

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum and Syllabi For M.E. (ENVIRONMENTAL ENGINEERING) (Full Time)

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF

TECHNOLOGY THADAGAM ROAD, COIMBATORE – 641 013

PHONE 0422 - 2433355 FAX: +91 0422 - 2433355

Email: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Chennai)

COIMBATORE - 641 013

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- To achieve academic excellence through innovative teaching and learning practices.
- To enhance employability and entrepreneurship.
- To improve the research competence to address societal needs.
- To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

GOVERNMENT COLLEGE OF TECHNOLOGY COIMBATORE – 641 013 ENVIRONMENTAL ENGINEERING

VISION AND MISSION OF THE DEPARTMENT

VISION

To transpire as a centre of excellence in research with sustainable development and to articulate professionals with pioneering vision.

MISSION

- □ To make the department of Environmental Engineering a renowned centre for research.
- □ To transmit strong basics and applied research to bring out novel solutions by technocrats to the community at large.
- To create a nodal centre for providing consulting services for the benefit of Industries and Society.

GOVERNMENT COLLEGE OF TECHNOLOGY

COIMBATORE – 641 013

ENVIRONMENTAL ENGINEERING

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The following Programme Educational Objectives are designed based on the department mission

PEO 1: Graduates will achieve a high level of technical expertise in the subjects related to Environmental Engineering and also good in communication skills that help them to achieve and succeed in various positions.

PEO 2: Graduates will have a strong understanding in Environmental engineering principles to do doctorate programmes and to grab employment and entrepreneurship opportunities.

PEO3: Graduates will get interest on the learning processes and inculcate in them professional ethics, moral values and social concern.

GOVERNMENT COLLEGE OF TECHNOLOGY

COIMBATORE - 641 013

M.E. ENVIRONMENTAL ENGINEERING

PROGRAMME OUTCOMES (POs)

Students of the Environmental Engineering Programme should be in possession of the following at the time of their graduation

- **PO 1:** Ability to apply research skills and provide sustainable solutions in the various fields of environmental engineering employing different methodologies and techniques.
- **PO 2:** Ability to use the latest techniques advanced modern engineering skills, instrumentation and software packages necessary for environmental engineering practice.
- **PO 3:** Ability to communicate effectively and to possess excellent report writing presentation and documentation skills.
- **PO 4:** Ability to execute the multidisciplinary projects with global standards and in a sustainable manner.
- **PO 5:** Ability to recognize ethical and professional responsibilities in providing engineering solutions considering it impact in global, economic, environmental, and societal contexts.
- **PO 6:** Ability to recognize the significance of lifelong learning and to accommodate themselves to the changing trends as per the societal needs.

GOVERNMENT COLLEGE OF TECHNOLOGY COIMBATORE – 641 013

ENVIRONMENTAL ENGINEERING

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- **PSO1:** An ability to manage natural resources in a sustainable manner.
- **PSO2:** An ability to excel in the core areas of Environmental such as Water supply Engineering, Wastewater Engineering, Air pollution management, Solid and hazardous waste management etc.
- **PSO3:** An ability to execute excellence in solving the Environmental Engineering problems with consideration of public health, safety and welfare.
- **PSO4:** An ability to adapt and develop themselves according to the developments in the field of Environmental Engineering.

Curriculum

CURRICULUM FOR CANDIDATES ADMITTED DURING 2022-2023 AND ONWARDS TWO YEAR M.E PROGRAMME ENVIRONMENTAL ENGINEERING CHOICE BASED CREDIT SYSTEM-CURRICULUM FIRST SEMESTER

	Course			СА	End	Total	H	lours	s/Wee	ek
S.No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
1.	23EEFCZ1	Research Methodology and IPR	FC	40	60	100	3	0	0	3
2.	23EEFCZ2	Applied Mathematics for Environmental Engineers	FC	40	60	100	3	0	0	3
3.	23EEPC01	Design of water and wastewater Transport Systems	PC	40	60	100	3	0	0	3
4.	23EEPC02	Design of Physico – Chemical Treatment Systems	РС	40	60	100	3	1	0	4
5.	23EEPC03	Solid Waste Management	РС	40	60	100	3	0	0	3
6.	23EEPEXX	Professional Elective I	PE	40	60	100	3	0	0	3
7	23EEACXX	Audit course I	AC	40	60	100	2	0	0	0
		PRA	CTICAL	7						
8.	23EEPC04	Environmental Monitoring and Analysis Laboratory	PC	60	40	100	0	0	4	2
		Total		340	460	800	20	1	4	21

SECOND SEMESTER

<i>a</i>	Course	Carry of the	000	CA	End	Total	E	Iour	s/We	ek
S.No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
		TH	EORY							
1.23EEPC05Biological processes for wastewater treatmentPC4060100310									4	
2.	23EEPC06	Industrial Wastewater Management	PC	40	60	100	3	0	0	3
3.	23EEPC07	Air Quality Management	PC	40	60	100	3	1	0	4
4	23EEPEXX	Professional Elective II	PE	40	60	100	3	0	0	3
5	23EEPEXX	Professional Elective III	PE	40	60	100	3	0	0	3
6	23EEACXX	Audit course II	AC	40	60	100	2	0	0	0
		PRAG	CTICAL							
7	23EEPC08	Environmental Process Laboratory	PC	60	40	100	0	0	4	2
8	23EEEE01	Mini project	EEC	40	60	100	0	0	4	2
		Total		340	460	800	17	2	8	21

THIRD SEMESTER

	Course			CA	End	Total	H	lours	s/We	ek
S.No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
		THE	CORY							
1.	23EEPEXX	Professional Elective IV	PE	40	60	100	3	0	0	3
2.	23\$\$OEXX	Open Elective	OE	40	60	100	3	0	0	3
		PRAC	TICAL							
3.	23EEEE02	Internship/Industrial Training	EEC	100		100	-	-	**	2
4.	23EEEE03	Project Phase I	EEC	100	100	200	0	0	12	6
		Total		280	220	500	6	0	12	14

** 4 Weeks Internship/Industrial training

FOURTH SEMESTER

S.No	Course	Course Title	Category	CA	End Sem	Total	Н	k		
	Code			Marks	Marks	Marks	L	Т	Р	С
			PRACTICAL					1		
1.	23EEEE04	Project Phase II	EEC	200	200	400	0	0	24	12
•		Total		200	200	400	0	0	24	12

10.00

TOTAL CREDITS: 68

		Γ OF FOUNDATION COURSE FO			End Sem		Hours/Week				
S.No	Course Code	Course Title	Category	CA Marks	Sem Marks	Total Marks	L	T	P	C	
1.	23EEFCZ1	Research Methodology and IPR	FC	40	60	100	3	0	0	3	
2.	23EEFCZ2	Applied Mathematics for Environmental Engineers	FC	40	60	100	3	0	0	3	
	LIST OI	F PROFESSIONAL CORE COURS	E FOR M.E	. ENVIRO	NMENTAL	ENGIN	EER	RING	Ĵ		
a N	Course			СА	End	Total	Н	ours	/We	ek	
S.No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С	
1.	23EEPC01	Design of water and wastewater Transport Systems	PC	40	60	100	3	0	0	3	
2.	23EEPC02	Design of Physico – Chemical Treatment Systems	PC	40	60	100	3	1	0	4	
3.	23EEPC03	Solid Waste Management	PC	40	60	100	3	0	0	3	
4.	23EEPC04	Environmental Monitoring and Analysis Laboratory	PC	60	40	100	0	0	4	2	
5.	23EEPC05	Biological processes for wastewater treatment	PC	40	60	100	3	1	0	4	
6.	23EEPC06	Industrial Wastewater Management	PC	40	60	100	3	0	0	3	
7.	23EEPC07	Air Quality Management	PC	40	60	100	3	1	0	4	
8.	23EEPC08	Environmental Process Laboratory	PC	60	40	100	0	0	4	2	
LIS	ST OF EMP	LOYABILITY ENHANCEMENT C	COURSE FO)R M.E. EN	VIRONMI	ENTAL F	ENG	INE	ERI	NG	
	Course			СА	End	Total	Н	ours	/We	ek	

a v	Course		Course Title Category CA Sem		End	Total	H	ours/	Wee	ek
S.No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
1.	23EEEE01	Mini project	EEC	40	60	100	0	0	4	2
2.	23EEEE02	Internship/Industrial Training	EEC	100		100	Ι	-	**	2
3.	23EEEE03	Project Phase I	EEC	100	100	200	0	0	12	6
4.	23EEEE04	Project Phase II	EEC	200	200	400	0	0	24	12

** 4 Weeks Internship/Industrial training

	LIS	T OF PROFESSIONAL ELECTIVES FO	R M.E. EN	VIRONM	ENTAL	ENGIN	IEE	RIN	G	
S.No	Course	Course Title	Category	CA	End Sem	Total	Н	ours	/We	ek
5.110	Code		Category	Marks	Marks	Marks	L	Т	Р	С
1	23EEPE01	Sustainable Environmental Management	PE	40	60	100	3	0	0	3
2	23EEPE02	Environmental Implications of Engineered Nanomaterial	PE	40	60	100	3	0	0	3
3	23EEPE03	Environmental Engineering Structures	PE	40	60	100	3	0	0	3
4	23EEPE04	Ground Water Contamination and Transport Modeling	PE	40	60	100	3	0	0	3
5	23EEPE05	Environmental Impact Assessment	PE	40	60	100	3	0	0	3
6	23EEPE06	Environmental Economics	PE	40	60	100	3	0	0	3
7	23EEPE07	Computing Techniques in Environmental Engineering	PE	40	60	100	3	0	0	3
8	23EEPE08	Environmental Risk Assessment	PE	40	60	100	3	0	0	3
9	23EEPE09	Environmental Management Standards	PE	40	60	100	3	0	0	3
10	23EEPE10	Air Quality Modeling	PE	40	60	100	3	0	0	3
11	23EEPE11	Environmental System Analysis	PE	40	60	100	3	0	0	3
12	23EEPE12	Remote Sensing and GIS Applications in Environmental Engineering	PE	40	60	100	3	0	0	3
13	23EEPE13	Soil Pollution Control	PE	40	60	100	3	0	0	3
14	23EEPE14	Hazardous Waste Management	PE	40	60	100	3	0	0	3
15	23EEPE15	Advanced Wastewater Treatment and Reuse	PE	40	60	100	3	0	0	3
16	23EEPE16	Environmental Biotechnology	PE	40	60	100	3	0	0	3
17	23EEPE17	Marine Pollution and Control	PE	40	60	100	3	0	0	3
18	23EEPE18	Geo – Environmental Engineering	PE	40	60	100	3	0	0	3
19	23EEPE19	Membrane Separation Processes for water and wastewater Treatment	PE	40	60	100	3	0	0	3
20	23EEPE20	Environmental Policy and Legislation	PE	40	60	100	3	0	0	3
21	23EEPE21	Instrumentation, Selection and Management of Environmental Engineering Equipments	PE	40	60	100	3	0	0	3
22	23EEPE22	Environmental Chemistry and Microbiology	PE	40	60	100	3	0	0	3

End Hours/Week SI. Course CA Total **Course Title** Category Sem Code Marks Marks No L Т Р С Marks Building Bye-Laws and Codes of 23SEOE01 OE Practice 23SEOE02 OE Planning of Smart Cities 23SEOE03 Green Building OE Environment Health and Safety 23EEOE04 OE Management 23EEOE05 Climate Change and Adaptation OE 23EEOE06 Waste to Energy OE 23GEOE07 Energy in Built Environment OE 23GEOE08 Earth and Its Environment OE OE 23GEOE09 Natural Hazards and Mitigation OE 23EDOE10 **Business Analytics** 23EDOE11 Introduction to Industrial safety OE 23EDOE12 **Operations Research** OE OE 23MFOE13 Occupational Health and Safety Cost Management of Engineering OE 23MFOE14 Projects **Composite Materials** 23MFOE15 OE **Global Warming Science** 23TEOE16 OE 23TEOE17 Introduction to Nano Electronics OE 23TEOE18 Green Supply Chain Management OE 23PSOE19 **Distribution Automation System** OE 23PSOE20 Electricity Trading & Electricity Acts OE 23PSOE21 Modern Automotive Systems OE Virtual Instrumentation **23PEOE22** OE OE **23PEOE23 Energy Management Systems** Advanced Energy Storage **23PEOE24** OE Technology Design of Digital Systems OE 23AEOE25 **Basics of Nano Electronics** OE

OE

OE

OE

OE

OE

OE

OE

23AEOE26

23AEOE27

23VLOE28

23VLOE29

23VLOE30

23CSOE31

23CSOE32

23CSOE33

Advanced Processor

CMOS VLSI Design

High Level Synthesis

Artificial Intelligence

HDL Programming Languages

Computer Network Management

Block Chain Technologies

LIST OF OPEN ELECTIVES FOR M.E. ENVIRONMENTAL ENGINEERING

LIST OF AUDIT COURCES (AC)

CI	G				End	T ()	Η	ours/	Wee	k
SI. No	Course Code	Course Title	Category	CA Marks	Sem. Marks	Total Marks	L	Т	Р	С
1	23EEACZ1	English for Research Paper writing	AC	40	60	100	2	0	0	0
2	23EEACZ2	Disaster Management	AC	40	60	100	2	0	0	0
3	23EEACZ3	Value Education	AC	40	60	100	2	0	0	0
4	23EEACZ4	Constitution of India	AC	40	60	100	2	0	0	0
5	23EEACZ5	Pedagogy Studies	AC	40	60	100	2	0	0	0
6	23EEACZ6	Stress Management by Yoga	AC	40	60	100	2	0	0	0
7	23EEACZ7	Personality Development Through life enlightenment skills	AC	40	60	100	2	0	0	0
8	23EEACZ8	Sanskrit for Technical Knowledge	AC	40	60	100	2	0	0	0

CURRICULUM DESIGN

15

G N	Course Work		2	No of Ci	redits		
S. No	Subject Area	Ι	п	III	IV	Total	Percentage
1.	Foundation Course	6	0	0	0	06	8.82 %
2.	Professional Cores	12	13	0	0	25	36.76 %
3.	Professional Electives	3	6	3	0	12	17.65 %
4.	Employability Enhancement Courses	0	2	8	12	22	32.35 %
5.	Open Elective Courses	0	0	3	0	03	4.41 %
	Total Credits	21	21	14	12	68	100%

Syllabus

23EEFCZ1	RESEARCH METHODOLOGY AND (Common to all Branches)	IPR	S	EMI	ESTE	E R I
PREREQUISI		CATEGORY	L	Т	P	С
	NIL	FC	3	0	0	3
Course	• To impart knowledge on research methodolo	gy, Quantitative m	etho	ls fo	r pro	oblen
Objectives	solving, data interpretation and report writing.				•	
u u	• To know the importance of IPR and patent rig					
UNIT – I	INTRODUCTION			9 F	Perio	ds
Definition and	objectives of Research – Types of research, Various Sto	eps in Research pro	ocess	, Ma	them	atica
tools for analy	sis, Developing a research question-Choice of a pr	roblem Literature	revie	w, S	Surve	eying
-	ritical analysis, reading materials, reviewing, rethinki					
	oses, Ethics in research – APA Ethics code.	-			-	
UNIT – II	QUANTITATIVE METHODS FOR PROBLEM S	OLVING		9 F	Perio	ds
Statistical Mod	aline and Analasia Time Contra Analasia Dual dilita Di	stributions Fundan			Ctati	
Statistical MOU	eling and Analysis, Time Series Analysis Probability Di	sulbuilons, Fulluan	ienta	ls of	Stati	stica
	Inference, Multivariate methods, Concepts of Correlat					
Analysis and I		ion and Regression	n, Fu			
Analysis and I Time Series An UNIT – III Tabular and gr	Inference, Multivariate methods, Concepts of Correlat nalysis and Spectral Analysis, Error Analysis, Applicatio DATA DESCRIPTION AND REPORT WRITING aphical description of data: Tables and graphs of frequ	ion and Regression ns of Spectral Anal ency data of one v	n, Fu ysis. variat	ndar 9 F ole, T	nenta Perio Table	als c ds s and
Analysis and I Time Series An UNIT – III Tabular and graphs that sho graphs, preparin Structure and C writing a resear	Inference, Multivariate methods, Concepts of Correlational malysis and Spectral Analysis, Error Analysis, Application DATA DESCRIPTION AND REPORT WRITING aphical description of data: Tables and graphs of frequence with relationship between two variables, Relation betwo ing data for analysis. Components of Research Report, Types of Report, Layor rch report, referencing in academic writing.	ion and Regression ns of Spectral Anal ency data of one w ween frequency dis	n, Fu ysis. variat tribut	ondar 9 F ole, T tions Mec	renta Perio Table and hanis	als o ds s and othe sm o
Analysis and I Time Series An UNIT – III Tabular and graphs that sho graphs, preparin Structure and C writing a resear UNIT – IV	Inference, Multivariate methods, Concepts of Correlationalysis and Spectral Analysis, Error Analysis, Application DATA DESCRIPTION AND REPORT WRITING aphical description of data: Tables and graphs of frequence with relationship between two variables, Relation between g data for analysis. Components of Research Report, Types of Report, Layor chireport, referencing in academic writing. INTELLECTUAL PROPERTY	ion and Regression ns of Spectral Anal ency data of one w ween frequency dis out of Research Re	n, Fu ysis. variat tribut port,	9 F ble, T tions Mec 9 F	renta Perio Table and hanis Perio	als c ds s and othe sm c ds
Analysis and I Time Series An UNIT – III Tabular and graphs that sho graphs, preparin Structure and C writing a resear UNIT – IV Nature of Inter Development: t	Inference, Multivariate methods, Concepts of Correlationalysis and Spectral Analysis, Error Analysis, Applicationalysis and Spectral Analysis, Error Analysis, Applicationalysis applicate description of data: Tables and graphs of frequence with relationship between two variables, Relation between gata for analysis. Components of Research Report, Types of Report, Layor charger, referencing in academic writing. INTELLECTUAL PROPERTY ellectual Property: Patents, Designs, Trade and Correct and Corr	ion and Regression ns of Spectral Anal ency data of one w ween frequency dis out of Research Reg opyright. Process ent.	n, Fu ysis. variat tribut port, of	9 F ole, T tions Mec 9 F Pater	renta Perio Table and hanis Perio	Als c ds s an othe sm c ds an
Analysis and I Time Series An UNIT – III Tabular and graphs that sho graphs, preparin Structure and C writing a resear UNIT – IV Nature of International Second	Inference, Multivariate methods, Concepts of Correlationalysis and Spectral Analysis, Error Analysis, Applicationalysis and Spectral Analysis, Error Analysis, Applicationalysis applicate description of data: Tables and graphs of frequence with relationship between two variables, Relation between gata for analysis. Components of Research Report, Types of Report, Layor charger, referencing in academic writing. INTELLECTUAL PROPERTY ellectual Property: Patents, Designs, Trade and Correct and Corr	ion and Regression ns of Spectral Anal ency data of one w ween frequency dis out of Research Reg opyright. Process ent.	n, Fu ysis. variat tribut port, of	9 F ole, T tions Mec 9 F Pater nts c	renta Perio Table and hanis Perio	ds ds s an othe sm c ds an tents
Analysis and I Time Series An UNIT – III Tabular and graphs that sho graphs, preparin Structure and C writing a resear UNIT – IV Nature of International Se Patenting under UNIT – V	Inference, Multivariate methods, Concepts of Correlationalysis and Spectral Analysis, Error Analysis, Applicationalysis and Spectral Analysis, Error Analysis, Applicationalysis and Bescription of data: Tables and graphs of frequence with relationship between two variables, Relation between gata for analysis. Components of Research Report, Types of Report, Layorch report, referencing in academic writing. INTELLECTUAL PROPERTY ellectual Property: Patents, Designs, Trade and Correctional cooperation on Intellectual Property referencing in academic on Intellectual Property referencing in PCT.	ion and Regression ns of Spectral Anal ency data of one w ween frequency dis out of Research Rep opyright. Process ent. perty. Procedure fo	n, Fu ysis. variat tribut port, of r gra	ndar 9 F ble, T tions Mec 9 F Pater nts o 9 F	renta Perio Table and hanis Perio of pa Perio	ds ds ds an othe sm c ds an tent:
Analysis and I Time Series An UNIT – III Tabular and graphs that sho graphs, preparin Structure and C writing a resear UNIT – IV Nature of Int Development: t International Se Patenting under UNIT – V Patent Rights:	 Inference, Multivariate methods, Concepts of Correlationalysis and Spectral Analysis, Error Analysis, Application DATA DESCRIPTION AND REPORT WRITING aphical description of data: Tables and graphs of frequence with relationship between two variables, Relation between g data for analysis. Components of Research Report, Types of Report, Layor charger, referencing in academic writing. INTELLECTUAL PROPERTY ellectual Property: Patents, Designs, Trade and C technological research, innovation, patenting, development cenario: International cooperation on Intellectual Property. PATENT RIGHTS 	ion and Regression ns of Spectral Anal ency data of one w ween frequency dis out of Research Rep opyright. Process ent. perty. Procedure fo	n, Fu ysis. variat tribut port, of r gra	ndar 9 F ble, T tions Mec 9 F Pater nts o 9 F	renta Perio Table and hanis Perio of pa Perio	ds ds ds an othe sm c ds an tents ds
Analysis and I Time Series An UNIT – III Tabular and graphs that sho graphs, preparin Structure and C writing a resear UNIT – IV Nature of Int Development: t International Se Patenting under UNIT – V Patent Rights:	 Inference, Multivariate methods, Concepts of Correlationalysis and Spectral Analysis, Error Analysis, Application DATA DESCRIPTION AND REPORT WRITING aphical description of data: Tables and graphs of frequence with relationship between two variables, Relation betwing data for analysis. Components of Research Report, Types of Report, Layor children report, referencing in academic writing. INTELLECTUAL PROPERTY ellectual Property: Patents, Designs, Trade and C technological research, innovation, patenting, development cenario: International cooperation on Intellectual Property PCT. PATENT RIGHTS Scope of Patent Rights. Licensing and transfer of graphical Indications. 	ion and Regression ns of Spectral Anal ency data of one w ween frequency dis out of Research Rep opyright. Process ent. perty. Procedure fo	n, Fu ysis. variat tribut port, of r gra	ndar 9 F ble, T tions Mec 9 F Pater nts o 9 F	renta Perio Table and hanis Perio of pa Perio	ds ds ds an othe sm c ds an tents ds

REFERENCES

	Stuart Melville and Wayne Goddard, " Research methodology: an introduction ", Juta Academic, 2^{nd} edition, 2014.
2	Donald H.McBurney and Theresa White, "Research Methods", 9 th Edition, CengageLearning, 2013
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5 th Edition, 2019
4	Dr. C. R. Kothari and GauravGarg, "Research Methodology: Methods and Trends", New age
	international publishers, 4 th Edition, 2018

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
CO1	Formulate research question for conducting research.	Mapped K3				
CO2	Analyze qualitative and quantitative data.	K4				
CO3	Interpret research findings and give appropriate conclusions.	K2				
CO4	Develop a structured content to write technical report.	K3				
CO5	Summarize the importance of IPR and protect their research work through	K2				
	intellectual property.					

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
C01	3	1	3	-	2	1			
CO2	1	-	3	-	2	1			
CO3	-	-	2	2	3	1			
CO4	-	-	2	-	2	1			
CO5	2	-	3	2	1	1			
23EEFCZ1	2	1	3	2	2	1			
1 - Slight, 2 - Moderate, 3 - Su	bstantial								

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	30	30	10	10	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	30	10	10	-	100
ESE	25	35	20	10	5	5	100

23EEFCZ2	APPLIED MATHEMATICS FOR ENVIRO ENGINEERS	NMENTAL	S	STER	I	
PREREQUI	SITES	CATEGORY	L	Т	Р	C
	NIL	FC	3	0	0	3
Course Objectives	• Understand the numerical solutions to algeb system of equations	raic, exponential,	logari	hmic	and li	near
	 Understand the random variables and corresting Binomial, Poisson and Geometric for discontine exponential and normal distribution for contine. Understand test of hypothesis for both smatch distribution and evaluate control limits using product is within control. Understand the basic principles and methods significances of effects of various factors on uncertainty using statistical principles Understand multivariate correlation analysis a 	screte random v uous random varia all and large sam g control charts to of statistical design a given response	ariable ables. aples b o exam gn of e e are d	and ased o iine w xperin etermi	Unife on nor hether nents.	orm, mal the The
UNIT – I	NUMERICAL METHODS		P		9 Pe	riods
Gauss Jordan	near Equations: Gauss elimination, Gauss Jordan and n Method- Nonlinear equations: Regula Falsi and N l Lagrange's interpolation methods.					•
UNIT – II	RANDOM VARIABLES & PROBABILITY DIST	RIBUTIONS			9 Pe	riods
Random vari	ables–Moments–Moment generating functions and t isson, Geometric, Uniform, Exponential and Normal dis	heir properties- I	Probabi	lity d		
UNIT – III	TEST OF HYPOTHESIS				9 Pe	riods
	s: Tests for Means, Variances and Proportions – Small ng t, F, Chi square distributions – Goodness of fit using	-		ns, Va	riance	s and
UNIT – IV	DESIGN OF EXPERIMENT	3.			9 Pe	riods
Analysis of v	ariance: Completely randomized design – Randomized	block design – Lat	tin squ	are des	ign.	
UNIT – V	STATISTICAL QUALITY CONTROL & CORRE	CLATION ANAL	YSIS		9 Pe	riods
	sis for Control charts – Control limits – Control charts p, np charts, c chart - Correlation – Regression – Multipl ods:	_			ontrol	chart
Lecture: 45 l	Periods Tutorial: 0 Periods Practical: 0	Periods Tota	al: 45 I	Period	s	

REFERENCES

1	Miller and Freund "Probability and Statistics for Engineers", Prentice Hall of India Ltd, New Delhi 2015
2	S. C. Gupta and V. K. Kapoor, "Fundamental Statistics", Sulthan Chand & Sons, New Delhi – Reprint-2018.
3	S. P. Gupta, "Statistical Methods", Sulthan Chand & Sons, New Delhi – 46th Edition, 2021.
4	Richard A.Johnson and Dean W.Wichern, "Applied Multivariate Statistical Analysis", Pearson Education, Asia, 6th Edition, 2012.
5	Jay L.Devore, "Probability and statistics for Engineering and the Sciences", 8th Edition, Thomson and Duxbury, Singapore, 2012
6	Dr. P. Kandasamy, Dr. K. Thilagavathy, Dr. K. Gunavathy, "Numerical Methods", S.Chand and sons, Ram Nagar, New Delhi, 2010.

COURS	SE OUTCOMES:	Bloom's
Upon co	ompletion of the course, the students will be able to:	Taxonomy Mapped
CO1	Solve algebraic, exponential, logarithmic, and linear systems of equations numerically.	K3
CO2	Examine the random variables and corresponding probability distribution of discrete and continuous one-dimension random variables.	К3
CO3	Analyze the hypothesis for both small and large samples based on normal distribution and evaluate control limits using control charts to examine whether the product is within control.	K3
CO4	Apply the basic principles and methods of statistical design of experiments. The significances of effects of various factors on a given response are determined under uncertainty using statistical principles	K3
CO5	Perform the multivariate correlation analysis and forming Regression plane.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	-	-	-
CO2	3	2	0 P	200	-	-
CO3	3	3	3	2)	-	-
CO4	3	2	3	-	-	-
CO5	3	2	3	7 -	-	-
23EEFCZ2	3	3	3		-	-
– Slight, 2 – Moderat	te, 3 – Substan	tial			1	1

ASSESSMENT	PATTERN – TI	HEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
Category*		REG S	200	10			
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual							
Assessment 1/							
Case Study 1/	20	30	30	10	10	-	100
Seminar 1 /							
Project1							
Individual							
Assessment 2/							
Case Study 2/	20	30	30	10	10	-	100
Seminar 2/							
Project 2							
ESE	25	35	20	10	5	5	100

23EEPC01	DESIGN OF WATER AND WASTEWATER TRA SYSTEMS	NSPORT	S	EMES'	TER I
PREREQUISI	TES CA	TEGORY	L	T P	С
	NIL	РС	3	00399910	3
Course	To impart knowledge on general hydraulics, water trans	smission, was	tewa	ter conv	veyance
Objectives	storm water drainage and respective software application	18.			
UNIT – I	GENERAL HYDRAULICS AND FLOW MEASURI	EMENT		9 P	eriods
Fluid propertie	s; fluid flow – continuity principle, energy principle and	d momentum	prin	ciple; f	rictiona
head loss in fre	e and pressure flow, minor head losses; Carrying Capacity	; Flow measur	reme	nt.	
UNIT – II	WATER TRANSMISSION AND DISTRIBUTION			9 P	eriods
Planning of Wa	ater transport System –Selection of pipe materials, Water	transmission	main	design	- gravit
and pumping	main; Selection of Pumps- characteristics- economic	s; Specials,	Join	ts, lay	ing an
maintenance, w	vater hammer analysis; water distribution pipe network de	esign, analysi	s and	l optimi	zation
appurtenances -	- corrosion prevention – minimization of water losses.				
UNIT – III	STORM WATER DRAINAGE			9 P	eriods
Estimation of s	storm water run-off Formulation of rainfall intensity dura	tion and freq	uenc	y relati	onships
Rational metho	ds; Necessity and design of combined and separate system				-
UNIT – IV	WASTEWATER COLLECTION AND CONVEYAN	ICE		9 P	eriods
Planning factor	s – Design of sanitary sewer; partial flow in sewers, econo	mics of sewer	desi	gn; Wa	stewate
pumps and pun	nping stations- sewer appurtenances; material, construction	on, inspection	and	mainter	nance of
sewers; Design	of sewer outfalls-mixing conditions; conveyance of corros	sive wastewat	ers.		
UNIT – V	SOFTWARE APPLICATIONS			9 P	eriods
Use of comput	ter software in water transmission, water distribution ar	d sewer desi	gn –	- EPAN	IET 2.2
LOOP version	4.0, SEWER, BRANCH and GIS based softwares.		-		
Contact Period	ls:				
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Per	riods		
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Per	riods		
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Per	riods		
Lecture: 45 Pe		Total: 45 Per	riods		
		Total: 45 Pe	riods		
REFERENC					.M.Set
REFERENC	es				.M.Set
REFERENC	ES s and Fluid Mechanics Including Hydraulics Mach	ines", P.N.M	<u>1odi</u>	and S	
REFERENCI 1 "Hydraulic Standard B 2 "Manual o	ES s and Fluid Mechanics Including Hydraulics Mach ook House, 2018.	ines", P.N.M	<u>1odi</u>	and S	
REFERENC 1 "Hydraulic Standard B 2 "Manual o India, New	ES s and Fluid Mechanics Including Hydraulics Mach ook House, 2018. n water supply and Treatment", CPHEEO, Ministry of Un	tines", P.N.M Ban Develop	Iodi ment,	and S Gover	nment
REFERENCI 1 "Hydraulic Standard B 2 "Manual o India, New 3 "Manual o	ES s and Fluid Mechanics Including Hydraulics Mach ook House, 2018. n water supply and Treatment", CPHEEO, Ministry of Un Delhi, 1999.	tines", P.N.M Ban Develop	Iodi ment,	and S Gover	nment o
REFERENC 1 "Hydraulic Standard B 2 "Manual o India, New 3 "Manual o Governmen	ES s and Fluid Mechanics Including Hydraulics Mach ook House, 2018. n water supply and Treatment", CPHEEO, Ministry of Un Delhi, 1999. on Sewerage and Sewage Treatment", CPHEEO, M	tines", P.N.M Ban Develop Iinistry of U	1odi ment, Irbar	and S Gover Deve	nment lopmer

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Apply fluid flow principles in pipe flow calculations	K3
CO2	Analyze and design water transmission and distribution systems	K4
CO3	Estimate the storm water and design the combined and separate systems	K4
CO4	Select pipe materials for wastewater conveyance and design the wastewater pumps	K4
CO5	Illustrate and design the water and wastewater transport systems by applying the	K3
	software	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	1	1	-	-	1			
CO2	3	2	1	-	-	1			
CO3	3	2	1	-	-	1			
CO4	3	2	1	-	-	1			
CO5	2	2	1	-	-	1			
23EEPC01	3	2	1	-	-	1			
1 – Slight, 2 – Moderate, 3 – Sub	stantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	25	35	20	10	5	5	100		
CAT2	25	35	20	10	5	5	100		
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	30	30	10	10	-	100		
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	30	10	10	-	100		
ESE	25	35	20	10	5	5	100		

L 3	SEME	ESTE	E R I
-	LT	P	С
	3 1	0	4
e wate	ter for	the d	esigr
nent	t metho	ods t	to be
	9+3	Peri	ods
	er – wa eatmen	-	•
	Q_13	Peri	ode
lsorpti tion. I n anc	Oxygen ption is . Basic .nd sta eductior	other princ biliza	rms - ciples
5	9+3 cculator	Peri	
Layo	youts – ces in	Hydi	raulio
ΓS	9+3	Peri	ods
tanks, rofile,	k, dete ks, Equ le, oper ts – case	ualiza ratior	ation 1 anc
		Peri	
<i>rate</i>	mineral	lizers	and
rs, m	0 Perio	ods	
,	s, ent	rate and s, mineral ent- oper	rate and high s, mineralizers ent- operation

1	"Physicochemical processes for water quality control", Weber, W.J., John Wiley and sons, New York,
	1983
2	"Wastewater Engineering, Treatment and Reuse", Metcalf and Eddy, Tata McGraw Hill, New Delhi,
	2003.
3	"Wastewater Treatment: Concepts and Design Approach", Karia, G.L., and Christian, R.A., Prentice-Hall
	of India Pvt., Ltd., New Delhi, 2013.
4	"Manual on Sewerage and Sewage Treatment", CPHEEO, Ministry of Urban Development, GOI, New
	Delhi, 2013.
5	"Environmental engineering" Peavy, H. S., Rowe, D. R., Tchobanoglous, McGraw hills, New York, 2013.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Evaluate the water and wastewater quality and environmental significance of various	K3
	parameters.	
CO2	Execute the principles and operation of various treatment units.	K3
CO3	Appraise the suitability of the design of water and wastewater treatment plants and	K3
	unit processes.	
CO4	Evaluate the operation and performance of water and wastewater treatment units.	K3
CO5	Implement the treatment mechanisms for different industrial effluents.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	1
CO2	3	3	2	2	2	1
CO3	3	3	2	2	1	1
CO4	3	3	2	2	2	1
CO5	3	3	2	2	3	1
23EEPC02	3	3	2	2	3	1

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applyin g (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	30	30	10	10	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	30	10	10	-	100
ESE	25	35	20	10	5	5	100

	23EEPC03 SOLID WASTE MANAGEMENT					
PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	NIL	РС	3	0	0	3
Course	To understand, characterize and process solid waste v	with a particular for	cus o	on m	etho	ds for
Objectives	recovery and knowledge on sanitary landfill.					
UNIT – I	SOLID WASTE GENERATION AND MANAGER	MENT SYSTEM			9 Pe	riods
generation rate solid wastes p	olid wastes- Sources and types of municipal solid wast s- characteristics- methods of sampling and characteriz ublic health and environmental effects- Solid Waste ments in a Solid Waste Management- Municipal Solid V	ation- Effects of in Management- Goa	nproj als a	per of and of a	lispo	sal of
UNIT – II	SEGREGATION, STORAGE, COLLEG		-		0 Pa	riods
UIII – II	TRANSPORTATION)10	Tious
UNIT – III	RECYCLING AND RECOVERY				$0 \mathbf{P}_{0}$	riods
recovery in so material recov factors affectin	chniques - Advantages of recycling, important recyclid waste management chain – principle of unit oper ery facilities – Composting - Aerobic and anaerobic of composting process, windrow, aerated static pile, in	rations and equipr composting, benef	nent its c	s en of co	f ma nploy ompo	aterial ved at sting,
recovery in so material recov factors affectin technologies, v	lid waste management chain – principle of unit oper ery facilities – Composting - Aerobic and anaerobic g composting process, windrow, aerated static pile, in ermicomposting.	rations and equipr composting, benef	nent its c	s en of co ed co	f ma nploy ompo ompo	aterial ved at sting, osting
recovery in so material recov factors affectin technologies, v UNIT – IV	lid waste management chain – principle of unit oper ery facilities – Composting - Aerobic and anaerobic og composting process, windrow, aerated static pile, in ermicomposting. WASTE TO ENERGY	rations and equipr composting, benef -vessel and decent	nent its c raliz	s en of co ed co	f ma nploy ompo ompo 9 Pe	aterial ved at sting, osting
recovery in so material recover factors affecting technologies, v UNIT – IV Energy recover details, preven	lid waste management chain – principle of unit oper ery facilities – Composting - Aerobic and anaerobic g composting process, windrow, aerated static pile, in ermicomposting.	rations and equipr composting, benef -vessel and decent cineration – proces	nenta its c raliza	s em of co ed co Ts, i	f ma nploy ompo ompo 9 Pe ncin	aterial yed at sting, osting eriods erator
recovery in so material recover factors affecting technologies, v UNIT – IV Energy recover details, preven	lid waste management chain – principle of unit oper ery facilities – Composting - Aerobic and anaerobic og composting process, windrow, aerated static pile, in ermicomposting. WASTE TO ENERGY ry potential, basic techniques of energy recovery; indi- tion of air pollution; pyrolysis - process description	rations and equipr composting, benef -vessel and decent cineration – proces	nenta its c raliza	s en of co ed co Ts, i invo	f ma nploy ompo ompo 9 Pe ncin olved	ateria ved at sting osting eriods erator

REFERENCES

1	"CPHEEO (2016) Municipal Solid Waste Management Manual,", Central Public Health and
	Environmental Engineering Organisation, Ministry of Urban Development, New Delhi.
2	"Health Monitoring of Structural Materials and Components Methods with Applications",
	Tchobanoglous G., Theisen H., Vigil S.A. 2nd Ed., McGraw-Hill, USA (2014).
3	"Environmental Engineering", Peavy, H.S., Rowe, D.R., and Tchobanoglous, G. 1st Ed., McGraw Hill
	Education, USA (2017).
4	"Hand Book of Solid Waste Management", Tchobanoglous G., Frank Kreith, 2nd Ed., McGraw Hill,
	USA (2002).
5	"Geotechnical Aspects of Landfill Design and Construction", Qian X, Koerner RM and Gray DH.,1st
	Ed., Prentice Hall, USA(2002
6	"Solid waste management: Collection, Processing and Disposal" Bhide, A D and Sundaresan,
	B B NEERI, Nagpur. (2001)

COURS	SE OUTCOMES:	Bloom's Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Summarize the different elements of solid waste management	K2
CO2	Differentiate the concepts of segregation, storage, collection and transportation of	К3
	solid waste	
CO3	Investigate the important concepts of processing techniques and energy recovery	K3
CO4	Implement the concept of energy recovery from waste to wealth	К3
CO5	Apply the knowledge of sanitary landfilling	К3

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	-	2	2	1
CO2	3	3	-	2	3	1
CO3	3	3	-	3	3	1
CO4	3	3	-	3	3	1
CO5	3	3	-	3	3	1
23EEPC03	3	3	mm	3	3	1
1 – Slight, 2 – Moderate	, 3 – Substant	tial	A STATE OF	10		

Vo Shanneder

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	25	30	35	10	-	-	100			
CAT2	25	30	35	10	-	-	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	30	40	10	-	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100			
ESE	25	30	35	10	-	-	100			

23EEPC04	EPC04 ENVIRONMENTAL MONITORING AND ANALYSIS LABORATORY				SEMESTE			
PREREQUIS	TES	CATEGORY	L	Т	P	С		
	NIL	РС	0	0	4	2		
Course	To determining the quality characteristics of water, wa	astewater, air and	nois	e.				
Objectives								
LAB EXPERI	MENTS / PROGRAMS							
I. WATER A	ND WASTEWATER:							
1. Determ	ination of pH, Solids (TDS, TSS, VS), Acidity, A	Alkalinity, Hardn	ess,	Chl	oride	es and		
Fluoric	es							
2. Determ	ination of Dissolved Oxygen, Biochemical Oxyge	n Demand and	Che	mic	al C	xygei		
Deman	d							
3. Estima	ion of Nitrogen, Phosphates and Sulphates							
4. Determ	ination of Available Chlorine in bleaching powder and	Break point Chlo	rinat	ion	test			
5. Plate c	ount test and MPN test							
6. Estima	ion of Organic Compounds Using HPLC and TOC							
7. Determ	ination of Heavy metals using AAS							
II. AIR :	a a a a a a a a a a a a a a a a a a a							
8. Estima	ion of Particulate matter (PM10, PM2.5), SOx, NOx and	VOC in ambient	air					
9 Estima	ion of VOC and CO in Indoor air							
7. D 5tilling								
III. NOISE:								
III. NOISE:	ion of ambient Noise level							
III. NOISE: 10. Estima	tion of ambient Noise level							
III. NOISE: 10. Estima IV. ADVANC		ced instruments						
III. NOISE: 10. Estima IV. ADVANC	ED INSTRUMENT TECHNIQUES: is of Environmental Engineering problems using advan ls:							

COUR	SE OUTCOMES:	Bloom's
	CONTRACTOR OF THE	Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Analyze the various physical and chemical characteristics of water and wastewater.	K4
CO2	Analyze the various biological characteristics of water and wastewater.	K4
CO3	Identify the heavy metal present in the wastewater.	K4
CO4	Measure the air and noise pollution in outdoor and indoor environment	K4
CO5	Analyze Environmental problems using advanced instrument.	K4

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	1
CO2	3	3	2	2	2	1
CO3	3	3	2	2	2	1
CO4	3	3	2	2	2	1
CO5	3	3	2	2	2	1
23EEPC04	3	3	2	2	2	1

ASSESSMEN	T PATTERN – T	HEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
Exercise 1	10	15	25	25	20	5	100
Exercise 2	10	15	25	20	25	5	100
Exercise 3	10	15	25	25	20	5	100
Exercise 4	10	15	25	25	20	5	100
Exercise 5	15	15	25	25	15	5	100
Exercise 6	10	15	25	25	20	5	100
Exercise 7	10	10	30	25	20	5	100
Exercise 8	10	15	25	25	20	5	100
Exercise 9	10	15	25	25	20	5	100
Exercise 10	10	15	25	25	20	5	100
Exercise 11	10	25	25	25	10	5	100
Model Lab	10	15	25	20	25	5	100
Other mode	-	-		-	-	-	-
of internal			A P				
assessments		10011C	Banssi probat	19/2			
ESE	10	10	30	25	20	5	100

23EEPC05	SEMESTER II					
PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	3	1	0	4		
Course	Imparting the principles and applications of biological	ogical processes in waste	ewate	er tre	eatm	ent.
Objectives						
UNIT – I	INTRODUCTION, PROCESS ANALYSIS AN	ND SELECTION		9+	3 Pe	riod
Biological trea	atment processes - objectives - Choice of treatm	nent method – Environ	ment	al ir	npac	t and
other consider	rations in planning the treatment - Cost of Waster	ewater treatment – Rea	actors	s use	ed fo	or th
treatment – ma	ass balance analysis – Reactions, Reaction rates –	Enzyme reaction. Mod	eling	of	ideal	flov
and non-ideal	flow reactors - Reactors in parallel - Reactors	in series – Tracer test	ts –	Esti	mati	on o
dispersion coe	fficient.					
UNIT – II	SUSPENDED GROWTH TREATMENT PRO	DCESS- ASP		9+	3 Pe	riod
Role of micro	organisms – Microbial growth kinetics – Biologic	cal oxidation process -	load	ing	-MC	RT ·
F/M ratio – D	etermination of biokinetic coefficients – Modeling	of suspended growth t	reatn	nent	proc	ess ·
	Design and operating parameters – Modeling of pl				-	
—	or transfer of oxygen- Secondary clarifier- design fe		C	•		
UNIT – III	SUSPENDED GROWTH TREATMENT PRO			9+	3 Pe	riod
Aerated lagoo	ns. Oxidation pond – Stabilization ponds – Class	sification – Application	- P1	roce	ss de	esign
-	nd analysis of Aerobic ponds – Facultative ponds					-
-	nd performance – MBBR systems.	y .			I	
UNIT – IV	ATTACHED GROWTH TREATMENT PRO	CESS		9+	3 Pe	riod
	wth Treatment Process – Substrate Removal in		eatmo			
	er – Process – Classification - design based on Po					
-	der equation – Rotating Biological contactors					
	flow packed Bed – upflow expanded bed – Fluidize					
UNIT – V	SUSPENDED GROWTH TREATMENT PRO				3 Pe	
	PROCESS	糵				
	on- Sources of sludge- Characteristics- Quantitie					
	gas production- design considerations. Anaerobic	-				
sludge blanke	t process- design considerations. Sludge manager	ment facilities, sludge	thick	enir	ng, s	ludg
e	echanical and gravity) layout.					
dewatering (m						
e	ods:					

REFERENCES:

1	"Waste Water Engineering – Treatment and reuse", Metcalf and Eddy, Fourth Edition, McGraw Hill
	Education, 2017.
2	"Waste Water Treatment and disposal", Arceivala S. J., Marceldekker publishers, 1981.
3	"Biological process design for Wastewater Treatment", Larry D. Benefield and Clifford W. Randall,
	Ibis publishers, 1994.
4	"Environmental Engineering", Howard S. Peavy, Donald R. Rowe and George Techobanoglous,
	McGraw Hill Education, 2017.
5	"Wastewater Treatment for Pollution Control and Reuse", Arceivala S. J., Third Edition, McGraw
	Hill Education, 2017

COU	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Summarize the background of biological treatment processes.	K2
CO2	Model the suspended growth process.	K3
CO3	Analyze and Design the suspended growth treatment plant and ponds.	K3
CO4	Analyze and Design attached growth treatment process facilities.	K3
CO5	Examine the various digestion processes.	K3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	2	2	2	-				
CO2	3	3	2	3	2	-				
CO3	3	2	3	3	2	-				
CO4	3	2	2	2	3	-				
CO5	3	3	2	2	2	-				
23EEPC05	3	3	3	3	3	-				
1 - Slight, $2 - $ Moderate, $3 - $ Su	bstantial		A BALLER A							

Ame

1.499.4		ALC: NOT	and the second		- A
1 1 1 2	Lui Contra		100		Second 1
	1. 2. 2. 2.		- N O		
1.000	- 1 - Maria	14/0401	COMPANY.	10.00	
		and the second second			

1

ASSESSMENT	Γ PATTERN – Τ	HEORY	4	7			
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		6 Ø					
CAT1	10	20	45	20	5	-	100
CAT2	10	20	45	20	5	-	100
Individual	20	30	40	10	-	-	100
Assessment 1/		CINCLES	AND THE	3			
Case Study 1/		KU 101	150-37				
Seminar 1 /		2					
Project1							
Individual	20	30	40	10	-	-	100
Assessment 2/							
Case Study 2/							
Seminar 2/							
Project 2							
ESE	10	20	45	20	5	-	100

23EEPC06	EMENT	SI	EME	STE	R II	
PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	3	0	0	3		
Course	Analysing the disposal effects of industrial waste w	rater with the hel	lp th	e pr	incip	les of
Objectives	waste minimization techniques, and also imparting kr	nowledge about p	ollut	ion f	rom	majo
	industries and treatment technologies.					
UNIT – I	SOURCES AND ENVIRONMENTAL ASPECTS			9 Pe	eriods	
Sources and ty	pes of industrial wastewater- Environmental Impacts-I	ndustrial wastewa	ater	mon	itorin	ig and
sampling -char	acterization and variables - Toxicity and Bioassay tests	s. Prevention vs C	Conti	olo	f Ind	ustria
Pollution- Sour	rce reduction techniques- effect of Industrial Effluents of	n Streams, Sewer	and	Hun	an h	ealth.
UNIT – II	WASTE TREATMENT PRESPECTIVE				9 Pe	eriods
						mata
Waste minimiz	zation - Equalization - Neutralization -Oil separation -F	Iotation -Precipit	atio	1 -H	eavy	meta
	zation - Equalization - Neutralization -Oil separation -F orption -Aerobic and anaerobic biological treatment – S	•			•	
Removal -Adso		equencing batch	reac	ors	High	n-Rate
Removal -Adso reactors - Che	orption -Aerobic and anaerobic biological treatment - S	equencing batch	reac	ors	High	n-Rate
Removal -Adso reactors - Che	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc	equencing batch	reac	ors	High mem	n-Rate
Removal -Adso reactors - Che technologies - I UNIT – III	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal.	equencing batch atalysis – ion e	reac xcha	ors - inge-	High mem	n-Rate Ibrane eriods
Removal -Adso reactors - Cha technologies - I UNIT – III Common Efflu	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal. EFFLUENT DISPOSAL TECHNIQUES	equencing batch atalysis – ion e dustry concept -	reactor excha	uce,	High mem 9 Pe Reus	n-Rate abrane eriods se and
Removal -Adso reactors - Cha technologies - I UNIT – III Common Efflu	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal. EFFLUENT DISPOSAL TECHNIQUES tent Treatment Plants - Advantages - zero polluting in	equencing batch atalysis – ion e dustry concept -	reactor excha	uce,	High mem 9 Pe Reus	n-Rate ibrane eriods se and
Removal -Adso reactors - Che technologies - I UNIT – III Common Efflu Recycle of wa	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal. EFFLUENT DISPOSAL TECHNIQUES tent Treatment Plants - Advantages - zero polluting in	equencing batch atalysis – ion e dustry concept -	reactor excha	uce,	High mem 9 Pe Reus – Re	n-Rate abrane eriods se and sidual
Removal -Adso reactors - Cho technologies - I UNIT – III Common Efflu Recycle of wa Management. UNIT – IV	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal. EFFLUENT DISPOSAL TECHNIQUES nent Treatment Plants - Advantages - zero polluting in astewater-Disposal of effluent on land- characteristics	equencing batch satalysis – ion e dustry concept - and disposal of	reacter exchater Red slue	uce,	High mem 9 Pe Reus – Re 9 Pe	n-Rate abrane eriods se and sidua
Removal -Adso reactors - Cha technologies - I UNIT – III Common Efflu Recycle of wa Management. UNIT – IV Industrial man	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal. EFFLUENT DISPOSAL TECHNIQUES tent Treatment Plants - Advantages - zero polluting in astewater-Disposal of effluent on land- characteristics INDUSTRIAL WASTEWATER TREATMENT- I	equencing batch eatalysis – ion e dustry concept - and disposal of	reaction in the second	uce, lge	High mem 9 Pa Reus – Re 9 Pa point	n-Rate abrane eriods se and sidua eriods s and
Removal -Adso reactors - Cha technologies - I UNIT – III Common Efflu Recycle of wa Management. UNIT – IV Industrial man effluent treatmo	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal. EFFLUENT DISPOSAL TECHNIQUES nent Treatment Plants - Advantages - zero polluting in astewater-Disposal of effluent on land- characteristics INDUSTRIAL WASTEWATER TREATMENT- I nufacturing process description, wastewater character	equencing batch eatalysis – ion e dustry concept - and disposal of	reaction in the second	uce, lge	High mem 9 Pa Reus – Re 9 Pa point	n-Rate abrane eriods se and sidual eriods s and
Removal -Adso reactors - Cha technologies - I UNIT – III Common Efflu Recycle of wa Management. UNIT – IV Industrial man effluent treatmo	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal. EFFLUENT DISPOSAL TECHNIQUES tent Treatment Plants - Advantages - zero polluting in astewater-Disposal of effluent on land- characteristics INDUSTRIAL WASTEWATER TREATMENT- I nufacturing process description, wastewater character ent flow sheet for Textiles – Tanneries - Sugar and disti	equencing batch satalysis – ion e dustry concept - and disposal of istics, source re- illeries – Petroleu	reaction in the second	uce, lge	-High mem 9 Pa Reus – Re 9 Pa point ies –	n-Rate abrane eriods se and sidua eriods s and - Food
Removal -Adso reactors - Cha technologies - I UNIT – III Common Efflu Recycle of wa Management. UNIT – IV Industrial man effluent treatma processing - Fe UNIT – V	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal. EFFLUENT DISPOSAL TECHNIQUES tent Treatment Plants - Advantages - zero polluting in astewater-Disposal of effluent on land- characteristics INDUSTRIAL WASTEWATER TREATMENT- I nufacturing process description, wastewater character ent flow sheet for Textiles – Tanneries - Sugar and disti- ertilizers-Dairy - Pharmaceutical industry.	equencing batch eatalysis – ion e dustry concept - and disposal of istics, source re- illeries – Petroleu	reac xcha Red slud ducti m re	ors - inge- uce, lge - on j	-High mem 9 Pa Reus - Re 9 Pa point ies - 9 Pa	a-Rate abrane eriods se and sidua eriods s and - Food
Removal -Adso reactors - Che technologies - I UNIT – III Common Efflu Recycle of wa Management. UNIT – IV Industrial man effluent treatmo processing - Fe UNIT – V Industrial man	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal. EFFLUENT DISPOSAL TECHNIQUES tent Treatment Plants - Advantages - zero polluting in astewater-Disposal of effluent on land- characteristics INDUSTRIAL WASTEWATER TREATMENT- I nufacturing process description, wastewater character ent flow sheet for Textiles – Tanneries - Sugar and distict ertilizers-Dairy - Pharmaceutical industry. INDUSTRIAL WASTEWATER TREATMENT- I	equencing batch satalysis – ion e dustry concept - and disposal of istics, source re- illeries – Petroleu	reac xcha Red slud ducti m re	ors inge- uce, lge on j finer	 High mem 9 Pe Reus – Re 9 Pe point ies – 9 Pe point 	eriods s and s and s and s and s and s and s and s and s and s and
Removal -Adso reactors - Cha technologies - I UNIT – III Common Efflu Recycle of wa Management. UNIT – IV Industrial man effluent treatma processing - Fe UNIT – V Industrial man effluent treatma	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal. EFFLUENT DISPOSAL TECHNIQUES tent Treatment Plants - Advantages - zero polluting in astewater-Disposal of effluent on land- characteristics INDUSTRIAL WASTEWATER TREATMENT- I nufacturing process description, wastewater character ent flow sheet for Textiles – Tanneries - Sugar and disti- ertilizers-Dairy - Pharmaceutical industry. INDUSTRIAL WASTEWATER TREATMENT- II nufacturing process description, wastewater character	equencing batch satalysis – ion e dustry concept - and disposal of istics, source re- illeries – Petroleu	reac xcha Red slud ducti m re	ors inge- uce, lge on j finer	 High mem 9 Pe Reus – Re 9 Pe point ies – 9 Pe point 	eriods s and s and sidual eriods s and - Food eriods s and
Removal -Adso reactors - Cha technologies - I UNIT – III Common Efflu Recycle of wa Management. UNIT – IV Industrial man effluent treatma processing - Fe UNIT – V Industrial man effluent treatma	orption -Aerobic and anaerobic biological treatment – S emical and wet air oxidation - Ozonation - Photoc Nutrient removal. EFFLUENT DISPOSAL TECHNIQUES tent Treatment Plants - Advantages - zero polluting in astewater-Disposal of effluent on land- characteristics INDUSTRIAL WASTEWATER TREATMENT- I nufacturing process description, wastewater character ent flow sheet for Textiles – Tanneries - Sugar and disti- ertilizers-Dairy - Pharmaceutical industry. INDUSTRIAL WASTEWATER TREATMENT- II nufacturing process description, wastewater character ent flow sheet for Textiles – Tanneries - Sugar and disti- ertilizers-Dairy - Pharmaceutical industry. INDUSTRIAL WASTEWATER TREATMENT- II nufacturing process description, wastewater character ent flow sheet for, Pulp and Paper mill - Iron and Stee ant-Automobile Industry – Industrial Estates.	equencing batch satalysis – ion e dustry concept - and disposal of istics, source re- illeries – Petroleu	reac xcha Red slud ducti m re	ors inge- uce, lge on j finer	 High mem 9 Pe Reus – Re 9 Pe point ies – 9 Pe point 	eriods s and s and sidual eriods s and Food eriods s and

REFERENCES:

1	"Microbiology and Chemistry for Environmental Scientists and Engineers", J N Lester, Second edition,2018
2	"Chemistry for Environmental Engineering and Science", Clair N. Sawyer, Perry L. Mccarty &
	Gene F Parkin, McGraw Hill Education, Fifth edition, 2017
3	"Environmental Chemistry", Anil Kumar De, Arnab Kumar De, New Age International publishers,
	Tenth edition, 2021.
4	"Environmental Science and Engineering", Yugananth P & Kumaravelan R, Scitech Publications,
	Second edition, 2015.
5	"Manual of Environmental Microbiology", Marylynn V Yates, Fourth edition, 2016.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	mapped
CO1	Outline the waste water sources and environmental implications of various industrial	K2
	effluents.	
CO2	Summarize the various pollution prevention options.	K2
CO3	Assess the remedial technologies for disposal of industrial effluents.	K3
CO4	Employ the design solutions for the treatment and disposal of treated effluents.	K3
CO5	Implement and comprehend the pollution control methods for specific industries.	K3

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	3	2	2	2			
CO2	3	2	3	2	2	3			
CO3	3	3	2	2	2	1			
CO4	3	3	2	3	2	2			
CO5	3	2	3	2	2	3			
23EEPC06	3	3	3	3	2	3			
1 - Slight, $2 - $ Moderate, $3 - $ Su	ubstantial	No. of Contraction	202						

1 - Shgh

Test /	Remembering	Understandin	Applying	Analyzing	Evaluating	Creating	Total
bloom's	(k1) %	g (k2) %	(k3) %	(k4) %	(k5) %	(k6) %	%
category*							
CAT1	25	35	20	10	10	-	100
CAT2	25	35	20	10	10	-	100
Individual		OPTION A	Colored The	90			
Assessment 1/		C.C.C.	00 00000	7			
Case Study 1/	20	40	30	10	-	-	100
Seminar 1 /							
Project1							
Individual							
Assessment 2/							
Case Study 2/	20	40	30	10	-	-	100
Seminar 2/							
Project 2							
ESE	25	35	20	10	10	-	100

23EEPC07	23EEPC07 AIR QUALITY MANAGEMENT SE			SE	SEMESTER II			
PREREQUIS	REQUISITES CATEGORY L T P						С	
		NIL	PC	3	1	0	4	
Course	Iden	tifying the different air pollutants sources, characteri	stics and adop	ting sui	table	sam	pling,	
Objectives	mod	eling techniques along with control measures includir	ng indoor air qu	uality m	anag	emer	it and	
	their	legislations.						
UNIT – I	INT	RODUCTION TO AIR POLLUTANTS			9+3	8 Per	iods	
Atmosphere a	is a p	place of disposal of pollutants - Definition- Air Poll	lution – Air P	ollutant	s – S	ourc	e and	
classification	of p	ollutants - Units of measurements of pollutants -	Ambient air q	uality s	standa	ards	- Air	
pollution indic	ces -	Air pollution and its effects on human beings, plants	and animals - I	Econom	ic eff	fects	of air	
pollution								
UNIT – II	SAN	IPLING, METEOROLOGY AND AIR QUALITY	MODELLIN	G	9+3	8 Per	iods	
Ambient air	samp	ling and measurement of particulate and gaseous	pollutants Er	vironm	ental	fact	ors -	
Meteorology	- tem	perature lapse rate and stability – Adiabatic lapse rate	ate – Wind Ro	se - In	versio	on –	Wind	
velocity and t	urbul	ence - Stack sampling - Plume behaviour - Dispersion	n of air polluta	nts - Ma	aximu	ım m	iixing	
depth - Disper	sion	model - Fixed Box models - Estimation of plume rise	- Stack design.					
UNIT – III	CON	NTROL OF PARTICULATE AND GASEOUS CO	NTAMINAN	ГS	9 + 3	B Per	iods	
Factors affect	ing S	election of Control Equipment - Working principles	of various type	s of par	ticula	ate co	ontrol	
• •		ty Separators, cyclones, Fabric filters, Particulate Sc				•		
• •	-	s of various types of gaseous control equipment - a	•	sorption	, con	dens	ation,	
		crubbers, Bio filters Case studies for stationary and mo	bile sources.					
		OOR AIR QUALITY MANAGEMENT			9 + 3			
• •		control of indoor air pollutants, sick building syndre	• •	adon P	olluti	on a	nd its	
		e process - UV photolysis – Health effects of indoor a	*					
UNIT - VAIR POLLUTION SURVEY, LEGISLATIONS AND CASE STUDIES9 + 3 Periods						iods		
1		ey - Air pollution legislation and regulations - Envir			0			
and green belts - Air pollution in Indian cities. Case studies - some specific industries - cement industry -								
refineries - fertilizer - paper industry - Sources of pollutants and its controls - Cost benefit analysis.								
Contact Periods:								
Lecture: 45 P	Lecture: 45 PeriodsTutorial: 15 PeriodsPractical: 0 PeriodsTotal: 60 Periods							

REFERENCES

1	"Environmental Engineering", Howard S. Peavy, Doald R. Rowe and George Tchobanoglous,						
	McGraw-Hill Co.,2013						
2	² <i>"Air Pollution and Control Technologies", Dr. Y. Anjaneyulu, Allied publishers Ltd., 2nd edition, 2018.</i>						
3	<i>"Air Quality"</i> Thad Godish, Taylor and Francis, 5 th edition, 2017.						
4	"Air pollution prevention and control technologies", Anjaneyulu yerramilli, 2020						
5	"Principles of Air Quality Management", Roger D.Griffin, 2020.						

	E OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped			
CO1	CO1 Compare the status of global and local air pollution scenario and their effects				
CO2	Interpret the modeling and analysis of air pollutants.	К3			
CO3	Implement the concepts of control strategies adopted for removal of particulate matter and gaseous pollutants	К3			
CO4	Summarize the indoor air pollution sources and management.	K2			
CO5	Apply the concepts of air pollution survey, legislation and case studies.	K3			

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO3	PO4	PO5	PO6			
CO1	3	2	1	2	2	2		
CO2	3	3	1	3	3	1		
CO3	3	3	1	2	3	2		
CO4	3	3	1	3	3	2		
CO5	3	2	3	2	2	2		
23EEPC07	3	3	3	3	3	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1	25	30	35	10	-	-	100	
CAT2	25	30	35	10	-	-	100	
Individual Assessment 1/			THE STORE	3			100	
Case Study 1/ Seminar 1 / Project1	20	30	40	10	-	-	100	
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100	
ESE	25	- 30	35	10	-	-	100	
The second second								

23EEPC08	3EEPC08 ENVIRONMENTAL PROCESS LABORATORY		SEMEST			ER II	
PREREQUISITES CATEGORY					P	С	
	NIL	PC	0	0	4	2	
Course	To develop the skill for conducting treatability studie	es of water and w	astev	vate	r trea	tmer	
Objectives	by various operation and processes using laborator	y scale models a	nd to	o as	certa	in th	
	suitability of water sample for various purposes.						
LAB EXPERI	MENTS / PROGRAMS						
1. Study of	on Jar test for determining optimum coagulant dosage.						
2. Study of	on Electro Coagulation Process.						
3. Batch S	Studies on settling						
a)	Type – I Settling						
b)	Type – II Settling						
4. Determ	ination of Characteristics of Filter media.						
5. Adsorp	tion studies						
a)	Batch						
b)	Continuous						
6. Perform	nance analysis of Aeration system.						
	nance analysis of Activated Sludge Process						
	ced Oxidation Studies using Photo catalytic reactor						
	g and testing of membrane using membrane casting unit						
	sis and characterization of Nano rods using Electro spir	ning techniques /	CVI) Ch	amb	er	
11. Determ	ination of organic compounds from waste compost						
Contact Perio	ds:						
Lecture: 0 Per	iods Tutorial: 0 Periods Practical: 60 Per	iods Total:	60 P	orio	da		

COUR	COURSE OUTCOMES:					
		Taxonomy				
Upon o	completion of the course, the students will be able to:	Mapped				
CO1	Perform the coagulation process for wastewater treatment.	K3				
CO2	Determine the batch settling data for wastewater	K3				
CO3	Investigate the efficiency of colour removal by adsorption process	K3				
CO4	Synthesis and characterize the nano materials for the wastewater treatment	K3				
CO5	Identify the organic composition from the waste compost	K3				

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	2	2	3	3	3	
CO2	3	2	2	3	2	3	
CO3	3	2	2	2	2	3	
CO4	3	3	3	2	2	3	
CO5	3	2	2	2	2	3	
23EEPC08	3	3	3	3	3	3	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
Category*	• •			1.7	10		100		
Exercise 1	20	25	25	15	10	5	100		
Exercise 2	10	15	25	20	25	5	100		
Exercise 3	10	15	25	25	20	5	100		
Exercise 4	10	15	25	25	20	5	100		
Exercise 5	15	15	25	25	15	5	100		
Exercise 6	10	15	25	25	20	5	100		
Exercise 7	10	10	30	25	20	5	100		
Exercise 8	10	15	25	25	20	5	100		
Exercise 9	10	15	25	25	20	5	100		
Exercise 10	10	15	25	25	20	5	100		
Exercise 11	10	25	25	25	10	5	100		
Model Lab	10	15	25	20	25	5	100		
Other mode	-	-	ammin D.	-	-	-	-		
of internal		y Bills	Chronital						
assessments		(VB	AND HILLING						
ESE	10	10	30	25	20	5	100		

23EEEE01	MINI PROJECT		SE	ME	STE	R II
PREREQUISI	TES	CATEGORY	L	Т	Р	С

	NIL			0	4	2
Course To Identify environmental engineering problems, review of literature, methodolo				logy,		
Objectives	Objectives modelling and design of Prototypes by applying engineering principles.					
SYLLABUS						

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution.

Continuous assessment of Mini Project at Mid Semester and End Semester will be monitored by the departmental committee.

Contact Periods:			
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 60 Periods	Total: 60 Periods

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Identify Environmental Engineering problems based on the current scenario	K2
CO2	Familiarize with the various treatment process for water, wastewater, air pollution and solid waste.	K2
CO3	Apply different treatments and control systems for waste management.	K3
CO4	Encounter the analysis and design of entire process unit.	K4
CO5	Develop a suitable sustainable solution for environmental engineering problems.	K3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	2	3	3	2			
CO2	3	3	2	3	3	2			
CO3	3	3	2	3	3	2			
CO4	3	3	2	3	3	2			
CO5	3	3	2	3	3	2			
23EEEE01	3	3	2	3	3	2			
1 - Slight, $2 - $ Moderate, $3 - $ Su	Ibstantial								

ASSESSMENT	ASSESSMENT PATTERN – THEORY								
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	-	10	25	15	10	40	100		
CAT2	-	10	25	15	10	40	100		
Individual									
Assignment 1/									
Case Study 1/	-	-	-	-	-	-	-		
Seminar 1/									
Mini project									
ESE	-	10	25	15	10	40	100		

23EEEE03	PROJECT PHASE I	PROJECT PHASE I				SEMESTER III			
PREREQUISI	TES : NIL	CATEGORY	L T P		С				
		EEC	0	0	12	6			

Course	To identify a specific problem for the current need of the problem, collecting information	ĺ
Objectives	related to the same through detailed review of literature and to develop the methodology to	
	solve the identified problem.	ĺ

SYLLABUS

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

Contact Periods:

Lecture: 0 PeriodsTutorial: 0 PeriodsPractical: 180 PeriodsTotal: 180 Periods

COU	RSE OUTCOMES:	Bloom's
	Given March	Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the research problems based on current scenario.	K2
CO2	Collect the literatures relevant to the research problem identified.	K3
CO3	Critically assess and propose solutions to environmental engineering problems.	K4
CO4	Perform analytical and experimental investigation.	K5
CO5	Demonstrate the research findings and present the solutions of the thesis work.	K6

COURSE ARTICULATION MATRIX

COURSE ANTICOLATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	2	3	3	3			
CO2	3	3	2	3	3	3			
CO3	3	3	2	3	3	3			
CO4	3	3	2	3	3	3			
CO5	3	3	2	3	3	3			
23EEEE03	3	3	2	3	3	3			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	-	10	25	15	10	40	100	
CAT2	-	10	25	15	10	40	100	
Individual								
Assignment 1/								
Case Study 1/	-	-	-	-	-	-	-	
Seminar 1/								
Mini project								
ESE	-	10	25	15	10	40	100	

23EEEE04	EE04 PROJECT PHASE II			SEMESTER IV				
PREREQUIS	PREREQUISITES C.				Р	C		
	NIL	EEC	0	0	24	12		
Course Objectives	Course To solve the identified problem based on the formulated methodology, and to develop							

SYLLABUS

The student should continue the Phase I work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated through based on the report and the viva-voce examination by a panel of examiners including one external examiner.

Contact Periods:

Lecture: 0 Periods

Tutorial: 0 Periods Practical: 360 Periods Total: 360 Periods

COUF	COURSE OUTCOMES:		
		Taxonomy	
Upon	Mapped		
CO1	Identify the research problems based on current scenario.	K2	
CO2	Collect the literatures relevant to the research problem identified.	K3	
CO3	Critically assess and propose solutions to environmental engineering problems.	K4	
CO4	Perform analytical and experimental investigation.	K5	
CO5	Demonstrate the research findings and present the solutions of the thesis work.	K6	

COURSE ARTICULATION MATRIX

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	2	3	3	3		
CO2	3	3	2	3	3	3		
CO3	3	3	2	3	3	3		
CO4	3	3	2	3	3	3		
CO5	3	3	2	3	3	3		
23EEEE04	3	3	2	3	3	3		
1 - Slight, 2 - Moderate, 3 - Structure	ubstantial							

ASSESSMENT PATTERN – THEORY Understanding Test / Remembering Applying Analyzing **Evaluating** Creating Total **Bloom's** (K1) % (K2) % (K3) % (K4) % (K5) % (K6) % % Category* CAT1 100 -10 25 15 10 40 CAT2 10 25 10 40 100 15 _ Individual Assignment 1/ Case Study 1/ Seminar 1/ Mini project ESE 10 25 15 10 40 100 _

23EEPE01	SUSTAINABLE ENVIRONMENTAL MANAGEMENT							
PREREQUIS	ITES CATEGO	ORY	L	Т	Р	С		
	NIL PE		3	0	0	3		
Course	To emphasize the need on sustainable development, cleaner	prod	uctio	on, v	waste	e audit,		
Objectives	environmental health and safety and to impart knowledge on green process management in various industries.							
UNIT – I	SUSTAINABLE DEVELOPMENT			9	Peri	ods		
Concepts of S	ustainable Development - Indicators of Sustainability - Sustainab	ility S	trate	gies	, Ba	rriers to		
Sustainability	- Resource Degradation - Industrialization and Sustainable Devel	opmer	nt -	Soci	o Ec	conomic		
Policies for Su	stainable Development							
UNIT – II	CLEANER PRODUCTION			9	Peri	ods		
Clean Develop	ment Mechanism, - Principles and Concepts of Cleaner Production	- Defi	nitic	on - 1	Impo	rtance -		
Historical Eve	olution - Benefits - Promotion - Barriers - Source Reduction '	Taslari			D			
Listonen Litt	Judon - Benefits - Fromotion - Barners - Source Reduction	rechni	ique	s	Proc	ess and		
	timization, Reuse, Recovery, Recycle, Raw Material Substitution –		-		Proc	ess and		
			-	dit	Proc Peri			
Equipment Op UNIT – III	timization, Reuse, Recovery, Recycle, Raw Material Substitution –	Waste	Au	dit 9	Peri	ods		
Equipment Op UNIT – III Green House	timization, Reuse, Recovery, Recycle, Raw Material Substitution – CARBON TRADING	Waste	Au	dit 9	Peri	ods		
Equipment Op UNIT – III Green House	timization, Reuse, Recovery, Recycle, Raw Material Substitution – CARBON TRADING Gases and Carbon Credit - Carbon Sequestration- Sustainable Dev	Waste	Au	dit 9 thro	Peri	ods Trade -		
Equipment Op UNIT – III Green House Carbon Tradin UNIT – IV	timization, Reuse, Recovery, Recycle, Raw Material Substitution – CARBON TRADING Gases and Carbon Credit - Carbon Sequestration- Sustainable Dev g – Carbon footprint	Waste velopn	Auc	dit 9 thro 9	Peri ugh Peri	ods Trade -		
Equipment Op UNIT – III Green House Carbon Tradin UNIT – IV Ecotoxicology	timization, Reuse, Recovery, Recycle, Raw Material Substitution – CARBON TRADING Gases and Carbon Credit - Carbon Sequestration- Sustainable Dev g – Carbon footprint ENVIRONMENTAL HEALTH AND SAFETY	Waste velopm	Auc Auc nent	dit 9 thro 9 ation	Peri ugh Peri al H	ods Trade - ods ygiene /		
Equipment Op UNIT – III Green House Carbon Tradin UNIT – IV Ecotoxicology	timization, Reuse, Recovery, Recycle, Raw Material Substitution – CARBON TRADING Gases and Carbon Credit - Carbon Sequestration- Sustainable Dev g – Carbon footprint ENVIRONMENTAL HEALTH AND SAFETY - Hazards by Industry and its Environmental Effects - Relationship	Waste velopm	Auc Auc nent	dit 9 thro 9 ation	Peri ugh Peri al H	ods Trade - ods ygiene /		
Equipment Op UNIT – III Green House Carbon Tradin UNIT – IV Ecotoxicology Safety and D	timization, Reuse, Recovery, Recycle, Raw Material Substitution – CARBON TRADING Gases and Carbon Credit - Carbon Sequestration- Sustainable Dev g – Carbon footprint ENVIRONMENTAL HEALTH AND SAFETY - Hazards by Industry and its Environmental Effects - Relationship	Waste velopm	Auc Auc nent	dit 9 thro 9 ation - Pe	Peri ugh Peri al H	ods Trade - ods ygiene / des and		
Equipment Op UNIT – III Green House Carbon Tradin UNIT – IV Ecotoxicology Safety and D Environment. UNIT – V	timization, Reuse, Recovery, Recycle, Raw Material Substitution – CARBON TRADING Gases and Carbon Credit - Carbon Sequestration- Sustainable Dev g – Carbon footprint ENVIRONMENTAL HEALTH AND SAFETY - Hazards by Industry and its Environmental Effects - Relationship isease - Overview, Planning, Hazard Identification and Risk As	Waste velopm	Aud nent cupa ent	dit 9 thro 9 ation - Pe 9	Peri ough Peri al H sticio Peri	ods Trade - ods ygiene / des and ods		
Equipment Op UNIT – III Green House Carbon Tradin UNIT – IV Ecotoxicology Safety and D Environment. UNIT – V Green Energy	timization, Reuse, Recovery, Recycle, Raw Material Substitution – CARBON TRADING Gases and Carbon Credit - Carbon Sequestration- Sustainable Dev g – Carbon footprint ENVIRONMENTAL HEALTH AND SAFETY - Hazards by Industry and its Environmental Effects - Relationship isease - Overview, Planning, Hazard Identification and Risk As GREEN PROCESS MANAGEMENT	Waste velopm	Aud nent cupa ent	dit 9 thro 9 ation - Pe 9	Peri ough Peri al H sticio Peri	ods Trade - ods ygiene / des and		
Equipment Op UNIT – III Green House Carbon Tradin UNIT – IV Ecotoxicology Safety and D Environment. UNIT – V Green Energy	timization, Reuse, Recovery, Recycle, Raw Material Substitution – CARBON TRADING Gases and Carbon Credit - Carbon Sequestration- Sustainable Dev g – Carbon footprint ENVIRONMENTAL HEALTH AND SAFETY - Hazards by Industry and its Environmental Effects - Relationship isease - Overview, Planning, Hazard Identification and Risk As GREEN PROCESS MANAGEMENT - and Green Process Management in Pharmaceutical, Construct n and Steel Industries.	Waste velopm	Aud nent cupa ent	dit 9 thro 9 ation - Pe 9	Peri ough Peri al H sticio Peri	ods Trade - ods ygiene / des and		

1	"Understanding Sustainable Development", John Blewitt, Third edition, Taylor & Francis Ltd., 2017.
2	"Cleaner Production: Toward a Better Future", Francisco Jose Gomes da Silva, Ronny Miguel
	Gouveia, Springer Publications, 2020.
3	"The Carbon Footprint Handbook" Subramanian Senthilkannan Muthu, Taylor & Francis Ltd., 2015.
4	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
5	"Green Business Process Management", Jan Recker, Stefan Seidel, Springer Publications, 2012.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Implement the sustainable development through various strategies.	K3
CO2	Execute various practices of cleaner production.	K3
CO3	Perform waste audit and evaluate carbon footprint to achieve sustainable	K3
	development.	
CO4	Examine the toxicological and hazardous effects of Industries on Environment.	K3
CO5	Apply green process management in various industrial sectors.	K3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	3	3	2		
CO2	3	2	2	3	3	2		
CO3	3	3	2	3	3	1		
CO4	3	2	2	3	3	1		
CO5	3	2	2	3	3	2		
23EEPE01	3	2	2	3	3	2		
1 – Slight, 2 – Moderate, 3 – Sub	stantial	•		•				

ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	25	35	20	10	5	5	100		
CAT2	25	35	20	10	5	5	100		
Individual									
Assessment 1/		a firm	mp	-					
Case Study 1/	20	40	30	10	-	-	100		
Seminar 1 /		(Starting	TERES V	9					
Project 1				5					
Individual		10 0		(
Assessment 2/				1					
Case Study 2/	20	40	30	10	-	-	100		
Seminar 2/		A 20	S.						
Project 2									
ESE	25	35	20	10	5	5	100		

	23EEPE02 ENVIRONMENTAL IMPLICATIONS OF ENGINEERED NANOM							
PREREQUIS	ITES	CATEGORY	L	Т	P	С		
	NIL	PE	3	0	0	3		
Course	Creating an awareness on nanotechnology and their ap	plications and i	impa	rt kno	owle	dge		
Objectives	on nano toxicology							
UNIT – I	INTRODUCTION			9 I	Perio	ds		
Introduction to	o nanotechnology – types of nanomaterials – natur	al and engineere	ed na	nopa	articl	es –		
Properties of	Nanomaterials - synthesis: Physical, chemical and	Biosynthesis of	f Na	nopa	rticl	es –		
characterizatio	n of nanoparticles – nanotechnology products – Enviror	mental benefits o	of nar	notec	hnol	ogy.		
UNIT – II	APPLICATIONS OF NANOTECHNOLOGY			9 I	Perio	ds		
Nanoparticles	in energy and environment application -Fuel cell technology	ologies nanote	chnol	logy	for v	vater		
remediation –	use of nanomaterials for environmental remediation -	nanomaterial base	ed ph	ioto (catal	yst –		
kinetics of deg	radation – Nanolithography – Biomedical application.		_					
UNIT – III	NANOTOXICOLOGY			9 I	Perio	ds		
Nanotoxicolog	y - toxicity of engineered nanoparticles - Health thr	eats and effects	of na	anop	articl	es –		
Entry routes in	to the human body - Threshold-permissible limits - Por	tals of entry and	targe	t tiss	ue-ro	outes		
of entry of poll	utants- Impact on Environmental health - Occupational	exposure.						
- I			S	9 I	Perio	ds		
UNIT – IV	NANOMATERIAL-POLLUTION AND CONTROL	OL STRATEGIE						
UNIT – IV	Contraction of the		1					
UNIT – IV Nanopollution	- Nanomaterials in environment - sources of pollut		ough	envi	ronn	nent-		
UNIT – IV Nanopollution Pollution contr	– Nanomaterials in environment - sources of pollut ol strategies.		ough					
UNIT – IV Nanopollution Pollution contr UNIT – V	 Nanomaterials in environment - sources of pollut ol strategies. SUSTAINABLE NANOTECHNOLOGY 	ion-transport thro	-	9 I	Perio	ds		
UNIT – IV Nanopollution Pollution contr UNIT – V Applications of	 Nanomaterials in environment - sources of pollut ol strategies. SUSTAINABLE NANOTECHNOLOGY f Industrial ecology to nanotechnology- Fate of nanon 	ion-transport thro naterials – Enviro	onme	9 I ntal	Perio	ds cycle		
UNIT – IV Nanopollution Pollution contr UNIT – V Applications of analysis of r	 Nanomaterials in environment - sources of pollut ol strategies. SUSTAINABLE NANOTECHNOLOGY f Industrial ecology to nanotechnology- Fate of nanon anomaterials - Environmental reconnaissance and 	ion-transport thro naterials – Enviro	onme	9 I ntal	Perio	ds cycle		
UNIT – IV Nanopollution Pollution contr UNIT – V Applications of analysis of r responsibility f	 Nanomaterials in environment - sources of pollut of strategies. SUSTAINABLE NANOTECHNOLOGY f Industrial ecology to nanotechnology- Fate of nanon anomaterials - Environmental reconnaissance and for nanotechnology - Nanomaterials in future. 	ion-transport thro naterials – Enviro	onme	9 I ntal	Perio	ds cycle		
UNIT – IV Nanopollution Pollution contr UNIT – V Applications of analysis of r	 Nanomaterials in environment - sources of pollut ol strategies. SUSTAINABLE NANOTECHNOLOGY f Industrial ecology to nanotechnology- Fate of nanon anomaterials - Environmental reconnaissance and for nanotechnology - Nanomaterials in future. ds: 	ion-transport thro naterials – Enviro surveillance –	onme Cor	9 I ntal pora	Perio life c te s	ds cycle		

1	"Introduction to Nanoscience" by Gabor L. Hornyak, Joydeep Dutta, Harry F. Tibbals, Anil K. Rao.
	CRC Press, 2008.
2	"Handbook of Nanofabrication" Edited by Gary Wiederrcht. Elsevier, 2010
3	"Nanotechnology: Health and Environmental risk" by Jo Anne Shatkin. CRC press, 2008.
4	"Nanotechnology: An Introduction to Synthesis Properties and Applications of Nanomaterials",
	Thomas Varghese, K.M. Balakrishna, Atlantic publications, Reprint 2016 edition.
5	Thomas Varghese, K.M. Balakrishna, Atlantic publications, Reprint 2016 edition. "Textbook of Nanoscience and Nanotechnology (Universities Press- IIM Series in Metallurgy and

COU	COURSE OUTCOMES:			
		Taxonomy		
Upon	completion of the course, the students will be able to:	Mapped		
CO1	Implement the nanotechnology through various method.	K2		
CO2	Execute various practices of nanotechnology.	K3		
CO3	Implement the nanotoxicology in various field.	К3		
CO4	Examine the nanotechnology in pollution control on Environment.	К3		
CO5	Apply sustainable nanotechnology.	К3		

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	3	3	1		
CO2	3	2	2	3	3	2		
CO3	3	3	2	3	3	1		
CO4	3	2	2	3	3	1		
CO5	3	2	2	3	3	1		
23EEPE02	3	3	2	3	3	2		
1 - Slight, $2 - $ Moderate, $3 - $ Sub	stantial							

ASSESSMENT I Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	30	30	20	10	5	5	100
CAT2	20	40	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

ENVIRONMENTAL ENGINEERING STRUCTURES

25EEPEU5									
PREREQUIS	TES			CATEGORY	L	Т	Р	С	
	NI	L		PE	3	0	0	3	
Course	To acqu	ire knowledge on desig	gn of pipes, roofi	ng structures, wa	ater	tank	s, sp	pecial	
Objectives	structure	s and to develop knowled	ge on repair and rel	habilitation of stru	ictur	es.			
UNIT – I	DESIG	DESIGN OF PIPES 9 Period							
Structural desig	gn of Cor	crete, Prestressed Concre	ete, Steel and Cast-	iron pipes - pipin	ıg m	ains	– joi	ints –	
Leak detection	- Advanc	es in the manufacture of p	ipes.						
UNIT – II DESIGN OF CONCRETE ROOFING SYSTEMS							Perio	ds	
Design of conc	rete roofi	ng systems – Cylindrical	, Spherical and Cor	nical shapes using	g me	mbra	ne tl	heory	
and design of v	arious typ	bes of concrete folded plat	es for roofing.						
UNIT – III		SIS AND DESIGN OF				-	Perio		
IS Codes for th	e design	of water retaining structur	res - Design of circ	ular, rectangular,	sphe	rical	and	Intze	
type of tanks us									
UNIT – IV		N OF SPECIAL PURPO				-	Perio		
-	lerground	reservoirs, swimming po	ools, Intake towers	, settling tanks, c	lari	- flo	occul	ators,	
aeration tanks.		G	C. Channel						
UNIT – V		R AND REHABILITAT	Property - Sandar - Sandar				Perio		
- repair and rel	habilitatic	d damage, identification on methods for Masonry,	CONTRACT CONTRACT						
used in water a		ige works.	4						
Contact Perio							_		
Lecture: 45 Pe	eriods	Tutorial: 0 Periods	Practical: 0 Pe	eriods Total	: 45	Peri	ods		
REFERENC	ES	100							

1	"The Fundamentals of Piping Design", Peter Smith, Elsevier Science, 2013.
2	"Advanced Reinforced Concrete Design", N. Krishna Raju, CBS Publishers & Distributors, Third
	edition, 2016.
3	"Reinforced Concrete Design", S Unnikrishna Pillai, Devdas Menon, Tata McGraw Hill Foundation
	Private Limited,2017
4	"Maintenance, Repair & Rehabilitation & Minor Works of Buildings", P.C. Varghese, PHI
	Learning Private Limited, 2014.

COUI	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Design various piping systems based on environmental conditions.	K3
CO2	Analyze and design concrete roofing systems.	K3
CO3	Analyze and design various types of water tanks	K3
CO4	Execute the design of various special structures such as underground reservoirs, swimming pools etc.,	K3
CO5	Assess the condition of structures and suggest rehabilitation measures.	К3

COURSE ARTICULATION MATRIX												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6						
CO1	3	2	2	2	2	2						
CO2	3	2	2	2	2	1						
CO3	3	2	2	2	2	1						
CO4	3	3	2	2	2	2						
CO5	2	3	2	2	3	2						
23EEPE03	3	2	2	2	2	2						
1 - Slight, $2 - $ Moderate, $3 - $ Su	ostantial	•	•	•	•							

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	10	15	25	25	15	10	100
CAT2	10	15	25	25	15	10	100
Individual		1000000	THE REAL	X			
Assessment 1/		Contraction of the second	CHARE V	9			
Case Study 1/	-		50	50	-	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment 2/		1 1					
Case Study 2/	-		50	50	-	-	100
Seminar 2/		A B		23			
Project 2							
ESE	10	15	25	25	15	10	100

PREREQUIS	TES	CATEGORY	L	Т	Р	С
TREALQUIS		IL PE	3	3		
Course		dy the basics of contaminant transport phenomenon, to identi	-		0 urce	
Objectives		of ground water pollution for predicting the suitable num	•			
Objectives	ground		cricar	inc	uem	ing of
UNIT – I	- I INTRODUCTION TO GROUND WATER					
Ground water	and the	hydrologic cycles; Ground water and geologic processes. Phys	sical	prop	ertie	s and
principles - D	arcy's I	aw - Hydraulic Head and Fluid Potential - Piezometers and	d Ne	sts.	Hyd	raulic
conductivity ar	nd perme	ability - Homogeneity and Anisotropy - Porosity and voids Ratio	o - Un	satu	rated	l flow
and the water t	able - St	eady state flow and Transient flow - Compressibility and effective	e stres	ss.		
UNIT – II	BASI	CS OF CONTAMINANT TRANSPORT		9 I	Perio	ds
Transport pher	nomeno	n – advection - diffusion – dispersion – adsorption - conse	ervati	ve a	nd 1	non -
· ·		n – advection - diffusion – dispersion – adsorption - conse s- Extrinsic and Intrinsic properties- laws of conservation- I				
· ·		1 1				
conservative p	ollutant	1 1		olds		nsport
conservative p Theorem. UNIT – III	ollutant	s- Extrinsic and Intrinsic properties- laws of conservation- I	Reyno	olds 9 F	Trai Perio	nsport o ds
conservative p Theorem. UNIT – III Groundwater	GRO Contami	s- Extrinsic and Intrinsic properties- laws of conservation- I	Reyno	olds 9 H on I	Tran Perio Dyna	nsport ods umics,
conservative p Theorem. UNIT – III Groundwater Hydrodynamic	oollutant GRO contami s dispe	s- Extrinsic and Intrinsic properties- laws of conservation- I JNDWATER CONTAMINATION nation, sources and causes of groundwater pollution. Po	Reyno Dilutio	olds 9 H on I	Tran Perio Dyna	nsport ods umics,
conservative p Theorem. UNIT – III Groundwater Hydrodynamic	oollutant GROI contami s dispe NAPLs	s- Extrinsic and Intrinsic properties- laws of conservation- I JNDWATER CONTAMINATION nation, sources and causes of groundwater pollution. Por rsions, Biodegradations, Radioactivity decay, Reactive pro	Reyno Dilutio	olds 9 I on I s, N	Tran Perio Dyna	nsport ods imics, phase
conservative p Theorem. UNIT – III Groundwater Hydrodynamic contamination, UNIT – IV	GROU Contami s dispe NAPLs TRAM	s- Extrinsic and Intrinsic properties- laws of conservation- I JNDWATER CONTAMINATION nation, sources and causes of groundwater pollution. Por rsions, Biodegradations, Radioactivity decay, Reactive pro , VOCs, Site specific groundwater quality problems in Indian con	Reyno Dilutic cesses text.	olds 9 H on I s, N 9 H	Tran Perio Dyna Aulti Perio	nsport ods umics, phase ods
conservative p Theorem. UNIT – III Groundwater Hydrodynamic contamination, UNIT – IV Numerical mo	ollutant GRO contam s dispe NAPLs TRAM dels, Fi	s- Extrinsic and Intrinsic properties- laws of conservation- I JNDWATER CONTAMINATION nation, sources and causes of groundwater pollution. Por rsions, Biodegradations, Radioactivity decay, Reactive pro , VOCs, Site specific groundwater quality problems in Indian con SPORT MODELING	Reyno ollutio cesses text. trans	olds 9 I on I s, N 9 I sient	Tran Perio Dyna Aulti Perio flov	nsport ods umics, phase ods ws in
conservative p Theorem. UNIT – III Groundwater Hydrodynamic contamination, UNIT – IV Numerical mo saturated and u	ollutant GROU contami s dispe NAPLs NAPLs TRAM dels, Fi	s- Extrinsic and Intrinsic properties- laws of conservation- I UNDWATER CONTAMINATION nation, sources and causes of groundwater pollution. Por rsions, Biodegradations, Radioactivity decay, Reactive pro , VOCs, Site specific groundwater quality problems in Indian con ISPORT MODELING nite difference methods, Numerical modelling of steady and	Reyno ollutio cesses text. trans	olds 9 I on I s, N 9 I sient	Tran Perio Dyna Aulti Perio flov	nsport ods umics, phase ods ws in
conservative p Theorem. UNIT – III Groundwater Hydrodynamic contamination, UNIT – IV Numerical mo saturated and u	ollutant GRO contam s dispe NAPLs TRAN dels, Fi insatura odelling	s- Extrinsic and Intrinsic properties- laws of conservation- I JNDWATER CONTAMINATION nation, sources and causes of groundwater pollution. Por rsions, Biodegradations, Radioactivity decay, Reactive pro , VOCs, Site specific groundwater quality problems in Indian con SPORT MODELING nite difference methods, Numerical modelling of steady and red domains, Contamination transport modelling, Application of	Reyno ollutio cesses text. trans	olds 9 I on I s, N 9 I sient and	Tran Perio Dyna Aulti Perio flov	nsport ods mics, phase ods ws in EM in
conservative p Theorem. UNIT – III Groundwater Hydrodynamic contamination, UNIT – IV Numerical mo saturated and u groundwater m UNIT – V	ollutant GROU contami s dispe NAPLs TRAM dels, Fi insatura odelling GROU	s- Extrinsic and Intrinsic properties- laws of conservation- I DNDWATER CONTAMINATION nation, sources and causes of groundwater pollution. Por rsions, Biodegradations, Radioactivity decay, Reactive pro , VOCs, Site specific groundwater quality problems in Indian con ISPORT MODELING nite difference methods, Numerical modelling of steady and ted domains, Contamination transport modelling, Application of s, regional aquifer simulation.	Reyno ollutio cesses text. trans FEM	olds 9 I on I s, N 9 I sient and 9 I	Tran Perio Dyna Iulti Perio BIE Perio	nsport ods unics, phase ods ws in EM in
conservative p Theorem. UNIT – III Groundwater Hydrodynamic contamination, UNIT – IV Numerical mo saturated and u groundwater m UNIT – V Contaminated	GROU contami s dispe NAPLs TRAM dels, Fi insatura odelling GROU ground	s- Extrinsic and Intrinsic properties- laws of conservation- I INDWATER CONTAMINATION nation, sources and causes of groundwater pollution. Por rsions, Biodegradations, Radioactivity decay, Reactive pro , VOCs, Site specific groundwater quality problems in Indian con SPORT MODELING nite difference methods, Numerical modelling of steady and ted domains, Contamination transport modelling, Application of , regional aquifer simulation. JNDWATER MANAGEMENT	Reyno Dilutic cesses text. trans FEM	olds 9 H on I ss, M 9 H sient and 9 H niza	Tran Perio Dyna Aulti flov BIE Perio	nsport ods mics, phase ods ws in EM in ods based
conservative p Theorem. UNIT – III Groundwater Hydrodynamic contamination, UNIT – IV Numerical mo saturated and u groundwater m UNIT – V Contaminated management of	GROU contami s dispe NAPLs TRAM dels, Fi insatura odelling GROU ground of aquif	s- Extrinsic and Intrinsic properties- laws of conservation- I DNDWATER CONTAMINATION nation, sources and causes of groundwater pollution. Per rsions, Biodegradations, Radioactivity decay, Reactive pro , VOCs, Site specific groundwater quality problems in Indian con ISPORT MODELING nite difference methods, Numerical modelling of steady and ted domains, Contamination transport modelling, Application of , regional aquifer simulation. JNDWATER MANAGEMENT water systems and their rehabilitation, Development and	Reyno Dilutic cesses text. trans FEM	olds 9 H on I ss, M 9 H sient and 9 H niza	Tran Perio Dyna Aulti flov BIE Perio	nsport ods mics, phase ods ws in EM in ods based
conservative p Theorem. UNIT – III Groundwater Hydrodynamic contamination, UNIT – IV Numerical mo saturated and u groundwater m UNIT – V Contaminated management of	GROU contami s dispe NAPLs TRAN dels, Fi insatura odelling GROU ground of aquif	s- Extrinsic and Intrinsic properties- laws of conservation- I DNDWATER CONTAMINATION nation, sources and causes of groundwater pollution. Por rsions, Biodegradations, Radioactivity decay, Reactive pro , VOCs, Site specific groundwater quality problems in Indian con SPORT MODELING nite difference methods, Numerical modelling of steady and red domains, Contamination transport modelling, Application of , regional aquifer simulation. JNDWATER MANAGEMENT water systems and their rehabilitation, Development and er systems, stochastic models, Random field concepts in gr	Reyno Dilutic cesses text. trans FEM	olds 9 H on I ss, M 9 H sient and 9 H niza	Tran Perio Dyna Aulti flov BIE Perio	nsport ods mics, phase ods ws in EM in ods based

1	"Ground water Hydraulics and Pollutant transport", Randall J. Charbeneau, Prentice Hall, Upper
	Saddle River, 2009.
2	"Ground water Hydrology", Todd David Keith, Second edition, John Wiley and Sons, New York, 2010.
3	"Ground water", Allen Freeze, R. and John A. Cherry, "Ground Water", Prentice Hall, Inc., 2009.
4	"Modelling Ground Water Flow and contaminant Transport", Bear, Jacob, cheng, Alexander H.D.
	2010.
5	"Ground Water Contamination: Transport and Remediation", Philip B, Bedient, Hanadis,
	Rifari, chareless J, NEWELL 1999.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
CO1	CO1 Identify the hydrogeological parameters which influence the availability of ground water.	
CO2	Know the basics of contaminant transport phenomenon and pollutant nature.	K2
CO3	Examine the causes for ground water pollution at site and its pollution dynamics.	K3
CO4	Develop the Contamination transport modelling for solving real problems.	K3
CO5	Analyze the groundwater management techniques for contaminated aquifers.	K4

COURSE ARTICULATION MATRIX												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6						
CO1	3	2	1	2	2	1						
CO2	3	2	1	2	2	1						
CO3	3	2	2	2	2	1						
CO4	3	3	2	3	3	2						
CO5	3	3	2	3	3	2						
23EEPE04	3	3	2	3	3	2						
1 – Slight, 2 – Moderate, 3 – Sub	stantial			•								

ASSESSMEN	T PATTERN – T	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	35	35	-	-	-	100
CAT2	30	30	30	10	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	30	40	30	-	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	20	25	30	20	5	-	100

23EEPE05		ENVIRONMENTAL IMPAC	CT ASSESSMEN	T					
PREREQUISI	TES		CATEGORY	L	Т	Р	С		
		NIL	PE	3	0	0	3		
Course	Unde	rstanding, assessing the various environmental	impacts and soc	ial i	mpa	cts o	f EIA		
Objectives	and io	lentifying the risk identification sources and pro-	viding manageme	ent p	lan				
UNIT – I	INTE	RODUCTION			9 Period				
	•	nt of Environmental Impact Assessment (EIA) India. – Types and limitations of EIA – EIA pro	v	•		•			
••••	ation.	Cross sectoral issues and terms of reference in E	e e	-			•		
UNIT – II	IMP	ACT IDENTIFICATION AND PREDICTION			9	Per	iods		
EIA – Expert s Assessment of i UNIT – III	ystem mpact	 Checklists –Cost benefit analysis – Analysis of s in EIA. Prediction tools for EIA – Mathematic s – air – water – soil – noise – biological — Cum IAL IMPACT ASSESSMENT AND EIA DOC 	cal modeling for i ulative Impact As UMENTATION	mpa	ct pr ment 9	redic t. Per i	tion – iods		
arrangements. 1 findings – plann	Indivio ning –	nent - Relationship between social impacts and cl lual and family level impacts. Communities in organization of information and visual display m	n transition Docu	•	ntatio	on of	f EIA		
UNIT – IV		IRONMENTAL MANAGEMENT PLAN				Per			
Mitigation and	Rehal	on. Environmental Management Plan - prepara pilitation Plans – Policy and guidelines for plan thical and Quality aspects of Environmental Impa	ning and monitor	ring	prog	gram			
UNIT – V	ENV	IRONMENTAL RISK ASSESSMENT AND N	IANAGEMENT		9	Per	iods		
Assessment – E – Event tree an	xposu d faul	ssessment framework-Hazard identification -Do re Factors, Tools for Environmental Risk Assess t tree analysis – Multimedia and multipath way Risk communication – Emergency Preparedness	ment– HAZOP a exposure modeli	nd F ng o	EM/ f coi	A me ntam	ethods inant-		
Contact Period Lecture: 45 Per		Tutorial: 0 Periods Practical: 0 Per	riods Total:	45 1	Perio	ods			

1	"Environmental Impact Assessment- Theory and Practice,", Wathern, P, Taylor and Francis Group,
	U.K. 2015
2	"Methodologies in Hazard Identification and Risk Assessment", Raghavan K. V. and Khan A A by
	CLRI, 1990
3	"Environmental Impact Assessment: Practical Solutions to Recurrent Problems", Lawrence, D.P.,
	John Wiley & Sons, Canada (2003)
4	"Environmental Risk and Hazards", Cutter, S.L Hall of India Pvt. Ltd., New Delhi, Bimal Kanti Paul
	2011.

COURSE OUTCOMES:			
Upon o	completion of the course, the students will be able to:	Mapped	
CO1	Interpret the importance of environment assessment studies in project development.	K2	
CO2	Apply impact identification and prediction models.	K3	
CO3	Prioritize the social impacts in EIA documentation.	K3	
CO4	Articulate the environmental management plan including the preparation and mitigation	K3	
	aspects.		
CO5	Evaluate the risk assessment based on dose response analysis	K3	

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	2	3	1
CO2	3	3	2	2	2	1
CO3	2	2	3	2	3	2
CO4	3	2	2	3	3	2
CO5	3	2	2	3	3	3
23EEPE05	3	3	3	3	3	3
1 - Slight, 2 - Moderate, 3 -	Substantial	AS SALUDINA	any)			

			đ.	7			
ASSESSMENT	F PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	35	10	5	-	100
CAT2	25	25	35	10	5	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	10	10	35	45	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	10	10	35	45	-	-	100
ESE	25	25	40	10	-	-	100

ENVIRONMENTAL ECONOMICS

23EEPE06	ENVIRONMENTAL ECONOMICS								
PREREQUISI	TES	CATEGORY	L	Т	P	С			
	NIL	PE	3	0	0	3			
Course	Balancing between economic development, environm	ental quality and al	so to	dete	ermir	e the			
Objectives	theoretical or empirical effects of environmental polic	eies on the economy	•						
UNIT – I									
The human ec	onomy - natural environment interaction. Biophys	sical Foundations	of p	rodu	ction	and			
consumption of	consumption of human economy Sources and Sink functions of the ecosystem. Material Balance approach:								
-	l conditions of sustainability of the human economy.								
resources and p	pollution as a public good or bad. Role of Externali	ties as the fundame	ental	dete	ermir	nants.			
Property Rights	, Market, Spatial-temporal dimensions of externality.								
UNIT – II	THEORY OF ENVIRONMENTAL REGULATIO	N AND POLICY		91	Perio	ds			
The socially op pollution:	timal level of pollution and Pareto optimal allocation	n of resources. atta	ainm	ent o	of op	timal			
•	Property Rights: Coase Theorem and its limitations,	Government interve	entio	ns - (Com	mand			
0	tandard setting, Market based instruments: Pigouvia								
charges, produc	t charges, subsidies, noncompliance fees, Tradable pol	lution permits. Unc	ertai	nty a	and c	hoice			
of regulatory in	strument.								
UNIT – III	VALUATION OF ENVIRONMENTAL GOODS A	AND SERVICES		91	Perio	ds			
Environmental	valuation and conceptual basis of its methods: Co	ompensating Varia	tions	and	l Su	rplus,			
Equivalent Vari	ations and Surplus, Willingness to pay or accept for i	improvement or los	s of	envi	ronm	ental			
goods and serv	ices. Empirical approaches in environmental valuatio	n: Indirect Method	s of	envi	ronm	nental			
valuation: eco	nometric or statistical methods. Preference Methods:	: (a) Hedonic Prici	ng,	(b) I	House	ehold			
Production Fun	ction approach - defensive cost, health cost and trave	el cost methods. Th	e di	rect 1	meth	od of			
environmental v	valuation: Stated preference: Contingent valuation methods	nod.							
UNIT – IV	SUSTAINABLE ECONOMIC DEVELOPMENT			91	Perio	ds			
•	c basis of the notion of sustainable development: Sust	•				•			
-	tility or that of the value of the wealth. Concepts of Ger			-					
	e. Natural capital stock and sustainable resource accou	inting. Strong and w	veak	Sust	ainał	oility,			
	Adjustment of National Income.								
UNIT – V	ECONOMIC DEVELOPMENT AND ENVIRONM				Perio				
	ween Development and Environmental Quality: Environmental Quality:				-				
	of environmental resources: Ecosystem flips and in	-			-				
	Cost-Benefit Analysis under strong and weak condit	ions of sustainabili	ty: C	Choic	e of	time			
	r evaluation. Sustainability premium.								
Contact Period									
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods	riods Total: 4	5 Pe	riods	5				

1	"Environmental Economics: Theory and Applications", Katar Singh, Anil Shishodia, SAGE
	Publications, First Edition, 2007.
2	"Economics of Environment", SunhashiniMuthukrishnan, PHI Learning Pvt. Ltd. Publications, Second
	Edition, 2015.
3	<i>"Intermediate Environmental Economics"</i> , Charles Kolstad, Oxford University Press, 2 nd edition, 2010.
4	<i>"Economics of the Environment: Selected Readings"</i> , <i>Robert N. Stavins, W.W.Norton, 5th edition, 2005.</i>
5	"Natural Resource and Environmental Economics", Roger Perman, Yue Ma, James McGilvray and
	Michael Common", Pearson Education/Addison Welsey, 3 rd edition, 2003.

COUR	SE OUTCOMES:	Bloom's		
	Taxonomy			
Upon c	Upon completion of the course, the students will be able to:			
CO1	Identify the economy and the natural environment	K2		
CO2	Emphasize the Environmental regulation and policy	K3		
CO3	Valuate the environmental goods and services	K3		
CO4	Summarize the sustainable economic development	K3		
CO5	Predict the economic development and environment	K3		

COURSE ARTICULA	COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	3	2	3	2	-		
CO2	2	2	3	2	2	-		
CO3	2	3	2	2	3	-		
CO4	2	3	2	3	3	-		
CO5	2	3	3	2	2	-		
23EEPE06	2	3	3	3	3	-		
1 – Slight, 2 – Moderate	, 3 – Substant	ial		20		-		

1.2.7.4				1000			
	1.5	No. 75			62.11		
1000	9.9	-1.	940	5714		5-3,7M	
			~		-	-	

ASSESSMENT	PATTERN – TH	EORY	-	7			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	35	25	10	10	-	100
CAT2	20	20	25	15	20	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	20	30	50	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	25	25	50	-	-	100
ESE	20	25	20	25	10		100

23EEPE07 COMPUTING TECHNIQUES IN ENVIRONMENTAL ENGINEERING PREREQUISITES CATEGORY L T P C									
PREREQUISI	ITES	CATEGORY	L	Т	Р	С			
	NIL	PE	3	0	0	3			
Course	To understand different methods, tools of computing	techniques for solv	ing ei	nviro	nme	nta			
Objectives									
	computing tools used in environmental studies.								
UNIT – I	COMPUTING PRINCIPLES			9 P	eriod	ls			
Introduction to	Computing techniques – Algorithms and Flowchar	ts, Numerical met	hods	-Sol	ution	t t			
ordinary and p	artial differential equation using Finite difference and	d Finite element n	nethoo	l, Ni	imer	ica			
integration and	differentiation, Design of digital models for Environme	ental applications.							
UNIT – II	ARTIFICIAL INTELLIGENCE			9 P	eriod	le			
	sed Expert system concepts - Principle of Artificia	al Neural Network	(AN	NN)	-Nei				
Knowledge ba						ura			
Knowledge ba Network Struc	sed Expert system concepts - Principle of Artificia					ura			
Knowledge ba Network Struc	sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith			N N		ura I to			
Knowledge ba Network Struc Environmental UNIT – III	sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith field – Genetic Algorithms.	m - Application o	f AN	9 P	lode eriod	ura l to ls			
Knowledge ba Network Struc Environmental UNIT – III Fuzzy sets, fuz	sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith field – Genetic Algorithms. FUZZY LOGIC	m - Application of gic and the theory	f AN	N N 9 P certa	lode erioc	ura l to ls and			
Knowledge ba Network Struc Environmental UNIT – III Fuzzy sets, fuz	sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith field – Genetic Algorithms. FUZZY LOGIC zy numbers, fuzzy relations, fuzzy measures, fuzzy log pplications of the theory to inference and control, cluster	m - Application of gic and the theory	f AN	N N 9 P certa	lode erioc	ura l to ls anc			
Knowledge ba Network Struc Environmental UNIT – III Fuzzy sets, fuz information; ap	sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith field – Genetic Algorithms. FUZZY LOGIC zy numbers, fuzzy relations, fuzzy measures, fuzzy log pplications of the theory to inference and control, cluster	m - Application of gic and the theory	f AN	9 P certa ng - 1	lode erioc	ura l to ls anc			
Knowledge ba Network Struc Environmental UNIT – III Fuzzy sets, fuz information; ap analysis models UNIT – IV	sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith field – Genetic Algorithms. FUZZY LOGIC zy numbers, fuzzy relations, fuzzy measures, fuzzy log pplications of the theory to inference and control, cluster s.	m - Application of gic and the theory ring, and image pro	f AN	IN M 9 P certa ng - 1 9 P	lodel eriod inty Netw eriod	ura l to ls and orl			
Knowledge ba Network Struc Environmental UNIT – III Fuzzy sets, fuz information; ap analysis models UNIT – IV Data base struc	sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith field – Genetic Algorithms. FUZZY LOGIC zy numbers, fuzzy relations, fuzzy measures, fuzzy log pplications of the theory to inference and control, cluster s. DATA MANAGEMENT	m - Application of gic and the theory ring, and image pro- val-Data format At	f AN	IN M 9 P certa ng - 1 9 P e -R1	Iodel eriod inty Netw eriod DBM	ura l to ls and orl ls IS			
Knowledge ba Network Struc Environmental UNIT – III Fuzzy sets, fuz information; ap analysis models UNIT – IV Data base struc Data analysis	sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith field – Genetic Algorithms. FUZZY LOGIC zy numbers, fuzzy relations, fuzzy measures, fuzzy log oplications of the theory to inference and control, cluster s. DATA MANAGEMENT cture - Data acquisition - Data warehouse - Data retriev	m - Application of gic and the theory ring, and image pro- val-Data format At	f AN	IN M 9 P certa ng - 1 9 P e -R1	Iodel eriod inty Netw eriod DBM	ura l to ls and orl ls IS			
Knowledge ba Network Struc Environmental UNIT – III Fuzzy sets, fuz information; ap analysis models UNIT – IV Data base struc Data analysis	 sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith field – Genetic Algorithms. FUZZY LOGIC zy numbers, fuzzy relations, fuzzy measures, fuzzy log plications of the theory to inference and control, clusters. DATA MANAGEMENT cture - Data acquisition - Data warehouse - Data retrier Network data sharing - Statistical Analysis (SYST) 	m - Application of gic and the theory ring, and image pro- val-Data format At 'AT) - Regression	f AN	IN M 9 Po certa ng - 1 9 Po e -R1 or ar	Iodel eriod inty Netw eriod DBM	ura l to ls anc orl ls IS is			
Knowledge ba Network Struc Environmental UNIT – III Fuzzy sets, fuz information; ap analysis models UNIT – IV Data base struc Data analysis histogram - sca UNIT – V	sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith field – Genetic Algorithms. FUZZY LOGIC zy numbers, fuzzy relations, fuzzy measures, fuzzy log pplications of the theory to inference and control, cluster s. DATA MANAGEMENT cture - Data acquisition - Data warehouse - Data retrie - Network data sharing - Statistical Analysis (SYST tter diagram - Goodness of fit.	m - Application of gic and the theory ring, and image pro- val-Data format At AT) - Regression	f AN	IN M 9 P certa ng - I 9 P e -RI or ar 9 P	Iodel eriod inty Netw eriod DBM nalys	ura l to ls and orl ls IS is			
Knowledge ba Network Struc Environmental UNIT – III Fuzzy sets, fuz information; ap analysis models UNIT – IV Data base struc Data analysis histogram - sca UNIT – V Introduction to	 sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith field – Genetic Algorithms. FUZZY LOGIC zy numbers, fuzzy relations, fuzzy measures, fuzzy logications of the theory to inference and control, cluster s. DATA MANAGEMENT cture - Data acquisition - Data warehouse - Data retriee Network data sharing - Statistical Analysis (SYST tter diagram - Goodness of fit. ENVIRONMENTAL MODELING USING MATI 	m - Application of gic and the theory ring, and image pro- val-Data format At (AT) - Regression (AB) ciples and MATLA	f AN	IN M 9 P certa ng - I 9 P e -RI or ar 9 P	Iodel eriod inty Netw eriod DBM nalys	ura l to ls and orl ls IS is			
Knowledge ba Network Struc Environmental UNIT – III Fuzzy sets, fuz information; ap analysis models UNIT – IV Data base struc Data analysis histogram - sca UNIT – V Introduction to	 sed Expert system concepts - Principle of Artificia ture – Neural Network Operations – ANN Algorith field – Genetic Algorithms. FUZZY LOGIC zy numbers, fuzzy relations, fuzzy measures, fuzzy log plications of the theory to inference and control, cluster s. DATA MANAGEMENT cture - Data acquisition - Data warehouse - Data retriee Network data sharing - Statistical Analysis (SYST tter diagram - Goodness of fit. ENVIRONMENTAL MODELING USING MATI MATLAB Software – Environmental modeling primaport, decay and degradation modeling using MATLAB 	m - Application of gic and the theory ring, and image pro- val-Data format At (AT) - Regression (AB) ciples and MATLA	f AN	IN M 9 P certa ng - I 9 P e -RI or ar 9 P	Iodel eriod inty Netw eriod DBM nalys	ura l to ls and orl ls IS is			

1	"Soft Computing and its Applications", Aliev R. A, and Aliev Rashad, World Scientific Publications Co.
	Pte. Ltd. Singapore, 2014.
2	"Numerical Methods for Engineers", Chepra S. C. and Canele R. P., McGraw-Hill, a business unit of
	The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, NewYork, NY 10020. 6th Edition
	2014.
3	"Data-Driven Modeling: Using MATLAB in Water Resources and Environmental Engineering",
	Springer; 2014 edition.
4	"Numerical methods using MATLAB", Mathews J. H. and Fink K.D, Pearson Education2010.

COUR	COURSE OUTCOMES:					
Upon o	completion of the course, the students will be able to:	Mapped				
CO1	Examine the principle of soft computing for the analysis and design of engineering	K3				
	systems.					
CO2	Articulate the environmental impacts using ANN	K3				
CO3	Solve the environmental impacts using fuzzy logic	K3				
CO4	Discover the data for effective management plan.	K3				
CO5	Use advanced computing tools in environmental studies	К3				

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	3	3	2	1		
CO2	3	3	2	2	2	2		
CO3	3	3	2	2	2	2		
CO4	3	3	3	3	3	2		
CO5	2	3	2	3	3	2		
23EEPE07	3	3	3	3	3	2		
1 – Slight, 2 – Moderate, 3 – Su	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY								
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	30	20	40	10	-	-	100	
CAT2	30	20	40	10	-	-	100	
Individual		- Gr	- Stum					
Assessment 1/		TOTICION	STUSPESTICE.	25				
Case Study 1/	20	20	40	20	-	-	100	
Seminar 1 /								
Project 1			2	//				
Individual								
Assessment 2/			No Ver	11				
Case Study 2/	20	20	40	20	-	-	100	
Seminar 2/		8						
Project 2		X B		V.B.				
ESE	30	20	40	10	-	-	100	

ENVIRONMENTAL RISK ASSESSMENT

PREREQUISIT	FS	CATEGORY	L	Т	Р	С	
	NIL	PE		0	0	3	
Course	Understanding the important elements and	d sources of environmental haza	rds to	der	mons	strate	
Objectives the tools and methods of risk assessment and management.							
UNIT – I	INTRODUCTION 9 Periods						
Introduction to E	nvironmental Risk and definitions -Source	es of Environmental hazards – I	Enviro	nm	ental	l risk	
assessment frame	work – Regulatory perspectives and require	ements – Risk Analysis and Mar	agem	ent	- Pa	th to	
	eption of risk, risk assessment in different of	-					
UNIT – II	ELEMENTS OF ENVIRONMENTAL				erio		
	ion - Fate and behaviour of toxics and per				-		
	ameters that control fate and transport of co						
	Dose Response Evaluation – Exposure Ass	-	-				
-	ions and Dose Conversion Factors – Risk	Characterization and consequen	ce det	erm	ninat	ion –	
	ssment – Uncertainty analysis.						
UNIT – III	TOOLS AND METHODS FOR RISK A				erio		
	AA methods – Cause failure analysis – E		-		-		
	nultipath way exposure modeling of cont						
	air, water, soils, vegetation and animal	-	•				
Ũ	s to human health – Methods in Ecological	risk assessment – Probabilistic	risk a	sses	ssme	nts –	
	ssment – Data sources and evaluation.	2					
UNIT – IV	ENVIRONMENTAL RISK MANAGE				erio		
	ion and Risk Perception - comparative r		•				
	ndard setting – Risk Cost Benefit optimizat	0,1	-				
	nning for chemical agent release - Des				isk t	based	
	communication, adaptive management, pre-	ecaution and stake holder involve					
UNIT – V	APPLICATIONS	13			erio		
	risk assessment and management for haza						
	ile industries - Mineral processing and H		ous wa	aste	dis	posal	
	r power plants – contaminated site remediat	tion – Case histories on Bhopal.					
Contact Periods:		ical: 0 Daviada Total: 45	Domice	1			
Lecture:45 Perio	ds Tutorial: 0 Periods Pract	tical: 0 Periods Total: 45	Perio	IS			

1	"Environmental Health and Hazard Risk Assessment,", Theodore L and Dupont R R, CRC Press
	(2012).
2	"Environmental Impact Assessment Methodologies", Anjaneyulu Yerramillivalli, Manickam
	(2020),3rd Edition, BS Publication, 2020
3	"Environmental impact assessment", m.anjireddy, bs publication, 2016
4	"Environmental risk assessment: a toxicological approach", tedsimon, 2014.
5	"Environmental Risk Assessment and Management from a landscape perspective", Wayne landis,
	Lawrence A. Kapustka, 2010.

	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Interpret different types of risk and environmental risk assessment.	K2
CO2	Use elements involved in environmental risk assessment and hazard prediction.	K2
CO3	Identify the analyzing tools and methods for risk assessment.	К3
CO4	Evaluate risk communication and risk perception.	K3
CO5	Appraise the risk assessment for different industries.	K3

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	2	2	2	1		
CO2	2	2	2	3	3	1		
CO3	2	3	3	2	3	2		
CO4	3	2	3	3	2	2		
CO5	3	2	3	2	3	3		
23EEPE08	3	3	3	3	3	3		
1-Slight, 2- Moderate, 3- Substantial								

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	25	30	25	10	10	-	100	
CAT2	25	30	-25	10	10	-	100	
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	10	20	10	-	100	
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	10	20	10	-	100	
ESE	30	35	25	10			100	

23EEPE09	

ENVIRONMENTAL MANAGEMENT STANDARDS

DDEDEOLUG		CLEECODY	Ŧ		D	C	
PREREQUISI		CATEGORY	L	Τ	Р	С	
	NIL	PE	3	0	0	3	
Course	To impart an understanding of systems approad	ch to Environmer	ıtal	Man	agen	nent	
Objectives	Standards, gain knowledge about audit process,	qualification crite	eria,	labe	els, s	self-	
	declaration and Environmental Performance Evaluation	ation Guidelines, a	nd e	nhan	ce sl	kills	
	for Life Cycle Impact Assessment and Life Cycle Int	terpretation.					
UNIT – I	INTRODUCTION			9 I	Perio	ds	
Environmental	Management system- definition and goal, Need for	EMS implementat	ion,	Inter	rnatio	onal	
standard organa	aisation - Functions of ISO, - ISO 14000 series-Introd	uction, objective an	nd G	oal.	Scop	e of	
the standards of	f ISO 14000 series						
UNIT – II	ENVIRONMENTAL MANAGEMENT SYSTEM	IS		9 I	Perio	ds	
ISO 14001- En	vironmental Management Systems: Specification with	Guidance for Use,	ISO	140)4 :E	EMS	
General Guidel	ines on Principles, Systems and Supporting Technique	es					
UNIT – III	ENVIRONMENTAL AUDITING			9 I	Perio	ds	
General Princip	ples, Audit Procedures: Auditing of Environmental 1	Management Syste	ms,	Qual	ifica	tion	
Criteria for Env	vironmental auditors, Environmental Assessment of Si	tes and Organisatio	ns- I	SO 1	401	5	
UNIT – IV	ENVIRONMENTAL LABELS AND DECLARA	TIONS		9 I	Perio	ds	
Environmental	Labels and Declarations: General principles, Type	es of labeling. IS	D 14	4021	(20	01):	
Environmental	Labels and Declarations: Self-declared Environment	tal Claims (Type	II E	nviro	onme	ntal	
Labelling), ISC	0 14024 (2001): Type I Environmental Labels: Prince	iples and Procedur	es E	nvire	onme	ntal	
Management: H	Environmental Performance Evaluation Guidelines- IS	O 14031- case stud	ies.				
UNIT – V	LIFE CYCLE ASSESSMENT			9 I	Perio	ds	
Introduction, L	ife Cycle Assessment: Principles and Framework- IS	O 14040, Goal and	Sco	pe D	efini	tion	
and Inventory	Analysis- ISO 14041, Life Cycle Impact Asses	ssment - ISO 14	042,	Lif	e C	ycle	
	Interpretation- ISO 14043, Data Documentation Format- ISO 14048.						
Contact Period	ds:						
Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	"ISO 14000 Environmental Management Standards: Engineering and Financial Aspects",
	Dr.Alan Morris, Wiley Publications, 2004.
2	"Concepts of Environmental Management for Sustainable Development", M C.Dash, Wiley
	Publications, 2019.
3	"Introduction to Environmental Management", M.M.Sulphey, M.M.Safeer, PHI Learning
	Publications, 2017.
4	"Environmental Management", R.K.Mishra, AITES Publications, 1st Edition, 2015.

COUI	COURSE OUTCOMES:				
		Taxonomy			
Upon	completion of the course, the students will be able to:	Mapped			
CO1	Value the elements and scope of the standards	K2			
CO2	Discuss the guidelines on principles and supporting techniques	K2			
CO3	Develop the auditing process and procedures	К3			
CO4	Discuss Environmental labels, types and declaration	K3			
CO5	Implement Life Cycle Assessment and Impact Assessment	K3			

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	2	2	1
CO2	3	2	2	2	2	1
CO3	2	2	3	2	3	1
CO4	2	2	3	2	3	1
CO5	2	2	2	2	3	1
23EEPE09	3	2	3	2	3	1

ASSESSMENT PATTERN – THEORY Test / Bloom's Remembering Understanding Evaluating Creating Applying Analyzing Total (K1) % (K2) % (K5) % (K6) % Category* (K3) % (K4) % % CAT1 20 25 20 25 10 -100 CAT2 20 20 25 15 20 100 -Individual Assessment 1/ 40 50 100 Case Study 1/ 10 Seminar 1 / Project 1 Individual Assessment 2/ Case Study 2/ 15 35 50 100 _ _ Seminar 2/ Project 2 ESE 20 25 25 100 15 15 -

AIR QUALITY MODELING

- MINEQUID	ITES	CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
Course	Understanding the concept of different types of a	ir quality models,	emp	ohasi	izing	the
Objectives	importance of meteorological condition in air quality	model ,gaining kno	wled	lge o	on in	doo
	air quality models and advanced software in air qualit	y modeling				
UNIT – I	MODELING CONCEPT			9 Pe	eriod	S
Overview of d	ifferent types of models-deterministic and stochastic ap	proach- Steps in mo	odel	deve	lopm	nent
numerical an	d simulations models- calibration and validation	of models-Limita	ation	s-]	Frans	spor
phenomena- N	lass balance analysis-Model development and decision	making.				
UNIT – II	AIR POLLUTION MODELING			9 Pe	eriod	.S
Chemistry of a	air Pollutants - Atmospheric reactions, sinks for air po	llution –Transport	of ai	r Po	lluta	nts
Meteorologica	1 settling for dispersal of air pollutants – Vertical st	ructure of temperat	ture	and	stabi	ility
atmosnheric n	notions, Wind and shear, self-cleaning of atmosphe	ro: transport and d	1:	in	of	+0.01
annospheric II	notions, wind and snear, sen-cleaning of autosphe	e, dansport and c	mus	sion	01 5	laci
•	tmospheric characteristics significant to transport and	•				
emissions – a	tmospheric characteristics significant to transport and	•				
emissions – a plume characte	tmospheric characteristics significant to transport and	•	emi	ssior		tacl
emissions – a plume characte UNIT – III	tmospheric characteristics significant to transport and eristics.	diffusion of stack	emi	ssior 9 Pe	n – s eriod	tacl
emissions – a plume characte UNIT – III Types modelir	tmospheric characteristics significant to transport and eristics.	diffusion of stack le source, short term	emi n imj	ssior 9 Pe pact,	n – s e riod mult	stacl
emissions – a plume characte UNIT – III Types modelir sources and ar	tmospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ng technique, modeling for nonreactive pollutants, sing	diffusion of stack le source, short tern ssian plume derivati	emi n imp ion- 1	ssior 9 Pe pact, mod	n – s eriod mult	s s tiple
emissions – a plume characte UNIT – III Types modelir sources and ar of Gaussian pl	tmospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ng technique, modeling for nonreactive pollutants, sing ea sources, Fixed box models- diffusion models – Gau	diffusion of stack le source, short tern ssian plume derivati receptor oriented ar	emia n imp ion- 1 nd so	9 Pe pact, mod	n – s eriod mult ificat -orie	stack s tiple ions
emissions – a plume characte UNIT – III Types modelir sources and ar of Gaussian pl air pollution m	tmospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ng technique, modeling for nonreactive pollutants, sing ea sources, Fixed box models- diffusion models – Gau ume equation- long term average-multiple cell model	diffusion of stack le source, short tern ssian plume derivati receptor oriented ar	emis n imp ion- 1 nd so jualit	9 Pe pact, mod urce y ma	n – s eriod mult ificat -orie	s s tiple ions ntec ig.
emissions – a plume characte UNIT – III Types modelir sources and ar of Gaussian pl air pollution m UNIT – IV	tmospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ag technique, modeling for nonreactive pollutants, sing ea sources, Fixed box models- diffusion models – Gau ume equation- long term average-multiple cell model nodels- model performance, accuracy and utilization-air	diffusion of stack le source, short tern ssian plume derivati receptor oriented ar Quality Index -air q	emis n imp ion- 1 nd so jualit	9 Pe pact, mod urce y ma 9 Pe	n – s eriod mult ificat -orie appin eriod	stack s tiple ions nteo ng. s
emissions – a plume characte UNIT – III Types modelir sources and ar of Gaussian pl air pollution m UNIT – IV Indoor Air Pol	tmospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ng technique, modeling for nonreactive pollutants, sing ea sources, Fixed box models- diffusion models – Gau ume equation- long term average-multiple cell model nodels- model performance, accuracy and utilization-air INDOOR AIR QUALITY MODELS	diffusion of stack le source, short tern ssian plume derivati receptor oriented ar Quality Index -air q ous Pollutants Respi	emis n imp ion- p nd so qualit	9 Pe pact, modi urce y ma 9 Pe Par	n – s eriod multi ificat -orie appin eriod	s tiple ions ntec ig. s ates
emissions – a plume characte UNIT – III Types modelir sources and ar of Gaussian pl air pollution m UNIT – IV Indoor Air Pol Bio aerosols, F	tmospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ag technique, modeling for nonreactive pollutants, sing ea sources, Fixed box models- diffusion models – Gau ume equation- long term average-multiple cell model odels- model performance, accuracy and utilization-air INDOOR AIR QUALITY MODELS lutants - Volatile Organic Compounds, Inorganic Gased	diffusion of stack le source, short tern ssian plume derivati receptor oriented ar Quality Index -air q ous Pollutants Respi	emis n imp ion- p nd so qualit	9 Pe pact, modi urce y ma 9 Pe Par	n – s eriod multi ificat -orie appin eriod	s tiple ion nteo g. s ates
emissions – a plume characte UNIT – III Types modelin sources and ar of Gaussian pl air pollution m UNIT – IV Indoor Air Pol Bio aerosols, F sick building s	tmospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ng technique, modeling for nonreactive pollutants, sing ea sources, Fixed box models- diffusion models – Gau uume equation- long term average-multiple cell model nodels- model performance, accuracy and utilization-air INDOOR AIR QUALITY MODELS lutants - Volatile Organic Compounds, Inorganic Gaseo Radon and its decay products-Infectious disease transmi	diffusion of stack le source, short tern ssian plume derivati receptor oriented ar Quality Index -air q ous Pollutants Respi	emia n imp ion- 1 nd so jualit irable	9 Pe pact, modi urce y ma 9 Pe Par or- C	n – s eriod multi ificat -orie appin eriod	s tiple ion ntec g. s ates and
emissions – a plume characte UNIT – III Types modelin sources and ar of Gaussian pl air pollution m UNIT – IV Indoor Air Pol Bio aerosols, F sick building s UNIT – V	tmospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ag technique, modeling for nonreactive pollutants, sing ea sources, Fixed box models- diffusion models – Gau ume equation- long term average-multiple cell model nodels- model performance, accuracy and utilization-air INDOOR AIR QUALITY MODELS lutants - Volatile Organic Compounds, Inorganic Gased Radon and its decay products-Infectious disease transmi yndrome-Indoor Air quality Models.	diffusion of stack le source, short tern ssian plume derivati receptor oriented ar Quality Index -air q ous Pollutants Respi	emia n imp ion- 1 nd so jualit irable	9 Pe pact, modi urce y ma 9 Pe Par or- C	n – s eriod mult ificat -orie appin eriod ticula	s tiple ions ntec ag. s ates and
emissions – a plume characte UNIT – III Types modelir sources and ar of Gaussian pl air pollution m UNIT – IV Indoor Air Pol Bio aerosols, F sick building s UNIT – V	tmospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ag technique, modeling for nonreactive pollutants, sing ea sources, Fixed box models- diffusion models – Gau ume equation- long term average-multiple cell model nodels- model performance, accuracy and utilization-air INDOOR AIR QUALITY MODELS lutants - Volatile Organic Compounds, Inorganic Gased Radon and its decay products-Infectious disease transmi yndrome-Indoor Air quality Models. SOFTWARE PACKAGE APPLICATIONS r quality models -ADMS, Air viro and USEPA models	diffusion of stack le source, short tern ssian plume derivati receptor oriented ar Quality Index -air q ous Pollutants Respi	emia n imp ion- 1 nd so jualit irable	9 Pe pact, modi urce y ma 9 Pe Par or- C	n – s eriod mult ificat -orie appin eriod ticula	s tiple ions ntec g. s ates anc

1	"Air Quality: Monitoring and Modeling", Sunil Kumar, Rakesh Kumar, bod – Books on Demand
	Publisher, 2012.
2	"Air Pollution Modeling and its Application XXVI", Clemens Mensink, Wanmin Gong, Amir
	Hakami, Springer Nature, 2019.
3	"Air Quality: Monitoring, Measuring, and Modeling Environmental Hazards", Marco Ragazzi,
	CRC Press, 2016.
4	"Air Quality: Modeling and Assessment", Frieda Bush, Callisto Reference, 2019.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Classify different mathematical models and their limitations.	K2
CO2	Utilize air pollution modeling parameters in appropriate places	K3
CO3	Develop conceptual schematics required for air quality modeling	К3
CO4	Discover indoor air quality models with different indoor air pollution sources.	K3
CO5	Appraise the advanced software in air quality modeling	K3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	1	2	2	1			
CO2	2	3	2	2	2	1			
CO3	2	3	2	2	2	1			
CO4	2	3	2	2	2	1			
CO5	2	3	1	2	2	3			
23EEPE10	3	3	2	2	2	3			
1 – Slight, 2 – Moderate, 3 –	Substantial			·	·				

Test /	Rememberi	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	ng (K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	25	25	40	10	-	-	100
CAT2	25	25	40	10	-	-	100
Individual Assessment 1/		Cont	L D ST ST	Comments of			
Case Study 1/ Seminar 1 /	10	10	35	45	-	-	100
Project 1				束 /			
Individual Assessment 2/							
Case Study 2/ Seminar 2/	10	10	35	45	-	-	100
Project 2	25	25	10	10			100
ESE	25	25	40	10	-	-	100

23EEPE11

ENVIRONMENTAL SYSTEM ANALYSIS

PREREQUISITES					
	CATEGORY	L	Т	P	С
NIL	PE	3	0	0	3
Course Develop conceptual schematics for ecological modeling,	models for diss	olved	oxy	gen	and
Objectives pathogens, Activated sludge process schemes, linear	optimization m	nodels	s, p	aram	eter
estimation and experimental design.					
UNIT – I ECOLOGICAL SYSTEM		9	9 Pe	riods	5
Basic concepts in ecology and ecological modeling, population dynamics:	birth and death	Proc	esse	s. Si	ngle
species growth, prey-predator models: Lotka - Volterra, Rosenzweig-maca	rther, Kolmogor	ov m	odel	s. M	ulti-
species modelling - structural analysis and stability of complex Ecosystems.					
UNIT – II REACTOR MODELING			9 Pe	riods	5
CSTR, plug-flow, dispersion. A case study of a tubular reactor with axial	· · ·				
search algorithms for nonlinear dynamical models, variance of estimated p	parameters. App	licatio	on to	o Mo	nod
and Haldane kinetics.					
UNIT – III WATER QUALITY MODELING		9	9 Pe	riods	5
Rivers and streams water quality modelling -dispersion and mixing- water	quality modellin	ng pr	oces	s- m	ode
sensitivity-assessing model performance; models for dissolved oxygen and	l pathogens- poll	utant	and	nutr	rient
dynamics -dissolved oxygen dynamics -groundwater quality modeling.					
UNIT – IV MICROBIAL DYNAMICS AND ENERGETICS			9 Pe	riod	5
Requirements for carbon and nutrient removal. Activated sludge: process s	schemes: comple	taler 1			
	•	•		-	-
flow, SBR, nutrient removal. Anaerobic digestion: process dynamics, o	operational Contr	•		-	-
treatment processes.	operational Contr	rol of	f wa	istew	ate
treatment processes. UNIT – V COMPUTER BASED SOLUTIONS		rol of	f wa 9 Pe	istew	vatei
treatment processes. UNIT - V COMPUTER BASED SOLUTIONS Formulation of linear optimization models. Linear programming. Sensitive	vity testing and	rol of dual	f wa 9 Pe ity.	riods Solu	vater s tion
treatment processes. UNIT – V COMPUTER BASED SOLUTIONS Formulation of linear optimization models. Linear programming. Sensitive techniques and computer programming; Formulation of linear optimization	vity testing and	rol of dual	f wa 9 Pe ity.	riods Solu	ater s tion
treatment processes. UNIT – V COMPUTER BASED SOLUTIONS Formulation of linear optimization models. Linear programming. Sensitive techniques and computer programming; Formulation of linear optimization simulation, parameter estimation and experimental design.	vity testing and	rol of dual	f wa 9 Pe ity.	riods Solu	vater s tion
treatment processes. UNIT – V COMPUTER BASED SOLUTIONS Formulation of linear optimization models. Linear programming. Sensitive techniques and computer programming; Formulation of linear optimization simulation, parameter estimation and experimental design. Contact Periods:	ivity testing and on models. Appli	rol of dual	f wa 9 Pe ity.	riods Solu	vater s tion
treatment processes. UNIT – V COMPUTER BASED SOLUTIONS Formulation of linear optimization models. Linear programming. Sensitive techniques and computer programming; Formulation of linear optimization simulation, parameter estimation and experimental design. Contact Periods:	ivity testing and on models. Appli	rol of dual	f wa 9 Pe ity.	riods Solu	ater s tion
treatment processes. UNIT – V COMPUTER BASED SOLUTIONS Formulation of linear optimization models. Linear programming. Sensitive techniques and computer programming; Formulation of linear optimization simulation, parameter estimation and experimental design. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Periods	ivity testing and on models. Appli	rol of dual	f wa 9 Pe ity.	riods Solu	vater s tior
treatment processes. UNIT – V COMPUTER BASED SOLUTIONS Formulation of linear optimization models. Linear programming. Sensitive techniques and computer programming; Formulation of linear optimization simulation, parameter estimation and experimental design. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods To REFERENCES	wity testing and on models. Appli otal: 45 Periods	rol of dual cation	f wa 9 Pe ity. n of	riods Solu mod	s tior lels
treatment processes. UNIT – V COMPUTER BASED SOLUTIONS Formulation of linear optimization models. Linear programming. Sensitive techniques and computer programming; Formulation of linear optimization simulation, parameter estimation and experimental design. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods To REFERENCES 1 "Environmental Systems Philosophy, Analysis and Control" book by	wity testing and on models. Appli otal: 45 Periods	rol of dual cation	f wa 9 Pe ity. n of	riods Solu mod	s tion lels-
Formulation of linear optimization models. Linear programming. Sensitive techniques and computer programming; Formulation of linear optimization simulation, parameter estimation and experimental design. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods To REFERENCES 1 "Environmental Systems Philosophy, Analysis and Control" book by J. Chorley, Princeton University press publication, 2015	ivity testing and on models. Appli otal: 45 Periods by Robert John Be	dual cation	f ware f	riods Solu mod	s tior lels
treatment processes. UNIT – V COMPUTER BASED SOLUTIONS Formulation of linear optimization models. Linear programming. Sensitive techniques and computer programming; Formulation of linear optimization simulation, parameter estimation and experimental design. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods To REFERENCES 1 "Environmental Systems Philosophy, Analysis and Control" book by J. Chorley, Princeton University press publication,2015 2 "Environmental System Analysis" book by Stefano Marsili-libelli, CRO	wity testing and on models. Appli otal: 45 Periods y Robert John Be C press publicati	rol of dual cation	f w <i>e</i> 9 Pe iity. n of	riods Solu mod	s tion lels
treatment processes. UNIT – V COMPUTER BASED SOLUTIONS Formulation of linear optimization models. Linear programming. Sensitive techniques and computer programming; Formulation of linear optimization simulation, parameter estimation and experimental design. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Periods REFERENCES 1 "Environmental Systems Philosophy, Analysis and Control" book by J. Chorley, Princeton University press publication,2015	ivity testing and on models. Appli otal: 45 Periods y Robert John Ba C press publicati of publishers & D	cation dual cation ennett on, 20 Distrib	f wa 9 Pe ity. n of t ana 2016 putor	riods Solu mod	tion lels

Fenninger, Springer Berlin Heidelberg publications, 14th December 2012

5 **"Environmental Pollution Analysis"** book by SM. Khopkhar ,2nd Edition, New age international publication, 2020

COUR	COURSE OUTCOMES:	
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Describe ecological modeling, single and multi-species modeling on a brief	K2
CO2	Explain modeling of CSTT and the kinetics of reaction taking place in it	K3
CO3	Analyze and model the river system and also ground water system	K3
CO4	Analyze the wastewater treatment system	K3
CO5	Demonstrate computational techniques for modeling	K3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	2	2	2	-		
CO2	2	2	3	3	2	-		
CO3	3	3	3	3	3	-		
CO4	2	2	3	3	3	-		
CO5	3	3	3	2	2	-		
23EEPE11	3	3	3	3	3	-		
1 – Slight, 2 – Moderate, 3	– Substantial			-				

ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*			No. Western						
CAT1	15	10	30	45	-	-	100		
CAT2	15	10	30	45	-	-	100		
Individual		TO APPEND	EHS C	9					
Assessment 1/									
Case Study 1/	-	20	30	50	-	-	100		
Seminar 1 /									
Project 1									
Individual		A 71							
Assessment 2/		8							
Case Study 2/	-	20	30	50	-	-	100		
Seminar 2/									
Project 2		CINCLES	112	9					
ESE	15	10	30	45			100		

REMOTE SENSING AND GIS APPLICATIONS IN ENVIRONMENTAL ENGINEERING

		ILLENING							
PREREQUIS	SITES	CATEGORY	L	Т	Р	С			
	NIL	PE	3	0	0	3			
Course	• To comprehend the fundamentals of remote ser	sing and the data ac	quis	ition	proc	ess.			
Objectives	• To explore the principles and applications of a	liverse remote sens	ing t	echn	ique	s and			
	systems.								
• To provide an insight of image processing techniques, GIS concepts, and									
	structure.								
	• To employ knowledge of remote sensing and	geographic informa	tion	syste	ems (GIS)			
	in resource management and pollution monitor	ng.							
	• To employ geospatial knowledge to environme	ental applications us	ing (GIS a	and i	mage			
	processing software.								
UNIT – I	FUNDAMENTALS OF REMOTE SENSING			9 I	Perio	ds			
	o remote sensing – Principles of Electro – Magnetic Radi	0.				with			
Atmosphere a	nd land surface – spectral reflectance of earth materials a	nd vegetation – Dat	a pro	oduct	s.				
UNIT – II	AERIAL PHOTOGRAPHY AND SATELLITE RE	MOTE SENSING		9 I	Perio	ds			
Ũ	raphy – Photogrammetry and Visual Image Interpretation								
	olutions - Multispectral Remote Sensing system (MSS)	U							
	rmal IR Radiation properties, systems and application - M	Aicrowave and LID	AR 1	emo	te se	nsing			
	nd applications.								
UNIT – III	DATA ANALYSIS AND GIS				Perio				
-	s - Visual interpretation and digital image processing	- Classification. In	trodu	ictio	n to	GIS,			
	data base structure, various GIS software.								
UNIT – IV	REMOTE SENSING AND GIS APPLICATIONS				Perio				
	of Remote sensing and GIS - Management and Monito	-	vater	and	poll	ution			
	ervation of resources - coastal zone management -Limit								
UNIT – V	CASE STUDIES AND SOFTWARE APPLICATION				Perio				
•	e Processing software. ArcGIS Spatial analysis- Land suit	• •				•			
	ing. Envi - Digital image processing - Land use and L	andcover classificat	ion-	Wat	er qu	ıality			
assessment –									
Contact Perio									
Lecture: 45 P	Periods Tutorial: 0 Periods Practical: 0 Periods	riods Total: 4	5 Pe	riod	S				

1	"Text Book of Remote Sensing and Geographical Information Systems", Anji Reddy, Fourth edition,
	BS Publications, 2022.
2	"Remote sensing applications", M.G. Srinivas Narosa publishing house, 2001.
3	"Remote Sensing and Geographical Information System", A M. Chandra and S. K. Ghosh, second
	edition, Narosa Publishing House, 2016
4	"Application of GIS and Remote Sensing in Environmental Management", Abbasi.S.A., Discovery
	Publication, 2010
5	"Principles of Geographical Information System", Burroughs P.A, Third edition, Oxford University
	Press, 2016.
6	"Remote Sensing and Image Interpretation", Thomas Lillesand, Seventh Edition, John Wiley Sons,
	2015.

COUR	SE OUTCOMES:	Bloom's				
		Taxonomy				
Upon c	Upon completion of the course, the students will be able to:					
CO1	Comprehend remote sensing principles and investigate the reflectance properties of	K2				
	earth features.					
CO2	Describe various remote sensing systems and their applications in earth observation.	K2				
CO3	Apply image processing techniques on satellite images and have a full knowledge of	K3				
	GIS concepts and database structure.					
CO4	Employ remote sensing and geographic information systems (GIS) to monitor and	K3				
	manage the environment.					
CO5	Employ GIS and image processing tools for environmental applications.	K3				

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	2	3	2	1				
CO2	3	2	2	3	3	2				
CO3	3	3	2	3	3	2				
CO4	3	3	00002 Se	3	3	2				
CO5	3	3	2	3	3	2				
23EEPE12	3	3	2	3	3	2				
1 – Slight, 2 – Modera	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	35	20	10	5	5	100			
CAT2	20	30	25	15	5	5	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	35	35	10	-	-	100			
ESE	25	35	20	10	5	5	100			

23EEPE13	SOIL POLLUTION CONTROL				
PREREQUISIT	ES CATEGORY	L	Τ	P	С
	NIL PE	3	0	0	3
Course	To identify various soil pollution sources and its effect on the ecosyst				-
Objectives	interaction between soil and pollutants and their mechanisms to	o selec	et ap	prop	riate
	remediation techniques.				
UNIT – I	SOIL POLLUTION AND ITS SOURCES			eriod	
	ces of Pollution-Point source pollution and diffuse soil pollution			•	
	l, Agricultural, livestock activities-mining and urban expansion	and	ınfra	struc	tural
	of geostructures on contaminated sites- Case studies.		0.0	•	1
UNIT – II	IMPACT OF SOIL POLLUTION ON ECOSYSTEM		-	eriod	
-	ure-soil structure-Ecosystem-food chain contamination-use of fertilizer	-			
-	agriculture-Acidification-crop loss-pathways of exposure of huma	n bein	igs-E	cosys	stem
stability. UNIT – III	SOIL POLLUTANT INTERACTION		0 D	eriod	la
	of disposal of waste-factors governing soil pollution interaction- Co	ntamir			
-	esses-Soil- Chemical kinetics -Governing equations-coupling				-
	transport-solute transport modelling software.		mann	mani	-5011
UNIT – IV	ASSESSMENT OF CONTAMINATED SITES		9 P	eriod	ls
	a-Risk Assessment- surface and ground water contamination, land c	ontami			
-	This rissessment surface and ground water containmation, fand e	ontann	nuuro	,	
risks-waste contai	nment in landfills, leachate-monitoring facilities- IoT Technologies-Ca	se stud			
	nment in landfills, leachate-monitoring facilities- IoT Technologies-Ca	se stud	ies.		
UNIT – V Factors influenci Biological metho	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice	sical, (ies. 9 P Chen ctive	barr	ls and iers.
UNIT – V Factors influenci Biological metho	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice	sical, (ies. 9 P Chen ctive opplic	nical barr catior	ls and iers.
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Perio	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota	sical, (ble rea s and A	ies. 9 P Chen ctive opplic	nical barr catior	ls and iers.
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Period REFERENC	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ES	sical, (ble rea s and A l: 45 P	ies. 9 P Chen ctive applic eriod	nical barr catior	ls and iers. 1s.
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Period REFERENC	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota	sical, (ble rea s and A l: 45 P	ies. 9 P Chen ctive applic eriod	nical barr catior	ls and iers. 1s.
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Perio REFERENCI 1 <i>"Soil Pollut</i> 2008.	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ES	sical, (ble rea s and A l: 45 Po	ies. 9 P Chen ctive opplic eriod	nical barr catior	ls and iers. ns.
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Periods REFERENCE 1 "Soil Polluta 2008. 2 "Fundamen	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ES ion, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Ver.	sical, 0 ble rea s and A I: 45 P dag Ber CRC Pr	ies. 9 P Chem ctive applic eriod	nical barr catior Is Heide	ls and iers. ns.
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Periods: REFERENCI 1 "Soil Polluti 2008. 2 "Fundamentation"	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ES ion, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Verticals tals of Environmental Site Assessment and Remediation", YueRong, Contemporation	sical, 0 ble rea s and A I: 45 P dag Ber CRC Pr	ies. 9 P Chem ctive applic eriod	nical barr catior Is Heide	ls and iers. ns.
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Periods REFERENCI 1 "Soil Polluta 2008. 2 "Fundamenta Jo Strange at	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ES Fon, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Verticals of Environmental Site Assessment and Remediation", YueRong, C tals of Environmental Site Assessment and Remediation – Design at	sical, o ble rea s and A I: 45 P ag Ber CRC Pr nd Pro	ies. 9 P Chem ctive applic eriod eriod	hical barr cation Is Heide 2018. c Gu	ls and iers. ns. <i>lber</i>
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Periods REFERENCI 1 "Soil Polluta 2008. 2 "Fundamenta Jo Strange at	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ess Fractical: 0 Periods Tota ess Investigation, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Ver tals of Environmental Site Assessment and Remediation ", YueRong, C ted Land: Investigation, Assessment and Remediation – Design a nd Nick Langdon, ICE, 2008.	sical, o ble rea s and A I: 45 P ag Ber CRC Pr nd Pro	ies. 9 P Chem ctive applic eriod eriod	hical barr cation Is Heide 2018. c Gu	ls and iers. ns. <i>lber</i>
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Perio REFERENCI 1 "Soil Polluta 2008. 2 "Fundamen. 3 "Contamina Jo Strange a. 4 "Geo-Enviro USA, 2004.	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ess Fractical: 0 Periods Tota ess Investigation, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Ver tals of Environmental Site Assessment and Remediation ", YueRong, C ted Land: Investigation, Assessment and Remediation – Design a nd Nick Langdon, ICE, 2008.	sical, (ble rea s and A l: 45 Po lag Ber CRC Pr nd Pro Wiley of	ies. 9 P Chen ctive applic eriod eriod	hical barr cation Is Heide 2018. c Gu Sons,	ls and iers. ns. <i>lber</i> <i>ides</i>
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Perio 1 "Soil Polluta 2008. 2 "Fundamen 3 "Contamina Jo Strange a. 4 "Geo-Enviro USA, 2004. 5 "Applied Gr	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ess ion, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Ver tals of Environmental Site Assessment and Remediation", YueRong, C ted Land: Investigation, Assessment and Remediation – Design a nd Nick Langdon, ICE, 2008. ommental Engineering", HariD.Sharma and Krishna R.Reddy,John	sical, (ble rea s and A l: 45 Po lag Ber CRC Pr nd Pro Wiley of	ies. 9 P Chen ctive applic eriod eriod	hical barr cation Is Heide 2018. c Gu Sons,	ls and iers. ns. <i>lber</i> <i>ides</i>
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Perio REFERENCE 1 "Soil Polluta 2008. 2 "Fundamen 3 "Contamina Jo Strange a 4 "Geo-Enviro USA, 2004. 5 "Applied Gr William W W	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ess Fractical: 0 Periods Tota fon, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Ver Fractical: 0 Periods Tota fon, Monitoring and Remediation, Assessment and Remediation – Design a Fractical: 0 Periods Fractical: 0 Periods fon, Monitoring and Remediation, Assessment and Remediation – Design a Fractical: 0 Periods Fractical: 0 Periods fon, Monitoring and Remediation, Assessment and Remediation – Design a Fractical: 0 Periods Fractical: 0 Periods fon, Monitoring and Remediation, ICE, 2008. Fractical: 0 Periods Fractical: 0 Periods Fractical: 0 Periods fond Water modelling: simulation of flow and advective transport Fractical: 0 Periods Fractical: 0 Periods Fractical: 0 Pe	sical, 0 ble rea s and A l: 45 Po lag Ber CRC Pr nd Pro Wiley o ", Ande	ies. 9 P Chem ctive applic eriod eriod eriod and s erson	hical barr cation Is Heide 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2017. 20.	ls and iers. ns. <i>lber</i> <i>ides</i>
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Perio 1 "Soil Polluta 2008. 2 "Fundamen 3 "Contamina Jo Strange a. 4 "Geo-Enviro USA, 2004. 5 "Applied Gr	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ess Fractical: 0 Periods Tota fon, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Ver Fractical: 0 Periods Tota fon, Monitoring and Remediation, Assessment and Remediation – Design a Fractical: 0 Periods Fractical: 0 Periods fon, Monitoring and Remediation, Assessment and Remediation – Design a Fractical: 0 Periods Fractical: 0 Periods fon, Monitoring and Remediation, Assessment and Remediation – Design a Fractical: 0 Periods Fractical: 0 Periods fon, Monitoring and Remediation, ICE, 2008. Fractical: 0 Periods Fractical: 0 Periods Fractical: 0 Periods fond Water modelling: simulation of flow and advective transport Fractical: 0 Periods Fractical: 0 Periods Fractical: 0 Pe	sical, (ble rea s and A l: 45 P lag Ber CRC Pr nd Pra Wiley d ", Ande Blo	ies. 9 P Chen ctive applic eriod eriod eriod and S erson pom's	hical barr cation Is Heide 2018. c Gu Sons, , Ma	ls and iers. ns. <i>lber</i> <i>ides</i>
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Perio REFERENCE 1 "Soil Polluta 2008. 2 "Fundamen 3 "Contamina Jo Strange a 4 "Geo-Enviro USA, 2004. 5 "Applied Gr William W W	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permea nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ess Fractical: 0 Periods Tota fon, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Ver Fractical: 0 Periods Tota fon, Monitoring and Remediation, Assessment and Remediation – Design a Fractical: 0 Periods Fractical: 0 Periods fon, Monitoring and Remediation, Assessment and Remediation – Design a Fractical: 0 Periods Fractical: 0 Periods fon, Monitoring and Remediation, Assessment and Remediation – Design a Fractical: 0 Periods Fractical: 0 Periods fon, Monitoring and Remediation, ICE, 2008. Fractical: 0 Periods Fractical: 0 Periods Fractical: 0 Periods fond Water modelling: simulation of flow and advective transport Fractical: 0 Periods Fractical: 0 Periods Fractical: 0 Pe	sical, (ble rea s and A l: 45 P lag Ber CRC Pr nd Pra Wiley a ", Anda Blo Taxe	ies. 9 P Chem ctive applic eriod eriod and s and s erson	hical barr cation Is Heide 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2019. 20.	ls and iers. ns. <i>lber</i> <i>ides</i>
UNIT – V Factors influenci Biological metho Stabilization meth Contact Periods: Lecture: 45 Perio 1 "Soil Polluta 2008. 2 "Fundamen 3 "Contamina Jo Strange a 4 "Geo-Enviro USA, 2004. 5 "Applied Gr William W W COURSE OUTCO Upon completion	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permeat nods -Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ess Practical: 0 Periods Tota ess Fon, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Ver tals of Environmental Site Assessment and Remediation – Design a nd Nick Langdon, ICE, 2008. ommental Engineering", HariD.Sharma and Krishna R.Reddy,John cound Water modelling: simulation of flow and advective transport coessner and Randall J. Hunt, Academic Press, 2015. comest. of the course, the students will be able to:	sical, (ble rea s and A l: 45 P lag Ber CRC Pr nd Pra Wiley of ", Ande Blo Taxo Ma	ies. 9 P Chen ctive applic eriod eriod eriod and s erson pom's ppec	hical barr cation Is Heide 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2019. 20.	ls and iers. ns. <i>lber</i> <i>ides</i>
UNIT – V Factors influenci Biological metho Stabilization metho Contact Periods: Lecture: 45 Period I "Soil Polluta 2 "Fundamen. 3 "Contamina Jo Strange a 4 "Geo-Enviro USA, 2004. 5 "Applied Gr William W W	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permeat nods -Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ess ion, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Ver tals of Environmental Site Assessment and Remediation ", YueRong, O ted Land: Investigation, Assessment and Remediation - Design a nd Nick Langdon, ICE, 2008. onmental Engineering", HariD.Sharma and Krishna R.Reddy,John vound Water modelling: simulation of flow and advective transport voessner and Randall J. Hunt, Academic Press, 2015. COMES: of the course, the students will be able to: ne sources of soil pollution	sical, (ble rea s and A l: 45 Po lag Ber CRC Pr nd Pro Wiley o ", Ando Blo Taxo Ma	ies. 9 P Chem ctive applic eriod eriod eriod and S erson pom's onom sppec K3	hical barr cation Is Heide 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2019. 20.	ls and iers. ns. <i>lber</i> <i>ides</i>
UNIT – VFactors influenciBiological methoStabilization methoContact Periods:Lecture: 45 Period1 "Soil Polluta2 "Fundamen3 "ContaminaJo Strange a4 "Geo-EnviroUSA, 2004.5 "Applied GrWilliam W WCOURSE OUTCOUpon completionCO1Explain thCO2Demonstr	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy ds- Limitations- Phyto stabilization- pump and treat method, permeat nods –Solidification- Thermal method-reclaimed sites- Current Practice ods Tutorial: 0 Periods Practical: 0 Periods Tota ess ion, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Ver tals of Environmental Site Assessment and Remediation – Design and Nick Langdon, ICE, 2008. mmental Engineering", HariD.Sharma and Krishna R.Reddy,John ound Water modelling: simulation of flow and advective transport voessner and Randall J. Hunt, Academic Press, 2015. COMES: of the course, the students will be able to: ne sources of soil pollution rate the impacts of pollution on the ecosystem	sical, (ble rea s and A l: 45 Po lag Ber CRC Pr nd Pro Wiley o ", Ando Blo Taxo Ma	ies. 9 P Chem ctive Applic eriod eriod and f erson pom's pom's pom's K3 K3	hical barr cation Is Heide 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2019. 20.	ls and iers. ns. <i>lber</i> <i>ides</i>
UNIT – VFactors influenciBiological methoStabilization methContact Periods:Lecture: 45 PeriodI "Soil Polluta2"Fundamen3"ContaminaJo Strange a4"Geo-EnviroUSA, 2004.5"Applied GrWilliam W WCOURSE OUTOUpon completionCO1Explain thCO2DemonstrCO3Explain th	REMEDIATION TECHNOLOGIES ng bioremediation- Contemporary approaches to remediationPhy Ander Schleid in Contemporary approaches to remediation - Phy Approaches to remediation - Practical: 0 Periods Tota Dots Tutorial: 0 Periods Practical: 0 Periods Tota ES Formation of the periods Tota ES Formation of Environmental Site Assessment and Remediation - Design a Advise the Investigation, Assessment and Remediation - Design a Marito.Sharma and Krishna R.Reddy,John Found Water modelling: simulation of flow and advective transport Joessner and Randall J. Hunt, Academic Press, 2015. COMES: of the course, the students will be able to: he sources of soil pollution ate the impacts of pollution on the ecosystem </td <td>sical, (ble rea s and A l: 45 Po lag Ber CRC Pr nd Pro Wiley o ", Ando Blo Taxo Ma</td> <td>ies. 9 P Chem ctive applic eriod eriod and S and S and S crson ppec K3 K3 K3</td> <td>hical barr cation Is Heide 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2019. 20.</td> <td>ls and iers. ns. <i>lber</i> <i>ides</i></td>	sical, (ble rea s and A l: 45 Po lag Ber CRC Pr nd Pro Wiley o ", Ando Blo Taxo Ma	ies. 9 P Chem ctive applic eriod eriod and S and S and S crson ppec K3 K3 K3	hical barr cation Is Heide 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2019. 20.	ls and iers. ns. <i>lber</i> <i>ides</i>
UNIT – VFactors influenciBiological methoStabilization methoContact Periods:Lecture: 45 PeriodI "Soil Polluta2"Fundamen3"ContaminaJo Strange atJo Strange at4"Geo-EnviroUSA, 2004."Applied Gr5"Applied GrWilliam W WCOURSE OUTCOUpon completionCO1Explain thCO2DemonstrCO3Explain thCO4Assess th	REMEDIATION TECHNOLOGIES ng bioremediation - Contemporary approaches to remediation - Phy and solution - Phyto stabilization - pump and treat method, permeat nods – Solidification - Thermal method-reclaimed sites - Current Practice odds Tutorial: 0 Periods Practical: 0 Periods Tota odds Tutorial: 0 Periods Practical: 0 Periods Tota ES con, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Ver tals of Environmental Site Assessment and Remediation – Design a nd Nick Langdon, ICE, 2008. ommental Engineering", HariD.Sharma and Krishna R.Reddy,John cound Water modelling: simulation of flow and advective transport cossner and Randall J. Hunt, Academic Press, 2015. COMES: of the course, the students will be able to: ne sources of soil pollution at the impacts of pollution on the ecosystem	sical, 0 ble rea s and A l: 45 Po lag Ber CRC Pr nd Pro Wiley o ", Ando Taxo Ma	ies. 9 P Chem ctive Applic eriod eriod and f erson pom's pom's pom's K3 K3	hical barr cation Is Heide 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2018. 2019. 20.	ls and iers. ns. <i>lber</i> <i>ides</i>

TT		Taxonomy Mapped	
Upon	Upon completion of the course, the students will be able to:		
CO1	Explain the sources of soil pollution	K3	
CO2	Demonstrate the impacts of pollution on the ecosystem	K3	
CO3	Explain the flow of contaminants and mass transport processes	K3	
CO4	Assess the contaminated sites using conventional and modern technologies	K3	
CO5	Select and apply suitable techniques for the remediation of contaminated sites.	K3	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	3	3	3			
CO2	3	2	2	3	3	2			
CO3	3	2	2	3	3	2			
CO4	3	2	2	3	3	2			
CO5	3	2	2	3	3	2			
23EEPE13	3	2	2	3	3	2			
1 - Slight, $2 - $ Moderate, $3 - $ S	ubstantial								

Test / Bloom's	RememberingUnderstanding(K1) %(K2) %		Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*	(111) /0	(112) /0	(133) 70	(114) /0	(113) /0	(130) /0	70
CAT1	20	30	25	15	5	5	100
CAT2	20	30	25	15	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	20	30	25	15	5	5	100

HAZARDOUS WASTE MANAGEMENT

		<u> </u>	- 1		_	~
PREREQUIS		CATEGORY	L	T	P	C
~~~~	NIL	PE	3	0	0	3
Course	To understand the characteristics of different types o					
Objectives	waste minimization and resource recovery to categor	ize the different ha	zardo	ous v	vaste	and
	hazardous waste management.			0.0	•	
UNIT – I	INTRODUCTION TO HAZARDOUS WASTES				erio	
	te definition – Sources and classification –Hazardous					
•	ardous wastes – Collection – handling - storage and the	ransport - ISDF co	ncep	t - F	iazar	aous
waste managen	nent rules and regulations.					
UNIT – II	WASTE MINIMIZATION AND RESOURCE REC	COVERY		9 P	eriod	ls
Waste reduction	on process - benefits of hazardous waste reductio	on - Properties in	haz	ardo	us v	vaste
management -	Selection of the waste minimization process - case a	studies on by prod	uct r	recov	very	from
incineration. Tr	ansportation of hazardous wastes - Regulation - contain	ners for hazardous n	nater	ials -	bulk	c and
non-bulk transp	ort - hazardous substances emergency response.					
UNIT – III	HAZARDOUS WASTE MANAGEMENT: N	NUCLEAR AND		9 P	eriod	ls
	BIOMEDICAL WASTE					
Nuclear waste ·	· Characteristics – Types – Nuclear waste – Uranium m	ining and processin	g – F	Powe	r rea	ctors
	fuel fabrication wastes - spent fuel - Management of	<b>e</b> 1	•			
Nuclear power	reactors - Health and environmental effects - Biomedi	cal waste - Introduc	tion	to b	iome	dical
wastes - sourc	es - classification - collection - segregation - treatm	ent and disposal -	Bior	nedi	cal v	vaste
management ru	les.					
UNIT – IV	HAZARDOUS WASTE MANAGEMENT: E-WAS	STE AND		9 P	eriod	ls
	PLASTIC WASTE					
E-waste – Intro	duction - characteristics - generation - collection - trans	sport - recycling and	d disj	posa	l met	hods
- Effects of e-v	vastes on the society and environment - E-waste waste	e management rules	s - P	lasti	c wa	ste –
Sources – Prod	uction - Global and Indian Context - Plastic Waste Man	agement Practices -	-recy	cling	g - en	ergy
production - otl	ner application.					
UNIT – V	HAZARDOUS WASTE DISPOSAL			9 P	eriod	ls
Land-fill dispos	al - Landfill at disposal sites, developing a new facility	- landfill operation	- Si	te rei	medi	atior
	ent and inspection - the hazardous system and the national	*				
- Site assessme						
	isposal sites.					
monitoring of d						
	ls:	iods Total: 45	' Da	• • • •		

1	<b>CPHEEO (2016), "Manual of Municipal Solid Waste Management"</b> , Ministry of Urban Development, India.
2	<b>"Integrated Solid Waste Management, Engineering Principles and Management Issues",</b> Tchobanoglous G, Theisen H, Vigil S.A., 2 nd Edition.
3	<b>"BASIC HAZARDOUSWASTE MANAGEMENT"</b> book by William Blackman,3 rd Edition, 2016.
4	<b>"SOLID AND HAZARDOUS WASTE MANAGEMENT"</b> book by M.N. Rao,2 nd Edition, BS Publications / BSP Books; January 1 2020

COUR	Bloom's Taxonomy			
Upon o	Upon completion of the course, the students will be able to:			
CO1	Classify the types of hazardous waste and their characteristics.	K2		
CO2	Discover the techniques in the field to minimize waste and resource recovery.	K3		
CO3	Categorize the methods and analysis of nuclear and biomedical waste management.	K3		
CO4	Categorize the methods and analysis of e-waste and plastic waste management.	K3		
CO5	Articulate the concepts of hazardous waste disposal in the landfill.	К3		

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
C01	2	2	1	2	2	2			
CO2	3	3	2	3	3	2			
CO3	3	3	2	3	3	1			
CO4	3	3	2	3	3	1			
CO5	2	2	m	3	3	2			
23EEPE14	3	3	2	3	3	2			
1 - Slight, 2 - Moderate, 3	1 – Slight, 2 – Moderate, 3 – Substantial								

i blight, 2	Woderate, 5 – Sut	stantia	Internation	2			
				7			
ASSESSMENT	<b>F PATTERN – T</b>	HEORY		(			
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
Category*		X BA		V.B.			
CAT1	25	30	35	10	-	-	100
CAT2	25	30	35	10	-	-	100
Individual		Contraction of the second	Top and	7			
Assessment 1/							
Case Study 1/	20	30	40	10	-	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment 2/							
Case Study 2/	20	30	40	10	-	-	100
Seminar 2/							
Project 2							
ESE	25	30	35	10	-	-	100

23EEPE15	ADVANCED WASTEWATER TREA	TMENT AND RE	USE							
PREREQUIS	TES	CATEGORY	L	Т	Р	C				
	NIL	PE	3	0	0	3				
Course	Advanced wastewater treatment, air stripping, nitrog	gen removal, Men	ıbran	e sej	parat	ion				
Objectives	processes, nutrient process, membrane structure and	ocesses, nutrient process, membrane structure and rejection mechanism, Estim								
	sludge produced from chemical precipitation of ph knowledge in reclamation and reuse of Wastewater, pu in water reuse.	-								
UNIT – I	GENERAL AND STRIPPING		9	) Per	riods					
modifications in nutrients- Selection	ced wastewater treatment – technologies used for advan in advanced treatment-oxidation processes – regulatio ction of unit operation in advanced treatment Gas strip pping towers – applications. – Air stripping of ammon	ns in removal of l pping – Analysis o	NBO	D an s stri	id ot	her g –				
UNIT – II	NITROGEN REMOVAL AND OXIDATION PRO	CESSES	9	Per	riods					
Nutrient remov	val – Nitrogen removal – forms and sources of nitrog	en – Biological ni	troge	n rer	nova	ıl –				
chemical proc	netics – Denitrification kinetics – Design parameters – esses Oxidation processes-advanced oxidation proc ivatives-use of peroxy, Cl- and oxy radicals in reducing <b>MEMBRANE SEPARTION PROCESSES A</b>	cess in removal COD.	of n		en a	and				
01111 – 111	DIALYSIS	U ELECIKU		, rei	lous					
membranes – n theory – memb	aration processes – process classification – membrane r nembrane configuration – membrane fouling- Molecula prane structure and rejection mechanism – osmotic pro- ra filtration – Electrodialysis – theory – power requirement	r weight cutoff – R essure – Transport	levers	se os	mosi	is –				
UNIT – IV	PHOSPHOROUS REMOVAL		9	Per	iods					
precipitation w	emoval – By biological methods – Phosphorous removal with Aluminium, calcium and Iron – Comparison of chemical precipitation of phosphorous with lime in PST	processes – Estir			-					
I UNIT – V	WASTEWATER RECLAIMATION AND REUSE		9	) Per	iods					
Merits and dem	nerits of advanced treatment-applications of treated wast	ewater- Wastewate								
	e of water recycling in the hydrologic cycle – wastewat									
	ntal issues in water reuse – Level of treatment – Risk A		-							
with reclaimed	water.									
<b>Contact Perio</b>	ds:									
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Per	iods Total: 4	45 Pe	riod	S					

1	"Waste Water Engineering – Treatment and reuse", Metcalf and Eddy, Fourth Edition, McGraw
	Hill Education, 2017.
2	"Waste Water Treatment and disposal", Arceivala S. J., Marcel dekker publishers, 1981.
3	"Environmental Engineering", Howard S. Peavy, Donald R. Rowe and George Techobanoglous,
	McGraw Hill Education, 2017.
4	"Wastewater Treatment Plant – Planning, Design and operation", QASIM S. R, Holt Rinchart
	and Winston, New York, 2002.
5	"Biological Process Design for Wastewater Treatment", Larry D. Benefield and Clifford
	W. Randall, Prentice - Hall Series in Environmental sciences, 1985.

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon c	ompletion of the course, the students will be able to:	Mapped		
CO1	Examine suitable advanced wastewater treatment for critical pollutant removal.	K3		
CO2	Demonstrate kinetics involved in nitrogen removal process.	K2		
CO3	Label suitable mechanism in membrane process.	K3		
CO4	Enumerate methods and process for phosphorus removal.	K2		
CO5	Investigate different wastewater reclamation and reuse technique.	K3		

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	2	2	3	1				
CO2	2	2	3	2	3	1				
CO3	3	3	2	3	2	1				
CO4	2	3	2	3	3	1				
CO5	2	3	2	3	2	1				
23EEPE15	3	3	3	3	3	1				
1 – Slight, 2 – Moderate, 3 – Sub	stantial		and l							

ASSESSMENT	ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
Category*		A R										
CAT1	20	20	30	15	15	-	100					
CAT2	20	25	35	10	10	-	100					
Individual		REE	A CONTRACT	THE REAL								
Assessment 1/		00	0									
Case Study 1/	-	20	50	20	10	-	100					
Seminar 1 /												
Project 1												
Individual												
Assessment 2/												
Case Study 2/	-	25	40	25	10	-	100					
Seminar 2/												
Project 2												
ESE	25	20	30	10	15	-	100					

<b>23EEPE16</b>	ENVIRONMENTAL BIOTECHNOLOGY										
PREREQUIS	TES			CATEGORY	L	Т	P	С			
	NIL			PE	3	0	0	3			
Course	To emphasize the nee	d on wastewat	ter reclamation an	d reuse by imparti	ing kı	nowl	edge	on			
Objectives	nitrogen and phospho	trogen and phosphorus removal and on membrane process and Electro Dialysis.									
UNIT – I	GENERAL AND ST	RIPPING				9	Per	iods			
Need for adva	nced wastewater treat	ment – techn	ologies used for	advanced treatm	ent -	- co	nven	tional			
reactor modifie	ations in advanced tre	atment-oxidat	ion processes - r	regulations in rem	oval	of N	IBOI	D and			
other nutrients-	Selection of unit oper	ation in advan	ced treatment Gas	s stripping – Anal	ysis c	of ga	s stri	pping			
- Design of str	ripping towers – applic	ations. – Air	stripping of amm	onia – Breakpoin	t chlo	orina	tion	– Ion			
exchange											
UNIT – II	NITROGEN REMO	VAL AND O	XIDATION PRO	OCESSES		9	Per	iods			
Nutrient remov	al – Nitrogen remova	l – forms and	sources of nitro	gen – Biological	nitro	gen	remo	oval –			
Nitrification ki	netics – Denitrification	kinetics – De	esign parameters -	- Nitrogen remova	al by	– ph	ysica	al and			
chemical proc	esses Oxidation proc	esses-advance	ed oxidation pro	ocess in removal	l of	nitı	oger	n and			
phosphorus der	ivatives-use of peroxy,	Cl- and oxy ra	adicals in reducin	g COD.							
UNIT – III		DIDETON									
01011 - 111		PARTION	PROCESSES	AND ELECT	RO	9	Per	iods			
	DIALYSIS		a la constante de la constante								
Membrane sepa	DIALYSIS aration processes – pro	cess classifica	tion – membrane	materials-Symme	tric a	nd a	symi	netric			
Membrane sepa membranes – n	<b>DIALYSIS</b> aration processes – pro nembrane configuration	cess classifica n – membrane	tion – membrane fouling- Molecul	materials-Symme ar weight cutoff -	tric a - Rev	nd a erse	symi	metric osis -			
Membrane sepa membranes – r theory – memb	<b>DIALYSIS</b> aration processes – pro membrane configuration prane structure and rej	cess classifica 1 – membrane ection mechar	tion – membrane fouling- Molecul nism – osmotic p	materials-Symme ar weight cutoff – ressure – Transpo	tric a - Rev	nd a erse	symi	metric osis –			
Membrane sepa membranes – r theory – memb equations – ultr	<b>DIALYSIS</b> aration processes – pro nembrane configuration prane structure and rej ra filtration – Electrodia	cess classifica n – membrane ection mechar alysis – theory	tion – membrane fouling- Molecul nism – osmotic p	materials-Symme ar weight cutoff – ressure – Transpo	tric a - Rev	nd a erse odel	symi osm s and	metric osis – d flux			
Membrane sepa membranes – r theory – memb equations – ultr <b>UNIT – IV</b>	DIALYSIS aration processes – pro membrane configuration prane structure and rej ra filtration – Electrodia PHOSPHOROUS R	cess classifica n – membrane ection mechar alysis – theory EMOVAL	tion – membrane fouling- Molecul nism – osmotic p – power requiren	materials-Symme lar weight cutoff – ressure – Transpo nent.	tric a - Rev ort m	nd a erse odel 9	symi osm s and Per	metric osis – d flux <b>iods</b>			
Membrane sep membranes – r theory – memb equations – ultr <b>UNIT – IV</b> Phosphorous re	DIALYSIS aration processes – pro nembrane configuration prane structure and rej ra filtration – Electrodia PHOSPHOROUS R emoval – By biologica	cess classifica n – membrane ection mechar alysis – theory EMOVAL l methods – P	tion – membrane fouling- Molecul nism – osmotic p – power requiren hosphorous remo	materials-Symme ar weight cutoff – ressure – Transpo nent. val by chemical a	tric a - Rev ort m	nd a erse odel 9 on –	symi osm s and Per chei	metric osis – d flux <b>iods</b> mistry			
Membrane sepa membranes – r theory – memb equations – ultr <b>UNIT – IV</b> Phosphorous re of precipitation	DIALYSIS aration processes – pro- membrane configuration prane structure and rej ra filtration – Electrodia PHOSPHOROUS R emoval – By biologica n with Aluminium, ca	cess classifica n – membrane ection mechar alysis – theory EMOVAL l methods – P cium and Iron	tion – membrane fouling- Molecul nism – osmotic p – power requiren hosphorous remo n – Comparison	materials-Symme lar weight cutoff – ressure – Transponent. val by chemical a of processes – E	tric a - Rev ort m	nd a erse odel 9 on –	symi osm s and Per chei	metric osis – d flux <b>iods</b> mistry			
Membrane sepa membranes – r theory – memb equations – ultr <b>UNIT – IV</b> Phosphorous re of precipitation produced from	DIALYSIS aration processes – pro- membrane configuration prane structure and rej ra filtration – Electrodia PHOSPHOROUS R emoval – By biologica n with Aluminium, car chemical precipitation	cess classifica n – membrane ection mechar alysis – theory EMOVAL I methods – P cium and Iron of phosphorou	tion – membrane fouling- Molecul nism – osmotic p – power requiren hosphorous remo n – Comparison us with lime in PS	materials-Symme lar weight cutoff – ressure – Transponent. val by chemical a of processes – E T.	tric a - Rev ort m	nd a erse odel 9 on – tion	symr osm s and <b>Per</b> cher of s	metric osis – d flux <b>iods</b> mistry sludge			
Membrane sepa membranes – r theory – memb equations – ultr UNIT – IV Phosphorous re of precipitation produced from UNIT – V	DIALYSIS aration processes – pro- membrane configuration prane structure and rej a filtration – Electrodia PHOSPHOROUS R emoval – By biologica a with Aluminium, ca chemical precipitation WASTEWATER R	cess classifica n – membrane ection mechar alysis – theory EMOVAL l methods – P cium and Iron of phosphorou ECLAIMATI	tion – membrane fouling- Molecul nism – osmotic p – power requiren hosphorous remo n – Comparison is with lime in PS ON AND REUSI	materials-Symme lar weight cutoff – ressure – Transponent. val by chemical a of processes – E T.	tric a - Rev ort m dditio	nd a erse odel 9 on – tion	symr osm s and Per cher of s	metric osis – d flux iods mistry sludge iods			
Membrane sepa membranes – r theory – memb equations – ultr <b>UNIT – IV</b> Phosphorous re of precipitation produced from <b>UNIT – V</b> Merits and dem	DIALYSIS aration processes – pro- membrane configuration prane structure and rej ra filtration – Electrodia PHOSPHOROUS R emoval – By biologica n with Aluminium, ca chemical precipitation WASTEWATER RI merits of advanced treat	cess classifica n – membrane ection mechar alysis – theory EMOVAL I methods – P cium and Iror of phosphorou ECLAIMATIO ment-applicati	tion – membrane fouling- Molecul nism – osmotic p – power requiren hosphorous remo n – Comparison is with lime in PS ON AND REUSI ons of treated was	materials-Symme lar weight cutoff – ressure – Transponent. val by chemical a of processes – E T. E stewater- Wastewa	tric a - Rev ort m dditio stima	nd a erse odel 9 on – tion <b>9</b> eclar	symi osm s and Per chei of s Per natic	metric osis – d flux iods mistry sludge iods on and			
Membrane sepa membranes – r theory – memb equations – ultr <b>UNIT – IV</b> Phosphorous re of precipitation produced from <b>UNIT – V</b> Merits and dem reuse – The rol	DIALYSIS aration processes – pro- membrane configuration prane structure and rej ra filtration – Electrodia PHOSPHOROUS R emoval – By biologica n with Aluminium, ca chemical precipitation WASTEWATER RI merits of advanced treat e of water recycling in	cess classifica n – membrane ection mechar alysis – theory EMOVAL l methods – P cium and Iron of phosphorou ECLAIMATIO ment-applicati the hydrologi	tion – membrane fouling- Molecul nism – osmotic p – power requiren hosphorous remo n – Comparison is with lime in PS <b>ON AND REUSI</b> ons of treated was c cycle – wastewa	materials-Symme lar weight cutoff – ressure – Transponent. val by chemical a of processes – E T. E stewater- Wastewa ater reuse applicat	tric a - Rev ort m dditio stima	nd a erse odel 9 Dn – ttion 9 eclar – pu	symi osm s and Per cher of s Per natic	metric osis – d flux iods mistry sludge iods on and health			
Membrane sepa membranes – r theory – memb equations – ultr <b>UNIT – IV</b> Phosphorous re of precipitation produced from <b>UNIT – V</b> Merits and den reuse – The rol and environme	DIALYSIS aration processes – pro- membrane configuration prane structure and rej ra filtration – Electrodia PHOSPHOROUS R emoval – By biologica in with Aluminium, ca chemical precipitation WASTEWATER R merits of advanced treat e of water recycling in mtal issues in water recycling in	cess classifica n – membrane ection mechar alysis – theory EMOVAL l methods – P cium and Iron of phosphorou ECLAIMATIO ment-applicati the hydrologi	tion – membrane fouling- Molecul nism – osmotic p – power requiren hosphorous remo n – Comparison is with lime in PS <b>ON AND REUSI</b> ons of treated was c cycle – wastewa	materials-Symme lar weight cutoff – ressure – Transponent. val by chemical a of processes – E T. E stewater- Wastewa ater reuse applicat	tric a - Rev ort m dditio stima	nd a erse odel 9 Dn – ttion 9 eclar – pu	symi osm s and Per cher of s Per natic	metric osis – d flux iods mistry sludge iods on and health			
Membrane sepa membranes – r theory – memb equations – ultr <b>UNIT – IV</b> Phosphorous re of precipitation produced from <b>UNIT – V</b> Merits and dem reuse – The rol	DIALYSIS aration processes – pro- membrane configuration prane structure and rej ra filtration – Electrodia PHOSPHOROUS R emoval – By biologica in with Aluminium, ca chemical precipitation WASTEWATER R merits of advanced treat e of water recycling in mtal issues in water recycling in	cess classifica n – membrane ection mechar alysis – theory EMOVAL l methods – P cium and Iron of phosphorou ECLAIMATIO ment-applicati the hydrologi	tion – membrane fouling- Molecul nism – osmotic p – power requiren hosphorous remo n – Comparison is with lime in PS <b>ON AND REUSI</b> ons of treated was c cycle – wastewa	materials-Symme lar weight cutoff – ressure – Transponent. val by chemical a of processes – E T. E stewater- Wastewa ater reuse applicat	tric a - Rev ort m dditio stima	nd a erse odel 9 Dn – ttion 9 eclar – pu	symi osm s and Per cher of s Per natic	metric osis - d flux iods mistry sludge iods on and health			
Membrane sepa membranes – r theory – memb equations – ultr <b>UNIT – IV</b> Phosphorous re of precipitation produced from <b>UNIT – V</b> Merits and dem reuse – The rol and environme	DIALYSIS aration processes – pro- membrane configuration prane structure and rej ra filtration – Electrodia PHOSPHOROUS R emoval – By biologica in with Aluminium, car chemical precipitation WASTEWATER RI nerits of advanced treat e of water recycling in intal issues in water reu water.	cess classifica n – membrane ection mechar alysis – theory EMOVAL l methods – P cium and Iron of phosphorou ECLAIMATIO ment-applicati the hydrologi	tion – membrane fouling- Molecul nism – osmotic p – power requiren hosphorous remo n – Comparison is with lime in PS <b>ON AND REUSI</b> ons of treated was c cycle – wastewa	materials-Symme lar weight cutoff – ressure – Transponent. val by chemical a of processes – E T. E stewater- Wastewa ater reuse applicat	tric a - Rev ort m dditio stima	nd a erse odel 9 Dn – ttion 9 eclar – pu	symi osm s and Per cher of s Per natic	metric osis – d flux iods mistry sludge iods on and health			

1	"Waste Water Engineering – Treatment and reuse", Metcalf and Eddy, Fourth Edition, McGraw
	Hill Education, 2017.
2	"Waste Water Treatment and disposal", Arceivala S. J., Marcel dekker publishers, 1981.
3	"Environmental Engineering", Howard S. Peavy, Donald R. Rowe and George Techobanoglous,
	McGraw Hill Education, 2017.
4	"Wastewater Treatment Plant – Planning, Design and operation", QASIM S. R, Holt Rinchart and
	Winston, New York, 2002.
5	"Biological Process Design for Wastewater Treatment", Larry D. Benefield and Clifford W. Randall,
	Prentice - Hall Series in Environmental sciences, 1985.

COUR	COURSE OUTCOMES:	
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Impart knowledge on advanced waste water treatment	K2
CO2	Understanding about Nitrogen removal and oxidation process	K3
CO3	Gain knowledge about membrane separation processes and Electro Dialysis	K3
CO4	Understanding about Phosphorus removal.	K2
CO5	Knowledge about impact of wastewater reclamation and reuse	K3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
C01	3	3	2	2	2	3				
CO2	2	1	1	3	2	2				
CO3	3	3	2	2	1	3				
CO4	2	1	1	3	2	2				
CO5	3	2	3	1	1	2				
<b>23EEPE16</b>	3	3	3	3	2	3				
1 - Slight, $2 - $ Moderate, $3 - $ S	Substantial	A LOUGH	and l		-					

# ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	15	35	20	20	5	5	100
CAT2	15	25	30	20	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	25	15	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	15	35	20	20	5	5	100

23EEPE17 MARINE POLLUTION AND CONTROL										
PREREQUISIT	TES			CATEGORY	L	Т	P	С		
		NIL		PE	3	0	0	3		
Course	• To understand the concept of marine and coastal environment.									
Objectives	•	• To know the elements of hydrodynamics.								
	•	To identify the sources of	marine pollution ar	d control methods.						
UNIT – I	MAR	INE AND COASTAL ENV	IRONMENT			9 Pe	riod	s		
Seas and oceans	s, cont	inental area, coastal zone,	properties of sea	water, principles of	mar	ine	geolo	ogy.		
coastal features	– bea	ches, estuaries, lagoons, sal	t marshes, mangro	oves and sand dune	s-the	e oce	eans	and		
climate, coastal	zone re	gulation in India- national a	nd international tre	aties.						
UNIT – II	OCEA	<b>N HYDRODYNAMICS</b>				9 Pe	riod	.s		
Wave theory, wa	aves ir	shallow waters - refraction	n, diffraction and sl	hoaling, approximat	tions	for o	leep	and		
shallow water co	onditio	ns – tidal classification - gen	eral circulation of	ocean waters -ocean	ı curr	ents	- coa	astal		
sediment transp	ort -	onshore offshore sediment	transport - beach	formation and co	oastal	pro	cess	es -		
Tsunamis, storm	n surge	, El Nino effect.								
UNIT – III	MAR	INE POLLUTION				9 Pe	riod	.s		
Sources of mari	ine po	llution – point and non-poi	nt sources, polluti	on caused by efflu	ent c	lisch	arge	, oil		
exploration, dree	dging,	offshore mining, port and ha	arbour activities, po	ower plants, agricult	ure r	unof	f, pla	astic		
waste, marine d	ebris a	and marine litter - effects o	f marine pollution	on marine water q	uality	y and	d coa	astal		
ecosystems.		W 5955								
UNIT – IV	MAR	INE POLLUTION MONIT	ORING			9 Pe	riod	s		
		sounding boat, echo sour		eters - tide gauge						
		al water characteristics – se								
		nodels - ocean monitoring		<b>v</b> .			•			
-	-	ution – online marine pollut			C					
0	•	8		1	1	<u>0 D.</u>				
		INE POLLUTION CONTI				9 Pe				
-		effluent standards, pollution			-					
•		locations - Total Maximum					n ma	rine		
•		grated Coastal Zone Manage	ment (ICZM) and s	sustainable developi	ment.					
Contact Periods		Tertestal: 0 Dert 1	Dur official A D		4 <i>5</i> T		J.,			
Lecture: 45 Per	10 <b>0</b> S	Tutorial: 0 Periods	Practical: 0 P	eriods Total:	45 P	erio	as			

1	"Marine pollution", christopherl.j.frid, bryony a. Saswell, 2019.
2	"Marine pollution and climate change", Andres Hugo Arias, Jorge Eduardo, Crc Pres, 2017.
3	"Marine Pollution, Shipping waste and International law", Gabriela Arghello, Taylor & Francis Ltd,
	2019.
4	"Marine Pollution: Sources, Fate & Effects of pollutants in coastal Ecosystems", RichardoBeiras,
	2018.
5	"Marine Pollution: Sources, Fate & Effects of pollutants in coastal Ecosystems", RichardoBeiras,
	2018.

COUR	Bloom's Taxonomy			
Upon c	Upon completion of the course, the students will be able to:			
CO1	Classify the structures of marine environment.	K2		
CO2	Interpret the onshore, offshore hydrodynamics.	K2		
CO3	Categorize the marine pollution sources and effects.	K3		
<b>CO4</b>	Familiarize the methods of monitoring used in marine environment.	K3		
CO5	Correlate the marine pollution control strategies	K3		

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	3	3	2	1		
CO2	3	3	2	2	2	1		
CO3	3	3	2	2	2	2		
CO4	3	3	3	3	3	2		
CO5	3	3	2	3	3	3		
23EEPE17	3	3	3	3	3	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	30	20	40	10	-	-	100		
CAT2	30	20	40	10	-	-	100		
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	10	20	40	30	-	-	100		
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	10	20	40	30	-	-	100		
ESE	30	20	40	10	-	-	100		



# GEO-ENVIRONMENTAL ENGINEERING

PREREQUISITES CATEGORY L						С				
	NIL	PE	3	0	0	3				
Course	To emphasize the need on geo environmental engin	eering and creating	the	awa	renes	ss on				
Objectives	safe disposal of waste by waste stabilization.									
UNIT – I	IT – I GENERATION OF WASTES AND CONSEQUENCES OF SOIL					9 Periods				
	POLLUTION									
Introduction t	o Geo environmental engineering – Environmenta	l cycle – Sources	s, pr	oduc	tion	and				
classification	of waste - Causes of soil pollution - Factors gove	rning soil pollutio	n in	terac	tion	clay				
minerals - Fail	ures of foundation due to waste movement.									
UNIT – II	SITE SELECTION AND SAFE DISPOSAL OF V	WASTE		9 P	eriod	ls				
Safe disposal of	of waste - Site selection for landfills - Characterizati	on of land fill sites	and	was	te –	Risk				
assessment - S	Stability of landfills - Current practice of waste dispo	osal – Monitoring f	acili	ties -	– Pa	ssive				
containment sy	ystem – Application of geosynthetics in solid waste ma	nagement – Rigid	or fle	exibl	e line	ers.				
			-			•101				
UNIT – III	TRANSPORT OF CONTAMINANTS				eriod					
<b>UNIT – III</b> Contaminant 1	<b>TRANSPORT OF CONTAMINANTS</b> transport in sub surface – Advection, Diffusion, D	Dispersion – Gover	rning	<b>9 P</b> g equ	e <b>rioc</b> 1atio	<b>ls</b> ns –				
<b>UNIT – III</b> Contaminant 1	TRANSPORT OF CONTAMINANTS	Dispersion – Gover	rning	<b>9 P</b> g equ	e <b>rioc</b> 1atio	<b>ls</b> ns –				
UNIT – III Contaminant ( Contaminant t	<b>TRANSPORT OF CONTAMINANTS</b> transport in sub surface – Advection, Diffusion, D	Dispersion – Gover	rning	<b>9 P</b> g equ	e <b>rioc</b> 1atio	<b>ls</b> ns –				
UNIT – III Contaminant ( Contaminant t	<b>TRANSPORT OF CONTAMINANTS</b> transport in sub surface – Advection, Diffusion, D ransformation – Sorption – Biodegradation – Ion exc	Dispersion – Gover	rning	<b>9 P</b> g equ Hyc	e <b>rioc</b> 1atio	<b>ls</b> ns – gical				
UNIT – III Contaminant to Contaminant to consideration i UNIT – IV	<b>TRANSPORT OF CONTAMINANTS</b> transport in sub surface – Advection, Diffusion, D ransformation – Sorption – Biodegradation – Ion exc in land fill design – Ground water pollution.	Pispersion – Gover hange – Precipitati	rning on –	9 Po g equ Hyc 9 Po	erioc latio lrolo erioc	ls ns – gical ls				
UNIT – III Contaminant t consideration i UNIT – IV Stabilization –	TRANSPORT OF CONTAMINANTStransport in sub surface – Advection, Diffusion, Dransformation – Sorption – Biodegradation – Ion excn land fill design – Ground water pollution.WASTE STABILIZATION	Pispersion – Gover hange – Precipitati psulation – Absor	rning on –	<b>9 P</b> g equ Hyc <b>9 P</b> d, Ac	erioc latio lrolo erioc lsorp	ls ns – gical ls otion,				
UNIT – III Contaminant t Contaminant t consideration i UNIT – IV Stabilization – Precipitation –	TRANSPORT OF CONTAMINANTS         transport in sub surface – Advection, Diffusion, D         ransformation – Sorption – Biodegradation – Ion exc         n land fill design – Ground water pollution.         WASTE STABILIZATION         Solidification of wastes – Micro and macro encap	Pispersion – Gover hange – Precipitati psulation – Absor	rning on –	<b>9 P</b> g equ Hyc <b>9 P</b> d, Ac	erioc latio lrolo erioc lsorp	ls ns – gical ls tion,				
UNIT – III Contaminant t Contaminant t consideration i UNIT – IV Stabilization – Precipitation –	TRANSPORT OF CONTAMINANTS         transport in sub surface – Advection, Diffusion, D         ransformation – Sorption – Biodegradation – Ion exc         n land fill design – Ground water pollution.         WASTE STABILIZATION         Solidification of wastes – Micro and macro encag         - Detoxification – Mechanism of stabilization – O	Pispersion – Gover hange – Precipitati psulation – Absor	rning on –	<b>9 P</b> o g equ Hyc <b>9 Po</b> , Ac tabil	erioc latio lrolo erioc lsorp	ls ns – gical ls otion, on –				
UNIT – III Contaminant to Consideration i UNIT – IV Stabilization – Precipitation – Utilization of s UNIT – V	TRANSPORT OF CONTAMINANTS         transport in sub surface – Advection, Diffusion, D         ransformation – Sorption – Biodegradation – Ion exc         n land fill design – Ground water pollution.         WASTE STABILIZATION         Solidification of wastes – Micro and macro encag         - Detoxification – Mechanism of stabilization – O         solid waste for soil improvement – case studies.	Dispersion – Gover hange – Precipitati psulation – Absor rganic and inorgan	rning on – ption nic s	<b>9 P</b> g equ Hyc <b>9 P</b> d, Ac tabil	eriod latio lrolo eriod lsorp izatio	ls ns – gical ls otion, on –				
UNIT – III Contaminant to Contaminant to consideration i UNIT – IV Stabilization – Precipitation – Utilization of s UNIT – V Ex-situ and	TRANSPORT OF CONTAMINANTS         transport in sub surface – Advection, Diffusion, D         ransformation – Sorption – Biodegradation – Ion exc         n land fill design – Ground water pollution.         WASTE STABILIZATION         Solidification of wastes – Micro and macro encag         - Detoxification – Mechanism of stabilization – Or         solid waste for soil improvement – case studies.         REMEDIATION OF CONTAMINATED SOILS	Dispersion – Gover hange – Precipitati psulation – Absor rganic and inorgan	rning on – ption nic s	<b>9 P</b> g equ Hyc <b>9 P</b> d, Ac tabil	eriod latio lrolo eriod lsorp izatio	ls ns – gical ls otion, on –				
UNIT – III Contaminant to Contaminant to consideration i UNIT – IV Stabilization – Precipitation – Utilization of s UNIT – V Ex-situ and	TRANSPORT OF CONTAMINANTS         transport in sub surface – Advection, Diffusion, D         ransformation – Sorption – Biodegradation – Ion exc         n land fill design – Ground water pollution.         WASTE STABILIZATION         Solidification of wastes – Micro and macro encal         - Detoxification – Mechanism of stabilization – O         solid waste for soil improvement – case studies.         REMEDIATION OF CONTAMINATED SOILS         In-situ remediation-Solidification, bio-remediation, bioletion, bio-remediation, bioletion, bio-remediation, bio-r	Dispersion – Gover hange – Precipitati psulation – Absor rganic and inorgan	rning on – ption nic s	<b>9 P</b> g equ Hyc <b>9 P</b> d, Ac tabil	eriod latio lrolo eriod lsorp izatio	ls ns – gical ls otion, on –				

1	"Geo-Environmental Engineering" Hari D. Sharma and Krishna R. Reddy, –John Wiley and Sons,
	INC, USA, 2004.
2	"Geotechnical Practice for waste disposal" Daniel B.E., Chapman & Hall, London 1993.
3	"Waste Disposal in Engineered landfills" Manoj Datta Narosa Publishing House, 1997.
4	"Industrial Solid Waste Management and Landfilling Practice" Manoj Datta, B.P. Parida, B.K.
	Guha, Narosa Publishing House, 1999.WEF, Membrane Bioreactors, WEF manual of Practice
	No.36, Water Environment Federation, USA.2012.
5	"Environmental indices, Theory and Practice" Ott, W.R., Ann Arbor, 1978.

COUR	Bloom's Taxonomy Monnod	
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Implement the geo environment technology	K3
CO2	Execute various practices of safe disposal of waste	K3
CO3	Perform waste audit and evaluate carbon footprint to achieve sustainable	K3
	development.	
CO4	Examine the waste stabilization. Case study.	K3
CO5	Apply the remediation of contaminated soil	K3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	3	3	1			
CO2	3	2	2	3	3	1			
CO3	3	3	2	3	3	1			
CO4	3	2	2	3	3	3			
CO5	3	2	2	3	3	1			
23EEPE18	3	3	2	3	3	3			
1 – Slight, 2 – Moderate, 3 – Substantial									

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
CAT1	25	40	15	10	5	5	100
CAT2	25	30	25	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

23EEPE19 MEMBRANE SEPARATION PROCESSES FOR WATER AND WASTEWATER TREATMENT

	TREATMENT						
PREREQUIS	ITES	CATEGORY	LT	P	С		
	NIL	PE	3 0	0	3		
Course Objectives							
	• Be able to select membrane processes for so applications.	lving separation p					
	INTRODUCTION elopment of membranes – classification of membrane			Perio			
and functions of Advantages- 1 preparation - m <b>UNIT - II</b>	of symmetric and asymmetric membranes - Physical an Membrane materials – Membrane modules and its membrane characterization – characterization of porous TRANSPORT OF MEMBRANE	d chemical proper types – Technic and non-porous mo	ties of m ques of embrane 9	embra memt Perio	nes - orane <b>ds</b>		
Membrane tran	sport theory- The solution-diffusion model - Structure	permeability relat	ionships	in sol	ution		
	branes – Pore-flow membrane. Facilitated transport:			-			
	port, carrier agents, competitive facilitated transport with	in two permeants,	, active a	inu pa	ssive		
UNIT – III	ntial applications of facilitated transport.			Perio	<b>J</b> ~		
UN11 – 111	INDUSTRIAL MEMBRANE PROCESSES: DEISGN	THEORY AN	9	Perio	us		
Reverse Osmo	sis – Pressure driven membrane processes: Introducti	on, Microfiltratio	n - Men	brane	s for		
	, Industrial applications. Ultrafiltration – membra						
	Reverse osmosis and nanofiltration – membranes for						
applications. E	lectrically Driven Processes: Introduction – electrodial	ysis, Process para	meters, N	Memb	ranes		
for electrodialy	sis, applications – membrane electrolysis, Bipolar men	branes, Fuel cells					
UNIT – IV	MEMBRANE GAS SEPARATION		9	Perio	ds		
Gas separation	- gas separation of porous and non-porous membrai	nes- membranes f	or gas se	eparati	on –		
Application – 1	membranes for pervaporation – applications. Dialysis:	membrane for dial	lysis – ap	oplicat	ions.		
Liquid membra	anes: Benefits – Bulk liquid membrane – Emulsion liqu	id membrane – T	hin shee	t supp	orted		
liquid membra	ne – Hollow fiber supported liquid membrane – Applic	ation. Choices of	organic s	solven	t and		
carrier - Applic	cations – Introduction to membrane reactors.						
UNIT – V	MEMBRANE FOULING AND ADVANCE	D MEMBRAN	E 9	Perio	ds		
	TECHNOLOGY						
used for foulin	lling – concept – types – factors responsible for fouli g, Concentration of feed) – Reversible and Irreversible	fouling – Effect	of foulin	g. Coi	ncept		
-	- Effects and control. Economics of membrane - F	-					
	istillation: principle, construction, working – concept	or ion exchange:	cations	and a	unon		
exchange resin							
Contact Perio		noda Tatal	15 Dani -	da			
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Pe	rious l'otal:	45 Perio	us			

1	"Membrane Processes for water reuse" Anthony Wachinski, , McGraw-Hill, USA, 2013							
2	"Membrane technology and applications", Baker, R.W., 2 nd ., John Wiley 2004							
3	Jorgen Wagner, "Membrane Filtration handbook", Practical Tips and Hints, 2 nd Edition, Revision 2,							
	Osmonics Inc., 2001.							
4	"Membrane Separations Technology: Principles and Applications" Noble, R.D. and Stern, S.A., Elservier,							
	Netherlands, 1995.							
5	"Membrane Technology in Environmental management" Yamamoto K. and Urase T, special issue, Water							
	Science and technology, Vol.41, IWA Publishing, 2000							
6	"Membrane Bioreactors" WEF, WEF manual of Practice No.36, Water Environment Federation,							
	USA.2012.							

# COURSE OUTCOMES:

Upon completion of the course, the students will be able to:							
CO1	Apply various transport models for the calculation of membrane fluxes and the extent of	K3					
	separation for various membrane systems.						
CO2	Identify the types of experimental data needed for the calculation of membrane parameters	K3					
CO3	Select a membrane process and design components to carry out a specific separation	K3					
CO4	Apply advanced membrane techniques to solve environmental as well as chemical industries problems.	К3					
CO5	Review the importance and relevance of separation process with the help of membrane in industry	К3					

Bloom's

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	3	3	3			
CO2	3	2	2	3	3	2			
CO3	3	3	2	3	3	2			
CO4	3	2	2	3	3	2			
CO5	3	2	2	3	3	2			
<b>23EEPE19</b>	3	3	2	3	3	3			

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

**23EEPE20** 

## ENVIRONMENTAL POLICY AND LEGISLATION

23EEPE20 ENVIRONMENTAL POLICY AND LEGISLATION									
PREREQUISITE	S	CATEGORY	L	Т	Р	С			
	NIL	PE	3	0	0	3			
Course	e To discuss the environmental policies and recalling the environmental movements in India.								
<b>Objectives</b> In additional to enumerate the international environmental treaties.									
UNIT – I	EVOLUTION OF INTERNATIONAL ENVIRONM	IENTAL POLICY		9 Pe	eriod	ls			
Fundamental prin	ciples of environmental protection - sustainable dev	elopment- Brundtl	and	repo	rt 19	987.			
Intergenerational	and intra-generational Equity, Polluter pays principle,	precautionary princ	iple,	Publ	ic T	rust			
Doctrine. Constitu	itional Perspective: Fundamental right to wholesome env	ironment. Directive	princ	iples	s of s	state			
policy. Fundament	al duty. National Environmental Policy. Environmental	Regulatory Framew	ork i	n Inc	lia. F	Role			
of International Er	wironmental Agencies -UNEP, GEF, UNFCC and IPCC.								
UNIT – II	ENVIRONMENTAL MOVEMENT IN INDIA			9 Pe	eriod	ls			
Movements relate	d to Environment Sacred groves, Bishnoi tradition, C	hipko movement,	Tehri	dam	, Sa	rdar			
Sarovar, Narmada	dam, Almatti dam, Silent Valley. Supreme Court Cases	– Ratlam Municipal	ity, C	Gang	a Ac	tion			
Plan, Taj Trapeziu	m, Delhi CNG, Tamil Nadu Tanneries, Doon Valley, Spa	an motels private lir	nited	case	, Ole	eum			
gas case.									
UNIT – III	INTERNATIONAL ENVIRONMENTAL T	REATIES AND	)	9 Pe	eriod	ls			
	CONVENTIONS								
Stockholm confere	ence on human environment, 1972, Ramsar Convention o	n Wetlands, 1971, N	Monti	eal I	Proto	col,			
1987, Basel Conve	ention (1989,1992), Earth summit at rio de janeiro, 1992,	Kyoto Protocol, 19	997, I	Earth	sum	nmit			
• •	2002. Rotterdam Convention on Prior Informed Conse								
Chemicals and P	esticides in International Trade 22 Convention on I	Desertification 1996	5, Co	nver	ntion	on			
Biodiversity & Ca	rtagena Protocol on Bio safety.								
UNIT – IV	<b>OBJECTIVES AND PROVISIONS OF ACTS AND</b>	RULES I	9	Peri	iods				
Indian Forest Act	1927, Indian Wildlife (Protection) Act, 1972, Forest C	onservation Act 19	80, F	Fores	t Rig	ghts			
Act, Water (Preven	ntion and Control of Pollution) Act, 1974, Air (Preventio	n and Control of Po	llutio	n) A	ct 19	981,			
Environment (Pro	tection) Act, 1986, Public Liability insuranceact, 199	1, Noise Pollution	(Reg	gulat	ion	and			
Control) Rules, 2000.									
UNIT – V	<b>OBJECTIVES AND PROVISIONS OF ACTS AND</b>			Peri					
Bio-Medical Wast	e (Management & Handling) Rules, 1998, Recycled Pl	astics Manufacture	and I	Usag	e Ru	ıles,			
1999, Municipal	Solid Waste (Management and Handling Rules) 20	000, Biodiversity	Act 2	2002	, W	ater			
(Prevention and C	Control of Pollution) Cess (Amendment) Act, 2003, EL	A Notification 2000	5, Th	e Ha	azard	lous			
	nent, Handling and Transboundary Movement) Rules,								
	ct 2010, Coastal Regulation Zones (CRZ) Rules 2011.	E-waste Managem	ent a	nd H	Hand	ling			
Rules 2011, Plastic	cs Manufacture, Sale and Usage Rules, 2011.								
<b>Contact Periods</b> :									
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Per	iods						

1	"Environmental Law and Policy in India", Shyam Divan and Armin Rosencranz, Oxford University Press,						
	New Delhi, 2005.						
2	"Environmental Law Case Book, Lexis Nexis, Butterworths, Mohanty", S. K., Leelakrishnan. P,						
	Environment and Pollution Law, Universal Law Publishing Co.Pvt. Ltd., 2011.						
3	"Environmental Law, (2nd Edn.)", Shastri S C, Eastern Book Company, Lucknow, 2008.						
4	"Environmental Law in India", Singh Gurdip, Mcmillan& Co., 2004,						
5	"Introduction to Environmental Law", Shantakumar S, (2nd Edn.), Wadhwa & Company, Nagpur, 2005.						
6	"Handbook of Environmental Law in India", Sahasranaman P B, Oxford University Press (India), 2008.						

COUR	COURSE OUTCOMES:				
		Taxonomy			
Upon o	completion of the course, the students will be able to:	Mapped			
CO1	Demonstrate the evolution of International Environmental Policies.	K3			
CO2	Recall environmental movements in India	K3			
CO3	Discuss the International Environmental Policies	K3			
CO4	Underline the act and rules I	K3			
CO5	Accentuate the objective and provisions of act and rules II	K3			

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	3	2	3	3	1			
CO2	3	3	2	3	2	1			
CO3	3	2	3	2	2	1			
CO4	2	3	3	2	3	1			
CO5	3	2 0	3	2	3	1			
23EEPE20	3	3	3	3	3	1			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	<b>FPATTERN – T</b>	HEORY	STUR				
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		X Ja		k			
CAT1	20	25	25	15	15	-	100
CAT2	20	20	25	20	15	-	100
Individual		5000	We acres	TE			
Assessment 1/							
Case Study 1/	-	15	30	35	20	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment 2/							
Case Study 2/	-	10	40	25	25	-	100
Seminar 2/							
Project 2							
ESE	20	25	25	10	20	-	100

<b>23EEPE21</b>	INSTRUMENTATION, SELECTIO ENVIRONMENTAL ENGINE			Or		
PREREQUIS		CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
Course	To impart knowledge on maintenance of machin	neries and analytical	instru	imen	ts us	ed ii
Objectives	water and waste water machineries and equip	ments addition to g	gain 1	know	ledg	e oi
	equipments in air pollution control					
UNIT – I	GENERAL			9 P	eriod	ls
operation and	hinery, electric motors types and characteristics maintenance of pumping machinery, air compress schedules – Factors to be considered in the selection	sors preventive mainte				
UNIT – II	INSTRUMENTATION			9 P	eriod	ls
Analyser polar	r graph for metal estimation and organic compound	ls – Ion selective Elect		•		
analyser – Inst	r graph for metal estimation and organic compound rument components and its working principle WATER SUPPLY MACHINERY ANI MACHINERY		trode	-SO		4 CC
analyser – Inst UNIT – III Drilling equip	rument components and its working principle           WATER         SUPPLY         MACHINERY         ANI	D WASTEWATER	trode	-SO 9 P	2 and	d CC
analyser – Inst UNIT – III Drilling equip treatment, sew	rument components and its working principle WATER SUPPLY MACHINERY ANI MACHINERY oment, pumping equipment for wells. Machiner	D WASTEWATER	trode	-SO 9 P nd s	2 and	<b>ls</b> Idary
analyser – Inst UNIT – III Drilling equip treatment, sew UNIT – IV Equipment for	rument components and its working principle WATER SUPPLY MACHINERY AND MACHINERY oment, pumping equipment for wells. Machiner age pumps, sludge pumps, vacuum filtration equip	<b>D WASTEWATER</b> by required for primation ment by operated agitators,	trode	-SO 9 P nd s 9 P	2 and eriod secon	d CC ls idary
analyser – Inst UNIT – III Drilling equip treatment, sew UNIT – IV Equipment fo chlorinators, S	rument components and its working principle WATER SUPPLY MACHINERY ANI MACHINERY oment, pumping equipment for wells. Machiner age pumps, sludge pumps, vacuum filtration equipring EQUIPMENTS FOR TREATMENT UNITS or treatment unit - electrically and mechanical	<b>D WASTEWATER</b> by required for prima ment ly operated agitators, ead, and electricity.	trode	-SO 9 P nd s 9 P	2 and eriod secon	d CO
analyser – Inst UNIT – III Drilling equip treatment, sew UNIT – IV Equipment fo chlorinators, S UNIT – V Working prince	rument components and its working principle WATER SUPPLY MACHINERY AND MACHINERY oment, pumping equipment for wells. Machiner age pumps, sludge pumps, vacuum filtration equip EQUIPMENTS FOR TREATMENT UNITS or treatment unit - electrically and mechanical urface aerators. Meters for measurement of flow, h AIR POLLUTION CONTROL EQUIPMENT ciples of electrostatic precipitator – cyclone separ Machinery for solid waste collection and dispos- inerators. ds:	<ul> <li><b>D</b> WASTEWATER</li> <li>by required for primal ment</li> <li>by operated agitators, ead, and electricity.</li> <li><b>S</b></li> <li>cators – settling chamical incineration –composition</li> </ul>	trode	-SO 9 P nd s 9 P cers, 9 P oper rs –	2 and eriod eeriod aera eriod ation mag	1 CC 1 CC 1 s 1 dar: 1 s 1 s 1 s

1	Operation and Control of Water Treatment Processes COX CR WHO 1969.
2	Course Manual on Preventive Maintenance of Water Distribution System, NEERI, 1993.
3	"Environmental Engineering", Howard Peavy, Donald Rowe & George Tchobanoglous, McGraw
	Hill publication, 2017.
4	Introduction to instrumentation measurements and field methods in environmental science,
	Ekanade Olusegun, Edward C. Orji, JariSanusiI, National Open University of Nigeria Publications,
	2010.

COUR	Bloom's	
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Illustrate handling and maintenance of water and waste water machineries	K3
	and equipment	
CO2	Demonstrate the principle and operation of various Analytical Instruments.	K3
CO3	Explain the operation of water and wastewater machineries	K3
CO4	Select suitable equipment to be used in treatment units.	K3
CO5	Explain the various equipments used in air pollution control	K3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	3	1	1	2	1		
CO2	2	3	1	1	2	1		
CO3	2	3	1	1	2	1		
CO4	1	3	1	1	2	1		
CO5	1	3	1	1	2	1		
23EEPE21	2	3	1	1	2	1		
1 – Slight, 2 – Moderate, 3 – Sub	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1	25	35	20	10	5	5	100	
CAT2	25	35	20	10	5	5	100	
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100	
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100	
ESE	25	35	20	10	5	5	100	

	ENVIRONMENTAL CHEMISTRY AN		OGY	Y		
PREREQUIS	SITES CATEGORY L T P					
	NIL	PE	3	0	0	3
Course	Imparting knowledge of Environmental chemistry and	microbiology an	nd er	npha	sisin	g the
Objectives	need on sustainable development with help of microorg	anism culture.				
UNIT – I	BASIC PRINCIPLES OF ANALYTICAL CHEMIS	TRY		9 P	erioo	ls
Concentration	of solutions-Calculations - Ionic equilibrium of weak e	electrolytes, - con	nmo	n ioi	n eff	ect –
Buffer Solution	s-Change of pH with salt concentrations, Buffer Index-S	olubility product,	Hyd	rolys	is of	salts
- Oxidation and	d Reduction reactions stoichiometry.					
UNIT – II	CHEMICAL KINETICS			9 P	erio	ds
Rate constants	of first and second-order reactions - problems - effec	t of temperature	on re	eactio	on ra	tes –
Derivation of A	Arrhenius equation – problems – consecutive reactions –	basic concepts of	enzy	mes,	cofa	ctors
- enzyme catal	yzed reactions - Temperature dependence of enzyme ac	ctivity– Enzyme k	ineti	cs- N	Aicha	alei's
Menton equation	on – significance.					
UNIT – III	AQUATIC AND SOIL CHEMISTRY			9 P	erio	ds
Precipitation a	nd dissolution- Water softening and water conditioning	g- Complexation	of n	netal	ions	and
	8	<b>·</b>	01 11	lotui		unu
organic comple	exes in natural water- Weathering reactions- Structure	and surface reac				
		and surface reac				
oxides- Forces UNIT – IV	exes in natural water- Weathering reactions- Structure at soil water interfaces. INTRODUCTION TO MICROBIOLOGY		tions	of 9 P	clays	and
oxides- Forces UNIT – IV	exes in natural water- Weathering reactions- Structure at soil water interfaces.		tions	of 9 P	clays	and
oxides- Forces UNIT – IV Classification o	exes in natural water- Weathering reactions- Structure at soil water interfaces. INTRODUCTION TO MICROBIOLOGY	reparation, steriliz	tions atior	5 of • 9 P	clays eriod re cul	and ds lture,
oxides- Forces UNIT – IV Classification of maintenance o	exes in natural water- Weathering reactions- Structure at soil water interfaces. INTRODUCTION TO MICROBIOLOGY of microorganisms. Culture of micro-organisms- media p	reparation, steriliz pread plate. Grov	tions atior	<b>9 P</b> , purve	clays erio re cul - fa	and ds lture, ctors
oxides- Forces UNIT – IV Classification of maintenance o	exes in natural water- Weathering reactions- Structure at soil water interfaces. INTRODUCTION TO MICROBIOLOGY of microorganisms. Culture of micro-organisms- media p f cultures. Culturing methods- Streaking, Pour plate, S th, nutritional requirements of micro-organisms –Microon.	reparation, steriliz pread plate. Grov robial metabolisn	tions atior	<b>9 P</b> , purve	clays erio re cul - fa	and ds lture, ctors
oxides- Forces UNIT – IV Classification of maintenance of affecting grow energy generation UNIT – V	exes in natural water- Weathering reactions- Structure at soil water interfaces. INTRODUCTION TO MICROBIOLOGY of microorganisms. Culture of micro-organisms- media pu f cultures. Culturing methods- Streaking, Pour plate, S th, nutritional requirements of micro-organisms –Micro on. IMPACT OF MICROBES ON ENVIRONMENT &	reparation, steriliz pread plate. Grov robial metabolisn <b>HEALTH</b>	tions atior wth c n- Ro	9 P 9 P 1, purve espir 9 P	erioo erioo e cul - fa ation	and ds lture, ctors and ds
oxides- Forces UNIT – IV Classification of maintenance of affecting grow energy generation UNIT – V	exes in natural water- Weathering reactions- Structure at soil water interfaces. INTRODUCTION TO MICROBIOLOGY of microorganisms. Culture of micro-organisms- media p f cultures. Culturing methods- Streaking, Pour plate, S th, nutritional requirements of micro-organisms –Microon.	reparation, steriliz pread plate. Grov robial metabolisn <b>HEALTH</b>	tions atior wth c n- Ro	9 P 9 P 1, purve espir 9 P	erioo erioo e cul - fa ation	and ds lture, ctors and ds
oxides- Forces UNIT – IV Classification of maintenance of affecting grow energy generative UNIT – V Eutrophication Corrosion and	exes in natural water- Weathering reactions- Structure at soil water interfaces. INTRODUCTION TO MICROBIOLOGY of microorganisms. Culture of micro-organisms- media pu f cultures. Culturing methods- Streaking, Pour plate, S th, nutritional requirements of micro-organisms –Micro ion. IMPACT OF MICROBES ON ENVIRONMENT & Role of Microbes in Carbon, Phosphorus, Nitrogen and Leaching – Xenobiotics. Waterborne diseases and their	reparation, steriliz pread plate. Grow robial metabolism <b>HEALTH</b> nd Sulphur cycles causative organis	tions atior wth c n- Ro . Mi ms. l	s of 9 P n, purve espir 9 P crobe Diffe	clays eriod - fa ation eriod e ind renti	and ds lture, ctors and ds uced ation
oxides- Forces UNIT – IV Classification of maintenance of affecting grow energy generation UNIT – V Eutrophication Corrosion and of faecal & no	exes in natural water- Weathering reactions- Structure at soil water interfaces. INTRODUCTION TO MICROBIOLOGY of microorganisms. Culture of micro-organisms- media pu f cultures. Culturing methods- Streaking, Pour plate, S th, nutritional requirements of micro-organisms –Micron. IMPACT OF MICROBES ON ENVIRONMENT & Role of Microbes in Carbon, Phosphorus, Nitrogen and Leaching – Xenobiotics. Waterborne diseases and their n-faecal coliforms-tests for the presence of coliform org	reparation, steriliz pread plate. Grov robial metabolisn <b>HEALTH</b> nd Sulphur cycles causative organis ganisms-presumpt	tions ation wth c n- Ro . Mi ms. l	s of 9 P n, purve espir 9 P crobe Diffe confi	clays eriod - fa ation eriod e ind renti	and ds lture, ctors and ds uced ation
oxides- Forces UNIT – IV Classification of maintenance of affecting grow energy generation UNIT – V Eutrophication Corrosion and of faecal & no	exes in natural water- Weathering reactions- Structure at soil water interfaces. INTRODUCTION TO MICROBIOLOGY of microorganisms. Culture of micro-organisms- media pu f cultures. Culturing methods- Streaking, Pour plate, S th, nutritional requirements of micro-organisms –Micro ion. IMPACT OF MICROBES ON ENVIRONMENT & Role of Microbes in Carbon, Phosphorus, Nitrogen and Leaching – Xenobiotics. Waterborne diseases and their	reparation, steriliz pread plate. Grov robial metabolisn <b>HEALTH</b> nd Sulphur cycles causative organis ganisms-presumpt	tions ation wth c n- Ro . Mi ms. l	s of 9 P n, purve espir 9 P crobe Diffe confi	clays eriod - fa ation eriod e ind renti	and ds lture, ctors and ds uced ation
oxides- Forces UNIT – IV Classification of maintenance of affecting grow energy generation UNIT – V Eutrophication Corrosion and of faecal & no completed test,	exes in natural water- Weathering reactions- Structure at soil water interfaces. INTRODUCTION TO MICROBIOLOGY of microorganisms. Culture of micro-organisms- media pur f cultures. Culturing methods- Streaking, Pour plate, S th, nutritional requirements of micro-organisms –Micro ton. IMPACT OF MICROBES ON ENVIRONMENT & Role of Microbes in Carbon, Phosphorus, Nitrogen and Leaching – Xenobiotics. Waterborne diseases and their n-faecal coliforms-tests for the presence of coliform org MPN index, use of Millipore filter technique, standards	reparation, steriliz pread plate. Grov robial metabolisn <b>HEALTH</b> nd Sulphur cycles causative organis ganisms-presumpt	tions ation wth c n- Ro . Mi ms. l	s of 9 P n, purve espir 9 P crobe Diffe confi	clays eriod - fa ation eriod e ind renti	and ds lture, ctors and ds uced ation
oxides- Forces UNIT – IV Classification of maintenance of affecting grow energy generation UNIT – V Eutrophication Corrosion and of faecal & no	exes in natural water- Weathering reactions- Structure at soil water interfaces. INTRODUCTION TO MICROBIOLOGY of microorganisms. Culture of micro-organisms- media pur f cultures. Culturing methods- Streaking, Pour plate, S th, nutritional requirements of micro-organisms –Micron. IMPACT OF MICROBES ON ENVIRONMENT & Role of Microbes in Carbon, Phosphorus, Nitrogen and Leaching – Xenobiotics. Waterborne diseases and their n-faecal coliforms-tests for the presence of coliform orgon MPN index, use of Millipore filter technique, standards ds:	reparation, steriliz pread plate. Grov robial metabolism <b>HEALTH</b> nd Sulphur cycles causative organis ganisms-presumpt for bacteriologica	tions atior vth c n- Ro . Mi ms. 1 ive, o	9 P 9 P 1, pur curve 9 P Crobo Diffe confi lity.	clays erioo e cul - fa ation e ind renti rmec	and ds lture, ctors and ds uced ation

1	Microbiology, Pelczar. Jr.M.J., Chan, E.C.S., Krieg.R. Noel., and PelczarMernaFoss, 5th Edition, Tata
	McGraw- Hill Publishing Company Limited, New Delhi, 2004.
2	Prescott's Microbiology, Joanne Willey Kathleen Sandman and Dorothy Wood., 11th Edition, Tata
	McGraw-Hill Publishing Company Limited, New Delhi, 2020.
3	Hand Book of Environmental Microbiology S.C. Bhatia, 3rd Edition, Atlantic Publishers and
	Distributors, 2008.
4	Environmental Microbiology, Ian L. Pepper, Charles P. Gerba, Terry Gentry and Raina M. Maier,
	3rd Edition, Academic Press, 2014.
5	Essentials Of Ecology & Environmental Science, S. V. S. Rana, 5th Edition, PHI Learning Press,
	2013.

COU	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Impart knowledge on basic principles of Analytic chemistry	K1
CO2	Execute various practices of chemical kinetics.	K2
CO3	Investigating aquatic and soil chemistry	K3
CO4	Understanding about Microbiology.	K2
CO5	Knowledge about impact of microbes on Environment and Health	K4

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
C01	3	1	3	2	2	3			
CO2	3	2	3	1	2	2			
CO3	2	3	3	2	3	3			
CO4	3	2~~~	3	2	2	2			
CO5	3	1	2	2	1	3			
<b>23EEPE22</b>	3	3	2.3	2	3	3			
1 - Slight, $2 - $ Moderate, $3 - $ S	1 – Slight, 2 – Moderate, 3 – Substantial								

	11000100,0 5		T	7					
ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	15	35	30	10	5	5	100		
CAT2	15	35	20	20	5	5	100		
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	10	40	35	15	-	-	100		
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100		
ESE	25	35	20	10	5	5	100		

		BUILDING BY	E-LAWS AND	CODES OF I	PRACT	ICE		
23SEOE01		(1	Common to all	Branches)				
PREREQUISI	TES		CATEGORY L T					
		NIL		OE	3	0	0	3
Course	To imp	impart knowledge on the building bye -laws and to emphasize the significance of cod						codes
Objectives	of prace	ractice in construction sector.						
UNIT – I	INTRO	<b>TRODUCTION TO BUILDING BYE-LAWS</b> 9 Periods						ds
Introduction to	Buildin	g Bye Laws and regulation	, their need an	d relevance, C	General	defini	tions s	uch as
building height	, buildi	ng line, FAR, Ground Cov	erage, set bac	k line. Introdu	action to	o Mas	ter Pla	an and
understanding v	arious 1	and uses like institutional, re	sidential etc	Terminologies	of Build	ling b	ye-law	s.
UNIT – II	ROLE	<b>OF STATUTORY BODIE</b>	S			9	) Perio	ds
Role of variou	is statu	tory bodies governing bui	lding works l	ike developm	ent autl	noritie	s, mu	nicipal
corporations etc	c. Local	Planning Authority, Town	and Country	planning organ	nisation,	Mini	stry of	urbar
development.								
UNIT – III	APPLI	CATION OF BUILDING	BYE-LAWS			9	) Perio	ds
Interpretation o	f inforn	nation given in bye laws inc	cluding ongoin	g changes as s	shown in	n vari	ous an	nexure
and appendices	. Applie	cation of Bye-laws like stru	ictural safety,	fire safety, ear	rthquake	e safet	ty, bas	ement,
electricity, wate	r, and c	ommunication lines in variou	us building type	es.				
UNIT – IV	INTRO	DUCTION TO CODES O	F PRACTICE			9	) Perio	ds
Introduction to	various	building codes in profession	al practice - C	odes, regulatio	ns to pr	otect	public	health,
safety and welfa	are - Co	des, regulations to ensure con	mpliance with	the local author	rity.			
UNIT – V	APPLI	CATION OF CODES OF	PRACTICE			ç	) Perio	ds
Applications of	f variou	s codes as per various bui	lding types. B	ureau of India	an Stan	dards,	Euro	code -
Introduction to	other in	ternational codes.		1				
<b>Contact Period</b>	ls:	l &	-					
Lecture: 45 Pe	riods	Tutorial: 0 Periods	Practical:	0 Periods	Total	45 P	eriods	
				196				
REFER	ENCES	02500	DIAL COL					
1 "National	Buildin	g Code of India 2016 – SP 7	'", NBC 2016, I	Bureau of India	an Stand	lards.		
2 "Model Bu	ilding l	Bye-Laws (MBBL) – 2016",	Town and Con	untry Planning	Organi	zation	, Mini	stry of
Housing ar	nd Urba	n Affairs, Government of Ind	lia.					
3 <i>"Unified B</i>	uilding	Bye-laws for Delhi 2016", N	Vabhi Publicati	ions, 2017.				
	ittal, <b>"B</b>							

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the building bye-laws in planning, design and construction works.	K3
CO2	Familiarize with the role of various statutory bodies.	K2
CO3	Execute safety related work practices in the construction sector.	K3
CO4	Ensure compliance with the rules and regulations in design and construction practices.	K3
CO5	Perform design and construction practices based on national and international codal provisions.	К3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	3	1	1	2	3				
CO2	1	3	1	1	2	3				
CO3	1	3	1	1	2	3				
CO4	2	3	1	1	2	3				
CO5	2	3	1	1	2	3				
23SEOE01	2	3	1	1	2	3				
1 - Slight, 2 - Moderate,	3 – Substantial			•	•	•				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20		-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	40	40	20		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	40	40	20		-	-	100
ESE	40	40	20	5.572	-	-	100

23SEOE02	PLANNING OF SM					
25520202	(Common to all	Branches)	-	_		_
PREREQUISITI	ES	CATEGORY	L	Т	Р	C
	NIL	OE	3	0	0	3
Course	To have an exposure on planning of smart cities	with consideration	of the	recer	nt chall	lenge
Objectives	and to address the importance of sustainable deve	elopment of urban a	rea.			
UNIT – I	SMART CITIES DEVELOPMENT CHALLENGES	POTENTIALS	AND		9 Peri	ods
Perspectives of Si	mart Cities: Introduction and Overview - Implement	ntation Challenges -	Metho	dolog	gical is	sues
Spatial distribution	on of startup cities - Re imagining postindustri	al cities - Impleme	entatio	n Ch	alleng	es fo
Establishing Smar	rt Urban Information and Knowledge Management	System.				
UNIT – II	SUSTAINABLE URBAN PLANNING				9 Peri	ods
Optimising Green	Spaces for Sustainable Urban Planning - 3D City	Models for Extraction	ng Urb	an Er	vironr	nenta
Quality Indicator	s - Assessing the Rainwater Harvesting Potentia		•		en Spa	aces
Quality Indicator Monitoring Urban	s - Assessing the Rainwater Harvesting Potentia		•		en Spa	aces
- •	s - Assessing the Rainwater Harvesting Potentia	1 - The Strategic F	Role of	f Gre	en Spa 9 Peri	
Monitoring Urbar UNIT – III	s - Assessing the Rainwater Harvesting Potentian Expansion.	1 - The Strategic F	Role of <b>IENT</b>	f Gre	9 Peri	ods
Monitoring Urbar UNIT – III Alternatives for	<ul> <li>Assessing the Rainwater Harvesting Potentia</li> <li>Expansion.</li> <li>ENERGY MANAGEMENT AND SUSTAINA</li> </ul>	1 - The Strategic F BLE DEVELOPM of Energy - Effici	Role of <b>IENT</b> ient L	f Gre	<b>9 Peri</b> Ig - E	ods Inerg
Monitoring Urbar UNIT – III Alternatives for Management - Un	<ul> <li>Assessing the Rainwater Harvesting Potentian Expansion.</li> <li>ENERGY MANAGEMENT AND SUSTAINA Energy Stressed Cities - Social Acceptability</li> </ul>	1 - The Strategic F BLE DEVELOPM of Energy - Effici	Role of <b>IENT</b> ient L	f Gre	<b>9 Peri</b> Ig - E	ods Inerg
Monitoring Urbar UNIT – III Alternatives for Management - Un	s - Assessing the Rainwater Harvesting Potentia Expansion. ENERGY MANAGEMENT AND SUSTAINA Energy Stressed Cities - Social Acceptability than Dynamics and Resource Consumption - Issue	1 - The Strategic H BLE DEVELOPM of Energy - Efficiences and Challenges of	Role of <b>IENT</b> ient L	f Gre	<b>9 Peri</b> Ig - E	ods Inerg
Monitoring Urbar UNIT – III Alternatives for Management - Un Green Buildings: UNIT – IV	s - Assessing the Rainwater Harvesting Potentia Expansion. ENERGY MANAGEMENT AND SUSTAINA Energy Stressed Cities - Social Acceptability than Dynamics and Resource Consumption - Issue Eco-friendly Technique for Modern Cities.	I - The Strategic H BLE DEVELOPM of Energy - Efficient es and Challenges of IART CITIES	Role of <b>IENT</b> ient La	f Gre	<b>9 Peri</b> Ig - E le Tou <b>9 Peri</b>	ods Energ rism ods
Monitoring Urbar UNIT – III Alternatives for Management - Ur Green Buildings: UNIT – IV Assessment of Do	<ul> <li>Assessing the Rainwater Harvesting Potentia Expansion.</li> <li>ENERGY MANAGEMENT AND SUSTAINA</li> <li>Energy Stressed Cities - Social Acceptability of the Dynamics and Resource Consumption - Issue Eco-friendly Technique for Modern Cities.</li> <li>MULTIFARIOUS MANAGEMENT FOR SM</li> </ul>	I - The Strategic H BLE DEVELOPM of Energy - Effici es and Challenges of IART CITIES ce in Urban Water	Role of <b>IENT</b> ient L of Susta Supply	f Gre	9 Peri lg - E le Tou 9 Peri	ods Energ rism ods ent c
Monitoring Urban UNIT – III Alternatives for Management - Un Green Buildings: UNIT – IV Assessment of Do Water Consumpt	<ul> <li>Assessing the Rainwater Harvesting Potentia Expansion.</li> <li>ENERGY MANAGEMENT AND SUSTAINA</li> <li>Energy Stressed Cities - Social Acceptability to an Dynamics and Resource Consumption - Issue Eco-friendly Technique for Modern Cities.</li> <li>MULTIFARIOUS MANAGEMENT FOR SM omestic Water Use Practices - Issue of Governance</li> </ul>	I - The Strategic H BLE DEVELOPM of Energy - Efficient es and Challenges of IART CITIES ce in Urban Water bility - Socio-econ	Role of <b>IENT</b> ient L of Susta Supply	f Gre	9 Peri lg - E le Tou 9 Peri	ods Energ rism ods ent c
Monitoring Urban UNIT – III Alternatives for Management - Un Green Buildings: UNIT – IV Assessment of Do Water Consumpt	s - Assessing the Rainwater Harvesting Potentia Expansion. ENERGY MANAGEMENT AND SUSTAINA Energy Stressed Cities - Social Acceptability than Dynamics and Resource Consumption - Issue Eco-friendly Technique for Modern Cities. MULTIFARIOUS MANAGEMENT FOR SM omestic Water Use Practices - Issue of Governance ion at Urban Household Level - Water Sustaina	I - The Strategic H BLE DEVELOPM of Energy - Efficient es and Challenges of IART CITIES ce in Urban Water bility - Socio-econ	Role of <b>IENT</b> ient L of Susta Supply	f Gre ightin ainabl	9 Peri lg - E le Tou 9 Peri	ods inerg rism ods ent c
Monitoring Urban UNIT – III Alternatives for Management - Un Green Buildings: UNIT – IV Assessment of De Water Consumpti Reproductive Hea UNIT – V	s - Assessing the Rainwater Harvesting Potentia Expansion. ENERGY MANAGEMENT AND SUSTAINA Energy Stressed Cities - Social Acceptability than Dynamics and Resource Consumption - Issue Eco-friendly Technique for Modern Cities. MULTIFARIOUS MANAGEMENT FOR SM omestic Water Use Practices - Issue of Governance ion at Urban Household Level - Water Sustaina ulthcare System - Problems and Development of Slu	I - The Strategic H BLE DEVELOPM of Energy - Efficient es and Challenges of IART CITIES ce in Urban Water ibility - Socio-econ ums.	Role of <b>IENT</b> ient L of Sust: Supply comic 1	f Gre ightin ainabl y - As Deter	9 Peri g - E le Tou 9 Peri ssessm minant 9 Peri	ods Energ rism ods ent o s an ods
Monitoring Urban UNIT – III Alternatives for Management - Un Green Buildings: UNIT – IV Assessment of Do Water Consumpti Reproductive Hea UNIT – V Introduction to In	<ul> <li>Assessing the Rainwater Harvesting Potentia Expansion.</li> <li>ENERGY MANAGEMENT AND SUSTAINA</li> <li>Energy Stressed Cities - Social Acceptability of the Dynamics and Resource Consumption - Issue Eco-friendly Technique for Modern Cities.</li> <li>MULTIFARIOUS MANAGEMENT FOR SM omestic Water Use Practices - Issue of Governance ion at Urban Household Level - Water Sustaina althcare System - Problems and Development of Slue INTELLIGENT TRANSPORT SYSTEM</li> </ul>	I - The Strategic H BLE DEVELOPM of Energy - Efficient es and Challenges of IART CITIES ce in Urban Water bility - Socio-econ ims.	Role of <b>IENT</b> ient L of Susta Supply omic 1 Netwo	f Gre ightin ainabl y - As Deter	9 Peri g - E le Tou 9 Peri ssessm minant 9 Peri 9 Peri otimiza	ods Energe rism ods ent of rs an ods ation
Monitoring Urban UNIT – III Alternatives for Management - Un Green Buildings: UNIT – IV Assessment of De Water Consumpti Reproductive Hea UNIT – V Introduction to In Sensing Traffic u	<ul> <li>Assessing the Rainwater Harvesting Potentia Expansion.</li> <li>ENERGY MANAGEMENT AND SUSTAINA</li> <li>Energy Stressed Cities - Social Acceptability of the Dynamics and Resource Consumption - Issue Eco-friendly Technique for Modern Cities.</li> <li>MULTIFARIOUS MANAGEMENT FOR SM omestic Water Use Practices - Issue of Governance ion at Urban Household Level - Water Sustaina althcare System - Problems and Development of Slut INTELLIGENT TRANSPORT SYSTEM</li> <li>Intelligent Transport Systems (ITS) - The Range of the State of Construction of State Processing (State Systems)</li> </ul>	I - The Strategic H BLE DEVELOPM of Energy - Efficient es and Challenges of IART CITIES ce in Urban Water ibility - Socio-econ ims.	Role of <b>IENT</b> ient L: of Sustant Supply comic 1 -Netwo ation -	f Gre ightin ainabl / - As Deter rk Op The	9 Peri g - E le Tou 9 Peri ssessm minant 9 Peri otimiza Smart	ods Energ rism ods ent o s ar ods ation Car
Monitoring Urbar UNIT – III Alternatives for Management - Un Green Buildings: UNIT – IV Assessment of Do Water Consumpti Reproductive Hea UNIT – V Introduction to In Sensing Traffic u Commercial Rou	<ul> <li>Assessing the Rainwater Harvesting Potential Expansion.</li> <li>ENERGY MANAGEMENT AND SUSTAINA</li> <li>Energy Stressed Cities - Social Acceptability to an Dynamics and Resource Consumption - Issue Eco-friendly Technique for Modern Cities.</li> <li>MULTIFARIOUS MANAGEMENT FOR SM omestic Water Use Practices - Issue of Governance ion at Urban Household Level - Water Sustaina althcare System - Problems and Development of Slue INTELLIGENT TRANSPORT SYSTEM</li> <li>INTELLIGENT TRANSPORT SYSTEM</li> <li>Itelligent Transport Systems (ITS) - The Range of asing Virtual Detectors - Vehicle Routing and Perespondent of States and Perespondent Systems (ITS) and Perespondent Systems (</li></ul>	I - The Strategic H BLE DEVELOPM of Energy - Efficient es and Challenges of IART CITIES ce in Urban Water ibility - Socio-econ ims.	Role of <b>IENT</b> ient L: of Sustant Supply comic 1 -Netwo ation -	f Gre ightin ainabl / - As Deter rk Op The	9 Peri g - E le Tou 9 Peri ssessm minant 9 Peri otimiza Smart	ods Energ rism ods ent o s an ods ation Car
Monitoring Urbar UNIT – III Alternatives for Management - Un Green Buildings: UNIT – IV Assessment of Do Water Consumpti Reproductive Hea UNIT – V Introduction to In Sensing Traffic u Commercial Rou	<ul> <li>Assessing the Rainwater Harvesting Potentia Expansion.</li> <li>ENERGY MANAGEMENT AND SUSTAINA</li> <li>Energy Stressed Cities - Social Acceptability of the Dynamics and Resource Consumption - Issue Eco-friendly Technique for Modern Cities.</li> <li>MULTIFARIOUS MANAGEMENT FOR SM omestic Water Use Practices - Issue of Governance ion at Urban Household Level - Water Sustaina althcare System - Problems and Development of Sluticate Intelligent Transport Systems (ITS) - The Range of asing Virtual Detectors - Vehicle Routing and Perting and Delivery - Electronic Toll Collection - ent. Urban Mobility and Economic Development.</li> </ul>	I - The Strategic H BLE DEVELOPM of Energy - Efficient es and Challenges of IART CITIES ce in Urban Water ibility - Socio-econ ims.	Role of <b>IENT</b> ient L: of Sustant Supply comic 1 -Netwo ation -	f Gre ightin ainabl / - As Deter rk Op The	9 Peri g - E le Tou 9 Peri ssessm minant 9 Peri otimiza Smart	ods Energ rism ods ent o s an ods ation Car

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva", 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems
	And Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.

COUR	COURSE OUTCOMES:			
Upon c	ompletion of the course, the students will be able to:	Taxonomy Mapped		
CO1	Indicate the potential challenges in smart city development.	K2		
CO2	Select the different tools for sustainable urban planning.	K3		
CO3	Choose appropriate energy conservation system for smart cities.	K3		
CO4	Identify the proper method of water management system.	K3		
CO5	Apply Intelligent Transport System concepts in planning of smart city.	K3		

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	2	3	1	1			
CO2	1	1	1	3	2	1			
CO3	1	1	-	2	2	1			
CO4	1	-	1	2	1	1			
CO5	1	-	1	3	1	-			
23SEOE02	1	1	2	3	2	1			
1 – Slight, 2 – Moderate	e, 3 – Substantia	al		•	•	•			

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	25	45	30	-	-	-	100				
CAT2	25	45	30	-	-	-	100				
Individual	15	40	45	-	-	-	100				
Assessment 1 /		a contraction	P								
Case Study 1/		Contraction of the local sector	B-US STA	2)							
Seminar 1 /		(Second)	TOTAL OF								
Project1				7							
Individual	10	45	45	-	-	-	100				
Assessment 2 /											
Case Study 2/											
Seminar 2 /		1 1		1							
Project 2		1 8 -	11								
ESE	20	40	40	94 -	-	-	100				



228FAFA2		GREEN BU	JILDING					
23SEOE03		(Common to a	ll Branches)		00oor environme9 Periodsof design for nate, wind – S t on the shape9 Periods9 Periodsmethods- Build ng economics options for ene9 Periods9 Periodsoning requirem tent options-			
PREREQUISITE	S		CATEGORY	L	Т	Р	С	
		NIL	OE	3	0	0	3	
Course	То	introduce the different concepts of energy	efficient buildings	, indo	or e	menta		
Objectives	qual	ity management, green buildings and its design	n.					
UNIT – I	INT	RODUCTION			9 Periods			
Life cycle impac	ts of	materials and products - sustainable desig	n concepts – strat	egies	of de	esign f	for th	
Environment -The	sun	earth relationship and the energy balance on	the earth's surface	e, clin	nate,	wind -	- Sola	
radiation and solar	tem	perature - Sun shading and solar radiation on	surfaces - Energy	impac	t on t	he sha	pe an	
orientation of buil	dings	– Thermal properties of building materials.						
UNIT – II	EN	ERGY EFFICIENT BUILDINGS				9 Perio	ods	
		y lighting – Active solar and photovoltaic- B	Building energy ana	lysis 1	metho	ods- Bi	uildin	
Passive cooling an	nd da	y lighting – Active solar and photovoltate-						
ę		ilding energy efficiency standards-Lighting	system design- L	.ightin	ig ec	onomie	cs an	
energy simulation	I- BI		•	•	•			
energy simulation aesthetics- Impact	I- BI	ilding energy efficiency standards-Lighting	•	•	•			
energy simulatior aesthetics- Impact management.	ι- Βι s of ∃	ilding energy efficiency standards-Lighting	targeting- Technolo	•	optio	ns for	energ	
energy simulatior aesthetics- Impact management. UNIT – III	I- Bu s of I	ilding energy efficiency standards-Lighting ighting efficiency – Energy audit and energy	targeting- Technolo	ogical	optio	ns for 9 Perio	energ ods	
energy simulation aesthetics- Impact management. UNIT – III Psychrometry- Co	I- Bu s of D INE mfor	ilding energy efficiency standards-Lighting ighting efficiency – Energy audit and energy OOR ENVIRONMENTAL QUALITY MA	targeting- Technolo NAGEMENT Id air quality-Air co		optio	ns for 9 Perio require	energ ods ement	
energy simulation aesthetics- Impact management. UNIT – III Psychrometry- Co Visual perception	s of I s of I INE mfor 1- Il	ilding energy efficiency standards-Lighting ighting efficiency – Energy audit and energy OOR ENVIRONMENTAL QUALITY MA t conditions- Thermal comfort- Ventilation an	nageting- Technolo NAGEMENT ad air quality-Air co nent- Energy mat	ogical onditionagem	optio oning ent	ns for 9 <b>Perio</b> require options	energ ods ement s- Ai	
energy simulation aesthetics- Impact management. UNIT – III Psychrometry- Co Visual perception conditioning syste	I- Bu s of INE mfor n- Il ms- ]	idding energy efficiency standards-Lighting ighting efficiency – Energy audit and energy OOR ENVIRONMENTAL QUALITY MA t conditions- Thermal comfort- Ventilation an lumination requirement- Auditory requirement	nageting- Technolo NAGEMENT ad air quality-Air co nent- Energy mat	ogical onditionagem	optio oning ent	ns for 9 <b>Perio</b> require options	energ ods ement s- Ai	
energy simulation aesthetics- Impact management. UNIT – III Psychrometry- Co Visual perception conditioning syste equipment- Energy UNIT – IV	IND IND Mfor n- II ms- I y effi	idding energy efficiency standards-Lighting ighting efficiency – Energy audit and energy OOR ENVIRONMENTAL QUALITY MA t conditions- Thermal comfort- Ventilation an lumination requirement- Auditory requirem Energy conservation in pumps- Fans and blow cient motors- Insulation. EEN BUILDING CONCEPTS	targeting- Technolo <b>NAGEMENT</b> Id air quality-Air con nent- Energy many vers- Refrigerating 1	ogical ondition nagem machin	optio oning ent nes- H	ns for 9 Perio require options Heat re 9 Perio	energ ods ement s- Ai jectio	
energy simulation aesthetics- Impact management. UNIT – III Psychrometry- Co Visual perception conditioning syste equipment- Energy UNIT – IV	IND IND Mfor n- II ms- I y effi	idding energy efficiency standards-Lighting ighting efficiency – Energy audit and energy OOR ENVIRONMENTAL QUALITY MA t conditions- Thermal comfort- Ventilation an lumination requirement- Auditory requirem Energy conservation in pumps- Fans and blow cient motors- Insulation.	targeting- Technolo <b>NAGEMENT</b> Id air quality-Air con nent- Energy many vers- Refrigerating 1	ogical ondition nagem machin	optio oning ent nes- H	ns for 9 Perio require options Heat re 9 Perio	energ ods ement s- Ai jectio	
energy simulation aesthetics- Impact management. UNIT – III Psychrometry- Co Visual perception conditioning syste equipment- Energy UNIT – IV Green building co energy- Operating	IND s of 1 mfor ms- 1 y effi GR oncep ener	An and a systems- Ventilation systems-Tran	AGEMENT NAGEMENT Id air quality-Air connent- Energy man vers- Refrigerating 1	onditic nagem machin	optio oning ent nes- H	ns for 9 Perio require options Heat re 9 Perio on Em	energ ods ement s- Ai jectio ods bodie	
energy simulation aesthetics- Impact management. UNIT – III Psychrometry- Co Visual perception conditioning syste equipment- Energy UNIT – IV Green building co	IND s of 1 mfor ms- 1 y effi GR oncep ener	An and a systems- Ventilation systems-Tran	AGEMENT NAGEMENT Id air quality-Air connent- Energy man vers- Refrigerating 1	onditic nagem machin	optio oning ent nes- H	ns for 9 Perio require options Heat re 9 Perio on Em	energ ods ement s- Ai jectio ods bodie	
energy simulation aesthetics- Impact management. UNIT – III Psychrometry- Co Visual perception conditioning syste equipment- Energy UNIT – IV Green building co energy- Operating efficiency- Buildin	IND s of 1 mfor n- 11 ms- 1 y effi GR pncep ener ng ec	An and a systems- Ventilation systems-Tran	AGEMENT NAGEMENT Id air quality-Air connent- Energy man vers- Refrigerating n iBC codes. – Mate sportation- Water th	onditic nagem machin	optio oning ent nes- H electio	ns for 9 Perio require options Heat re 9 Perio on Em	energ ods ement s- Ai jectio ods bodie Wate	
energy simulation aesthetics- Impact management. UNIT – III Psychrometry- Co Visual perception conditioning syste equipment- Energy UNIT – IV Green building co energy- Operating efficiency- Buildin UNIT – V	IND IND IND IND IND IND IND IND IND IND	An and a systems- Ventilation systems-Tran onomics	AGEMENT NAGEMENT Id air quality-Air connent- Energy man vers- Refrigerating n BC codes. – Mate sportation- Water tr	onditic nagem machin erial se reatme	optio oning ent nes- H electio	ns for 9 Perio require options Heat re 9 Perio 50 Em stems- 9 Perio	energ ods ement s- Ai jectio ods bodie Wate	
energy simulation aesthetics- Impact management. UNIT – III Psychrometry- Co Visual perception conditioning syste equipment- Energy UNIT – IV Green building co energy- Operating efficiency- Buildin UNIT – V Case studies - Bu	INDE INDE INDE INDE Infor In- II Inms- I I Inms- I I Inms- I I Incep ener Ing ec GR I III I III I I I I I I I I I I I I	A standards-Lighting ighting energy efficiency standards-Lighting ighting efficiency – Energy audit and energy OOR ENVIRONMENTAL QUALITY MA t conditions- Thermal comfort- Ventilation and lumination requirement- Auditory requirem Energy conservation in pumps- Fans and blow cient motors- Insulation. EEN BUILDING CONCEPTS t- Green building rating tools- Leeds and IC gy- Façade systems- Ventilation systems-Tran conomics EEN BUILDING DESIGN - CASE STUDY	targeting- Technolo NAGEMENT Id air quality-Air con nent- Energy man pers- Refrigerating no BC codes. – Mate sportation- Water the conservation measured	opgical onditionagem machin erial se reatme	optio oning ent nes- H electio ent sy energ	ns for 9 Perio require options Heat re 9 Perio 50 Em stems- 9 Perio	energ ods ement s- Ai jectio ods bodie Wate	
energy simulation aesthetics- Impact management. UNIT – III Psychrometry- Co Visual perception conditioning syste equipment- Energy UNIT – IV Green building co energy- Operating efficiency- Buildin UNIT – V Case studies - Bu	INDE INDE INDE INDE Infor In- II Inms- I I Inms- I I Inms- I I Incep ener Ing ec GR I III I III I I I I I I I I I I I I	An and a start of the second start of the seco	targeting- Technolo NAGEMENT Id air quality-Air con nent- Energy man pers- Refrigerating no BC codes. – Mate sportation- Water the conservation measured	opgical onditionagem machin erial se reatme	optio oning ent nes- H electio ent sy energ	ns for 9 Perio require options Heat re 9 Perio 50 Em stems- 9 Perio	energ ods ement s- Ai jectio ods bodie Wate	

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", , Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

COURSE OUTCOMES:						
Upon co	Upon completion of the course, the students will be able to:					
CO1	Apply the concepts of sustainable design in building construction.	K3				
CO2	Execute green building techniques including energy efficiency management in the	K3				
	building design.					
CO3	Establish indoor environmental quality in green building.	K3				
CO4	Perform the green building rating using various tools.	K3				
CO5	Create drawings and models of green buildings.	K3				

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	2	3	3	3				
CO2	3	3	2	3	3	3				
CO3	2	2	2	2	3	3				
CO4	2	3	1	3	3	3				
CO5	3	3	1	3	3	3				
23SEOE03	3	3	2	3	3	3				
1 - Slight, 2 - Moder	rate, 3 – Subs	tantial	•			•				

ASSESSMENT P.	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	40	40	20	-	-	-	100				
CAT2	40	40	20	-	-	-	100				
Individual	40	40	20	-	-	-	100				
Assessment 1 /		Contraction of the second	Contraction of the second	9							
Case Study 1/			ALL ROW	2)							
Seminar 1 /		72									
Project1			-	7							
Individual	40	40	20	-	-	-	100				
Assessment 2 /											
Case Study 2/											
Seminar 2 /											
Project 2		1 8		a							
ESE	40	40	20	935 -	-	-	100				



<b>23EEOE04</b>	ENVIRONMENT HEALTH AN	D SAFETY MANA	GEM	ENT		
25EEOE04	(Common to al	l Branches)				
PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course	To impart knowledge on occupational health	hazards, safety n	neasure	s at y	work	place
Objectives	accident prevention, safety management and safe	ty measures in indu	stries.			
UNIT – I	OCCUPATIONAL HEALTH HAZARDS			9 P	eriod	S
Occupation, H	Health and Hazards - Safety Health and Man	agement: Occupat	ional I	Health	Haz	ards
Ergonomics -	Importance of Industrial Safety - Radiation and	nd Industrial Hazar	ds: Ty	pes a	nd ef	fects
Vibration - Inc	dustrial Hygiene - Different air pollutants in indu	stries and their eff	ects - E	Electri	cal, f	ire and
Other Hazards						
UNIT – II		9 P	eriod	S		
Safety at World	kplace - Safe use of Machines and Tools: Safety	in use of different	types of	f unit	opera	itions
Ergonomics of	Machine guarding - working in different workpla	ces - Operation, Ins	spection	n and i	maint	enance
- Housekeepin	g, Industrial lighting, Vibration and Noise.					
UNIT – III	ACCIDENT PREVENTION			9 P	eriod	s
Accident Prev	ention Techniques - Principles of accident preve	ention - Hazard ide	entifica	tion a	nd ar	nalysis
	lysis, Hazop studies, Job safety analysis - Theories	•			sation	- Firs
Aid: Body stru	cture and functions - Fracture and Dislocation, Inj	uries to various boo	ly parts	•		
UNIT – IV	SAFETY MANAGEMENT			9 P	eriod	S
Safety Manag	ement System and Law - Legislative measures	in Industrial Safet	y - Oc	cupati	ional	safety
Health and En	vironment Management, Bureau of Indian Standar	ds on Health and S	afety, I	S 1448	89 sta	ndard
- OSHA, Proce	ess safety management (PSM) and its principles - I	EPA standards				
UNIT – V	GENERAL SAFETY MEASURES			9 P	eriod	s
Plant Layout for	or Safety - design and location, distance between h	nazardous units, ligł	nting, co	olour	codin	g, pilo
plant studies,	Housekeeping - Accidents Related with Mainten	ance of Machines	- Work	Pern	nit Sy	stem
Significance o	f Documentation - Case studies involving imple	mentation of health	n and s	afety	meas	ures ir
Industries.	A B	A A				
<b>Contact Perio</b>	ds:					
Lecture: 45 P	eriods Tutorial: 0 Periods Practical:	: 0 Periods	Total:	45 Pei	riods	
REFEREN	Contraction and Contraction					

<b>REFERENCES:</b>
--------------------

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications, 2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao,

PharmaMed Press, 1st edition, 2021.

COUR	COURSE OUTCOMES:			
Upon c	Upon completion of the course, the students will be able to:			
CO1	Identify the occupational health hazards.	К3		
CO2	Execute various safety measures at workplace.	К3		
CO3	Analyze and execute accident prevention techniques.	К3		
CO4	Implement safety management as per various standards.	K3		
CO5	Develop awareness on safety measures in Industries.	К3		

COURSE ARTICULATION M	COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	1	2	2	2	3	2					
CO2	2	2	2	1	2	2					
CO3	2	3	2	1	2	2					
CO4	1	1	1	2	2	2					
CO5	1	1	1	1	1	2					
23EEOE04	1	2	2	1	2	2					
1 - Slight, $2 - $ Moderate, $3 - $ Sub	stantial										

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

<b>23EEO</b>	E05

## CLIMATE CHANGE AND ADAPTATION

(Common to all Branches)

Objectives the tee UNIT – I E	NIL	CATEGORY	T						
Objectives the tee UNIT – I E			L	Т	Р	С			
Objectives the tee UNIT – I E									
te UNIT – I E									
UNIT – I E	ne impacts, adaptation, mitigation of climate cha	inge and for gaini	ng kno	owledg	ge on	clea			
	echnology, carbon trading and alternate energy sou	rces.							
	CARTH'S CLIMATE SYSTEM			9 Pe	eriod	s			
introduction-Climate	in the spotlight - The Earth's Climate Machin	e – Climate Class	sificati	on- G	lobal	Win			
Systems – Trade Wir	nds and the Hadley Cell – The Westerlies – Cloud	d Formation and M	Ionsoo	n Rair	1s - S	Storm			
and Hurricanes - The	Hydrological Cycle - Global Ocean Circulation -	- El Nino and its E	ffect -	Solar	Radia	ation			
The Earth's Natural G	Freen House Effect – Green House Gases and Glob	al Warming – Cart	oon Cy	cle.					
UNIT – II O	DBSERVED CHANGES AND ITS CAUSES			9 Pe	eriod	S			
Observation of Clima	te Change - Changes in patterns of temperature,	precipitation and s	ea leve	el rise	– Ob	serve			
effects of Climate (	Changes – Patterns of Large-Scale Variability	-Drivers of Clim	nate C	hange	– C	limat			
Sensitivity and Feedb	packs - The Montreal Protocol -UNFCCC - IPC	C – Evidences of	Chang	es in C	Clima	te an			
Environment – on a C	Global Scale and in India – climate change modelin	ıg.							
UNIT – III II	MPACTS OF CLIMATE CHANGE			9 P	eriod	s			
Impacts of Climate C	hange on various sectors - Agriculture, Forestry as	nd Ecosystem – W	ater Re	esource	es – I	Huma			
-	ettlement and Society – Methods and Scenarios –								
Uncertainties in the P	rojected Impacts of Climate Change – Risk of Irre	versible Changes.							
	LIMATE CHANGE ADAPTATION ANI	D MITIGATION	N	9 P	eriod	S			
	TEASURES		1.0	.1		1 1'			
	Options in various sectors – Water – Agriculture								
	an Health – Tourism – Transport – Energy – Ke		-						
Energy Supply – Tra	ansport – Buildings – Industry –Agriculture – H		-			∠arbo			
sometry and standard (	CCS) – Waste (MSW & Bio waste, Biomedical, In	dustrial waste – In	ternatio	onal ai	ia Re				
		226							
cooperation.	TEAN TECHNOLOCY AND ENERCY	Ð		0.0		giona			
cooperation. UNIT – V C	CLEAN TECHNOLOGY AND ENERGY	ra Claan Taahnala			eriod	giona s			
cooperation. UNIT – V C Clean Development N	Mechanism – Carbon Trading - examples of future			iodiese	eriod el – N	giona s Vatura			
cooperation. UNIT – V C Clean Development M Compost – Eco- Frier	Mechanism – Carbon Trading - examples of future ndly Plastic – Alternate Energy – Hydrogen – Biof			iodiese	eriod el – N	giona s Vatura			
cooperation. UNIT – V C Clean Development M Compost – Eco- Frier Power – Mitigation E	Mechanism – Carbon Trading - examples of future			iodiese	eriod el – N	giona s Vatura			
cooperation. UNIT – V C Clean Development M Compost – Eco- Frier	Mechanism – Carbon Trading - examples of future ndly Plastic – Alternate Energy – Hydrogen – Biof	fuels– Solar Energy	y – Wir	iodiese nd – Hy	eriod el – N	giona s Vatura			

2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report – Working Group I Report, "The physical sciencebasis", 2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability", 2007
	2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate Change,
	Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

	<b>E OUTCOMES:</b> mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Classify the Earths climatic system and factors causing climate change and global warming.	K2
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise and Observed effects of Climate Changes	K2
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible changes.	K3
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	K3
CO5	Discover clean technologies and alternate energy source for sustainable growth.	K3

## COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	2	3	1
CO2	3	2	2	2	3	2
CO3	2	2	2	2	3	2
CO4	3	2	2	2	2	2
CO5	3	3	2	3	3	3
23EEOE05	3	3	3	3	3	3
1 - Slight. $2 - $ Moderate	. 3 – Substanti	al	¥ //			

1

#### ıgı

# ASSESSMENT PATTERN – THEORY

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	30	35	10	-	-	100
CAT2	25	30	35	10	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100
ESE	25	30	35	10	-	-	100

<b>12</b> 550506			WASTE TO ENER	GY					
<b>23EEOE06</b>		()	Common to all Branches)						
PREREQUISI	TES	ES CATEGORY						С	
		NIL		OE	3	0	0	3	
Course	To classi	fy waste as fuel, introdu	ace conversion devi	ces, gain knowle	dge	abou	t Bio	omas	
Objectives	Pyrolysis,	, demonstrate methods, fac	ctors for biomass gasi	fication, and acqu	ire kı	nowle	edge	abou	
	biogas an	d its development in India							
UNIT – I	INTROD	UCTION				9 P	Perio	ds	
Introduction to	Energy fro	om Waste: Classification	of waste as fuel – A	Agro based, Fores	st res	idue,	Indu	ıstria	
waste - MSW –	- Conversion	n devices – Incinerators, G	Basifiers, Digestors.						
UNIT – II	BIOMAS	SS PYROLYSIS				9 P	Perio	ds	
Biomass Pyroly	ysis: Pyroly	vsis -Types, Slow Pyrolys	is, Fast Pyrolysis – I	Manufacture of ch	narcoa	al – 1	Meth	ods	
Yields and App	lications –	Manufacture of Pyrolytic	oils and gases, Yields	and Applications	•				
UNIT – III	BIOMAS	SS GASIFICATION				9 P	Perio	ds	
Gasifiers – Fi	xed bed s	ystem – Downdraft and	updraft gasifiers -	- Fluidized bed	gasif	iers	– D	esigi	
Construction ar	nd Operatio	n – Gasifier burner arrang	gement for thermal h	eating – Gasifier	Engi	ne ar	range	emei	
and electrical pe	ower – Equ	ilibrium and Kinetic Cons	iderations in gasifier	operation.					
-		ilibrium and Kinetic Cons	iderations in gasifier	operation.		9 P	Perio	ds	
UNIT – IV	BIOMAS			-	desig				
UNIT – IV Biomass Comb	BIOMAS	SS COMBUSTION	oved Chullahs, type	es, some exotic	-	ns,	Fixed	l be	
UNIT – IV Biomass Comb combustors, typ	BIOMAS	S COMBUSTION Biomass Stoves – Impro ed grate combustors – Flu	oved Chullahs, type	es, some exotic	-	ns,	Fixed	l be	
UNIT – IV Biomass Comb combustors, typ of all the above	BIOMAS	S COMBUSTION Biomass Stoves – Impro ed grate combustors – Flu	oved Chullahs, type	es, some exotic	-	ns, 1 n and	Fixed	l be ratio	
UNIT – IV Biomass Comb combustors, typ of all the above UNIT – V Biogas: Proper	BIOMAS bustion – bes – Inclin biomass co BIOENE ties of biog	S COMBUSTION Biomass Stoves – Impre ed grate combustors – Flu ombustors. RGY SYSTEM gas (Calorific value and c	oved Chullahs, type iidized bed combusto composition) – Biog	es, some exotic ors, design, constr as plant technolo	uction gy ar	ns, 1 n and <b>9 P</b> nd sta	Fixed l ope Perio	l be ratio <b>ds</b> – Bi	
UNIT – IV Biomass Comb combustors, typ of all the above UNIT – V Biogas: Propert energy system	BIOMAS bustion – pes – Inclin biomass cc BIOENE ties of biog – Design a	S COMBUSTION Biomass Stoves – Impro ed grate combustors – Flu ombustors. RGY SYSTEM gas (Calorific value and c and constructional feature	oved Chullahs, type iidized bed combusto composition) – Biog s – Biomass resource	es, some exotic ors, design, constr as plant technolo es and their class	uction gy ar sifica	ns, 1 n and <b>9 P</b> nd sta tion	Fixed l ope Perio atus - Bio	l be ratio ds – Bi	
UNIT – IV Biomass Comb combustors, typ of all the above UNIT – V Biogas: Proper energy system conversion proc	BIOMAS bustion – bes – Inclin biomass cc BIOENE ties of biog – Design a cesses – Th	S COMBUSTION Biomass Stoves – Impre ed grate combustors – Flu ombustors. RGY SYSTEM gas (Calorific value and c and constructional feature hermo chemical conversio	oved Chullahs, type iidized bed combusto composition) – Biog s – Biomass resource n – Direct combusti	es, some exotic ors, design, constr as plant technolo es and their class on – biomass gas	uction gy ar sifica ificat	ns, 1 n and <b>9 P</b> nd sta tion	Fixed l ope Period atus - Bid - pyr	l be ratio ds – Bi omas olysi	
UNIT – IV Biomass Comb combustors, typ of all the above UNIT – V Biogas: Propert energy system conversion proc and liquefaction	BIOMAS bustion – pes – Inclin biomass cc BIOENE ties of biog – Design a cesses – Th n – biocher	S COMBUSTION Biomass Stoves – Impre ed grate combustors – Flu ombustors. RGY SYSTEM gas (Calorific value and c and constructional feature nermo chemical conversio mical conversion – anaer	oved Chullahs, type iidized bed combusto composition) – Biog s – Biomass resource on – Direct combusti obic digestion – Typ	es, some exotic ors, design, constr as plant technolo es and their class on – biomass gas bes of biogas plan	gy ar sificat	ns, 1 n and <b>9 F</b> nd sta tion ion – App	Fixed l ope Perio atus - Bio - pyr licati	l be ratio ds – Bi omas olysi ons	
UNIT – IV Biomass Comb combustors, typ of all the above UNIT – V Biogas: Propert energy system conversion proc and liquefaction	BIOMAS bustion – pes – Inclin biomass cc BIOENE ties of biog – Design a cesses – Th n – biocher	S COMBUSTION Biomass Stoves – Impre ed grate combustors – Flu ombustors. RGY SYSTEM gas (Calorific value and c and constructional feature hermo chemical conversio	oved Chullahs, type iidized bed combusto composition) – Biog s – Biomass resource on – Direct combusti obic digestion – Typ	es, some exotic ors, design, constr as plant technolo es and their class on – biomass gas bes of biogas plan	gy ar sificat	ns, 1 n and <b>9 F</b> nd sta tion ion – App	Fixed l ope Perio atus - Bio - pyr licati	l be ratio ds – Bi omas olys: ons	
UNIT – IV Biomass Comb combustors, typ of all the above UNIT – V Biogas: Propert energy system conversion proc and liquefaction Alcohol product	BIOMAS bustion – biomass co BIOENE ties of biog – Design a cesses – Th n – biocher ction from me in India	S COMBUSTION Biomass Stoves – Impro ed grate combustors – Flu ombustors. RGY SYSTEM gas (Calorific value and c and constructional feature hermo chemical conversion mical conversion – anaero biomass – Bio diesel pro	oved Chullahs, type iidized bed combusto composition) – Biog s – Biomass resource on – Direct combusti obic digestion – Typ	es, some exotic ors, design, constr as plant technolo es and their class on – biomass gas bes of biogas plan	gy ar sificat	ns, 1 n and <b>9 F</b> nd sta tion ion – App	Fixed l ope Perio atus - Bio - pyr licati	l be ratio ds – Bi omas olys: ons	
UNIT – IV Biomass Comb combustors, typ of all the above UNIT – V Biogas: Propert energy system conversion proc and liquefaction	BIOMAS bustion – biomass co BIOENE ties of biog – Design a cesses – Th n – biocher ction from me in India	S COMBUSTION Biomass Stoves – Impro ed grate combustors – Flu ombustors. RGY SYSTEM gas (Calorific value and c and constructional feature hermo chemical conversion mical conversion – anaero biomass – Bio diesel pro	oved Chullahs, type iidized bed combusto composition) – Biog s – Biomass resource on – Direct combusti obic digestion – Typ	es, some exotic ors, design, constr as plant technolo es and their class on – biomass gas bes of biogas plan	gy ar sificat	ns, 1 n and <b>9 F</b> nd sta tion ion – App	Fixed l ope Perio atus - Bio - pyr licati	l be ratio ds – Bi omas olys: ons	

1	<i>"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P Jayaram Reddy, Taylor and Francis Publications, 2016.</i>
2	<i>"Waste – to – Energy: Technologies and project Implementations",</i> Marc J Rogoff, Francois Screve, ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications, Illustrated Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", PrabirELSEVIER Publications, 2010.

COUR	COURSE OUTCOMES:						
		Taxonomy					
Upon co	ompletion of the course, the students will be able to:	Mapped					
CO1	Investigate solid waste management techniques.	K2					
CO2	Get knowledge about biomass pyrolysis.	K3					
CO3	Demonstrate methods and factors considered for biomass gasification.	K3					
CO4	Identify the features of different facilities available for biomass combustion.	K4					
CO5	Analyze the potential of different Bioenergy systems with respect to Indian	K2					
	condition.						

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	3	2	3	1
CO2	3	2	2	2	3	1
CO3	3	3	2	3	2	1
CO4	3	2	2	3	3	1
CO5	2	3	3	3	2	1
<b>23EEOE06</b>	3	3	3	3	3	1
1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	20	20	25	15	10	100
CAT2	10	25	20	10	25	10	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	15	35	50	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	10	40	50	-	-	100
ESE	10	25	25	20	10	10	100



	(Common to all Branc	hes)						
PREREQUISIT								
	NIL OE 3 0 0							
Course	To understand constructional energy requirements of	of buildings, ener	gy a	udit	met	thods		
Objective	and conservation of energy.	C ·	0.					
UNIT–I	INTRODUCTION			91	Perio	ods		
Indoor activities a	nd environmental control - Internal and external facto	rs on energy use	-Cha	iract	erist	ics o		
comfort-Ventilatio								
requirement-Audit				0.1	<u> </u>			
	IGHTING REQUIREMENTS IN BUILDING		1 1		Perio			
	ationship - Climate, wind, solar radiation and tem	•		•				
	ces-Energy impact on the shape and orientation of bu			-	•	ting		
	d estimation, methods of day-lighting–Architectural co ENERGY REQUIREMENTS IN BUILDING	onsiderations for (	lay-l	-	erio	de		
	ady heat transfer through wall and glazed window-St	andarda for tharm	<u></u>					
•	- Evaluation of the overall thermal transfer- Therm		-					
<b>U</b>	ts-Status of energy use in buildings-Estimation of energy	•		gan	1-1211	u-030		
<u>.</u>	ENERGY AUDIT	igy use in a build	ing.	91	Perio	h		
Energy audit and	energy targeting-Technological options for energy environment and air quality-Air flow and air pressu	e e		ıl aı	nd fo	orced		
UNIT–V C	COOLING IN BUILT ENVIRONMENT			91	Perio	ods		
-	rchitecture– Radiative cooling-Solar cooling technique atural and active cooling with adaptive comfort–Ev							
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Periods	Total: 45 H	Perio	ds				

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill,
	2000.
2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinoi ,USA.

COUF	COURSE OUTCOMES:					
Upon o	completion of the course, the students will be able to:	Mapped				
CO1	Understand energy and its usage	K2				
CO2	Know lighting to be given to a building	K1				
CO3	Analyse the energy requirements in a building	K3				
CO4	Apply the energy audit concepts.	K3				
CO5	Study architectural specifications of a building	K1				

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	3	1	2	1
CO2	2	-	3	1	2	1
CO3	2	-	3	1	2	1
CO4	2	-	3	1	2	1
CO5	2	-	3	1	2	1
23GEOE07	2	-	3	1	2	1
23GEOE07 1–Slight, 2–Moderat	2	- 1	3	1	2	1

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluatin	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	g (K5) %	(K6) %	%
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual			E.				
Assessment 1 /		(Collect	ADSG BEUG MI	162			
Case Study 1/	50	50	NULTER CO	<u> </u>	-	-	100
Seminar 1 /							
Project1				1			
Individual							
Assessment 2 /			(SV2)	11			
Case Study 2/	50	50		-	-	-	100
Seminar 2 /		1 00					
Project 2		<b>利</b> 】		VA.			
ESE	40	40	20	100	-	-	100

23GEOE08	EARTH AND ITS ENVIRONMENT (Common to all Branches)							
PREREQUISIT	ES		、 	CATEGORY	L	Т	Р	С
	NIL			OE	3	0	0	3
Course	To kno	w about the planet earth, th	ne geosystems and the	he resources like	gro	ound	wa	ter and
Objective	air and	to learn about the Environr	nental Assessment a	and sustainability				
UNIT–I	EVOL	UTION OF EARTH				9	Peri	iods
Evolution of ear	th as h	abitable planet-Evolution of	of continents-ocean	s and landforms	s-ev	olut	ion	of life
through geologic	cal time	s - Exploring the earth's i	interior - thermal a	nd chemical str	uctu	ire ·	- or	igin of
gravitational and	magnet	ic fields.						
UNIT–II		GEOSYSTEMS				9	Peri	iods
Plate tectonics -	working	and shaping the earth - Int	ternal geosystems –	earthquakes - v	olca	inoe	s -c	limatic
excursions through	gh time	- Basic Geological processe	s - igneous, sedimer	ntation – metamo	rph	ic pi	oce	sses.
UNIT-III		<b>GROUND WATER GEO</b>	LOGY			9 Periods		
		r occurrence -recharge proc						
and catchment hy	ydrolog	v – Ground water as a resou	rce - Natural ground	d water quality a	nd o	cont	ami	nation-
Modelling and m	anaging	ground water systems.						
UNIT-IV		ENVIRONMENTAL ASS	SESMENT AND SU	STAINABILITY	7	9	Peri	iods
		nable development - popul	property of the second se					
resources - wate	r scarcit	y and conflict - Environment	ntal risk - risk asses	sment and chara	cter	izati	on -	-hazard
assessment-expo	sure ass	essment.						
UNIT-V AIR AND SOLIDWASTE						9 Periods		
chemistry-Solid	waste m	ring-introduction to atmo anagement–characterization			mos	sphe	eric	photo
<b>Contact Periods</b>	:	A 2						
Lecture: 45 Peri	ods	Tutorial: 0 Periods	Practical: 0 Period	ds Total	: 45	Per	iods	5
REFEREN	CES	K K						

1	John Grotzinger and Thomas H.Jordan, "Understanding Earth", Sixth Edition, W.H.Freeman, 2010.
2	Younger, P.L., "Ground water in the Environment: An introduction", Blackwell Publishing, 2007.
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,
	Sustainability and Design", Wiley, NJ, 2010.

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and the	K2
	Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground water	K3
	and the modeling systems.	
<b>CO4</b>	To assess the Environmental risks and the sustainability developments.	K3
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COURSE ARTICU	LATION M	IATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
C01	1	-	-	2	2	-
CO2	3	-	3	3	-	3
CO3	2	-	-	-	-	-
CO4	-	2	-	-	1	-
CO5	2	2	-	1	-	-
23GEOE08	2	2	3	3	2	3
1–Slight, 2–Moderat	e, 3–Substar	ntial				

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual		( Giller	Internet a				
Assessment 1 /			ASTRICALL'				
Case Study 1/	-	50	50	-	-	-	100
Seminar 1 /				- //			
Project1							
Individual			( SWA )	. //			
Assessment 2 /							
Case Study 2/	-	50	50	- 1-	-	-	100
Seminar 2 /		A Ja		k			
Project 2							
ESE	40	40	20		-	-	100

<b>23GEOE09</b>	NATURAL HAZARD	S AND MITIGA	TION	N		
25GEUEU9	(Common to	all Branches)				
PREREQUISITES	5:	CATEGORY	L	Т	P	С
]	NIL	OE	3	0	0	3
Course	To get idea on the causes, effects and mitigation	measures of diff	erent	types of	of haza	rds wi
Objective	case studies.					
UNIT–I	EARTH QUAKES			9 I	Periods	5
Definitions and bas	sic concepts-different kinds of hazards-causes-C	Geologic Hazards	Ear	thquak	es-cau	ses of
earthquakes-effects	s-plate tectonics-seismic waves-measures of s	ize of earthqual	kes-ea	rthqua	ike res	istant
design concepts.						
UNIT-II	SLOPE STABILITY			9 I	Periods	;
Slope stability and	landslides-causes of landslides-principles of s	tability analysis-	remed	dial an	d corre	ective
measures for slope						
UNIT-III	FLOODS			9 I	Periods	5
Climatic Hazards-	Floods-causes of flooding-regional flood frequencies	uency analysis-f	lood	contro	ol meas	sures-
flood routing-flood	forecasting-warning systems.					
UNIT-IV	DROUGHTS			9 I	Periods	5
Droughts -causes -	types of droughts -effects of drought -hazard as	ssessment – decis	sion n	naking	-Use o	f GIS
in natural hazard as	sessment-mitigation-management.	22				
UNIT-V	TSUNAMI	<i>y</i>		9 I	Periods	;
Tsunami-causes-et	ffects-under sea earthquakes-landslides-volcar	nic eruptions-im	pact	of sea	mete	orite-
remedial measures-	-precautions-case studies.	-	-			
<b>Contact Periods</b> :						
Lecture: 45 Period	ls Tutorial: 0 Periods Practical: 0 Perio	ds Total:	45 P	eriods		
	8					
REFERENC	TEC A R	3				
	.Е.О	308				

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage
	Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press, 2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley & Sons,
	Inc,2005.
4	AmrS.Elnashai and Luigi Di Sarno, "Fundamentals of Earthquake Engineering", John Wiley &
	Sons,Inc,2008

	E OUTCOMES: npletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Learn the basic concepts of earthquakes and the design concepts of earthquake Resistant buildings.	K2
CO2	Acquire knowledge on the causes and remedial measures of slope stabilization.	K3
CO3	As certain the causes and control measures of flood.	K3
CO4	Know the types, causes and mitigation of droughts.	K2
CO5	Study the causes, effects and precautionary measures of Tsunami.	K2

COURSE AF	RTICULATIO	ON MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	-	3	2	3
CO2	3	1	2	3	3	3
CO3	3	2	3	-	-	3
CO4	3	-	-	3	2	3
CO5	3	-	2	2	-	3
23GEOE09	3	1	2	3	2	3
1–Slight, 2–N	Ioderate, 3–Su	ibstantial				

eringUnderstanding%(K2) %4040	g         Applying (K3) %           20           20	Analyzing (K4) % - -	Evaluating (K5) %	Creating (K6) %	<b>Total %</b>
40	20	(K4) % - -	(K5) % -	(K6) % -	100
		-		-	
40	20	-	-		
0.00	amm			-	100
1 Philipping	Contractory of the				
50	50		-	-	100
50	50	-	-	-	100
40	20		-	-	100
	E				

Business analyticRelationship of EStatistical Tools:data modelling, sUNIT – IIRITrendiness and RImportant Resousolving, VisualiziUNIT – IIISI	(Common to all Branchest ES NIL • To apprehend the fundamentals of business analy • To gain knowledge about fundamental business • To study modeling for uncertainty and statistical • To apprehend analytics the usage of Hadoop and • To acquire insight on other analytical framework USINESS ANALYTICS AND PROCESS s: Overview of Business analytics, Scope of Business Business Analytics Process and organization, competint Statistical Notation, Descriptive Statistical methods, a ampling and estimation methods overview. EGRESSION ANALYSIS egression Analysis: Modelling Relationships and Treat rces, Business Analytics Personnel, Data and moding and Exploring Data, Business Analytics Technolog FRUCTURE OF BUSINESS ANALYTICS	CATEGORY OE ytics and its life cyc analytics. I inference. I Map Reduce frame ks. analytics, Business tive advantages of I Review of probabil nds in Data, simple dels for Business	3 ele. Analy Busine ity dis Linea	0 Pe ytics trib	s Pro Anal pution	ocess ytics n and
Course ObjectivesUNIT – IBusiness analytic Relationship of E Statistical Tools: data modelling, sUNIT – IIRI Trendiness and R Important Resou solving, VisualiziUNIT – IIIST	<ul> <li>NIL</li> <li>To apprehend the fundamentals of business analy</li> <li>To gain knowledge about fundamental business</li> <li>To study modeling for uncertainty and statistical</li> <li>To apprehend analytics the usage of Hadoop and</li> <li>To acquire insight on other analytical framework</li> <li>JSINESS ANALYTICS AND PROCESS</li> <li>s: Overview of Business analytics, Scope of Business</li> <li>Business Analytics Process and organization, competities</li> <li>Statistical Notation, Descriptive Statistical methods, ampling and estimation methods overview.</li> <li>EGRESSION ANALYSIS</li> <li>egression Analysis: Modelling Relationships and Treatices, Business Analytics Personnel, Data and moding and Exploring Data, Business Analytics Technolog</li> </ul>	OE ytics and its life cyc analytics. I inference. I Map Reduce frame ks. analytics, Business tive advantages of I Review of probabil nds in Data, simple dels for Business	3 ele. Analy Busine ity dis Linea	0 Pe ytics trib	0 eriod s Pro Analjoution	3 Is pocess ytics n and
ObjectivesUNIT – IBusiness analyticRelationship of EStatistical Tools:data modelling, sUNIT – IIRITrendiness and RImportant Resousolving, VisualiziUNIT – IIIST	<ul> <li>To apprehend the fundamentals of business analy</li> <li>To gain knowledge about fundamental business</li> <li>To study modeling for uncertainty and statistical</li> <li>To apprehend analytics the usage of Hadoop and</li> <li>To acquire insight on other analytical framework</li> <li><b>JSINESS ANALYTICS AND PROCESS</b></li> <li>s: Overview of Business analytics, Scope of Business</li> <li>Business Analytics Process and organization, competit</li> <li>Statistical Notation, Descriptive Statistical methods, ampling and estimation methods overview.</li> <li><b>EGRESSION ANALYSIS</b></li> <li>egression Analysis: Modelling Relationships and Treatices, Business Analytics Personnel, Data and moding and Exploring Data, Business Analytics Technolog</li> </ul>	ytics and its life cyc analytics. I inference. Map Reduce frame ks. analytics, Business tive advantages of Review of probabil nds in Data, simple dels for Business	eworks Analy Busine ity dis Linea	3. PPe vtice ss 4 trib	eriod s Pro Anal pution	ls ocess ytics n and
ObjectivesUNIT – IBusiness analyticRelationship of EStatistical Tools:data modelling, sUNIT – IIRITrendiness and RImportant Resousolving, VisualiziUNIT – IIIST	<ul> <li>To gain knowledge about fundamental business</li> <li>To study modeling for uncertainty and statistical</li> <li>To apprehend analytics the usage of Hadoop and</li> <li>To acquire insight on other analytical framework</li> <li><b>JSINESS ANALYTICS AND PROCESS</b></li> <li>s: Overview of Business analytics, Scope of Business</li> <li>Business Analytics Process and organization, competities</li> <li>Statistical Notation, Descriptive Statistical methods, ampling and estimation methods overview.</li> <li><b>EGRESSION ANALYSIS</b></li> <li>egression Analysis: Modelling Relationships and Treations and Exploring Data, Business Analytics Technologies</li> </ul>	analytics. I inference. I Map Reduce frame ks. analytics, Business tive advantages of I Review of probabil nds in Data, simple dels for Business	eworks 9 Analy Busine ity dis 9 Linea	Pe ytics ess 2 trib	s Pro Anal pution	ytics n an
UNIT – IBUBusiness analyticRelationship of EStatistical Tools:data modelling, sUNIT – IIRITrendiness and RImportant Resousolving, VisualiziUNIT – IIIST	<ul> <li>To study modeling for uncertainty and statistical</li> <li>To apprehend analytics the usage of Hadoop and</li> <li>To acquire insight on other analytical framework</li> <li><b>USINESS ANALYTICS AND PROCESS</b></li> <li>s: Overview of Business analytics, Scope of Business</li> <li>Business Analytics Process and organization, competit</li> <li>Statistical Notation, Descriptive Statistical methods, ampling and estimation methods overview.</li> <li><b>EGRESSION ANALYSIS</b></li> <li>egression Analysis: Modelling Relationships and Treatices, Business Analytics Personnel, Data and moding and Exploring Data, Business Analytics Technolog</li> </ul>	l inference. l Map Reduce frame ks. analytics, Business tive advantages of I Review of probabil nds in Data, simple dels for Business	9 Analy Busine ity dis 9 Linea	Pe ytics ess 2 trib	s Pro Anal pution	ytics n an
Business analytic Relationship of E Statistical Tools: data modelling, s UNIT – II RI Important Resou solving, Visualizi	<ul> <li>To apprehend analytics the usage of Hadoop and</li> <li>To acquire insight on other analytical framework</li> <li><b>JSINESS ANALYTICS AND PROCESS</b></li> <li>s: Overview of Business analytics, Scope of Business</li> <li>Business Analytics Process and organization, competit</li> <li>Statistical Notation, Descriptive Statistical methods, ampling and estimation methods overview.</li> <li>EGRESSION ANALYSIS</li> <li>egression Analysis: Modelling Relationships and Treatices, Business Analytics Personnel, Data and moding and Exploring Data, Business Analytics Technolog</li> </ul>	I Map Reduce frame ks. analytics, Business tive advantages of I Review of probabil nds in Data, simple dels for Business	9 Analy Busine ity dis 9 Linea	Pe ytics ess 2 trib	s Pro Anal pution	ytics ytics n an
Business analytic Relationship of E Statistical Tools: data modelling, s UNIT – II RI Irrendiness and R Important Resou solving, Visualizi	To acquire insight on other analytical framework USINESS ANALYTICS AND PROCESS s: Overview of Business analytics, Scope of Business Business Analytics Process and organization, competit Statistical Notation, Descriptive Statistical methods, ampling and estimation methods overview. EGRESSION ANALYSIS egression Analysis: Modelling Relationships and Treat rces, Business Analytics Personnel, Data and mod ing and Exploring Data, Business Analytics Technolog	ks. analytics, Business tive advantages of I Review of probabil nds in Data, simple dels for Business	9 Analy Busine ity dis 9 Linea	Pe ytics ess 2 trib	s Pro Anal pution	ytics ytics n an
Business analytic Relationship of E Statistical Tools: data modelling, s UNIT – II RI Irrendiness and R Important Resou solving, Visualizi	USINESS ANALYTICS AND PROCESS s: Overview of Business analytics, Scope of Business Business Analytics Process and organization, competit Statistical Notation, Descriptive Statistical methods, ampling and estimation methods overview. EGRESSION ANALYSIS egression Analysis: Modelling Relationships and Treat rces, Business Analytics Personnel, Data and moding and Exploring Data, Business Analytics Technolog	analytics, Business tive advantages of Review of probabil nds in Data, simple dels for Business	Analy Busine ity dis 9 Linea	ytics ess 2 trib	s Pro Anal pution	ytics ytics n an
Business analytic Relationship of E Statistical Tools: data modelling, s UNIT – II RI Trendiness and R Important Resou solving, Visualizi	s: Overview of Business analytics, Scope of Business Business Analytics Process and organization, competit Statistical Notation, Descriptive Statistical methods, ampling and estimation methods overview. EGRESSION ANALYSIS egression Analysis: Modelling Relationships and Treating rces, Business Analytics Personnel, Data and moding and Exploring Data, Business Analytics Technolog	tive advantages of Review of probabil nds in Data, simple dels for Business	Analy Busine ity dis 9 Linea	ytics ess 2 trib	s Pro Anal pution	ytics ytics n an
Relationship of EStatistical Tools:data modelling, sUNIT – IIRITrendiness and RImportant Resoundsolving, VisualizitUNIT – IIIST	Business Analytics Process and organization, competit Statistical Notation, Descriptive Statistical methods, ampling and estimation methods overview. EGRESSION ANALYSIS egression Analysis: Modelling Relationships and Treat rces, Business Analytics Personnel, Data and moding and Exploring Data, Business Analytics Technolog	tive advantages of Review of probabil nds in Data, simple dels for Business	Busine ity dis 9 Linea	trib	Anal oution	ytic n an
Statistical Tools: data modelling, s UNIT – II RI Trendiness and R Important Resou solving, Visualizi UNIT – III ST	Statistical Notation, Descriptive Statistical methods, ampling and estimation methods overview. EGRESSION ANALYSIS egression Analysis: Modelling Relationships and Treative rces, Business Analytics Personnel, Data and moding and Exploring Data, Business Analytics Technolog	Review of probabil nds in Data, simple dels for Business	ity dis 9 Linea	trib Pe	oution	n an
data modelling, s UNIT – II RI Trendiness and R Important Resou solving, Visualizi	ampling and estimation methods overview. EGRESSION ANALYSIS egression Analysis: Modelling Relationships and Trea rces, Business Analytics Personnel, Data and mod ng and Exploring Data, Business Analytics Technolog	nds in Data, simple dels for Business	9 Linea	Pe		
UNIT – II RI Trendiness and R Important Resou solving, Visualizi	EGRESSION ANALYSIS egression Analysis: Modelling Relationships and Trea rces, Business Analytics Personnel, Data and mod ing and Exploring Data, Business Analytics Technolog	dels for Business	Linea		riod	s
Trendiness and R Important Resou solving, Visualizi	egression Analysis: Modelling Relationships and Trearces, Business Analytics Personnel, Data and moding and Exploring Data, Business Analytics Technolog	dels for Business	Linea		riod	s
Trendiness and R Important Resou solving, Visualizi	egression Analysis: Modelling Relationships and Trearces, Business Analytics Personnel, Data and moding and Exploring Data, Business Analytics Technolog	dels for Business	Linea		r10d	IS
Important Resou solving, Visualizi UNIT – III ST	rces, Business Analytics Personnel, Data and mod ng and Exploring Data, Business Analytics Technolog	dels for Business		r Re		<u> </u>
solving, Visualizi	ng and Exploring Data, Business Analytics Technolog		analyt		•	
UNIT – III ST		gy.	anaryı	ıcs,	pro	bler
	<b>TRUCTURE OF BUSINESS ANALYTICS</b>					
Organization St	1 March 1 March 1 A March 1 Ma		9	Pe	riod	s
	ructures of Business analytics, Team manageme	ent, Management	Issues	. I	Desi	gnin
analysis, Data M analytics Process	es. Descriptive Analytics, predictive analytics, predi fining, Data Mining Methodologies, Prescriptive as , Prescriptive Modelling, nonlinear Optimization.	e e	ep in	the	bus	sines
	DRECASTING TECHNIQUES					
e	niques: Qualitative and Judgmental Forecasting, Stati	, e				
	onary Time Series, Forecasting Models for Time Se					
	th Seasonality, Regression Forecasting with Casu		-	-		
e	els. Monte Carlo Simulation and Risk Analysis: Mo			0		-
	New-Product Development Model, Newsvendor Mod	del, Overbooking M	Iodel,	Cas	sh Bi	udge
Model.					0       3         riods       s         s Proce       Analyti         ution a       riods         egressic       proble         riods       Designi         analyti       busine         riods       orecasti         propropria       Analyti         propria       Analy         eriods       Outcon         t Trend       Outcon	
		DC IN DUCINE	SS	9 P	erio	ds
Al	ECISION ANALYSIS AND RECENT TRENI NALYTICS					
AN Decision Analys	NALYTICS is: Formulating Decision Problems, Decision Sta	rategies with the				
Al Decision Analys Probabilities, De	NALYTICS sis: Formulating Decision Problems, Decision Statistics Statistics of Trees, The Value of Information, Utility ar	rategies with the nd Decision Makir	ig. Re	cen	t Tr	ends
An Decision Analys Probabilities, De Embedded and	NALYTICS is: Formulating Decision Problems, Decision Sta	rategies with the nd Decision Makir	ig. Re	cen	t Tr	ends
An Decision Analys Probabilities, De Embedded and	NALYTICS sis: Formulating Decision Problems, Decision Statistics Statistics of Trees, The Value of Information, Utility ar	rategies with the nd Decision Makir	ig. Re	cen	t Tr	ends
All Decision Analys Probabilities, De	NALYTICS sis: Formulating Decision Problems, Decision Str cision Trees, The Value of Information, Utility ar collaborative business intelligence, Visual data re	rategies with the nd Decision Makir	ig. Re	cen	t Tr	ends

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R – A Practical Approach",
	Apress, 2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University
	Press, 2012.

- 4 Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson, **"Essentials of Business Analytics",** Cengage Learning, second Edition, 2016.
- U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making", Wiley, 2017.
- 6 Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the real world business problems and model with analytical solutions.	K4
CO2	Solve analytical problem with relevant mathematics background knowledge.	K4
CO3	Convert any real world decision making problem to hypothesis and apply	K4
	suitable statistical testing.	
CO4	Write and Demonstrate simple applications involving analytics using Hadoop	K4
	and Map Reduce	
CO5	Use open source frameworks for modeling and storing data.	K4

COURSE ARTICULA	<b>FION MATRIX</b>				
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	1	2	1	2	1
CO2	1	1 7	2 /	2	1
CO3	2	2	1	1	-
CO4	2		1	-	-
CO5	1	2		-	-
23EDOE10	1	∞ 2 ····	1	2	1
1-Slight, 2-Moderate,	3 – Substantial	No.	V/B.	•	•

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDOE11	INTRODUCTION TO INDU (Common to all B		Y			
PREREQUIS		CATEGORY	L	Т	P	С
	NIL	OE	3	0	0	3
Course	• Summarize basics of industrial safety.					
Objectives	• Describe fundamentals of maintenance eng	gineering.				
	• Explain wear and corrosion.	Č				
	• Illustrate fault tracing.					
	<ul> <li>Identify preventive and periodic maintenar</li> </ul>	ice.				
UNIT – I	INTRODUCTION			9	Perio	ods
	s, types, results and control, mechanical and electri	cal hazards, types,	cause			
	, describe salient points of factories act 1948 for	• •			-	
	light, cleanliness, fire, guarding, pressure vessels,	•				-
	, equipment and methods.	,,, <b>,</b> ,			r	
UNIT – II	FUNDAMENTALS OF MAINTENANCE F	ENGINEERING		9	Perio	ds
	aim of maintenance engineering, Primary and se	condary functions	and			
	epartment, Types of maintenance, Types and appl	•		•		•
	st & its relation with replacement economy, Service					
UNIT – III	WEAR AND CORROSION AND THEIR P			9	Perio	ds
lubrication, Deprevention met UNIT – IV Fault tracing-c finding activiti pneumatic, aut	FAULT TRACING oncept and importance, decision tree concept, ne es, show as decision tree, draw decision tree for omotive, thermal and electrical equipment's like, I. Internal combustion engine, v. Boiler, vi. Electrical	ed and application problems in mac Any one machine motors, Types of	ns, se	equence tools, ii. Pu in ma	, corr Perio ce of , hydr ump ii	osion ods fault aulic i. Ai tool
	ction-concept and need, degreasing, cleaning a		mag			
repair complex Steps/procedur compressors, i		advantages of pre I. Machine tools chedule of preve maintenance. Rep	eventi , ii. ntive air cy	ve m Pump main vcle c	ainten os, iii tenano	ance . Ai ce o
<b>REFEREN</b> 1 Hans F. W	CES interkorn, "Foundation Engineering Handbook",	Chapman & Hall I	Londo	on. 201	13.	
	unce Engineering" by Dr. Siddhartha Ray, New					hers
2017						

"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)

"Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

"Industrial Engineering And Production Management", S. Chand Publishing; Third edition ,2018

3 4

5

COUR	COURSE OUTCOMES:		
Upon o	completion of the course, the students will be able to:	Taxonomy Mapped	
<b>CO1</b>	Ability to summarize basics of industrial safety	K4	
CO2	Ability to describe fundamentals of maintenance engineering	K4	
CO3	Ability to explain wear and corrosion	K4	
CO4	Ability to illustrate fault tracing	K4	
CO5	Ability to identify preventive and periodic maintenance	K4	

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	
CO1	2	1	1	-	-	
CO2	2	2	1	-	1	
CO3	1	2	1	1	1	
CO4	2	1	1	1	1	
CO5	2	1	2	1	1	
<b>23EDOE11</b>	2	1	1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						



ASSESSMENT	PATTERN – TH	IEORY		10			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDOE12	OPERATIONS RE (Common to all B					
PREREQUISITI		CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course Objectives	<ul> <li>Solve linear programming problem and solve</li> <li>Solve LPP using simplex method.</li> <li>Solve transportation, assignment problems.</li> <li>Solve project management problems.</li> <li>Solve scheduling problems.</li> </ul>	e using graphical me	thod.	1	<u> </u>	
UNIT – I	INTRODUCTION			9	Peri	iods
Optimization Tec	nniques, Model Formulation, models, General L.R Fo	rmulation, Simplex	Tech	nique	es, Se	nsitivity
Analysis, Inventor	ry Control Models					
UNIT – II	LINEAR PROGRAMMING PROBLEM				9 Periods	
Formulation of a	LPP - Graphical solution revised simplex method	- duality theory - o	dual	simp	lex n	nethod -
sensitivity analysi	s - parametric programming					
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM			9	Peri	iods
Nonlinear progra CPM/PERT	mming problem - Kuhn-Tucker conditions min co	st flow problem -	max	flo	w pr	oblem -
UNIT – IV	SEQUENCING AND INVENTORY MODEL			9	Peri	iods
Scheduling and	sequencing - single server and multiple server mo	odels - determinist	ic in	vento	ory n	nodels -
Probabilistic inve	ntory control models - Geometric Programming.	X				
UNIT – V GAME THEORY					Peri	iods
Competitive Mod	els, Single and Multi-channel Problems, Sequencing	Models, Dynamic	Prog	amn	ning,	Flow in
Networks, Elemen	ntary Graph Theory, Game Theory Simulation	(				
<b>Contact Periods</b>						
Lecture: 45 Perio	ods Tutorial : 0 Periods Practical : 0 Peri	ods Total : 45 P	eriod	ls		
REFERF	INCES					

_		18 541 9888 9888 18
	1	H.A. Taha "Operations Research, An Introduction", PHI, 2017.
	2	"Industrial Engineering and Management", O. P. Khanna, 2017.
	3	"Operations Research", S.K. Patel, 2017.
	4	"Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:		
CO1	Formulate linear programming problem and solve using graphical method.	K4	
CO2	Solve LPP using simplex method.	K4	
CO3	Formulate and solve transportation, assignment problems.	K4	
CO4	Solve project management problems.	K4	
CO5	Solve scheduling problems	K4	

<b>COURSE ARTICULATION N</b>	MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	1	-	-
CO2	2	2	1	-	-
CO3	1	1	2	1	1
CO4	1	1	-	-	-
CO5	2	1	-	-	-
<b>23EDOE12</b>	2	1	1	1	1
1 - Slight, $2 - $ Moderate, $3 - $ Su	bstantial	•	•	·	•

ASSESSMEN	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100



23MFOE13	OCCUPATIONAL HEATH AND SAFETY								
25MF 0E15	(Common to all Brand	ches)							
PREREQUISI	TES	CATEGORY	L	Т	P	С			
	NIL	OE	3	0	0	3			
Course	• To gain knowledge about occupational health hazard	d and safety measur	es at	t woi	k pla	ace.			
Objectives	• To learn about accident prevention and safety mana,	gement.							
	• To learn about general safety measures in industries								
UNIT – I	OCCUPATIONAL HEALTH AND HAZARDS			9 P	erioo	ds			
Safety- History	and development, National Safety Policy- Occupatio	nal Health Hazard	.s	Ergo	nom	ics -			
Importance of I	ndustrial Safety Radiation and Industrial Hazards- Machi	ne Guards and its ty	ypes.	, Aut	oma	tion.			
UNIT – II	SAFETY AT WORKPLACE				erioo				
•	place - Safe use of Machines and Tools: Safety in use of	• •		-					
-	Machine guarding - working in different workplaces - Op	-	and	mai	ntena	ance,			
Plant Design an	d Housekeeping, Industrial lighting, Vibration and Noise	Case studies.							
UNIT – III	ACCIDENT PREVENTION			9 Pe	eriod	ls			
Accident Preve	ntion Techniques - Principles of accident prevention	- Definitions, Theo	ories	, Pri	ncip	les –			
Hazard identifi	cation and analysis, Event tree analysis, Hazop studies	, Job safety analys	sis -	The	ories	and			
Principles of A	ccident causation - First Aid : Body structure and function	ns - Fracture and D	isloc	atior	n, Inj	uries			
to various body	parts.								
UNIT – IV	SAFETY MANAGEMENT			9 P	erio	ds			
Safety Manage	ment System and Law - Legislative measures in Indust	rial Safety: Variou	s act	ts in	volve	ed in			
Detail- Occupa	tional safety, Health and Environment Management: B	ureau of Indian Sta	anda	rds o	on H	ealth			
and Safety, 144	489, 15001 - OSHA, Process safety management (PSM)	) and its principles	- El	PA s	tand	ards-			
Safety Management: Organisational & Safety Committee - its structure and functions.									
UNIT – V	IT - V GENERAL SAFETY MEASURES 9 Periods								
Plant Layout fo	Plant Layout for Safety -design and location, distance between hazardous units, lighting, colour coding, pilot								
plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work Permit System:									
Significance of Documentation Directing Safety, Leadership -Case studies involving implementation of									
health and safet	y measures in Industries.								
<b>Contact Perio</b>	ds:								
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Perio	ds Total:45 Pe	riod	s					
RFFFRF	NCES								

1	Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
2	Danuta Koradecka, Handbook of Occupational Health and Safety, CRC, 2010.
3	Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
4	Deshmukh. L.M., Industrial Safety Management, 3 rd Edition, Tata McGraw Hill, NewDelhi, 2008.
5	https://nptel.ac.in/courses/110105094
6	https://archive.nptel.ac.in/courses/110/105/110105094/

	<b>RSE OUTCOMES:</b> completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Gain the knowledge about occupational health hazard and safety measures at work place.	K3
CO1	Learn about accident prevention and safety management.	K3 K2
CO3	Understand occupational health hazards and general safety measures in industries.	K3
CO4	Know various laws, standards and legislations.	K2
CO5	Implement safety and proper management of industries.	K4

COURSE ARTICULATION MATRIX:					
Cos/Pos	PO1	PO2	PO3	PO4	PO5
CO1	2	1	1	1	1
CO2	2	2	1	1	1
CO3	1	2	1	1	1
CO4	2	1	1	1	1
CO5	2	1	2	1	1
23MFOE13	2	1	1	1	1
1 – Slight, 2 – Moderate, 3 – Substantial					

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		50	50				100
CAT2		50	30	20			100
Individual		50	50				100
Assessment 1/							
Case Study 1/		0	Cummer .				
Seminar 1 /		CTICITY .	9				
Project1		W bes	STERIO CR	v~)			
Individual		50	30	20			100
Assessment 2/				77			
Case Study 2/				11			
Seminar 2 /			STUD OF	1			
Project 2				//			
ESE		40	40	20			100



23MFOE14	COST MANAGEMENT OF ENGINEERING PROJECTS (Common to all Branches)						
PREREQUISIT		CATEGORY	L	Т	Р	C	
NIL     OE     3						3	
Course	To understand the costing concepts and their role in decision making.				0		
Objectives	<ul> <li>To acquire the project management concepts and their various aspects in selection.</li> </ul>						
U	<ul> <li>To gain the knowledge in costing concepts with project execution.</li> </ul>						
	<ul> <li>To develop knowledge of costing techniques in service sector and various budgetary control</li> </ul>						
	techniques.						
<ul> <li>To familiarize with quantitative techniques in cost management.</li> </ul>							
UNIT – I	INTRODUCTION TO COSTING CONCEPTS 9 Periods						
Introduction and	Overview of the Strategic Cost Management Proce	ss, Cost concepts in	n dec	ision	-mal	king;	
Relevant cost, Di	fferential cost, Incremental cost and Opportunity cost. O	bjectives of a Costing	g Syste	em; ]	Inver	ntory	
valuation; Creation	on of a Database for operational control; Provision of data	a for Decision - Makin	ng.				
UNIT – II	PROJECT PLANNING ACTIVITIES			91	9 Periods		
execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.         UNIT – III       COST ANALYSIS       9 Periods         Cost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption       Absorption         Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standar       Standar         Costing and Variance Analysis.       Standar					o <b>ds</b> ption		
UNIT – IV	PRICING STRATEGIES AND BUDGETORY CON	NTROL		91	Perio	ods	
approach, Materi	: Pareto Analysis. Target costing, Life Cycle Costing, al Requirement Planning, Enterprise Resource Planning gets; Zero-based budgets. Measurement of Divisional	g. Budgetary Control	; Flex	ible	Bud	gets;	
UNIT – V	TQM AND OPERATIONS REASEARCH TOOLS			91	Perio	ods	
Balanced Score Programming, PH	Ianagement and Theory of constraints, Activity-Base Card and Value-Chain Analysis. Quantitative tech ERT/CPM, Transportation problems, Assignment problem	iniques for cost ma	anage	ment	t, Li	inear	
Contact Periods Lecture: 45 Peri		Fotal: 45 Periods					
REFERE	NCES:						

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.			
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor & Francis,			
	2016			
3	Nigel J, Engineering Project Management, John Wiley and Sons Ltd, Smith 2015.			
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall of			
	India, New Delhi, 2011.			
5	https://archive.nptel.ac.in/courses/110/104/110104073/			

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Apply the costing concepts and their role in decision making.	K3
CO2	Apply the project management concepts and analyze their various aspects in	K4
	selection.	
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various budgetary	K2
	control techniques.	
CO5	Become familiar with quantitative techniques in cost management.	К3

# COURSE ARTICULATION MATRIX:

COs/Pos	PO1	PO2	PO3	PO4	PO5
CO1	1	1	2	1	1
CO2	2	1	1	1	-
CO3	2	2	2	-	-
CO4	1	1	1	1	1
CO5	-	2	1	1	-
23MFOE14	70	Inservice in	1	1	1

- Sugar, - Housian, e Sussainan									
The second se									
ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1		A R	40	60			100		
CAT2		30	30	40			100		
Individual		Connector	40	60			100		
Assessment 1 /		REAL	Sec.	177					
Case Study 1/		00	0						
Seminar 1 /									
Project1									
Individual		30	30	40			100		
Assessment 2 /									
Case Study 2/									
Seminar 2 /									
Project 2									
ESE		20	40	40			100		

**23MFOE15** 

# **COMPOSITE MATERIALS**

(Common to all Branches)

PREREQUIS	ITES	CATEGORY	L	Т	P	С
	NIL	OE	3	0	0	3
Course	• To summarize the characteristics of composite r	naterials and effect	ct of 1	reinf	orce	ment
Objectives	in composite materials.					
	• To identify the various reinforcements used in con	mposite materials.				
	• To compare the manufacturing process of metal n	natrix composites.				
	• To understand the manufacturing processes of pol	lymer matrix com	posite	s.		
	• To analyze the strength of composite materials.					
UNIT – I	INTRODUCTION			9]	Peri	ods
Definition – 0	Classification and characteristics of Composite mater	ials. Advantages	and a	appli	catic	on of
composites. F	unctional requirements of reinforcement and matrix.	Effect of reinfor	ceme	nt o	n ov	rall
composite per	formance.					
UNIT – II	REINFORCEMENT			91	Peri	ods
Preparation-la	yup, curing, properties and applications of glass fibe	ers, carbon fibers,	Kevl	ar fi	ibers	and
Boron fibers.	Properties and applications of whiskers, particle reint	forcements. Mech	anica	l Be	havio	or of
A	ule of mixtures, Inverse rule of mixtures. Isostrain and		s.			
UNIT – III	MANUFACTURING OF METAL MATRIX COM				Peri	
÷	id State diffusion technique, Cladding - Hot isostatic			•		
•	osites: Liquid Metal Infiltration – Liquid phase sir	e e	iring	of (	Carb	on –
-	osites: Knitting, Braiding, Weaving- Properties and app			1		
UNIT – IV	MANUFACTURING OF POLYMER MATRIX C	OMPOSITE		9]	Peri	ods
•	Moulding compounds and prepregs – hand layup me od – Compression moulding – Reaction injection mould					
UNIT – V	STRENGTH ANALYSIS OF COMPOSITES	ing. i roperties un	u upp		Peri	
	re Criteria-strength ratio, maximum stress criteria, i	maximum strain o	criteri			
	, hygrothermal failure. Laminate first play failure-ins					•
	ated maximum strain criterion; strength design using ca	0			•	<b>.</b> .
<b>Contact Peri</b>	ods:					

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials, Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz, 2013.
5	https://nptel.ac.in/courses/112104168

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Know the characteristics of composite materials and effect of reinforcement in	K2
	composite materials.	
CO2	Know the various reinforcements used in composite materials.	K2
CO3	Understand and apply the manufacturing processes of metal matrix composites	К3
CO4	Understand and apply the manufacturing processes of polymer matrix composites.	К3
CO5	Analyze the strength of composite materials.	K4

COURSE ARTICULATION MATRIX:						
COs/Pos	PO1	PO2	PO3	PO4	PO5	
CO1	1	2	1	1	1	
CO2	2	2	1	1	2	
CO3	2	1	2	1	1	
CO4	1	2	2	2	1	
CO5	1	2	1	1	1	
23MFOE15	1	2	2	1	1	
1 – Slight, 2 – Moderate, 3 – Su	bstantial					

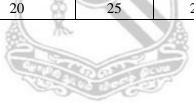
ASSESSMENT I	PATTERN – THI	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Tota
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		60	40				100
CAT2			60	40			100
Individual		60	40				100
Assessment 1 /			200700				
Case Study 1/		a fim	m				
Seminar 1 /		COLORD IN	USUS MILLS	3.5			
Project1		CAR BUT	TURCE				
Individual			60	40			100
Assessment 2 /		10 0		(			
Case Study 2/							
Seminar 2 /			12 Y 20				
Project 2		1 1	NO.				
ESE		40	40	20			100



**23TEOE16** 

# GLOBAL WARMING SCIENCE

(Common to all Branches)


		i Branenes)					
PREREQUISIT	ES	CATEGORY	L	Т	Р	С	
	NIL	OE	3	0	0	3	
Course	To make the students learn about the material con	sequences of climate	change,	sea le	evel d	change	
Objectives	due to increase in the emission of greenhouse gase	s and to examine the	science b	ehind	l miti	gatior	
	and adaptation proposals.						
UNIT – I	INTRODUCTION			9	9 Per	riods	
Terminology rela	ating to atmospheric particles - Aerosols - Types,	characteristics, measurements	surements	- Pa	article	e mass	
spectrometry - A	nthropogenic-sources, effects on humans.						
UNIT – II							
General climate	modeling- Atmospheric general circulation model	- Oceanic general of	circulation	mo	del, s	sea ice	
model, land mod	el concept, paleo-climate - Weather prediction by n	numerical process. In	pacts of o	clima	te ch	ange	
Climate Sensitivi	ity - Forcing and feedback.						
UNIT – III	EARTH CARBON CYCLE AND FORECAST			9	9 Per	riods	
Carbon cycle-pro	ocess, importance, advantages - Carbon on earth - G	lobal carbon reservo	irs - Inter	actio	ons be	etweer	
human activities	and carbon cycle - Geologic time scales - Fossil fuel	ls and energy - Pertur	bed carbo	on cyc	cle.		
UNIT – IV	GREENHOUSE GASES			9	9 Per	riods	
-	tion - Layer model - Earth's atmospheric composit	ion and Green house	e gases ef	fects	on w	eather	
	dioactive equilibrium - Earth's energy balance.	(9)			0.0	• •	
UNIT – V	GEO ENGINEERING			-	-	riods	
	- Strategies - Carbon dioxide removal - Solar radia	ation management -	Recent ob	serve	ed tre	nds in	
<u> </u>	For sea level rise, drought, glacier extent.	1					
Contact Periods	ALL						
Lecture: 45 Peri	iods Tutorial: 0 Periods Practical: 0 Pe	eriods Total: 4	5 Periods	5			
REFERE	NCES:						

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and Its
	Consequences", Princeton University Press, 1 st Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5 th Edition,
	2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions for
	<b>Global Warming</b> ", Elsevier, 1 st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1 st edition, 2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global energybalance",
	Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Understand the global warming in relation to climate changes throughout the earth.	K2
CO2	Assess the best predictions of current climate models.	K4
CO3	Understand the importance of carbon cycle and its implication on fossil fuels.	K2
CO4	Know about current issues, including impact from society, environment, economy as well as ecology related to greenhouse gases.	K4
CO5	Know the safety measures and precautions regarding global warming.	K5

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	2	1	1	2
CO2	1	1	2	1	1	1
CO3	1	2	1	1	1	2
CO4	1	1	1	1	1	2
CO5	2	1	2	1	1	2
23TEOE16	1	1	1	1	1	2

ASSESSMENT P	ATTERN – THEO	RY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	35	35	10	-	-	100
CAT2	15	25	25	20	15	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	25	20	20	35	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	20	35	15	10	-	100
ESE	25	20	25	20	10	-	100



<b>23TEOE17</b>	INTRODUCTION TO NANO EL (Common to all Branch	7 (Common to all Branches)					
PREREQUISIT	· · · · · · · · · · · · · · · · · · ·	CATEGORY	L	Т	Р	С	
ENGINEERIN		OE	<b>L</b> 3	0	0	$\frac{c}{3}$	
Course	To make the students provide strong, essential, important		_	_	•	-	
Objectives	mechanics and apply quantum mechanics on engineering fi		iuuii	115 0.	r quu	untun	
UNIT – I	INTRODUCTION			9 F	Perio	ds	
Particles and Wa	aves - Operators in quantum mechanics - The Postulates of	quantum mechanic	s - T	he So	chrod	linge	
	and wave packet Solutions - Ehrenfest's Theorem.	1				U	
ÚNIT – II	ELECTRONIC STRUCTURE AND MOTION			9 F	Perio	ds	
Atoms- The Hyd	drogen Atom - Many-Electron Atoms – Pseudopotentials, N	uclear Structure, N	Aolec	ules,	Crys	stals	
Translational mo	otion – Penetration through barriers – Particle in a box - Tw	o terminal quantur	n dot	devi	ces -	Tw	
terminal quantur	-	•					
UNIT – III	SCATTERING THEORY			9 F	Perio	ds	
The formulation	of scattering events - Scattering cross section - Stationary s	cattering state - Pa	rtial v	wave	stati	onar	
scattering events	- multi-channel scattering - Solution for Schrodinger equation	on- Radial and wav	e equ	ation	ı - Gr	eens	
function.			•				
UNIT – IV	CLASSICAL STATISTICS			0 T	Perio	da	
				9 F	erio	us	
Probabilities and	I microscopic behaviours - Kinetic theory and transport proc	esses in gases - M	agnet				
		esses in gases - M	agnet				
materials - The p	microscopic behaviours - Kinetic theory and transport proc	esses in gases - M	agnet	ic pro		ies c	
materials - The p UNIT – V	I microscopic behaviours - Kinetic theory and transport proc partition function.	-	_	ic pro 9 F	opert	ies c <b>ds</b>	
materials - The p UNIT – V Statistical mecha	I microscopic behaviours - Kinetic theory and transport proc partition function. <b>QUANTUM STATISTICS</b>	als and semicondu	ictors	ic pro <b>9 F</b> - Tł	opert	ies o <b>ds</b> erma	
materials - The p UNIT – V Statistical mecha properties of soli	I microscopic behaviours - Kinetic theory and transport proc partition function. <b>QUANTUM STATISTICS</b> anics - Basic Concepts - Statistical models applied to met	als and semicondu	ictors	ic pro <b>9 F</b> - Tł	opert	ies c <b>ds</b> erma	
materials - The p UNIT – V Statistical mecha properties of soli systems.	microscopic behaviours - Kinetic theory and transport proc partition function. <b>QUANTUM STATISTICS</b> anics - Basic Concepts - Statistical models applied to met ids- The electrical properties of materials - Black body radia	als and semicondu	ictors	ic pro <b>9 F</b> - Tł	opert	ies c <b>ds</b> erma	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods	I microscopic behaviours - Kinetic theory and transport proc partition function. QUANTUM STATISTICS anics - Basic Concepts - Statistical models applied to met ids- The electrical properties of materials - Black body radia	als and semicondu	ictors tures	ic pro <b>9 F</b> - Tł	opert	ies c <b>ds</b> erma	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods	I microscopic behaviours - Kinetic theory and transport proc partition function. QUANTUM STATISTICS anics - Basic Concepts - Statistical models applied to met ids- The electrical properties of materials - Black body radia	als and semicondu ion - Low tempera	ictors tures	ic pro <b>9 F</b> - Tł	opert	ies c <b>ds</b> erma	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods Lecture:45 Peri REFERH	I microscopic behaviours - Kinetic theory and transport proc partition function. QUANTUM STATISTICS anics - Basic Concepts - Statistical models applied to met ids- The electrical properties of materials - Black body radia s: ods Tutorial: 0 Periods Practical: 0 Periods ENCES:	als and semicondu ion - Low tempera Total:45 Perio	ictors tures ods	ic pro <b>9 F</b> - Th and o	Period ne the deger	ies o ds erma nerat	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods Lecture:45 Peri REFERH 1 Vladimu	I microscopic behaviours - Kinetic theory and transport procontition function.         QUANTUM STATISTICS         anics - Basic Concepts - Statistical models applied to methods         ids- The electrical properties of materials - Black body radia         s:         ods       Tutorial: 0 Periods         Practical: 0 Periods         ENCES:         id V.Mitin, Viatcheslav A. Kochelap and Michael A.Strosc	als and semiconduction - Low tempera Total:45 Perio	ods	ic pro 9 F - Th and o	Perio Perio he the deger	ies o ds erma nerat	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods Lecture:45 Peri REFERH 1 Vladimu Science	I microscopic behaviours - Kinetic theory and transport proc partition function. QUANTUM STATISTICS anics - Basic Concepts - Statistical models applied to met ids- The electrical properties of materials - Black body radia s: ods Tutorial: 0 Periods Practical: 0 Periods ENCES: i V.Mitin, Viatcheslav A. Kochelap and Michael A.Strosc c, Nanotechnology, Engineering, and Applications", Cambr	als and semicondu tion - Low tempera <b>Total:45 Perio</b> tio, <b>"Introduction</b> tidge University Pre	to Na ctors	anoe	Perio Perio ne the deger	ies c ds erma nerat	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods Lecture:45 Peri REFERH 1 Vladimi Science 2 Vinod F	I microscopic behaviours - Kinetic theory and transport proc partition function. QUANTUM STATISTICS anics - Basic Concepts - Statistical models applied to met ids- The electrical properties of materials - Black body radia s: ods Tutorial: 0 Periods Practical: 0 Periods ENCES: i V.Mitin, Viatcheslav A. Kochelap and Michael A.Strosc p, Nanotechnology, Engineering, and Applications", Cambr Kumar Khanna, "Introductory Nanoelectronics: Physical Theorem 2015	als and semicondu tion - Low tempera <b>Total:45 Perio</b> tio, <b>"Introduction</b> tidge University Pre	to Na ctors	anoe	Perio Perio ne the deger	ies c ds erma nerat	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods Lecture:45 Peri REFERH 1 Vladimi Science 2 Vinod K 1 st Editi	I microscopic behaviours - Kinetic theory and transport proc partition function. QUANTUM STATISTICS anics - Basic Concepts - Statistical models applied to met ids- The electrical properties of materials - Black body radia s: ods Tutorial: 0 Periods Practical: 0 Periods ENCES: i V.Mitin, Viatcheslav A. Kochelap and Michael A.Strosc P. Nanotechnology, Engineering, and Applications", Cambr Kumar Khanna, "Introductory Nanoelectronics: Physical Theorem 2020.	als and semicondu tion - Low tempera <b>Total:45 Perio</b> <i>io, "Introduction</i> <i>idge University Pre</i> <b>teory and Device</b> A	ods to Na ess, 1 ^s	anoe anoe <i>a</i> t Edit sis",	Perio Perio ne the deger	ds erma nerat	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods Lecture:45 Peri REFERH 1 Vladimi Science 2 Vinod K 1 st Editi	I microscopic behaviours - Kinetic theory and transport proc partition function. QUANTUM STATISTICS anics - Basic Concepts - Statistical models applied to met ids- The electrical properties of materials - Black body radia s: ods Tutorial: 0 Periods Practical: 0 Periods ENCES: i V.Mitin, Viatcheslav A. Kochelap and Michael A.Strosc p, Nanotechnology, Engineering, and Applications", Cambr Kumar Khanna, "Introductory Nanoelectronics: Physical Theorem 2015	als and semicondu tion - Low tempera <b>Total:45 Perio</b> <i>io, "Introduction</i> <i>idge University Pre</i> <b>teory and Device</b> A	ods to Na ess, 1 ^s	anoe anoe <i>a</i> t Edit sis",	Perio Perio ne the deger	ds erma nerat	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods Lecture:45 Peri REFERI 1 Vladimu Science 2 Vinod H 1 st Editi 3 George 2007.	I microscopic behaviours - Kinetic theory and transport proc partition function. QUANTUM STATISTICS anics - Basic Concepts - Statistical models applied to met ids- The electrical properties of materials - Black body radia s: ods Tutorial: 0 Periods Practical: 0 Periods ENCES: i V.Mitin, Viatcheslav A. Kochelap and Michael A.Strosc P. Nanotechnology, Engineering, and Applications", Cambr Kumar Khanna, "Introductory Nanoelectronics: Physical Theorem 2020.	als and semiconduction - Low tempera <b>Total:45 Perio</b> <i>io, "Introduction</i> <i>idge University Pre</i> <i>heory and Device A</i> <i>son Publishers, Un</i>	to Na to Na cods to Na css, 1 ⁴ 1naly:	anoe anoe <i>a</i> t Edit sis",	Perio Perio ne the deger	ies c ds erma nerat	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods Lecture:45 Peri REFERH 1 Vladima Science 2 Vinod H 1 st Editi 3 George 2007. 4 Marc B	Imicroscopic behaviours - Kinetic theory and transport procontition function.         QUANTUM STATISTICS         anics - Basic Concepts - Statistical models applied to metids- The electrical properties of materials - Black body radia         S:         ods       Tutorial: 0 Periods         Practical: 0 Periods         ENCES:         id V.Mitin, Viatcheslav A. Kochelap and Michael A.Strosc         Pranticectory, Nanoelectronics: Physical Theory, 2020.         W. Hanson, "Fundamentals of Nanoelectronics", Pears	als and semicondu tion - Low tempera <b>Total:45 Perio</b> tio, <b>"Introduction</b> tidge University Pre- tion Publishers, University Publication, 2000 Publishers, University Publication, 2000 Publishers, Publication, 2000 Publishers, Publication, 2000 Publishers, Publication, 2000 Publishers, Publication, 2000 Publisher Publisher Publisher Publication, 2000 Publisher Publis	to Na ess, 1 ⁴ nited	anoe anoe <i>a</i> t Edit sis",	Perio Perio ne the deger	ies c ds erma nerat	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods Lecture:45 Peri REFERI 1 Vladimu Science 2 Vinod H 1 st Editi 3 George 2007. 4 Marc B 5 Vladimu 2009.	I microscopic behaviours - Kinetic theory and transport proc partition function. QUANTUM STATISTICS anics - Basic Concepts - Statistical models applied to met ids- The electrical properties of materials - Black body radia s: ods Tutorial: 0 Periods Practical: 0 Periods ENCES: i V.Mitin, Viatcheslav A. Kochelap and Michael A.Strosc P. Nanotechnology, Engineering, and Applications", Cambr Kumar Khanna, "Introductory Nanoelectronics: Physical Theorem 2020. W. Hanson, "Fundamentals of Nanoelectronics", Pearse aldo, "Introduction to Nanoelectronics", MIT Open Course	als and semiconduction - Low tempera Total:45 Perio io, "Introduction idge University Pre- teory and Device A son Publishers, University Press, S	to Na ess, 1 st nited 2011. South	anoe anoe <i>anoe</i> <i>sis</i> ", <i>State</i>	Perio ne the deger lectro tion, Routh es Ec	ies o ds erma nerat	
materials - The p UNIT – V Statistical mecha properties of soli systems. Contact Periods Lecture:45 Peri REFERH 1 Vladima Science 2 Vinod H 1 st Editi 3 George 2007. 4 Marc B 5 Vladima 2009. 6 Peter I Statistic	I microscopic behaviours - Kinetic theory and transport proc partition function. QUANTUM STATISTICS anics - Basic Concepts - Statistical models applied to met ids- The electrical properties of materials - Black body radia s: ods Tutorial: 0 Periods Practical: 0 Periods ENCES: i V.Mitin, Viatcheslav A. Kochelap and Michael A.Strosc p, Nanotechnology, Engineering, and Applications", Cambri Kumar Khanna, "Introductory Nanoelectronics: Physical Theory, 2020. W. Hanson, "Fundamentals of Nanoelectronics", Pears aldo, "Introduction to Nanoelectronics", Cambridge	als and semiconduction - Low tempera Total:45 Perio io, "Introduction idge University Pre- peory and Device A ion Publishers, University Press, S University Press, S do, "Introductory	to Na ess, 1 st nited 2011. South	anoe anoe <i>anoe</i> <i>sis</i> ", <i>State</i>	Perio ne the deger lectro tion, Routh es Ec	ies c ds erma nerat	

	<b>RSE OUTCOMES:</b> completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the postulates of quantum mechanics.	K2
CO2	Know about nano electronic systems and building blocks.	K2
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4
CO4	Learn the concepts involved in kinetic theory of gases.	K2
CO5	Know about statistical models applies to metals and semiconductor.	K3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	1	1	1		
CO2	2	2	1	1	1	1		
CO3	2	2	2	1	1	1		
CO4	1	1	1	1	1	1		
CO5	1	1	1	1	1	1		
<b>23TEOE17</b>	1	1	1	1	1	1		
1 – Slight, 2 –	Moderate, 3 –	Substantial	-					

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	30	30	20	20	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	35	25	20	20	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	30	25	20	25	-	-	100
ESE	20	30	30	20	-	-	100



**23TEOE18** 

## GREEN SUPPLY CHAIN MANAGEMENT

(Common to all Branches)

	(Common to	all Branches)				
PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course	To make the students learn and focus on the	fundamental strate	gies,	tools a	nd tech	iniques
Objectives	required to analyze and design environmentally	v sustainable supply	chair	n system	ns.	
UNIT – I	INTRODUCTION				9 Peri	ods
Intro to SCM	- complexity in SCM, Facility location - Logi	stics - Aim, activit	ies, i	mporta	nce, pr	ogress
current trends	- Integrating logistics with an organization.					
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANA	GEMENT			9 Peri	ods
Basic concepts	of supply chain management - Supply chain ope	erations – Planning a	and so	ourcing	- Maki	ng and
delivering - Su	pply chain coordination and use of technology - 1	Developing supply of	chain	system	s.	-
UNIT – III	PLANNING THE SUPPLY CHAIN				9 Peri	ods
Types of deci	sions – strategic, tactical, operational - Logis	stics strategies, imp	oleme	enting t	he stra	itegy ·
• •	urces – types, capacity, schedule, controlling			-		
performance.				U		C
I UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN				9 Peri	ods
	- cycle, types of purchase – Framework of e-pi	rocurement - Invent	tory 1	manage		
uncertain dem	and and safety stock, stock control - Material har	ndling - Purpose of	warel	house a	nd own	ershin
	ging - Transport – mode, ownership, vehicle	-				-
		Touting and sened	unng	model	15- 11a	venng
UNIT – V	lems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRAT	FOILS			9 Peri	
			4	~ N.		
•	figuration components - Four criteria of good		•		•	
-	w roles for end-to-end supply chain managemer		рргу	chain (	organiz	ation -
	ssues in SCM – Regional differences in logistics.					
Contact Perio				4 <b>5</b> D		
Lecture: 45 P	eriods Tutorial: 0 Periods Practical:	0 Periods 1	otal:	45 Per	iods	
REFEREN		2			~	
	s Achillas, Dionysis D. Bochtis, Dimitrios Aidor	nis and Dimitris Fo	linas,	"Gree	n Supp	ily Ch
Managen	nent", Routledge, 1 st Edition, 2019.	nh Chain Manag		t. Drea	duct I	f. C.
2 Hsiao-Fa	n Wang and Surendra M.Gupta," <b>Green Sup</b> h",McGraw-Hill Education, 1 st Edition, 2011.	piy Chain Manag	emen		uuci L	ije Cj
	urkis and Yijie Dou, "Green Supply Chain Mana	<b>gement"</b> . Routledge	$e_{1} 1^{st} F$	Edition.	2017	
-	ilam Rajagopal, "Green Supply Chain Managem	0				2021.
	l Khan, Matloub Hussain and Mian M. Aj	A	<b>^</b>		-	
	ble Business Practice", IGI Global, 1 st Edition, 2		, 01	<i>witt</i> 171	Lanage	
	"Green Supply Chains: An Action Manifesto",		Inc.	2010.		
	arkis and Yijie Dou, "Green Supply Chain Mar				ion" F	Routler
, joseph bl	mas and rive Don, Green Supply Chain Mar	aschiene II Conce	se m	vunci		Sauce

7 Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction", Routledge, 1st Edition, 2017.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and operational decisions.	K5
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	K3
CO4	Analyze inventory management models and dynamics of supply chain.	K4
CO5	Identify issues in international supply chain management and outsources strategies.	K3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	3	
CO2	2	2	1	1	1	1	
CO3	2	1	2	1	1	1	
CO4	2	2	1	1	2	2	
CO5	1	1	2	1	1	3	
<b>23TEOE18</b>	2	1	1	1	1	2	
1 - Slight, 2 - Moder	rate, 3 – Substa	antial				•	

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	25	25	30	10	10	-	100
CAT2	30	40	20	10	-	-	100
Individual							
Assessment 1/			Chump?				
Case Study 1/	30	20	25	15	10	-	100
Seminar 1/		14159	AUTOR C				
Project 1		1					
Individual			1	- //			
Assessment 2/							
Case Study 2/	35	30	25	10	-	-	100
Seminar 2/				//			
Project 2		8					
ESE	30	30	20	10	10	-	100



23PSOE19	DISTRIBUTION AUTOMATION SYSTEM		SEM	EST	ER I	II
DEDEOLIISU	(Common to all Branches)	TECODY	T	T	D	
PREREQUISI		TEGORY		T	P	0
~	NIL	OE	3	0	0	3
Course	To study about the distributed automation and economic eva	luation schen	nes of p	ower	netw	ork
Objectives				- [	0.D	• •
UNIT – I	INTRODUCTION	Carrient and	. 1 1.4.		9 Per	
	Distribution Automation (DA) - Control system interface		na data	requ	ireme	ents
UNIT – II	decentralized control- DA system-DA hardware-DAS softwa DISTRIBUTION AUTOMATION FUNCTIONS	re.			9 Per	ind
•	- Automation system computer facilities- Management protocol ty management- System efficiency management- Voltage mar				•	len
UNIT – III	COMMUNICATION SYSTEMS	lagement- Lo			9 <b>Per</b>	d
	requirements - reliability- Cost effectiveness- Data rec	uiromanta	Turo		-	
	during outages and faults - Ease of operation and maintenar	•		•	•	•
	bution line carrier- Ripple control-Zero crossing technique		•			
	SCA,VHF radio, microwave satellite, fiber optics-Hybrid co	-				
tests.	SCA, VIII Tadio, incrowave satellite, fiber optics-riyofid co	minumeanon	system	s use	um	
UNIT – IV	ECONOMIC EVALUATION METHODS				9 Per	ind
	nd evaluation of alternate plans- select study area – Select	study period.	Projec			
	tives- Calculate operating and maintenance costs-Evaluate alt		· i lojee	100	a gio	wu
$\frac{\mathbf{UNIT} - \mathbf{V}}{\mathbf{UNIT} - \mathbf{V}}$	ECONOMIC COMPARISON				9 Per	hoi
	parison of alternate plans-Classification of expenses - ca	pital expend	litures-C			
	ments of alternative plans-Book life and continuing plan	• •		-		
-	lysis, Short term analysis- End of study adjustment-Break e	•	-	•		
Computational a	aids.					
<b>Contact Period</b>	s:					
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods Tot	al: 45 Period	ls			
REFERE	INCES					
1 M.K. Khedka	ar, G.M. Dhole, "A Textbook of Electric Power Distribution	Automation	ı", Laxn	ni Pu	blicat	ior
Ltd., 2010.						
2 Maurizio Di	Paolo Emilio, "Data Acquisition Systems: From Fundame	ntals to Ann	liad Da	sian'	' Snr	ina
	usiness Media, 21-Mar-2013		iicu De	sign	, spr	ng
	al course "Distribution Automation", IEEE Working Group					
-	neering Society. Power Engineering Education Committee,		-		g So	ciet
Transmission	n and Distribution Committee, Institute of Electrical and Elect	ronics Engin	eers, 19	88		
4 Taub, " <b>Prin</b> d	ciples Of Communication Systems", Tata McGraw-Hill Educ	ation, 07-Sep	-2008			
COURSE OUT	COMES:			I	Bloom	ı's
				T.	vono	

	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed automation.	K3
CO4	Study the economic evaluation method	K4
CO5	Understand the comparison of alternate plans	K5

COs/Pos	PO1	PO2	PO3	PO4
C01	2	-	1	3
CO2	3	-	3	2
CO3	3	-	3	2
CO4	3	-	3	1
CO5	2	-	1	2
23PSOE19	3	-	3	2

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	30%	20%	10%	20%	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual Assessment1/ Case study1/ Seminar 1/ Project1	20%	10%	30%	20%	20%	-	100%
Individual Assessment2/ Case study2/ Seminar 2 / Project2	20%	30%	10%	20%	20%	-	100%
ESE	30%	20%	20%	20%	10%	-	100%

23PSOE20	ELECTRICITY TRADING AND ELECTRICITY ACTS						
231 SOE20	(Common to all Br	anches)					
PREREQUISI	ΓES	CATEGORY	L	Т	Р	С	
	NIL	OE	3	0	0	3	
Course	To acquire expertise on Electric supply and demand	of Indian Grid, gain	n expos	sure o	n en	ergy	
Objectives	trading in the Indian market and infer the electricity acts and regulatory authorities.						
UNIT – I	ENERGY DEMAND			9	) Per	iods	
Basic concepts	in Economics - Descriptive Analysis of Energy D	Demand - Decompo	osition	Anal	ysis	and	
Parametric App	roach - Demand Side Management - Load Management	nt - Demand Side M	Ianage	ment	- Ene	ergy	
Efficiency - Reb	oound Effect						
UNIT – II	ENERGY SUPPLY			9	Per	iods	
Supply Behavio	r of a Producer - Energy Investment - Economics of N	Ion-renewable Resou	urces -	Econ	omic	s of	
Renewable Ene	rgy Supply Setting the context - Economics of Ren	ewable Energy Sup	oply -	Econ	omic	s of	
Electricity Supp	ly						
UNIT – III	ENERGY MARKET			9	) Per	iods	
Perfect Competition	tion as a Market Form - Why is the Energy Market not	t Perfectly Competiti	ive? - I	Marke	et Fai	lure	
and Monopoly -	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E	ra II - Oil Market: O	PEC				
UNIT – IV	LAW ON ELECTRICITY			9	Per	iods	
Introduction of	the Electricity Law; Constitutional Design - Evolution	of Laws on Electricit	ty Salie	ent Fe	eature	es of	
Electricity Act,	2003 - Evolution of Laws on Electricity - Salient Featur	es of the Electricity	Act 20	03			
UNIT – V	<b>REGULATORY COMMISSIONS FOR ELECTRI</b>	CITY ACT		9	Per	iods	
Regulatory Con	missions - Appellate Tribunal - Other Institutions under	er the Act - Electrici	ty (An	nendn	nent)	Bill	
2020/2021. A C	Critical Comment - Renewable Energy - Role of Civil	Society; Comments	on Dr	aft Re	enew	able	
Energy Act, 201	5						
<b>Contact Period</b>	s:						
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods					
	8						

٦

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of
	Energy", Vol.1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
4	Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands, 2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
6	Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and
	Practices", Cambridge University Press, 2014.

COUR	COURSE OUTCOMES:	
		Taxonomy
Upon c	Upon completion of the course, the students will be able to:	
CO1	Describe electric supply and demand of power grid	K1
CO2	Summarize various energy trading strategies	K2
CO3	Relate the electricity acts practically	K3
CO4	Cite the electricity regulatory authorities	K2
CO5	Analyze/check the existing power grid for its technical and economical sustainability	K4

COs/Pos	PO1	PO2	PO3	PO4
CO1	3	-	3	3
CO2	3	-	1	1
CO3	3	-	2	2
CO4	3	-	1	2
CO5	3	-	3	3
23PSOE20	3	-	2	2

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual Assessment1/ Case study1/ Seminar 1/ Project1	20%	30%	30%	20%	-	_	100%
Individual Assessment2/ Case study2/ Seminar 2 / Project2	20%	30%		20%	-	40%	100%
ESE	30%	30%		20%	20%	-	100%



<b>23PSOE21</b>	MODERN AUTOMOT					
	(Common to all E	,	-			~
PREREQUISI		CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course	To expose the students with theory and application	ns of Automotive Elec	ctrical	and 1	Electi	onic
Objectives	Systems.					
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIV	<b>ELECTRONICS</b>			9 Per	iods
Introduction to	modern automotive systems and need for electronic	es in automobiles- Ro	le of e	electr	onics	and
microcontroller	s- Sensors and actuators- Possibilities and challe	enges in automotive	indus	stry-	Enal	oling
technologies an	d industry trends.					
UNIT – II	SENSORS AND ACTUATORS				9 Per	iods
Introduction- b	asic sensor arrangement- Types of sensors- Oxygen	sensor, engine cranks	haft a	ngula	r pos	ition
sensor - Engin	e cooling water temperature sensor- Engine oil press	sure sensor- Fuel me	tering-	vehi	icle s	peed
	onation sensor- Pressure Sensor- Linear and angle					
humidity senso	rs- Gas sensor- Speed and Acceleration sensors- Knoc	ck sensor- Torque sens	sor- Ya	aw ra	ite sei	ısor-
	ensor- Actuators - Stepper motors – Relays.					
UNIT – III	POWERTRAIN CONTROL SYSTEMS IN AUT	OMOBILE			9 Per	iods
Electronic Tran	smission Control - Digital engine control system: O	Open loop and close 1	oop co	ontrol	syste	ems-
	and warm up control- Acceleration- Detonation and id		-		-	
· ·	aboard diagnostics- Future automotive powertrain syste					
UNIT – IV	SAFETY, COMFORT AND CONVENIENCE SY				9 Per	iods
	Anti-lock Braking Control- Traction and Stability co	ontrol- Airbag contro	1 syste	m-S	usper	sion
Cruise Control-	Anti-lock Braking Control- Traction and Stability control- HVAC Control.	ontrol- Airbag contro	l syste	m- S	usper	sion
Cruise Control- control- Steerin	g control- HVAC Control.	ontrol- Airbag contro	l syste		usper 9 Per	
Cruise Control- control- Steerin UNIT – V	g control- HVAC Control.  ELECTRONIC CONTROL UNITS (ECU)		-		9 Per	iods
Cruise Control- control- Steerin UNIT – V Introduction to	g control- HVAC Control.           ELECTRONIC CONTROL UNITS (ECU)           Energy Sources for ECU, Need for ECUs- Adva	nces in ECUs for a	utomot	tives	9 Per - De	<b>iods</b> sign
Cruise Control- control- Steerin UNIT – V Introduction to complexities of	g control- HVAC Control. ELECTRONIC CONTROL UNITS (ECU) Energy Sources for ECU, Need for ECUs- Adva ECUs- V-Model for Automotive ECU's- Architectur	nces in ECUs for a re of an advanced mic	utomot	tives trolle	9 Per - De er (XC	<b>iods</b> sign
Cruise Control- control- Steerin UNIT – V Introduction to complexities of Family, 32-bit	g control- HVAC Control. ELECTRONIC CONTROL UNITS (ECU) Energy Sources for ECU, Need for ECUs- Adva ECUs- V-Model for Automotive ECU's- Architectur Tricore) used in the design of automobile ECUs- On c	nces in ECUs for a re of an advanced mic	utomot	tives trolle	9 Per - De er (XC	<b>iods</b> sign
Cruise Control- control- Steerin UNIT – V Introduction to complexities of Family, 32-bit ' and digital inter	g control- HVAC Control. ELECTRONIC CONTROL UNITS (ECU) Energy Sources for ECU, Need for ECUs- Adva ECUs- V-Model for Automotive ECU's- Architectur Tricore) used in the design of automobile ECUs- On c faces.	nces in ECUs for a re of an advanced mic	utomot	tives trolle	9 Per - De er (XC	<b>iods</b> sign
Cruise Control- control- Steerin UNIT – V Introduction to complexities of Family, 32-bit and digital inter Contact Period	g control- HVAC Control. ELECTRONIC CONTROL UNITS (ECU) Energy Sources for ECU, Need for ECUs- Adva ECUs- V-Model for Automotive ECU's- Architectur Tricore) used in the design of automobile ECUs- On c faces. Is:	nces in ECUs for a re of an advanced mic chip peripherals, proto	utomot crocon col int	tives trolle	9 Per - De er (XC	<b>iods</b> sign C166
Cruise Control- control- Steerin UNIT – V Introduction to complexities of Family, 32-bit ' and digital inter	g control- HVAC Control. ELECTRONIC CONTROL UNITS (ECU) Energy Sources for ECU, Need for ECUs- Adva ECUs- V-Model for Automotive ECU's- Architectur Tricore) used in the design of automobile ECUs- On c faces. Is:	nces in ECUs for a re of an advanced mic chip peripherals, proto	utomot crocon col int	tives trolle	9 Per - De er (XC	<b>iods</b> sign C166
Cruise Control- control- Steerin UNIT – V Introduction to complexities of Family, 32-bit and digital inter Contact Period	g control- HVAC Control.          ELECTRONIC CONTROL UNITS (ECU)         Energy Sources for ECU, Need for ECUs- Adva         FECUs- V-Model for Automotive ECU's- Architectur         Tricore) used in the design of automobile ECUs- On c         faces.         Is:         riods       Tutorial: 0 Periods       Practical: 0 Period	nces in ECUs for a re of an advanced mic chip peripherals, proto	utomot crocon col int	tives trolle	9 Per - De er (XC	<b>iods</b> sign C166
Cruise Control- control- Steerin UNIT – V Introduction to complexities of Family, 32-bit ' and digital inter Contact Period Lecture: 45 Pe REFERE	g control- HVAC Control.          ELECTRONIC CONTROL UNITS (ECU)         Energy Sources for ECU, Need for ECUs- Adva         FECUs- V-Model for Automotive ECU's- Architectur         Tricore) used in the design of automobile ECUs- On c         faces.         Is:         riods       Tutorial: 0 Periods       Practical: 0 Period	inces in ECUs for a re of an advanced michip peripherals, proto	utomot crocon col int	tives trolle erfac	9 Per - De er (XC es, an	iods sign C166 alog

M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press, series on Power Engineering, 2000.

Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
 G. T.H. I. "Electrical Control of the Control of

4 G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COURSE OUTCOMES:		Bloom's
		Taxonomy
Upon c	Upon completion of the course, the students will be able to:	
CO1	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering applications	K4
CO4	Develop modern automotive control system for electrical and electronics systems	K6
CO5	Understand the function of sensors and actuators	K2

COs/Pos	PO1	PO2	PO3	PO4
CO1	3	-	1	3
CO2	3	-	3	2
CO3	3	-	3	2
CO4	2	-	3	1
CO5	2	-	1	2
23PSOE21	3	-	2	2

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual Assessment1/ Case study1/ Seminar 1/ Project1	20%	30%		20%	-	30%	100%
Individual Assessment2/ Case study2/ Seminar 2 / Project2	20%	30%		20%	-	40%	100%
ESE	30%	30%	20%	20%	-	-	100%



<b>23PEOE2</b> 2	)
- ZJE EUEZA	<u>`</u>

### VIRTUAL INSTRUMENTATION

(Common to all Branches)

PREREQUISI	TES	CATEGORY	L	Т	Р	С	
	NIL	OE	3	0	0	3	
Course	To comprehend the Virtual instrumentation programm	ning concepts towards	mea	surem	nents a	and	
<b>Objectives</b> control and to instill knowledge on DAQ, signal conditioning and its associated software tools							
UNIT – I	INTRODUCTION					eriods	
Introduction - a	dvantages - Block diagram and architecture of a vir	tual instrument - Con	vent	ional	Instru	iments	
versus Tradition conventional pro	nal Instruments - Data-flow techniques, graphical pr	ogramming in data fl	low,	comp	oariso	n with	
UNIT – II GRAPHICAL PROGRAMMING AND LabVIEW					9 P	eriods	
Concepts of gra	phical programming - LabVIEW software - Concept of	of VIs and sub VI - Di	spla	y type	es - D	igital -	
Analog - Chart	and Graphs. Loops - structures - Arrays - Clusters- L	local and global varia	bles	– Stri	ng - '	Timers	
and dialog contr	rols.						
UNIT – III	JNIT – III MANAGING FILES & DESIGN PATTERNS					eriods	
High-level and	low-level file I/O functions available in LabVIEW - I	Implementing File I/O	fune	ctions	to re	ad and	
write data to t	files – Binary Files – TDMS – sequential progra	amming – State mac	hine	prog	gramn	ning –	
Communication	between parallel loops -Race conditions - Notifier	rs & Queues – Produ	cer	Consi	ımer	design	
patterns	a all and a second						
UNIT – IV	PC BASED DATA ACQUISITION					eriods	
	data acquisition on PC, Sampling fundamentals, ADC						
inputs and output	uts - Single-ended and differential inputs - Digital I/O,	counters and timers, E	DMA	, Data	a acqu	isition	
interface require	ements - Issues involved in selection of Data acquisiti	ion cards - Use of tim	er-co	ounter	and	analog	
outputs on the u	niversal DAQ card.						
UNIT – V	DATA ACQUISITION AND SIGNAL CONDITIC	ONING			9 P	eriods	
Components of	a DAQ system, Bus, Signal and accuracy consid	leration when choosing	ng I	DAQ	hardv	vare –	
Measurement of	f analog signal with Finite and continuous buffered ac	quisition- analog outp	ut ge	enerat	ion –	Signal	
conditioning sys	stems - Synchronizing measurements in single & mul	tiple devices - Power	qual	ity an	alysis	s using	
Electrical Power	r Measurement tool kit.	Sec. 1					
<b>Contact Period</b>	S:	J.					
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Periods					

1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.
2	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
3	Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional
	Publishing, 2019
4	Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
5	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and
	Control", Newness, 2000

	The OUTCOMES: The students will be able to:	Bloom's Taxonomy Mapped
CO1	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	K6
CO5	Familiarize and experiment with DAQ and Signal Conditioning	K3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5		
C01	3	-	3	2	1		
CO2	3	-	3	2	1		
CO3	3	-	2	2	2		
CO4	3	1	3	3	1		
CO5	3	1	3	3	2		
<b>23PEOE22</b>	3	1	3	2	1		
1 – Slight, 2 – Moderate, 3 –	Substantial						

ASSESSMENT	ASSESSMENT PATTERN – THEORY								
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	30	40	15	15	-	-	100		
CAT2	15	10	25	30	20	-	100		
Individual	10	10	20	30	20	10	100		
Assessment1/		-	- Burn						
Case study1/		TOTICIO	ASSESSMENT OF	305					
Seminar 1/		600	UTTONE C						
Project1									
Individual	25	40	20	15	-	-	100		
Assessment2/									
Case study2/			SV2 V						
Seminar 2 /		<u>é</u>							
Project2		1 &							
ESE	30	25	15	20	5	5	100		



22DE0E22	ENERGY MANAGEMENT	SYSTEMS				
23PEOE23	(Common to all Brand	ches)				
PREREQUISI	TES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course	To Comprehend energy management schemes, perform	n energy audit ar	nd ex	ecute	e eco	nomic
Objectives	analysis and load management in electrical systems.					
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND M	ANAGEMENT			9 P	eriods
Energy Conservation	ation Act 2001 and policies – Eight National Missions - B	asics of Energy ar	nd its	form	ns (Th	nermal
and Electrical) ·	- Energy Management and Audit - Energy Managers an	d Auditors - Typ	es ar	nd M	etho	lology
Audit Report - 1	Material and energy balance diagramsEnergy Monitorin	g and Targeting.				
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENE	RATION			9 P	eriods
Boiler Systems	- Types - Performance Evaluation of boilers - Energ	y Conservation (	Oppo	rtuni	ty -	Steam
Distribution - E	Efficient Steam Utilisation - Furnaces:types and classifi	cation - Performa	ance	eval	uatio	n of a
typical fuel fire	d furnace. Cogeneration: Need - Principle - Technica	l options - classi	ificat	ion -	- Tec	hnical
parameters and f	actors influencing cogeneration choice - Prime Movers - 7	Trigeneration.				
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS				9 P	eriods
Electricity Billin	g - Electricity load management - Maximum Demand Co	ontrol - Power Fac	tor in	npro	veme	nt and
its benefits - pf	controllers - capacitors - Energy efficient transformers	and Induction mo	tors	- rev	vindir	ng and
other factors inf	luencing energy efficiency - Standards and labeling progra	amme of distribut	ion tr	ansf	orme	rs and
IM - Analysis of	distribution losses - demand side management - harmoni	cs - filters - VFD	and i	ts se	lectio	m.
UNIT – IV	STUDY OF ELECTRICAL UTILITIES				9 P	eriods
Compressor typ	es - Performance - Air system components - Efficient	operation of com	press	ed a	ir sy	stems-
Compressor cap	pacity assessment - HVAC: psychrometrics and air	-conditioning pro	ocess	es -	Typ	bes of
refrigeration sys	tem - Compressor types and applications - Performan	ce assessment of	refrig	gerati	on p	lants -
Lighting System	s: Energy efficient lighting controls - design of interior lig	hting - Case study	<i>.</i>			
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMEN	Т			9 P	eriods
Performing Fina	ncial analysis: Fixed and variable costs - Payback perio	d – ROI - method	1s - 1	facto	rs aff	ecting
analysis. Energy	Performance Assessment: Heat exchangers - Fans and H	Blowers - Pumps.	Ener	gy C	onser	vation
in buildings and	ECBC.					
<b>Contact Period</b>	s:					
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods	Fotal: 45 Periods				

1	Murphy W.R. and G.Mckay Butter worth, "Energy Management", Heinemann Publications, 2007
2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
	Publishers, 2012.
3	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
	edition, Technical Publications, 2019.
4	S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali
	Prakashan Publications, 2021.
5	www.em-ea.org/gbook1.asp

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Analyze the feature of energy audit methodology and documentation of report.	К3
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
CO4	Familiarize with electrical utilities.	K4
CO5	Perform assessment of different systems.	K5

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	3	2	2	1	1			
CO2	3	2	2	1	1			
CO3	3	2	2	1	1			
CO4	3	2	2	1	1			
CO5	3	2	2	1	1			
<b>23PEOE23</b>	3	2	2	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	10	30	30	20	10	-	100	
CAT2	10	30	30	20	10	-	100	
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	20	-	100	
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100	
ESE	10	30	30	20	10	-	100	

<b>23PEOE24</b>	23PEOE24 ADVANCED ENERGY STORAGE TECHNOLOGY (Common to all Branches)					
PREREQUISI		CATEGORY	L	Т	Р	C
FREREQUISI	NIL	OE	L 3	0	<u>г</u> 0	<b>C</b> 3
Cauraa			-	U	U	3
Course	To explore the fundamentals, technologies and application	ons of energy stora	ige			
Objectives	ENERCY STORACE, HISTORICAL DEDERECTI	VE INTRODU		NT I	0.0.0	
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTI AND CHANGES	ve, introduc	-110		9 Pei	rious
U	Variations in Energy Demand- Variations in Energy Su					
Transmission C	ongestion - Demand for Portable Energy-Demand and so	cale requirements	- En	vironi	nental	l and
sustainability iss	sues-conventional energy storage methods: battery-types.					
UNIT – II	TECHNICAL METHODS OF STORAGE				9 Per	riods
	nergy and Energy Transformations, Potential energy (pur	• •	•		-	•
Kinetic energy	(mechanical flywheels)- Thermal energy without phase	e change passive	e (ad	obe)	and a	ctive
(water)-Thermal	energy with phase change (ice, molten salts, steam)-	Chemical energy	(hyd	rogen	, metl	hane,
gasoline, coal,	oil)- Electrochemical energy (batteries, fuel cells)	)- Electrostatic	energ	gy (c	apacit	tors),
Electromagnetic	energy (superconducting magnets)- Different Types of En	nergy Storage Sys	tems			
UNIT – III	PERFORMANCE FACTORS OF ENERGY STORA	GE SYSTEMS			9 Per	riods
Energy capture	Energy capture rate and efficiency- Discharge rate and efficiency- Dispatch ability and load flowing					
characteristics, s	scale flexibility, durability - Cycle lifetime, mass and safe	ety – Risks of fire	e, exp	olosio	n, toxi	icity-
Ease of materia	ls, recycling and recovery- Environmental consideration	and recycling, M	lerits	and c	lemeri	its of
different types of	f Storage.					
UNIT – IV	APPLICATION CONSIDERATION				9 Per	riods
Comparing Stor	age Technologies- Technology options- Performance fac	tors and metrics-	Effic	iency	of Er	nergy
Systems- Energ	y Recovery - Battery Storage System: Introduction wi	th focus on Lead	l Ac	id and	l Lith	ium-
Chemistry of B	attery Operation, Power storage calculations, Reversible	reactions, Charg	ging j	pattern	ns, Ba	ttery
Management sys	stems, System Performance, Areas of Application of Ener	gy Storage: Waste	e hea	t reco	very, S	Solar
energy storage,	Green house heating, Power plant applications, Drying and	d heating for proc	ess ii	ndustr	ies, en	nergy
storage in autom	notive applications in hybrid and electric vehicles.					
UNIT – V	HYDROGEN FUEL CELLS AND FLOW BATTERI	ES			9 Per	riods
Hydrogen Econ	omy and Generation Techniques, Storage of Hydrogen,	Energy generatio	n - S	uper	capac	itors:
properties, powe	er calculations - Operation and Design methods - Hybrid	d Energy Storage	: Ma	naging	g peak	c and
Continuous por	wer needs, options - Level 1: (Hybrid Power genera	tion) Bacitor "E	Batter	y +	Capac	citor"
Combinations:	need, operation and Merits; Level 2: (Hybrid Power Ger	neration) Bacitor	+ Fu	iel Ce	ll or l	Flow
Battery operatio	n-Applications: Storage for Hybrid Electric Vehicles, Reg	enerative Power,	captu	ring n	nethod	ls.
<b>Contact Period</b>	S:					
Contact I eriou						
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	<b>Fotal: 45 Periods</b>				

1	DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.
2	Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy
	Storage and Conversion", John Wiley and Sons, 2012.
3	Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.
4	Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical
	Society, New Jersy, 2010.

COUI	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
CO1	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
<b>CO4</b>	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5				
CO1	3	1	3	3	3				
CO2	3	1	3	3	3				
CO3	3	1	3	3	3				
CO4	3	1	3	3	3				
CO5	3	1	3	3	3				
<b>23PEOE24</b>	3	1	3	3	3				
1 - Slight, $2 - $ Moderate, $3 - $ S	Substantial	111-04000-000							

ASSESSMENT PATTERN – THEORY           Test /         Remembering         Understanding         Applying         Analyzing         Evaluating         Creating         To										
Bloom's Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	Total %			
CAT1	10	30	30	20	10	-	100			
CAT2	10	30	30	20	10	-	100			
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100			
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100			
ESE	10	30	30	20	10	-	100			

23AEOE	25	DESIGN OF	DIGITAL SYSTEM	/IS			
		(Commo	on to all Branches)				
REREQUISI	ГES		CATEGORY	L	Т	Р	C
		NIL	OE	3	0	0	3
Course	To gain	knowledge in the design and VHDL p	programming of syn	chronous	and a	synchro	nous
Objectives	sequentia	l circuits, PLD's and the basic concepts of	testing in VLSI circ	uits			
UNIT–	I SYNC	CHRONOUS SEQUENTIAL CIRCUIT	DESIGN			9 Per	riods
Analysis of Cl	ocked Sy	nchronous Sequential Circuits - Modeling	g, state table reduction	on, state a	assignm	ent, De	sign
of Synchronou	s Sequen	tial circuits, Design of iterative circuits- A	SM chart –ASM reali	ization.			
UNIT–II	ASYNC	CHRONOUS SEQUENTIAL CIRCUIT	DESIGN			9 Per	riods
Analysis of As	synchron	ous Sequential Circuits - Races in ASC -	- Primitive Flow Tal	ble - Flo	w Tabl	e Reduc	ction
Techniques, St	ate Assig	mment Problem and the Transition Table -	- Design of ASC – St	atic and l	Dynami	c Hazar	ds –
Essential Haza	rds– Data	a Synchronizers.					
UNIT-III	SYSTEM DESIGN USING PLDS						
						9 Per	
Basic concepts	– Progra	amming Technologies - Programmable Lo	gic Element (PLE) –	Program	mable		
•	•		•	U U		Array L	ogic
(PLA)-Program	nmable A	amming Technologies - Programmable Lo	•	U U		Array L	ogic
(PLA)-Program PLDs (CPLDs)	nmable A	amming Technologies - Programmable Lo	•	U U		Array L	ogic plex
(PLA)-Progran PLDs (CPLDs) UNIT– IV	nmable A ). INTRO	amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination	nal and sequential cir	cuits usir	ng PLD	Array L s– Com <b>9 Pe</b> i	ogic plex riods
(PLA)-Program PLDs (CPLDs) UNIT– IV Design flow -S	nmable A ). INTRO oftware	amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination DUCTION TO VHDL	nal and sequential cir Operators –Entities a	cuits usir	ng PLD	Array L s– Com <b>9 Pe</b> s Comp	ogic plex riods
(PLA)-Program PLDs (CPLDs) UNIT– IV Design flow -S and Configura	nmable A ). INTRO oftware tions –	amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination <b>DUCTION TO VHDL</b> tools – VHDL: Data Objects-Data types –	nal and sequential cir Operators –Entities a equential statements	and Archi —Behav	ng PLD itecture vioral,	Array L s– Com 9 Per s Comp Dataflo	ogic plex riods onen w ar
(PLA)-Program PLDs (CPLDs) <b>UNIT– IV</b> Design flow -S and Configura Structural mod	nmable A ). INTRO oftware tions – eling– Tr	Amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination DUCTION TO VHDL tools – VHDL: Data Objects-Data types – Signal Assignment – Concurrent and Se	nal and sequential cir Operators –Entities a equential statements Attributes - Generics-	and Archi —Behav	ng PLD itecture vioral,	Array L s– Com 9 Per s Comp Dataflo	ogic plex riods onen w ar
(PLA)-Program PLDs (CPLDs) UNIT– IV Design flow -S and Configura Structural mod UNIT–V	nmable A ). INTRO oftware tions – eling– Tr LOGIO	Amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination <b>DUCTION TO VHDL</b> tools – VHDL: Data Objects-Data types – Signal Assignment – Concurrent and So ransport and Inertial delays –Delta delays-A	nal and sequential cir Operators –Entities a equential statements Attributes - Generics- E <b>DESIGN</b>	and Archi —Behav –Package	ng PLD itecture vioral, s and L	Array L s– Com 9 Per s Comp Dataflo ibraries 9 Per	ogic plex riods onen w ar riods
(PLA)-Program PLDs (CPLDs) UNIT-IV Design flow -S and Configura Structural mod UNIT-V Digital logic c	inmable A inmable A introductions – tions – tiong– Transford LOGIC irrcuit test	Amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination DUCTION TO VHDL tools – VHDL: Data Objects-Data types – Signal Assignment – Concurrent and Se ransport and Inertial delays –Delta delays-A C CIRCUIT TESTING AND TESTABL	Operators –Entities a equential statements Attributes - Generics- E <b>DESIGN</b> circuit testing - Sequ	and Archi —Behav –Package	itecture vioral, s and L gic circ	Array L s– Com <b>9 Per</b> s Comp Dataflo ibraries <b>9 Pe</b> uit testi	ogic plex riods onen w ar riods ng-
(PLA)-Program PLDs (CPLDs) UNIT-IV Design flow -S and Configura Structural mod UNIT-V Digital logic c Design for Tes	inmable A inmable A introductions – tions – tiong– Transford LOGIC irrcuit test	Amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination <b>DUCTION TO VHDL</b> tools – VHDL: Data Objects-Data types – Signal Assignment – Concurrent and So cansport and Inertial delays –Delta delays- C CIRCUIT TESTING AND TESTABLI ting - Fault models - Combinational logic	Operators –Entities a equential statements Attributes - Generics- E <b>DESIGN</b> circuit testing - Sequ	and Archi —Behav –Package	itecture vioral, s and L gic circ	Array L s– Com <b>9 Per</b> s Comp Dataflo ibraries <b>9 Pe</b> uit testi	ogic plex riods onen w ar riods ng-
(PLA)-Program PLDs (CPLDs) UNIT-IV Design flow -S and Configura Structural mod UNIT-V Digital logic c	nmable A INTRO oftware tions – eling– Tro LOGIC stability ·	Amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination <b>DUCTION TO VHDL</b> tools – VHDL: Data Objects-Data types – Signal Assignment – Concurrent and So cansport and Inertial delays –Delta delays- C CIRCUIT TESTING AND TESTABLI ting - Fault models - Combinational logic	Operators –Entities a equential statements Attributes - Generics- E <b>DESIGN</b> circuit testing - Sequ	and Archi —Behav –Package	itecture vioral, s and L gic circ	Array L s– Com <b>9 Per</b> s Comp Dataflo ibraries <b>9 Pe</b> uit testi	ogic plex riods onen w ar riods ng-
(PLA)-Program PLDs (CPLDs) UNIT- IV Design flow -S and Configura Structural mod UNIT-V Digital logic c Design for Tes Controller. Contact Perio	INTRO Joftware tions – eling– Tr LOGIO ircuit tes stability – ds:	Amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination <b>DUCTION TO VHDL</b> tools – VHDL: Data Objects-Data types – Signal Assignment – Concurrent and So cansport and Inertial delays –Delta delays- C CIRCUIT TESTING AND TESTABLI ting - Fault models - Combinational logic	Operators –Entities a equential statements Attributes - Generics- E <b>DESIGN</b> circuit testing - Sequ vel Boundary Scan -	and Archi —Behav –Package	ng PLD itecture vioral, s and L gic circ udy: Tr	Array L s– Com <b>9 Per</b> s Comp Dataflo ibraries <b>9 Pe</b> uit testi	ogic plex riods onen w ar riods ng-
(PLA)-Program PLDs (CPLDs) UNIT- IV Design flow -S and Configura Structural mod UNIT-V Digital logic c Design for Tes Controller. Contact Perio	INTRO Joftware tions – eling– Tr LOGIO ircuit tes stability – ds:	Amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination DUCTION TO VHDL tools – VHDL: Data Objects-Data types – Signal Assignment – Concurrent and Se ransport and Inertial delays –Delta delays- C CIRCUIT TESTING AND TESTABLI ting - Fault models - Combinational logic Built-in Self-test, Board and System Lev	Operators –Entities a equential statements Attributes - Generics- E <b>DESIGN</b> circuit testing - Sequ vel Boundary Scan -	and Archi —Behav -Package uential log	ng PLD itecture vioral, s and L gic circ udy: Tr	Array L s– Com <b>9 Per</b> s Comp Dataflo ibraries <b>9 Pe</b> uit testi	ogic plex riods onen w ar riods ng-
(PLA)-Program PLDs (CPLDs) UNIT- IV Design flow -S and Configura Structural mod UNIT-V Digital logic c Design for Tes Controller. Contact Perio	INTRO Joftware tions – eling– Tr LOGIO ircuit tes stability – ds: eriods	Amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination DUCTION TO VHDL tools – VHDL: Data Objects-Data types – Signal Assignment – Concurrent and Se ransport and Inertial delays –Delta delays- C CIRCUIT TESTING AND TESTABLI ting - Fault models - Combinational logic Built-in Self-test, Board and System Lev	Operators –Entities a equential statements Attributes - Generics- E <b>DESIGN</b> circuit testing - Sequ vel Boundary Scan -	and Archi —Behav -Package uential log	ng PLD itecture vioral, s and L gic circ udy: Tr	Array L s– Com <b>9 Per</b> s Comp Dataflo ibraries <b>9 Pe</b> uit testi	ogic plex riods onen w ar riods ng-
(PLA)-Program PLDs (CPLDs) UNIT- IV Design flow -S and Configura Structural mod UNIT-V Digital logic c Design for Tes Controller. Contact Perio Lecture: 45 Perio	INTRO Joftware tions – eling– Tr LOGIO ircuit tes stability – ds: eriods	Amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination DUCTION TO VHDL tools – VHDL: Data Objects-Data types – Signal Assignment – Concurrent and Se ransport and Inertial delays –Delta delays- C CIRCUIT TESTING AND TESTABLI ting - Fault models - Combinational logic Built-in Self-test, Board and System Lev	Operators –Entities a equential statements Attributes - Generics- E <b>DESIGN</b> circuit testing - Sequ vel Boundary Scan -	and Archi —Behav -Package uential log	ng PLD itecture vioral, s and L gic circ udy: Tr	Array L s– Com <b>9 Per</b> s Comp Dataflo ibraries <b>9 Pe</b> uit testi	ogic plex riods onen w ar riods ng-
(PLA)-Program PLDs (CPLDs) UNIT-IV Design flow -S and Configura Structural mod UNIT-V Digital logic c Design for Tes Controller. Contact Perio Lecture: 45 Pc REFERENC	inmable A inmable A infimations – eling– Tr LOGIC ircuit tes stability – ds: eriods	Amming Technologies - Programmable Lo Array Logic (PAL) –Design of combination DUCTION TO VHDL tools – VHDL: Data Objects-Data types – Signal Assignment – Concurrent and Se ransport and Inertial delays –Delta delays- C CIRCUIT TESTING AND TESTABLI ting - Fault models - Combinational logic Built-in Self-test, Board and System Lev	Operators –Entities a equential statements Attributes - Generics- E DESIGN circuit testing - Sequ vel Boundary Scan - Periods Total: 4	and Archi —Behav –Package uential lo Case Stu	ng PLD itecture vioral, s and L gic circ udy: Tr	Array L s– Com <b>9 Per</b> s Comp Dataflo ibraries <b>9 Pe</b> uit testi	ogic plex riods onen w ar riods ng-
(PLA)-Program         PLDs (CPLDs)         UNIT- IV         Design flow -S         and Configura         Structural mod         UNIT-V         Digital logic c         Design for Tes         Controller.         Contact Perio         Lecture: 45 Perio         REFERENC         1       Dond	INTRO Software tions – eling– Tr LOGIO ircuit tes stability – ds: eriods CES: ald G. Giv	Array Logic (PAL) –Design of combination <b>DUCTION TO VHDL</b> tools – VHDL: Data Objects-Data types – Signal Assignment – Concurrent and Sec ransport and Inertial delays –Delta delays- <b>CIRCUIT TESTING AND TESTABLI</b> ting - Fault models - Combinational logic • Built-in Self-test, Board and System Lev <b>Tutorial: 0 Periods</b> Practical: 0	Operators –Entities a equential statements Attributes - Generics- E DESIGN circuit testing - Sequ vel Boundary Scan - Periods Total: 4	and Archi —Behav -Package uential lo Case Str	ng PLD itecture vioral, s and L gic circ udy: Tr s	Array L s– Com 9 Per s Comp Dataflo ibraries 9 Pe uit testi affic Li	ogic plex riods onen w an riods ng- ght

3 VolneiA.Pedroni, "Circuit Design withVHDL", PHILearning, 2011.

4 ParagK Lala, "Digital Circuit Testing and Testability", AcademicPress, 1997.

5 CharlesHRoth, "Digital Systems Design Using VHDL", Cencage 2nd Edition2012.

6 NripendraN.Biswas, "Logic Design Theory" Prentice Hall of India, 2001.

COUR	OURSEOUTCOMES:					
Upon o	oon completion of the course ,students will be able to/have:					
CO1	To design synchronous sequential circuits based on specifications.	K3				
CO2	To design asynchronous sequential circuits based on specifications	K3				
CO3	Ability to illustrate digital design implementation using PLDs.	K2				
CO4	To develop algorithm and VHDL code for design of digital circuits.	K3				
CO5	Understand the different testing methods for combinational and sequential circuits.	K2				

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	-	2	-	-	1		
CO2	3	-	2	-	-	1		
CO3	3	-	2	-	-	1		
CO4	3	-	2	-	-	1		
CO5	3	-	2	-	-	1		
23AEOE25	3	-	2	-	-	1		
1 – Slight, 2 – Moderat	e, 3 – Substant	ial						

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual		50%	50%	-			100%
Assessment 1 /		10ville	ADJS USUS	5021			
Case Study 1/		497	PRIMIPARA				
Seminar 1 /							
Project1			Ĭ				
Individual		50%	50%	S [[]			100%
Assessment 2 /				1			
Case Study 2/		// 8					
Seminar 2 /		1 8					
Project 2		高 湯					
ESE	20%	45%	35%				100%

**23AEOE26** 

# BASICS OF NANO ELECTRONICS

(Common to all Branches)

	(Common to a	i Dianches)				
PREREQUISI	TES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course	The students will be able to acquire knowledge ab	out nano device f	abricatio	on tech	nology,	nano
Objective	structures, nano technology for memory devices a	and applications o	f nano	electro	onics in	data
	transmission.					
UNIT – I	TECHNOLOGY AND ANALYSIS				9 Pe	eriods
Fundamentals	: Dielectric, Ferroelectric and Optical properties - Filn	n Deposition Metho	ods – Lit	hograp	hy	
Material remo	wing techniques - Etching and Chemical Mechanical	l Polishing - Scan	ning Pro	obeTec	hniques	•
UNIT – II	CARBON NANO STRUCTURES				9 Pe	eriods
Principles and	l concepts of Carbon Nano tubes - Fabrication - E	lectrical, Mechani	cal and	Vibra	tionProp	perties
- Applications	of Carbon Nano tubes.					
UNIT – III	LOGIC DEVICES				9 Pe	eriods
Silicon MOSI	FET's: Novel materials and alternative concepts - S	ingle electron dev	ices for	· logic	applicat	ions -
Super conduct	or digital electronics - Carbon Nano tubes for data proc	essing.				
UNIT – IV	MEMORY DEVICES AND MASS STORAGE DE	EVICES			9 Pe	eriods
Flash memorie	es - Capacitor based Random Access Memories - Mag	gnetic Random Acc	ess Mer	mories	- Inform	nation
storage based	on phase change materials - Resistive Random Access I	Memories - Hologra	aphicDat	ta stora	.ge.	
UNIT – V	DATA TRANSMISSION AND INTERFACING D	ISPLAYS			9 Pe	eriods
Photonic Net	works - RF and Microwave Communication Syster	n - Liquid Crysta	l Displ	ays -	Organic	Light
emitting diode	s. 🥣 🐨	7				
<b>Contact Perio</b>	ods:	10				
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0 Per	riods Total: 45	Periods	5		
		1				
DEFE						
KEFE	RENCES:	Nb				

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronicmaterials and novel
	devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics Science,
	Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer, 2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher, California", 2003.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, students will be able to/have:	Mapped
<b>CO1</b>	Explain principles of nano device fabrication technology.	K2
CO2	Describe the concept of Nano tube and Nano structure.	K2
CO3	Explain the function and application of various nano devices	К3
CO4	Reproduce the concepts of advanced memory technologies.	K2
CO5	Emphasize the need for data transmission and display systems.	K2

COURSE AR	COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3		
CO1	3	-	2	-	-	1	3	-	1		
CO2	3	-	2	-	-	1	3	-	1		
CO3	3	-	2	-	-	1	3	-	1		
CO4	3	-	2	-	-	1	3	-	1		
CO5	3	-	2	-	-	1	3	-	1		
22AEOE26	3	-	2	-	-	1	3	-	1		
1 – Slight, 2 –	Moderate	e, 3 – Subst	antial								

ASSESSMENT P	PATTERN – THEO	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	50%	25%	25%				100%
CAT2	50%	25%	25%				100%
Individual Assessment 1/ Case Study 1/	50%	25%	25%	>			100%
Seminar 1 / Project1				(			
Individual Assessment 2/ Case Study 2/ Seminar 2 / Project 2	50%	25%	25%				100%
ESE	50%	25%	25%				100%

<b>23AEOE</b>	27	ADVA	NCED PROCESSOR				
		(0	Common to all Branches)				
PREREQUIS	SITES		CATEGORY	L	Т	Р	С
		NIL	OE	3	0	0	3
Course	The stu	dents will be able to acquire knowled	lge about the high perform	ance R	ISC, CISO	C and sp	pecial
Objective	purpose	processors.					
UNIT – I	MICH	OPROCESSOR ARCHITECTUR	E			9 Pe	riods
Instruction se	et – Dat	a formats – Instruction formats – Add	dressing modes – Memory	hierarc	hy – regi	sterfile	– Cache
		and paging – Segmentation – Pipe	•		• •		
	•	llelism – reduced instruction set – C	e	· ·			
– RISC evalu	ation.					•	•
UNIT – II	HIGH	PERFORMANCE CISC ARCHI	<b>FECTURE – PENTIUM</b>			<b>9 Pe</b>	riods
The software	e model	- functional description - CPU pi	in descriptions – Address	ing mo	odes – Pi	ocesso	flags –
Instruction se	et – Bus	operations – Super scalar architectu	re – Pipe lining – Branch	predict	ion – The	e instruc	ction and
caches – Floa	ating po	nt unit- Programming the Pentium p	rocessor.	-			
UNIT – III	HIGH	PERFORMANCE CISC ARCHI	<b>FECTURE – PENTIUM</b>	INTEF	RFACE	<b>9 Pe</b>	riods
Protected mo	de oper	ation – Segmentation – paging – Pr	otection – multitasking –	Except	ion and i	nterrup	ts- Input
/Output – Vii	rtual 80	36 model – Interrupt processing.	min				
UNIT – IV	HIGH	PERFORMANCE RISC ARCHI	<b>TECTURE: ARM</b>			<b>9 Pe</b>	riods
ARM archite	ecture -	- ARM assembly language progra	m - ARM organization	and in	nplement	ation –	ARM
instruction se	et - Thu	nb instruction set.					
UNIT – V	SPEC	IAL PURPOSE PROCESSORS	THE CONTRACT			9 Pe	riods
Altera Cyclo	ne Proc	essor - Audio codec - Video codec	design - Platforms - Gen	eral pu	rpose pro	cessor	–Digital
signal proces	ssor – E	mbedded processor - Media Proces	ssor – Video signal Proce	ssor –	Custom I	Hardwa	re – Co-
Processor.		// 2					
<b>Contact Per</b>	iods:						
Lecture: 45	Period	s Tutorial: 0 Periods Prac	ctical: 0 Periods Tota	l: 45 P	eriods		

## **REFERENCES:**

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System –On –Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

TTET

	COURSE OUTCOMES:					
Upon c	Upon completion of the course, students will be able to					
		Mapped				
CO1	Describe the fundamentals of various processor architecture.	K2				
CO2	Interpret and understand the high performance features in CISC architecture.	K2				
CO3	Describe the concepts of Exception and interrupt processing.	K2				
CO4	Develop programming skill for ARM processor.	К3				
CO5	Explain various special purpose processor	K2				

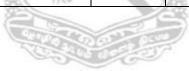
COURSE ARTICULA	TION MATR	IX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3	-	2	-	-	1
<b>22AEOE27</b>	3	-	2	-	-	1
1 - Slight, 2 - Moderate	, 3 – Substanti	al				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creatin g (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1		50%	50%	2			100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2		50%	50%	23. 2013			100%
ESE	30%	40%	30%				100%

23VI	<b>OE28</b>
	UL'20

# HDL PROGRAMMING LANGUAGES

(Common to all Branches)


	(common to an Dratenes)							
PREREQUISITE	5	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
Course	To code and simulate any digital function in	o code and simulate any digital function in Verilog HDL and understand the different						
Objective	between synthesizable and non-synthesizable code	een synthesizable and non-synthesizable codes.						
UNIT – I	VERILOG INTRODUCTION AND MODELIN	lG			9	<b>Periods</b>		
Introduction to Ver	rilog HDL, Language Constructs and Conventions,	Gate Level Modelin	g, M	odeli	ng at	Dataflow		
Level, Behavioral N	Modeling, Switch Level Modeling, System Tasks, Fu	unctions and Compile	r Dire	ective	es.			
UNIT – II	SEQUENTIAL MODELING AND TESTING				ļ	<b>Periods</b>		
Sequential Models	- Feedback Model, Capacitive Model, Implicit Mo	odel, Basic Memory	Com	pone	nts, I	Functional		
Register, Static M	achine Coding, Sequential Synthesis. Test Bench	- Combinational Cire	cuits	Testi	ing, S	Sequential		
Circuit Testing, Test	st Bench Techniques, Design Verification, Assertion	Verification.						
UNIT – III	II SYSTEM VERILOG 9 Pe					<b>Periods</b>		
Introduction, Syste	m Verilog declaration spaces, System Verilog Lite	eral Values and Buil	t-in I	Data	Туре	s, System		
Verilog User-Defin	ned and Enumerated Types, system Verilog Arr	ays, Structures and	Unic	ons, s	syste	n verilog		
Procedural Blocks,	Tasks and Functions.							
UNIT – IV	UNIT – IV SYSTEM VERILOG MODELING				9	<b>Periods</b>		
System Verilog Pr	ocedural Statements, Modeling Finite State Machine	ines with System Ve	erilog	, Sys	tem	Verilog		
Design Hierarchy.	C Shannade e	<b>V</b>						
UNIT – V	INTERFACES AND DESIGN MODEL	5			9	<b>Periods</b>		
System Verilog In	terfaces, A Complete Design Modeled with Syster	n Verilog, Behaviora	al and	1 Tra	nsact	ion Level		
Modeling.								
Contact Periods:								
Lecture: 45 Period	ls Tutorial:0 Periods Practical:0 Periods	Total: 45 Periods						
REFEREN	ICES:	A.						

1	T.R.Padmanabhan, B Bala Tripura Sundari, "Design through Verilog HDL", Wiley 2009.
2	Stuart Sutherland, Simon Davidmann, Peter Flake, Foreword by Phil Moorby, "System Verilog For Design
	Second Edition A Guide to Using System Verilog for Hardware Design and Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of Projects on
	FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language Features",
	Springer 2006.
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using System
	Verilog for Hardware Design and Modeling" 1st Edition, 2003

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Explain the verilog coding and simulate any digital function using Verilog HDL	K2
CO2	Develop sequential modeling based Verilog HDL code and develop the test bench for	K3
	the modeling	
CO3	Explain the system verilog modeling	K2
CO4	Differentiate the synthesizable and non-synthesizable code	K3
CO5	Apply good coding techniques on system verilog interfaces and complete design	K3
	model	

COURSE ARTIC	CULATION M	IATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3		2		2
CO2	3	3		2		2
CO3	3	3		2		2
CO4	3	3		2		2
CO5	3	3		2		2
23VLOE28	3	3		2		2
1 - Slight, 2 - Mod	derate, 3 – Sub	ostantial				•

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment 1 /		- Gem	mm	-			
Case Study 1/		COLORD DS	USUS MILLS	22			
Seminar 1 /		C S S S S	ALL BE	2			
Project1							
Individual	-	50%	50%		-	-	100%
Assessment 2 /							
Case Study 2/			12 N 12 1				
Seminar 2 /		<u>é</u>	No.	1			
Project 2							
ESE	40%	40%	20%	1B	-	-	100%



	CMOS VLSI I	DESIGN				
23VLOE29	(Common to all					
PREREQUISIT	· · · · · · · · · · · · · · · · · · ·	CATEGORY	L	Т	Р	С
TREREQUISIT	NIL	OE	<u> </u>	0	0	3
Comme		_	-	v	Ű	-
Course	To gain knowledge on CMOS Circuits with its cha	aracterization and to	design	CM	JS 10g	sic and
Objective UNIT – I	sub-system with low power INTRODUCTION TO MOS CIRCUITS			r	0.0	
						Periods
	Theory -Introduction MOS Device Design Equati					
	OS Transmission Gate -Complementary CMOS Inve		AOS In	verte	rs - In	verters
with NMOS load	ls - Differential Inverter - Tri State Inverter - BiCMO	S Inverter.		-		
UNIT – II	CIRCUIT CHARACTERIZATION AN	D PERFORMA	<b>NCE</b>	Γ	9 P	Periods
	ESTIMATION					
Delay Estimation	n, Logical Effort and Transistor Sizing, Power Dissig	pation, Sizing Routin	ng Con	ducto	rs, Ch	arge
Sharing, Design	Margin and Reliability.					
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN		_		9 P	eriods
CMOS Logic Ga	ate Design, Physical Design of CMOS Gate, Designi	ng with Transmissio	n Gate	s, CN	10S L	ogic
Structures, Clock	sing Strategies, I/O Structures.					
UNIT – IV	CMOS SUBSYSTEM DESIGN				9 P	eriods
DataPath Opera	tions-Addition/Subtraction, Parity Generators, Co	omparators, Zero/O	ne De	tector	s, Bi	nary
Counters, ALUs,	Multipliers, Shifters, Memory Elements, Control-FS.	M, Control Logic Im	plemer	ntatio	n.	
UNIT – V	INIT – V LOWPOWERCMOS VLSIDESIGN				9 Periods	
Introduction to L	ow Power Design, Power Dissipation in FET Devices	s, Power Dissipation	in CM	OS, I	low-Po	ower
Design through	Voltage Scaling – VTCMOS Circuits, MTCMOS	Circuits, Architectu	ral Lev	vel A	pproa	ch –
Pipelining and Pa	arallel Processing Approaches, Low Power Basics CM	IOS Gate and Adder	Design	1.		
Contact Periods						
			_			

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

m.

1	Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata Mc-Graw Hill,
	2011.
2	N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley, 1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective",
	Pearson Education 2013.
4	Kiat-Seng Yeo, Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Jan M.Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.

COUR	COURSE OUTCOMES:				
Upon c	Upon completion of the course, the students will be able to:				
CO1	Explain the MOS circuits and Transmission gates	K2			
CO2	Illustrate the CMOS Circuits with its characterization	K2			
CO3	Design CMOS logic circuits	K3			
CO4	Design CMOS sub-system	K3			
CO5	Discuss low power CMOS VLSI Design	K2			

COURSE ARTIC	ULATION N	MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	-	2	-	3
CO2	2	1	-	2	-	3
CO3	2	1	-	2	-	3
CO4	3	1	-	2	-	3
CO5	3	1	-	2	-	3
23VLOE29	3	1	-	2	-	3
1 - Slight, 2 - Mod	lerate, 3 – Su	bstantial	•			

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment 1/		TOTICT	Distantis M	202			
Case Study 1/		152	MIRINER				
Seminar 1/							
Project1			4	1			
Individual	-	50%	50%	-	-	-	100%
Assessment 2 /							
Case Study 2/		() 会					
Seminar 2/		1 &					
Project 2		源 唐		VA.			
ESE	40%	40%	20%	100	-	-	100%

23VLOE30	HIGH LEVEL SYNTHES (Common to all Branches)					
PREREQUISI		CATEGORY	L	Т	Р	C
	NIL	OE	3	0	0	3
Course	To provide students with foundations in High level synthesis.	verification and	CAI	) To	ols	<u> </u>
Objective						
UNIT – I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS			9	Peri	ods
Overview HLS	flow, Scheduling Techniques, Resource sharing and Bin	nding Technique	s, D	ata-p	ath	and
Controller Gene	ration Techniques.			_		
UNIT – II	HIGH LEVEL SYNTHESIS			9	Peri	ods
Introduction to	HDL, HDL to DFG, operation scheduling: constrained and	unconstrained so	chedu	ıling,	AS	AP,
ALAP, List sch	eduling, Force directed Scheduling, operator binding, Static	: Timing Analysi	is: D	elay	mod	els,
setup time, hold	l time, cycle time, critical paths, Topological mvs. Logical time	ming analysis, Fa	alse p	oaths,	Arr	ival
time (AT), Requ	ired arrival Time (RAT), Slacks.					
UNIT – III	HIGH-LEVEL SYNTHESIS VERIFICATION			9	Peri	ods
Simulation bas	ed verification - Formal Verification of digital systems- B	DD based appro	bache	s, fu	nctio	onal
equivalence, fin	ite state automata, $\omega$ -automata, FSM verification.					
UNIT – IV	CAD TOOLS FOR SYNTHESIS		9 Perio			ods
CAD tools for	synthesis, optimization, simulation and verification of desig	n at various leve	els as	s we	ll as	for
special realizati	ons and structures such as microprogrammes, PLAs, gate ar	rays etc. Techno	logy	map	ping	for
FPGAs. Low po	ower issues in high level synthesis and logic synthesis.					
UNIT – V	ADVANCED TOPICS			-	Peri	
Relative Schedu	ling, IO scheduling modes - cycle fixed scheduling modes, s	uper-fixed schedu	ıling	mod	es, fi	ree-
floating schedul	ing mode, Pipelining, Handshaking, System Design, High-Lev	el Synthesis for F	FPGA	۱.		
<b>Contact Period</b>	s:					
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods Tota	l: 45 Periods				
REFERE	NCES :					

1	Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit",
	Springer, 2008.
2	Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
3	D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
4	Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.
5	Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
6	David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and
	Synchronization Constraints", Kluwer Academic Publishers, 1992.
7	K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999, Wiley.
8	Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System Design
	and Analysis", Springer, 2006.

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon co	ompletion of the course, the students will be able to:	Mapped	
CO1	Understand the fundamentals of High level synthesis	K2	
CO2	Synthesis the HDL for operation scheduling	K2	
CO3	Simulate and verify any digital systems	K2	
CO4	Apply CAD tools for synthesis	K2	
CO5	Have knowledge on various scheduling modes	K2	

#### COURSE ARTICULATION MATRIX:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
C01	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	-	2	2	-
CO4	2	2	-	2	2	-
CO5	2	2	-	2	2	-
23VLOE30	2	2	-	2	2	-

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
CAT1	50%	50%		-	-	-	100%
CAT2	50%	50%		-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment 1/							
Case Study 1/							
Seminar 1 /		CTTTTT	9 32	0.0			
Project1		Contraction of the second	In see preudo	59) ⁻			
Individual	-	50%	50%	-	-	-	100%
Assessment 2/			-	77			
Case Study 2/			×.	11			
Seminar 2/							
Project 2				//			
ESE	50%	50%		- N	-	-	100%

# **ARTIFICIAL INTELLIGENCE**

(Common to all Branches)

		,				
PREREQUISI	TES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course	Identify and apply AI techniques in the design	of systems that ac	t intel	ligent	ly, n	naking
Objectives	automatic decisions and learn from experience.					
UNIT – I	SEARCH STRATEGIES				9 P	eriod
Uninformed Str	rategies - BFS, DFS, Djisktra, Informed Strategi	es – A* search, He	euristi	c func	ctions	s, Hil
Climbing, Adve	ersarial Search – Min-max algorithm, Alpha-beta Pru	ining				
UNIT – II PLANNING AND REASONING						eriod
State Space sea	rch, Planning Graphs, Partial order planning, Unce	ertain Reasoning – Pi	robabi	listic	Reas	oning
Bayesian Netwo	orks, Dempster Shafer Theory, Fuzzy logic					
UNIT – III	PROBABILISTIC REASONING				9 P	eriod
Probabilistic Re	easoning over Time - Hidden Markov Models, Kal	lman Filters, Dynam	ic Bay	yesian	Net	works
Knowledge Rep	presentations – Ontological Engineering, Semantic N	letworks and descript	ion lo	gics.		
UNIT – IV	DECISION MAKING			-	9 P	eriod
Utility Theory,	Utility Functions, Decision Networks - Sequential	Decision Problems	– Part	tially (	Obse	rvabl
MDPs – Game	Theory.			-		
UNIT – V	REINFORCEMENT LEARNING	0			9 P	eriod
Reinforcement	Learning - Passive and active reinforcement learning	g - Generations in Re	inforc	ement	Lea	ming
	Deep Reinforcement Learning.					e
Contact Period		77				
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Period	S			
REFEREN	ICES :					
4 5 7					10	

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice
	Hall,2010.
4	Elaine Rich, Kevin Knight, Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw
	Hill, 2009.

COUR	Bloom's Taxonomy	
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	K3
CO3	Examine data using statistical codes and solve complex AI problems	K6
<b>CO4</b>	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	K6

COURSE ARTICULATION MATRIX						
COs/ POs	<b>PO 1</b>	PO2	<b>PO 3</b>	PO 4	PO5	PO6
CO1	3		2		3	3
CO2	3		2		3	3
CO3	3		3		3	3
CO4	3		3		3	3
CO5	3		3		3	3
23CSOE31	3		3		3	3
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	g Understanding Applying Analyzing Ev		Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		20	40	20	20		100
CAT2		10	20	40	10	20	100
Individual							
Assessment 1/							
Case study 1/					50	50	100
Seminar 1/							
Project 1							
Individual							
Assessment 2/							
Case study 2/					50	50	100
Seminar 2/							
Project 2							
ESE	30	30	40				100



23CSOE32

# COMPUTER NETWORK MANAGEMENT

(Common to all Branches)

PREREQUISITES CATEGORY				Т	Р	С		
	OE	3	0	0	3			
Course	Course After the completion of the course, the students will be able to understand the concept					ncept of		
Objectives								
	related to network addressing and routing and build simple LANs, perform basic							
	configurations for routers and switches, and implement IPv4 and IPv6 addressing schemes							
	using Cisco Packet Tracer.							
UNIT – I	INTRODUCTION AND APPLICATION LAY			9 Periods				
Building netwo	ork - Network Edge and Core - Layered Archite	ecture – OSI Mode	l – Inte	ernet	Arch	itecture		
(TCP/IP) Netw	vorking Devices: Hubs, Bridges, Switches, Router	rs, and Gateways -	- Perfo	rman	ce M	letrics -		
Ethernet Networking – Introduction to Sockets – Application Layer protocols – HTTP – FTP Email Protocols								
- DNS.								
UNIT – II	TRANSPORT LAYER AND ROUTING					Periods		
· ·	er functions –User Datagram Protocol – Transm							
	Strategies - Congestion Control - Routing Princip	-		-				
e e	<ul> <li>– OSPF – BGP – Introduction to Quality of Service</li> </ul>	e (QoS).Case Study	: Config	gurin	g RIF	, OSPF		
BGP using Pac		0.0						
UNIT – III	NETWORK LAYER					Periods		
Network Layer: Switching concepts - Internet Protocol - IPV4 Packet Format - IP Addressing - Subnetting -								
	Domain Routing (CIDR) - Variable Length Subne	18						
	lation (NAT) - ICMP - Concept of SDN.Case Stu-	dy: Configuring VI	LAN, D	HCP	, NA	T using		
Packet tracer								
UNIT – IV	INTERNETWORK MANAGEMENT					Periods		
	the Cisco IOS - Router User Interface - CLI - Ro	- 18						
Router Interfaces - Viewing, Saving, and Erasing Configurations - Switching Services - Configuring Switches								
- Managing Configuration Registers - Backing Up and Restoring IOS - Backing Up and Restoring the								
Configuration - Using Discovery Protocol (CDP) - Checking Network Connectivity								
UNIT – V	TRAFFIC MANAGEMENT AND WAN PRO	TOCOLS			9	Periods		
Managing Traffic with Access Lists: Introduction to Access Lists - Standard Access Lists - Extended Access								
Lists - Named	Access Lists - Monitoring Access Lists - Wide A	Area Networking F	rotocol	s: Int	trodu	ction to		
Wide Area Net	tworks - Cabling the Wide Area Network - High-I	Level Data-Link Co	ontrol (I	HDL	C) Pr	otocol -		
Point-to-Point Protocol (PPP) - Frame Relay: Frame Relay Implementation and Monitoring - Integrated								
Services Digital Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring DDR								
Contact Periods:								
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Per	riods Total: 45 P	eriods					

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh Edition,
	Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education, 2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNA TM : Cisco [®] Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COURSE	COURSE OUTCOMES:	
		Taxonomy
Upon con	pletion of the course, the students will be able to:	Mapped
CO1	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	K3
CO4	Build simple LANs, perform basic configurations for routers and switches	K6
CO5	Illustrate various WAN protocols	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3		2	1
CO2	3		3		2	2
CO3	3		3		3	2
CO4	3		3		3	3
CO5	3		3		3	3
23CSOE32	3		3	10-	3	2
	- Moderate,	, 3 – Substanti	al	TO DE CO	2	

ASSESSMENT	<b>PATTERN – TH</b>	IEORY (Times Ne	w Roman, Si	ize 11)			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20			100
CAT2		30	20	30	10	10	100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	10	30	20	20	20		100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2		20	20	20	20	20	100
ESE	20	40	40				100

5

## **BLOCKCHAIN TECHNOLOGIES**

(Common to all Branches)

	× ×	·				
PREREQUI	SITES	CATEGORY	L	Т	P	С
	NIL	OE	3	0	0	3
Course	The objective of the course is to explore basic	s of block chain technology and	d its	appl	icati	on in
Objectives	various domaiin					
UNIT – I	INTRODUCTION OF CRYPTOGRAPHY	AND BLOCKCHAIN			9 Pe	riods
History of B	lockchain - Types of blockchain- CAP theore	em and blockchain – benefits a	and l	Limi	tatio	ns of
Blockchain –	Decentalization using blockchain - Blockchain	n implementations- Block chair	ı in j	pract	ical	use -
Legal and Go	vernance Use Cases					
UNIT – II	BITCOIN AND CRYPTOCURRENCY				9 Pe	riods
Introduction	to Bitcoin, The Bitcoin Network, The Bitcoin	Mining Process, Mining Deve	elopn	nent	s, Bi	tcoir
Wallets, Dec	entralization and Hard Forks, Ethereum Virtua	al Machine (EVM), Merkle Tr	ee, ]	Doul	ole-S	spend
Problem, Blo	ockchain and Digital Currency, Transactional	Blocks, Impact of Blockchai	n T	echn	olog	y on
Cryptocurren	су					
UNIT – III	ETHEREUM				9 Pe	riod
Introduction	to Ethereum, Consensus Mechanisms, Metan	nask Setup, Ethereum Account	ts, ,	Tra	nsact	tions
Receiving Etl	hers, Smart Contracts					
UNIT – IV	HYPERLEDGER AND SOLIDITY PROGR	AMMING			9 Pe	riod
Introduction	to Hyperledger, Distributed Ledger Technolo	gy & its Challenges, Hyperlee	dger	& ]	Distr	ibute
Ledger Techr	nology, Hyperledger Fabric, Hyperledger Compo	oser. Solidity – Programming with	h so	lidity	/	
UNIT – V	BLOCKCHAIN APPLICATIONS	ž //			9 Pe	riods
Ten Steps to	build your Blockchain application – App	plication: Internet of Things	, Me	edica	l Re	ecord
Management	System, Domain Name Service and Future of Bl	lockchain, Alt Coins				
Contact Peri	ods:					
Lecture: 45 ]	Periods Tutorial: 0 Periods Practic	al: 0 Periods Total: 45 Per	riods			
DEFE	RENCES:					
	shir, "Mastering Blockchain: Distributed Lea	daar Tachnolom, Decentraliza	tion	an	d Su	nart
	Explained", Second Edition, Packt Publishing, .			un	1 51	iuri
Connucts	<b>Explained</b> , Second Edition, I doki I ublishing, $\lambda$	2010.				

2 Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and Technology Solutions", McGraw Hill Education , 2018.

3 Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, **"Bitcoin and Cryptocurrency Technologies: A** Comprehensive Introduction" Princeton University Press, 2016.

4 Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.

5 Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018

6 NPTEL Course : Blockchain and its applications https://archive.nptel.ac.in/courses/106/105/106105235/

COURSE OUTCOMES:		
Upon c	ompletion of the course, the students will be able to:	Taxonomy Mapped
<b>CO1</b>	Comprehend the working of Blockchain technology	K2
CO2	Narrate working principle of smart contracts and create them using solidity for given scenario.	K3
CO3	Comprehend the working of Hyperledger in an real time application	K2
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum	K3
CO5	Develop applications on Blockchain	K3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2		3	2		3	
CO2	2	3	3	3	2	3	
CO3	3		3	2		3	
CO4	3	3	3	3	2	3	
CO5	3	3	3	3	2	3	
23CSOE33	3	3	3	3	2	3	
1 – Slight, 2 – Me	oderate, 3	– Substar	ntial				

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20	40	40				100
CAT2	20	30	50				100
Individual		a contraction	0.00	20			
Assessment 1/		30	70	(2)			100
Case Study 1/		422	ATTENDE IST				
Seminar 1 /				7			
Project1			X	11			
Individual			AUG				
Assessment 2/		40	60	1			100
Case Study 2/							
Seminar 2 /		1 8					
Project 2		AL IBS					
ESE	10	60	30				100

23EEACZ1

## ENGLISH FOR RESEARCH PAPER WRITING

(Common to all Branches)

DDDDDDDUUGU		CLERCORY	<b>.</b>	T		0
PREREQUISIT		CATEGORY	L	Т	P	С
	NIL	AC	2	0	0	0
Course	The objective of the course is to make the learn	ners understand the	e form	at and	l intri	cacies
Objectives	involved in writing a research paper.					
UNIT – I	PLANNING AND PREPARATION			6	5 Peri	ods
Need for publish	ning articles, Choosing the journal, Identifying a mod	del journal paper, C	Creation	n of fil	les fo	r each
section, Expectat	tions of Referees, Online Resources.					
UNIT – II		6	6 Peri	ods		
Basic word in H	English, Word order in English and Vernacular, plac	cing nouns, Verbs,	Adject	tives, a	and A	dverb
suitably in a ser	ntence, Using Short Sentences, Discourse Markers a	nd Punctuations- S	tructur	e of a	Para	graph,
Breaking up leng	gthy Paragraphs.					
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC	) OF WRITING		6	6 Peri	ods
Accuracy, Brevi	ty and Clarity in Writing, Reducing the linking words	s, Avoiding redunda	ancy, A	Approp	oriate	use of
Relative and Re	eflexive Pronouns, Monologophobia, verifying the junction	ournal style, Logic	al Cor	nectio	ns be	etween
others author's f	indings and yours.					
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND	PARAPHRASING	r T	6	6 Peri	ods
Making your fin	dings stand out, Using bullet points headings, Tables a	nd Graphs- Availin	g nor	n-exper	ts op	inions,
Hedging, Toning	g Down Verbs, Adjectives, Not over hedging, Limitatio	ons of your research	•			
UNIT – V	SECTIONS OF A PAPER	7		6	6 Peri	ods
Titles, Abstracts	, Introduction, Review of Literature, Methods, Results,	Discussion, Conclu	isions,	Refere	ences.	
<b>Contact Periods</b>	s:					
Lecture: 30 Per	riods Tutorial: 0 Periods Practical: 0 Period	s Total: 30 Perio	ods			
REFERI	ENCES :					

#### **REFERENCES :**

_		
	1	Goldbort R, "Writing for Science", Yale University Press (available on GoogleBooks),2006
	2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
	3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.
	4	Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011.

COURS	URSE OUTCOMES :	
		Taxonomy
Upon co	mpletion of this course the learners will be able to	Mapped
CO1	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph writing.	K4
CO3	Practice unambiguous writing.	K3
CO4	Avoid wordiness in writing.	K2
CO5	Exercise the elements involved in writing journal paper.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	1	1	1	1
CO2	3	3	1	1	1	1
CO3	3	3	1	1	1	1
CO4	3	3	1	1	1	1
CO5	3	3	1	1	1	1
23EEACZ1	3	3	1	1	1	1

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1/		1000	Dermon	262			
Case Study 1/ Seminar 1/	-	50	50	- 2	-	-	100
Project 1			1	7			
Individual Assessment 2/							
Case Study 2/ Seminar 2/	-	50	50	1 -	-	-	100
Project 2		X BA		VA.			
ESE	30	30	40	2 <u>9</u>	-	-	100

23EEACZ2	<b>DISASTER MANAGEMENT</b> (Common to all Branches)	
Course	To become familiar in key concepts and consequences about hazards, dis	aster and area of
Objectives	occurrence.	aster and area of
Objectives	<ul> <li>To know the various steps in disaster planning.</li> </ul>	
	<ul> <li>To create awareness on disaster preparedness and management.</li> </ul>	
UNIT – I	• To create awareness on disaster preparedness and management. INTRODUCTION	6 Periods
	inition, Factors and Significance; Difference between Hazard and Disaster; Na	
	fference, Nature, Types and Magnitude. Areas proneto ,sekauqhtraEFloods ,Dro	
	Cyclone and Coastal Hazards with Special Reference to Tsunami.	bugints, Landshues
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods
	image, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Dis	-
	Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches,	
and Conflicts	tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease a	and Epidemics, wai
UNIT – III	DISASTER PLANNING	6 Periods
	nning-Disaster Response Personnel roles and duties, Community Mitigation	
-	an, Personnel Training, Comprehensive Emergency Management, Early Warning S	•
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT	6 Periods
Preparedness	: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of R	tisk: Application of
Remote Sens	ing, Data from Meteorological and other Agencies, Media Reports: Governmen	tal and Community
Preparedness		
UNIT – V	RISK ASSESSMENT	6 Periods
Disaster Risk	: Concept and Elements, Disaster Risk Reduction, Global and National Disa	ster Risk Situation
	f Risk Assessment, Global Co-Operation in Risk Assessment and Warning, Peop	
Risk Assessm	ent, Strategies for Survival.	-
<b>Contact Peri</b>	ods:	
Lecture: 30	Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 Perio	ods
REFER	ENCES:	
1 R. Nishiti	h, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategic	es" New Royal
	npany, 2007.	lo, iten hoyai
	deepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice I	Hall Of India, New
Delhi, 201	() "Disaster Administration And Management Text And Case Studies" Deep &	

3 Goel S. L, **"Disaster Administration And Management Text And Case Studies"**, Deep & Deep Publication Pvt. Ltd., New Delhi, 2008.

4 Jagbir Singh, **"Disaster Management: Future Challenges And Opportunities"**, I.K. International Publishing House Pvt. Ltd., New Delhi, 2007.

5 Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
6 Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUL	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
<b>CO4</b>	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	2	1	1	2	2			
CO2	1	2	1	1	1			
CO3	1	1	1	2	2			
CO4	1	1	1	2	2			
CO5	2	1	1	2	2			
23EEACZ2	1	1	1	2	2			
1 – Slight, 2 – Moderate, 3 -	- Substantial	•	•					

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2			100				100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	50	50					100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2		4480k	100				100
ESE	25	25	50				100

23EEACZ3	VALUE EDUC (Common to all ]					
PREREQUISIT		CATEGORY	L	Т	Р	С
	NIL	AC	2	0	0	0
Course	• Value of education and self- developme	ent		1	1	
Objectives	• Requirements of good values in student	ts				
	Importance of character					
UNIT – I	ETHICS AND SELF-DEVELOPMENT				6 I	Period
Social values an	d individual attitudes. Work ethics, Indian vis	sion of humanism.	Mora	1 and	l non	-moral
valuation. Standa	rds and principles. Value judgements.					
UNIT – II	PERSONALITY AND BEHAVIOR DEVEL	OPMENT			6 I	Periods
Kindness. Avoid tolerance.	ntific attitude. Positive Thinking. Integrity fault Thinking. Free from anger, Dignity of lal	<u> </u>			nd re	ligious
Kindness. Avoid tolerance. <b>UNIT – III</b> Importance of cu Truthfulness, Cle		bour. Universal bro Self-reliance. Conf	idence	ood a	nd re 6 I	ligious Periods tration.
Kindness. Avoid tolerance. <b>UNIT – III</b> Importance of cu	fault Thinking. Free from anger, Dignity of lal           VALUES IN HUMAN LIFE           ultivation of values, Sense of duty. Devotion,	bour. Universal bro Self-reliance. Conf	idence	ood a	nd re 6 I oncent e for	ligious Periods tration.
Kindness. Avoid tolerance. UNIT – III Importance of cu Truthfulness, Cle Discipline. UNIT – IV True friendship.	fault Thinking. Free from anger, Dignity of lal           VALUES IN HUMAN LIFE           ultivation of values, Sense of duty. Devotion,           eanliness. Honesty, Humanity. Power of faith, N	bour. Universal bro Self-reliance. Conf ational Unity. Patric	idence	e, Co	nd re 6 I oncent e for 6 I	ligious Periods tration. nature, Periods
Kindness. Avoid tolerance. UNIT – III Importance of cu Truthfulness, Cle Discipline. UNIT – IV True friendship.	fault Thinking. Free from anger, Dignity of lal         VALUES IN HUMAN LIFE         ultivation of values, Sense of duty. Devotion,         eanliness. Honesty, Humanity. Power of faith, N         VALUES IN SOCIETY         Happiness Vs suffering, love for truth. Awa	bour. Universal bro Self-reliance. Conf ational Unity. Patric	idence	e, Co	nd re 6 I oncente e for 6 I Asso	ligious Period tration. nature, Period ciation
Kindness. Avoid tolerance. UNIT – III Importance of cu Truthfulness, Cle Discipline. UNIT – IV True friendship. andCooperation. UNIT – V Character and C reincarnation. Equ	fault Thinking. Free from anger, Dignity of lal           VALUES IN HUMAN LIFE           ultivation of values, Sense of duty. Devotion,           eanliness. Honesty, Humanity. Power of faith, N           VALUES IN SOCIETY           Happiness Vs suffering, love for truth. Awa           Doing best for saving nature.           POSITIVE VALUES           Competence –Holy books vs Blind faith. Self-n           uality, Nonviolence, Humility, Role of Women. A           ol. Honesty, Studying effectively.	Self-reliance. Conf ational Unity. Patric re of self-destructiv	idence otism. ve ha	bod a	nd re 6 I oncente e for 6 I Asso 6 I Scie	ligious Periods tration. nature, Periods ciation Periods nce of

### EFERENCES :

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press,
	New Delhi, 1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi, 2004
4	https://nptel.ac.in/courses/109104068/36

COU	RSE OUTCOMES :	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Know the values and work ethics.	К3
CO2	Enhance personality and 152ehavior development.	К3
CO3	Apply the values in human life.	К3
CO4	Gain Knowledge of values in society.	К3
CO5	Learn the importance of positive values in human life.	К3

Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	3	-	-	1
CO2	-	-	3	-	-	1
CO3	-	-	3	-	-	1
CO4	-	-	3	-	-	1
CO5	-	-	3	-	-	1
23EEACZ3	-	-	3	-	-	1

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%	3	-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	V.S	-	-	100%



つるに に へイ ツノル	CONSTITUTION OF INDIA				
23EEACZ4	(Common to all Branches)				
PREREQUISITE	S CATEGORY	L	Т	Р	C
NIL	AC	2	0	0	0
Course	• To address the importance of constitutional rights and duties				
Objectives	• To familiarize about Indian governance and local administration	n.			
	• To know about the functions of election commission.				
UNIT – I	INDIAN CONSTITUTION		61	Perio	ds
History of Makin	g of the Indian Constitution: History Drafting Committee, (Compo	sition	& Wo	rking	g)
Philosophy of the 1	Indian Constitution: Preamble Salient Features.			Ū	
UNIT – II CONSTITUTIONAL RIGHTS & DUTIES					
against Exploitatio	itutional Rights & Duties: Fundamental Rights, Right to Equality, Rigon, Right to Freedom of Religion, Cultural and Educational Rights, R we Principles of State Policy, Fundamental Duties.	-			-
UNIT – III Organs of Govern	ORGANS OF GOVERNANCE	owers		Perio	
Organs of Govern Executive, Presid	ORGANS OF GOVERNANCE ance: Parliament, Composition, Qualifications and Disqualifications, P ent, Governor, Council of Ministers, Judiciary, Appointment and wers and Functions.		and Fu	inctio	ons
Organs of Govern Executive, Presid Qualifications, Pov	ance: Parliament, Composition, Qualifications and Disqualifications, P ent, Governor, Council of Ministers, Judiciary, Appointment and		and Fu fer of	inctio	ons ges
Organs of Govern Executive, Presid Qualifications, Pov UNIT – IV Local Administration and role of Elector Panchayat. Elector	ance: Parliament, Composition, Qualifications and Disqualifications, P ent, Governor, Council of Ministers, Judiciary, Appointment and wers and Functions.	Trans s: Intro atroduc t level:	and Fu fer of 6 I duction tion, P Organ	Inctic Judg Perio n, Ma RI: Z	ons ges ds yo Zila
Organs of Govern Executive, Presid Qualifications, Pov UNIT – IV Local Administrati and role of Electer Panchayat. Electer	ance: Parliament, Composition, Qualifications and Disqualifications, P ent, Governor, Council of Ministers, Judiciary, Appointment and wers and Functions. <b>LOCAL ADMINISTRATION</b> fon: District's Administration head: Role and Importance, Municipalities ed Representative, CEO of Municipal Corporation. Panchayat raj: In I officials and their roles, CEO Zila Panchayat: Position and role. Block	Trans s: Intro atroduc t level:	and Fu fer of 61 duction tion, P Organ ortance	Inctic Judg Perio n, Ma RI: Z	ons ges ds yo Zila ona
Organs of Govern Executive, Presid Qualifications, Pov UNIT – IV Local Administrat and role of Electe Panchayat. Elected Hierarchy (Differe UNIT – V Election Commiss Election Commiss	ance: Parliament, Composition, Qualifications and Disqualifications, P ent, Governor, Council of Ministers, Judiciary, Appointment and wers and Functions. <b>LOCAL ADMINISTRATION</b> ion: District's Administration head: Role and Importance, Municipalities ed Representative, CEO of Municipal Corporation. Panchayat raj: In l officials and their roles, CEO Zila Panchayat: Position and role. Block ent departments), Village level: Role of Elected and Appointed officials	Trans s: Intro ttroduc a level: s, Impo Comm	and Fu fer of duction tion, P Organ ortance	Perio Judg Perio n, Ma RI: Z izatic of gr Perio	ons ges ds yo Zila ona cass ds
Organs of Govern Executive, Presid Qualifications, Pov UNIT – IV Local Administrat: and role of Electo Panchayat. Elected Hierarchy (Differe UNIT – V Election Commiss	ance: Parliament, Composition, Qualifications and Disqualifications, P ent, Governor, Council of Ministers, Judiciary, Appointment and wers and Functions. <b>LOCAL ADMINISTRATION</b> ion: District's Administration head: Role and Importance, Municipalities ed Representative, CEO of Municipal Corporation. Panchayat raj: In d officials and their roles, CEO Zila Panchayat: Position and role. Block ent departments), Village level: Role of Elected and Appointed officials <b>ELECTION COMMISSION</b> ion: Role and Functioning. Chief Election Commissioner and Election ion: Role and Functioning. Institute and Bodies for the welfare of SC/ST/	Trans s: Intro ttroduce a level: s, Impo Comm (OBC a	and Fu fer of duction tion, P Organ ortance	Perio Judg Perio n, Ma RI: Z izatic of gr Perio	ons ges ds yo Zila ona ass ds

1 "The Constitution of India", 1950 (Bare Act), Government Publication.

2 Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.

3 M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.

4 D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Mapped
CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed	K2
	the conceptualization of social reforms leading to revolution in India.	
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	-	1	1	1	1			
CO2	-	-	1	1	1	2			
CO3	-	-	1	1	2	1			
CO4	-	-	1	1	1	1			
CO5	-	-	1	1	1	1			
23EEACZ4	-	-	1	1	1	1			
1 – Slight, 2 – Mode	rate, 3 – Substa	antial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%	Jes	-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	13-	-	-	100%



23EEACZ	75	PEDAGOGY STUDIES						
25EEACZ	22	(Common to all	Branches)					
PREREQUISIT	ES		CATEGORY	L	Т	Р	C	
NIL			AC	2	0	0	0	
Course Objectives	de • Aj	o understand of various theories of learning, sign of curriculum in engineering studies. oplication of knowledge in modification of curr innovation in teaching methodology.		C	•			
UNIT – I	INTROD	UCTION			61	Perio	ds	
Theories of learn methodology and	ing, Curri Searching.		*		s. Ove	erviev	w o	
UNIT – II	PEDAGO	GICAL PRACTICES			61	Perio	da	
Thematic overvie developing count Methodology for	tries. Curri the in dept	by teachers are being used by teachers a culum, Teacher education. Evidence on the h stage: quality assessment of included studies.			class gical	room prac	is in tice	
Thematic overvie developing count Methodology for UNIT – III How can teacher support effective pedagogical pract	ries. Curri the in dept <b>PEDAGO</b> education pedagogy	culum, Teacher education. Evidence on the	effectiveness of p curriculum and gui of the body of ev	edago dance idence	class gical 61 mate for	room pract Perio rials effec	is in tice ods bes	
Thematic overvie developing count Methodology for UNIT – III How can teacher support effective pedagogical pract strategies.	rries. Curri the in dept <b>PEDAGO</b> education pedagogy ices. Pedag	culum, Teacher education. Evidence on the h stage: quality assessment of included studies. <b>GICAL APPROACHES</b> (curriculum and practicum) and the school c ? Theory of change. Strength and nature of	effectiveness of p curriculum and gui of the body of ev	edago dance idence	class gical 61 mate e for and F	room pract Perio rials effec	ns in tice ods bes ctive gogie	
Thematic overvie developing count Methodology for UNIT – III How can teacher support effective pedagogical pract strategies. UNIT – IV Professional deve	rries. Curri the in dept <b>PEDAGO</b> education pedagogy ices. Pedag <b>PROFESS</b> lopment: a	culum, Teacher education. Evidence on the h stage: quality assessment of included studies. <b>GICAL APPROACHES</b> (curriculum and practicum) and the school c ? Theory of change. Strength and nature of gogic theory and pedagogical approaches. Teach	effectiveness of p curriculum and gui of the body of ev her's attitudes and b up support. Peer su	edago dance idence peliefs pport	class gical 61 mate e for and F 61 , Sup	room pract Perio rials effec Pedag Perio port f	ns in tice ds bes ctive gogie	
Thematic overvie developing count Methodology for UNIT – III How can teacher support effective pedagogical pract strategies. UNIT – IV Professional deve the head teacher class sizes.	rries. Curri the in depti <b>PEDAGO</b> education pedagogy ices. Pedag <b>PROFESS</b> lopment: a and the con	culum, Teacher education. Evidence on the h stage: quality assessment of included studies. GICAL APPROACHES (curriculum and practicum) and the school c ? Theory of change. Strength and nature of gogic theory and pedagogical approaches. Teach SIONAL DEVELOPMENT lignment with classroom practices and follow-	effectiveness of p curriculum and gui of the body of ev her's attitudes and b up support. Peer su	edago dance idence peliefs pport	class gical 61 mate e for and F 61 , Sup	room pract Perio rials effec Pedag Perio port f	as i tice ods bes ctiv gogi fror arg	
Thematic overvie developing count Methodology for UNIT – III How can teacher support effective pedagogical pract strategies. UNIT – IV Professional deve the head teacher class sizes. UNIT – V Research gaps a	rries. Curri the in depti <b>PEDAGO</b> education pedagogy ices. Pedag <b>PROFESS</b> lopment: a and the con <b>CURRIC</b> nd future	culum, Teacher education. Evidence on the h stage: quality assessment of included studies. GICAL APPROACHES (curriculum and practicum) and the school c ? Theory of change. Strength and nature of gogic theory and pedagogical approaches. Teach SIONAL DEVELOPMENT lignment with classroom practices and follow-mmunity. Curriculum and assessment Barriers	effectiveness of p curriculum and gui of the body of ev her's attitudes and b up support. Peer su to learning: limited	edago dance idence peliefs pport l resou	class gical 61 mate for and F 61 , Sup urces	room pract Perio rials effec Pedag Perio port f and 1	ds it dds bes ctiv gogi fror larg	

#### **REFERENCES:**

1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261, 2001.
2	Alexander RJ, Culture and pedagogy: International comparisons in primary education. Oxford and
	Boston: Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and
	reading in Africa: Does teacher preparation count? International Journal Educational Development, 33
	(3): 272–282, 2013.
4	Agrawal M, Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies,
	36 (3): 361-379, 2004

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Explain the concept of curriculum, formal and informal education systems and teacher	K3
	education.	
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical	K3
	approaches	
CO3	Understand the relation between teacher and community, support from various levels of	K3
	teachers to students and limitation in resources and size of the class.	
CO4	Perform research in design a problem in pedagogy and curriculum development.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	1	1	2	1
CO2	-	-	1	1	1	2
CO3	-	-	1	1	2	1
CO4	-	-	1	1	2	1
23EEACZ5		a a	"BL	1	2	1
– Slight, 2 – Moder	ate, 3 – Substar	itial	DATE OF		1 1	

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %			
CAT1	20%	50%	30%		-	-	100%			
CAT2	20%	50%	30%	A	-	-	100%			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%			
ESE	20%	50%	30%	-	-	-	100%			

23EEACZ	6	STRESS MANAGEMENT BY YOGA (Common to all Branches)							
PREREQUISI	ГES			CATEGORY	L	Т	Р	С	
		NIL		AC	2	0	0	0	
Course	•	To create awareness on th	ne benefits of yoga and	meditation.	1	1			
Objectives	•	To understand the signific	cance of Asana and Pra	anayama.					
UNIT – I	PHYS	SICAL STRUCTURE AN	D ITS FUNCTIONS				6 P	eriods	
Yoga - Physical	structu	re, Importance of physical	exercise, Rules and rea	gulation of simplif	ied pl	nysic	al exe	rcises,	
hand exercise,	leg e	kercise, breathing exercise	e, eye exercise, kap	alapathy, mahara	sana,	boc	ły ma	issage,	
acupressure, boo	ly relax	ation.							
UNIT – II YOGA TERMINOLOGIES							6 Periods		
Yamas - Ahimsa	a, satya	astheya, bramhacharya, apa	arigraha						
Niyamas- Sauch	a, santo	osha, tapas, svadhyaya, Ishva	ara pranidhana.						
UNIT – III	ASA	NA					6 P	eriods	
Asana - Rules &	Regula	ations – Types & Benefits							
UNIT – IV	PRA	NAYAMA					6 P	eriods	
Regularization of	of breat	ning techniques and its effect	ets-Types of pranayama	a					
UNIT – V	MIN		Canso procession				6 P	eriods	
Bio magnetism&	k mind	- imprinting & magnifying	– eight essential factor	s of living beings,	Men	tal fr	equen	cy and	
		efits of meditation, such as p							
<b>Contact Period</b>	s:								
Lecture: 30 Per	riods	Tutorial: 0 Periods	Practical: 0 Perio	ds Total: 3	0 Per	iods			
REFERE		: : : V: M		Tesision Dest 12					

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Training-Part-I", Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", Advaita Ashrama (Publication
	Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New Dawn
	Press, New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi, 2007.

	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Practice physical exercises and maintain good health.	K3
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	K3
CO4	Practice breathing techniques in a precise manner.	K3
CO5	Attain emotional stability and higher level of consciousness.	K2

COs/POs	PO1	PO2	PO3	PO4	POS
CO1	-	-	-	-	2
CO2	-	-	-	-	3
CO3	-	-	-	-	2
CO4	-	-	-	-	1
CO5	-	-	-	-	1
23EEACZ6	-	-	-	-	2

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
CAT1	40%	30%	30%	-	-	-	100%
CAT2	30%	40%	30%	-	-	-	100%
Individual Assessment1/ Case study1/ Seminar 1/ Project1	40%	40%	20%		-	-	100%
Individual Assessment2/ Case study2/ Seminar 2 / Project2	30%	30%	40%	-	-	-	100%
ESE	30%	30%	40%	渔	-	-	100%

<b>23EEACZ7</b>		PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS (Common to all Branches)							
PREREQUISITI	ES :	CATEGORY	L	Т	Р	С			
	NIL	AC	2	0	0	0			
Course	• To familiar with Techniques to achieve the hig	shest goal in life.							
Objectives	• To become a person with stable mind, pleasing	g personality and deterr	ninat	ion.					
UNIT – I					6 Pe	riods			
Neetisatakam-Hol Verses- 26,28,6.	istic development of personality-Verses- 19,20,21,22 (v	wisdom)-Verses29,31,3	82 (pi	ride d	& hei	oism)-			
UNIT – II					6 Pe	riods			
Verses- 52,53,59	(dont's)-Verses- 71,73,75,78 (do's) Approach to	day to day work a	nd c	luties	S	hrimad			
BhagwadGeeta - G	Chapter 2-Verses 41, 47,48,								
UNIT – III					6 Pe	riods			
Shrimad Bhagwad	dGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Ver	rses 5,13,17, 23, 35,- C	Chapt	er 18	-Ver	ses 45,			
46, 48.									
UNIT – IV					6 Pe	riods			
	c knowledgeShrimad BhagwadGeeta: -Chapter2-Verse	es 56, 62, 68 -Chapter	12 -V	erses	s 13,	14, 15,			
16,17, 18-Persona	lity of Role model.	6							
UNIT – V	CV CONTESTS OF				6 Pe	riods			
Shrimad Bhagwa	dGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,4	2, Chapter 4-Verses 1	8, 38	,39 <b>-(</b>	Chapt	er18 –			
Verses 37,38,63.									
Contact Periods:									
Lecture: 30 Perio	ods Tutorial: 0 Periods Practical: 0 Periods	Total: 30 Periods							
REFERE	NCES :								

# **REFERENCES**:

1	Swami SwarupanandaAdvaita Ashram "Srimad Bhagavad Gita", AdvaitaAshrama, Kolkata, 2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Satakam" (Niti-sringar-vairagya),
	New Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog "Bhagavad Gita: The Song Of God", USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada "Bhagavad-Gita As It Is", Bhaktivedanta Book Trust
	Publications,2001

COURSE OUTCOMES:		Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Apply the Holistic development in life	K4
CO2	Effective Planning of day to day work and duties	K4
CO3	Identify mankind to peace and prosperity	K4
CO4	Develop versatile personality.	K4
CO5	Awakening wisdom in life	K4

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	-	1	-	-	-			
CO2	-	-	1	-	-	-			
CO3	-	-	1	-	-	-			
CO4	-	-	1	-	-	-			
CO5	-	-	1	-	-	-			
23EEACZ7	-	-	1	-	-	-			
1 - Slight, 2 - N	Aoderate, 3 -	- Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%



**23EEACZ8** 

# SANSKRIT FOR TECHNICAL KNOWLEDGE

(Common to all Branches)

PREREQUIS	SITES:	CATEGORY	L	Т	Р	С
NIL		AC	2	0	0	0
Course	• To get a working knowledge in illustrious Sanskrit,	the scientific langu	uage	in the	e wor	ld.
Objectives	• Learning of Sanskrit to improve brain functioning.	C	C			
	• Enhancing the memory power.					
	• Learning of Sanskrit to develop the logic in mathem	natics, science & ot	ther s	ubjec	cts.	
UNIT – I	BASICS OF SANSKRIT			6	Peric	ods
Alphabets in S	Sanskrit, Past/Present/Future Tense.					
UNIT – II	SENTENCES AND ROOTS			6	Perio	ods
Cimento Conton						
Simple Senten	ces - Order, Introduction of roots					
UNIT – III	SANSKRIT LITERATURE			6	Perio	ods
UNIT – III				6	Perio	ods
UNIT – III	SANSKRIT LITERATURE				Perio Perio	
UNIT – III Technical info UNIT – IV	SANSKRIT LITERATURE ormation about Sanskrit Literature					
UNIT – III Technical info UNIT – IV	SANSKRIT LITERATURE         ormation about Sanskrit Literature         TECHNICAL CONCEPTS -1			6		ods
UNIT – III Technical info UNIT – IV Technical cond UNIT – V	SANSKRIT LITERATURE         ormation about Sanskrit Literature         TECHNICAL CONCEPTS -1         cepts of Engineering-Electrical, Mechanical         TECHNICAL CONCEPTS -2			6	Perio	ods
UNIT – III Technical info UNIT – IV Technical cond UNIT – V	SANSKRIT LITERATURE         ormation about Sanskrit Literature         TECHNICAL CONCEPTS -1         cepts of Engineering-Electrical, Mechanical         TECHNICAL CONCEPTS -2         cepts of Engineering-Architecture, Mathematics			6	Perio	ods

#### **REFERENCES:**

1	Dr. Vishwas,	"Abhyaspustakam",	Samskrita -Bharti	Publication,	New Delhi, 2020.

Prathama Deeksha Vempati Kutumbshastri, "Teach Yourself Sanskrit", Rashtriya Sanskrit Sansthanam, 2 New Delhi, Publication, 2009.

Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi, 2006. 3

	9-10-0-00-0-01-0-01-0	
COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Recognize ancient literature and their basics	K3
CO2	Formulate the sentences with order and understand the roots of Sanskrit	K2
CO3	Acquire familiarity of the major traditions of literatures written in Sanskrit	K3
CO4	Distinguish the Technical concepts of Electrical & Mechanical Engineering	K2
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	-	-	1	2	1		
CO2	-	-	-	1	2	-		
CO3	-	-	-	1	1	1		
CO4	-	-	-	2	1	1		
CO5	-	-	-	1	2	1		
23EEACZ8	-	-	-	1	2	1		
1 - Slight, $2 - $ Moder	ate, 3 – Substa	ntial		· · ·				

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %			
CAT1	20%	50%	30%	-	-	-	100%			
CAT2	20%	50%	30%	-	-	-	100%			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%			
ESE	20%	50%	30%	-	-	-	100%			

