3	-	1	2		
CO5	3	-	3	3		
23PSOE20	3	-	2	2		

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	20%	30%	20%	30%	-	-	100%	
CAT2	20%	20%	20%	20%	20%	-	100%	
Individual	20%	30%	30%	20%	-	-	100%	
Assessment1								
/ Case								
study1/								
Seminar								
1/Project1								
Individual	20%	30%	-	20%	-	40%	100%	
Assessment2								
/ Case								
study2/								
Seminar 2								
/Project2								
ESE	30%	30%	-	20%	20%	-	100%	

23PSOE21

MODERN AUTOMOTIVE SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	Course To expose the students with theory and applications of Automotive Electrical and				
Objectives	Electronic Systems.				
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIVE ELECTRONICS	9 Periods			
Introduction to	Introduction to modern automotive systems and need for electronics in automobiles- Role of electronics				
and microcon	and microcontrollers- Sensors and actuators- Possibilities and challenges in automotive industry-				
Enabling technologies and industry trends.					
UNIT – II	SENSORS AND ACTUATORS	9 Periods			
Tarana di Latina di		Ci 1			

Introduction- basic sensor arrangement- Types of sensors- Oxygen sensor, engine crankshaft angular position sensor – Engine cooling water temperature sensor- Engine oil pressure sensor- Fuel metering-vehicle speed sensor and detonation sensor- Pressure Sensor- Linear and angle sensors- Flow sensor-Temperature and humidity sensors- Gas sensor- Speed and Acceleration sensors- Knock sensor- Torque sensor- Yaw rate sensor- Tyre Pressure sensor- Actuators - Stepper motors – Relays.

UNIT – III POWERTRAIN CONTROL SYSTEMS IN AUTOMOBILE

9 Periods

Electronic Transmission Control - Digital engine control system: Open loop and close loop control systems- Engine cooling and warm up control- Acceleration- Detonation and idle speed control - Exhaust emission control engineering- Onboard diagnostics- Future automotive powertrain systems.

UNIT – IV SAFETY, COMFORT AND CONVENIENCE SYSTEMS

9 Periods

Cruise Control- Anti-lock Braking Control- Traction and Stability control- Airbag control system-Suspension control- Steering control- HVAC Control.

UNIT - V ELECTRONIC CONTROL UNITS (ECU)

9 Periods

Introduction to Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotives - Design complexities of ECUs- V-Model for Automotive ECU's- Architecture of an advanced microcontroller (XC166 Family, 32-bit Tricore) used in the design of automobile ECUs- On chip peripherals, protocol interfaces, analog and digital interfaces.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John
	Wiley and Sons, 2001.

- 2 M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press, series on Power Engineering, 2000.
- 3 Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
- 4 *G.T.Heydt,* "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COURS	SE OUTCOMES:	Bloom's			
		Taxonomy			
Upon c	Upon completion of the course, the students will be able to:				
CO1	Acquire knowledge about conventional automotive control units and devices.	K1			
CO2	Recognize the practical issues in the automotive control systems	K2			
CO3	Analyze the impact of modern automotive techniques in various Engineering	K4			
	applications				
CO4	Develop modern automotive control system for electrical and electronics	К6			
	systems				
CO5	Understand the function of sensors and actuators	K2			

COURSE ARTICULATION MATRIX					
COs/Pos	P01	P02	P03	P04	
CO1	3	-	1	3	
CO2	3	-	3	2	
CO3	3	-	3	2	
CO4	2	-	3	1	
CO5	2	-	1	2	
23PS0E21	3	-	2	2	
1 - Slight, 2 - Moderate, 3 - Sub	ostantial		•	•	

ASSESSMENT	PATTERN - THE	ORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	30%	-	20%	-	30%	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	20%	30%	-	20%	-	40%	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	30%	20%	20%	-	-	100%

2201	COL	าา
Z.3P1	EOE2	<u> </u>

VIRTUAL INSTRUMENTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To comprehend the Virtual instrumentation programming concepts towards me	easurements	
Objectives	and control and to instill knowledge on DAQ, signal conditioning and its associated software		
	tools		
UNIT – I	INTRODUCTION	7 Periods	

Introduction - advantages - Block diagram and architecture of a virtual instrument - Conventional Instruments versus Traditional Instruments - Data-flow techniques, graphical programming in data flow, comparison with conventional programming.

UNIT - II **GRAPHICAL PROGRAMMING AND LabVIEW**

9 Periods

Concepts of graphical programming - LabVIEW software - Concept of VIs and sub VI - Display types - Digital - Analog - Chart and Graphs. Loops - structures - Arrays - Clusters- Local and global variables - String -Timers and dialog controls.

MANAGING FILES & DESIGN PATTERNS UNIT - III

11 Periods

High-level and low-level file I/O functions available in LabVIEW – Implementing File I/O functions to read and write data to files - Binary Files - TDMS - sequential programming - State machine programming -Communication between parallel loops -Race conditions - Notifiers & Queues - Producer Consumer design patterns

UNIT - IV PC BASED DATA ACQUISITION

9 Periods

Introduction to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, Resolution, analog inputs and outputs - Single-ended and differential inputs - Digital I/O, counters and timers, DMA, Data acquisition interface requirements - Issues involved in selection of Data acquisition cards - Use of timer-counter and analog outputs on the universal DAQ card.

DATA ACQUISITION AND SIGNAL CONDITIONING UNIT - V

9 Periods

Components of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ hardware -Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation – Signal conditioning systems - Synchronizing measurements in single & multiple devices - Power quality analysis using Electrical Power Measurement tool kit.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 | Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd Edition), Prentice Hall, 2006. 2 | Jovitha Jerome, **"Virtual Instrumentation using LabVIEW",** PHI, 2010
- 3 | Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional Publishing, 2019
- Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
- Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control", Newness, 2000

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Describe the graphical programming techniques using LabVIEW software.	К2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	К6
CO5	Familiarize and experiment with DAQ and Signal Conditioning	К3

COURSE ARTICULATION MATRIX:							
COs/POs	P01	P02	P03	P04	P05		
CO1	3	-	3	2	1		
CO2	3	-	3	2	1		
CO3	3	-	2	2	2		
CO4	3	1	3	3	1		
CO5	3	1	3	3	2		
23PE0E22	3	1	3	2	1		
1 – Slight, 2 – Moderate, 3 –	Substantial						

ASSESSMENT	PATTERN - THE	ORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	40	15	15	-	-	100
CAT2	15	10	25	30	20	-	100
Individual	10	10	20	30	20	10	100
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	25	40	20	15	-	-	100
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30	25	15	20	5	5	100

23PE0E23

ENERGY MANAGEMENT SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To Comprehend energy management schemes, perform energy audit a	nd execute			
Objectives	economic analysis and load management in electrical systems.				
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND MANAGEMENT	9 Periods			
Energy Conser	vation Act 2001 and policies – Eight National Missions - Basics of Energy ar	nd its forms			
(Thermal and	Electrical) - Energy Management and Audit - Energy Managers and Auditors	- Types and			
Methodology A	Audit Report - Material and energy balance diagramsEnergy Monitoring and T	argeting.			
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENERATION	9 Periods			
Boiler Systems	- Types - Performance Evaluation of boilers - Energy Conservation Opportun	nity - Steam			
Distribution - I	Efficient Steam Utilisation - Furnaces:types and classification - Performance eva	aluation of a			
typical fuel fire	ed furnace. Cogeneration: Need - Principle - Technical options - classification	- Technical			
parameters and	d factors influencing cogeneration choice - Prime Movers - Trigeneration.				
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS	9 Periods			
Electricity Billi	ng – Electricity load management - Maximum Demand Control - Power Factor in	nprovement			
and its benefits - pf controllers - capacitors - Energy efficient transformers and Induction motors -					
rewinding and	rewinding and other factors influencing energy efficiency - Standards and labeling programme of				
distribution tra	insformers and IM - Analysis of distribution losses - demand side management -	- harmonics			
- filters - VFD a	and its selection.				

UNIT - IV STUDY OF ELECTRICAL UTILITIES

9 Periods

Compressor types - Performance - Air system components - Efficient operation of compressed air systems-Compressor capacity assessment - HVAC: psychrometrics and air-conditioning processes - Types of refrigeration system - Compressor types and applications - Performance assessment of refrigeration plants - Lighting Systems: Energy efficient lighting controls - design of interior lighting - Case study.

UNIT - V PERFORMANCE ASSESSMENT FOR EQUIPMENT

9 Periods

Performing Financial analysis: Fixed and variable costs – Payback period – ROI - methods – factors affecting analysis. Energy Performance Assessment: Heat exchangers - Fans and Blowers - Pumps. Energy Conservation in buildings and ECBC.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Murphy W.R. and G.Mckay Butter worth , "Energy Management", Heinemann Publications, 2007
2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
	Publishers, 2012.
3	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
	edition, Technical Publications, 2019.
4	S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali
	Prakashan Publications, 2021.
5	www.em-ea.org/gbook1.asp

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Analyze the feature of energy audit methodology and documentation of report.	К3
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
CO4	Familiarize with electrical utilities.	K4
CO5	Perform assessment of different systems.	K5

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
CO1	3	2	2	1	1		
CO2	3	2	2	1	1		
CO3	3	2	2	1	1		
CO4	3	2	2	1	1		
CO5	3	2	2	1	1		
23PE0E23	3	2	2	1	1		
1 – Slight, 2 – Moderate, 3 –	Substantial		•				

ASSESSMENT	PATTERN - THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1 / Case study1/ Seminar 1/Project1	-	30	30	20	20	-	100
Individual Assessment2 / Case study2/ Seminar 2 /Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

22050524	ADVANCED ENERGY STORAGE TECHNOLOGY	CEMECTED III
23PEOE24	(Common to all Branches)	SEMESTER III

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To explore the fundamentals, technologies and applications of energy storage	
Objectives		
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION AND	9 Periods
	CHANGES	

Storage Needs- Variations in Energy Demand- Variations in Energy Supply- Interruptions in Energy Supply- Transmission Congestion - Demand for Portable Energy-Demand and scale requirements - Environmental and sustainability issues-conventional energy storage methods: battery-types.

UNIT - II TECHNICAL METHODS OF STORAGE

9 Periods

Introduction: Energy and Energy Transformations, Potential energy (pumped hydro, compressed air, springs)- Kinetic energy (mechanical flywheels)- Thermal energy without phase change passive (adobe) and active (water)-Thermal energy with phase change (ice, molten salts, steam)- Chemical energy (hydrogen, methane, gasoline, coal, oil)- Electrochemical energy (batteries, fuel cells)- Electrostatic energy (capacitors), Electromagnetic energy (superconducting magnets)- Different Types of Energy Storage Systems.

UNIT – III PERFORMANCE FACTORS OF ENERGY STORAGE SYSTEMS

9 Periods

Energy capture rate and efficiency- Discharge rate and efficiency- Dispatch ability and load flowing characteristics, scale flexibility, durability – Cycle lifetime, mass and safety – Risks of fire, explosion, toxicity- Ease of materials, recycling and recovery- Environmental consideration and recycling, Merits and demerits of different types of Storage.

UNIT – IV APPLICATION CONSIDERATION

9 Periods

Comparing Storage Technologies- Technology options- Performance factors and metrics- Efficiency of Energy Systems- Energy Recovery - Battery Storage System: Introduction with focus on Lead Acid and Lithium- Chemistry of Battery Operation, Power storage calculations, Reversible reactions, Charging patterns, Battery Management systems, System Performance, Areas of Application of Energy Storage: Waste heat recovery, Solar energy storage, Green house heating, Power plant applications, Drying and heating for process industries, energy storage in automotive applications in hybrid and electric vehicles.

UNIT - V HYDROGEN FUEL CELLS AND FLOW BATTERIES

9 Periods

Hydrogen Economy and Generation Techniques, Storage of Hydrogen, Energy generation - Super capacitors: properties, power calculations – Operation and Design methods - Hybrid Energy Storage: Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor "Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation) Bacitor + Fuel Cell or Flow Battery operation-Applications: Storage for Hybrid Electric Vehicles, Regenerative Power, capturing methods.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.
- 2 Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy Storage and Conversion", John Wiley and Sons, 2012.
- 3 Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.
- 4 Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical Society, New Jersy, 2010.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
CO4	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
CO1	3	1	3	3	3			
CO2	3	1	3	3	3			
CO3	3	1	3	3	3			
CO4	3	1	3	3	3			
CO5	3	1	3	3	3			
23PE0E24	3	1	3	3	3			
1 – Slight, 2 – Moderate, 3 –	Substantial	•	•					

ASSESSMENT	PATTERN - THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

22 A	EOE2	
43A	EUE2	J

DESIGN OF DIGITAL SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	OE	3	0	0	3

Course Objectives

• To gain knowledge in the design and VHDL programming of synchronous and asynchronous sequential circuits, PLD's and the basic concepts of testing in VLSI circuits

UNIT-I SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9 Periods

Analysis of Clocked Synchronous Sequential Circuits - Modeling, state table reduction, state assignment, Design of Synchronous Sequential circuits, Design of iterative circuits- ASM chart –ASM realization.

UNIT-II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9 Periods

Analysis of Asynchronous Sequential Circuits - Races in ASC - Primitive Flow Table - Flow Table Reduction Techniques, State Assignment Problem and the Transition Table - Design of ASC - Static and Dynamic Hazards - Essential Hazards - Data Synchronizers.

UNIT-III SYSTEM DESIGN USING PLDS

9 Periods

Basic concepts – Programming Technologies - Programmable Logic Element (PLE) – Programmable Array Logic (PLA)-Programmable Array Logic (PAL) –Design of combinational and sequential circuits using PLDs–Complex PLDs (CPLDs).

UNIT-IV INTRODUCTION TO VHDL

9 Periods

Design flow -Software tools – VHDL: Data Objects-Data types – Operators –Entities and Architectures – Components and Configurations – Signal Assignment – Concurrent and Sequential statements –-Behavioral,

- Components and Configurations - Signal Assignment - Concurrent and Sequential statements -- Benavioral, Dataflow and Structural modeling- Transport and Inertial delays -Delta delays-Attributes - Generics-Packages and Libraries.

UNIT-V LOGIC CIRCUIT TESTING AND TESTABLE DESIGN

9 Periods

Digital logic circuit testing - Fault models - Combinational logic circuit testing - Sequential logic circuit testing-Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study: Traffic Light Controller.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Donald G.Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni,"Circuit Design withVHDL",PHILearning,2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", Academic Press, 1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage 2nd Edition 2012.
6	NripendraN.Biswas, "Logic Design Theory" Prentice Hallof India, 2001.

COUR	SEOUTCOMES:	Bloom's Taxonomy
Upon	completion of the course ,students will be able to/have:	Mapped
CO1	To design synchronous sequential circuits based on specifications.	К3
CO2	To design asynchronous sequential circuits based on specifications	К3
CO3	Ability to illustrate digital design implementation using PLDs.	K2
CO4	To develop algorithm and VHDL code for design of digital circuits.	К3
CO5	Understand the different testing methods for combinational and sequential	К2
	circuits.	

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05	P06	
CO1	3	-	2	-	-	1	
CO2	3	-	2	-	-	1	
CO3	3	-	2	-	-	1	
CO4	3	-	2	-	-	1	
CO5	3	-	2	-	-	1	
23AE0E25	3	-	2	-	-	1	
– Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PA	ATTERN - THEOR	Y					
Test / Bloom's Category*	Remembering (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	20%	45%	35%				100%

23AE0E26

BASICS OF NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	OE	3	0	0	3

Course Objective

 The students will be able to acquire knowledge about nano device fabrication technology, nano structures, nano technology for memory devices and applications of nano electronics in data transmission.

UNIT - I TECHNOLOGY AND ANALYSIS

9 Periods

Fundamentals: Dielectric, Ferroelectric and Optical properties - Film Deposition Methods – Lithography Material removing techniques - Etching and Chemical Mechanical Polishing - Scanning Probe Techniques.

UNIT - II CARBON NANO STRUCTURES

9 Periods

Principles and concepts of Carbon Nano tubes - Fabrication - Electrical, Mechanical and Vibration Properties - Applications of Carbon Nano tubes.

UNIT - III LOGIC DEVICES

9 Periods

Silicon MOSFET's: Novel materials and alternative concepts - Single electron devices for logic applications - Super conductor digital electronics - Carbon Nano tubes for data processing.

UNIT - IV MEMORY DEVICES AND MASS STORAGE DEVICES

9 Periods

Flash memories - Capacitor based Random Access Memories - Magnetic Random Access Memories - Information storage based on phase change materials - Resistive Random Access Memories - Holographic Data storage.

UNIT - V DATA TRANSMISSION AND INTERFACING DISPLAYS

9 Periods

Photonic Networks - RF and Microwave Communication System - Liquid Crystal Displays - Organic Light emitting diodes.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronic and
	novel devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics
	Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer,
	2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher,
	California", 2003.

COURS	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, students will be able to/have:	Mapped
CO1	Explain principles of nano device fabrication technology.	K2
CO2	Describe the concept of Nano tube and Nano structure.	K2
CO3	Explain the function and application of various nano devices	К3
CO4	Reproduce the concepts of advanced memory technologies.	K2
CO5	Emphasize the need for data transmission and display systems.	K2

COURSE ARTICU	COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06	PSO1	PSO2	PSO3
C01	3	-	2	-	-	1	3	-	1
CO2	3	-	2	-	-	1	3	-	1
CO3	3	-	2	-	-	1	3	-	1
CO4	3	-	2	-	-	1	3	-	1
CO5	3	-	2	-	-	1	3	-	1
23AE0E26	3	-	2	-	-	1	3	-	1
1 – Slight, 2 – Mod	1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	50%	25%	25%				100%
CAT2	50%	25%	25%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50%	25%	25%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50%	25%	25%				100%
ESE	50%	25%	25%				100%

ADVANCED PROCESSOR

23AE0E27

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective

• The students will be able to acquire knowledge about the high performance RISC, CISC and special purpose processors.

UNIT - I MICROPROCESSOR ARCHITECTURE

9 Periods

Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile – Cache – Virtual memory and paging – Segmentation – Pipelining – The instruction pipeline – pipeline hazards – Instruction level parallelism – reduced instruction set – Computer principles – RISC versus CISC – RISC properties – RISC evaluation.

UNIT - II HIGH PERFORMANCE CISC ARCHITECTURE -PENTIUM

9 Periods

The software model – functional description – CPU pin descriptions – Addressing modes – Processor flags – Instruction set – Bus operations – Super scalar architecture – Pipe lining – Branch prediction – The instruction and caches – Floating point unit – Programming the Pentium processor.

UNIT - III HIGH PERFORMANCE CISC ARCHITECTURE - PENTIUM INTERFACE

9 Periods

Protected mode operation – Segmentation – paging – Protection – multitasking – Exception and interrupts - Input /Output – Virtual 8086 model – Interrupt processing.

UNIT - IV HIGH PERFORMANCE RISC ARCHITECTURE: ARM

9 Periods

ARM architecture – ARM assembly language program – ARM organization and implementation – ARM instruction set - Thumb instruction set.

UNIT - V SPECIAL PURPOSE PROCESSORS

9 Periods

Altera Cyclone Processor – Audio codec – Video codec design – Platforms – General purpose processor – Digital signal processor – Embedded processor – Media Processor – Video signal Processor – Custom Hardware – Co-Processor.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, " The Pentium Microprocessor ", Pearson Education, 1997.
3	Steve Furber, "ARM System -On -Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, " Embedded Microcomputer Systems " Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COUR	SE OUTCOMES:	Bloom's		
Upon	Upon completion of the course, students will be able to			
		Mapped		
CO1	Describe the fundamentals of various processor architecture.	K2		
CO2	Interpret and understand the high performance features in CISC	K2		
	architecture.			
CO3	Describe the concepts of Exception and interrupt processing.	K2		
CO4	Develop programming skill for ARM processor.	K3		
CO5	Explain various special purpose processor	K2		

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3	-	2	-	-	1
23AE0E27	3	-	2	-	-	1
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PA	TTERN - THEO	KY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	30%	40%	30%				100%

23VLOE28 HDL PROGRAMMIN GLANGUAGES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To code and simulate any digital function in Verilog HDL and	understand the			
Objective	difference between synthesizable and non-synthesizable code				
UNIT – I	VERILOG INTRODUCTION AND MODELING	9 Periods			
Introduction t	o Verilog HDL, Language Constructs and Conventions, Gate Level Mod	eling, Modeling			
at Dataflow I	Level, Behavioral Modeling, Switch Level Modeling, System Tasks,	Functions and			
Compiler Dire	ctives.				
UNIT – II	JNIT - II SEQUENTIAL MODELING AND TESTING 9 Periods				
Sequential Mo	dels - Feedback Model, Capacitive Model, Implicit Model, Basic Memor	ry Components,			
Functional Re	egister, Static Machine Coding, Sequential Synthesis. Test Bench -	Combinational			
Circuits Testin	ng, Sequential Circuit Testing, Test Bench Techniques, Design Verifica	ation, Assertion			
Verification.					
UNIT – III	SYSTEM VERILOG	9 Periods			
	System Verilog declaration spaces, System Verilog Literal Values an				
Types, System	Verilog User-Defined and Enumerated Types, system Verilog Arrays,	Structures and			
Unions, systen	n verilog Procedural Blocks, Tasks and Functions.				
UNIT – IV	SYSTEM VERILOG MODELING	9 Periods			
System Verilo	og Procedural Statements, Modeling Finite State Machines with Sys	stem Verilog,			
	g Design Hierarchy.				
UNIT - V	INTERFACES AND DESIGN MODEL	9 Periods			
System Verilog Interfaces, A Complete Design Modeled with System Verilog, Behavioral and					
Transaction L		Jenaviorai allu			
Contact Perio		,			
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	oas			

1	T.R.Padmanabhan, B Bala Tripura Sundari, " Design through Verilog HDL" ,Wiley 2009.
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog
	For Design Second Edition A Guide to Using System Verilog for Hardware Design and
	Modelling", Springer 2006.
3	Samir Palnitkar, " Verilog HDL ", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi," Verilog Digital System Design" ,TMH,2ndEdition,2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of
	Projects on FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language
	Features", Springer 2006.
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to
	Using System Verilog for Hardware Design and Modeling" 1st Edition, 2003

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Explain the verilog coding and simulate any digital function using	K2
	Verilog HDL	
CO2	Develop sequential modeling based Verilog HDL code and develop	К3
	the test bench for the modeling	
CO3	Explain the system verilog modeling	K2
CO4	Differentiate the synthesizable and non-synthesizable code	К3
CO5	Apply good coding techniques on system verilog interfaces and	КЗ
	complete design model	

COURSE ARTICUI	COURSE ARTICULATION MATRIX					
COs/POs	P01	P02	P03	P04	P05	P06
CO1	3	3		2		2
CO2	3	3		2		2
CO3	3	3		2		2
CO4	3	3		2		2
CO5	3	3		2		2
23VLOE28	3	3		2		2
1 – Slight, 2 – Mod	erate, 3 – Subs	tantial				•

ASSESSMENT	Γ PATTERN – THE	ORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-		100%

23VLOE29	CMOS VLSI DESIGN
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To gain knowledge on CMOS Circuits with its characterization a	and to design			
Objective	CMOS logic and sub-system with low power				
UNIT – I	INTRODUCTION TO MOS CIRCUITS	9 Periods			
MOS Transisto	MOS Transistor Theory -Introduction MOS Device Design Equations -MOS Transistor as a Switches -				
Pass Transisto	r - CMOS Transmission Gate -Complementary CMOS Inverter - Stati	c Load MOS			
Inverters - Inve	erters with NMOS loads - Differential Inverter - Tri State Inverter - BiCM	OS Inverter.			
UNIT – II	CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION	9 Periods			
Delay Estimat	ion, Logical Effort and Transistor Sizing, Power Dissipation, Sizin	g Routing			
Conductors, Ch	arge Sharing, Design Margin and Reliability.				
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN	9 Periods			
CMOS Logic G	ate Design, Physical Design of CMOS Gate, Designing with Transmiss	sion Gates,			
CMOS Logic Str	ructures, Clocking Strategies, I/O Structures.				
UNIT – IV	CMOS SUBSYSTEM DESIGN	9 Periods			
DataPath Oper	ations-Addition/Subtraction, Parity Generators, Comparators, Zero/One	Detectors,			
Binary Counte	rs, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Cor	itrol Logic			
Implementatio	n.				
UNIT – V	LOW POWER CMOS VLSI DESIGN	9 Periods			
Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in					
CMOS, Low-Po	ower Design through Voltage Scaling - VTCMOS Circuits, MTCMO	S Circuits,			
Architectural Level Approach – Pipelining and Parallel Processing Approaches, Low Power Basics					
CMOS Gate and Adder Design.					
Contact Perio	ds:				
Lecture: 45 Pe	111777	da			

1	Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata Mc-
	Graw Hill, 2011.
2	N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley,1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems
	Perspective", Pearson Education 2013.
4	Kiat-Seng Yeo,Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill
	Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Jan M.Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.

COUF	COURSE OUTCOMES:		
		Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped	
CO1	Explain the MOS circuits and Transmission gates	K2	
CO2	Illustrate the CMOS Circuits with its characterization	K2	
CO3	Design CMOS logic circuits	К3	
CO4	Design CMOS sub-system	К3	
CO5	Discuss low power CMOS VLSI Design	К2	

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
CO1	2	1	-	2	-	3		
CO2	2	1	-	2	-	3		
CO3	2	1	-	2	-	3		
CO4	3	1	-	2	-	3		
CO5	3	1	-	2	-	3		
23VLOE29	3	1	-	2	-	3		
1 – Slight, 2 – Mod	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	40%	40%	20%	-	-	-	100%	
CAT2	40%	40%	20%	-	-	-	100%	
Individual	-	50%	50%	-	-	-	100%	
Assessment								
1 /Case								
Study 1/								
Seminar 1 /								
Project1								
Individual	-	50%	50%	-	-	-	100%	
Assessment								
2 /Case								
Study 2/								
Seminar 2 /								
Project 2								
ESE	40%	40%	20%	-	-	-	100%	

23VLOE30

HIGH LEVEL SYNTHESIS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

		1.01			
Course	 To provide students with foundations in High level synthes 	is, verification			
Objective	and CAD Tools				
UNIT – I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS	9 Periods			
Overview HLS	flow, Scheduling Techniques, Resource sharing and Binding Techniq	ues, Data-path			
and Controller	Generation Techniques.				
UNIT – II	HIGH LEVEL SYNTHESIS	9 Periods			
Introduction to	o HDL, HDL to DFG, operation scheduling: constrained and unconstrair	ed scheduling,			
ASAP, ALAP, I	ist scheduling, Force directed Scheduling, operator binding, Static Ti	ming Analysis:			
Delay models,	setup time, hold time, cycle time, critical paths, Topological mvs.	Logical timing			
analysis, False	paths, Arrival time (AT), Required arrival Time (RAT), Slacks.				
UNIT – III	HIGH-LEVEL SYNTHESIS VERIFICATION	9 Periods			
Simulation ba	ased verification - Formal Verification of digital systems- BDD base	d approaches,			
functional equ	ivalence, finite state automata, ω-automata, FSM verification.				
UNIT – IV	CAD TOOLS FOR SYNTHESIS	9 Periods			
CAD tools for	synthesis, optimization, simulation and verification of design at variou	s levels as well			
as for special	l realizations and structures such as microprogrammes, PLAs, ga	te arrays etc.			
Technology ma	apping for FPGAs. Low power issues in high level synthesis and logic sy	nthesis.			
UNIT – V	UNIT - V ADVANCED TOPICS 9 Period				
Relative Scheduling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling					
modes, free-floating scheduling mode, Pipelining, Handshaking, System Design, High-Level					
Synthesis for FPGA.					
Contact Perio	Contact Periods:				
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1/1	EFERENCES.
1	Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit",
	Springer, 2008.
2	Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
3	D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
4	Dutt, N. D. and Gajski, D. D., " High level synthesis ", Kluwer, 2000.
5	Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
6	David. C. Ku and G. De Micheli, " High-level Syntehsis of ASICs Under Timing and
	Synchronization Constraints", Kluwer Academic Publishers, 1992.
7	K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999,
	Wiley.
8	Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System
	Design and Analysis ", Springer, 2006.

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped	
C01	Understand the fundamentals of High level synthesis	K2	
CO2	Synthesis the HDL for operation scheduling	K2	
CO3	Simulate and verify any digital systems	K2	
CO4	Apply CAD tools for synthesis	K2	
CO5	Have knowledge on various scheduling modes	К2	

COURSE ARTICULATION MATRIX:

COs/POs	P01	PO2	P03	P04	P05	P06
CO1	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	-	2	2	-
CO4	2	2	-	2	2	-
CO5	2	2	-	2	2	-
23VL0E30	2	2	-	2	2	-

ASSESSMENT	ASSESSMENT PATTERN - THEORY							
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
Category*	5 00/	= 00/					1000/	
CAT1	50%	50%		-	-	-	100%	
CAT2	50%	50%		-	-	-	100%	
Individual	-	50%	50%	-	-	-	100%	
Assessment 1								
/Case Study								
1/ Seminar 1								
/ Project1								
Individual	-	50%	50%	-	-	-	100%	
Assessment 2								
/Case Study								
2/ Seminar 2								
/ Project 2								
ESE	50%	50%		-	-	-	100%	

22CCOE21	ARTIFICIAL INTELLIGENCE
23CSOE31	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	Course Identify and apply AI techniques in the design of systems that act intelligently, making				
Objectives	automatic decisions and learn from experience.				
UNIT – I	SEARCH STRATEGIES	9 Periods			
Uninformed Strategies – BFS, DFS, Djisktra, Informed Strategies – A* search, Heuristic functions, Hill					
Climbing, Adv	ersarial Search – Min-max algorithm, Alpha-beta Pruning				
UNIT – II	PLANNING AND REASONING	9 Periods			
State Space se	arch, Planning Graphs, Partial order planning, Uncertain Reasoning	- Probabilistic Reasoning,			
Bayesian Netv	vorks, Dempster Shafer Theory, Fuzzy logic				
UNIT – III	PROBABILISTIC REASONING	9 Periods			
Probabilistic	Reasoning over Time - Hidden Markov Models, Kalman Filters, Dyr	namic Bayesian Networks.			
Knowledge Re	epresentations – Ontological Engineering, Semantic Networks and de	escription logics.			
UNIT – IV	DECISION MAKING	9 Periods			
Utility Theory	, Utility Functions, Decision Networks – Sequential Decision Proble	ems – Partially Observable			
MDPs – Game	Theory.				
UNIT – V	REINFORCEMENT LEARNING	9 Periods			
Reinforcement Learning - Passive and active reinforcement learning - Generations in Reinforcement					
Learning - Policy Search – Deep Reinforcement Learning.					
Contact Periods:					
Lecture: 45 F	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013							
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006							
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice Hall,2010.							
4	Elaine Rich,Kevin Knight,Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill, 2009.							

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	К3
CO3	Examine data using statistical codes and solve complex AI problems	К6
CO4	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	К6

COURSE ARTICULATION MATRIX									
COs/POs	PO 1	P02	PO 3	PO 4	P05	P06			
CO1	3		2		3	3			
CO2	3		2		3	3			
CO3	3		3		3	3			
CO4	3		3		3	3			
CO5	CO5 3 3 3 3								
23CSOE31	3		3		3	3			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1		20	40	20	20		100			
CAT2		10	20	40	10	20	100			
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1					50	50	100			
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2					50	50	100			
ESE	30	30	40				100			

23CSOE32

COMPUTER NETWORK MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	After the completion of the course, the students will be able to	understand the concent
Objectives	of layering in networks, functions of protocols of each layer of	•
objectives	concepts related to network addressing and routing and build	, <u>-</u>
	basic configurations for routers and switches, and implement IP	•
	schemes using Cisco Packet Tracer.	vi and ii vo addressing
UNIT – I	INTRODUCTION AND APPLICATION LAYER	9 Periods
	rk – Network Edge and Core – Layered Architecture – OSI Model	
•	orking Devices: Hubs, Bridges, Switches, Routers, and Gateways -	
	orking – Introduction to Sockets – Application Layer protocols	
Protocols – DNS	•	
UNIT – II	TRANSPORT LAYER AND ROUTING	9 Periods
	r functions –User Datagram Protocol – Transmission Control Pro	
•	Strategies – Congestion Control - Routing Principles – Distance	
	RIP – OSPF – BGP – Introduction to Quality of Service (QoS).Case	•
OSPF BGP using		, , ,
UNIT - III	NETWORK LAYER	9 Periods
Network Layer:	Switching concepts - Internet Protocol - IPV4 Packet Format - IP	Addressing – Subnetting
- Classless Inter	Domain Routing (CIDR) – Variable Length Subnet Mask (VLSM) –	DHCP - ARP - Network
Address Transl	ation (NAT) – ICMP – Concept of SDN.Case Study: Configuring V	LAN, DHCP, NAT using
Packet tracer		
UNIT – IV	INTERNETWORK MANAGEMENT	9 Periods
Introduction to	the Cisco IOS - Router User Interface - CLI - Router and Switch Ad	ministrative Functions -
Router Interfac	es - Viewing, Saving, and Erasing Configurations - Switching	Services - Configuring
Switches - Mana	aging Configuration Registers - Backing Up and Restoring IOS - Ba	cking Up and Restoring
the Configuration	on - Using Discovery Protocol (CDP) - Checking Network Connectivi	ty
UNIT – V	TRAFFIC MANAGEMENT AND WAN PROTOCOLS	9 Periods
Managing Traffi	c with Access Lists: Introduction to Access Lists - Standard Access	Lists - Extended Access
Lists - Named A	Access Lists - Monitoring Access Lists - Wide Area Networking Pr	otocols: Introduction to
Wide Area Netv	vorks - Cabling the Wide Area Network - High-Level Data-Link Co	ntrol (HDLC) Protocol -
Point-to-Point I	Protocol (PPP) - Frame Relay: Frame Relay Implementation and	Monitoring - Integrated
Services Digital	Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring DD	R
Contact Period	s:	
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 P	eriods

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh
	Edition, Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education,
	2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNA™: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COURSE OUTCOMES:					
		Taxonomy			
Upon completion of the course, the students will be able to:					
CO1	Highlight the significance of the functions of each layer in the network.	K1			
CO2	Identify the devices and protocols to design a network and implement it.	K4			
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	К3			
CO4	Build simple LANs, perform basic configurations for routers and switches	К6			
CO5	Illustrate various WAN protocols	K2			

COURSE ART	COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	3		3		2	1			
CO2	3		3		2	2			
CO3	3		3		3	2			
CO4	3		3		3	3			
CO5	3		3		3	3			
23CSOE32	3		3		3	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMEN'	ASSESSMENT PATTERN - THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	30	30	20	20			100			
CAT2		30	20	30	10	10	100			
Individual	10	30	20	20	20		100			
Assessment										
1 /Case										
Study 1 /										
Seminar 1 /										
Project 1										
Individual		20	20	20	20	20	100			
Assessment										
2 / Case										
Study 2/										
Seminar 2/										
Project 2										
ESE	20	40	40				100			

BLOCKCHAIN TECHNOLOGIES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	The objective of the course is to explore basics of block chain tech	nnology and its							
Objectives	application in various domain								
UNIT – I	INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN	9 Periods							
History of Bl	ockchain - Types of blockchain- CAP theorem and blockchain	- benefits and							
Limitations o	f Blockchain - Decentalization using blockchain - Blockchain im	plementations-							
Block chain in	Block chain in practical use - Legal and Governance Use Cases								
UNIT – II	BITCOIN AND CRYPTOCURRENCY	9 Periods							
Introduction t	to Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining	Developments,							
Bitcoin Wallet	s, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM	l), Merkle Tree,							
Double-Spend	Problem, Blockchain and Digital Currency, Transactional Block	cks, Impact of							
Blockchain Te	chnology on Cryptocurrency								
UNIT – III	ETHEREUM	9 Periods							
Introduction	to Ethereum, Consensus Mechanisms, Metamask Setup, Ethereu	m Accounts, ,							
Transactions,	Receiving Ethers, Smart Contracts								
UNIT – IV	HYPERLEDGER AND SOLIDITY PROGRAMMING	9 Periods							
Introduction	to Hyperledger, Distributed Ledger Technology & its Challenges,	Hyperledger &							
Distributed	Ledger Technology, Hyperledger Fabric, Hyperledger Compos	ser. Solidity –							
Programming	with solidity								
UNIT – V	BLOCKCHAIN APPLICATIONS	9 Periods							
Ten Steps to b	ouild your Blockchain application - Application: Internet of Things, I	Medical Record							
Management	System, Domain Name Service and Future of Blockchain, Alt Coins								
Contact Perio	ods:								
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods							

REFERENCES:

23CSOE33

1	Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and								
	Smart Contracts Explained", Second Edition, Packt Publishing, 2018.								
2	Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law,								
	and Technology Solutions",McGraw Hill Education ,2018.								
3	Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency								
	Technologies: A Comprehensive Introduction" Princeton University Press, 2016.								
4	Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.								
5	Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps",								
	O'Reilly Publishing, 2018								
6	NPTEL Course : Blockchain and its applications								

https://archive.nptel.ac.in/courses/106/105/106105235/

	DUTCOMES: pletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Comprehend the working of Blockchain technology	K2
CO2	Narrate working principle of smart contracts and create them using solidity for given scenario.	К3
CO3	Comprehend the working of Hyperledger in an real time application	K2
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum	К3
CO5	Develop applications on Blockchain	К3

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	P03	P04	PO5	P06			
CO1	2		3	2		3			
CO2	2	3	3	3	2	3			
CO3	3		3	2		3			
CO4	3	3	3	3	2	3			
CO5	3	3	3	3	2	3			
23CSOE33	3	3	3	3	2	3			
1 - Slight, 2 - Moderate, 3 - Substantial									

ASSESSMENT PAT	TTERN - THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	30	50				100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		30	70				100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		40	60				100
ESE	10	60	30				100

23MFACZ1

ENGLISH FOR RESEARCH PAPER WRITING

(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course	The objective of the course is to make the learners understand the f	format and
Objectives	intricacies involved in writing a research paper.	
UNIT – I	PLANNING AND PREPARATION	6 Periods
-	ng articles, Choosing the journal, Identifying a model journal paper, Cre	eation of files for
each section, Expe	ctations of Referees, Online Resources.	
UNIT – II	SENTENCES AND PARAGRAPHS	6 Periods
Basic word in En	glish, Word order in English and Vernacular, placing nouns, Verbs,	Adjectives, and
Adverb suitably in	a sentence, Using Short Sentences, Discourse Markers and Punctuation	ons- Structure of
a Paragraph, Brea	king up lengthy Paragraphs.	
TINITE III	ACCUIDACU DDEVIEW AND CLADERY (ADC) OF MUDICING	(D : 1
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC) OF WRITING	6 Periods
Accuracy, Brevity	and Clarity in Writing, Reducing the linking words, Avoiding redundar	ncy, Appropriate
use of Relative	and Reflexive Pronouns, Monologophobia, verifying the journa	l style, Logical
Connections betw	een others author's findings and yours.	
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING	6 Periods
Making your findi	ngs stand out, Using bullet points headings, Tables and Graphs- Availi	ng non-experts
opinions, Hedging	, Toning Down Verbs, Adjectives, Not over hedging, Limitations of you	r research.
UNIT – V	SECTIONS OF A PAPER	6 Periods
Titles, Abstracts,	Introduction, Review of Literature, Methods, Results, Discussion	on, Conclusions,
References.		
Contact Periods:		
Lecture: 30 Peri	ods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Perio	ods

	1	Goldbort R , "Writing for Science", Yale University Press (available on GoogleBooks),2006
	2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
•	3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.
İ	4	Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht
		Heidelberg London, 2011.

	E OUTCOMES: mpletion of this course the learners will be able to	Bloom's Taxonomy Mapped
CO1	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph	K4
	writing.	
CO3	Practice unambiguous writing.	К3
CO4	Avoid wordiness in writing.	К2
CO5	Exercise the elements involved in writing journal paper.	К3

COURSE ARTICULATION MATRIX :								
COs/POs	P01	P02	P03	P04	P05	P06		
CO1	3	3	1	1	1	1		
CO2	3	3	1	1	1	1		
CO3	3	3	1	1	1	1		
CO4	3	3	1	1	1	1		
CO5	3	3	1	1	1	1		
23MFACZ1	3	3	1	1	1	1		
1 – Slight, 2 – Modera	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	40	40	20	-	-	-	100		
CAT2	40	40	20	-	-	-	100		
Individual									
Assessment									
1/ Case Study	-	50	50	-	-	-	100		
1/ Seminar									
1/ Project 1									
Individual									
Assessment									
2/ Case Study	-	50	50	-	-	-	100		
2/ Seminar									
2/ Project 2									
ESE	30	30	40	-	-	-	100		

23MFACZ2	DISASTER MANAGEMENT
ZSMFACZZ	(Common to all branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course Objectives and area of occurrence. 2. To know the various steps in disaster planning. 3. To create awareness on disaster preparedness and management. UNIT - I INTRODUCTION Oisaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude. Areas proneto ,EarthquakesFloods ,Droughts, Landslides , Avalanches ,Cyclone and Coastal Hazards with Special Reference to Tsunami. UNIT - II REPERCUSSIONS OF DISASTERS AND HAZARDS Conomic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts. UNIT - III DISASTER PLANNING Disaster Planning-Disaster Response Personnel roles and duties, Community MitigationGoals, Pre-Disaster Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems. UNIT - IV DISASTER PREPAREDNESS AND MANAGEMENT OR Periods Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. UNIT - V RISK ASSESSMENT RISK ASSESSMENT RESK ASSESSMENT RISK Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment, Strategies for Survival.						
2. To know the various steps in disaster planning. 3. To create awareness on disaster preparedness and management. UNIT - I INTRODUCTION 6 Periods Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude. Areas proneto 'EarthquakesFloods 'Droughts, Landslides', Avalanches 'Cyclome and Coastal Hazards with Special Reference to Tsunami. UNIT - II REPERCUSSIONS OF DISASTERS AND HAZARDS 6 Periods Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts. UNIT - III DISASTER PLANNING 6 Periods Disaster Planning-Disaster Response Personnel roles and duties, Community MitigationGoals, Pre-Disaster Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems. UNIT - IV DISASTER PREPAREDNESS AND MANAGEMENT 6 Periods DISASTER RISK: Application of Risk: A	Course	1. To become familiar in key concepts and consequences about hazard	ls, disaster			
3. To create awareness on disaster preparedness and management. UNIT - I INTRODUCTION 6 Periods Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude. Areas proneto ,EarthquakesFloods ,Droughts, Landslides , Avalanches ,Cyclone and Coastal Hazards with Special Reference to Tsunami. UNIT - II REPERCUSSIONS OF DISASTERS AND HAZARDS 6 Periods Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts. UNIT - III DISASTER PLANNING 6 Periods Disaster Planning-Disaster Response Personnel roles and duties, Community MitigationGoals, Pre-Disaster Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems. UNIT - IV DISASTER PREPAREDNESS AND MANAGEMENT 6 Periods Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. UNIT - V RISK ASSESSMENT 6 Periods Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	Objectives	and area of occurrence.				
Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude. Areas proneto, EarthquakesFloods, Droughts, Landslides, Avalanches, Cyclore and Coastal Hazards with Special Reference to Tsunami. NIT - II		2. To know the various steps in disaster planning.				
Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude. Areas proneto ,EarthquakesFloods ,Droughts, Landslides , Avalanches ,Cyclo—and Coastal Hazards with Special Reference to Tsunami. VINIT - II		3. To create awareness on disaster preparedness and management.				
Disasters: Difference Nature, Types and Magnitude. Areas proneto RearthquakesFloods Droughts, Landslides, Avalanches, Cyclores and Coastal Hazards with Special Reference to Tsunami. VINIT - II	UNIT – I	INTRODUCTION	6 Periods			
Disasters: Difference Nature, Types and Magnitude. Areas proneto 'EarthquakesFloods 'Droughts' Landslides', Avalanches 'Cyclore' and Coastal Hazards with Special Reference to Tsunami. VINIT - II	Disaster: Definition	n, Factors and Significance; Difference between Hazard and Disaster; Natural	and Manmade			
Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts. VINIT - III DISASTER PLANNING 6 Periods						
Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts. UNIT - III DISASTER PLANNING Disaster Planning-Disaster Response Personnel roles and duties, Community MitigationGoals, Pre-Disaster Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems. UNIT - IV DISASTER PREPAREDNESS AND MANAGEMENT Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. UNIT - V RISK ASSESSMENT Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	Avalanches ,Cyclor	ne and Coastal Hazards with Special Reference to Tsunami.				
Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts. UNIT - III DISASTER PLANNING 6 Periods Disaster Planning-Disaster Response Personnel roles and duties, Community MitigationGoals, Pre-Disaster Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems. UNIT - IV DISASTER PREPAREDNESS AND MANAGEMENT 6 Periods Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. UNIT - V RISK ASSESSMENT 6 Periods Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods			
Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts. UNIT - III DISASTER PLANNING 6 Periods Disaster Planning-Disaster Response Personnel roles and duties, Community MitigationGoals, Pre-Disaster Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems. UNIT - IV DISASTER PREPAREDNESS AND MANAGEMENT 6 Periods Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. UNIT - V RISK ASSESSMENT 6 Periods Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	Economic Damag	e, Loss of Human and Animal Life, Destruction of Ecosystem. Natu	ral Disasters:			
Disease and Epidemics, War and Conflicts.UNIT - IIIDISASTER PLANNING6 PeriodsDisaster Planning-Disaster Response Personnel roles and duties, Community MitigationGoals, Pre-Disaster Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems.6 PeriodsUNIT - IVDISASTER PREPAREDNESS AND MANAGEMENT6 PeriodsPreparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.Governmental and Governmental and Governmental and Community Preparedness.UNIT - VRISK ASSESSMENT6 PeriodsDisaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation.Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	Earthquakes, Volc	anisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides an	d Avalanches,			
UNIT - IIIDISASTER PLANNING6 PeriodsDisaster Planning-Disaster Response Personnel roles and duties, Community MitigationGoals, Pre-Disaster Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems.6 PeriodsUNIT - IVDISASTER PREPAREDNESS AND MANAGEMENT6 PeriodsPreparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.Governmental and 6 PeriodsUNIT - VRISK ASSESSMENT6 PeriodsDisaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	Man-made disaste	er: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills,	Outbreaks of			
Disaster Planning-Disaster Response Personnel roles and duties, Community MitigationGoals, Pre-Disaster Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems. UNIT - IV DISASTER PREPAREDNESS AND MANAGEMENT 6 Periods Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. UNIT - V RISK ASSESSMENT 6 Periods Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	Disease and Epide	mics, War and Conflicts.				
Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems. UNIT - IV DISASTER PREPAREDNESS AND MANAGEMENT Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. UNIT - V RISK ASSESSMENT 6 Periods Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	UNIT - III	DISASTER PLANNING	6 Periods			
UNIT - IV DISASTER PREPAREDNESS AND MANAGEMENT Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. UNIT - V RISK ASSESSMENT Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	Disaster Planning-	Disaster Response Personnel roles and duties, Community MitigationGoals	, Pre-Disaster			
Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. UNIT - V RISK ASSESSMENT 6 Periods Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	Mitigation Plan, Pe	ersonnel Training, Comprehensive Emergency Management, Early Warning Sy	stems.			
Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness. UNIT - V RISK ASSESSMENT 6 Periods Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT	6 Periods			
Community Preparedness. UNIT - V RISK ASSESSMENT 6 Periods Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	Preparedness: Mo	nitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk:	Application of			
UNIT - VRISK ASSESSMENT6 PeriodsDisaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation.Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	Remote Sensing,	Data from Meteorological and other Agencies, Media Reports: Govern	rnmental and			
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	Community Preparedness.					
Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation	UNIT - V	RISK ASSESSMENT	6 Periods			
	Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation.					
in Risk Assessment, Strategies for Survival.	Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation					
Lecture:30 Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 Periods						

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies" , New Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India,
	New Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep
	Publication Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International
	Publishing House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann,
	2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
C01	2	1	1	2	2		
CO2	1	2	1	1	1		
CO3	1	1	1	2	2		
CO4	1	1	1	2	2		
CO5	2	1	1	2	2		
23MFACZ2	1	1	1	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2			100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

23MFACZ3	VALUE EDUCATION
ZSMPACZS	(Common to all branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course	1. Value of education and self- development				
Objectives	2. Requirements of good values in students				
	3. Importance of character				
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods			
	dividual attitudes. Work ethics, Indian vision of humanism. Moral as and principles. Value judgements.	nd non-moral			
UNIT – II	PERSONALITY AND BEHAVIOR DEVELOPMENT	6 Periods			
	Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance.				
UNIT – III	VALUES IN HUMAN LIFE	6 Periods			
•	vation of values, Sense of duty. Devotion, Self-reliance. Confiden liness. Honesty, Humanity. Power of faith, National Unity. Pat				
UNIT – IV	VALUES IN SOCIETY	6 Periods			
•	ppiness Vs suffering, love for truth. Aware of self-destructive haling best for saving nature.	oits. Association			
UNIT – V	POSITIVE VALUES	6 Periods			
Character and Com	petence –Holy books vs Blind faith. Self-management and Good	health. Science of			
$reincarnation.\ Equality,\ Nonviolence,\ Humility,\ Role\ of\ Women.\ All\ religions\ and\ same\ message.\ Mind\ your$					
	onesty, Studying effectively.				
Contact Periods:					
Lecture: 30 Period:	s Tutorial: 0 Periods Practical: 0 Periods Total: 30 Perio	ods			

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University
	Press,New Delhi,1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi,2004
4	https://nptel.ac.in/courses/109104068/36

COUR	COURSE OUTCOMES:			
Upon	Upon completion of the course, the students will be able to:			
CO1	Know the values and work ethics.	К3		
CO2	Enhance personality and 152ehavior development.	К3		
CO3	Apply the values in human life.	К3		
CO4	Gain Knowledge of values in society.	К3		
CO5	Learn the importance of positive values in human life.	К3		

COURSE ARTICULATION MATRIX							
Cos/Pos	P01	P02	P03	P04	P05	P06	
CO1	-	-	3	-	-	1	
CO2	-	-	3	-	-	1	
CO3	-	-	3	-	-	1	
CO4	-	-	3	-	-	1	
CO5	-	-	3	-	-	1	
23MFACZ3	-	-	3	-	-	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PA	ATTERN - THEOR	Y					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	_	-	100%
ESE	20%	50%	30%	-	-	-	100%

23MFACZ4	CONSTITUTION OF INDIA
	(Common to all branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course	To address the importance of constitutional rights and duties				
Objectives	To familiarize about Indian governance and local administration.				
	 To know about the functions of election commission. 				
UNIT – I	INDIAN CONSTITUTION	6 Periods			
History of Mak	ing of the Indian Constitution: History Drafting Committee, (Composition 8	& Working) -			
Philosophy of t	he Indian Constitution: Preamble Salient Features.				
UNIT – II	CONSTITUTIONAL RIGHTS & DUTIES	6 Periods			
Right against I	nstitutional Rights & Duties: Fundamental Rights, Right to Equality, Right Exploitation, Right to Freedom of Religion, Cultural and Educational Rig Remedies, Directive Principles of State Policy, Fundamental Duties.				
UNIT – III	ORGANS OF GOVERNANCE	6 Periods			
Organs of Gov	ernance: Parliament, Composition, Qualifications and Disqualifications,	Powers and			
	cutive, President, Governor, Council of Ministers, Judiciary, Appointment a	and Transfer			
	ifications, Powers and Functions.				
UNIT – IV	LOCAL ADMINISTRATION	6 Periods			
	stration: District's Administration head: Role and Importance, M				
	Mayor and role of Elected Representative, CEO of Municipal Corporation. Page 1971				
	PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat:				
	role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.				
		C Dania da			
UNIT - V ELECTION COMMISSION 6 Periods					
Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and					
Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.					
	· ·				
Contact Perio	us:				

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain,"Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu,"Introduction to the Constitution of India", Lexis Nexis, 2015.

Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	K2
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULA	TION MATRIX	ζ				
COs/POs	P01	PO2	P03	P04	P05	P06
CO1	-	-	1	1	1	1
CO2	-	-	1	1	1	2
CO3	-	-	1	1	2	1
CO4	-	-	1	1	1	1
CO5	-	-	1	1	1	1
23MFACZ4	-	-	1	1	1	1
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMEN'	Γ PATTERN – TI	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

22MEAC75	PEDAGOGY STUDIES
23MFACZ5	(Common to all branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course Objectives					
UNIT – I	INTRODUCTION	6 Periods			
and terminol	and Methodology: Aims and rationale, Policy background, Conceptualogy Theories of learning, Curriculum, Teacher education. Conceptual stions. Overview of methodology and Searching.				
UNIT – II	PEDAGOGICAL PRACTICES	6 Periods			
classrooms i	Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education. Evidence on the effectiveness of pedagogical practices Methodology for the in depth stage: quality assessment of				
UNIT - III PEDAGOGICAL APPROACHES 6 Periods					
How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches.					

UNIT - IV PROFESSIONAL DEVELOPMENT

Teacher's attitudes and beliefs and Pedagogic strategies.

6 Periods

Professional development: alignment with classroom practices and follow-up support. Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes.

UNIT - V CURRICULUM AND ASSESSMENT

6 Periods

Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.

Contact Periods:

Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

- 1 Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261, 2001.
- 2 Alexander RJ , Culture and pedagogy: International comparisons in primary education.
 Oxford and Boston: Blackwell, 2001
- 3 Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282, 2013.
- 4 Agrawal M , Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379, 2004

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain the concept of curriculum, formal and informal education systems and teacher education.	К3
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	К3
CO3	Understand the relation between teacher and community, support from various levels of teachers to students and limitation in resources and size of the class.	К3
CO4	Perform research in design a problem in pedagogy and curriculum development.	К3

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
CO1	-	-	1	1	2	1
CO2	-	-	1	1	1	2
CO3	-	-	1	1	2	1
CO4	-	-	1	1	2	1
23MFACZ5	-	-	1	1	2	1
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSME	NT PATTERN - 1	ГНЕОКУ					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

231	MF/	\CZ	46

STRESS MANAGEMENT BY YOGA

(Common to all Branches)

PREREQUISIT	PES	CATEGORY	L	T	P	С
•	NIL	AC	2	0	0	0
Course	1. To create awareness on the benefits of yoga and	d meditation.				
Objectives	2. To understand the significance of Asana and Pr	anayama.				
UNIT – I	PHYSICAL STRUCTURE AND ITS FUNCTIONS				6 Pe	riods
Yoga - Physical structure, Importance of physical exercise, Rules and regulation of simplified physical exercises, hand exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, maharasana, body massage, acupressure, body relaxation.						-
UNIT – II	YOGA TERMINOLOGIES				6 Pe	riods
Niyamas- Sauc	as- Saucha, santosha, tapas, svadhyaya, Ishvara pranidhana. - III ASANA 6 Period					riods
					6 Periods	
Asana - Ruies a	& Regulations – Types & Benefits					
UNIT – IV	PRANAYAMA				6 Periods	
Regularization	of breathing techniques and its effects-Types of pr	anayama				
UNIT – V	MIND				6 Pe	riods
Bio magnetism& mind - imprinting & magnifying - eight essential factors of living beings, Mental frequency and ten stages of mind, benefits of meditation, such as perspicacity, magnanimity, receptivity, adaptability, creativity.						
	Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods					

1	Janardan Swami Yogabhyasi Mandal , "Yogic Asanas for Group Training-Part-I" , Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature" , Advaita Ashrama
	(Publication Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New
	Dawn Press, New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi,
	2007.

COUR	SE OUTCOMES:	Bloom's	
		Taxonomy	
Upon	Upon completion of the course, the students will be able to:		
CO1	Practice physical exercises and maintain good health.	К3	
CO2	Attain knowledge on the various concepts of Yoga.	K2	
CO3	Perform various asanas with an understanding on their benefits.	К3	
CO4	Practice breathing techniques in a precise manner.	К3	
CO5	Attain emotional stability and higher level of consciousness.	K2	

COs/POs	P01	PO2	P03	P04	P05
CO1	-	-	-	-	2
CO2	-	-	-	-	3
CO3	-	-	-	-	2
CO4	-	-	-	-	1
CO5	-	-	-	-	1
23MFACZ6	-	-	-	-	2

ASSESSMENT I	PATTERN - THEC	ORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	40%	30%	30%	-	-	-	100%
CAT2	30%	40%	30%	-	-	-	100%
Individual	40%	40%	20%	-	-	-	100%
Assessment1/							
Case study1/							
Seminar							
1/Project1							
Individual	30%	30%	40%	-	-	-	100%
Assessment2/							
Case study2/							
Seminar 2							
/Project2							
ESE	30%	30%	40%	-	-	-	100%

23MFACZ7 PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS (Common to all Branches)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course Objectives	 To familiar with Techniques to achieve the highest goal in life. To become a person with stable mind, pleasing personality and determination. 					
UNIT – I		6 Periods				
Neetisatakam-Holistic development of personality-Verses- 19,20,21,22 (wisdom)-Verses29,31,32 (pride & heroism)-Verses- 26,28,6.						
UNIT – II		6 Periods				
Verses- 52,53,59 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day work and duties Shrimad BhagwadGeeta - Chapter 2-Verses 41, 47,48,						
UNIT - III		6 Periods				
Shrimad BhagwadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35,-Chapter 18-Verses 45, 46, 48.						
UNIT - IV		6 Periods				
Statements of basic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62, 68 -Chapter 12 -Verses 13, 14, 15, 16,17, 18-Personality of Role model.						
UNIT – V		6 Periods				
Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39-Chapter18 – Verses 37,38,63.						
Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods						

1	Swami SwarupanandaAdvaita Ashram " Srimad Bhagavad Gita ",AdvaitaAshrama, Kolkata,2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam " Bhartrihari's Three Satakam " (Niti-sringar-vairagya), New Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog " Bhagavad Gita: The Song Of God ", USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada " Bhagavad-Gita As It Is ",Bhaktivedanta Book Trust Publications,2001

COUR	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the Holistic development in life	K4
CO2	Effective Planning of day to day work and duties	K4
CO3	Identify mankind to peace and prosperity	K4
CO4	Develop versatile personality.	K4
CO5	Awakening wisdom in life	K4

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	PO3	P04	PO5	P06			
601			1						
CO1	-	-	1	-	-	-			
CO2	-	-	1	-	-	-			
CO3	-	-	1	-	-	-			
CO4	ı	-	1	-	-	-			
CO5	-	-	1	-	-	-			
23MFACZ7	-	-	1	-	-	-			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20%	50%	30%	-	-	-	100%				
CAT2	20%	50%	30%	-	-	-	100%				
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project1	20%	50%	30%	-	-	-	100%				
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%				
ESE	20%	50%	30%	-	-	-	100%				

23MFACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE
ZSMFACZ8	(Common to all Branches)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course	1. To get a working knowledge in illustrious Sanskrit, the scientifi	ic language in				
Objectives	the world.					
•	2. Learning of Sanskrit to improve brain functioning.					
	3. Enhancing the memory power.					
	4. Learning of Sanskrit to develop the logic in mathematics, science subjects.	ce & other				
UNIT – I	BASICS OF SANSKRIT	6 Periods				
Alphabets in	Sanskrit, Past/Present/Future Tense.	-				
UNIT - II	SENTENCES AND ROOTS	6 Periods				
Simple Sente	nces - Order, Introduction of roots	•				
UNIT – III	SANSKRIT LITERATURE	6 Periods				
Technical inf	ormation about Sanskrit Literature	-1				
UNIT – IV	TECHNICAL CONCEPTS -1	6 Periods				
Technical cor	cepts of Engineering-Electrical, Mechanical					
UNIT – V	TECHNICAL CONCEPTS -2	6 Periods				
Technical cor	cepts of Engineering-Architecture, Mathematics					
Contact Peri	ods:					
	Periods Tutorial: 0 Periods Practical: 0 Periods Tota	ıl: 30 Periods				

1	Dr.Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.
2	Prathama Deeksha Vempati Kutumbshastri, " Teach Yourself Sanskrit ", Rashtriya Sanskrit
	Sansthanam, New Delhi, Publication, 2009.
3	Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi,2006.

COURS	E OUTCOMES:	Bloom's
Upon co	Taxonomy	
	Mapped	
CO1	Recognize ancient literature and their basics	К3
CO2	Formulate the sentences with order and understand the roots of	K2
	Sanskrit	
CO3	Acquire familiarity of the major traditions of literatures written in	К3
	Sanskrit	
CO4	Distinguish the Technical concepts of Electrical & Mechanical	K2
	Engineering	
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	P03	P04	P05	P06			
CO1	-	-	-	1	2	1			
CO2	-	-	-	1	2	-			
CO3	-	-	-	1	1	1			
CO4	-	-	-	2	1	1			
CO5	-	-	-	1	2	1			
23MFACZ8	-	-	-	1	2	1			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMEN	ASSESSMENT PATTERN - THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20%	50%	30%	-	-	-	100%				
CAT2	20%	50%	30%	-	-	-	100%				
Individual Assessmen t 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%				
Individual Assessmen t 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%				
ESE	20%	50%	30%	-	-	-	100%				