

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

Curriculum For M. E. ENGINEERING DESIGN

2023

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

VISION

To create outstanding Mechanical Engineers with strong domain knowledge and skills capable of working in an Interdisciplinary environment with exemplary ethical values contributing to society through Innovation, Entrepreneurship and Leadership.

MISSION

- To develop in each student, a strong theoretical and practical knowledge, a global outlook for a sustainable future and problem solving skills.
- To make productive members of interdisciplinary teams, capable of adapting to changing environments of Engineering, technology and society.
- To inculcate critical thinking abilities among students to enhance innovative ideas and entrepreneurial skills, leadership qualities.
- To imbibe moral and ethical values along with leadership qualities in students.

PROGRAMME OUTCOMES (POs):

The students of M.E- Engineering Design will be able to

PO1:- Independently conduct investigation and develop methodology to solve practical problems.

PO2:- Prepare, write and present comprehensive technical reports / documents.

PO3:- Demonstrate the degree of mastery and expertise in Engineering Design.

PO4:- Develop the sustainable research attitude through lifelong learning to full fill the Global needs.

PO5:- Acquire the competency for resolving the societal issues in Product design/ Environment/ Recyclable/ Disposal through Inter disciplinary activities.

PROGRAMME EDUCATIONAL OUTCOMES (PEOs):

The students of M.E- Engineering Design will be able to

PEO1:- Develop an aptitude to use engineering principles and concepts to create, test and evaluate designs for local and global needs.

PEO2:- Become effective and excellent need based engineer, participating in efforts to provide solutions to social and technical challenges.

PEO3:- Develop innovative technologies and find solutions to contemporary issues in Engineering Design using basic principles in combination with latest tools and concepts.

PEO4:- Pursue advanced research and development and other innovative efforts in their career.

FIRST SEMESTER

S. Cours	C	e Course Title				m · 1	l	Hours/	Week	
S. No	Code	Course Title	Category CA Marks	End Sem Marks	Total Marks	L	Т	Р	С	
		Т	HEORY CO	DURSES			•			
1.	23EDFCZ1	RESEARCH METHODOLOGY AND IPR	FC	40	60	100	3	0	0	3
2.	23EDFC02	APPLIED MATHEMATICS FOR ENGINEERING DESIGN	FC	40	60	100	3	1	0	4
3.	23EDPC01	APPLIED MECHANICS OF MATERIAL	РС	40	60	100	3	1	0	4
4.	23EDPC02	VIBRATION ANALYSIS AND CONTROL	РС	40	60	100	3	1	0	4
5.	23EDPC03	GEOMETRIC DIMENSIONING AND TOLERANCING	РС	40	60	100	3	0	0	3
6.	23EDPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3
7.	23EDACXX	AUDIT COURSE – I	AC	40	60	100	2*	0	0	0
		PR	ACTICAL (COURSES						
8.	23EDPC04	VIBRATION LAB	РС	60	40	100	0	0	4	2
		TOTAL		340	460	800	20	3	4	23

SECOND SEMESTER

S.	Course	Course Title	Catagomy	СА	End Sem	Total	ł	Hours/	Week	
No	Code	course ritte	Category	Marks	Marks	Marks	L	Т	Р	С
			THEORY CO	URSES						•
1.	23EDPC05	FINITE ELEMENT METHODS IN MECHANICAL DESIGN	РС	40	60	100	3	1	0	4
2	23EDPC06	COMPUTER APPLICATIONS IN DESIGN	РС	40	60	100	3	0	0	3
3.	23EDPC07	TRIBOLOGY IN DESIGN	РС	40	60	100	3	1	0	4
4.	23EDPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3
5.	23EDPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3
6.	23EDACXX	AUDIT COURSE – II	AC	40	60	100	2	0	0	0
		P	RACTICAL C	OURSES						
7.	23EDPC08	SIMULATION LAB	РС	60	40	100	0	0	4	2
8.	8. 23EDEE01 MINI PROJECT EEC				60	100	0	0	4	2
	TOTAL				460	800	17	2	8	21

THIRD SEMESTER

S.	Course	Course Title	Category	CA Marks	End Sem	Total		Hou	rs/W	eek
No	Code	course ritie	Category	CA Mai KS	Marks	Marks	L	Т	Р	C
THE	ORY COURS	SES								
1	23EDPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3
2	23EDOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3
PRA	RACTICAL COURSES									
3	23EDEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	-	100	-	-	*	2
4	23EDEE03	PROJECT PHASE I	EEC	100	100	200	0	0	12	6
	TOTAL			280	220	500	6	0	12	14

* - FOUR WEEKS OF INTERNSHIP / INDUSTRIAL TRAINING

FOURTH SEMESTER

S. Cours	Course	Course Title	Category	CA Marks	End Sem	Total		Hou	ırs/Week	
No	Code		caregory		Marks	Marks	L	Т	Р	C
PRA	CTICAL CO	DURSES								
1	23EDEE04	PROJECT PHASE II	EEC	200	200	400	0	0	24	12
		TOTAL		200	200	400	0	0	24	12

Note:* No Credit Courses

TOTAL CREDITS : 70

	LIST OF PROFESSIONAL ELECTIVES										
S.	Course	Course Title	Category	СА	End Sem	Total	L	Т	Р	С	
No	Code			Marks	Marks	Marks			_	_	
			FESSIONAL F	LECTIVET			1				
1.	23EDPE01	SUSTAINABILITY	PE	40	60	100	3	0	0	3	
2.	23EDPE02	COMPOSITE MATERIALS AND MECHANICS	PE	40	60	100	3	0	0	3	
3.	23EDPE03	DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS	PE	40	60	100	3	0	0	3	
4.	23EDPE04	QUALITY CONCEPTS IN DESIGN	PE	40	60	100	3	0	0	3	
5.	23EDPE05	SURFACE ENGINEERING	PE	40	60	100	3	0	0	3	
		PRO	FESSIONAL E	LECTIVE II			1	n			
6.	23EDPE06	DESIGN FOR X	PE	40	60	100	3	0	0	3	
7.	23EDPE07	DESIGN OF MACHINE TOOL	PE	40	60	100	3	0	0	3	
8.	23EDPE08	PRODUCT LIFE CYCLE MANAGEMENT	PE	40	60	100	3	0	0	3	
9	23EDPE09	OPTIMIZATION TECHNIQUES IN DESIGN	PE	40	60	100	3	0	0	3	
10	23EDPE10	BIO MATERIALS	PE	40	60	100	3	0	0	3	
		PRO	FESSIONAL E	LECTIVE II	I						
11	23EDPE11	MECHANICAL MEASUREMENTS AND ANALYSIS	PE	40	60	100	3	0	0	3	
12	23EDPE12	VIBRATION CONDITION MONITORING AND CONTROL	PE	40	60	100	3	0	0	3	
13	23EDPE13	VEHICLE DYNAMICS	PE	40	60	100	3	0	0	3	
14	23EDPE14	ENGINEERING FRACTURE MECHANICS FOR DESIGN	PE	40	60	100	3	0	0	3	
15	23EDPE15	WEARABLE DEVICES AND TECHNOLOGIES	PE	40	60	100	3	0	0	3	
		PRO	FESSIONAL E	LECTIVE IV	7		•			•	
16	23EDPE16	MATERIAL HANDLING SYSTEMS AND DESIGN	PE	40	60	100	3	0	0	3	
17	23EDPE17	BEARING DESIGN AND ROTOR DYNAMICS	PE	40	60	100	3	0	0	3	
18	23EDPE18	DESIGN OF HYBRID AND ELECTRIC VEHICLES	PE	40	60	100	3	0	0	3	
19	23EDPE19	CREATIVITY AND INNOVATION	PE	40	60	100	3	0	0	3	
20	23EDPE20	DESIGN OF PRESSURE VESSELS AND PIPING	PE	40	60	100	3	0	0	3	

LIST OF OPEN ELECTIVE COURSES

SI				CA	End	Total	Н	ours/	'Weel	K
No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
1	23SEOE01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3
2	23SEOE02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3
3	23SEOE03	GREEN BUILDING	OE	40	60	100	3	0	0	3
4	23EEOE04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3
5	23EEOE05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3
6	23EEOE06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3
7	23GEOE07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3
8	23GEOE08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3
9	23GEOE09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3
10	23EDOE10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3
11	23EDOE11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3
12	23ED0E12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3
13	23MFOE13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3
14	23MFOE14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3
15	23MFOE15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3
16	23TEOE16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3
17	23TEOE17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3
18	23TEOE18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3
19	23PSOE19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3
20	23PSOE20	ELECTRICITY TRADING AND ELECTRICITY ACTS	OE	40	60	100	3	0	0	3
21	23PSOE21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3
22	23PEOE22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PEOE23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PEOE24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AE0E25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AE0E26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3

SI.	Course Code	Code Course Title (Catagomy	CA	End	Total	Hours/Week				
No	course coue	course mue	Category	Marks	Marks	Marks	L	Т	Р	С	
27	23AEOE27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3	
28	23VLOE28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3	
29	23VL0E29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3	
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3	
31	23CSOE31	ARTIFICIAL INTELLIGENCE	OE	40	60	100	3	0	0	3	
32	23CSOE32	COMPUTER NETWORK MANAGEMENT	OE	40	60	100	3	0	0	3	
33	23CSOE33	BLOCKCHAIN TECHNOLOGIES	OE	40	60	100	3	0	0	3	

LIST OF AUDIT COURSES

	Course				End			HOU	RS	
S. No	Course Code	Course Title	Category	CA Marks	Sem Marks	l otal Marks	L	Т	Р	C
1	23EDACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0
2	23EDACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0
3	23EDACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0
4	23EDACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0
5	23EDACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0
6	23EDACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0
7	23EDACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	AC	40	60	100	2	0	0	0
8	23EDACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0

(Common to all branches)

SUMMARY OF CREDIT DISTRIBUTION

S No	Course /			Credits			Dorcontago
3.INU	Subject Area	I SEM	II SEM	III SEM	IV SEM	Total	rencentage
1.	FC	7	-	-	-	07	10 %
2.	РС	13	13	-	-	26	37.14%
3.	PE	3	6	3	-	12	17.14 %
4.	OE	-	-	3	-	03	4.29 %
5.	AC	0	0	-	-	(Non Credit)	0%
6.	EEC	-	2	8	12	22	31.43 %
	Total Credits	23	21	14	12	70	100.00%

CATEGORY-WISE CREDIT DISTRIBUTION

FUNDAMENTAL COURSE (FC)

S. No	Course	Course Title	Category	CA Marks	End Sem Marks	Total]	Hours/	Week	
NU	Coue			Marks	Marks	Marks	L	Т	Р	C
1.	23EDFCZ1	RESEARCH METHODOLOGY AND IPR	FC	40	60	100	3	0	0	3
2.	23EDFC02	APPLIED MATHEMATICS FOR ENGINEERING DESIGN	FC	40	60	100	3	1	0	4
	Total			80	120	200	6	1	0	7

PROFESSIONAL CORE (PC)

S.	Course	Course Title	Category	CA Marks	End Sem	Total	ł	lours/	Week	
NU	Code			Marks	Marks	Marks	L	Т	Р	C
1.	23EDPC01	APPLIED MECHANICS OF MATERIAL	РС	40	60	100	3	1	0	4
2.	23EDPC02	VIBRATION ANALYSIS AND CONTROL	РС	40	60	100	3	1	0	4
3.	23EDPC03	GEOMETRIC DIMENSIONING AND TOLERANCING	РС	40	60	100	3	0	0	3
4.	23EDPC04	VIBRATION LAB	РС	60	40	100	0	0	4	2
5.	23EDPC05	FINITE ELEMENT METHODS IN MECHANICAL DESIGN	РС	40	60	100	3	1	0	4
6.	23EDPC06	COMPUTER APPLICATIONS IN DESIGN	РС	40	60	100	3	0	0	3
7.	23EDPC07	TRIBOLOGY IN DESIGN	РС	40	60	100	3	1	0	4
8.	23EDPC08	SIMULATION LAB	РС	60	40	100	0	0	4	2
	Total				440	800	18	4	8	26

PROFESSIONAL ELECTIVE (PE)

S.	Course	Course Title	Category	CA	End Sem	Total	ł	lours/	Week	
NO	Code			Marks	Marks	Marks	L	Т	Р	C
1.	23EDPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3
2.	23EDPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3
3.	23EDPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3
4.	23EDPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3
		Total		160	240	400	12	0	0	12

OPEN ELECTIVE (OE)

S.	Course	urse Course Title Category CA End Sem		Total	ł	lours/	Week			
NU	Coue			Marks	Marks	Marks	L	Т	Р	С
1.	23EDOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3
		Total		40	60	100	3	0	0	3

AUDIT COURSE (AC)

S.	Course	Course Title	Catagory	CA	End Sem	Total	ŀ	lours/	Week	
No	Code	course mile	Category	Marks	Marks	Marks	L	Т	Р	С
1.	23EDACXX	AUDIT COURSE - I	AC	40	60	100	2	0	0	0
2.	23EDACXX	AUDIT COURSE - II	AC	40	60	100	2	0	0	0
		Total		80	120	200	4	0	0	0

EMPLOYABILITY ENHANCEMENT COURSE (EEC)

S.	Subject	Course Title	Category	CA	End Sem	Total		Hour	s/We	ek
No	Code		category	Marks	Marks	Marks	L	Т	Р	C
1	23EDEE01	MINI PROJECT	EEC	40	60	100	0	0	4	2
2	23EDEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	0	100	0	0	**	2
3	23EDEE03	PROJECT PHASE - I	EEC	100	100	200	0	0	12	6
4	23EDEE04	PROJECT PHASE - II	EEC	200	200	400	0	0	24	12
				440	360	800	0	0	40	22

**4 WEEKS OF INTERNSHIP / INDUSTRIAL TRAINING

23	ED	FCZ	7.1

RESEARCH METHODOLOGY AND IPR (Common to all branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	FC	3	0	0	3

C	1 The investment of the delivery of the delive			
Course	1.10 impart knowledge on research methodology ,Quantitative meth	loas for		
Objectives	problem solving, data interpretation and report writing			
	2. To know the importance of IPR and patent rights.			
UNIT – I	INTRODUCTION	9 Periods		
Definition and	objectives of Research - Types of research, Various Steps in	Research process,		
Mathematical t	ools for analysis, Developing a research question-Choice of a problem	n Literature review,		
Surveying, syn	thesizing, critical analysis, reading materials, reviewing, rethinking,	critical evaluation,		
interpretation,	Research Purposes, Ethics in research – APA Ethics code.			
UNIT – II	QUANTITATIVE METHODS FOR PROBLEM SOLVING	9 Periods		
Statistical Mod	lelling and Analysis, Time Series Analysis Probability Distribution	s, Fundamentals of		
Statistical Ana	lysis and Inference, Multivariate methods, Concepts of Correlation	on and Regression,		
Fundamentals	of Time Series Analysis and Spectral Analysis, Error Analysis, Appl	ications of Spectral		
Analysis.				
UNIT – III	DATA DESCRIPTION AND REPORT WRITING	9 Periods		
Tabular and gr	aphical description of data: Tables and graphs of frequency data of o	one variable, Tables		
and graphs tha	t show the relationship between two variables , Relation between free	quency distributions		
and other grap	hs, preparing data for analysis. Structure and Components of Resear	ch Report, Types of		
Report, Layout	t of Research Report, Mechanism of writing a research report, refer	encing in academic		
writing.				
UNIT – IV	INTELLECTUAL PROPERTY	9 Periods		
Nature of Inte	ellectual Property: Patents, Designs, Trade and Copyright. Process	s of Patenting and		
Development: t	echnological research, innovation, patenting, development.			
International S	Scenario: International cooperation on Intellectual Property. Proce	edure for grants of		
patents, Patent	ing under PCT.			
UNIT – V	PATENT RIGHTS	9 Periods		
Patent Rights:	Scope of Patent Rights. Licensing and transfer of technology. Pate	ent information and		
databases. Geo	graphical Indications.			
Contact Perio	ds:			
Lecture: 45 Periods Tutorial:0 Periods Practical: 0 Periods Total:45 Periods				

REFERENCES

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science &
	engineering students", Juta Academic, 1996.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, engageLearning, 2013.
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2014.
4	Dr. C. R. Kotharia and GauravGarg, "Research Methodology: Methods and Trends", New age
	international publishers, Fourth Edition, 2018.

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon	completion of the course, the students will be able to:	Mapped		
C01	Formulate research question for conducting research.	K4		
CO2	Analyze qualitative and quantitative data.	K4		
CO3	Interpret research findings and give appropriate conclusions.	K4		
C04	Develop a structured content to write technical report.	K4		
C05	Summarize the importance of IPR and protect their research work through	K4		
	intellectual property.			

COURSE ARTICU	COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	PO4	P05		
C01	1	2	1	1	2		
CO2	2	-	-	-	-		
CO3	3	3	3	2	2		
CO4	2	2	2	2	2		
C05	1	1	1	1	1		
23EDFCZ1	2	2	1	2	2		
1 – Slight, 2 – Moo	derate, 3 – Substa	intial					

ASSESSMENT PA	ATTERN – THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100
ESE	30	30	20	20	-	-	100

23EDFC02

APPLIED MATHEMATICS FOR ENGINEERING DESIGN

PR	EREQUISITES	6	CATEGORY	L	Т	Р	С
		NIL	FC	3	1	0	4
		1. To gain the concepts of Correlation and Regression	on.				
		2. To gain the knowledge of test of hypothesis applied	cable to small and l	arge	9		
		samples.					
	Course	3. To be familiar with numerical solutions of algebra	aic, transcendental	equ	atio	n	
0	bjectives	and system of linear equations.					
		4. To acquire knowledge of numerical solution to fir	st order ordinary o	liffe	rent	ial	
		equations using single and multi-step techniques					
		5. To gain the knowledge of numerical solution to se	cond order partial				
		differential equations using explicit and implicit n	nethods.				
UN	IT – I	CORRELATION AND REGRESSION			9+3	Per	iods
Cor	relation coeff	ficients- Equation of the lines of regression, Regress	sion coefficients, R	legr	essic	on ci	rves-
Mu	tiple and Par	tial correlation, Partial regression.					
UN	IT – II	TESTING OF HYPOTHESIS			9+3	Per	iods
Larg	ge samples: Tes	sts for Mean and proportions, Small samples: Test	s for Mean, Varian	ce a	and .	Attri	butes
usii	ng t, F, Chi–Sq	uare distribution.		_			
UN	IT – III	NUMERICAL SOLUTION OF EQUATIONS, LINEAR	SYSTEM AND		9+3	Per	iods
Nev	vton-Raphsor	n method for single variable and simultaneous equa	tions with two var	iabl	es- S	olut	ion of
line	ar system by	Gauss elimination, Gauss-Jordan, Crout's and Gauss	s Seidal Methods –	Ма	trix	inve	rsion:
Gau	iss eliminatio	n and Gauss-Jordan methods.					
UN	IT – IV	NUMERICAL SOLUTION OF ORDINARY DIFFEREN	TIAL EQUATIONS	5	9+3	Per	iods
Sing	gle step meth	ods: Taylor's series method – Euler's method – Mod	ified Euler's metho	od –	Run	ge -	Kutta
me	thod of fourth	order - Multi step methods: Miline's Predictor and	Corrector methods	s: Ao	lam	Basł	nforth
pre	dictor and co	rrector method. Numerical solution of ordinary diffe	erential equation b	y fi	nite	diffe	rence
met	thod.						
UN	IT – V	NUMERICAL SOLUTION OF PARTIAL DIFFERENT	IAL EQUATIONS		9+3	Per	iods
Fin	ite difference	solution for two-dimensional Laplace equation: Gau	ss Jacobi and Gauss	s Sei	idal 1	meth	ods –
Poi	sson equation	n. Finite difference method for one dimensional h	eat equation: Par	abo	lic e	quat	ion –
Hyp	perbolic Equa	tion.				•	
Cor	ntact Periods	:					
Lec	ture: 45 Peri	iods Tutorial: 15 Periods Practical: 0 Period	s Total: 60 Perio	ds			
R	EFERENCES						
1	VeeraraianT	Probability and Statistics. Random Processes and	d Oueuina Theory	(Fir	st er	litio	n).
-	Graw Hill Ed	ucation(India) Pvt Ltd., New Delhi. Fourth Edition.201	8.				-,,
2	P. Kandasamy, K. Thilaaquathy, K. Gunayathi, Numerical Methods, S. Chand & Company, 3nd Edition						

- iagavatny, K. Gunavathi, **Numerical Methods**, S. Chand & Coi id Edition, Reprint 2013.
- Trivedi K.S, Probability and Statistics with Reliability, Queuing and Computer Science Applications, 3 Prentice Hall of India, New Delhi.

4.	P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand & Company, 3nd Edition,
	Reprint 2013.
5.	S.S. Sastry, Introductory methods of numerical analysis, PHI, New Delhi, 5th Edition, 2015.
	Ward Cheney.
6.	S. Larsson, V. Thomee, Partial Differential Equations with Numerical Methods, Springer, 2003.
7.	B.S.Grewal, Higher Engineering Mathematics, Khanna Publishers, New Delhi, 44thEdition, 2018.
8.	Gupta S.C and Kapoor V.K., Fundamentals of Mathematical Statistics, Sultan Chand & Sons, New Delhi,
	2015.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
C01	Describe how correlation is used to identify relationships between variables and	ĸc
COI	how regression analysis is used to predict outcomes.	KJ
CO2	Test for significance of hypothesis connected to small and large samples using	ĸs
02	different parameters.	KJ
	Demonstrate understanding of common numerical methods and how they are	
CO3	used to obtain approximate solutions to polynomial and transcendental	K5
	equations, the solution of system linear equations.	
	Construct one-step and multistep methods for the numerical solution of initial-	
C04	value problems for ordinary differential equations and systems of such equations.	K5
	To accurate here whether of an include for designing a superior lash an experied	
	To acquire the knowledge of principles for designing numerical schemes for PDEs	
C05	in particular finite difference schemes, interpret solutions in a physical context of	K5
	wave and heat equation in specified techniques.	

COURSE ARTICULATION MAT	RIX				
COs/POs	P01	PO2	P03	P04	P05
CO1	3	2	1		
CO2	3	2	1		
CO3	3	2	1		
CO4	3	2	1		
CO5	3	2	1		
23EDFC02	3	2	1		
1 – Slight, 2 – Moderate, 3 – Sul	ostantial				

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20	30	20	15	15		100
CAT2	20	30	15	15	20		100
Assignment 1		30	25	20	25		100
Assignment 2		30	20	30	20		100
ESE	10	30	20	10	30		100

23EDPC01	APPLIED MECHANICS OF MATERIALS	I

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	3	1	0	4

Course	1. To learn the concepts of theory of elasticity in three-dimensional stress	system.					
Objectives	2. To study the shear center of various cross-sections and deflections in beams subjected						
	to unsymmetrical bending.						
	3. To learn the stresses in flat plates and curved members.						
	4. To study torsional stress of non-circular sections.						
	5. To learn the stresses in rotating members, contact stresses in point	and line contact					
	applications.						
UNIT – I	ELASTICITY	9+3 Periods					
Stress-Strain re	elations and general equations of elasticity in Cartesian, Polar and curvilir	near coordinates,					
differential ec	quations of equilibrium-compatibility-boundary conditions-representa	ation of three-					
dimensional st	ress of a tension generalized hook's law - St. Venant's principle - plane stre	ess - Airy's stress					
function. Energ	y methods.						
UNIT – II	SHEAR CENTER AND UNSYMMETRICAL BENDING	9+3 Periods					
Location of she	ar center for various sections - shear flows. Stresses and deflections in bea	ms subjected to					
unsymmetrical	loading-kern of a section						
UNIT – III	CURVED FLEXIBLE MEMBERS AND STRESSES IN FLAT PLATES	9+3 Periods					
Circumference	and radial stresses - deflections-curved beam with restrained ends-closed	ring subjected					
to concentrated	l load and uniform load-chain links and crane hooks. Stresses in circular ar	nd rectangular					
plates due to va	arious types of loading and end conditions, buckling of plates.						
UNIT – IV	TORSION OF NON-CIRCULAR SECTIONS	9+3 Periods					
Torsion of recta	angular cross section - St.Venants theory - elastic membrane analogy Pran	ltl's stress					
function.							
UNIT – V	STRESSES DUE TO ROTARY SECTIONS AND CONTACT STRESSES	9+3 Periods					
Radial and tand	pential stresses in solid disc and ring of uniform thickness and varying thic	mess Methods					
of computing contact stross-deflection of bodies in point and line contact applications							
or computing to	since succes denection of bounds in point and fine contact applications.						
Contact Periods:							
Lecture: 45 Pe	riods Tutorial: 15 Periods Practical: 0 Periods Total:60 Per	iods					

REFERENCES

1	Seely and Smith, "Advanced Mechanics of Materials", John Wiley International Edn.
2	Sadhusingh, "Theory of Elasticity", Khanna Publishers, 2003.
3	Timoshenko and Goodier, "Theory of Elasticity", McGraw Hill, 2010
4	Wang, "Applied Elasticity", McGraw Hill, 2007
5	J.Case,L.Chilver and Carl T.F "Strength of Materials and structures", Arnold publisher 1999.
6	Robert D. Cook, Warren C. Young, "Advanced Mechanics of Materials", Mc-millan pub. Co., 1985.

COUR	Bloom's			
Upon	Upon completion of the course, the students will be able to:			
		Mapped		
C01	Apply the concepts of theory of elasticity in three-dimensional stress system.	K4		
CO2	Determine the shear centre of various cross-sections and deflections in beams	K4		
	subjected to unsymmetrical bending.			
CO3	Evaluate the stresses in flat plates and curved members.	K4		
CO4	Calculate torsional stress of non-circular sections.	K4		
CO5	Determine the stresses in rotating members, contact stresses in point and line	K4		
	contact applications.			

COURSE ARTICULATION MAT	RIX				
COs/POs	P01	P02	P03	P04	P05
C01	1	2	2	-	-
CO2	-	2	2	-	-
CO3	1	2	2	1	1
CO4	1	2	2	-	-
C05	-	2	2	1	1
23EDPC01	1	2	2	1	1
1 – Slight, 2 – Moderate, 3 – Sub	ostantial				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPC02

PREREQUISITES CATEGORY L T P						
NIL PC 3 1 0						
Course	1. To appreciate the basic concepts of vibration in dat	nped and undampe	ed sy	sten	ns.	
Objectives	2. To calculate the natural frequencies and mode shap	oes of the two-degr	ee fr	eedo	om	
	systems.					
	3. To determine the natural frequencies and mode sh	apes of the multi de	egree	e fre	edon	n
	and continuous systems.					
	4. To learn the fundamentals of control techniques of	vibration and noise	e lev	els.		
5. To use the instruments for the measuring and analyzing the vibration levels in a body.						
UNIT – I	FUNDAMENTALS OF VIBRATION		9	+3 I	Perio	ods
Introduction -	Sources of Vibration-Mathematical Models- Displac	ement, velocity a	nd	Acce	elera	tion-
Review of Sin	gle Degree Freedom Systems -Vibration isolation	Vibrometers and	acce	lero	mete	ers -
Response to A	rbitrary and non- harmonic Excitations – Transient	Vibration –Impul	se lo	bads	-Cri	itical
Speed of Shaft-	Rotor systems.					
UNIT – II	TWO DEGREE OF FREEDOM SYSTEM		9	+3 I	Perio	ods
Simple harmon	nic motion, definition of terminologies, Newton's La	ws, D'Alembert's	prin	ciple	e, En	ergy
methods. Free	vibrations, free damped vibrations, and forced vibration	ons with and witho	out d	amp	ing,	base
excitation.						
UNIT – III	MULTI-DEGREES OF FREEDOM SYSTEMS			9 Pe	erioc	ls
Two degrees	of freedom systems, Static and dynamic couplings	s, eigen values, ei	gen	vec	tors	and
orthogonality of	conditions of eigen vectors, Vibration absorber, Prin	cipal coordinates,	Prir	icipa	ıl mo	odes.
Hamilton's Principle, Lagrangian equation and their applications.						
UNIT – IV	VIBRATION CONTROL		9	+3 I	Perio	ods
Specification of	f Vibration Limits –Vibration severity standards- Vibr	ation as condition	Mor	itor	ing t	ool -
Vibration Isola	tion methods - Dynamic Vibration Absorber, Torsic	nal and Pendulum	ı Ty	pe A	Abso	rber,
Damped Vibra	tion absorbers - Static and Dynamic Balancing-Bala	ncing machines - l	Field	l bal	anci	ng –
Vibration Cont	Vibration Control by Design Modification Active Vibration Control					
UNIT – V	EXPERIMENTAL METHODS IN VIBRATION ANALYS	SIS	9	+3 I	Perio	ods
Vibration Anal	ysis Overview - Experimental Methods in Vibratio	on Analysis - Vibr	ratio	n M	leasu	iring
Instruments - S	Selection of Sensors - Accelerometer Mountings. Vibrat	ion Exciters - Mech	anic	al, H	lydra	aulic,
Electromagnet	ic and Electrodynamics – Frequency Measuring Instru	uments - System Id	lenti	ficat	ion i	from
Frequency Res	ponse - Testing for resonance and mode shapes.					
Contact Period	ts:					
Lecture: 45 Pe	riods Tutorial: 15 Periods Practical: 0 Perio	ds Total:60 Pe	riod	ls		

REFERENCES:

1	Timoshenko, S. "Vibration Problems in Engineering", John Wiley & Sons, Inc., 1987.
2	Meirovitch, L. "Elements of Vibration Analysis", McGraw-Hill Inc., 1986.
3	Thomson W.T, Marie Dillon Dahleh, "Theory of Vibrations with Applications", Prentice Hall, 1997.
4	F.S. Tse., I.F. Morse and R.T. Hinkle, "Mechanical Vibrations", Prentice-Hall of India, 1985.
5	Rao.J.S. and Gupta.K. "Theory and Practice of Mechanical Vibrations", Wiley Eastern Ltd., New Delhi, 1999.

COUR	SE OUTCOMES:	Bloom's			
		Taxonomy			
Upon o	Mapped				
C01	CO1 Understand the basics of vibration and its importance in engineering field.				
CO2	Apply the basic concepts of vibration in damped and undamped systems.	K4			
CO3	O3 Identify the reasons for vibrations in engineering systems.				
C04	Design and analyze two and multi-degree vibratory systems.	K4			
C05	Apply vibration measuring instruments, vibration control and analysis	K4			
	techniques in the engineering field.				

COURSE ARTICULATION MATRIX

COs/POs	P01	PO2	PO3	PO4	PO5
C01	1	2	2	-	-
C02	1	2	2	-	-
C03	2	2	-	-	-
C04	1	2	2	2	-
C05	1	2	2	1	-
23EDPC02	1	2	2	2	-
1 – Slight, 2 – Moderate, 3 – Subs	stantial			·	

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
Category*							
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

GEOMETRIC DIMENSIONING AND TOLERANCING

PREREQUISIT	PREREQUISITES			Т	Р	С			
	Machine Drawing	PC	3	0	0	3			
Course	urse 1. GD&T, as well as selecting the appropriate symbols and applying general design								
Objectives	principles for manufacturability.								
	2. Datum concept in the field of GD&T.								
	3.Determining the material conditions and material boundary.								
	4.Knowledge of the various tolerance types.								
	5.Knowledge of profile and run out tolerances.								
UNIT – I	DIMENSIONING, TOLERANCING AND INTRODUCT	ION TO SYMBOLS,	,	0.1	Domi	ada			
	TERMS 9 Periods								
Dimensioning	Units, Fundamental Dimensioning Rules, Definitions R	elated to Toleranc	ing,	Sing	e Liı	nits,			
Maximum Mat	erial Condition (MMC), Least Material Condition (LM	AC), Extreme Form	n Va	riati	on, E	Basic			
Fits of Mating	Parts, Clearance Fit, Allowance, Clearance, Force	Fit, Chain Dimen	sion	ing,	Base	eline			

Dimensioning, Direct Dimensioning, Alternate Dimensioning Practices. Geometric Dimensioning and Tolerancing for CADD/CAM. Dimensioning Symbols-Dimensioning and Tolerancing Templates. Datum Feature Symbols, Datum Target Symbols, Geometric Characteristic Symbols, Material Boundary Symbols. Feature Control Frame Basic Dimensions Additional Symbols. IINIT – II DATUMS Q Poriode

UNIT - II DATOMS	9 Ferious
Datum Feature Symbol, Reference Frame Concept, Datum Target Symbols, Pa	artial Datum Surface,
Coplanar Surface Datums, Datum Axis, Movable Datum Target Symbols and D	Datum Target Points,
Movable Datum Target Symbols and Datum Target Spheres, Datum Center Plane, T	'he Center of a Pattern
of Features as the Datum Axis, applying a Translation Modifier to a Datum Referen	nce Using a Contoured
Surface as a Datum Feature.	

UNIT – III MATERIAL CONDITION AND MATERIAL BOUNDARY	9 Periods
Features of Size, Conventional Tolerance. Limits of Size, Perfect Form Boundary. Regard	less of Feature
Size (RFS) and Regardless of Material Boundary (RMB). Maximum Material Condition	(MMC). Least
Material Condition (IMC) Drimony Datum Feature Cocondamy and Tertiamy Datum E	acture Deture

Material Colla	tion (LMC). Primary Datum Feature, Secondary and Tertiary Datum	Feature. Datum					
Precedence an	d Material Condition. Placing the MMB value in the Feature Control	Frame Material					
Condition Analysis and Applications Material Boundary Calculation Examples.							
	FORM ODIENTATION AND LOCATION TO FRANCES	40 0 1					
UNIT – IV	FORM, ORIENTATION AND LOCATION TOLERANCES	10 Periods					
UNIT – IV Straightness, F	Iatness, Circularity. Free State Variation. Cylindricity, Applying Form Con	itrol to a Datum					
Straightness, F Feature. Orien	latness, Circularity. Free State Variation. Cylindricity, Applying Form Con tation Tolerances -Parallelism, Perpendicularity Tolerance. Combination	trol to a Datum of Parallelism					

and Perpendicularity Tolerances. Angularity Tolerance. Application of Orientation Tolerances at RFS, MMC, and Zero Tolerance at MMC. Location Tolerances-Positional Tolerance. Locating Multiple Features, Positional Tolerancing of Coaxial Features, Positional Tolerancing of Nonparallel Holes. Locating Slotted Features, Positional Tolerancing of Spherical Features. Location Tolerances and Virtual Condition. Fasteners, Projected Tolerance Zone, Virtual Condition, Concentricity Tolerance, Positional Tolerancing for Coaxially.

-		
UNIT – V	PROFILE TOLERANCES AND RUNOUT TOLERANCES	8 Periods
Profile Tolera	nces -Non-Uniform Profile Tolerance Zone, Specifying Basic Dimensions	s in a Note,
Combination	of Geometric Tolerances. Runout Tolerances-Combination of Geometric	Tolerances,
Specifying Inde	ependency.	
Contact Perio	ds:	

Tutorial: 0 Periods Practical: 0Periods **Total: 45 Periods** Lecture:45 Periods

REFERENCES:

1	Alex Krulikowski, "Fundamentals of Geometric Dimensioning and Tolerancing", Delmar Cengage
	Learning, 2012.
2	P.S.Gill, "Geometric Dimensioning and Tolerancing", S.K.Kataria& sons, 2013
3	Bruce A.Wilson, "GD&T- Application and Interpretation", Goodeheart-Willcox, 2019
4	James D Meadows, "Geometric Dimensioning and Tolerancing Handbook", JamesD. Meadows &
	Associates, 2009.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Select relevant process; apply the general design principles for	K4
	manufacturability; GD&T	
CO2	Applying the concept of datums in GD&T	K4
CO3	Understanding about the material condition and material boundary	K4
CO4	Know the various types of tolerances	K4
CO5	Know about the profile and runout tolerances	K4

COURSE ARTICULATION MATRIX							
COs/POs	P01	PO2	P03	P04	PO5		
C01	2	-	-	2	-		
C02	2	-	2	-	-		
C03	2	2	2	1	2		
C04	-	2	-	2	2		
C05	2	2	-	-	2		
23EDPC03	2	2	2	2	2		
1 – Slight, 2 – Moderate, 3 – Sub	stantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPC04

I

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	0	0	4	2

Cou	rse To supplement the principles learnt in vibration and dynamics of machine	ery and expose to		
Objec	tives various measuring devices for vibration analysis.			
1	Modal analysis of Simply Supported beam			
2	Modal analysis of Cantilever beam			
3	Natural frequency and modal analysis of Disc.			
4	Amplitude and frequency of simple harmonic motion.			
5	Verify the laws of gyroscopic and determination of gyroscopic couple.			
6	Find the Whirling speed of given shaft.			
7	Governors – determination of sensitivity, effort for Watt, Porter, Proell, go	vernors		
8	Determination of Cam jump and generation of Cam profile.			
9	Vibrating system – spring mass system analysis.			
10	Determination of damping co-efficient of rotary system.			
Conta	ct Periods:			
Lectur	re: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total:60 Per	riods		
COURS	SE OUTCOMES:	Bloom's		
		Taxonomy		
Upon c	completion of the course, the students will be able to:	Mapped		
C01	Use signal analyzers for vibrating systems.	К6		
CO2	Demonstrate the use of gyroscope and governors.	К6		
CO3	Use the knowledge for balancing of machine components. K6			
CO4	Depict the results of experiments in written and graphical format.	К6		
C05	Respond as instructed while working in groups.	K6		

COURSE ARTICULATION MATRIX

COs/POs	P01	PO2	PO3	P04	P05	
,						
C01	1	2	2	-	1	
CO2	1	2	2	1	-	
CO3	1	2	2	-	1	
CO4	1	2	2	1	-	
CO5	1	2	2	-	1	
23EDPC04	1	2	2	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

23EDPC05

PREREQUISITES		CATEGORY	L	Т	Р	С
Solid M	echanics/Numerical methods in Engineering	РС	3	1	0	4
Course 1.To develop a thorough understanding of the basic principles of finite element analysis						
Objectives	Objectives 2.To develop techniques for solving practical design problems in engineering					
	3.To understand the basic concepts of application to He	at conduction and t	orsi	on pr	oble	ems
	4. To study the Implementation issues, locking, reduced	integration, B-Bar	meth	10d		
	5.To acquire knowledge in application of FEA in structu	ral analysis.				
		-				
UNIT – I	INTRODUCTION		6-	⊦3 Pe	erio	ds
Introduction, Bou	ndary value problems and solution methods, Direct a	pproach – example	e, ad	vanta	age a	and
limitations.						
UNIT – II	RELEVANCE OF FINITE ELEMENT ANALYSIS IN DESI	GN	9-	⊦3 Pe	erio	ds
Elements of calcu	lus of variation, Strong form and weak form, equivalend	e between strong	and	weak	c for	ms,
Rayleigh-Ritz met	hod. Method of weighted residuals – Galerkin and Petrov	/ -Galerkin approac	h; Az	kially	load	ded
bar, governing eq	uations, discretization, derivation of element equation,	assembly, imposit	ion	of bo	ound	ary
condition and solu	tions.					
UNIT – III	FINITE ELEMENT FORMULATION FOR ONE-DIMENS	SIONAL	10-	⊦3 Pe	erio	ds
	PROBLEMS					
Finite element for	mulation for Euler-Bernoulli beams, Timoshenko beams,	plane trusses and f	rame	s		
UNIT – IV	FINITE ELEMENT FORMULATION FOR TWO-DIMENS	SIONAL	10	+3 P	erio	ds
	PROBLEMS					
Finite element for	mulation for two-dimensional problems - completeness	and continuity, di	iffere	ent el	leme	ents
(triangular, recta	ngular, quadrilateral etc.), shape functions, Gauss qu	adrature techniqu	e fo	r nu	mer	ical
integration. Scalar	r field problems; Iso-parametric formulation, Application	on to Heat conduc	tion	and	tors	sion
problems. Linear elasticity; Formulation.						
UNIT – V	UNIT – V FINITE ELEMENT FORMULATION FOR THREE-DIMENSIONAL 10+3 Period			ds		
	PROBLEMS					
Implementation issues, locking, reduced integration, B-Bar method; Finite element formulation for three-						
dimensional problems-Different elements, shape functions, Gauss quadrature in three dimensions.						
Contact Periods:						
Lecture: 45 Perio	ds Tutorial: 15 Periods Practical: 0 Periods	Total:60 Periods				

REFERENCES:

1	J. N. Reddy.,"Introduction to Finite Element Method",McGraw-Hill Education (2019).
2	Jacob Fish and Ted Belytschko .," First Course in Finite Elements" .John Wiley & Sons, Ltd(2007).
3	Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt .,"Concept and Applications of Finite
	Element Analysis ",Willy publication(2007).
4	Thomas J. R. Hughes .,"The Finite Element Method: Linear Static and Dynamic Finite Element Analysis",
	Courier Corporation, (2012).

COURSE O	UTCOMES:	Bloom's
Upon completion of the course, the students will be able to:		
		Mapped
C01	Distinguish different numerical methods involved in Finite Element Analysis	K4
CO2	Apply equations in finite element methods for 1D, 2D and 3D problems.	K4
CO3	Apply shape functions in finite element formulations and use linear, quadratic, and cubic shape functions for interpolation	K4
CO4	Formulate and solve basic problems in heat transfer, solid mechanics and fluid mechanics.	K4
C05	Analyze beams and truss, frames using finite element analysis	K4

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05		
C01	1	2	2	-	-		
CO2	-	2	2	-	-		
CO3	1	2	2	1	1		
CO4	1	2	2	-	-		
CO5	-	2	2	1	1		
23EDPC05	1	2	2	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISITES	CATEGORY	L	Т	Р	С
 Student required the knowledge of drafting principles and basic PC (Windows) computer skills. 	РС	3	0	0	3

Course	1. Impart knowledge on computer graphics on various engineering, medi	cine and				
Objectives	scientific areas.					
	2. Demonstrate basics of CAD concepts.					
	3. Explain computer graphics and solid modelling techniques.					
	4. Demonstrate part programs and group technology techniques.					
	5. Explain Optimization in CAD aspect.					
UNIT – I	INTRODUCTION TO CAD APPLICATIONS	9 Periods				
CAD Applicati	ons: Engineering Products, analogy: documentation, Design Repre	sentation, FEM,				
Optimization, S	oftware/AutoCAD/Mechanical Desktop/I-DEAS					
UNIT – II	SOLID MODELING	9 Periods				
Representation	of Solids, Topology, wireframe modelling, Boundary Representation,	CSG, Operations:				
extrude, revolv	e, examples.					
UNIT – III	DESIGN OF CURVES, SURFACES, SURFACE PATCHES	10 Periods				
Representation	n, piecewise continuous, differential geometry of curves, Ferguson, s	egments, Bezier				
segments, B-S	plines, Rational Curves/NURBS. Design of Surfaces-Piecewise continu	ous, differential				
geometry. Desi	gn of Surface patches: Fersugon,16 point form, Bezier, B-spline.					
UNIT – IV	DESIGN OF COMPOSITE SURFACES	9 Periods				
Design of Comp	Design of Composite Surfaces: Ferguson and Bezier surfaces, Computational geometry, Mesh generation.					
UNIT – V	OPTIMIZATION IN CAD	8 Periods				
Optimization: Single variable methods, KKT conditions, Stochastic Methods.						
Contact Periods:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods						

REFERENCES

1	J. Srinivas," CAD/CAM - Principles and Applications", Oxford HED, 2016.
2	Saxena, A., and Sahay., B "Computer Aided Engineering Design," Anamaya and Springer,2006.
3	Faux I. D. and Pratt M. J., "Computational Geometry for Design and Manufacture", Ellis Harwood
	Limited, West Sussex, England, 1979.
4	Mortenson M. E., "Geometric Modeling", John Wiley and Sons, New York., 1985.
5	P.N.Rao, "CAD/CAM: Principles and Applications"-3rd Edition, Tata McGraw Hill, India, 2010.

COURS	Bloom's	
Upon c	Taxonomy	
		Mapped
C01	Apply design concepts	K4
CO2	Appreciate visual realism through modelling techniques	K4
CO3	Develop the idea to design the composite surfaces	K4
CO4	Develop part programs for solid models	K4
C05	Make use of FEM concept for analysis	K4

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05				
C01	1	2	2	-	-				
CO2	-	2	2	-	-				
CO3	1	2	2	1	1				
CO4	1	2	2	-	-				
C05	-	2	2	1	1				
23EDPC06	1	2	2	1	1				
1 – Slight, 2 – Moderate, 3 – Substantial									

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
Category*							
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPC07

PREREQUISIT	ES	CATEGORY	L	Г	P	С				
	Fluid mechanics	PC	3	1	0	4				
	1. Learn the principles of friction and wear									
Course	2. Understand the standard procedure available for tribology using standard data and									
Objectives	catalogues									
Objectives	3. Design the fluid film bearings, rolling element bear	ings etc.,								
	4. Study the Tribological aspects of rolling motion									
	5.Understand the concept of finite bearing									
UNIT – I	INTRODUCTION, FRICTION AND WEAR		8+	3 Pe	erio	ds				
Tribology in De	sign - Mechanical design of oil seals and gasket - Tribe	ological design of oi	l seals	and	gas	sket.				
Tribology in Ir	dustry (Maintenance). Lubrication-Basic Modes of L	ubrication, Propert	ies of	Lub	orica	ants,				
Lubricant Addi	tives. Bearing -Terminology, sliding contact bearings,	Rolling contact bea	rings.	Com	par	ison				
between Slidin	g and Rolling Contact Bearings.Friction - Laws of fric	tion, classification,	Causes	s of	fric	tion.				
Theories of Di	ry Friction, Friction Measurement, Stick-Slip Motion	n and Friction Ins	tabiliti	ies.	We	ar –				
classification, V	Vear between solids, Wear between solid and liquid,	Factors affecting w	ear, M	easu	iren	nent				
of wear. Theor	ies of Wear, Approaches to Friction Control and Wea	r Prevention, Bour	idary 1	Lubr	ricat	tion,				
Bearing Materi	als and Bearing Construction.									
UNIT – II	LUBRICATION OF BEARINGS		10-	+3 P	eri	ods				
Mechanics of F	uid Flow - Theory of hydrodynamic lubrication -Mech	anism of pressure of	levelo	pme	nt i	n oil				
film. Two-Dime	ensional Reynolds's Equation and its Limitations. Idea	alized Bearings. Inf	initely	Lon	ıg P	lane				
Fixed Sliders,	Infinitely Long Plane Pivoted Sliders, Infinitely Lor	ng Journal Bearing	s, Infii	nitel	y S	hort				
Journal Bearin	gs. Designing Journal Bearing - Sommerfeld numb	er – Raimondi and	d Boy	d m	eth	od -				
Petroff's Soluti	on - Parameters of bearing design - Unit pressure - To	emperature rise - L	ength	to d	iam	eter				
ratio - Radial cl	earance - Minimum oil-film thickness.									
UNIT – III	HYDRODYNAMIC THRUST BEARING		8+	3 Pe	erio	ds				
Introduction, P	ressure Equation, Load, Center of Pressure, Friction-	Flat plate thrust b	earing	, tilt	ing	pad				
thrust bearing.										
UNIT – IV	HYDROSTATIC, ELASTO-HYDRODYNAMIC AN	ID GAS (AIR-)	11	. 2 D	loni	ode				
	LUBRICATED BEARINGS		11-	F3 P	erio	Jus				
Hydrostatic Lu	brication - Basic concept, Advantages and limitatior	s, Viscous flow the	ough	rect	ang	ular				
slot, Load carry	ring capacity and flow requirement, Energy losses, Op	timum design, App	licatio	n to	jou	rnal				
bearings, Pisto	n Pin Lubrications.Elasto-Hydrodynamic Lubrication-	Principles and Appl	ication	ns, P	res	sure				
viscosity term	n Reynolds's equation, Hertz's Theory, Ertel-Grubin e	quation, Lubricatio	n of sp	her	es, (Gear				
teeth bearings,	Rolling element bearings.Gas (Air-) Lubricated Bea	rings-Introduction,	Merit	s, D	em	erits				
and Application	ns, tilting pad bearings, Magnetic recording discs wi	th flying head, Hyd	lrosta	tic b	bear	ings				
with air lubrica	tion, Hydrodynamic bearings with air lubrication, Thr	ust bearings with a	ir lubr	icati	ion.					
UNIT – V	TRIBOLOGICAL ASPECTS OF ROLLING MOTI	ON AND FINITE	-	0 D						
	BEARINGS		7+	3 86	erio	as				
Tribological as	pects of rolling motion-The mechanics of tyre-road	interactions, Road	l grip	and	ro	lling				
resistance, Tri	bological aspects of wheel on rail contact. Fir	nite Bearings-Hydi	ostati	c b	eari	ngs,				
Hydrodynamic	bearings, Thrust oil bearings, Porous Bearings, Foil be	earings, Heat in bea	rings.			<u> </u>				
Contact Period	ls:	0								
Lecture: 45 Pe	Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total:60 Periods									

REFERENCES:

1	Harish Hirani., "Fundamentals of Engineering Tribology with Applications", Cambridge University
	Press (2016).
2	Ajayi, Layo; Ludema, K. C., "Friction, wear, lubrication: a textbook in tribology [Second edition"],
	Taylor & Francis (2019).
3	Martin Dienwiebel, Maria-Isabel De Barros Bouchet., "Advanced Analytical Methods in Tribology [1st
	ed.]",Springer International Publishing (2018).
4	Catalin I. Pruncu (editor), AmitAherwar (editor), StanislavGorb (editor).," Tribology and Surface
	Engineering for Industrial Applications [1 ed.]", CRC Press (2021).
5	G W Stachowiak; A W Batchelor., " Engineering tribology "[4th ed.],Butterworth-Heinemann (2013).

COURS	SE OUTCOMES:	Bloom's				
Upon c	Upon completion of the course, the students will be able to:					
C01	CO1 Apply knowledge of friction and wear in engineering applications.					
CO2	Design hydrostatic and hydrodynamic bearings for machineries and	K4				
	equipments.					
CO3	Design bearings of various types.	K4				
C04	Perform the various measurements on surfaces and bearings.	K4				
C05	Apply knowledge of lubrication in engineering applications.	K4				

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05				
C01	1	2	2	-	-				
CO2	-	2	2	-	-				
CO3	1	2	2	1	1				
CO4	1	2	2	-	-				
C05	-	2	2	1	1				
23EDPC07	1	2	2	1	1				
1 – Slight, 2 – Moderate, 3 – Substantial									

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPC08

PREREQUISITES CATEGORY L T					Р	C				
	NIL	РС	0	0	4	2				
Course	1. To impart practical training on simulation and analysis of mechanical systems using									
Objectives	advanced software tools.									
	2. To give exposure to software tools needed to analyze engineering problems.									
LIST OF EXPE	RIMENTS									
Analysis of Me	chanical Components – Use of FEA Packages like ANSY	S and CFD. Exercis	ses sl	hall i	nclu	de				
analysis of										
1	Introduction to ANSYS and FEA software.									
2	Static structural analysis of truss.									
3	Static structural analysis of cantilever beam with poi	nt load (3D)								
4	Static structural analysis of simply supported beam v	vith uniformly vary	ving	load						
5	Indirect coupled field analysis									
6	Modal analysis of two mass spring system.									
7	Harmonic analysis of cantilever beam									
8	Transient thermal analysis									
9	Thermal stress of a cylinder using axi-symmetric elements	ments (thermal to s	struc	tura	l)					
10	Simulation of four bar mechanism.									
11	Simulation of pipe flow.									
Contact Perio	ds:									

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total:60 Periods

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Use the software tool for analyzing structural systems.	K6
CO2	Demonstrate the use of simulation tool.	K6
CO3	Use the knowledge of mechanism of synthesis or modelling.	K6
C04	Depict the results of simulation in graphical format.	K6
C05	Respond as instructed while working in groups.	K6

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	PO5			
C01	1	2	2	-	1			
CO2	1	2	2	1	-			
CO3	1	2	2	-	1			
CO4	1	2	2	1	-			
CO5	1	2	2	-	1			
23EDPC08	1	2	2	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

23EDEE01

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	4	2

Course	To make the student to feel/understand the magnitude of engineering design and then
Objectives	apply.
SYLLABUS	

Students can take up small problems in the field of design engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total:60 Periods

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
C01	Get an opportunity to work in actual industrial environment if they opt for	K6
	internship.	
CO2	Solve a live problem using software/analytical/computational tools.	K6
CO3	Write technical reports.	K6
CO4	Develop skills to present and defend their work in front of technically	K6
	qualified audience.	
C05	execute the Project experimental Work	K6

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
CO1	3	3	3	3	3		
CO2	3	2	3	2	1		
CO3	3	2	3	3	3		
CO4	1	1	2	1	2		
C05	1	2	1	1	1		
23EDEE01	3	2	3	3	3		
1 – Slight, 2 – Moderate, 3 – Substantial							

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	*	2

Course	1.To make students get ready to become an entrepreneur or an effective administrator.
Objectives	2. To acquire the knowledge about industrial programs.
CONTENTS	

Four week continuously industrial training of any industry, the report of the training must have a literature survey of selected company product and training certificate.

Total Periods: 4 Weeks

COUR	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Identify gaps in published literatures and find scope of improvement.	К6
CO2	Write technical report about any industrial activity.	К6
CO3	Perform the differential analysis between theory and practical.	K6
C04	Innovate new mechanism design and estimate cost for a product or process.	К6
C05	analyze tolerances and engineering drawings.	К6

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	PO5			
C01	2	2	1	1	1			
C02	1	3	2	1	-			
C03	2	1	1	2	1			
C04	1	1	3	1	2			
C05	1	2	1	1	1			
23EDEE02	1	2	1	1	1			
1 – Slight, 2 – Moderate, 3 – Sub	1 – Slight, 2 – Moderate, 3 – Substantial							

23EDEE03

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	12	6

Course Objectives	To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature and to develop the methodology to solve the identified problem then publish paper at least in conference.
----------------------	--

SYLLABUS

1. The student individually works on a specific topic approved by the head of the division under the guidance of a faculty member who is familiar in this area of interest.

2. The student can select any topic which is relevant to the area of Engineering Design. The topic may be theoretical or case studies.

3. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work and report on the preliminary study conducted.

4. The students will be evaluated through a viva-voce examination.

Contact Periods:			
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 180 Periods	Total: 180 Periods

COURSE	Bloom's	
		Taxonomy
Upon con	pletion of the course, the students will be able to:	Mapped
C01	Identify the project work scientifically in a systematic way	K6
CO2	Analyze the problem and data of literatures clearly to explore the ideas	K6
	and methods.	
CO3	Formulate the objectives and methodology to solve the identified	K6
	problem.	

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
C01	3	3	3	3	3		
C02	3	2	3	3	2		
C03	3	2	3	3	3		
23EDEE03 3 2 3 3 2							
1 – Slight, 2 – Moderate, 3 – Substantial							

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	EEC	0	0	24	12

Course	To solve the identified problem based on the formulated methodology and to
Objectives	develop skills to analyze and discuss the test results and make conclusions.

SYLLABUS

1. The student should continue the phase I work on the selected topic as per the formulated methodology under the same supervisor.

2. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department.3. The students will be evaluated based on the report submitted and the viva-voce examination by a

panel of examiners including one external examiner

Contact Periods:Lecture: 0 PeriodsTutorial: 0 PeriodsPractical: 360 PeriodsTotal: 360 Periods

COURSE	Bloom's					
		Taxonomy				
Upon con	npletion of the course, the students will be able to:	Mapped				
C01	CO1 Execute the project work on challenging practical problem in a					
	structured manner.					
CO2	Investigate the findings and infer observations logically.	K6				
CO3	Evaluate the results and confirm the solution to the practical	K6				
	application and social benefit.					

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
C01	3	2	3	3	2		
CO2	3	2	3	3	3		
CO3	3	3	3	3	3		
23EDEE04	3	2	3	3	3		
1 – Slight, 2 – Moderate, 3 – Substantial							

23EDPE01

PREREQUISITES CATEGORY L T P C									
	NIL PE 3								
REFERENCES:									
Course 1. GD&T, as well as selecting the appropriate process and applying general design									
Objectives	principles for manufacturability.								
	2. Designing cast and welded components with design concerns in mind.								
	3. Designing formed and machined components with design concerns in mind.								
	4. Consider design factors when putting together a system.								
	5. Consider environmental factors when designing.								
UNIT – I	INTRODUCTION			9 F	Perio	ods			
Introduction -	Economics of process selection - General design	n principles for	mar	nufac	tura	bility;			
Geometric Din	nensioning &Tolerance (GD&T) - Form tolerancing	g: straightness, fla	atne	ss, o	circu	larity,			
cylindricity –	Profile tolerancing: profile of a line, and surface -	Orientation tolera	anci	ng: a	angu	larity,			
perpendiculari	ty, parallelism – Location tolerancing: position, c	oncentricity, sym	met	ry -	- ru	n out			
tolerancing: cir	cular and total – Supplementary symbols.								
UNIT – II	CAST & WELDED COMPONENTS DESIGN			9 F	Perio	ods			
Design consid	erations for: Sand cast – Die cast – Permanent 1	mold parts. Arc	wel	ding	– I	Design			
considerations	for: Cost reduction - Minimizing distortion - Wele	d strength – Wel	dme	ent. 🛛	Resis	stance			
welding – Desig	gn considerations for: Spot – Seam – Projection – Flash	&Upset weldmen	t.						
UNIT – III	FORMED & MACHINED COMPONENTS DESIGN			9 F	Perio	ods			
Design conside	rations for: Metal extruded parts - Impact/Cold extru	uded parts – Stam	ped	part	ts –F	orged			
parts. Design co Ground parts.	onsiderations for: Turned parts – Drilled parts – Milled	l, planned, shaped	and	l slot	ted	parts-			
UNIT – ÍV	DESIGN FOR ASSEMBLY			9 F	Perio	ods			
Design for ass	embly – General assembly recommendations – Min	nimizing the no.	ofr	oarts	- I	Design			
considerations	for: Rivets – Screw fasteners – Gasket & Seals – Press	fits – Snap fits – A	utor	natio	c ass	embly			
– Computer Ap	plication for DFMA	•				J			
UNIT – V	DESIGN FOR ENVIRONMENT			9 F	Perio	ods			
Introduction –	Environmental objectives - Global issues - Regional a	nd local issues – H	Basio	c DF	E me	ethods			
- Design guide lines - Example application - Lifecycle assessment - Basic method - AT&T's									
environmentally responsible product assessment - Weighted sum assessment method - Lifecycle									
assessment me	thod – Techniques to reduce environmental impact –	Design to minimiz	e m	ater	ial u	sage –			
Design for disassembly – Design for recyclability – Design for manufacture – Design for energy efficiency									
– Design to reg	ulations and standards								
Contact Periods:									
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Period	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods							

REFERENCES:

1	Boothroyd, G, Heartz and Nike, "Product Design for Manufacture", Marcel Dekker, 1994							
2	Bralla, "Design for Manufacture handbook", McGraw hill, 1999							
3	Dickson, John. R, and Corroda Poly, "Engineering Design and Design for Manufacture and							
	Structural Approach", Field Stone Publisher, USA, 1995							
4	Fixel, "J. Design for the Environment", McGraw Hill., 1996							
5	Kevin Otto and Kristin Wood, "Product Design. Pearson Publication", 2009.							

COUR	SE OUTCOMES:	Bloom's Taxonomy Manned
C01	Select relevant process; apply the general design principles for	K4
	manufacturability; GD&T	
CO2	Apply design considerations while designing the cast and welded components	K4
CO3	Apply design considerations while designing the formed and machined	K4
	components	
C04	Apply design considerations for assembled systems.	K4
C05	Apply design considerations for environmental issues	K4

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	PO3	P04	P05			
C01	1	1	2	2	1			
CO2	1	2	2	2	1			
CO3	1	2	2	1	1			
CO4	2	1	3	2	1			
CO5	1	1	1	2	3			
23EDPE01	1	1	2	2	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100
Ι

PREREQUISITES CATEGORY L T P C						С		
	NIL	PE	3	0	0	3		
Course	1. The study of various composite materials and th	e determination of	the	r me	echa	nical		
Objectives	strength.							
	2. Different manufacturing technologies are used to f	abricate FRP and ot	her	com	oosit	es.		
	3. Fiber reinforced stress analysis Laminates for	various combination	ons	of p	lies	with		
	various fiber orientations.	ous fiber orientations.						
	4. Stresses in the laminate's lamina calculated using v	various failure theo	ries					
	5. The Classical Laminate Theory Was used to calculate	ate residual stresse	s in	vario	ous t	ypes		
UNIT I				0.1	Donid	de		
Definition-Mat	in materials-nolymers-metals-ceramics - Reinforcen	nonte: Particlas wi	nicka	91 arc i	noro	us anic		
fibers metal fil	aments- ceramic fibers- fiber fabrication- natural co	mnosite wood lute	-Ad	vant	1101 <u>ε</u> 2σes	and		
drawbacks of	composites over monolithic materials Mechanic	al properties and	l an	nlica	tion	s of		
composites. Pa	articulate-Reinforced composite Materials. Dispersi	ion-Strengthened	comr	osit	e. Fi	ber-		
reinforced com	posites Rule of mixtures-Characteristics of fiber-Re	inforced composite	es, M	lanu	factu	ring		
fiber and comp	osites,	1	,			0		
UNIT – II	MANUFACTURING OF COMPOSITES			9 I	Perio	ods		
Manufacturing	of Polymer Matrix Composites (PMCs)-handlay-up,	spray technique,	filam	lent	wind	ling,		
Pultrusion, Re	sin Transfer Moulding (RTM)-, bag moulding, in	jection moulding,	Sand	lwic	h M	ould		
Composites (SN	AC) - Manufacturing of Metal Matrix Composites (MM	ICs) - Solid state, lie	quid	state	e, vaj	pour		
state processin	g, Manufacturing of Ceramic Matrix Composites (CM	ACs) -hot pressing-	read	tion	bon	ding		
process-infiltra	tion technique, direct oxidation- interfaces							
UNIT – III	LAMINA CONSTITUTIVE EQUATIONS			91	Perio	ods		
Lamina Constit	utive Equations: Lamina Assumptions – Macroscopic	Viewpoint. General	izea	H00	ke s	Law.		
Definition of a	tomogeneous orthouropic Lamina – isotropic innu	nt relations Rasic	Sui	mess	s IIIa stion	urix,		
Laminated ani	sotronic plates Laminate Constitutive Equations	- Coupling Inter	Ass	ne	Rala	s or		
Laminates Syn	metric Laminates Angle Ply Laminates Cross Ply La	minates Laminate	Strue	ns, tura	l Mo	duli		
Evaluation of	Lamina Properties from Laminate Tests Quasi-Iso	tropic Laminates	Dete	rmir	natio	n of		
Lamina stresse	s within Laminates.	cropic Lammacol	Dette		latio			
UNIT – IV	LAMINA STRENGTH ANALYSIS AND ANALYSIS OF	LAMINATED FLAT		9 I	Perio	ods		
	PLATES							
Introduction -	Maximum Stress and Strain Criteria. Von-Misses Yie	eld criterion for Is	otroj	pic N	late	ials.		
Generalized Hil	ll's Criterion for Anisotropic materials. Tsai-Hill's Fail	ure Criterion for Co	ompo	osite	s. Te	nsor		
Polynomial (Ts	ai-Wu) Failure criterion. Prediction of laminate Failu	ıre Equilibrium Equ	iatio	ns o	f Mo	tion.		
Energy Formulations. Static Bending Analysis. Buckling Analysis. Free Vibrations – Natural Frequencies								
UNIT – V	THERMO-STRUCURAL ANALYSIS			91	Perio	ods		
Fabrication str	esses/Residual stresses in FRP laminated composite	s- Co-efficient of Tl	nerm	al E	xpan	sion		
(C.T.E.) - Modi	fication of Hooke's Law. Modification of Laminate	Constitutive Equat	ions	. Ort	hotr	opic		
Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-								
Calculations for thermo-mechanical stresses in FRP laminates								
Case studies: I	mplementation of CLT for evaluating residual stre	sses in the compo	nent	s ma	ade	with		
different isotro	pic layers such as electronic packages etc.							
Contact Period	ls:							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods								

1	Agarwal BD and Broutman LJ, "Analysis and Performance of Fiber Composites", John Wiley and Sons,
	New York, 1990.
2	Gibson R F, Principles of Composite Material Mechanics, McGraw-Hill, 1994.CRC press, 4th Edition,
	2016.
3	Hyer MW and Scott R White, "Stress Analysis of Fiber - Reinforced Composite Materials", McGraw-
	Hill, 1998.
4	Issac M Daniel and OriIshai, "Engineering Mechanics of Composite Materials", Oxford University
	Press-2006, First Indian Edition - 2007
5	MadhujitMukhopadhyay, "Mechanics of Composite Materials and Structures", University Press (India)
	Pvt. Ltd., Hyderabad, 2004 (Reprinted 2008)
6	Mallick PK, Fiber - Reinforced Composites: Materials, Manufacturing and Design, CRC Press, 3rd
	Edition,2019.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Calculate for mechanical strength of the composite material	K4
CO2	Fabricate the FRP and other composites by different manufacturing methods	K4
CO3	Analyze fiber reinforced Laminates for different combinations of plies with	K4
	different orientations of the fiber.	
CO4	Evaluate the stresses in the lamina of the laminate using different failure	K4
	theories	
C05	Analyze thermo-mechanical behavior and evaluate residual stresses in different	K4
	types of laminates using the Classical Laminate Theory.	

COURSE ARTICULATION MATRIX							
COs/POs	P01	PO2	P03	P04	P05		
CO1	1	1	1	1	-		
C02	-	-	-	1	-		
C03	-	1	-	2	3		
CO4	1	2	1	-	-		
CO5	-	1	3	-	-		
23EDPE02	1	1	2	1	3		
1 – Slight, 2 – Moderate, 3	– Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objectives	 To provide an overview of the various components of hydraulic system, their design and selection techniques. To develop a comprehensive grasp of the necessity for and use of different regulating components in hydraulic systems. To allow them to construct hydraulic circuits for industrial applications on 4. To familiarize them with the various components of pneumatic systems a them how to construct basic pneumatic systems. To persuade them of the need of integrating electronics, developing low-co and developing solutions for basic industrial applications. 	s, as well as control and their own. and to teach ost systems,			
UNIT – I	OIL HYDRAULIC SYSTEMS AND HYDRAULIC ACTUATORS	9 Periods			
Hydraulic Pow	er Generators – Selection and specification of pumps, pump characteristics	. Linear and			
Rotary Actuato	rs – selection, specification and characteristics, Hydrostatic drives, types, selec	tion.			
IINIT – II	CONTROL AND RECHLATION ELEMENTS	9 Periods			
Pressure - dire	action and flow control values - relief values non-return and safety values	- actuation			
systems Propo	rtional Flectro hydraulic servo valves	- actuation			
IINIT – III	HYDRAILLIC CIRCUITS	9 Periods			
Reciprocation	quick return sequencing synchronizing circuits - accumulator circuits - indus	trial circuits			
- press circuits	- hydraulic milling machine - grinding, planning, copying, - forklift, earth m	over circuits			
design method	ology- design and selection of components - safety and emergency mandre	ls – Cascade			
method.					
UNIT – IV	PNEUMATIC SYSTEMS AND CIRCUITS	9 Periods			
Pneumatic fun	damentals - control elements, position and pressure sensing, Pneumatic e	equipment's-			
selection of co	omponents - design calculations - logic circuits - switching circuits - fring	e conditions			
modules and th	nese integration - sequential circuits - cascade methods - mapping methods -	step counter			
method - comp	ound circuit design - combination circuit design- Karnaugh - Veitch map.				
UNIT – V	ELECTROMAGNETIC & ELECTRONIC CONTROL OF HYDRAULICS &	9 Periods			
	PNEUMATIC CIRCUIT				
Electrical cont	rol of pneumatic circuits – use of relays, counters, timers, ladder diagr	ams, use of			
microprocessor in circuit design – use of PLC in hydraulic and pneumatic circuits – Fault finding–					
application -laure muting - nyoro pneumatic circuits - use of microprocessors for sequencing - PLC, Lowcost automation. Pobotic circuits					
Contact Perio					
Lecture 45 Pe	us. vrinds Tutorial: A Periods Practical: A Periods Total:45 Periods				
Letture, TJIC	The second secon				

1	Jagadeesha T, "Pneumatics Concepts, Design and Applications ", Universities Press, 2015
2	Majumdar, S.R., "Oil Hydraulics Systems – Principles and Maintenance", Tata McGraw Hill, 2001.
3	ShanmugaSundaram.K, "Hydraulic and Pneumatic Controls",Chand& Co, 2006.
4	Anthony Esposito, "Fluid Power with Applications", Prentice Hall, 2009.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Design and select appropriate pumps in industries based on need.	K4
CO2	Select correct sizing and rating of control elements in hydraulics.	K4
CO3	Design basic circuits (hydraulic) for industrial applications.	K4
C04	Design basic pneumatic circuits for industrial applications.	K4
CO5	Identify and provide solution for troubleshooting and design low cost	K4
	automation for industrial application.	

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05			
C01	-	1	1	-	-			
C02	-	1	2	1	-			
C03	-	-	1	-	-			
CO4	1	-	2	1	1			
C05	-	-	1	-	1			
23EDPE03	1	1	1	1	1			
1 – Slight, 2 – Moderate, 3 – Su	1 – Slight, 2 – Moderate, 3 – Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISIT	ES	CATEGORY	L	Т	Р	С		
	NIL	PE	3	0	0	3		
				1				
Course	1. To teach diverse engineering design ideas, r	naterial choices,	and	pro	duc	tion		
Objectives	procedures.							
	2. To study the fundamentals of employing various	s tools to implen	nent c	quali	ity i	n a		
	product or service.							
	3. To employ failure mode effect analysis to improve	To employ failure mode effect analysis to improve product quality and apply ways to						
	maintain the six-sigma status							
	4. Using multiple design-of-experiment principles to c	reate a solid produ	ict or	serv	ices			
	5. Maintaining product quality through the use of stati	stical tools and en	forcin	ig mo	easi	ires		
	to increase product reliability.			0.0		a d a		
UNII – I	DESIGN FUNDAMENTALS, METHODS AND MATERIA	AL SELECTION		9 P	erio	bas		
Morphology of	Design – The Design Process – Computer Aided Engine	ering – Concurrent						
Engineering -	Competition Bench Marking – Creativity – Theory o	f Problem solving	g (TR	IZ) -	- Va	alue		
Analysis - Des	ign for Manufacture, Design for Assembly – Design fo	or casting, Forging	, Met	al Fo	orm	ing,		
Machining and	Welding.			0.0				
UNII - II Quality Eurot	DESIGN FOR QUALITY	d functions Tana	ata Ct	9 P	erie	Jas		
Quality Funct	Ion Deployment -House of Quality-Objectives and	a functions-large	ets-Sta	aken	1010	ers-		
factors and pe	rformance metrics - developing the experimental plan-	evperimental desi	$\frac{101}{30} = t_0$	octin	5, Π νσηλ	oise		
factors- Runni	normalice metrics - developing the experimental plan-	and conforming f	actor.	-Set	noi	nts-		
reflecting and i	repeating.		actor	Jet	por	1105		
UNIT – III	FAILURE MODE EFFECTS ANALYSIS AND DESIGN FO	OR SIX SIGMA		9 P	eri	ods		
Basic methods	: Refining geometry and layout, general process of pr	oduct embodime	nt - E	mbo	odim	ient		
checklist- Adv	anced methods: systems modeling, mechanical embo	diment principle	s-FME	EA n	neth	iod-		
linking fault sta	ates to systems modeling - Basis of SIX SIGMA – Project	selection for SIX S	IGMA	- SIX	SIG	MA		
problem solvir	g- SIX SIGMA in service and small organizations - SIX	SIGMA and lean p	orodu	ctior	n –L	ean		
SIX SIGMA and	services.		r			_		
UNIT – IV	DESIGN OF EXPERIMENTS			9 P	eri	ods		
Importance of	Experiments, Experimental Strategies, Basic principle	s of Design, Term	inolo	gy, I	ANC	VA,		
Steps in Exper	imentation, Sample size, Single Factor experiments	- Completely Ran	domi	zed	des	ign,		
Factorial armon	siock design, statistical Analysis, Multilactor experim	ients - Iwo and	three	Tac	tor	rull		
dosign Taguch	i's approach - Stops in experimentation. Design using	Orthogonal Array	a	ta A	nali			
Rohust Design.	Control and Noise factors S/N ratios	Of thogonal Array	/s, Da	и п	mary	/515,		
IINIT – V	STATISTICAL CONSIDERATION AND RELIABILITY			9 P	eri	ods		
Frequency dist	ributions and Histograms- Run charts –stem and leaf	plots- Pareto Dia	grams	s-Cau	use	and		
Effect Diagram	ns-Box plots- Probability Distribution-Statistical Pro	ocess control–Sca	tter o	diag	ram	s –		
Multivariable	charts –Matrix plots and 3-D plotsReliability-Surviv	al and Failure-Se	ries a	ind	para	allel		
systems-Mean	time between failure-Weibull distributions.							
Contact Perio	ds:]		
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods	Total:45 Per	iods					
REFERENCES:		. //	<u> </u>	0.01	-			
1 AmitavaMitra, "Fundamentals of Quality control and improvement", John Wiley & Sons, 2016.								

2 George E. Dieter, Linda C. Schmidt, "Engineering Design", McGraw Hill Education Pvt. Ltd., 2013

3 Karl T. Ulrich, Steven D. Eppinger, **"Product Design And Development"**, Tata Mcgraw-Hill Education, 2015

4 Montgomery, D.C., "Design and Analysis of experiments", John Wiley and Sons, 2017.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply fundamentals of design process and material selection for developing a quality product	K4
CO2	Apply the quality concepts to develop a robust product	K4
CO3	Perform Failure Mode Effect Analysis on a product and use six sigma principles to enhance its quality	K4
C04	Apply different experimental design methods in product development	K4
C05	Implement various statistical tools to improve its quality and reliability	K4

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05
C01	1	3	3	2	2
CO2	1	2	2	1	2
CO3	2	1	1	-	1
CO4	1	1	2	-	1
CO5	2	2	3	1	2
23EDPE04	1	2	2	1	2
1 – Slight, 2 – Moderate, 3 – Subs	tantial				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

SURFACE ENGINEERING

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objectives	1. The goal of this course is to learn about the fundamentals of surface ch different forms of friction in metals and non-metals	aracteristics and			
objectives	2. To investigate the various types of wear mechanisms and the worldw	ide standards for			
	measuring friction and wear.				
	3. To investigate the various forms of corrosion and the steps that may	be taken to avoid			
	it.				
	4. To investigate the many forms of surface treatments and surface modif	ication methods.			
	5. To investigate the various materials utilized in friction and wear applic	ations.			
UNIT – I	FRICTION	9 Periods			
Topography of	Surfaces – Surface features – Properties and measurement – Surface inter	action –Adhesive			
Theory of Slidi	ng Friction – Rolling Friction – Friction properties of metallic and nonme	tallic materials –			
Friction in extr	eme conditions – Thermal considerations in sliding contact.				
UNIT – II	WEAR	9 Periods			
Introduction –	Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Fretting W	ear Laws of wear			
– Theoretical w	ear models – Wear of metals and non-metals – International standards in	friction and wear			
measurement.					
UNIT – III	CORROSION	9 Periods			
Introduction -	Principle of corrosion - Classification of corrosion - Types of corro	rosion – Factors			
influencing cor	rosion – Testing of corrosion – In-service monitoring, Simulated service, L	aboratory testing			
- Evaluation o	f corrosion - Prevention of Corrosion - Material selection, Alteration	of environment,			
Design, Cathod	ic and Anodic Protection, Corrosion inhibitors.				
UNIT – IV	SURFACE TREATMENTS	9 Periods			
Introduction -	Surface properties, Superficial layer - Changing surface metallurgy -	- Wear resistant			
coatings and Su	urface treatments - Techniques - PVD - CVD - Physical CVD - Ion impla	ntation – Surface			
welding - Ther	mal spraying – Laser surface hardening and alloying, laser re-melting, ar	nd laser cladding.			
Applications of	Applications of coatings and surface treatments in wear and friction control - Characteristics of Wear				
resistant coatings - New trends in coating technology - DLC - CNC - Thick coatings - Nano-engineered					
coatings – Other coatings, Corrosion resistant coating.					
UNIT – V	ENGINEERING MATERIALS	9 Periods			
Introduction – Advanced alloys – Super alloys, Titanium alloys, Magnesium alloys, Aluminium alloys, and					
Nickel based alloys – Ceramics – Polymers – Biomaterials – Applications – Bio Tribology Nano Tribology.					
Contact Period	Contact Periods:				
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total:45 Perio	ods			

1	G.W.Stachowiak& A.W .Batchelor , "Engineering Tribology", Butterworth-Heinemann, UK,2005
2	Rabinowicz.E, "Friction and Wear of materials", John Willey &Sons,UK,1995
3	Halling, J. , "Principles of Tribology ", Macmillian – 1984
4	Williams J.A. "Engineering Tribology", Oxford Univ. Press, 1994
5	S.K.Basu, S.N.Sengupta&B.B.Ahuja, "Fundamentals of Tribology", Prentice –Hall of India Pvt. Ltd , New
	Delhi, 2005
6	Fontana G., "Corrosion Engineering", McGraw Hill, 1985.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon o	Mapped	
C01	Understand the basics of surface features, laws of friction, and different types of friction.	K4
C02	Develop the knowledge of various wear mechanism and its measurement.	K4
CO3	Understand the types of corrosion and its preventive measures.	K4
C04	Familiarize the types of surface properties and various surface modification techniques.	K4
C05	Ability to understand the different types of materials used in the friction and wear applications.	K4

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	PO3	P04	P05
,					
C01	1	1	2	1	2
C02	-	1	2	1	-
CO3	1	2	3	-	1
CO4	-	1	2	1	1
C05	-	-	1	-	-
23EDPE05	1	1	2	1	1
1 – Slight, 2 – Moderate, 3 – Sub	stantial				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISI	TES	CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
					_	
Course	1. To study the concept of design for manufactur	ring, assembly and	d en	viro	nme	nt.
Objectives	2. To know about the value analysis in design.					
3. To study the product development economics.						
	4. To study the concepts of reliability.					
	5. To acquire the knowledge about maintainabil	ity techniques.				
UNIT – I	DESIGN FOR MANUFACTURE & ASSEMBLY			9 Pe	erioo	ls
General desig	n principles for manufacturability - strength and	l mechanical facto	ors, i	mec	hani	sms
selection, eva	luation method, Process capability - Feature tol	erances - Geome	tric	tole	ranc	es -
Assembly lin	nits – Datum features - Tolerance stacks. As	sembly processe	s-Ha	andl	ing	and
insertion pro	cess-Manual, automatic and robotic assembly-Co	st of Assembly-N	umł	ber o	of Pa	rts-
DFA guideline	es					
UNIT – II VALUE ENGINEERING					eriod	ls
Value -types	Value -types -functional -operational -aesthetic -costmaterial - Design process - value and					and
worthiness -	procedure -brainstorming sessions -evaluation -	- case studies – va	alue	esti	mat	ion-
Value analysis	s - Design for value - Selection of alternatives - op	timization – Imple	eme	ntati	ion	
UNIT – III	PRODUCT DEVELOPMENT ECONOMICS			9 Pe	erioo	ls
Elements of	Economics Analysis-Quantitative and qualitation	tive analysis-Eco	nom	nic .	Anal	ysis
Process-Estin	nating magnitude and time of future cash inf	lows and out flo	ows-	Se	nsiti	vity
analysis-Proje	ect trade-offs-Trade-offs rules-Limitation of qu	antitative analys	is- l	Influ	ence	e of
qualitative fac	ctors on project success					
UNIT – IV	CONCEPT OF RELIABILITY			9 Pe	erioo	ls
Introduction:	The study of Reliability and Maintainability, (Concepts, Terms	and	Def	initi	ons,
Applications, The Failure Distribution: The reliability Function, Mean Time to Failure, Hazard						ard
Rate Function, Bath-tub Curve, Conditional Reliability.						
UNIT - V ENGINEERING MATERIALS 9 Periods						ls
Analysis of down time, Report Time Distribution, Stochastic Point Processes, Reliability under					ıder	
Preventive Maintenance, State-Dependent System with Repair, Design for Maintainability.						
Contact Perio	ods:			_	_	
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 F	eriods Total	:45	Per	iods	

1	Harry Peck, "Designing for Manufacture", Pitman Publications, 1983.
2	George E Dieter, "Engineering Design", McGraw-Hill Int Editions, 2017.
3	S.S.Iyer, "Value Engineering", New Age International, 2019.
4	Charles E. Ebeling, "An Introduction to Reliability and Maintainability Engineering", TMH
	2017.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	Mapped	
C01	Apply design concepts for manufacturing, assembly and environment.	K4
CO2	Understand the basic principles and limitations of common	K4
	manufacturing processes and how they affect the manufacturability of a	
	design.	
CO3	Evaluate the influence of economics in product development.	K4
C04	Understand the reliability aspects in design	K4
C05	Gain the knowledge about maintainability analysis.	K4

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	PO3	P04	PO5				
C01	1	1	2	1	2				
C02	-	1	2	1	-				
C03	1	2	3	-	1				
CO4	-	1	2	1	1				
C05	-	-	1	-	-				
23EDPE06	1	1	2	1	1				
1 – Slight, 2 – Moderate, 3 – S	ubstantial								

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

DESIGN OF MACHINE TOOL

Π

PREREQUISI	ТЕЅ	CATEGORY	L	Т	Ρ	С
	NIL	PE	3	0	0	3
Course	1. Selecting the different machine tool mechanis	ms.				
Objectives	2. Designing the Multi speed Gear Box and feed of	drives.				
	3. Designing the machine tool structures.					
	4. Designing the guideways and power screws.					
	5. Designing the spindles and bearings.					
UNIT – I	INTRODUCTION TO MACHINE TOOL DESIGN			9 Pe	rioc	ls
Introduction	to Machine Tool Drives and Mechanisms, Auxi	liary Motions in	Mad	chine	e To	ols,
Kinematics of	Machine Tools, Motion Transmission.	-				
UNIT – II	REGULATION OF SPEEDS AND FEEDS			9 Pe	rioc	ls
Aim of Speed	and Feed Regulation, Stepped Regulation of Spe	eeds, Multiple Spe	ed	Mote	ors,	Ray
Diagrams and	d Design Considerations, Design of Speed Gea	r Boxes, Feed Dr	ives	s, Fe	eed	Box
Design.						
UNIT – III	DESIGN OF MACHINE TOOL STRUCTURES		Ĭ	9 Pe	rioc	ls
Functions of	Machine Tool Structures and their Requirements	s, Design for Strei	ngth	, De	sign	for
Rigidity, Mate	rials for Machine Tool Structures, Machine Tool (Constructional Fea	itur	es, B	eds	and
Housings, Col	umns and Tables, Saddles and Carriage.					
UNIT – IV	DESIGN OF GUIDEWAYS AND POWER SCREW	S		9 Pe	rioc	ls
Functions an	d Types of Guideways, Design of Guideways, 🛛	Design of Aerosta	atic	Slid	e w	ays,
Design of Ant	i-Friction Guideways, Combination Guideways, De	esign of Power Scr	ews			
UNIT – V	DESIGN OF SPINDLES AND SPINDLE SUPPORT	ſ	Ĭ	9 Pe	rioc	ls
Functions of	Spindles and Requirements, Effect of Machine	Tool Compliance	e or	Ma	achir	ning
Accuracy, Des	sign of Spindles, Antifriction Bearings. Dynamics	of Machine Tools	s: M	achi	ne 7	lool
Elastic System	n, Static and Dynamic Stiffness					
Contact Peri	ods:					
Lecture: 45 P	Periods Tutorial: 0 Periods Practical: 0 P	Periods Total	:45	Peri	iods	

REFERENCES:

1	N.K. Mehta, "Machine Tool Design and Numerical Control" TMH, New Delhi, 2010.
2	G.C. Sen and A. Bhattacharya, "Principles of Machine Tools" New Central Book Agency, 2009.
3	D. K Pal, S. K. Basu, "Design of Machine Tools " 5th Edition. Oxford IBH, 2008.
4	Acherkan.N., "Machine Tool Design" Vol. 3 & 4, MIR Publishers, Moscow, 1968.

5 F. Koenigsberger, "Machine Tool Structures" Pergamon Press, 1970.

COUR Upon	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Select the different machine tool mechanisms.	K4
CO2	Design the Multi speed Gear Box and feed drives.	K4
CO3	Design the machine tool structures.	K4
C04	Design the guideways and power screws.	K4
C05	Design the spindles and bearings.	K4

COURSE ARTICULATION MA	COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	P04	PO5						
C01	2	3	3	2	1						
C02	1	2	3	2	1						
C03	1	3	-	1	1						
CO4	-	1	2	-	1						
C05	-	-	3	1	-						
23EDPE07	1	3	3	2	1						
1 – Slight, 2 – Moderate, 3 – S	ubstantial										

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUIS	ITES	CATEGORY	L	Т	Р	С		
	NIL	PE	3	0	0	3		
Course	1. PLM's history, principles, and vocabulary will b	e studied.						
Objectives	2. To have a better understanding of PLM/functio	nality PDM's a	nd f	eatu	res	_		
	3. To comprehend the many modules available in	commercial PI	.M/	PDM	pro	ducts		
	4. To show how PLM/PDM may be used in industr	rial settings.						
	5. PLM/PDM may be used with legacy data bases,	CAx, and ERP s	syst	ems.	_	-		
UNIT – I	HISTORY, CONCEPTS AND TERMINOLOGY OF P	'LM		<u>9 P</u>	erio	ds		
Introduction	to PLM, Need for PLM, opportunities of PLM, Diffe	erent views of	PLN	1 - E	ngin	eering		
Data Manag	ement (EDM), Product Data Management (PDM),	Collaborative	Pro	luct	Defi	nition		
Managemen	t (cPDm), Collaborative Product Commerce (CPC)	, Product Life	cycl	e Ma	anag	ement		
(PLM). PLN	1/PDM Infrastructure – Network and Comm	unications, D	ata	ма	nage	ement,		
Heterogeneo	Dus data sources and applications			0.0		da		
	PLM/PDM FUNCTIONS AND FEATURES			9 P	erio	as		
User Function	ons – Data vault and Document Management, wor	KIIOW and Pro	ces		nage	iment,		
Functions	Communication and Natification data transport	doto tropolotic	ana	geme	ent.	Utility		
runctions -	communication and application integration)11, 1	mag	e se	i vices,		
		NDE		0 0	orio	de		
Case studies	based on ton few commercial PLM/PDM tools -	<u>INE</u> Teomcenter V	Vind	9 r Ichil		IOVIA		
Aras PLM. SA	AP PLM. Arena. Oracle Agile PLM and Autodesk Vau	lt.	v 1110		1, 11	10 1 11,		
UNIT – IV	ROLE OF PLM IN INDUSTRIES			9 P	erio	ds		
Case studies	on PLM selection and implementation (like auto,	aero, electroni	c) -	othe	er po	ossible		
sectors, PLN	1 visioning, PLM strategy, PLM feasibility study	, change man	agei	nent	for	PLM,		
financial jus	tification of PLM, barriers to PLM implementat	ion, ten step	app	roac	h to	PLM,		
benefits of P	LM for-business, organisation, users, product or se	rvice, process	perf	orm	ance)		
UNIT – V	BASICS ON CUSTOMISATION/INTEGRATION O	F PDM/PLM		0 D	orio	de		
	SOFTWARE							
PLM Custon	nization, use of EAI technology (Middleware), Int	tegration with	leg	асу	data	base,		
CAD, SLM an	Id ERP.							
Contact Per	iods:							
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Pe	riods Total:	45	Peri	ods			

REFERENCES:

1 Max Giordano, Luc Mathieu, Francois Villeneuve, "Product Lifecycle Management", Wiley".

John Stark, "Product Lifecycle Management, Vol.1", 2015.
 John Stark, "Product Lifecycle Management, Vol.2", 2015.

4 Michael Grieves, "Product Lifecycle Management", McGraw Hill, 2005.

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Summarize the history, concepts and terminology of PLM.	K4
CO2	Use the functions and features of PLM/PDM.	K4
CO3	Use different modules offered in commercial PLM/PDM tools.	K4
CO4	Implement PLM/PDM approaches for industrial applications.	K4
C05	Integrate PLM/PDM with legacy data bases, CAx& ERP systems.	K4

COURSE ARTICULATION MA	COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	P04	PO5						
C01	1	1	2	1	1						
C02	-	1	1	-	-						
C03	1	1	2	1	1						
CO4	-	-	1	2	1						
C05	-	-	2	1	-						
23EDPE08	1	1	2	1	1						
1 – Slight, 2 – Moderate, 3 – S	ubstantial										

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISITES CATEGORY L T P C										
	0	0	3							
	1. To understand the basic concepts of unconstrained optimization techniques. 2. To understand the basic concepts of constrained optimization techniques									
Course Objectives	 Course Objectives a. To provide the mathematical foundation of artificial neural networks and swarm intelligence for design problems. b. To implement optimization approaches and to select appropriate solution for design application. c. To demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in static and demonstrate selected optimization algorithms commonly used in s									
UNIT – I	UNCONSTRAINED OPTIMIZATION TECHNIQU	ES		9	Per	iods				
Introduction their classifi unconstrained Interpolation	to optimum design - General principles of optim cations - Single variable and multivariable d minimization – Golden section, Random, patter methods	ization – Prob optimization n and gradient	lem n, 1 t sea	forr Fech arch	nula niqu metl	tion & es of hods –				
UNIT – II	CONSTRAINED OPTIMIZATION TECHNIQUES			9	Per	iods				
Optimization penalty functi	with equality and inequality constraints - Direct n ons, Lagrange multipliers - Geometric programmi	nethods – Indi ing.	rect	met	hods	using				
UNIT – III	ARTIFICIAL NEURAL NETWORKS A INTELLIGENCE	ND SWAR	RM	9	Per	iods				
Introduction Single layer applications. Swarm intell optimization.	 Activation functions, types of activation functio feed forward network, multilayer feed forw igence - Various animal behaviors, Ant Colon 	ns, neural netw vard network y optimization	vorł , Ne n, P	k arc eura Partio	hiteo l ne cle S	ctures, twork Swarm				
ÚNIT – IV	ADVANCED OPTIMIZATION TECHNIQUES			9	Per	iods				
Multi stage o optimization,	ptimization – dynamic programming; stochasti Genetic algorithms and Simulated Annealing tech	c programmir nique.	ng; İ	Mult	i obj	ective				
UNIT – V	STATIC AND DYNAMIC APPLICATIONS			9	Peri	iods				
Structural ap loaded memb Design of spr systems, vibr mechanisms. Contact Perio Lecture: 45 F	plications – Design of simple truss members – D ers for minimum cost, weight – Design of shafts ings. Dynamic Applications – Optimum design of ation absorbers. Application in Mechanisms – Op ods: Periods Tutorial: 0 Periods Practical: 0 P	esign of simpl and torsional of single, two ptimum design eriods To	le ax load degr n of tal:4	xial, led 1 ree (simj 45 P	tran nem of fre ple li	sverse bers – eedom inkage ds				
REFERENCES:										

1	Golaberg, Davia.E, Genetic Algorithms in Search, Optimization and Machine Learning,					
	Pearson, 2009.					
2	Jang, J.S.R, Sun, C.T and Mizutani E., "Neuro-Fuzzy and Soft Computing ", Pearson					
	Education.2015.					
3	Johnson Ray, C., "Optimum design of mechanical elements", Wiley, 2nd Edition 1980.					
4	Kalyanmoy Deb, "Optimization for Engineering Design: Algorithms and Examples", PHI					
	Learning Private Limited, 2nd Edition, 2012.					
5	RaoSingiresu S., "Engineering Optimization - Theory and Practice", New Age International					
	Limited, New Delhi, 3rd Edition, 2013.					
6	Rajasekaran S and VijayalakshmiPai, G.A, "Neural Networks, Fuzzy Logic and Genetic					
	Algorithms", PHI, 2011.					

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Formulate unconstrained optimization techniques in engineering	K4
	design application.	
CO2	Formulate constrained optimization techniques for various application.	K4
CO3	Implement neural network technique to real world design problems.	K4
C04	Apply genetic algorithms to combinatorial optimization problems.	K4
C05	Evaluate solutions by various optimization approaches for a design	K4
	problem.	

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05			
C01	1	1	3	1	1			
CO2	-	1	2	-	-			
CO3	1	1	1	2	1			
CO4	1	-	-	-	-			
CO5	1	1	2	1	-			
23EDPE09	1	1	2	1	1			
1 – Slight, 2 – Moderate, 3 – Si	ubstantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	1.Learn characteristics and classification of Biomaterials								
Objectives	2.Understand different metals, ceramics and its nano materials charac	cteristics as							
	biomaterials								
	3.Learn polymeric materials and its combinations that could be used a	as a tissue							
	replacement implants								
	4.Get familiarized with the concepts of Nano Science and Technology								
	5.Understand the concept of biocompatibility and the methods for biomaterials								
	testing.								
UNIT – I	INTRODUCTION	8 Periods							
Definition of	of biomaterials, requirements & classification of biomaterials, Co	mparison of							
properties of	of some common biomaterials. Effects of physiological fluid on the	properties of							
biomaterials	s. Biological responses (extra and intra-vascular system). Surface	properties of							
materials, pl	hysical properties of materials, mechanical properties.								
UNIT – II	METALLIC IMPLANT MATERIALS	7 Periods							
Metallic imp	plants – Stainless steels, co-based alloys, Ti-based alloys, shape m	nemory alloy,							
nanostructu	red metallic implants, degradation and corrosion, ceramic implant	: – bio inert,							
biodegradab	ble or bioresorbable, bioactive ceramics, nanostructured bio ceramics.								
UNIT – III	POLYMERIC IMPLANT MATERIALS	10 Periods							
Polymerizat	ion, factors influencing the properties of polymers, polymers as	biomaterials,							
biodegradab	ole polymers, Bio polymers: Collagen, Elastin and chitin. Medical Texti	les, Materials							
for ophthaln	nology: contact lens, intraocular lens. Membranes for plasma separati	on and Blood							
oxygenation	, electro spinning: a new approach.								
UNIT – IV	CERAMIC IMPLANT MATERIALS	10 Periods							
Definition of	f bio ceramics. Common types of bio ceramics: Aluminum oxides, Gl	ass ceramics,							
Carbons. Bio	presorbable and bioactive ceramics. Importance of wear resistance and	l low fracture							
toughness. H	Host tissue reactions: importance of interfacial tissue reaction. Comp	osite implant							
materials: N	Mechanics of improvement of properties by incorporating differe	ent elements.							
Composite t	heory of fiber reinforcement (short and long fibers, fibers pull out). Pe	olymers filled							
with osteoge	enic fillers (e.g., hydroxyapatite). Host tissue reactions.								
UNIT – V	TESTING OF BIOMATERIALS	10 Periods							
Biocompatik	bility, blood compatibility and tissue compatibility tests, Toxicity tests,	sensitization,							
carcinogenic	city, mutagenicity and special tests, Invitro and In vivo testing; St	erilization of							
implants and	d devices: ETO, gamma radiation, autoclaving. Effects of sterilization.								
Contact Per	riods:								
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods Total:4	5 Periods							

1	Biomaterials Science: An Introduction to Materials in Medicine, By Buddy D. Ratner, et. al.
	Academic Press, San Diego, 1996.
2	Sujata V. Bhat, Biomaterials, Narosa Publishing House, 2002.
3	J B Park, Biomaterials - Science and Engineering, Plenum Press, 1984.
4	Sree ram Ramakrishna, MuruganRamalingam, T. S. Sampath Kumar, and Winston O. Soboyejo,
	Biomaterials: A Nano Approach, CRC Press, 2010
5	Myer Kutz, Standard Handbookof Biomedical Engineering and Design, McGraw Hill,2003.
6	Joseph J.Carr and John M Brown, Introduction To Biomedical Equipment Technology,
	4/E, pearson education India, 2001.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Analyze different types of Biomaterials and its classification and apply	K4
	the concept of nanotechnology towards biomaterials use.	
CO2	Identify significant gap required to overcome challenges and further	K4
	development in metallic and ceramic materials.	
CO3	Create combinations of materials that could be used as a tissue	K4
	replacement implant.	
C04	apply the testing standards for biomaterials.	K4
C05	Identify significant gap required to overcome challenges and further	K4
	development in polymeric materials.	

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
C01	2	1	2	1	-			
CO2	-	1	1	2	1			
CO3	1	1	-	2	1			
CO4	2	1	1	1	-			
CO5	2	1	1	2	1			
23EDPE10	2	1	1	2	1			
1 – Slight, 2 – Moderate, 3 – S	ubstantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE11	
LJEDFEII	

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

	1. The student will understand the principle of force and strain mea	isurement.
Course	2. The student will understand the vibration measurement and their	r applications.
Objectives	3. To impart knowledge on the principle behind acoustics and wind	flow
Objectives	measurements.	
	4. To familiarize with the distress measurements.	
	5. To realize the non-destructive testing principle and application.	
UNIT – I	FORCES AND STRAIN MEASUREMENT	9 Periods
Strain gauge	e, principle, types, performance and uses. Photo elasticity -	Principle and
applications	- Moire Fringe - Hydraulic jacks and pressure gauges - Electron	ic load cells -
Proving Ring	s – Calibration of Testing Machines.	
UNIT – II	VIBRATION MEASUREMENTS	9 Periods
Characteristi	cs of Structural Vibrations – Linear Variable Differential Transfor	mer (LVDT) –
Transducers	for velocity and acceleration measurements. Vibration meter - S	eismographs –
Vibration Ana	alyzer – Display and recording of signals – Cathode Ray Oscilloscope	e – XY Plotter –
Chart Plotter	s – Digital data Acquisition systems.	
UNIT –III	ACOUSTICS AND WIND FLOW MEASUREMENTS	9 Periods
UNIT –III Principles of	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound	9 Periods level meter –
UNIT –III Principles of venturimeter	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys	9 Periods l level meter – is – structural
UNIT –III Principles of venturimeter modelling – d	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys lirect and indirect model analysis.	9 Periods l level meter – is – structural
UNIT -III Principles of venturimeter modelling - d UNIT -IV	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys lirect and indirect model analysis. DISTRESS MEASUREMENTS	9 Periods l level meter – is – structural 9 Periods
UNIT -III Principles of venturimeter modelling - d UNIT -IV Diagnosis of	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys lirect and indirect model analysis. DISTRESS MEASUREMENTS distress in structures – crack observation and measurements –	9 Periods l level meter – is – structural 9 Periods - corrosion of
UNIT -III Principles of venturimeter modelling - d UNIT -IV Diagnosis of reinforcemer	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys lirect and indirect model analysis. DISTRESS MEASUREMENTS distress in structures – crack observation and measurements - ant in concrete – Half-cell, construction and use – damage assessment	9 Periods 1 level meter – is – structural 9 Periods – corrosion of nt – controlled
UNIT -III Principles of venturimeter modelling - d UNIT -IV Diagnosis of reinforcemen blasting for d	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys lirect and indirect model analysis. DISTRESS MEASUREMENTS distress in structures – crack observation and measurements – at in concrete – Half-cell, construction and use – damage assessment emolition.	9 Periods l level meter – is – structural 9 Periods – corrosion of nt – controlled
UNIT –III Principles of venturimeter modelling – d UNIT –IV Diagnosis of reinforcemer blasting for d UNIT – V	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys lirect and indirect model analysis. DISTRESS MEASUREMENTS distress in structures – crack observation and measurements – at in concrete – Half-cell, construction and use – damage assessment emolition. NON-DESTRUCTIVE TESTING METHODS	9 Periods l level meter – is – structural 9 Periods - corrosion of nt – controlled 9 Periods
UNIT -III Principles of venturimeter modelling - d UNIT -IV Diagnosis of reinforcemer blasting for d UNIT - V Load testing	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys lirect and indirect model analysis. DISTRESS MEASUREMENTS distress in structures – crack observation and measurements – at in concrete – Half-cell, construction and use – damage assessment emolition. NON-DESTRUCTIVE TESTING METHODS on structures, buildings, bridges and towers – Rebound Hamn	9 Periods l level meter – is – structural 9 Periods - corrosion of nt – controlled 9 Periods mer – acoustic
UNIT -III Principles of venturimeter modelling - d UNIT -IV Diagnosis of reinforcemer blasting for d UNIT - V Load testing emission - t	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys lirect and indirect model analysis. DISTRESS MEASUREMENTS distress in structures – crack observation and measurements – at in concrete – Half-cell, construction and use – damage assessment emolition. NON-DESTRUCTIVE TESTING METHODS on structures, buildings, bridges and towers – Rebound Hamn ultrasonic testing principles and application – Holography – us	9 Periods l level meter – is – structural 9 Periods - corrosion of nt – controlled 9 Periods ner – acoustic e of laser for
UNIT -III Principles of venturimeter modelling - d UNIT -IV Diagnosis of reinforcemer blasting for d UNIT - V Load testing emission - u structural tes	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys lirect and indirect model analysis. DISTRESS MEASUREMENTS distress in structures – crack observation and measurements – at in concrete – Half-cell, construction and use – damage assessment emolition. NON-DESTRUCTIVE TESTING METHODS on structures, buildings, bridges and towers – Rebound Hamm ultrasonic testing principles and application – Holography – us sting –Brittle coating.	9 Periods l level meter – is – structural 9 Periods - corrosion of nt – controlled 9 Periods ner – acoustic e of laser for
UNIT -III Principles of venturimeter modelling - d UNIT -IV Diagnosis of reinforcemer blasting for d UNIT - V Load testing emission - u structural tes Contact Peri	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys lirect and indirect model analysis. DISTRESS MEASUREMENTS distress in structures – crack observation and measurements – at in concrete – Half-cell, construction and use – damage assessment emolition. NON-DESTRUCTIVE TESTING METHODS on structures, buildings, bridges and towers – Rebound Hamn ultrasonic testing principles and application – Holography – us sting –Brittle coating. ods:	9 Periods l level meter – is – structural 9 Periods - corrosion of nt – controlled 9 Periods ner – acoustic e of laser for
UNIT -III Principles of venturimeter modelling - d UNIT -IV Diagnosis of reinforcemer blasting for d UNIT - V Load testing emission - u structural tess Contact Peri Lecture: 45 J	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound and flow meters – wind tunnel and its use in structural analys lirect and indirect model analysis. DISTRESS MEASUREMENTS distress in structures – crack observation and measurements – at in concrete – Half-cell, construction and use – damage assessment emolition. NON-DESTRUCTIVE TESTING METHODS on structures, buildings, bridges and towers – Rebound Hamn altrasonic testing principles and application – Holography – us sting –Brittle coating. Ods: Periods Tutorial: 0 Periods Practical: 0 Periods Total:4	 9 Periods level meter – is – structural 9 Periods - corrosion of nt – controlled 9 Periods 9 Periods ner – acoustic e of laser for 45 Periods
UNIT -III Principles of venturimeter modelling - d UNIT -IV Diagnosis of reinforcemer blasting for d UNIT - V Load testing emission - u structural tes Contact Peri Lecture: 45 I	ACOUSTICS AND WIND FLOW MEASUREMENTS Pressure and flow measurements – pressure transducers – sound c and flow meters – wind tunnel and its use in structural analys birect and indirect model analysis. DISTRESS MEASUREMENTS distress in structures – crack observation and measurements – ot in concrete – Half-cell, construction and use – damage assessmentemolition. NON-DESTRUCTIVE TESTING METHODS on structures, buildings, bridges and towers – Rebound Hammultrasonic testing principles and application – Holography – useting –Brittle coating. ods: Periods Tutorial: 0 Periods Practical: 0 Periods Total:4	 9 Periods level meter – is – structural 9 Periods – corrosion of nt – controlled 9 Periods 9 Periods ner – acoustic e of laser for 45 Periods

1	Bray Don E and Stanley, R. K., "Non-destructive Evaluation", McGraw Hill Publishing
	Company,N.Y.1989
2	Garas, F.K., Clarke, J.L and Armer GST, "Structural assessment",Butterworths, London, 1987
3	James W. Dally and William Franklin Riley, "Experimental Stress Analysis", McGraw Hill , 3rd
	Edition, 1991
4	Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2009.
5	Srinath LS, Raghavan Mr, Lingaiah K, Gargesha G, Pant B and Ramachandra, K, "
	Experimental Stress Analysis", Tata McGraw Hill Company, New Delhi, 1984.

COUR Upon	COURSE OUTCOMES: Upon completion of the course, the students will be able to:		
C01	Measure physical quantities such as forces and strains.	K4	
CO2	Apply different vibration measurements techniques.	K4	
CO3	Measure physical quantities such as pressure and flow.	K4	
CO4	Apply techniques involved in crack measurement.	K4	
CO5	Select the appropriate non-destructive testing methods for various	K4	
	engineering applications.		

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05			
601	1		1	1				
	1	-	1	1	-			
CO2	1	1	2	-	-			
CO3	1	-	2	1	-			
CO4	1	1	1	-	1			
CO5	1	1	2	1	-			
23EDPE11	1	1	2	1	1			
1 – Slight, 2 – Moderate, 3 – S	Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objectives	To impart knowledge in vibration control and use condition techniques for machineries.	on monitoring					
UNIT – I	INTRODUCTION	9 Periods					
Review of fun	Review of fundamentals of single degree freedom systems – Two-degree freedom systems, Multi						
Degree Freed	om systems, Continuous systems, Determination of Natural frequen	ncies and mode					
shapes, Nume	erical methods in vibration Analysis.						
UNIT – II	VIBRATION CONTROL	9 Periods					
Introduction	 Reduction of vibration at the source – control of vibration – by st 	ructural design					
– Material se	lection – Localized additions – Artificial damping – Resilient isola	tion, Vibration					
isolation, Vib	ration absorbers.						
UNIT – III	ACTIVE VIBRATION CONTROL	9 Periods					
Introductions	s – Concepts and applications, Review of smart materials – Types and	d characteristic					
review of sma	art structures – Characteristic Active vibration control in smart struc	ctures.					
UNIT – IV	CONDITION BASED MAINTENANCE PRINCIPLES AND	9 Periods					
	APPLICATIONS						
Introduction	- condition monitoring methods - The design of Information system	stem, Selecting					
method of mo	onitoring, Machine condition monitoring and diagnosis – Vibration s	everity criteria					
– Machine M	aintenance Techniques – Machine condition monitoring techniqu	ies – Vibration					
monitoring te	chniques – Instrumentation systems – choice of monitoring parame	ter.					
UNIT – V	DYNAMIC BALANCING AND ALLIGNMENT OF MACHINERY	9 Periods					
Introduction-	Dynamic balancing of Rotors-Field Balancing in one plane-Two	planes and in					
several plan	es-Machinery alignment-Rough alignment methods-The face p	eripheral dial					
indicator met	hod- Reverse indicator method-shaft-to coupling spool method.						
Contact Peri	ods:						
Lecture: 45 F	Periods Tutorial: 0 Periods Practical:0Periods Tot	al:45 Periods					

1	S S. Rao. "MechanicalVibration" Sixth Edition, Pearson Education-2018
2	Rao J.S. "Vibratory Condition Monitoring of Machines" CRC Press. 2000.
3	A. Davies, "Hand book of Condition Monitoring" Springer - 2012
4	Daniel J. Inman, "Vibration with Control" , Willey Publication - 2017
5	Thomson W.T, Marie Dillon Dahleh, "Theory of Vibrations with Applications", Prentice Hall,

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Obtain vibration characteristics of mechanical systems	K4
CO2	Control vibration using active and passive control techniques	K4
CO3	Design and develop dynamically balanced systems with condition monitoring setup.	K4
CO4	Evaluate the maintenance and applications of vibration control	K4
C05	Obtain the techniques of dynamic balancing of vibration	K4

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
C01	1	2	1	1	1			
CO2	1	1	2	-	-			
C03	-	1	1	1	-			
CO4	1	-	-	2	1			
C05	-	-	-	-	1			
23EDPE12	1	1	1	1	1			
1 – Slight, 2 – Moderate, 3 – S	ubstantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

VEHICLE DYNAMICS

III

DDEDEUIISI	TES	CATECODY	T	т	D	<u> </u>	
FREREQUISI	NII		<u>г</u> 3	1	r O	<u>เ</u> ว	
	NIL	16	3	U	U	3	
Course1. Apply and develop mathematical model of a system. 2. Applying vehicular vibrations and response of vehicle. 3. Applying a tire model based on required performance. 4. Applying the various vehicle performances, control methodologies to ensure stability and ride comfort. 5. Applying the principles vertical, longitudinal and lateral dynamics vehicle design							
UNIT – I	BASIS OF VIBRATION			9 Pe	rio	ls	
Definitions, M	odeling and Simulation, Global and Vehicle Coord	linate System, Fre	e, Fo	orce	d,		
Undamped a	nd Damped Vibration, Response Analysis of Si	ngle DOF, Two D	OF,	Mu	lti D	OOF,	
Magnification	factor, Transmissibility, Vibration absorber, V	ibration measuri	ng i	nstr	ume	nts,	
Torsional vib	ration, Critical speed.						
UNIT – II	TYRES			9 Pe	rioc	ls	
Tyre forces an	nd moments, Tyre structure, Longitudinal and Lat	eral force at vario	us s	lip			
angles, rolling	g resistance, Tractive and cornering property of	tyre. Performance	e of	tyre	on	wet	
surface. Ride	property of tyres. Magic formulae tyre model, Est	imation of tyre ro	ad f	ricti	on. '	Гest	
On Various Ro	oad surfaces. Tyre vibration.						
UNIT – III	VERTICAL DYNAMICS			9 Pe	rioc	ls	
Human respo	nse to vibration, Sources of Vibration. Design, and	alysis and comput	er s	imul	atio	n of	
Influence of s	-active allu Active suspension damping and two	al, lidii cai allu	lla	Cal v for		uei. рц	
Infinito Slavh	aspension summess, suspension damping, and type	e sumess. comu c	llav	v 101	цŲ	IX, 11	
IINIT – IV	IONCITUDINAL DVNAMICS AND CONTROL	oper des		Q Pe	rio	lc	
Aerodynamic	forces and moments Equation of motion Tyre fo	rces rolling resist	anc		ad	15	
distribution f	or three-wheeler and four-wheeler. Calculation of	f Maximum accele	ratio	n F	leac	tion	
forces for Dif	Ferent drives Braking and Driving torque Predic	tion of Vehicle ne	rfor	man	ce /	ABS	
stability contr	ol. Traction control. Case Studies	cion or veniere pe				120,	
UNIT – V	LATERAL DYNAMICS			9 Pe	rio	is	
Steady state h	andling characteristics. Steady state response to	steering input. Te	sting	^z of			
handling chai	acteristics. Transient response characteristics. I	Direction control	of v	ehic	les.	Roll	
center, Roll a	xis, Vehicle under side forces. Stability of vehicle	on banked road a	and	duri	ng t	urn.	
Effect of susp	Effect of suspension on cornering.						
Contact Peri	ods:						
Lecture: 45 F	Periods Tutorial: 0 Periods Practical:0	Periods Total	:45	Peri	iods		
REFERENCES:							

1	Singiresu S. Rao, "Mechanical Vibrations (5th Edition)", Prentice Hall, 2012.
2	G. NakhaieJazar, "Vehicle Dynamics: Theory and Application", Springer, 2008
3	Rajesh Rajamani, "Vehicle Dynamics and Control", Springer, 2005
4	J. Y. Wong, "Theory of Ground Vehicles", 4th Edition, Wiley-Interscience, 2008
5	Thomas D. Gillespie, "Fundamentals of Vehicle Dynamics", Society of Automotive Engineers
	Inc, 1992.

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Formulate and develop mathematical model of a system.	K4
CO2	Apply vehicular vibrations and response of vehicle.	K4
CO3	Create a tire model based on required performance.	K4
C04	Predict vehicle performance, control methodologies to ensure stability	K4
	and ride comfort.	
CO5	Apply vertical, longitudinal and lateral dynamics vehicle design.	K4

COURSE ARTICULATION MA	TRIX				
COs/POs	P01	PO2	PO3	P04	PO5
C01	2	1	2	1	-
CO2	-	1	1	2	1
CO3	1	1	-	2	1
CO4	2	1	1	1	-
CO5	2	1	1	2	1
23EDPE13	2	1	1	2	1
1 – Slight, 2 – Moderate, 3 – Si	ubstantial				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE14 ENGINEERING FRACTURE MECHANICS FOR DESIGN

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

	1.Formulation of governing equations for elastic problems 2 Stresses calculations /displacements around the crack tip for diffe	rent modes of
	fracture	Tent modes of
Course	3 Estimation of K1c/SIE/critical flaws/failure stresses for di	fferent crack
Objectives	geometries	nerent erack
	4 Life assessment of the cracked components under differ	ent types of
	repeated /variable fatigue loads and design for its life extension	ent types of
	5 Analysis of failed engineering components under different modes	of fracture
UNIT – I	ELEMENTS OF SOLID MECHANICS	9 Periods
Introduction	to Failure and Fracture- Spectacular Failures-Basics Princip	les-Governing
equations for	the deformable body-Stress-Strain relations and general equations	of elasticity in
Cartesian an	d Polar Coordinates-vectors and tensors-differential equations of	f equilibrium-
compatibility	-boundary conditions-representation of three-dimensional stre	ss system -
generalized l	nook's law- plane stress and stain problems - Airy's stress functio	n. Methods of
formulation	of Governing. Differential equations for plane elasticity-Navio	ers Equation-
Biharmonic e	quation in Cartesian and polar coordinates.	-
UNIT – II	STRESS AND DISPLACEMENT AROUND THE CRACK TIP FOR	9 Periods
	DIFFERENT MODES OF FRACTURE	
Brittle and D	uctile Fracture-Modes of Fracture-Weakness of the components due	to Flaws-Need
for Linear E	lastic Fracture Mechanics (LEFM) – Evaluation of Structural Desi	gn-Stress and
displacement	around the crack tip in K-annulus for Mode-I and Mode-II plane cra	ck problems –
Stress and dia	splacement around the crack tip in K-annulus for Mode III crack prob	lems.
UNIT – III	STATIONARY CRACK UNDER STATIC LOADING	9 Periods
Griffith analy	rsis- Irwin's approximation-CTOD and stress ahead of the crack tip	· Westergaard
solutions: An	alytical Calculations for SIF for different crack geometries-Critical cra	ack length and
fracture stres	ss calculations. Two dimensional elastic fields – Analytical solutions	for small scale
yielding near	r a crack front -plastic zone size -Specimen size calculations: K1	c Testing for
Fracture toug	hness of the Material.	
UNIT – IV	FATIGUE FAILURE AND ENVIRONMENTAL-ASSISTED	9 Periods
	FRACTURE	
Introduction	To fatigue failure-S-N Curve-Crack Initiation-Crack propagation-	Effect Of an
Overload-Vai	Table amplitude Fatigue load-Crack closure- Characteristics of fatig	ue crack-Paris
Law- Fatigue	Crack Growth Test to evaluate Paris constants- life calculations fo	r a given load
amplitude –	effects of changing the load spectrum Environmental-assisted F	racture-Micro
mechanisms-	factors influencing Environmental-assisted fracture-Environment-as	sisted Fatigue
Failure affect	ing fatigue performance, fatigue loading, constant and variable ampli	tude loading.
$\frac{\mathbf{UNII} - \mathbf{V}}{\mathbf{UNII} - \mathbf{V}}$	APPLICATIONS OF FRACTORE MECHANICS	9 Periods
J-Integral, Mi	xed-mode fracture, Urack arrest methodologies- Lase studies: Ana	lysis on falled
Contact De-	anu uesign for the extension of its life.	
Locturo 45	uus. Dariads Tutarial: A Pariads Dractical:ADariads Tatal:A	5 Poriode
Lecture: 45	rerious rutoriai, o rerious rratticai; o rerious rotal;4	5 renous
DEFEDENCE	ς.	

1	Ted L. Anderson, "Fracture Mechanics: Fundamentals and Applications", CRC Taylor and
	Francis, 4th Edition, 2017.
2	TribikramKundu, "Fundamentals of Fracture Mechanics", Ane Books Pvt. Ltd. New
	Delhi/CRC Press, 1st Indian Reprint, 2012.
3	John M.Barson And StanelyT.Rolfe, "Fatigue And fracture control in
	structures",Butterworth-Heinemann; 3rd edition. 1999.

4 Prashant Kumar, **"Elements Of Fracture Mechanics"**, Tata McGraw-Hill Publishing Company Ltd, 2014.

5 KareHellan, "Introduction of Fracture Mechanics", McGraw-Hill Book Company, 1985.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Formulate governing equation for elastic problems	K4
CO2	Calculate stresses/displacements around the crack tip for different modes of fracture	K4
CO3	Estimate K1c/SIF/critical flaws/failure stresses for different crack geometries	K4
C04	Assess the life of the cracked components under different types of repeated/variable fatigue loads and design for its life extension.	K4
C05	Analyze failed engineering components under different modes of fracture.	K4

COURSE ARTICULATION MA	TRIX				
COs/POs	P01	PO2	PO3	P04	P05
C01	-	1	-	1	1
CO2	2	2	1	-	-
CO3	-	1	2	1	-
CO4	1	1	1	-	-
CO5	1	-	2	1	1
23EDPE14	1	1	2	1	1
1 – Slight, 2 – Moderate, 3 – Si	ubstantial				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

WEARABLE DEVICES AND TECHNOLOGIES

PREREQUISITES	CATEGORY	L	Т	Ρ	C
NIL	PE	3	0	0	3

	1 Identify the need for development of wearable devices and its	implications on
	2 Comprehend the design and development of various wearable	inertial sensors
	and wearable bioelectrode and physiological activity monitoring d	evices for use in
Course	healthcare applications.	
Objectives	3. To impart the importance of smart sensors, sensor interface	e standards for
objectives	wearable device applications and to provide a brief overview of	of the wearable
	technology and its impact on social life.	• • • • • • • • • • • • • •
	4. To provide the basic understanding of measurement and b	instrumentation
	5. To introduce the concent of the reactive sensors and self-gen	orating concore
	and its applications in real life	lerating sensors
UNIT – I	INTRODUCTION TO WEARABLE DEVICES	9 Periods
Motivation 1	for development of Wearable Devices, The emergence of wearable	computing and
wearable el	ectronics, Types of wearable sensors:Invasive, Non-invasive;Inte	lligent clothing,
Industry se	ectors' overview – sports, healthcare, Fashion and entertain	ment, military,
environmen	t monitoring, mining industry, public sector and safety.	
UNIT – II	WEARABLE INERTIAL SENSORS	9 Periods
Wearable In	ertial Sensors - Accelerometers, Gyroscopic sensors and Magnetic se	ensors; Modality
of Measure	ement- Wearable Sensors, Invisible Sensors, In-Shoe Force	and Pressure
Measuremen	it; Applications: Fall Risk Assessment, Fall Detection, Gait Analys	sis, Quantitative
Evaluation	of Hemiplegic and Parkinson's, Physical Activity monitoring: H	luman Kinetics,
	vity, chergy experiation emeasurement. Pedometers, Actigraphs.	
	SCOPE OF WEARARI F DEVICES	9 Periods
UNIT – III Role of Wea	SCOPE OF WEARABLE DEVICES rables Attributes of Wearables. The Meta Wearables – Textiles and	9 Periods
Role of Wea Aspects: Internet	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics. Adoption of Innovation. On-Body Interact	9 Periods l clothing, Social ion: Case Study:
Role of Wea Aspects: Inte Google Glass	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact , health monitoring, Wearables: Challenges and Opportunities, Futu	9 Periods l clothing, Social ion; Case Study: re and Research
Role of Wea Aspects: Inte Google Glass Roadmap.	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Futu	9 Periods l clothing, Social ion; Case Study: re and Research
UNIT – III Role of Wea Aspects: Int Google Glass Roadmap. UNIT – IV	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact , health monitoring, Wearables: Challenges and Opportunities, Futur INTRODUCTION TO MEASUREMENTS AND SENSORS	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods
UNIT - III Role of Wea Aspects: Int Google Glass Roadmap. UNIT - IV Functional F	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Future INTRODUCTION TO MEASUREMENTS AND SENSORS Clements of a Measurement System and Instruments, Applications and	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification
UNIT - III Role of Wea Aspects: Inte Google Glass Roadmap. UNIT - IV Functional F of Instrume	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Futu INTRODUCTION TO MEASUREMENTS AND SENSORS Clements of a Measurement System and Instruments, Applications an nts, Types of measured Quantities, Measures of Dispersion, Sample	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and
UNIT – III Role of Wea Aspects: Int Google Glass Roadmap. UNIT – IV Functional E of Instrume sample mea	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Future INTRODUCTION TO MEASUREMENTS AND SENSORS Elements of a Measurement System and Instruments, Applications and nts, Types of measured Quantities, Measures of Dispersion, Samplin, Units and standards, Calibration and errors. General concepts and	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and d terminology of
UNIT - III Role of Wea Aspects: Int Google Glass Roadmap. UNIT - IV Functional F of Instrume sample mea Sensor syst	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Future INTRODUCTION TO MEASUREMENTS AND SENSORS Elements of a Measurement System and Instruments, Applications an nts, Types of measured Quantities, Measures of Dispersion, Sampl n, Units and standards, Calibration and errors. General concepts and cemes, Transducers classification-sensors and actuators, General	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and d terminology of al input-output
UNIT - III Role of Wea Aspects: Int Google Glass Roadmap. UNIT - IV Functional F of Instrume sample mea Sensor syst configuratio	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Futu INTRODUCTION TO MEASUREMENTS AND SENSORS Elements of a Measurement System and Instruments, Applications an nts, Types of measured Quantities, Measures of Dispersion, Sampl n, Units and standards, Calibration and errors. General concepts and rems, Transducers classification-sensors and actuators, General ns, Static and dynamic characteristics of measurement system.	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and d terminology of al input-output
UNIT - IIIRole of WeaAspects: IntGoogle GlassRoadmap.UNIT - IVFunctional Eof Instrumesample meaSensor systconfiguratioUNIT - VPasiating as	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Future INTRODUCTION TO MEASUREMENTS AND SENSORS Clements of a Measurement System and Instruments, Applications and nts, Types of measured Quantities, Measures of Dispersion, Samplin, Units and standards, Calibration and errors. General concepts and tems, Transducers classification-sensors and actuators, General ns, Static and dynamic characteristics of measurement system. RESISTIVE AND REACTIVE SENSORS	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and d terminology of al input-output 9 Periods
UNIT - III Role of Wea Aspects: Int Google Glass Roadmap. UNIT - IV Functional F of Instrume sample mea Sensor syst configuratio UNIT - V Resistive se datactors (0)	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Futu INTRODUCTION TO MEASUREMENTS AND SENSORS Elements of a Measurement System and Instruments, Applications an nts, Types of measured Quantities, Measures of Dispersion, Sampl n, Units and standards, Calibration and errors. General concepts and tems, Transducers classification-sensors and actuators, General ns, Static and dynamic characteristics of measurement system. RESISTIVE AND REACTIVE SENSORS nsors- Potentiometers, strain gages (piezo-resistive effect), resisti TD) thermistors, magneto, resistors, light, dependent, resistor, light, light, light, light, light, light, ligh	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and d terminology of al input-output 9 Periods ive temperature (LDP) recisive
UNIT – III Role of Wea Aspects: Int Google Glass Roadmap. UNIT – IV Functional E of Instrume sample mea Sensor syst configuratio UNIT – V Resistive se detectors (I	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Futu INTRODUCTION TO MEASUREMENTS AND SENSORS Clements of a Measurement System and Instruments, Applications an nts, Types of measured Quantities, Measures of Dispersion, Sampl n, Units and standards, Calibration and errors. General concepts and tems, Transducers classification-sensors and actuators, General ns, Static and dynamic characteristics of measurement system. RESISTIVE AND REACTIVE SENSORS nsors- Potentiometers, strain gages (piezo-resistive effect), resisti XTD), thermistors, magneto resistors, light dependent resistor (9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and d terminology of al input-output 9 Periods ive temperature (LDR), resistive sors Hall effect
UNIT - III Role of Wea Aspects: Int Google Glass Roadmap. UNIT - IV Functional F of Instrume sample mea Sensor syst configuratio UNIT - V Resistive se detectors (I hygrometer: Eddy currer	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Futu INTRODUCTION TO MEASUREMENTS AND SENSORS Elements of a Measurement System and Instruments, Applications and nts, Types of measured Quantities, Measures of Dispersion, Samplen, Units and standards, Calibration and errors. General concepts and tems, Transducers classification-sensors and actuators, General ns, Static and dynamic characteristics of measurement system. RESISTIVE AND REACTIVE SENSORS nsors- Potentiometers, strain gages (piezo-resistive effect), resisti XTD), thermistors, magneto resistors, light dependent resistor (s, resistive gas sensors. Inductive sensors - variable reluctance sensut sensors - Linear variable differential transformers (LVDT) variable	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and d terminology of al input-output 9 Periods ive temperature (LDR), resistive sors, Hall effect, le transformers
UNIT - III Role of Wea Aspects: Int Google Glass Roadmap. UNIT - IV Functional F of Instrume sample mea Sensor syst configuratio UNIT - V Resistive se detectors (I hygrometer: Eddy currer magneto-ela	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Futu INTRODUCTION TO MEASUREMENTS AND SENSORS Clements of a Measurement System and Instruments, Applications an nts, Types of measured Quantities, Measures of Dispersion, Sampl n, Units and standards, Calibration and errors. General concepts and tems, Transducers classification-sensors and actuators, Genera ns, Static and dynamic characteristics of measurement system. RESISTIVE AND REACTIVE SENSORS nsors- Potentiometers, strain gages (piezo-resistive effect), resisti RTD), thermistors, magneto resistors, light dependent resistor (s, resistive gas sensors. Inductive sensors - variable reluctance sensities standards - variable differential transformers (LVDT), variable stic, magneto-resistive, and magneto strictive sensors, Capacitive sensors	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and d terminology of al input-output 9 Periods ive temperature (LDR), resistive sors, Hall effect, le transformers, ensors- variable
UNIT – III Role of Wea Aspects: Int Google Glass Roadmap. UNIT – IV Functional F of Instrume sample mea Sensor syst configuratio UNIT – V Resistive se detectors (I hygrometers Eddy currer magneto-ela capacitor, di	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Futu INTRODUCTION TO MEASUREMENTS AND SENSORS Elements of a Measurement System and Instruments, Applications an nts, Types of measured Quantities, Measures of Dispersion, Sampl n, Units and standards, Calibration and errors. General concepts and tems, Transducers classification-sensors and actuators, General ns, Static and dynamic characteristics of measurement system. RESISTIVE AND REACTIVE SENSORS nsors- Potentiometers, strain gages (piezo-resistive effect), resisti RTD), thermistors, magneto resistors, light dependent resistor (s, resistive gas sensors. Inductive sensors - variable reluctance sensit sensors, Linear variable differential transformers (LVDT), variable stic, magneto-resistive, and magneto strictive sensors. Capacitive sensors. Capacitive sensors.	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and d terminology of al input-output 9 Periods ive temperature (LDR), resistive sors, Hall effect, le transformers, ensors- variable
UNIT - III Role of Wea Aspects: Int Google Glass Roadmap. UNIT - IV Functional F of Instrume sample mea Sensor syst configuratio UNIT - V Resistive se detectors (I hygrometers Eddy currer magneto-ela capacitor, di Contact Per	SCOPE OF WEARABLE DEVICES rables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, Futu INTRODUCTION TO MEASUREMENTS AND SENSORS Elements of a Measurement System and Instruments, Applications an nts, Types of measured Quantities, Measures of Dispersion, Sampl n, Units and standards, Calibration and errors. General concepts and tems, Transducers classification-sensors and actuators, General ns, Static and dynamic characteristics of measurement system. RESISTIVE AND REACTIVE SENSORS nsors- Potentiometers, strain gages (piezo-resistive effect), resisti RTD), thermistors, magneto resistors, light dependent resistor (s, resistive gas sensors. Inductive sensors - variable reluctance sensit sensors, Linear variable differential transformers (LVDT), variable stic, magneto-resistive, and magneto strictive sensors. Capacitive sensors. tic, magneto-resistive, and magneto strictive sensors. Capacitive sensors. stic, magneto-resistive, and magneto strictive sensors. Capacitive sensors. tic, magneto-resistive, and magneto strictive sensors. Capacitive sensors.	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and d terminology of al input-output 9 Periods ive temperature (LDR), resistive sors, Hall effect, le transformers, ensors- variable
UNIT - III Role of Wea Aspects: Int Google Glass Roadmap. UNIT - IV Functional F of Instrume sample mea Sensor syst configuratio UNIT - V Resistive se detectors (I hygrometer: Eddy currer magneto-ela capacitor, di Contact Per Lecture: 45	SCOPE OF WEARABLE DEVICESrables, Attributes of Wearables, The Meta Wearables – Textiles and erpretation of Aesthetics, Adoption of Innovation, On-Body Interact s, health monitoring, Wearables: Challenges and Opportunities, FutuINTRODUCTION TO MEASUREMENTS AND SENSORSElements of a Measurement System and Instruments, Applications an nts, Types of measured Quantities, Measures of Dispersion, Sampl n, Units and standards, Calibration and errors. General concepts and tems, Transducers classification-sensors and actuators, General ns, Static and dynamic characteristics of measurement system.RESISTIVE AND REACTIVE SENSORS nsors- Potentiometers, strain gages (piezo-resistive effect), resisti RTD), thermistors, magneto resistors, light dependent resistor (s, resistive gas sensors. Inductive sensors - variable reluctance sens t sensors, Linear variable differential transformers (LVDT), variable stic, magneto-resistive, and magneto strictive sensors. Capacitive sensors fferential capacitor.iods: PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTot	9 Periods l clothing, Social ion; Case Study: re and Research 9 Periods nd Classification le deviation and d terminology of al input-output 9 Periods ive temperature (LDR), resistive sors, Hall effect, le transformers, ensors- variable tal:45 Periods

REFERENCES:

23EDPE15

- 1 M. Mardonova and Y. Choi, "Review of Wearable Device Technology and Its Applications to the Mining Industry," Energies, vol. 11, p. 547, 2018.
- 2 **"Wearable Sensors -Fundamentals, Implementation and Applications",** by Edward Sazonov and Michael R. Neuman, Elsevier Inc., 2014.

3	B. C. Nakra, K.K. Choudhury, "Instrumentation, Measurement and Analysis", -3rd Edition,
	Tata McGraw, 2009.
4	

4 Edward Sazonov, Michael R Neuman, **"Wearable Sensors: Fundamentals, Implementation** and Applications", Elsevier, 2014.

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Identify and understand the need for development of wearable devices	K4
	and its influence on various sectors.	
CO2	Discus the applications of various wearable inertial sensors for	K4
	biomedical applications.	
CO3	Able to design and perform experiments on the sensors and develop the	K4
	projects based on the customer needs	
C04	Gain the basic idea of measurements, characteristics and the errors	K4
	associated with measurements.	
CO5	Demonstrate the concept of resistive and reactive sensors which can be	K4
	employed for real life applications	

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
C01	2	1	1	1	1		
CO2	1	1	-	-	2		
C03	1	1	2	1	-		
CO4	-	1	1	1	1		
C05	1	-	-	2	1		
23EDPE15	1	1	1	1	1		
1 – Slight, 2 – Moderate, 3 – S	1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISI	TES	CATEGORY	L	Т	Р	С	
	NIL	PE	3	0	0	3	
						-	
	1. Fundamental concepts related to material har	ıdling.					
	2. Design of various hoisting gears for different i	naterial handling	gapp	olica	tion	S	
Course 3. Development of conveyer systems for material flow in different indu					rial		
Objectives production systems.							
	4. Design of elevators for various manufacturing	and service appl	icati	ions	•		
	5. Integrated mechanical system design for mac	nine tools, power	trar	ısmi	ssio	n	
	and engine parts.			-			
UNIT – I	INTRODUCTIONS AND DESIGN OF HOISTS			9	Peri	ods	
Types, selecti	on and applications, Design of hoisting elements:	Welded and rolle	er ch	nains	s - H	emp	
and wire rop	es - Design of ropes, pulleys, pulley systems, spr	ockets and drum	s, Lo	bad	hanc	lling	
attachments.	Design of forged hooks and eye hooks – crane g	rabs - lifting mag	gnet	s - (Grab	bing	
attachments -	Design of arresting gear - Brakes: shoe, band and	cone types.					
UNIT – II	DRIVES OF HOISTING GEAR			9	Peri	ods	
Hand and po	wer drives - Traveling gear - Rail traveling mecl	1anism - cantilev	er a	nd i	non	orail	
cranes - slewi	ng, jib and luffing gear - cogwheel drive - selectin	g the motor ratin	gs.	-			
UNIT – III	CONVEYORS			9	Peri	iods	
Types - descr	iption - design and applications of Belt conveyors	s, apron conveyor	rs ar	nd es	scala	itors	
Pneumatic co	nveyors, Screw conveyors and vibratory conveyo	rs.		-			
UNIT – IV	ELEVATORS			9	Peri	ods	
Bucket elevat	ors: design - loading and bucket arrangements - (Lage elevators - s	haft	way	, gu i	ides,	
counter weights, hoisting machine, safety devices - Design of fork lift trucks.							
UNIT – V	UNIT - V INTEGRATED DESIGN 9 Periods					iods	
Integrated Design of systems - Valve Gear Mechanisms, Portable Air Compressor, Hay-Bale							
lifter, Cam Testing Machine, Power Screws, Gear Box Design more than six speed.							
Contact Peri	Contact Periods:						
Lecture: 45 F	Periods Tutorial: 0 Periods Practical:0	Periods T	otal	:45	Peri	ods	

REFERENCES:

1 Alexandrov, M., "Materials Handling Equipments", MIR Publishers, 1981.

- 2 Boltzharol, A., "Materials Handling Handbook", The Ronald Press Company, 1958
- 3 Norton. L Robert. "Machine Design An Integrated Approach", Pearson Education, 2nd Edition, 2005.
- 4 Rudenko, N., **"Materials handling equipment"**, ELnvee Publishers, 1970.
- 5 Spivakovsy, A.O. and Dyachkov, V.K., **"Conveying Machines"**, Volumes I and II, MIR Publishers, 1985.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Design hoists and brakes used in any handling applications.	K4
CO2	Design drive mechanisms and hoisting gear for different handling	K4
	applications.	
CO3	Design different conveyor systems for material handling applications.	K4
CO4	Design of integrated mechanical system for machine tools, power	K4
	transmission and engine parts.	
CO5	Design bucket, cage and fork lift elevators for to and for transportation	K4
	of .materials in vertical direction	

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	PO5		
C01	1	1	1	1	1		
C02	1	-	2	1	-		
C03	-	1	1	-	-		
CO4	1	-	1	1	-		
C05	-	1	-	-	-		
23EDPE16	1	1	1	1	1		
1 – Slight, 2 – Moderate, 3 – Si	ubstantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISITES	CATEGORY	L	Т	Ρ	С
NIL	PE	3	0	0	3

-					
	1.Understand the mathematical model of a system				
Course	2.Understand the design and suggest bearings for specific application	ι S			
Objectives	3.Understand a fatigue life calculation for various types of bearings				
	4. Understand the bearing behavior.				
	5. Study the dynamics of rotors mounted on Hydrodynamic Bearings				
UNIT – I	CLASSIFICATION AND SELECTION OF BEARINGS	9 Periods			
Selection cri	teria-Dry and Boundary Lubrication Bearings-Hydrodynamic And	Hydrostatic			
bearings-Eleo	ctro Magnetic bearings-Dry bearings-Rolling Element bearings-	Bearings for			
Precision. Ap	plications-Foil Bearings-Special bearings- Selection of plain Bearing	, materials –			
Metallic and	Nonmetallic Bearings-Materials for rolling bearings.				
UNIT – II	DESIGN OF FLUID FILM BEARINGS	9 Periods			
Design and p	erformance analysis of Thrust and Journal bearings – Full, partial, fixed	l and pivoted			
journal bear	ings design procedure-Minimum film thickness - lubricant flow an	d delivery –			
power loss, I	Heat and temperature distribution calculations- Design based on Cha	rts & Tables			
Design of Hyd	drostatic, Thrust and Journal bearings- Stiffness consideration - flow re	gulators and			
pump design	in hydrostatic bearings- Foil Bearings-Air Bearings.				
UNIT – III	ROLLING CONTACTS SELECTION OF ROLLING BEARINGS	9 Periods			
Contact Stre	sses in Rolling bearings- Centrifugal stresses-Elasto hydrodynamic	lubrication-			
Fatigue life c	alculations- Bearing operating temperature- Lubrication- Selection of	of lubricants-			
Internal clear	rance – Shaft and housing fitMounting arrangements. Manufacturi	ng methods-			
Ceramic bear	ings-Rolling bearing cages-bearing seals selection				
UNIT – IV	ROTOR DYNAMICS	9 Periods			
Motion of th	e shaft in the bearing- Rotor supported on rigid and flexible suppo	rts-Campbell			
diagram, Rot	or Dynamic Analyses- Undamped critical speed - Unbalance respon	ise- Damped			
eigenvalue a	nalysis- Bearing stiffness and damping coefficients- Mechanics of Hy	dro dynamic			
Instability-Ha	alf Frequency whirl and Resonance whip- bearing instability an	d Oil Whirl			
Technologies	to Improve the Stability of Rotor-bearing SystemsDesign configuration	ions of stable			
journal beari	ngs				
UNIT – V	DYNAMICS OF ROTORSMOUNTED ON HYDRODYNAMIC	9 Pariods			
	BEARINGS	9 T errous			
Hydrodynam	Hydrodynamic Lubrication equation for dynamic loadings-Squeeze film effects in journal				
bearings and thrust bearings -Rotating loads, alternating and impulse loads in journal bearings					
– Journal centre Trajectory- Analysis of short bearings under dynamic conditions- Finite					
difference so	lution for dynamic conditions				
Contact Periods:					
Lecture: 45	Periods Tutorial: 0 Periods Practical:0Periods Total:45	Periods			
	_				
REFERENCE	5:				

1	S.K.Basu, S.N.Sengupta&B.B.Ahuja, "Fundamentals of Tribology", Prentice –Hall of India Pvt
	Ltd, New Delhi, 2005.
2	G.W.Stachowiak& A.W .Batchelor , "Engineering Tribology" , Butterworth-Heinemann,
	UK,2005.
3	Neale, M.J. "Tribology Hand Book", Butterworth Heinemann, United Kingdom 2001.
4	Williams J.A. "Engineering Tribology", Oxford Univ. Press, 1994.
.5	Halling I (Editor) "Principles of Tribology". Macmillian – 1984

COUR	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
C01	applythe various types of bearings and their operating principles	K4
CO2	Design and suggest bearings for specific applications	K4
CO3	Perform fatigue life calculations for various types of bearings,	K4
C04	analyze the bearing behavior	K4
CO5	Identify the dynamics of rotors mounted on Hydrodynamic Bearings	K4

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
C01	2	1	2	1	1			
CO2	1	1	2	-	-			
CO3	1	2	1	1	-			
CO4	2	-	-	1	1			
CO5	1	-	1	-	-			
23EDPE17	1	1	1	1	1			
1 – Slight, 2 – Moderate, 3 – S	ubstantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

		-				
	1. Fundamental concepts of electric and hybrid vehicle operation	and				
Course	architectures.					
Objectives	2. Understand the properties of batteries and its types.	Understand the properties of batteries and its types.				
objectives	3. Provide knowledge about design of series hybrid electric vehicl	es.				
	4. Provide knowledge about design of parallel hybrid electric vehi	cles.				
	5. Understand of electric vehicle drive train.					
UNIT – I	INTRODUCTION TO ELECTRIC VEHICLES	9 Periods				
Electric Veh	icles (EV) system- EV History – EV advantages – EV market – ve	whicle mechanics:				
roadway fur	damentals- law of motion-vehicle kinetics- dynamics of vehicle mo	tion – propulsion				
power -velo	city and acceleration- propulsion system design.					
UNIT – II	ENERGY SOURCE	9 Periods				
Battery bas	ics- lead acid battery - alternative batteries - battery param	neters- technical				
characterist	ics – battery power – alternative energy sources: Fuel co	ells - Fuel Cell				
characterist	ics- Fuel cell types.					
UNIT – III	SERIES HYBRID ELECTRIC DRIVE TRAIN DESIGN	9 Periods				
Operation F	Patterns- Control Strategies-Sizing of the Major Components -D	esign of peaking				
power sour	ce - Traction Motor Size - Design of the Gear Ratio-Verificatior	n of Acceleration				
Performance	e. Verification of gradeability Design of Engine/Generator Size	- Design of the				
Power Capa	city - Design of the Energy Capacity -Fuel Consumption.					
UNIT – IV	PARALLEL HYBRID ELECTRIC DRIVE TRAIN DESIGN	9 Periods				
Control Stra	ategies of Parallel Hybrid Drive Train- Drive Train Parameters	s- Engine Power				
Capacity- El	ectric Motor Drive Power Capacity- Transmission Design- Energy S	torage Design				
UNIT – V	ELECTRIC VEHICLE DRIVETRAIN	9 Periods				
EV Transmis	ssion configurations – Transmission components –Ideal gear box –C	Gear ratio- torque				
-speed characteristics - EV motor sizing -initial acceleration-rated vehicle velocity -maximum						
velocity – m	aximum gradability.	-				
Contact Per	iods:					
Lecture: 45	Periods Tutorial: 0 Periods Practical:0 Periods Total	45 Periods				
DEEEDENCI	26.					

1	Ehsani, M, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory					
	and Design", CRC Press, 3 rd edition -2018					
2	"Hybrid Electric Vehicle Technology Assessment: Methodology, Analytical Issues, and					
	Interim Results," Center for Transportation Research Argonne National Laboratory, United					
	States Department of Energy.					
3	Iqbal Hussain, "Electric & Hybrid Vehicles – Design Fundamentals", Third Edition, CRC					

- Press, 2021.
- 4 James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2012.
- 5 SandeepDhameja, "Electric Vehicle Battery Systems", Newnes, 2001

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the conceptof hybrid vehicle and their function.	K4
CO2	Choose proper energy storage systems for vehicle applications	K4
CO3	Design series hybrid electric vehicles.	K4
CO4	Design parallel hybrid electric vehicles.	K4
CO5	apply the transmission components and their configurations for electric	K4
	vehicles.	

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05			
-								
C01	1	-	2	1	-			
CO2	1	-	-	1	1			
CO3	-	1	1	-	1			
CO4	-	1	1	-	-			
CO5	-	-	-	1	-			
23EDPE18	1	1	1	1	1			
1 – Slight, 2 – Moderate, 3 – Si	1 – Slight, 2 – Moderate, 3 – Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISI	TES	CATEGORY	L	Т	Р	С							
	NIL	PE	3	0	0	3							
 Understand the principles of essential theory of creativity in new product design and development. Understand the principles of various methods and tools for creativity in new 													
									Course 2. Understand the principles of various methods and tools for creativity in product design and development. 3. Understand the design principles of creativity in new product design and				
Objectives3. Understand the design principles of creativity in new product design and development.4. Understand the various innovation principles and practices in new product design and development.													
								design and development.					• • •
								5. Understand the principles of innovation mana	gement in new	pro	auci	t aes	Ign
	and development.			0	<u>.</u>	1							
	INTRODUCTION TO ESSENTIAL THEORY OF C.	REATIVITY		9	Peri	oas							
Directed crea	tivity: The Need for Creative Thinking in the Pur	suit of Quality	- Es	sent		heory							
for Directed	Creativity: Definitions and the Theory of the Me	chanics of Mi	na;	Heu	ristic	s and							
Models: Attitu	ides, Approaches, and Actions That Support Creat	ive Thinking		0	<u> </u>								
	UNIT - II METHODS AND TOOLS FOR CREATIVITY 9 Periods												
Three basic p	principles behind the tools of directed creativity -	Tools that pro	epai	e th	e mi	nd for							
creative thou	ght – Tools that stimulate the imagination for nev	v idea – Develo	pm	ent a	and a	iction:							
the bridge b	etween mere creativity and the rewards of in	inovation - IC	EDI	P: I	nspir	ation,							
Clarification,	Distillation, Perspiration, Evaluation and Incubation	on – Creativity	anc	Mot	ivati	on.							
UNIT – III	DESIGN AND APPLICATION OF CREATIVITY			9	Peri	ods							
Three levels	of emotional design: Visceral, Behavioral an	d Reflective	- P	roce	ssd	lesign,							
reengineering	g, and creativity – Creativity and customer needs a	analysis – Inno	vati	ve pi	rodu	ct and							
service design	n – Creative problem solving and incremental imp	rovement											
UNIT – IV	INNOVATION PRINCIPLES & PRACTICES			9	Peri	ods							
Methods of (Creativity Activation: Morphological Box – Requ	irements for	nve	ntiv	e Pr	oblem							
Solving – Alts	shuller's Engineering Parameters – Altshuller's In	nventive Princ	iple	s – A	Altsh	uller's							
Contradiction	Matrix Algorithm.												
UNIT – V	UNIT - V INNOVATION MANAGEMENT 9 Periods					ods							
Disruptive In	Disruptive Innovation Model – Two Types of Disruption – Three Approaches to Creating New-												
Growth Businesses – New Market Disruptions: Three Case Histories – Product Architectures and													
Integration – Process of commoditation and de-commoditation – Two Processes of Strategy													
Formulation -	 Role of senior executive in leading new growth: ' 	Гhe Disruptive	Gro	wth	Engi	ine.							
Contact Peri	ods:												
Lecture: 45 l	Periods Tutorial: 0 Periods Practical:0	Periods	То	tal:4	5 Pe	riods							

1	Clayton M. Christensen and Michael E. Raynor, "The Innovator's Solution", Harvard Business
	School Press, Boston, USA, 2003.
2	Donald A. Norman, "Emotional Design", Perseus Books Group, New York, 2004.
3	Geoffrey Petty, "How to be better at Creativity", The Industrial Society, 1999.
4	Paul E. Plsek, "Creativity, Innovation and Quality", ASQ Quality Press, Milwaukee, Wisconsin,
	2000.
5	Semyon D. Savransky, "Engineering of Creativity – TRIZ", CRC Press, New York, USA, 2000.

-		
COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the principles of essential theory of creativity in new product	K4
	design and development.	
CO2	Apply the principles of various methods and tools for creativity in new	K4
	product design and development.	
CO3	Apply the design principles of creativity in new product design and	K4
	development.	
C04	Apply the various innovation principles and practices in new product	K4
	design and development.	
CO5	Apply the principles of innovation management in new product design	K4
	and development.	

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
C01	1	1	2	1	-		
C02	1	-	3	-	1		
C03	-	1	1	-	-		
CO4	1	1	-	1	-		
C05	1	1	1	-	1		
23EDPE19	1	1	1	1	1		
1 – Slight, 2 – Moderate, 3 – S	ubstantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100
PREREQUISITES CATEGORY I					Р	С	
--	---	------------------	--------	-----------	-------------	--------	
	Machine Design.	PE	3	0	0	3	
Course 1.To give exposure to engineering problems involved in the design of pressure							
Objectives	Objectives vessel.						
	2.To learn about the tests and analysis for v	arious compo	nen	ts o	f pr	essure	
	vessels.						
	3.To know the procedure to design pressure ves	sels.					
	4. Ability to design and analyze supports and noz	zzle.					
	5.To acquire knowledge of piping, piping layout	and designing of	of p	ipes.			
UNIT – I	STRESSES IN PRESSURE VESSEL		_		<u>9 Pe</u>	eriods	
Introduction	to stresses in pressure vessel and its application, s	stresses in circ	ular	plat	e, St	resses	
in cylinder,	Thermal stresses, bending of circular plates of	uniform thic	kne	ss, t	bend	ing of	
centrally load	led circular plates. Dilation of pressure vessels, Me	embrane stress	: An	alysi	s of	Vessel	
– Cylindrical	, spherical and, conical heads – Thermal Stres	sses – Discont	inu	ity s	tres	ses in	
pressure vess					0.0		
UNIT – II	PRESSURE VESSEL DESIGN CODE	D		,	<u>9 Pe</u>	rioas	
Introduction	to ASME standard for pressure vessel desig	n, Pressure v	esse	el ar	nd r	elated	
components of	iesign using ASME standard;				0.0	· .	
	SUPPORT DESIGN FOR PRESSURE VESSEL	<u> </u>			<u>9 Pe</u>	rioas	
Design of noz	zzle. Design of base plate and support lugs, Type	s of anchor bo	lt, 11	s ma	ateri	al and	
stresses, Desi	gn of saddle supports.	T		1	0.0		
	DESIGN CONSIDERATION IN PRESSURE VESSE			<u></u> 1	0 Pe	rioas	
Buckling of p	pressure vessels: Elastic Buckling of circular rin	ig and cylinde	rs i	unde	r ex	ternal	
pressure, Fal	lure of thick-walled cylinders or tubes under ex	ternal pressur	e, t		ling	under	
combine Ext	combine External pressure and axial loading, Fatigue failure, nigh strength, light weight						
pressure vess	PIPING DESIGN	ndersea exploi	aut	on.	0.0.	miada	
Elour diagram	PIPING DESIGN	Elovibility f	Contr	- r - o	ore	atroad	
intensification factor. Design of nining as nor P21.1 nining code. Dining components, hands toos							
hellows and valve Types of nining supports and the behavior Introduction to nining Codes and							
Standards							
Contact Pori	ode						
Lecture 45 D	uus. periode Tutorial: A Periode Practical: APe	riods Total	· 45	Por	inde	2	
Lecture.+Jr		ious iotai	. тЈ	1 61	1003	,	

1	1 Browenell L.E and Young E.D. "Process equipment design", Willey Esstern Ltd. India								
2	John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publishers and								
	Distributors,1987.								
3	3 Sam Kannapan, "Introduction to Pipe Stress Analysis", John Wiley and Sons, 1985.								
4	Henry H Bednar, "Pressure vessel Design Hand book", CBS publishers and distributors.								

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	apply the design consideration of pressure vessel	K4
CO2	Apply the mathematical fundamental for the design of pressure vessels.	K4
CO3	Design the support of the pressure vessel	K4
C04	Design pressure vessel under loading condition	K4
C05	Design piping system for pressure vessel	K4

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	
C01	2	-	-	2	-	
CO2	1	-	2	-	-	
CO3	2	2	2	1	2	
CO4	-	2	-	2	3	
CO5	2	2	-	-	2	
23EDPE20	2	2	2	2	2	
1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23SEOE01

BUILDING BYE-LAWS AND CODES OF PRACTICE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course To impart knowledge on the building bye –laws and to emphasize the significance of						
Objectives	codes of practice in construction sector.	0				
UNIT – I	INTRODUCTION TO BUILDING BYE-LAWS	9 Periods				
Introduction t	o Building Bye Laws and regulation, their need and relevance, General	definitions such				
as building he	as building height, building line, FAR, Ground Coverage, set back line. Introduction to Master Plan					
and understan	nding various land uses like institutional, residential etc Terminolo	gies of Building				
bye-laws.						
UNIT – II	ROLE OF STATUTORY BODIES	9 Periods				
Role of variou	is statutory bodies governing building works like development autho	rities, municipal				
corporations	etc. Local Planning Authority, Town and Country planning organisa	tion, Ministry of				
urban develop	oment.					
UNIT – III	APPLICATION OF BUILDING BYE-LAWS	9 Periods				
Interpretation	of information given in bye laws including ongoing changes as sh	nown in various				
annexure and	l appendices. Application of Bye-laws like structural safety, fire sal	fety, earthquake				
safety, basem	ent, electricity, water, and communication lines in various building type	es.				
UNIT – IV	INTRODUCTION TO CODES OF PRACTICE	9 Periods				
Introduction t	o various building codes in professional practice - Codes, regulations	to protect public				
health, safety	and welfare - Codes , regulations to ensure compliance with the local a	uthority.				
UNIT - V APPLICATION OF CODES OF PRACTICE 9 Periods						
Applications of various codes as per various building types. Bureau of Indian Standards, Eurocode –						
Introduction to other international codes.						
Contact Periods:						
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total	: 45 Periods				

REFERENCES :

1 "National Building Code of India 2016 – SP 7", NBC 2016, Bureau of Indian Standards.

- 2 **"Model Building Bye-Laws (MBBL) 2016",** Town and Country Planning Organization, Ministry of Housing and Urban Affairs, Government of India.
- 3 *"Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.*
- 4 Mukesh Mittal, **"Building Bye Laws"**, Graphicart publishers, Jaipur, 2013.

COUR	SE OUTCOMES:	Bloom's		
		Taxonomy		
Upon completion of the course, the students will be able to:				
CO1	Apply the building bye-laws in planning, design and construction works.	КЗ		
CO2	2 Familiarize with the role of various statutory bodies.			
CO3	3 Execute safety related work practices in the construction sector.			
CO4	Ensure compliance with the rules and regulations in design and construction			
	practices.			
CO5	Perform design and construction practices based on national and	КЗ		
	international codal provisions.			

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	1	3	1	1	2	3		
C02	1	3	1	1	2	3		
CO3	1	3	1	1	2	3		
CO4	2	3	1	1	2	3		
C05	2	3	1	1	2	3		
23SEOE01	2	3	1	1	2	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	40	40	20	-	-	-	100				
CAT2	40	40	20	-	-	-	100				
Individual	40	40	20	-	-	-	100				
Assessment 1 /											
Case Study 1/											
Seminar 1 /											
Project1											
Individual	40	40	20	-	-	-	100				
Assessment 2 /											
Case Study 2/											
Seminar 2 /											
Project 2											
ESE	40	40	20	-	-	-	100				

23SEOE02

PLANNING OF SMART CITIES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course To have an exposure on planning of smart cities with consideration of the recent					
Objectives	challenges and to address the importance of sustainable developm	nent of urban			
	area.				
UNIT – I	SMART CITIES DEVELOPMENT POTENTIALS AND CHALLENGES	9 Periods			
Perspectives of	Smart Cities: Introduction and Overview - Implementation	Challenges -			
Methodological issues - Spatial distribution of startup cities - Re imagining postindustrial cities -					
Implementation	Challenges for Establishing Smart Urban Information and Knowledge	e Management			
System.					
UNIT – II	SUSTAINABLE URBAN PLANNING	9 Periods			
Optimising Gree	n Spaces for Sustainable Urban Planning - 3D City Models for Ext	racting Urban			
Environmental Q	Quality Indicators - Assessing the Rainwater Harvesting Potential - The	Strategic Role			
of Green Spaces	- Monitoring Urban Expansion.				
UNIT – III	ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT	9 Periods			
Alternatives for	Energy Stressed Cities - Social Acceptability of Energy - Efficient Ligl	nting - Energy			
Management - U	rban Dynamics and Resource Consumption - Issues and Challenges	of Sustainable			
Tourism - Green	Buildings: Eco-friendly Technique for Modern Cities.				
UNIT – IV	MULTIFARIOUS MANAGEMENT FOR SMART CITIES	9 Periods			
Assessment of	Domestic Water Use Practices - Issue of Governance in Urban W	ater Supply -			
Assessment of	Water Consumption at Urban Household Level - Water Sustainal	oility - Socio-			
economic Deterr	ninants and Reproductive Healthcare System - Problems and Developm	nent of Slums.			
UNIT – V	INTELLIGENT TRANSPORT SYSTEM	9 Periods			
Introduction to	Intelligent Transport Systems (ITS) - The Range of ITS Application	ons -Network			
Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route					
information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The					
Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic					
Development.					
Contact Periods	X:				
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods			

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva" , 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems
	And Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems" , PHI Learning, 2018.

COUR	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Indicate the potential challenges in smart city development.	K2
CO2	Select the different tools for sustainable urban planning.	К3
CO3	Choose appropriate energy conservation system for smart cities.	К3
C04	Identify the proper method of water management system.	К3
C05	Apply Intelligent Transport System concepts in planning of smart city.	КЗ

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	1	-	2	3	1	1			
CO2	1	1	1	3	2	1			
CO3	1	1		2	2	1			
CO4	1	-	1	2	1	1			
CO5	1	-	1	3	1	-			
23SEOE02	1	1	2	3	2	1			
1 – Slight, 2 – Moderate,	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	25	45	30	-	-	-	100			
CAT2	25	45	30	-	-	-	100			
Individual	15	40	45	-	-	-	100			
Assessment 1 /										
Case Study 1/										
Seminar 1 /										
Project1										
Individual	10	45	45	-	-	-	100			
Assessment 2 /										
Case Study 2/										
Seminar 2 /										
Project 2										
ESE	20	40	40	-	-	-	100			

23SEOE03

GREEN BUILDING

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course To introduce the different concepts of energy efficient bu	uldings, indoor				
Objectives environmental quality management, green buildings and its design.					
UNIT – I INTRODUCTION	9 Periods				
Life cycle impacts of materials and products – sustainable design concepts – strategies of	of design for the				
Environment -The sun-earth relationship and the energy balance on the earth's surface,	, climate, wind –				
Solar radiation and solar temperature – Sun shading and solar radiation on surfaces – En	nergy impact on				
the shape and orientation of buildings – Thermal properties of building materials.					
UNIT – II ENERGY EFFICIENT BUILDINGS	9 Periods				
Passive cooling and day lighting - Active solar and photovoltaic- Building energy an	alysis methods-				
Building energy simulation- Building energy efficiency standards-Lighting system of	design- Lighting				
economics and aesthetics- Impacts of lighting efficiency - Energy audit and en	nergy targeting-				
Technological options for energy management.					
UNIT – III INDOOR ENVIRONMENTAL QUALITY MANAGEMENT	9 Periods				
Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-A	Air conditioning				
requirement- Visual perception- Illumination requirement- Auditory requirement- Ener	gy management				
options- Air conditioning systems- Energy conservation in pumps- Fans and blower	s- Refrigerating				
machines- Heat rejection equipment- Energy efficient motors- Insulation.					
UNIT – IV GREEN BUILDING CONCEPTS	9 Periods				
Green building concept- Green building rating tools- Leeds and IGBC codes Ma	aterial selection				
Embodied energy- Operating energy- Façade systems- Ventilation systems-Transpo	ortation- Water				
treatment systems- Water efficiency- Building economics					
UNIT – V GREEN BUILDING DESIGN - CASE STUDY	9 Periods				
Case studies - Building form, orientation and site considerations; conservation me	easures; energy				
modeling; heating system and fuel choices; renewable energy systems; material choices - construction					
budget					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", , Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery ", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

COURSE	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
C01	Apply the concepts of sustainable design in building construction.	КЗ
CO2	Execute green building techniques including energy efficiency management in	K3
	the building design.	
CO3	Establish indoor environmental quality in green building.	КЗ
CO4	Perform the green building rating using various tools.	КЗ
C05	Create drawings and models of green buildings.	КЗ

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05	P06	
C01	3	3	2	3	3	3	
C02	3	3	2	3	3	3	
CO3	2	2	2	2	3	3	
CO4	2	3	1	3	3	3	
C05	3	3	1	3	3	3	
23SEOE03	3	3	2	3	3	3	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSME	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %			
CAT1	40	40	20	-	-	-	100		
CAT2	40	40	20	-	-	-	100		
Individual	40	40	20	-	-	-	100		
Assessment 1 /									
Case Study 1/									
Seminar 1 /									
Project1									
Individual	40	40	20	-	-	-	100		
Assessment 2 /									
Case Study 2/									
Seminar 2 /									
Project 2									
ESE	40	40	20	-	-	-	100		

ENVIRONMENT HEALTH AND SAFETY MANAGEMENT

23EEOE04

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course To impart knowledge on occupational health hazards, safety measures at work						
Objectives	place, accident prevention, safety management and safety measure	es in industries.				
-						
UNIT – I	OCCUPATIONAL HEALTH HAZARDS	9 Periods				
Occupation, H	ealth and Hazards - Safety Health and Management: Occupational	Health Hazards				
- Ergonomics - Importance of Industrial Safety - Radiation and Industrial Hazards: Types and						
effects - Vibra	tion - Industrial Hygiene - Different air pollutants in industries an	d their effects -				
Electrical, fire	and Other Hazards.					
UNIT – II	SAFETY AT WORKPLACE	9 Periods				
Safety at Wor	kplace - Safe use of Machines and Tools: Safety in use of differen	nt types of unit				
operations - I	Ergonomics of Machine guarding - working in different workplac	es - Operation,				
Inspection and	d maintenance - Housekeeping, Industrial lighting, Vibration and No	oise.				
UNIT - IIIACCIDENT PREVENTION9 Periods						
Accident Prev	ention Techniques - Principles of accident prevention - Hazard ide	entification and				
analysis, Ever	nt tree analysis, Hazop studies, Job safety analysis - Theories an	d Principles of				
Accident caus	ation - First Aid: Body structure and functions - Fracture and Dislo	cation, Injuries				
to various boo	ly parts.					
UNIT – IV	SAFETY MANAGEMENT	9 Periods				
Safety Manage	ement System and Law - Legislative measures in Industrial Safety	- Occupational				
safety, Health	and Environment Management, Bureau of Indian Standards on He	alth and Safety,				
IS 14489 sta	ndards - OSHA, Process safety management (PSM) and its pr	inciples - EPA				
standards						
UNIT – V	GENERAL SAFETY MEASURES	9 Periods				
Plant Layout f	Plant Layout for Safety - design and location, distance between hazardous units, lighting, colour					
coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines -						
Work Permit System - Significance of Documentation - Case studies involving implementation of						
health and safety measures in Industries.						
Contact Periods:						
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Tot	al: 45 Periods				

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications,2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao
	PharmaMed Press, 1st edition, 2021.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
C01	Identify the occupational health hazards.	K3
CO2	Execute various safety measures at workplace.	К3
CO3	Analyze and execute accident prevention techniques.	К3
CO4	Implement safety management as per various standards.	К3
CO5	Develop awareness on safety measures in Industries.	К3

COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	P04	P05	P06				
C01	1	2	2	2	3	2				
C02	2	2	2	1	2	2				
C03	2	3	2	1	2	2				
C04	1	1	1	2	2	2				
C05	1	1	1	1	1	2				
23EEOE04	1	2	2	1	2	2				
1 – Slight, 2 – Moderate, 3 – Sub	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	25	35	20	10	5	5	100		
CAT2	25	35	20	10	5	5	100		
Individual									
Assessment 1/									
Case Study 1/	20	40	30	10	-	-	100		
Seminar 1 /									
Project 1									
Individual									
Assessment 2/									
Case Study 2/	20	40	30	10	-	-	100		
Seminar 2/									
Project 2									
ESE	25	35	20	10	5	5	100		

23EE0E05

CLIMATE CHANGE AND ADAPTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To understand the Earth's climate system changes and their offee	te on the earth					
Objectives	identifying the impacts edentation mitigation of elimate changes	and for gaining					
Objectives	identifying the impacts, adaptation, mitigation of climate change	and for gaining					
	knowledge on clean technology, carbon trading and alternate energy	sources.					
UNIT – I	EARTH'S CLIMATE SYSTEM	9 Periods					
Introduction-0	Climate in the spotlight - The Earth's Climate Machine – Climate Class	ification- Global					
Wind Systems – Trade Winds and the Hadley Cell – The Westerlies – Cloud Formation and Monsoon							
Rains – Storm	s and Hurricanes - The Hydrological Cycle – Global Ocean Circulation -	- El Nino and its					
Effect - Solar	Radiation – The Earth's Natural Green House Effect – Green House G	ases and Global					
Warming – Ca	rbon Cycle.						
UNIT – II	OBSERVED CHANGES AND ITS CAUSES	9 Periods					
Observation o	f Climate Change – Changes in patterns of temperature, precipitation a	nd sea level rise					
– Observed e	ffects of Climate Changes – Patterns of Large-Scale Variability –Dri	vers of Climate					
Change – Clim	ate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPC	C – Evidences of					
Changes in Cli	Changes in Climate and Environment – on a Global Scale and in India – climate change modeling.						
UNIT – III	IMPACTS OF CLIMATE CHANGE	9 Periods					
Impacts of Cl	imate Change on various sectors - Agriculture, Forestry and Ecos	system – Water					
Resources – H	luman Health – Industry, Settlement and Society – Methods and Scena	arios –Projected					
Impacts for D	ifferent Regions – Uncertainties in the Projected Impacts of Climate C	Change – Risk of					
Irreversible Cl	hanges.						
UNIT – IV	CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES	9 Periods					
Adaptation St	trategy/Options in various sectors – Water – Agriculture –- Infr	rastructure and					
Settlement inc	luding coastal zones – Human Health – Tourism – Transport – Energy -	- Key Mitigation					
Technologies	and Practices - Energy Supply - Transport - Buildings - Industry	– Agriculture –					
Forestry - Car	bon sequestration - Carbon capture and storage (CCS) - Waste (MS	W & Bio waste,					
Biomedical, In	dustrial waste – International and Regional cooperation.						
UNIT – V	CLEAN TECHNOLOGY AND ENERGY	9 Periods					
Clean Develop	ment Mechanism – Carbon Trading - examples of future Clean Technol	ogy –Biodiesel –					
Natural Compost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Biofuels– Solar Energy –							
Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding.							
Contact Perio	ods:						
Lecture: 45 P	eriods Tutorial: 0Periods Practical: 0 Periods Total	:45 Periods					

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report –Working Group I Report, "The physical sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability",
	2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007

6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate
	Change, Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
C01	Classify the Earths climatic system and factors causing climate change and	K2
	global warming.	
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise	K2
	and Observed effects of Climate Changes	
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible	К3
	changes.	
C04	Articulate the strategies for adaptation and mitigation of climatic changes.	КЗ
C05	Discover clean technologies and alternate energy source for sustainable growth.	КЗ

COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	P04	PO5	P06				
C01	2	2	3	2	3	1				
CO2	3	2	2	2	3	2				
CO3	2	2	2	2	3	2				
CO4	3	2	2	2	2	2				
C05	3	3	2	3	3	3				
23EEOE05	3	3	3	3	3	3				
1 – Slight, 2 – Moderate,	3 – Substant	tial		-		•				

ASSESSMEN	ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
Category*											
CAT1	25	30	35	10	-	-	100				
CAT2	25	30	35	10	-	-	100				
Individual											
Assessment											
1/ Case	20	20	40	10			100				
Study 1/	20	30	40	10	-	-	100				
Seminar 1 /											
Project 1											
Individual											
Assessment											
2/Case	20	20	40	10			100				
Study 2/	20	50	40	10	-	-	100				
Seminar 2/											
Project 2											
ESE	25	30	35	10	-	-	100				

23EEOE06

WASTE TO ENERGY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Cours	Se To classify waste as fuel, introduce conversion devices, gain knowledge about Biom	nass				
Objecti	ves Pyrolysis, demonstrate methods, factors for biomass gasification, and acqu	uire				
	knowledge about biogas and its development in India.					
UNIT – I	INTRODUCTION 9 Period	S				
Introduct	tion to Energy from Waste: Classification of waste as fuel - Agro based, Forest resid	due,				
Industria	ıl waste - MSW – Conversion devices – Incinerators, Gasifiers, Digestors.					
UNIT – II	I BIOMASS PYROLYSIS 9 Period	S				
Biomass	Pyrolysis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis – Manufacture of charcoal – Meth	ods				
– Yields a	and Applications – Manufacture of Pyrolytic oils and gases, Yields and Applications.					
UNIT – II	II BIOMASS GASIFICATION 9 Period	S				
Gasifiers	- Fixed bed system - Downdraft and updraft gasifiers - Fluidized bed gasifiers - Des	ign,				
Construc	tion and Operation – Gasifier burner arrangement for thermal heating – Gasifier Eng	gine				
arrangen	nent and electrical power – Equilibrium and Kinetic Considerations in gasifier operation.					
UNIT – I	V BIOMASS COMBUSTION 9 Period	S				
Biomass	Combustion - Biomass Stoves - Improved Chullahs, types, some exotic designs, Fixed	bed				
combust	ors, types – Inclined grate combustors – Fluidized bed combustors, design, construction	and				
operation	n of all the above biomass combustors.					
UNIT – V	BIOENERGY SYSTEM 9 Period	S				
Biogas: P	Properties of biogas (Calorific value and composition) – Biogas plant technology and status –	Bio				
energy s	ystem - Design and constructional features - Biomass resources and their classification	on -				
Biomass	conversion processes - Thermo chemical conversion - Direct combustion - biom	nass				
gasificati	on - pyrolysis and liquefaction - biochemical conversion - anaerobic digestion - Types	s of				
biogas plants – Applications – Alcohol production from biomass – Bio diesel production – Urban waste						
to energy conversion – Biomass energy programme in India.						
Contact	Periods:					
Lecture:	45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					
REFERI	ENCES:					
1 "En	nergy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P					

1	"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P
	Jayaram Reddy, Taylor and Francis Publications, 2016.
2	"Waste - to - Energy: Technologies and project Implementations", Marc J Rogoff, Francois
	Screve, ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications, Illustrated
	Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", PrabirELSEVIER Publications,
	2010.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
C01	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	К3
CO3	Demonstrate methods and factors considered for biomass gasification.	КЗ
C04	Identify the features of different facilities available for biomass combustion.	K4
C05	Analyze the potential of different Bioenergy systems with respect to Indian	K2
	condition.	

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	PO5	P06
C01	2	3	3	2	3	1
C02	3	2	2	2	3	1
C03	3	3	2	3	2	1
CO4	3	2	2	3	3	1
C05	2	3	3	3	2	1
23EEOE06	3	3	3	3	3	1
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	10	20	20	25	15	10	100
CAT2	10	25	20	10	25	10	100
Individual							
Assessment							
1/ Case		15	25	FO			100
Study 1/	-	15	55	50	-	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment							
2/Case		10	40	FO			100
Study 2/	-	10	40	50	-	-	100
Seminar 2/							
Project 2							
ESE	10	25	25	20	10	10	100

23GEOE07

ENERGY IN BUILT ENVIRONMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To understand constructional energy requirements of buildings, en	ergy audit						
Objective	methods and conservation of energy.							
UNIT-I	INTRODUCTION	9 Periods						
Indoor activities and environmental control - Internal and external factors on energy use -								
Characteristics of	of energy use and its management -Macro aspect of energy use in dw	ellings and its						
implications –T	hermal comfort-Ventilation and air quality-Air-conditioning requin	rement-Visual						
perception-Illun	nination requirement-Auditory requirement.							
UNIT-II	LIGHTING REQUIREMENTS IN BUILDING	9 Periods						
The sun-earth r	elationship - Climate, wind, solar radiation and temperature - Sun	shading and						
solar radiation o	on surfaces-Energy impact on the shape and orientation of buildings	–Lighting and						
day lighting :Cha	aracteristics and estimation, methods of day-lighting–Architectural c	onsiderations						
for day-lighting.								
UNIT-III	ENERGY REQUIREMENTS IN BUILDING	9 Periods						
Steady and un	steady heat transfer through wall and glazed window-Standards	s for thermal						
performance of	building envelope- Evaluation of the overall thermal transfer- The	rmal gain and						
net heat gain-En	d-Use energy requirements-Status of energy use in buildings-Estima	tion of energy						
use in a building								
UNIT-IV	ENERGY AUDIT	9 Periods						
Energy audit a	and energy targeting-Technological options for energy management	nt-Natural and						
forced ventilation	n–Indoor environment and air quality-Air flow and air pressure on	buildings-Flow						
due to Stack effe	ct.							
UNIT-V	COOLING IN BUILT ENVIRONMENT	9 Periods						
Passive building	ng architecture–Radiative cooling-Solar cooling techniques-So	lar desiccant						
dehumidification for ventilation-Natural and active cooling with adaptive comfort-Evaporative								
cooling –Zero energy building concept.								
Contact Period	S:							
Lecture: 45 Per	iods Tutorial: 0 Period Practical: 0 Period Total: 45 Pe	eriods						

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill,
	2000.
2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinois ,USA.

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon o	completion of the course, the students will be able to:	Mapped	
C01	Understand energy and its usage	K2	
CO2	Know lighting to be given to a building	K1	
CO3	Analyse the energy requirements in a building	КЗ	
C04	Apply the energy audit concepts.	КЗ	
C05	Study architectural specifications of a building	K1	

COURSE ARTICULATION MATRIX

COs/POs	P01	PO2	PO3	P04	PO5	P06
C01	2	-	3	1	2	1
CO2	2	-	3	1	2	1
CO3	2	-	3	1	2	1
CO4	2	-	3	1	2	1
C05	2	-	3	1	2	1
23GEOE07	2	-	3	1	2	1
1–Slight, 2–Moderate, 3–Substantial						

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100
ESE	40	40	20	-	-	-	100

23CE0E08	2
23GEUEUC	5

EARTH AND ITS ENVIRONMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	Course To know about the planet earth, the geosystems and the resources like ground						
Objective	water and air and to learn about the Environmental Assessment and sustainability.						
UNIT-I	EVOLUTION OF EARTH	EVOLUTION OF EARTH 9 Periods					
Evolution of ear	th as habitable planet-Evolution of continents-oceans and landforms-e	volution of life					
through geologi	cal times - Exploring the earth's interior - thermal and chemical struc	ture - origin of					
gravitational an	d magnetic fields.						
UNIT-II	GEOSYSTEMS	9 Periods					
Plate tectonics -	\cdot working and shaping the earth - Internal geosystems – earthquakes	s – volcanoes -					
climatic excurs	ions through time - Basic Geological processes - igneous, see	dimentation –					
metamorphic pr	OCESSES.						
UNIT-III	GROUND WATER GEOLOGY	9 Periods					
Geology of grou	and water occurrence -recharge process-Ground water movement-	Ground water					
discharge and c	atchment hydrology – Ground water as a resource - Natural ground	water quality					
and contaminat	ion-Modelling and managing ground water systems.						
UNIT-IV	ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY	9 Periods					
Engineering an	d sustainable development - population and urbanization - toxic chem	icals and finite					
resources - wat	er scarcity and conflict - Environmental risk - risk assessment and cha	aracterization –					
hazard assessment-exposure assessment.							
UNIT-V	AIR AND SOLIDWASTE	9 Periods					
Air resources engineering-introduction to atmospheric composition-behaviour-atmospheric photo							
chemistry-Solid waste management-characterization-management concepts.							
Contact Periods:							
Lecture: 45 Per	iods Tutorial: 0 Period Practical: 0 Period Total: 45	Periods					

1	John Grotzinger and Thomas H.Jordan, " Understanding Earth", Sixth Edition, W.H.Freeman, 2010.
2	Younger,P.L., "Ground water in the Environment: An introduction", Blackwell Publishing,2007.
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,
	Sustainability and Design", Wiley, NJ, 2010.

COURSE	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
C01	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and	K2
	the Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground	КЗ
	water and the modeling systems.	
C04	To assess the Environmental risks and the sustainability developments.	КЗ
C05	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
C01	1	-	-	2	2	-
CO2	3	-	3	3	-	3
CO3	2	-	-	-	-	-
CO4	-	2	-	-	1	-
CO5	2	2	-	1	-	-
23GEOE08	2	2	3	3	2	3
1–Slight, 2–Moderate, 3–Substantial						

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT 1	40	40	20	-	-	-	100	
CAT 2	40	40	20	-	-	-	100	
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100	
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100	
ESE	40	40	20	-	-	-	100	

23GEOE09

NATURAL HAZARDS AND MITIGATION

(Common to all Branches)

PREREQUISITES:	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To get idea on the causes, effects and mitigation measures of different types of hazards			
Objective	with case studies.			
UNIT-I	EARTH QUAKES	9 Periods		

Definitions and basic concepts-different kinds of hazards–causes-Geologic Hazards–Earthquakescauses of earthquakes–effects-plate tectonics-seismic waves-measures of size of earthquakesearthquake resistant design concepts.

UNIT-II	SLOPE STABILITY	9 Periods			
Slope stability and landslides-causes of landslides-principles of stability analysis-remedial and					
corrective meas	ures for slope stabilization.				
UNIT-III	FLOODS	9 Periods			
Climatic Hazar	ds–Floods-causes of flooding-regional flood frequency	analysis–flood control			
measures-flood	routing-flood forecasting-warning systems.				
UNIT-IV	DROUGHTS	9 Periods			
Droughts –cause	es - types of droughts –effects of drought -hazard assessment	z – decision making-Use			
of GIS in natural hazard assessment–mitigation-management.					
UNIT-V	TSUNAMI	9 Periods			
Tsunami-causes-effects-under sea earthquakes-landslides-volcanic eruptions-impact of sea					
meteorite-remedial measures-precautions-case studies.					

Contact Periods:			
Lecture: 45 Periods	Tutorial: 0 Period	Practical: 0 Period	Total: 45 Periods

1	Donald Hyndman and David Hyndman. "Natural Hazards and Disasters". Brooks/Cole Cenaaae
-	Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press,2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley & Sons,
	Inc,2005.
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering", John Wiley &
	Sons,Inc,2008

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
C01	Learn the basic concepts of earthquakes and the design concepts of earthquake	K2
	Resistant buildings.	
CO2	Acquire knowledge on the causes and remedial measures of slope stabilization.	КЗ
CO3	As certain the causes and control measures of flood.	КЗ
C04	Know the types, causes and mitigation of droughts.	K2
C05	Study the causes, effects and precautionary measures of Tsunami.	K2

						[
COs/POs	P01	PO2	P03	P04	P05	P06
CO1	3	1	-	3	2	3
CO2	3	1	2	3	3	3
CO3	3	2	3	-	-	3
CO4	3	-	-	3	2	3
CO5	3	-	2	2	-	3
23GEOE09	3	1	2	3	2	3
1–Slight, 2–M	Ioderate, 3–Si	ubstantial		·		

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	-	-	-	100

23ED0E10

BUSINESS ANALYTICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	1. To apprehend the fundamentals of business analytics and its life cycle.					
Objectives	2. To gain knowledge about fundamental business analytics.					
	3. To study modeling for uncertainty and statistical inference.					
	4. To apprehend analytics the usage of Hadoop and Map Reduce fran	neworks.				
	5. To acquire insight on other analytical frameworks.					
UNIT – I	BUSINESS ANALYTICS AND PROCESS	9 Periods				
Business anal	ytics: Overview of Business analytics, Scope of Business analytics, Bus	iness				
Analytics Process, Relationship of Business Analytics Process and organization, competitive						
advantages o	f Business Analytics. Statistical Tools: Statistical Notation, Descri	ptive Statistical				
methods, Rev	iew of probability distribution and data modelling, sampling and esti	mation methods				
overview.						
UNIT – II	REGRESSION ANALYSIS	9 Periods				
Trendiness an	d Regression Analysis: Modelling Relationships and Trends in Data, si	mple				
Linear Regres	sion. Important Resources, Business Analytics Personnel, Data and mo	odels for				
Business anal	ytics, problem solving, Visualizing and Exploring Data, Business Analy	tics				
Technology.						
UNIT – III	STRUCTURE OF BUSINESS ANALYTICS	9 Periods				
Organization	Structures of Business analytics, Team management, Management I	ssues, Designing				
Information	Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business					
analytics, Ma	naging Changes. Descriptive Analytics, predictive analytics, predic	ative Modelling,				
Predictive ana	lytics analysis, Data Mining, Data Mining Methodologies, Prescriptive	analytics and its				
step in the bus	siness analytics Process, Prescriptive Modelling, nonlinear Optimization	on.				
UNIT – IV	FORECASTING TECHNIQUES	9 Periods				
Forecasting T	echniques: Qualitative and Judgmental Forecasting, Statistical Fore	ecasting Models,				
Forecasting M	Forecasting Models for Stationary Time Series, Forecasting Models for Time Series					
with a Linear	Trend, Forecasting Time Series with Seasonality, Regression Forecast	ing with				
Casual Variab	les, Selecting Appropriate Forecasting Models. Monte Carlo Simulation	n and				
Risk Analysis:	Monte Carle Simulation Using Analytic Solver Platform, New-Product					
Development	Model, Newsvendor Model, Overbooking Model, Cash Budget Model.					
UNIT – V	DECISION ANALYSIS AND RECENT TRENDS IN BUSINESS	9 Periods				
	ANALYTICS					
Decision Anal	ysis: Formulating Decision Problems, Decision Strategies with the with	hout				
Outcome Prob	babilities, Decision Trees, The Value of Information, Utility and Decisio	n				
Making. Recei	nt Trends: Embedded and collaborative business intelligence, Visua	l data recovery,				
Data Storytell	ing and Data journalism					
Contact Peri	ods:					
Lecture: 45 P	eriods Tutorial: 0 Periods Practical:0Periods Total:45	Periods				

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak , "Business Analytics Using R – A Practical
	Approach",Apress, 2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge
	University Press, 2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R.
	Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition, 2016.
5	U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making",
	Wiley, 2017.
6	Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COURSE OUTCOMES	 2001

COUR	SE OUTCOMES:	Bloom's					
Upon	Mapped						
C01	Identify the real world business problems and model with analytical	K4					
	solutions.						
CO2	Solve analytical problem with relevant mathematics background	K4					
	knowledge.						
CO3	Convert any real world decision making problem to hypothesis and apply	K4					
	suitable statistical testing.						
CO4	Write and Demonstrate simple applications involving analytics using	K4					
	Hadoop and Map Reduce						
CO5	Use open source frameworks for modeling and storing data.	K4					

COURSE ARTICULATION MATRIX					
COs/POs	P01	P02	PO3	P04	PO5
C01	1	2	1	2	1
C02	1	1	1	2	1
CO3	2	2	1	1	-
CO4	2	2	1	-	-
CO5	1	2	-	-	-
23EDOE10	1	2	1	2	1
1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT	PATTERN – THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23ED0E11

INTRODUCTION TO INDUSTRIAL SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С	
	OE	3	0	0	3	
Course	1. Summarize basics of industrial safety.					
Objectives	2. Describe fundamentals of maintenance engineering.					
	3. Explain wear and corrosion.					

	4. Illustrate fault tracing.
--	------------------------------

UNIT - IINTRODUCTION9 PeriodsAccident, causes, types, results and control, mechanical and electrical hazards, types, causes and
preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash
rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc., Safety color codes.
Fire prevention and firefighting, equipment and methods.

UNIT – II	FUNDAMENTALS OF MAINTENANCE ENGINEERING	9 Periods

Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT – III WEAR AND CORROSION AND THEIR PREVENTION 9 Perio	UNIT – III	WEAR AND CORROSION AND THEIR PREVENTION	9 Periods
--	------------	---	-----------

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT – IV FAULT TRACING

9 Periods

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of faultfinding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT – V PERIODIC AND PREVENTIVE MAINTENANCE

9 Periods

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical:0Periods Total:45 Periods

REFERENCES

1	Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London,2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers,
	2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing; Third edition
	,2018
-	

5 "Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Ability to summarize basics of industrial safety	K4
CO2	Ability to describe fundamentals of maintenance engineering	K4
CO3	Ability to explain wear and corrosion	K4
CO4	Ability to illustrate fault tracing	K4
CO5	Ability to identify preventive and periodic maintenance	K4

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	P03	P04	PO5				
C01	2	1	1	-	-				
CO2	2	2	1	-	1				
CO3	1	2	1	1	1				
CO4	2	1	1	1	1				
CO5	2	1	2	1	1				
23EDOE11	2	1	1	1	1				
1 – Slight, 2 – Moderate, 3 – Su	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23ED0E12

OPERATIONS RESEARCH

(Common to all Branches)

PREREQUISI	ГЕЅ	CATEGORY	L	Τ	Р	С		
	NIL	OE	3	0	0	3		
Course	1. Solve linear programming problem and solve using	ng graphical metho	d.					
Objectives	2. Solve LPP using simplex method.							
	3. Solve transportation, assignment problems.							
	4. Solve project management problems.							
	5. Solve scheduling problems.							
UNIT – I	INTRODUCTION			9	Per	riods		
Optimization	Techniques, Model Formulation, models, General	L.R Formulation,	Sim	plex	Тес	hniques,		
Sensitivity An	Sensitivity Analysis, Inventory Control Models							
UNIT – II LINEAR PROGRAMMING PROBLEM					9 Periods			
Formulation of	of a LPP - Graphical solution revised simplex method	- duality theory - d	ual s	simp	lex 1	nethod -		
sensitivity ana	alysis - parametric programming							
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM			9	Per	riods		
Nonlinear pro	gramming problem - Kuhn-Tucker conditions min c	cost flow problem -	ma	x flo	w p	roblem -		
CPM/PERT								
UNIT – IV	SEQUENCING AND INVENTORY MODEL			9	Per	iods		
Scheduling an	d sequencing - single server and multiple server mo	odels - deterministi	c in	vent	ory	models -		
Probabilistic i	nventory control models - Geometric Programming.							
UNIT – V	UNIT - V GAME THEORY 9 Periods							
Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow								
in Networks, Elementary Graph Theory, Game Theory Simulation								
Contact Peri	ods:							
Lecture: 45 P	eriods Tutorial: 0 Periods Practical:0Per	iods Total:45 P	erio	ods				

1	H.A. Taha"Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy
		Mapped
Upon o	completion of the course, the students will be able to:	
C01	Formulate linear programming problem and solve using graphical	K4
	method.	
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
C04	Solve project management problems.	K4
C05	Solve scheduling problems	K4

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	PO5			
C01	2	1	1	-	-			
C02	2	2	1	-	-			
C03	1	1	2	1	1			
C04	1	1	-	-	-			
C05	2	1	-	-	-			
23EDOE12	2	1	1	1	1			
1 – Slight, 2 – Moderate, 3 – Sul	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
Category*											
CAT1	25	25	25	25			100				
CAT2	20	25	25	30			100				
Assignment 1	25	30	25	20			100				
Assignment 2	30	20	30	20			100				
ESE	20	30	20	30			100				

23MF0E13

OCCUPATIONAL HEATH AND SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	1 To gain knowledge about occupational health bazard and safe	ty marguras at
Objectives	work nlace	ty measures at
objectives	2 To learn about accident prevention and safety management	
	3 To learn about general safety measures in industries	
UNIT – I	OCCUPATIONAL HEALTH AND HAZARDS	9 Periods
Safety- Histor	v and development. National Safety Policy- Occupational Health Hazar	ds - Ergonomics
- Importance	of Industrial Safety Radiation and Industrial Hazards- Machine Guard	is and its types.
Automation.		is and its 0, pos,
UNIT – II	SAFETY AT WORKPLACE	9 Periods
Safety at Wo	rkplace - Safe use of Machines and Tools: Safety in use of differer	it types of unit
operations -	r ····································	J J F
Ergonomics of	of Machine guarding - working in different workplaces - Operation,	Inspection and
maintenance,	Plant Design and Housekeeping, Industrial lighting, Vibration and Nois	se Case studies.
UNIT – III	ACCIDENT PREVENTION	9 Periods
Accident Pre	vention Techniques - Principles of accident prevention - Definit	tions, Theories,
Principles –	Hazard identification and analysis, Event tree analysis, Hazop stu	dies, Job safety
analysis - The	ories and Principles of Accident causation - First Aid : Body structure	and functions -
Fracture and	Dislocation, Injuries to various body parts.	
UNIT – IV	SAFETY MANAGEMENT	9 Periods
Safety Manag	ement System and Law - Legislative measures in Industrial Safet	y: Various acts
involved in D	etail- Occupational safety, Health and Environment Management: B	ureau of Indian
Standards on	Health and Safety, 14489, 15001 - OSHA, Process safety managemen	it (PSM) and its
principles - E	PA standards- Safety Management: Organisational & Safety Committe	e - its structure
and functions		
UNIT – V	GENERAL SAFETY MEASURES	9 Periods
Plant Layout	for Safety -design and location, distance between hazardous units,	lighting, colour
coding, pilot p	olant studies, Housekeeping - Accidents Related with Maintenance of M	lachines - Work
Permit System	n: Significance of Documentation Directing Safety, Leadership -Case st	tudies involving
implementati	on of health and safety measures in Industries.	
Contact Peri	ods:	
Lecture: 45 F	eriods Tutorial: 0 Periods Practical:0 Periods Total:45	Periods
REFERENCES		
1 Reniamin	() Alli, Fundamental Principles of Occupational Health and Safety II.	0 2008
- Dongamin	and, a summerican a merpres of occupational neuron and sufery in	. 2000.

- 2 Danuta Koradecka, Handbook of Occupational Health and Safety, CRC, 2010.
- 3 Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
- 4 Deshmukh. L.M., Industrial Safety Management, 3rd Edition, Tata McGraw Hill, New Delhi, 2008.
- 5 https://nptel.ac.in/courses/110105094

COUR	SE OUTCOMES:	Bloom's		
		Taxonomy		
Upon o	Upon completion of the course, the students will be able to:			
C01	Gain the knowledge about occupational health hazard and safety measures	K3		
	at work place.			
CO2	Learn about accident prevention and safety management.	K2		
CO3	Understand occupational health hazards and general safety measures in	K3		
	industries.			
CO4	Know various laws, standards and legislations.	K2		
C05	Implement safety and proper management of industries.	K4		

COURSE ARTICULATION MAT	FRIX:				
Cos/Pos	P01	P02	P03	P04	P05
CO1	2	1	1	1	1
CO2	2	2	1	1	1
CO3	1	2	1	1	1
CO4	2	1	1	1	1
CO5	2	1	2	1	1
23MF0E13	2	1	1	1	1
1 – Slight, 2 – Moderate, 3 – Su	bstantial				

ASSESSMENT H	PATTERN – THEO	DRY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		50	50				100
CAT2		50	30	20			100
Individual		50	50				100
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual		50	30	20			100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE		40	40	20			100

23MF0E14

PREREQUISIT	ES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
					•	•
Course	Course 1. To understand the costing concepts and their role in decision making.					
Objectives	2. To acquire the project management conce	pts and their va	ariou	is a	spe	cts in
	selection.					
	3. To gain the knowledge in costing concepts wi	th project execut	ion.			
	4. To develop knowledge of costing techniqu	es in service se	ctor	and	d va	arious
	budgetary control techniques.					
	5. To familiarize with quantitative techniques in	i cost managemei	nt.			
UNIT – I	INTRODUCTION TO COSTING CONCEPTS			91	Peri	ods
Introduction a	nd Overview of the Strategic Cost Management P	Process, Cost con	cepts	s in	dec	ision-
making; Releva	ant cost, Differential cost, Incremental cost and	Opportunity cos	t. Oł	oject	tives	s of a
Costing System	n; Inventory valuation; Creation of a Database for	r operational con	trol;	Pro	ovisi	ion of
data for Decisio	on - Making.					
UNIT – II	PROJECT PLANNING ACTIVITIES			91	Peri	ods
Project: meani	ng, Different types, why to manage, cost overruns	s centers, various	s stag	ges	of p	roject
execution: con	ception to commissioning. Project execution as	conglomeration	of t	ech	nica	l and
nontechnical a	ctivities. Detailed Engineering activities. Pre proje	ect execution ma	in cl	eara	ance	s and
documents Pr	oject team: Role of each member. Importance	Project site: Da	ta r	equi	ired	with
significance. P	roject contracts. Types and contents. Project ex	ecution Project	cost	C01	ntro	l. Bar
charts and Net	work diagram. Project commissioning: mechanical	and process.				
UNIT – III	COST ANALYSIS			91	Peri	ods
Cost Behaviou	r and Profit Planning Marginal Costing; Distincti	on between Mar	ginal	l Co	stin	g and
Absorption Co	sting; Break-even Analysis, Cost-Volume-Profit A	Analysis. Various	dec	cisio	n-m	aking
problems. Stan	dard Costing and Variance Analysis.					
UNIT – IV	PRICING STRATEGIES AND BUDGETORY CONT	ROL		91	Peri	ods
Pricing strateg	ies: Pareto Analysis. Target costing, Life Cycle Cost	ting, Costing of se	ervic	e se	ctor	, Just-
in -time appr	oach, Material Requirement Planning, Enterpris	se Resource Pla	nnin	g. E	Budg	getary
Control; Flexib	le Budgets; Performance budgets; Zero-based bu	idgets. Measuren	nent	of l	Divis	sional
profitability pr	icing decisions including transfer pricing.					
UNIT – V	TQM AND OPERATIONS REASEARCH TOOLS			91	Peri	ods
Total Quality	Management and Theory of constraints, Activity	7-Based Cost Ma	nage	emei	nt, I	Bench
Marking; Bala	nced Score Card and Value-Chain Analysis.	Quantitative tecl	hniq	ues	for	cost
management,	Linear Programming, PERT/CPM, Transportation	problems, Assig	gnme	ent j	prob	olems,
Simulation, Lea	arning Curve Theory.					
Contact Perio	ds:	• • • •				
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Peri	ods Total: 45 F	'eric	ods		

REFERENCES:

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor
	&Francis, 2016
3	Nigel J, Engineering Project Management, John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall
	of India, New Delhi, 2011.

5 <u>https://archive.nptel.ac.in/courses/110/104/110104073/</u>

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the costing concepts and their role in decision making.	K3
CO2	Apply the project management concepts and analyze their various aspects	K4
	in selection.	
CO3	Interpret costing concepts with project execution.	K4
C04	Gain knowledge of costing techniques in service sector and various	K2
	budgetary control techniques.	
C05	Become familiar with quantitative techniques in cost management.	K3

COURSE ARTICULATION MATRIX:

COs/Pos	P01	P02	P03	P04	P05
C01	1	1	2	1	1
C02	2	1	1	1	-
C03	2	2	2	-	-
C04	1	1	1	1	1
CO5	1	2	1	1	-
23MF0E14	1	1	1	1	1
1 – Slight, 2 – Moderate, 3 – Subs	tantial				

ASSESSMENT PA	ATTERN – THEOR	Y					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1			40	60			100
CAT2		30	30	40			100
Individual			40	60			100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual		30	30	40			100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE		20	40	40			100

23MF0E15

COMPOSITE MATERIALS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	1. To summarize the characteristics of composite materials	and effect of
Objectives	reinforcement in composite materials.	
	2. To identify the various reinforcements used in composite materia	ls.
	3. To compare the manufacturing process of metal matrix composite	es.
	4. To understand the manufacturing processes of polymer matrix co	mposites.
	5. To analyze the strength of composite materials.	
UNIT – I	INTRODUCTION	9 Periods
Definition – Cl	assification and characteristics of Composite materials. Advantages and	d application of
composites. F	unctional requirements of reinforcement and matrix. Effect of rei	nforcement on
overall compo	site performance.	
UNIT – II	REINFORCEMENT	9 Periods
Preparation-la	yup, curing, properties and applications of glass fibers, carbon fibers	s, Kevlar fibers
and Boron fib	pers. Properties and applications of whiskers, particle reinforcemer	nts. Mechanical
Behavior of	composites: Rule of mixtures, Inverse rule of mixtures.	Isostrain and
Isosterescondi	itions.	
UNIT – III	MANUFACTURING OF METAL MATRIX COMPOSITES	9 Periods
Casting – Soli	id State diffusion technique, Cladding – Hot isostatic pressing- Ma	nufacturing of
Ceramic Matri	ix Composites: Liquid Metal Infiltration – Liquid phase sintering–Ma	anufacturing of
Carbon – Carb	on composites: Knitting, Braiding, Weaving- Properties and applicatior	1S.
UNIT – IV	MANUFACTURING OF POLYMER MATRIX COMPOSITE	9 Periods
Preparation of	f Moulding compounds and prepregs - hand layup method - Autoc	clave method –
Filament wind	ling method – Compression moulding – Reaction injection moulding.	Properties and
applications.		
UNIT – V	STRENGTH ANALYSIS OF COMPOSITES	9 Periods
Laminar Failu	are Criteria-strength ratio, maximum stress criteria, maximum	strain criteria,
interacting fa	ilure criteria, hygrothermal failure. Laminate first play failure-in	sight strength;
Laminate stre	ngth-ply discount truncated maximum strain criterion; strength desig	gn using caplet
plots; stress co	oncentrations.	
Contact Perio	ods:	
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Tota	l: 45 Periods

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials, Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz,
	2013.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
C01	Know the characteristics of composite materials and effect of reinforcement in	K2
	composite materials.	
CO2	Know the various reinforcements used in composite materials.	K2
CO3	Understand and apply the manufacturing processes of metal matrix	K3
	composites	
CO4	Understand and apply the manufacturing processes of polymer matrix	КЗ
	composites.	
C05	Analyze the strength of composite materials.	K4

COURSE ARTICULATION MATRIX:

COs/Pos	P01	PO2	PO3	P04	PO5
C01	1	2	1	1	1
C02	2	2	1	1	2
CO3	2	1	2	1	1
CO4	1	2	2	2	1
C05	1	2	1	1	1
23MF0E15	1	2	2	1	1
1 – Slight, 2 – Moderate, 3 – Sul	ostantial				

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1		60	40				100
CAT2			60	40			100
Individual		60	40				100
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual			60	40			100
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE		40	40	20			100

23TEOE16

GLOBAL WARMING SCIENCE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

6						
Course	To make the students learn about the material consequences of clin	mate change, sea				
Objectives	level change due to increase in the emission of greenhouse gases an	d to examine the				
	science behind mitigation and adaptation proposals.					
UNIT – I	INTRODUCTION	9 Periods				
Terminology 1	Terminology relating to atmospheric particles – Aerosols - Types, characteristics, measurements –					
Particle mass :	Particle mass spectrometry - Anthropogenic-sources, effects on humans.					
UNIT – II	CLIMATE MODELS	9 Periods				
General clima	te modeling- Atmospheric general circulation model - Oceanic ge	neral circulation				
model, sea ice	model, land model concept, paleo-climate - Weather prediction by nu	umerical process.				
Impacts of clin	nate change - Climate Sensitivity - Forcing and feedback.					
UNIT – III	EARTH CARBON CYCLE AND FORECAST	9 Periods				
Carbon cycle-	process, importance, advantages - Carbon on earth - Global carl	bon reservoirs -				
Interactions b	etween human activities and carbon cycle - Geologic time scales -	Fossil fuels and				
energy - Pertu	rbed carbon cycle.					
UNIT – IV	GREENHOUSE GASES	9 Periods				
Blackbody rad	liation - Layer model - Earth's atmospheric composition and Green ho	ouse gases effects				
on weather an	d climate - Radioactive equilibrium - Earth's energy balance.					
UNIT – V	GEO ENGINEERING	9 Periods				
Solar mitigati	Solar mitigation - Strategies - Carbon dioxide removal - Solar radiation management - Recent					
observed trends in global warming for sea level rise, drought, glacier extent.						
Contact Perio	ods:					
Lecture: 45 P	eriods Tutorial: OPeriods Practical: O Periods Total: 4	45 Periods				

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and
	Its Consequences", Princeton University Press, 1 st Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5th
	Edition, 2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions
	for Global Warming", Elsevier, 1st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1st edition, 2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global
	energybalance", Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand the global warming in relation to climate changes throughout	КЭ
01	the earth.	KZ
CO2	Assess the best predictions of current climate models.	K4
CO2	Understand the importance of carbon cycle and its implication on fossil	K3
603	fuels.	K2
CO4	Know about current issues, including impact from society, environment,	٧A
C04	economy as well as ecology related to greenhouse gases.	K4
CO5	Know the safety measures and precautions regarding global warming.	K5

COURSE ART	COURSE ARTICULATION MATRIX					
COs/POs	P01	PO2	PO3	P04	PO5	P06
C01	2	1	2	1	1	2
CO2	1	1	2	1	1	1
CO3	1	2	1	1	1	2
CO4	1	1	1	1	1	2
CO5	2	1	2	1	1	2
23TEOE16	1	1	1	1	1	2
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT P	ASSESSMENT PATTERN – THEORY						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	35	35	10	-	-	100
CAT2	15	25	25	20	15	-	100
Individual							
Assessment 1							
/ Case Study 1	25	20	20	35	-	-	100
/ Seminar 1 /							
Project 1							
Individual							
Assessment 2							
/ Case Study 2	20	20	35	15	10	-	100
/ Seminar 2 /							
Project 2							
ESE	25	20	25	20	10	-	100

INTRODUCTION TO NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To make the students provide strong, essential, important methods	and foundations			
Objectives	of quantum mechanics and apply quantum mechanics on engineering	g fields.			
,		,			
UNIT – I	INTRODUCTION	9 Periods			
Particles and	Particles and Waves - Operators in quantum mechanics - The Postulates of quantum mechanics - The				
Schrodinger e	quation values and wave packet Solutions - Ehrenfest's Theorem.				
UNIT – II	ELECTRONIC STRUCTURE AND MOTION	9 Periods			
Atoms- The Hy	drogen Atom - Many-Electron Atoms – Pseudopotentials, Nuclear Stru	icture, Molecules,			
Crystals - Tra	nslational motion – Penetration through barriers – Particle in a bo	x - Two terminal			
quantum dot o	levices - Two terminal quantum wire devices.				
UNIT - IIISCATTERING THEORY9 Periods					
The formulati	on of scattering events - Scattering cross section - Stationary scatter	ing state - Partial			
wave stationa	ry scattering events - multi-channel scattering - Solution for Schro	dinger equation-			
Radial and wa	ve equation - Greens' function.				
UNIT – IV	CLASSICAL STATISTICS	9 Periods			
Probabilities a	nd microscopic behaviours - Kinetic theory and transport processes ir	n gases - Magnetic			
properties of r	naterials - The partition function.				
UNIT – V	QUANTUM STATISTICS	9 Periods			
Statistical med	hanics - Basic Concepts - Statistical models applied to metals and sem	iconductors - The			
thermal properties of solids- The electrical properties of materials - Black body radiation - Low					
temperatures and degenerate systems.					
Contact Periods:					
Lecture:45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods			

1	Vladimi V.Mitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "Introduction to
	Nanoelectronics: Science, Nanotechnology, Engineering, and Applications", Cambridge
	University Press, 1 st Edition, 2007.
2	Vinod Kumar Khanna, "Introductory Nanoelectronics: Physical Theory and Device Analysis",
	Routledge, 1 st Edition, 2020.
3	George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States
	Edition, 2007.
4	Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.
5	Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian
---	--
	Edition, 2009.
6	Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum
	Statistical Mechanics", Wiley, 2004.
7	A. F. J. Levi, "Applied Quantum Mechanics", 2 nd Edition, Cambridge, 2012.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	Mapped	
C01	Understand the postulates of quantum mechanics.	K2
CO2	Know about nano electronic systems and building blocks.	K2
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4
CO4	Learn the concepts involved in kinetic theory of gases.	K2
C05	Know about statistical models applies to metals and semiconductor.	КЗ

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	P03	P04	PO5	P06			
C01	1	1	1	1	1	1			
CO2	2	2	1	1	1	1			
CO3	2	2	2	1	1	1			
CO4	1	1	1	1	1	1			
CO5	1	1	1	1	1	1			
23TEOE17	1	1	1	1	1	1			
1 – Slight, 2 -	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	30	30	20	20	-	-	100		
CAT2	30	30	20	20	-	-	100		
Individual									
Assessment 1									
/ Case Study	35	25	20	20	-	-	100		
1 / Seminar 1									
/ Project 1									
Individual									
Assessment 2									
/ Case Study	30	25	20	25	-	-	100		
2 / Seminar 2									
/ Project 2									
ESE	20	30	30	20	-	-	100		

GREEN SUPPLY CHAIN MANAGEMENT

PREREQUISI	TES	CATEGORY	LT	Р	С			
	NIL	OE 3	3 0	0	3			
Course	To make the students learn and focus on the	e fundamental stra	ategies	s, to	ols and			
Objectives	Objectives techniques required to analyze and design environmentally sustainable supply chain							
	systems.							
UNIT - IINTRODUCTION9 Periods								
Intro to SCM -	- complexity in SCM, Facility location - Logistics -	Aim, activities, imp	ortan	ce, p	rogress,			
current trends	s - Integrating logistics with an organization.							
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAGEMENT		9	Per	iods			
Basic concept	s of supply chain management - Supply chain of	perations – Planni	ng an	d so	urcing -			
Making and d	elivering - Supply chain coordination and use of t	echnology - Develo	ping s	supp	ly chain			
systems.								
UNIT – III	UNIT - IIIPLANNING THE SUPPLY CHAIN9 Periods							
Types of decis	sions – strategic, tactical, operational - Logistics st	rategies, implemen	ting tl	ne st	rategy -			
Planning reso	urces - types, capacity, schedule, controlling mate	erial flow, measuri	ng an	d im	proving			
performance.								
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN		9	Per	iods			
Procurement	 cycle, types of purchase – Framework of e-proc 	curement - Invento	ry ma	nag	ement –			
EOQ, uncertai	n demand and safety stock, stock control - Materi	ial handling – Purp	ose o	f wa	rehouse			
and ownershi	p, layout, packaging - Transport - mode, owners	ship, vehicle routir	ng and	l scł	neduling			
models- Trave	elling salesman problems - Exact and heuristic meth	nods.						
UNIT – V	SUPPLY CHAIN MANAGEMENT STRATEGIES		9	Per	iods			
Five key confi	guration components - Four criteria of good supp	ly chain strategies	- Nex	t gei	neration			
strategies- N	ew roles for end-to-end supply chain manage	ment - Evolution	of s	uppl	y chain			
organization -	- International issues in SCM – Regional differences	in logistics.						
Contact Perio	ods:							
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Pe	eriods Total:	: 45 Po	erio	ds			

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply
	Chain Management", Routledge, 1st Edition, 2019.
2	Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle
	Approach", McGraw-Hill Education, 1 st Edition, 2011.

3	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management" , Routledge, 1 st Edition, 2017.	
---	---	--

4	Arunachalam Ra	njagopal, "Green	Supply Cha	in Management:	A Practical	Approach",	Replica,
	2021.						

5 Mehmood Khan, Matloub Hussain and Mian M. Ajmal,"Green Supply Chain Management for Sustainable Business Practice", IGI Global, 1st Edition, 2016.

6 S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.

7 Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction", Routledge, 1st Edition, 2017.

COURSE	OUTCOMES:	Bloom's
		Taxonomy
Upon con	npletion of the course, the students will be able to:	Mapped
C01	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and	КZ
	operational decisions.	K5
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	КЗ
C04	Analyze inventory management models and dynamics of supply chain.	K4
C05	Identify issues in international supply chain management and outsources strategies.	КЗ

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	PO5	P06		
C01	1	1	1	1	1	3		
CO2	2	2	1	1	1	1		
CO3	2	1	2	1	1	1		
CO4	2	2	1	1	2	2		
C05	1	1	2	1	1	3		
23TEOE18	2	1	1	1	1	2		
1 – Slight, 2 – Mode	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	25	25	30	10	10	-	100			
CAT2	30	40	20	10	-	-	100			
Individual										
Assessment 1 /										
Case Study 1 /	30	20	25	15	10	-	100			
Seminar 1 /										
Project 1										
Individual										
Assessment 2 /										
Case Study 2 /	35	30	25	10	-	-	100			
Seminar 2 /										
Project 2										
ESE	30	30	20	10	10	-	100			

DISTRIBUTION AUTOMATION SYSTEM

23PSOE19

(*Common to all Branches*)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

To study about the distributed automation and economic evaluation schemes of power Course **Objectives** network

UNIT – I **INTRODUCTION** 9 Periods Introduction to Distribution Automation (DA) - Control system interfaces- Control and data requirements-Centralized (vs) decentralized control- DA system-DA hardware-DAS software.

UNIT – II **DISTRIBUTION AUTOMATION FUNCTIONS**

DA capabilities - Automation system computer facilities- Management processes- Information management- System reliability management- System efficiency management- Voltage management- Load management.

UNIT – III **COMMUNICATION SYSTEMS**

Communication requirements - reliability- Cost effectiveness- Data requirements- Two way capability-Communication during outages and faults - Ease of operation and maintenance- Conforming to the architecture of flow. Distribution line carrier- Ripple control-Zero crossing technique- Telephone, cableTV, radio, AM broadcast, FM SCA, VHF radio, microwave satellite, fiber optics-Hybrid communication systems used in field tests.

UNIT – IV **ECONOMIC EVALUATION METHODS**

Development and evaluation of alternate plans- select study area - Select study period- Project load growth-Develop alternatives- Calculate operating and maintenance costs-Evaluate alternatives.

UNIT – V **ECONOMIC COMPARISON**

Economic comparison of alternate plans-Classification of expenses - capital expenditures-Comparison of revenue requirements of alternative plans-Book life and continuing plant analysis- Year by year revenue requirement analysis, Short term analysis- End of study adjustment-Break even analysis, sensitivity analysis - Computational aids.

Contact Periods: **Lecture: 45 Periods** Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES

1	M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications,
	Ltd., 2010.
2	Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design",
	Springer Science & Business Media, 21-Mar-2013
3	IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE
	Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society.
	Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
4	Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

9 Periods

9 Periods

9 Periods

9 Periods

COURS	COURSE OUTCOMES:			
		Taxonomy		
Upon c	ompletion of the course, the students will be able to:	Mapped		
C01	Analyse the requirements of distributed automation	K1		
CO2	Know the functions of distributed automation	K2		
CO3	Perform detailed analysis of communication systems for distributed	КЗ		
	automation.			
CO4	Study the economic evaluation method	K4		
CO5	Understand the comparison of alternate plans	K5		

COs/Pos	P01	P02	P03	P04	
C01	2	-	1	3	
CO2	3	-	3	2	
C03	3	-	3	2	
CO4	3	-	3	1	
C05	2	-	1	2	
23PS0E19	3	-	3	2	
1 – Slight, 2 – Moderate, 3 – Substantial					

ASSESSMENT PATTERN – THEORY								
Test /	Rememberin	Understandin	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	g (K1) %	g (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	20%	30%	20%	10%	20%	-	100%	
CAT2	20%	20%	20%	20%	20%	-	100%	
Individual	20%	10%	30%	20%	20%	-	100%	
Assessment1								
/ Case								
study1/								
Seminar								
1/Project1								
Individual	20%	30%	10%	20%	20%	-	100%	
Assessment2								
/ Case								
study2/								
Seminar 2								
/Project2								
ESE	30%	20%	20%	20%	10%	-	100%	

23PSOE20

ELECTRICITY TRADING AND ELECTRICITY ACTS

(Common to all Branches)

PREREQUISIT	`ES	CATEGORY	L	Т	Р	C	
	NIL	OE	3	0	0	3	
Course	To acquire expertise on Electric supply and dem	and of Indian Grid	l, gain	expo	sure	on	
Objectives	res energy trading in the Indian market and infer the electricity acts an						
	authorities.						
UNIT – I	ENERGY DEMAND			9	Peri	ods	
Basic concept	s in Economics - Descriptive Analysis of Energy D	emand - Decompo	sition	Anal	ysis	and	
Parametric Ap	pproach - Demand Side Management - Load Manag	gement - Demand	Side M	anag	eme	nt -	
Energy Efficien	ncy - Rebound Effect						
UNIT – II	ENERGY SUPPLY			9	Peri	ods	
Supply Behavi	or of a Producer - Energy Investment - Economics of	Non-renewable Res	sources	s - Ec	onon	nics	
of Renewable	Energy Supply Setting the context - Economics of Re	newable Energy Su	pply -	Econ	omic	s of	
Electricity Sup	ply						
UNIT – III	ENERGY MARKET			9	Peri	ods	
Perfect Compe	etition as a Market Form - Why is the Energy Marke	et not Perfectly Co	mpetiti	ve?	· Mai	rket	
Failure and Mo	onopoly - Oil Market: Pre OPEC Era I - Oil Market: Pre	OPEC Era II - Oil Ma	arket: (OPEC			
UNIT – IV	LAW ON ELECTRICITY			9	Peri	ods	
Introduction	of the Electricity Law; Constitutional Design - Evo	olution of Laws or	n Elect	ricity	y Sali	ient	
Features of El	ectricity Act, 2003 - Evolution of Laws on Electricity	- Salient Features o	of the E	lectr	icity	Act	
2003							
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRICITY	ACT		9	Peri	ods	
Regulatory Co	mmissions - Appellate Tribunal - Other Institutions u	nder the Act - Elect	ricity (Ame	ndme	ent)	
Bill 2020/202	1. A Critical Comment - Renewable Energy - Role	of Civil Society; (Comme	nts o	on D	raft	
Renewable En	ergy Act, 2015						
Contact Perio	ds:						
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Period	ls Total: 45 Perio	ods				
EFERENCES							
1 Bhattachar	1 Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".						
Springer.Lo	Springer.London, UK						
2 Stevens, P.	(2000). "An Introduction to Energy Economics. I	In Stevens, P.(ed.)	The E	cond	omics	s of	
Energy", V	Energy", Vol.1, Edward Elgar, Cheltenham, UK.						

- 3 Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
- 4 Mohammad Naseem, **"Energy Laws in India"**, Kluwer Law International, 3rd Edn, The Netherlands, 2017.

5 Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.

6 Benjamin K Sovacool & Michael H Dowrkin, **"Global Energy Justice: Problems, Principles and Practices"**, Cambridge Univesity Press, 2014.

COURS	COURSE OUTCOMES:				
		Taxonomy			
Upon c	Mapped				
C01	Describe electric supply and demand of power grid	K1			
CO2	Summarize various energy trading strategies	K2			
CO3	Relate the electricity acts practically	К3			
C04	Cite the electricity regulatory authorities	K2			
CO5	Analyze/check the existing power grid for its technical and economical	K4			
	sustainability				

COs/Pos	P01	P02	P03	PO4		
C01	3	-	3	3		
C02	3	-	1	1		
C03	3	-	2	2		
C04	3	-	1	2		
C05	3	-	3	3		
23PSOE20	3	-	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PATTERN – THEORY								
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	20%	30%	20%	30%	-	-	100%	
CAT2	20%	20%	20%	20%	20%	-	100%	
Individual	20%	30%	30%	20%	-	-	100%	
Assessment1								
/ Case								
study1/								
Seminar								
1/Project1								
Individual	20%	30%	-	20%	-	40%	100%	
Assessment2								
/ Case								
study2/								
Seminar 2								
/Project2								
ESE	30%	30%	-	20%	20%	-	100%	

23PSOE21

MODERN AUTOMOTIVE SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course To expose the students with theory and applications of Automotive Electrical and					
Objectives Electronic Systems.					
UNIT - I INTRODUCTION TO MODERN AUTOMOTIVE ELECTRONICS 9 Period	ls				
Introduction to modern automotive systems and need for electronics in automobiles- Role of electronic	cs				
and microcontrollers- Sensors and actuators- Possibilities and challenges in automotive industry	y-				
Enabling technologies and industry trends.					
UNIT - IISENSORS AND ACTUATORS9 Period	ls				
Introduction- basic sensor arrangement- Types of sensors- Oxygen sensor, engine crankshaft angula	ar				
position sensor - Engine cooling water temperature sensor- Engine oil pressure sensor- Fuel meterin	g-				
vehicle speed sensor and detonation sensor- Pressure Sensor- Linear and angle sensors- Flow senso	r-				
Temperature and humidity sensors- Gas sensor- Speed and Acceleration sensors- Knock sensor- Torqu	ıe				
sensor- Yaw rate sensor- Tyre Pressure sensor- Actuators - Stepper motors – Relays.					
UNIT - IIIPOWERTRAIN CONTROL SYSTEMS IN AUTOMOBILE9 Period	ls				
Electronic Transmission Control - Digital engine control system: Open loop and close loop contr	ol				
systems- Engine cooling and warm up control- Acceleration- Detonation and idle speed control - Exhau	st				
emission control engineering- Onboard diagnostics- Future automotive powertrain systems.					
UNIT - IVSAFETY, COMFORT AND CONVENIENCE SYSTEMS9 Period	ls				
Cruise Control- Anti-lock Braking Control- Traction and Stability control- Airbag control system	n-				
Suspension control- Steering control- HVAC Control.					
UNIT - VELECTRONIC CONTROL UNITS (ECU)9 Period	ls				
Introduction to Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotives - Design					
complexities of ECUs- V-Model for Automotive ECU's- Architecture of an advanced microcontroller (XC166					
Family, 32-bit Tricore) used in the design of automobile ECUs- On chip peripherals, protocol interfaces,					
analog and digital interfaces.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John
	Wiley and Sons, 2001.
2	M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE
	Press, series on Power Engineering, 2000.
3	Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power
	SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
4	G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COURS	COURSE OUTCOMES:				
		Taxonomy			
Upon c	Upon completion of the course, the students will be able to:				
C01	Acquire knowledge about conventional automotive control units and devices.	K1			
CO2	Recognize the practical issues in the automotive control systems	K2			
CO3	Analyze the impact of modern automotive techniques in various Engineering	K4			
	applications				
CO4	Develop modern automotive control system for electrical and electronics	K6			
	systems				
C05	Understand the function of sensors and actuators	K2			

COs/Pos	P01	P02	P03	P04		
C01	3	-	1	3		
C02	3	-	3	2		
C03	3	-	3	2		
CO4	2	-	3	1		
C05	2	-	1	2		
23PS0E21	3	-	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	20%	30%	20%	30%	-	-	100%	
CAT2	20%	20%	20%	20%	20%	-	100%	
Individual	20%	30%	-	20%	-	30%	100%	
Assessment1								
/ Case								
study1/								
Seminar								
1/Project1								
Individual	20%	30%	-	20%	-	40%	100%	
Assessment2								
/ Case								
study2/								
Seminar 2								
/Project2								
ESE	30%	30%	20%	20%	-	-	100%	

23PEOE22

VIRTUAL INSTRUMENTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To comprehend the Virtual instrumentation programming concepts towards m	ancuramente				
Objectives	and control and to instill moveledge on DAO, signal conditioning and its accession	tad astruara				
Objectives	and control and to insult knowledge on DAQ, signal conditioning and its associa	ted software				
	tools					
UNIT – I	INTRODUCTION	7 Periods				
Introduction -	advantages - Block diagram and architecture of a virtual instrument - (Conventional				
Instruments ve	ersus Traditional Instruments - Data-flow techniques, graphical programming	in data flow,				
comparison wi	th conventional programming.					
UNIT – II	GRAPHICAL PROGRAMMING AND LabVIEW	9 Periods				
Concepts of gra	aphical programming - LabVIEW software - Concept of VIs and sub VI - Display t	ypes - Digital				
- Analog - Cha	rt and Graphs. Loops - structures - Arrays – Clusters- Local and global variable	es – String -				
Timers and dia	log controls.					
UNIT – III	MANAGING FILES & DESIGN PATTERNS	11 Periods				
High-level and	low-level file I/O functions available in LabVIEW – Implementing File I/O func	tions to read				
and write data	to files - Binary Files - TDMS - sequential programming - State machine pro	ogramming –				
Communicatio	n between parallel loops –Race conditions – Notifiers & Queues – Producer Cons	umer design				
patterns						
UNIT – IV	PC BASED DATA ACQUISITION	9 Periods				
Introduction to	o data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration,	Resolution, -				
analog inputs	and outputs - Single-ended and differential inputs - Digital I/O, counters and \dag	timers, DMA,				
Data acquisitio	on interface requirements - Issues involved in selection of Data acquisition ca	ards - Use of				
timer-counter	and analog outputs on the universal DAQ card.					
UNIT – V	DATA ACQUISITION AND SIGNAL CONDITIONING	9 Periods				
Components o	Components of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ hardware -					
Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation –						
Signal conditioning systems – Synchronizing measurements in single & multiple devices – Power quality						
analysis using Electrical Power Measurement tool kit.						
Contact Periods:						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.
2	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
3	Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional
	Publishing, 2019
4	Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
5	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation
	and Control", Newness, 2000

COUR	SE OUTCOMES:	Bloom's
Unon	completion of the course, the students will be able to.	Taxonomy
opon	completion of the course, the students will be able to:	маррец
CO1	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	К6
C05	Familiarize and experiment with DAQ and Signal Conditioning	K3

COs/POs	P01	P02	PO3	P04	PO5			
C01	3	-	3	2	1			
CO2	3	-	3	2	1			
CO3	3	-	2	2	2			
CO4	3	1	3	3	1			
CO5	3	1	3	3	2			
23PEOE22	3	1	3	2	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

٦

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	30	40	15	15	-	-	100	
CAT2	15	10	25	30	20	-	100	
Individual	10	10	20	30	20	10	100	
Assessment1								
/ Case								
study1/								
Seminar								
1/Project1								
Individual	25	40	20	15	-	-	100	
Assessment2								
/ Case								
study2/								
Seminar 2								
/Project2								
ESE	30	25	15	20	5	5	100	

23PEOE23

ENERGY MANAGEMENT SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To Comprehend energy management schemes, perform energy audit a	and execute				
Objectives	economic analysis and load management in electrical systems.					
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND MANAGEMENT	9 Periods				
Energy Conser	vation Act 2001 and policies - Eight National Missions - Basics of Energy a	nd its forms				
(Thermal and	(Thermal and Electrical) - Energy Management and Audit - Energy Managers and Auditors - Types and					
Methodology A	Audit Report - Material and energy balance diagramsEnergy Monitoring and T	ſargeting.				
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENERATION	9 Periods				
Boiler Systems	- Types - Performance Evaluation of boilers - Energy Conservation Opportu	nity - Steam				
Distribution - H	Efficient Steam Utilisation - Furnaces:types and classification - Performance ev	aluation of a				
typical fuel fire	ed furnace. Cogeneration: Need - Principle - Technical options - classification	- Technical				
parameters and	d factors influencing cogeneration choice - Prime Movers - Trigeneration.					
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS	9 Periods				
Electricity Billi	ng – Electricity load management - Maximum Demand Control - Power Factor in	nprovement				
and its benefit	ts - pf controllers - capacitors - Energy efficient transformers and Induction	on motors -				
rewinding and	l other factors influencing energy efficiency - Standards and labeling pro	ogramme of				
distribution tra	insformers and IM - Analysis of distribution losses - demand side management	- harmonics				
- filters - VFD a	and its selection.					
UNIT – IV	STUDY OF ELECTRICAL UTILITIES	9 Periods				
Compressor ty	pes - Performance - Air system components - Efficient operation of compressed	air systems-				
Compressor ca	apacity assessment - HVAC: psychrometrics and air-conditioning processes	- Types of				
refrigeration s	ystem - Compressor types and applications - Performance assessment of a	refrigeration				
plants - Lightin	g Systems: Energy efficient lighting controls - design of interior lighting - Case s	tudy.				
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMENT	9 Periods				
Performing Fin	Performing Financial analysis: Fixed and variable costs - Payback period - ROI - methods - factors					
affecting analysis. Energy Performance Assessment: Heat exchangers - Fans and Blowers - Pumps. Energy						
Conservation in buildings and ECBC.						
Contact Periods:						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					
REFERENCES:						
1 Murphy W.I	3. and G.Mckav Butter worth . " Enerav Manaaement ". Heinemann Publications. 2	2007				

T	Mulphy W.K. and G.Mckay Batter Worth, Energy Management, Hememann Fabrications, 2007
2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
	Publishers, 2012.
3	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
	edition, Technical Publications, 2019.
4	S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali
	Prakashan Publications, 2021.
5	www.em-ea.org/gbook1.asp

COUR	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Analyze the feature of energy audit methodology and documentation of report.	КЗ
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
C04	Familiarize with electrical utilities.	K4
C05	Perform assessment of different systems.	K5

COs/POs	P01	P02	P03	P04	PO5		
C01	3	2	2	1	1		
CO2	3	2	2	1	1		
CO3	3	2	2	1	1		
CO4	3	2	2	1	1		
C05	3	2	2	1	1		
23PEOE23	3	2	2	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	10	30	30	20	10	-	100	
CAT2	10	30	30	20	10	-	100	
Individual Assessment1 / Case study1/ Seminar 1/Project1	-	30	30	20	20	-	100	
Individual Assessment2 / Case study2/ Seminar 2 /Project2	-	30	30	20	20	-	100	
ESE	10	30	30	20	10	-	100	

23PEOE24

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	To explore the fundamentals, technologies and applications of energy storage				
Objectives					
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION AND	9 Periods			
	CHANGES				
Storage Needs	- Variations in Energy Demand- Variations in Energy Supply- Interruptions	s in Energy			
Supply- Trans	mission Congestion - Demand for Portable Energy-Demand and scale requ	uirements -			
Environmental	and sustainability issues-conventional energy storage methods: battery-types.				
UNIT – II	TECHNICAL METHODS OF STORAGE	9 Periods			
Introduction: H	Energy and Energy Transformations, Potential energy (pumped hydro, com	pressed air,			
springs)- Kinet	ic energy (mechanical flywheels)- Thermal energy without phase change pass	sive (adobe)			
and active (w	ater)-Thermal energy with phase change (ice, molten salts, steam)- Chem	ical energy			
(hydrogen, met	hane, gasoline, coal, oil)- Electrochemical energy (batteries, fuel cells)- Electros	tatic energy			
(capacitors), E	lectromagnetic energy (superconducting magnets)- Different Types of Energy	rgy Storage			
Systems.					
UNIT – III	PERFORMANCE FACTORS OF ENERGY STORAGE SYSTEMS	9 Periods			
Energy capture	e rate and efficiency- Discharge rate and efficiency- Dispatch ability and le	oad flowing			
characteristics,	scale flexibility, durability - Cycle lifetime, mass and safety - Risks of fire	, explosion,			
toxicity- Ease o	f materials, recycling and recovery- Environmental consideration and recycling	, Merits and			
demerits of diff	Ferent types of Storage.				
UNIT – IV	APPLICATION CONSIDERATION	9 Periods			
Comparing Sto	rage Technologies- Technology options- Performance factors and metrics- E	Efficiency of			
Energy System	s- Energy Recovery - Battery Storage System: Introduction with focus on Lea	ad Acid and			
Lithium- Chem	nistry of Battery Operation, Power storage calculations, Reversible reaction	s, Charging			
patterns, Batte	ry Management systems, System Performance, Areas of Application of Ener	gy Storage:			
Waste heat red	covery, Solar energy storage, Green house heating, Power plant applications,	Drying and			
heating for pro	cess industries, energy storage in automotive applications in hybrid and electric	vehicles.			
UNIT – V	HYDROGEN FUEL CELLS AND FLOW BATTERIES	9 Periods			
Hydrogen Economy and Generation Techniques, Storage of Hydrogen, Energy generation - Super					
capacitors: properties, power calculations – Operation and Design methods - Hybrid Energy Storage:					
Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor					
"Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation)					
Bacitor + Fue	l Cell or Flow Battery operation-Applications: Storage for Hybrid Electr	ic Vehicles,			
Regenerative P	ower, capturing methods.				
Contact Periods:					

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley,
	2010.
2	Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy
	Storage and Conversion", John Wiley and Sons, 2012.
3	Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.
4	Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The
	Electrochemical Society, New Jersy, 2010.

COUR Upon	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
C04	Identify applications for renewable energy systems.	K4
C05	Outline the basics of Hydrogen cell and flow batteries.	K2

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
C01	3	1	3	3	3		
CO2	3	1	3	3	3		
CO3	3	1	3	3	3		
CO4	3	1	3	3	3		
CO5	3	1	3	3	3		
23PEOE24	3	1	3	3	3		
1 – Slight, 2 – Moderate, 3 – S	1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	10	30	30	20	10	-	100	
CAT2	10	30	30	20	10	-	100	
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100	
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100	
ESE	10	30	30	20	10	-	100	

22 A E O E 2 E	DESIGN OF DIGITAL SYSTEMS
ZJAEUEZJ	

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course Objectives

• To gain knowledge in the design and VHDL programming of synchronous and asynchronous sequential circuits, PLD's and the basic concepts of testing in VLSI circuits

UNIT-I SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of Clocked Synchronous Sequential Circuits - Modeling, state table reduction, state assignment, Design of Synchronous Sequential circuits, Design of iterative circuits- ASM chart –ASM realization.

UNIT-II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

Analysis of Asynchronous Sequential Circuits - Races in ASC – Primitive Flow Table - Flow Table Reduction Techniques, State Assignment Problem and the Transition Table – Design of ASC – Static and Dynamic Hazards – Essential Hazards– Data Synchronizers.

UNIT-III SYSTEM DESIGN USING PLDS

Basic concepts – Programming Technologies - Programmable Logic Element (PLE) – Programmable Array Logic (PLA)-Programmable Array Logic (PAL) –Design of combinational and sequential circuits using PLDs– Complex PLDs (CPLDs).

UNIT- IV INTRODUCTION TO VHDL

Design flow -Software tools - VHDL: Data Objects-Data types - Operators -Entities and Architectures

Components and Configurations – Signal Assignment – Concurrent and Sequential statements ––Behavioral,
 Dataflow and Structural modeling– Transport and Inertial delays –Delta delays-Attributes - Generics–
 Packages and Libraries.

UNIT-V LOGIC CIRCUIT TESTING AND TESTABLE DESIGN

Digital logic circuit testing - Fault models - Combinational logic circuit testing - Sequential logic circuit testing-Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study: Traffic Light Controller.

Contact Periods: Lecture:45Periods Tutorial:0Periods Practical: 0Periods Total: 45Periods

REFERENCES:

1	Donald G.Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni, "Circuit Design withVHDL", PHILearning, 2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", Academic Press, 1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage2ndEdition2012.
6	NripendraN.Biswas,"Logic Design Theory"PrenticeHallofIndia,2001.

9 Periods

0 Darria da

9 Periods

9 Periods

9 Periods

COUR	SEOUTCOMES:	Bloom's Taxonomy
Upon	completion of the course ,students will be able to/have:	Mapped
C01	To design synchronous sequential circuits based on specifications.	КЗ
CO2	To design asynchronous sequential circuits based on specifications	КЗ
CO3	Ability to illustrate digital design implementation using PLDs.	K2
C04	To develop algorithm and VHDL code for design of digital circuits.	К3
CO5	Understand the different testing methods for combinational and sequential	K2
	circuits.	

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05	P06	
C01	3	-	2	-	-	1	
CO2	3	-	2	-	-	1	
CO3	3	-	2	-	-	1	
CO4	3	-	2	-	-	1	
C05	3	-	2	-	-	1	
23AE0E25	3	-	2	-	-	1	
– Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	40%	40%	20%				100%	
CAT2	40%	40%	20%				100%	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%	
ESE	20%	45%	35%				100%	

BASICS OF NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course Objective

• The students will be able to acquire knowledge about nano device fabrication technology, nano structures, nano technology for memory devices and applications of nano electronics in data transmission.

UNIT – I TECHNOLOGY AND ANALYSIS	9 Periods
Fundamentals : Dielectric, Ferroelectric and Optical properties - Film Deposition Metho	ds – Lithography
Material removing techniques - Etching and Chemical Mechanical Polishing -	Scanning Probe
Techniques.	
UNIT – II CARBON NANO STRUCTURES	9 Periods
Principles and concepts of Carbon Nano tubes - Fabrication - Electrical, Mechan	ical and Vibration
Properties - Applications of Carbon Nano tubes.	
UNIT – III LOGIC DEVICES	9 Periods
Silicon MOSFET's: Novel materials and alternative concepts - Single electron of	levices for logic
applications - Super conductor digital electronics - Carbon Nano tubes for data processin	ıg.
UNIT – IV MEMORY DEVICES AND MASS STORAGE DEVICES	9 Periods
Flash memories - Capacitor based Random Access Memories - Magnetic Random A	ccess Memories -
Information storage based on phase change materials - Resistive Random Access Memo	ories - Holographic
Data storage.	
UNIT – V DATA TRANSMISSION AND INTERFACING DISPLAYS	9 Periods
Photonic Networks - RF and Microwave Communication System - Liquid Crystal	Displays - Organic
Light emitting diodes.	
Contact Periods:	
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Per	iods

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronicmaterials and
	novel devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics
	Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics",Springer,
	2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher,
	California", 2003.

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon completion of the course, students will be able to/have:		Mapped
C01	Explain principles of nano device fabrication technology.	K2
CO2	Describe the concept of Nano tube and Nano structure.	K2
CO3	Explain the function and application of various nano devices	К3
C04	Reproduce the concepts of advanced memory technologies.	K2
CO5	Emphasize the need for data transmission and display systems.	K2

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06	PSO1	PSO2	PSO3
C01	3	-	2	-	-	1	3	-	1
CO2	3	-	2	-	-	1	3	-	1
CO3	3	-	2	-	-	1	3	-	1
C04	3	-	2	-	-	1	3	-	1
C05	3	-	2	-	-	1	3	-	1
23AE0E26	3	-	2	-	-	1	3	-	1
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	50%	25%	25%				100%	
CAT2	50%	25%	25%				100%	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50%	25%	25%				100%	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50%	25%	25%				100%	
ESE	50%	25%	25%				100%	

ADVANCED PROCESSOR

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	OE	3	0	0	3

Course Objective

• The students will be able to acquire knowledge about the high performance RISC, CISC and special purpose processors.

UNIT – I MICROPROCESSOR ARCHITECTURE

9 Periods

9 Periods

9 Periods

9 Periods

Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile – Cache – Virtual memory and paging – Segmentation – Pipelining – The instruction pipeline – pipeline hazards – Instruction level parallelism – reduced instruction set – Computer principles – RISC versus CISC – RISC properties – RISC evaluation.

UNIT – II HIGH PERFORMANCE CISC ARCHITECTURE –PENTIUM

The software model – functional description – CPU pin descriptions – Addressing modes – Processor flags – Instruction set – Bus operations – Super scalar architecture – Pipe lining – Branch prediction – Theinstruction and caches – Floating point unit– Programming the Pentium processor.

UNIT – III HIGH PERFORMANCE CISC ARCHITECTURE – PENTIUM INTERFACE

Protected mode operation – Segmentation – paging – Protection – multitasking – Exception and interrupts - Input /Output – Virtual 8086 model – Interrupt processing.

UNIT – IV HIGH PERFORMANCE RISC ARCHITECTURE: ARM

ARM architecture – ARM assembly language program – ARM organization and implementation – ARM instruction set - Thumb instruction set.

UNIT – V SPECIAL PURPOSE PROCESSORS

9 Periods

Altera Cyclone Processor – Audio codec – Video codec design – Platforms – General purpose processor – Digital signal processor – Embedded processor – Media Processor – Video signal Processor – Custom Hardware – Co-Processor.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, " ARM System –On –Chip architecture ", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COUR:	Bloom's Taxonomy	
opont		Mapped
C01	Describe the fundamentals of various processor architecture.	K2
CO2	Interpret and understand the high performance features in CISC architecture.	К2
CO3	Describe the concepts of Exception and interrupt processing.	К2
CO4	Develop programming skill for ARM processor.	КЗ
C05	Explain various special purpose processor	K2

COs/POs	P01	P02	P03	P04	PO5	P06	
C01	3	-	2	-	-	1	
CO2	3	-	2	-	-	1	
CO3	3	-	2	-	-	1	
C04	3	-	2	-	-	1	
C05	3	-	2	-	-	1	
23AE0E27	3	-	2	-	-	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Total %	
CAT1	40%	40%	20%				100%	
CAT2	40%	40%	20%				100%	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%	
ESE	30%	40%	30%				100%	

HDLPROGRAMMINGLANGUAGES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	OE	3	0	0	3

Course	• To code and simulate any digital function in Verilog HDL and understand the					
Objective	difference between synthesizable and non-synthesizable code	S.				
UNIT – I	VERILOG INTRODUCTION AND MODELING	9 Periods				
Introduction to	Introduction to Verilog HDL, Language Constructs and Conventions, Gate Level Modeling, Modeling					
at Dataflow L	evel, Behavioral Modeling, Switch Level Modeling, System Tasks,	Functions and				
Compiler Direc	ctives.					
UNIT – II	SEQUENTIAL MODELING AND TESTING	9 Periods				
Sequential Mo	dels - Feedback Model, Capacitive Model, Implicit Model, Basic Memor	ry Components,				
Functional Re	gister, Static Machine Coding, Sequential Synthesis. Test Bench -	Combinational				
Circuits Testin	g, Sequential Circuit Testing, Test Bench Techniques, Design Verifica	ation, Assertion				
Verification.						
UNIT – III	SYSTEM VERILOG	9 Periods				
Introduction,	System Verilog declaration spaces, System Verilog Literal Values an	d Built-in Data				
Types, System	Verilog User-Defined and Enumerated Types, system Verilog Arrays,	Structures and				
Unions, system	n verilog Procedural Blocks, Tasks and Functions.					
UNIT – IV	SYSTEMVERILOGMODELING	9 Periods				
System Verilo	g Procedural Statements, Modeling Finite State Machines with Sys	stem Verilog,				
System Verilog	g Design Hierarchy.	0.				
UNIT – V	INTERFACES AND DESIGN MODEL	9 Periods				
System Verilo	System Verilog Interfaces. A Complete Design Modeled with System Verilog. Behavioral and					
Transaction Level Modeling.						
Contact Periods:						
Lecture: 45 Pe	eriods Tutorial:0 Periods Practical:0 Periods Total: 45 Perio	ods				

1	T.R.Padmanabhan, B Bala Tripura Sundari, " Design through Verilog HDL" ,Wiley 2009.
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog
	For Design Second Edition A Guide to Using System Verilog for Hardware Design and
	Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of
	Projects on FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language
	Features", Springer 2006.
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to
	Using System Verilog for Hardware Design and Modeling" 1st Edition, 2003

COUR	COURSE OUTCOMES:				
		Taxonomy			
Upon	Mapped				
C01	Explain the verilog coding and simulate any digital function using	K2			
	Verilog HDL				
C02	Develop sequential modeling based Verilog HDL code and develop	КЗ			
	the test bench for the modeling				
CO3	Explain the system verilog modeling	K2			
C04	Differentiate the synthesizable and non-synthesizable code	КЗ			
C05	Apply good coding techniques on system verilog interfaces and	К3			
	complete design model				

COURSE ARTICU	COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06	
C01	3	3		2		2	
CO2	3	3		2		2	
CO3	3	3		2		2	
CO4	3	3		2		2	
CO5	3	3		2		2	
23VLOE28	3	3		2		2	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMEN	ASSESSMENT PATTERN – THEORY								
Test /	Remembering	Understandin	Applyin	Analyzin	Evaluating	Creating	Total		
Bloom's	(K1) %	g (K2) %	g (K3) %	g (K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	40%	40%	20%	-	-	-	100%		
CAT2	40%	40%	20%	-	-	-	100%		
Individual	-	50%	50%	-	-	-	100%		
Assessment									
1 /Case									
Study 1/									
Seminar 1 /									
Project1									
Individual	-	50%	50%	-	-	-	100%		
Assessment									
2 /Case									
Study 2/									
Seminar 2 /									
Project 2									
ESE	40%	40%	20%	-	-	-	100%		

CMOS VLSI DESIGN

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To gain knowledge on CMOS Circuits with its characterization a	and to design				
Objective	CMOS logic and sub-system with low power					
UNIT – I	INTRODUCTION TO MOS CIRCUITS 9 Periods					
MOS Transisto	r Theory -Introduction MOS Device Design Equations -MOS Transistor as	s a Switches -				
Pass Transisto	r - CMOS Transmission Gate -Complementary CMOS Inverter - Stati	c Load MOS				
Inverters - Inve	erters with NMOS loads - Differential Inverter - Tri State Inverter - BiCM	OS Inverter.				
UNIT – II	CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION	9 Periods				
Delay Estimat	ion, Logical Effort and Transistor Sizing, Power Dissipation, Sizin	g Routing				
Conductors, Ch	arge Sharing, Design Margin and Reliability.					
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN	9 Periods				
CMOS Logic G	ate Design, Physical Design of CMOS Gate, Designing with Transmiss	sion Gates,				
CMOS Logic Str	uctures, Clocking Strategies, I/O Structures.					
UNIT – IV	CMOS SUBSYSTEM DESIGN	9 Periods				
DataPath Operation	ations-Addition/Subtraction, Parity Generators, Comparators, Zero/One	Detectors,				
Binary Counte	rs, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Cor	ntrol Logic				
Implementatio	n.					
UNIT – V	LOW POWER CMOS VLSI DESIGN	9 Periods				
Introduction to	b Low Power Design, Power Dissipation in FET Devices, Power Diss	sipation in				
CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits,						
Architectural Level Approach – Pipelining and Parallel Processing Approaches, Low Power Basics						
CMOS Gate and Adder Design.						
Contact Periods						
Lecture 45 Pe	us. priods Tutorial:0 Periods Practical:0 Periods Total: 45 Period	lc				
		13				

1	Sung Mo Kang,Yusuf Lablebici,"CMOS Digital Integrated Circuits:Analysis & Design", Tata Mc-
	Graw Hill, 2011.
2	N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley,1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems
	Perspective", Pearson Education 2013.
4	Kiat-Seng Yeo,Kaushik Roy," Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill
	Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Jan M .Rabaey, "Digital Integrated Circuits: A Design Perspective" , Pearson Education, 2003.

COUF	COURSE OUTCOMES:		
		Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped	
C01	Explain the MOS circuits and Transmission gates	K2	
CO2	Illustrate the CMOS Circuits with its characterization	K2	
CO3	Design CMOS logic circuits	К3	
C04	Design CMOS sub-system	К3	
C05	Discuss low power CMOS VLSI Design	K2	

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	PO5	P06
C01	2	1	-	2	-	3
CO2	2	1	-	2	-	3
CO3	2	1	-	2	-	3
CO4	3	1	-	2	-	3
C05	3	1	-	2	-	3
23VLOE29	3	1	-	2	-	3
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	40%	40%	20%	-	-	-	100%	
CAT2	40%	40%	20%	-	-	-	100%	
Individual	-	50%	50%	-	-	-	100%	
Assessment								
1 /Case								
Study 1/								
Seminar 1 /								
Project1								
Individual	-	50%	50%	-	-	-	100%	
Assessment								
2 /Case								
Study 2/								
Seminar 2 /								
Project 2								
ESE	40%	40%	20%	-	-	-	100%	

HIGH LEVEL SYNTHESIS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	• To provide students with foundations in High level synthes	sis, verification		
Objective	and CAD Tools			
UNIT – I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS	9 Periods		
Overview HLS flow, Scheduling Techniques, Resource sharing and Binding Techniques, Data-path				
and Controller	Generation Techniques.			
UNIT – II	HIGH LEVEL SYNTHESIS	9 Periods		
Introduction t	o HDL, HDL to DFG, operation scheduling: constrained and unconstrain	ied scheduling,		
ASAP, ALAP, L	ist scheduling, Force directed Scheduling, operator binding, Static Ti	ming Analysis:		
Delay models,	setup time, hold time, cycle time, critical paths, Topological mvs.	Logical timing		
analysis, False	paths, Arrival time (AT), Required arrival Time (RAT), Slacks.			
UNIT – III	HIGH-LEVEL SYNTHESIS VERIFICATION	9 Periods		
Simulation ba	ased verification - Formal Verification of digital systems- BDD base	ed approaches,		
functional equ	ivalence, finite state automata, ω -automata, FSM verification.			
UNIT – IV	CAD TOOLS FOR SYNTHESIS	9 Periods		
CAD tools for s	synthesis, optimization, simulation and verification of design at variou	s levels as well		
as for special	l realizations and structures such as microprogrammes, PLAs, ga	te arrays etc.		
Technology ma	apping for FPGAs. Low power issues in high level synthesis and logic sy	nthesis.		
UNIT – V	ADVANCED TOPICS	9 Periods		
Relative Scheduling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling				
modes, free-floating scheduling mode, Pipelining, Handshaking, System Design, High-Level				
Synthesis for FPGA.				
Contact Periods:				
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Per	iods		

1	Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit",
	Springer, 2008.
2	Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
3	D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
4	Dutt, N. D. and Gajski, D. D., " High level synthesis ", Kluwer, 2000.
5	Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
6	David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and
	Synchronization Constraints", Kluwer Academic Publishers, 1992.
7	K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999,
	Wiley.
8	Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System
	Design and Analysis", Springer,2006.

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped	
C01	Understand the fundamentals of High level synthesis	K2	
CO2	Synthesis the HDL for operation scheduling	K2	
CO3	Simulate and verify any digital systems	K2	
C04	Apply CAD tools for synthesis	K2	
C05	Have knowledge on various scheduling modes	K2	

COs/POs	P01	P02	P03	P04	P05	P06
C01	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	-	2	2	-
CO4	2	2	-	2	2	-
CO5	2	2	-	2	2	-
23VL0E30	2	2	-	2	2	-

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	50%	50%		-	-	-	100%	
CAT2	50%	50%		-	-	-	100%	
Individual	-	50%	50%	-	-	-	100%	
Assessment 1								
/Case Study								
1/ Seminar 1								
/ Project1								
Individual	-	50%	50%	-	-	-	100%	
Assessment 2								
/Case Study								
2/ Seminar 2								
/ Project 2								
ESE	50%	50%		-	-	-	100%	

23CSOE31

ARTIFICIAL INTELLIGENCE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

Course	Identify and apply AI techniques in the design of systems that act intelligently, making					
Objectives	automatic decisions and learn from experience.					
UNIT – I	SEARCH STRATEGIES	9 Periods				
Uninformed S	Strategies – BFS, DFS, Djisktra, Informed Strategies – A* search	, Heuristic functions, Hill				
Climbing, Adv	ersarial Search – Min-max algorithm, Alpha-beta Pruning					
UNIT – II	PLANNING AND REASONING	9 Periods				
State Space se	earch, Planning Graphs, Partial order planning, Uncertain Reasoning	– Probabilistic Reasoning,				
Bayesian Netv	vorks, Dempster Shafer Theory, Fuzzy logic					
UNIT – III	PROBABILISTIC REASONING	9 Periods				
Probabilistic	Reasoning over Time - Hidden Markov Models, Kalman Filters, Dyr	namic Bayesian Networks.				
Knowledge Re	epresentations – Ontological Engineering, Semantic Networks and de	escription logics.				
UNIT – IV	DECISION MAKING	9 Periods				
Utility Theory	r, Utility Functions, Decision Networks – Sequential Decision Proble	ems – Partially Observable				
MDPs – Game	Theory.					
UNIT – V	REINFORCEMENT LEARNING	9 Periods				
Reinforcement Learning - Passive and active reinforcement learning - Generations in Reinforcement						
Learning - Policy Search – Deep Reinforcement Learning.						
Contact Periods:						
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods				

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice
	Hall,2010.
4	Elaine Rich,Kevin Knight,Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill,
	2009.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	КЗ
CO3	Examine data using statistical codes and solve complex AI problems	K6
C04	Apply techniques to make apt decisions.	K4
C05	Use deep reinforcement learning to solve complex AI problems	К6

COURSE ARTICULATION MATRIX								
COs/ POs	PO 1	P02	PO 3	PO 4	P05	P06		
C01	3		2		3	3		
CO2	3		2		3	3		
CO3	3		3		3	3		
CO4	3		3		3	3		
C05	3		3		3	3		
23CSOE31 3 3 3 3								
1 – Slight, 2 – Mod	1 – Slight, 2 – Moderate, 3 – Substantial							

Test /	Remembering	Understanding	Annlying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3)%	(K4) %	(K5) %	(K6) %	%
Category*	(11) /0	(112) /0	(10) /0	(11) /0	(110) /0	(110) /0	70
CAT1		20	40	20	20		100
CAT2		10	20	40	10	20	100
Individual							
Assessment							
1/ Case					FO	50	100
study 1/					50	50	100
Seminar 1/							
Project 1							
Individual							
Assessment							
2/ Case					50	FO	100
study 2/					50	50	100
Seminar 2/							
Project 2							
ESE	30	30	40				100

COMPUTER NETWORK MANAGEMENT

(Common to all Branches)

PREREQUISITE	S	CATEGORY	L	Т	Р	С	
	NIL	OE	3	0	0	3	
Course	After the completion of the course, the students	will be able to	unders	tand	l the co	oncept	
Objectives	of layering in networks, functions of protocols	of each layer of	f TCP/I	P pr	otocol	suite,	
concepts related to network addressing and routing and build simple LANs, perform					erform		
	basic configurations for routers and switches, ar	nd implement IF	v4 and	IPv	6 addr	essing	
	schemes using Cisco Packet Tracer.						
UNIT – I	INTRODUCTION AND APPLICATION LAYER				9 Pe	eriods	
Building networ	k – Network Edge and Core – Layered Architectu	ıre – OSI Model	– Inter	net	Archit	ecture	
(TCP/IP) Netwo	rking Devices: Hubs, Bridges, Switches, Routers,	and Gateways -	- Perfor	mar	nce Me	trics -	
Ethernet Netwo	rking - Introduction to Sockets - Application	Layer protocols	5 – HT	TP -	- FTP	Email	
Protocols – DNS.							
UNIT – II	TRANSPORT LAYER AND ROUTING				9 Pe	eriods	
Transport Layer	· functions –User Datagram Protocol – Transmiss	sion Control Pro	otocol -	- Flo	ow Cor	ıtrol –	
Retransmission	Strategies - Congestion Control - Routing Princ	iples – Distance	e Vecto	r Ro	uting ·	– Link	
State Routing –	RIP – OSPF – BGP – Introduction to Quality of Ser	vice (QoS).Case	Study:	Con	figurin	ıg RIP,	
OSPF BGP using	Packet tracer						
UNIT – III	NETWORK LAYER				9 Pe	eriods	
Network Layer:	Switching concepts – Internet Protocol – IPV4 Pacl	ket Format – IP .	Addres	sing	– Subn	netting	
– Classless Inter	Domain Routing (CIDR) - Variable Length Subnet	Mask (VLSM) –	DHCP	– AR	P – Ne	twork	
Address Transla	tion (NAT) – ICMP – Concept of SDN.Case Study	7: Configuring V	'LAN, E	HCF	P, NAT	using	
Packet tracer							
UNIT – IV	INTERNETWORK MANAGEMENT				9 Pe	eriods	
Introduction to t	he Cisco IOS - Router User Interface – CLI - Route	r and Switch Ad	ministr	ativ	e Func	tions -	
Router Interface	es - Viewing, Saving, and Erasing Configuration	ns - Switching	Servic	es -	Config	guring	
Switches - Mana	ging Configuration Registers - Backing Up and Re	storing IOS - Ba	icking l	Jp a	nd Res	toring	
the Configuratio	n - Using Discovery Protocol (CDP) - Checking Netw	work Connectivi	ty				
UNIT – V	TRAFFIC MANAGEMENT AND WAN PROTOCO	LS			9 Pe	eriods	
Managing Traffic	Managing Traffic with Access Lists: Introduction to Access Lists - Standard Access Lists - Extended Access						
Lists - Named A	ccess Lists - Monitoring Access Lists - Wide Area	Networking Pr	otocols	: Int	roduct	ion to	
Wide Area Netw	Wide Area Networks - Cabling the Wide Area Network - High-Level Data-Link Control (HDLC) Protocol -						
Point-to-Point Protocol (PPP) - Frame Relay: Frame Relay Implementation and Monitoring - Integrated							
Services Digital	Network (ISDN) - Dial-on-Demand Routing (DDR):	Configuring DD	R				
Contact Periods	<u></u>						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh
	Edition, Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education,
	2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNA™: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COURSE	OUTCOMES:	Bloom's Taxonomy
Upon con	pletion of the course, the students will be able to:	Mapped
C01	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	КЗ
CO4	Build simple LANs, perform basic configurations for routers and switches	K6
C05	Illustrate various WAN protocols	K2

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	PO5	P06	
C01	3		3		2	1	
CO2	3		3		2	2	
CO3	3		3		3	2	
CO4	3		3		3	3	
CO5	3		3		3	3	
23CSOE32	3		3		3	2	
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMEN	ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	30	30	20	20			100			
CAT2		30	20	30	10	10	100			
Individual	10	30	20	20	20		100			
Assessment										
1 /Case										
Study 1 /										
Seminar 1 /										
Project 1										
Individual		20	20	20	20	20	100			
Assessment										
2 / Case										
Study 2/										
Seminar 2/										
Project 2										
ESE	20	40	40				100			

23CSOE33

BLOCKCHAIN TECHNOLOGIES

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	OE	3	0	0	3

r					
Course The objective of the course is to explore basics of block chain technology and its					
Objectives	application in various domain				
UNIT – I	INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN	9 Periods			
History of Blo	ockchain - Types of blockchain- CAP theorem and blockchain	- benefits and			
Limitations of	Blockchain - Decentalization using blockchain - Blockchain im	plementations-			
Block chain in	practical use - Legal and Governance Use Cases				
UNIT – II	BITCOIN AND CRYPTOCURRENCY	9 Periods			
Introduction t	o Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining	Developments,			
Bitcoin Wallet	s, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM	1), Merkle Tree,			
Double-Spend	Problem, Blockchain and Digital Currency, Transactional Block	cks, Impact of			
Blockchain Te	chnology on Cryptocurrency				
UNIT – III	ETHEREUM	9 Periods			
Introduction	o Ethereum, Consensus Mechanisms, Metamask Setup, Ethereu	um Accounts, ,			
Transactions, I	Receiving Ethers, Smart Contracts				
UNIT – IV	HYPERLEDGER AND SOLIDITY PROGRAMMING	9 Periods			
Introduction t	o Hyperledger, Distributed Ledger Technology & its Challenges,	Hyperledger &			
Distributed L	edger Technology, Hyperledger Fabric, Hyperledger Compo	ser. Solidity -			
Programming	with solidity	-			
UNIT – V	BLOCKCHAIN APPLICATIONS	9 Periods			
Ten Steps to b	uild your Blockchain application – Application: Internet of Things,	Medical Record			
Management S	ystem, Domain Name Service and Future of Blockchain, Alt Coins				
Contact Perio	ds:				
Lecture: 45 Po	eriods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods			
L					

REFERENCES:

1	Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and
	Smart Contracts Explained", Second Edition, Packt Publishing, 2018.

2 Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and Technology Solutions", McGraw Hill Education ,2018.

3 Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, **"Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction"** Princeton University Press, 2016.

4 Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.

5 Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018

6 NPTEL Course : Blockchain and its applications https://archive.nptel.ac.in/courses/106/105/106105235/

COUR	Bloom's	
Upon c	Taxonomy	
		Mapped
C01	Comprehend the working of Blockchain technology	K2
CO2	Narrate working principle of smart contracts and create them using solidity for	K3
	given scenario.	
CO3	Comprehend the working of Hyperledger in an real time application	K2
C04	Apply the learning of solidity to build de-centralized apps on Ethereum	КЗ
C05	Develop applications on Blockchain	К3

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	PO5	P06
C01	2		3	2		3
CO2	2	3	3	3	2	3
CO3	3		3	2		3
CO4	3	3	3	3	2	3
C05	3	3	3	3	2	3
23CSOE33	3	3	3	3	2	3
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40				100
CAT2	20	30	50				100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		30	70				100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		40	60				100
ESE	10	60	30				100

23EDACZ1

ENGLISH FOR RESEARCH PAPER WRITING

(Common to All Branches)

PREREQUISITES		CATEGORY	L	Т	Р	С	
	AC	2	0	0	0		
Course	The objective of the course is to make the learners understand the format and						
Objectives	intricacies involved in writing a research paper.						
UNIT – I	PLANNING AND PREPARATION6 Periods					ods	
Need for publishin	Need for publishing articles, Choosing the journal, Identifying a model journal paper, Creation of files for						
each section, Expe	ctations of Referees, Online Resources.						
UNIT – II SENTENCES AND PARAGRAPHS					6 Periods		
Basic word in En	glish, Word order in English and Vernacula	r, placing nouns,	Verbs,	Adje	ctives	s, and	
Adverb suitably in	a sentence, Using Short Sentences, Discourse	Markers and Punct	tuation	s- Str	uctu	e of a	
Paragraph, Breakir	ng up lengthy Paragraphs.						
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC) OF WRITING				6 Periods		
Accuracy, Brevity and Clarity in Writing, Reducing the linking words, Avoiding redundancy, Appropriate							
use of Relative and Reflexive Pronouns, Monologophobia, verifying the journal style, Logical Connections							
between others au	thor's findings and yours.						
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING			6	6 Periods		
Making your findings stand out, Using bullet points headings, Tables and Graphs- Availing non-experts					xperts		
opinions, Hedging, Toning Down Verbs, Adjectives, Not over hedging, Limitations of your research.							
UNIT – V	SECTIONS OF A PAPER			6	6 Periods		
Titles, Abstracts,	Introduction, Review of Literature, Meth	ods, Results, Dis	scussio	n, Co	onclu	sions,	
References.							
Contact Periods:							
Lecture: 30 Perio	Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods						
L							

1	Goldbort R , "Writing for Science", Yale University Press (available on GoogleBooks),2006	
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.	
3	Highman N, "Handbook of Writing for the Mathematical Sciences" , SIAM. Highman's book, 1998.	
4	Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht Heidelberg	
	London, 2011.	
COURSE OUT	rcomes :	Bloom's
-------------	---	----------
		Taxonomy
Upon comple	tion of this course the learners will be able to	Mapped
C01	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph	K4
	writing.	
CO3	Practice unambiguous writing.	КЗ
CO4	Avoid wordiness in writing.	K2
CO5	Exercise the elements involved in writing journal paper.	К3

COs/POs	P01	P02	PO3	P04	P05	P06	
C01	3	3	1	1	1	1	
C02	3	3	1	1	1	1	
CO3	3	3	1	1	1	1	
CO4	3	3	1	1	1	1	
CO5	3	3	1	1	1	1	
23EDACZ1	3	3	1	1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	40	40	20	-	-	-	100		
CAT2	40	40	20	-	-	-	100		
Individual									
Assessment 1/									
Case Study 1/	-	50	50	-	-	-	100		
Seminar 1/									
Project 1									
Individual									
Assessment 2/									
Case Study 2/	-	50	50	-	-	-	100		
Seminar 2/									
Project 2									
ESE	30	30	40	-	-	-	100		

23EDACZ2

DISASTER MANAGEMENT

(Common to all branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	1. To become familiar in key concepts and consequences about hazard	s, disaster and		
Objectives	area of occurrence.			
	2. To know the various steps in disaster planning.			
	3. To create awareness on disaster preparedness and management.			
UNIT – I	INTRODUCTION	6 Periods		
Disaster: Definit	ion, Factors and Significance; Difference between Hazard and Disas	ter; Natural and		
Manmade Disast	ers: Difference, Nature, Types and Magnitude. Areas proneto ,Ear	thquakesFloods,		
Droughts, Landsl	ides ,Avalanches ,Cyclone and Coastal Hazards with Special Reference t	o Tsunami.		
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods		
Economic Dama	ge, Loss of Human and Animal Life, Destruction of Ecosystem. Na	atural Disasters:		
Earthquakes, Vo	olcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines,	Landslides and		
Avalanches, Man	-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil	Slicks and Spills,		
Outbreaks of Dise	ease and Epidemics, War and Conflicts.			
UNIT – III	DISASTER PLANNING	6 Periods		
Disaster Plannin	g-Disaster Response Personnel roles and duties, Community Mitig	ationGoals, Pre-		
Disaster Mitigati	on Plan, Personnel Training, Comprehensive Emergency Managemen	t, Early Warning		
Systems.				
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT	6 Periods		
Preparedness: M	onitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of	Risk: Application		
of Remote Sensi	ng, Data from Meteorological and other Agencies, Media Reports: Go	overnmental and		
Community Prep	aredness.			
UNIT – V	RISK ASSESSMENT	6 Periods		
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk				
Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning,				
People's Participation in Risk Assessment, Strategies for Survival.				
Contact Periods				
Lecture: 30 Peri	ods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Period	s		

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies",
	New Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India,
	New Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep
	Publication Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International
	Publishing House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann,
	2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
C01	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
C04	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
C05	Prepare risk assessment strategy for national and global disaster.	K4

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
C01	2	1	1	2	2		
C02	1	2	1	1	1		
CO3	1	1	1	2	2		
CO4	1	1	1	2	2		
C05	2	1	1	2	2		
23EDACZ2	1	1	1	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2			100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

VALUE EDUCATION (Common to all branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	1. Value of education and self- development				
Objectives	2. Requirements of good values in students				
	3. Importance of character				
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods			
Social values and	individual attitudes. Work ethics, Indian vision of humanism. Moral ar	nd non-moral			
valuation. Standar	ds and principles. Value judgements.				
UNIT – II	PERSONALITY AND BEHAVIOR DEVELOPMENT	6 Periods			
Soul and Scientifi	c attitude. Positive Thinking. Integrity and discipline. Punctuality, I	Love and Kindness.			
Avoid fault Thinki	ng. Free from anger, Dignity of labour. Universal brotherhood and relig	ious tolerance.			
UNIT – III	VALUES IN HUMAN LIFE	6 Periods			
Importance of cu	ltivation of values, Sense of duty. Devotion, Self-reliance. Confider	nce, Concentration.			
Truthfulness, Cle	anliness. Honesty, Humanity. Power of faith, National Unity. Pa	triotism. Love for			
nature,Discipline.					
UNIT – IV	VALUES IN SOCIETY	6 Periods			
True friendship. I	Happiness Vs suffering, love for truth. Aware of self-destructive hab	oits. Association			
andCooperation. I	Doing best for saving nature.				
UNIT – V	POSITIVE VALUES	6 Periods			
Character and Co	mpetence -Holy books vs Blind faith. Self-management and Good	health. Science of			
reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your					
Mind, Self-control	. Honesty, Studying effectively.				
Contact Periods:					
Lecture: 30 Period	ls Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods				

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press,
	New Delhi,1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi,2004
4	https://nptel.ac.in/courses/109104068/36

COUR	SE OUTCOMES :	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Know the values and work ethics.	КЗ
CO2	Enhance personality and 149ehavior development.	К3
CO3	Apply the values in human life.	К3
C04	Gain Knowledge of values in society.	К3
C05	Learn the importance of positive values in human life.	К3

COURSE ARTICULATION MATRIX								
Cos/Pos	P01	P02	P03	P04	P05	P06		
C01	-	-	3	-	-	1		
CO2	-	-	3	-	-	1		
CO3	-	-	3	-	-	1		
CO4	-	-	3	-	-	1		
CO5	-	-	3	-	-	1		
23EDACZ3	-	-	3	-	-	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20%	50%	30%	-	-	-	100%			
CAT2	20%	50%	30%	-	-	-	100%			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%			
ESE	20%	50%	30%	-	-	-	100%			

CONSTITUTION OF INDIA

(Common to all branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course Objectives • To address the importance of constitutional rights and duties								
	 To familiarize about Indian governance and local administration. 							
	 To know about the functions of election commission. 							
UNIT – I	INDIAN CONSTITUTION	6 Periods						
History of Making of	f the Indian Constitution: History Drafting Committee, (Composition	& Working) -						
Philosophy of the Ind	ian Constitution: Preamble Salient Features.							
UNIT – II CONSTITUTIONAL RIGHTS & DUTIES								
Contours of Constitu against Exploitation, Remedies, Directive F	tional Rights & Duties: Fundamental Rights , Right to Equality, Right to F Right to Freedom of Religion, Cultural and Educational Rights, Right to Principles of State Policy, Fundamental Duties.	reedom, Right Constitutional						
UNIT – III	ORGANS OF GOVERNANCE	6 Periods						
Organs of Governanc Executive, President Qualifications, Power	e: Parliament, Composition, Qualifications and Disqualifications, Powers a , Governor, Council of Ministers, Judiciary, Appointment and Trans s and Functions.	and Functions, fer of Judges,						
UNIT – IV	LOCAL ADMINISTRATION	6 Periods						
Local Administration Mayor and role of El Zila Panchayat. Elec Organizational Hiera Importance of grass r	Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.							
UNIT – V	ELECTION COMMISSION	6 Periods						
Election Commission	: Election Commission: Role and Functioning. Chief Election Commissione	er and Election						
Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of								
SC/ST/OBC and women.								
Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods								

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain,"Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu,"Introduction to the Constitution of India", Lexis Nexis, 2015.

COUR Upon	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	К2
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	P04	P05	P06				
C01	-	-	1	1	1	1				
CO2	-	-	1	1	1	2				
CO3	-	-	1	1	2	1				
CO4	-	-	1	1	1	1				
C05	-	-	1	1	1	1				
23EDACZ4	-	-	1	1	1	1				
1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20%	50%	30%	-	-	-	100%			
CAT2	20%	50%	30%	-	-	-	100%			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%			
ESE	20%	50%	30%	-	-	-	100%			

23EDACZ5

PEDAGOGY STUDIES

(Common to all branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course Objectives	 To Understand of various theories of learning, prevailing pedago and design of curriculum in engineering studies. Application of knowledge in modification of curriculum, its as introduction of innovation in teaching methodology. 	ogical practices		
UNIT – I	INTRODUCTION	6 Periods		
Introduction a terminology Research ques	and Methodology: Aims and rationale, Policy background, Conceptual f Theories of learning, Curriculum, Teacher education. Conceptu stions. Overview of methodology and Searching.	ramework and al framework,		
UNIT – II	PEDAGOGICAL PRACTICES	6 Periods		
Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education. Evidence on the effectiveness of pedagogical practices Methodology for the in depth stage: quality assessment of included				
UNIT – III	PEDAGOGICAL APPROACHES	6 Periods		
How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teacher's attitudes and beliefs and Pedagogic strategies.				
UNIT – IV	PROFESSIONAL DEVELOPMENT	6 Periods		
Professional development: alignment with classroom practices and follow-up support. Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes.				
UNIT – V	CURRICULUM AND ASSESSMENT	6 Periods		
Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.				
Contact Periods: Lecture: 30 Periods Tutorial: Nil Practical: Nil Total: 30 Periods				

1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools,Compare , 31 (2): 245-261, 2001.
2	Alexander RJ , Culture and pedagogy: International comparisons in primary education . Oxford and Boston: Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282, 2013.
4	<i>Agrawal M</i> , <i>Curricular reform in schools: The importance of evaluation</i> , <i>Journal of Curriculum Studies</i> , 36 (3): 361-379, 2004

COUR Upon	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain the concept of curriculum, formal and informal education systems and teacher education.	К3
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	К3
CO3	Understand the relation between teacher and community, support from various levels of teachers to students and limitation in resources and size of the class.	КЗ
CO4	Perform research in design a problem in pedagogy and curriculum development.	КЗ

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	-	-	1	1	2	1			
CO2	-	-	1	1	1	2			
CO3	-	-	1	1	2	1			
CO4	-	-	1	1	2	1			
23EDACZ5	-	-	1	1	2	1			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSME	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	20%	50%	30%	-	-	-	100%	
CAT2	20%	50%	30%	-	-	-	100%	
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%	
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%	
ESE	20%	50%	30%	-	-	-	100%	

STRESS MANAGEMENT BY YOGA

(Common to all branches)

NILAC2000Course1. To create awareness on the benefits of yoga and meditation.Objectives2. To understand the significance of Asana and Pranayama.UNIT - IPHYSICAL STRUCTURE AND ITS FUNCTIONS6 PeriodsYoga - Physical structure, Importance of physical exercise, Rules and regulation of simplified physicalexercises, hand exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, maharasana, bodymassage, acupressure, body relaxation.						
Course1. To create awareness on the benefits of yoga and meditation.Objectives2. To understand the significance of Asana and Pranayama.UNIT - IPHYSICAL STRUCTURE AND ITS FUNCTIONS6 PeriodsYoga - Physical structure, Importance of physical exercise, Rules and regulation of simplified physical exercises, hand exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, maharasana, body massage, acupressure, body relaxation.						
Objectives2. To understand the significance of Asana and Pranayama.UNIT - IPHYSICAL STRUCTURE AND ITS FUNCTIONS6 PeriodYoga - Physical structure, Importance of physical exercise, Rules and regulation of simplified physical exercises, hand exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, maharasana, body massage, acupressure, body relaxation.						
UNIT - IPHYSICAL STRUCTURE AND ITS FUNCTIONS6 PeriodYoga - Physical structure, Importance of physical exercise, Rules and regulation of simplified physical exercises, hand exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, maharasana, body massage, acupressure, body relaxation.						
Yoga - Physical structure, Importance of physical exercise, Rules and regulation of simplified physica exercises, hand exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, maharasana, body massage, acupressure, body relaxation.						
exercises, hand exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, maharasana, body massage, acupressure, body relaxation.						
massage, acupressure, body relaxation.						
UNIT - IIYOGA TERMINOLOGIES6 Periods						
Yamas - Ahimsa, satya, astheya, bramhacharya, aparigraha						
Niyamas- Saucha, santosha, tapas, svadhyaya, Ishvara pranidhana.						
UNIT - IIIASANA6 Periods						
Asana - Rules & Regulations – Types & Benefits						
UNIT – IV PRANAYAMA 6 Periods						
Regularization of breathing techniques and its effects-Types of pranayama						
UNIT – V MIND 6 Periods						
Bio magnetism& mind - imprinting & magnifying - eight essential factors of living beings, Menta						
frequency and ten stages of mind, benefits of meditation, such as perspicacity, magnanimity,						
receptivity, adaptability, creativity.						
Contact Periods:						
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods						

1	Janardan Swami Yogabhyasi Mandal , "Yogic Asanas for Group Training-Part-I" , Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature" , Advaita Ashrama
	(Publication Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New
	Dawn Press, New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi,
	2007.

COURS	Bloom's	
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
C01	Practice physical exercises and maintain good health.	КЗ
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	КЗ
CO4	Practice breathing techniques in a precise manner.	КЗ
CO5	Attain emotional stability and higher level of consciousness.	K2

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05		
C01	-	-	-	-	2		
CO2	-	-	-	-	3		
CO3	-	-	-	-	2		
CO4	-	-	-	-	1		
CO5	-	-	-	-	1		
23EDACZ6	-	-	-	-	2		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT I	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	30%	30%	-	-	-	100%
CAT2	30%	40%	30%	-	-	-	100%
Individual Assessment1/ Case study1/ Seminar 1/Project1	40%	40%	20%	-	-	-	100%
Individual Assessment2/ Case study2/ Seminar 2 /Project2	30%	30%	40%	-	-	-	100%
ESE	30%	30%	40%	-	-	-	100%

22ED A C77	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS
Z3EDACZ/	(Common to all branches)

PREREQUISITES :	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	1. To familiar with Techniques to achieve the highest goal in life.								
Objectives	2. To become a person with stable mind, pleasing personality and determination.								
UNIT – I		6 Periods							
Neetisatakam-I	Holistic development of personality-Verses- 19,20,21,22 (wisdom)-Verse	es29,31,32 (pride &							
heroism)-Verse	es- 26,28,6.								
UNIT – II		6 Periods							
Verses- 52,53,5	59 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day work a	nd duties Shrimad							
BhagwadGeeta	- Chapter 2-Verses 41, 47,48,								
UNIT – III		6 Periods							
Shrimad Bhagy	vadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 2	3, 35,- Chapter 18-							
Verses 45, 46, 4	ł8.								
UNIT – IV		6 Periods							
Statements of l	oasic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62, 68 -	Chapter 12 -Verses							
13, 14, 15, 16,1	7, 18-Personality of Role model.								
UNIT – V		6 Periods							
Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39-									
Chapter18 – Verses 37,38,63.									
Contact Periods:									
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods									

1	Swami SwarupanandaAdvaita Ashram " Srimad Bhagavad Gita ",AdvaitaAshrama, Kolkata,2016						
2	P.Gopinath, Rashtriya Sanskrit Sansthanam " Bhartrihari's Three Satakam " (Niti-sringar-vairagya), New Delhi 1986						
3	3 Swami Mukundananda, JagadguruKripalujiYog " Bhagavad Gita: The Song Of God ", USA,2019						
4	A.C. Bhaktivedanta Swami Prabhupada " Bhagavad-Gita As It Is ",Bhaktivedanta Book Trust Publications,2001						

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped	
C01	Apply the Holistic development in life	K4	
CO2	Effective Planning of day to day work and duties	K4	
CO3	Identify mankind to peace and prosperity	K4	
C04	Develop versatile personality.	K4	
C05	Awakening wisdom in life	K4	

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	-	-	1	-	-	-			
C02	-	-	1	-	-	-			
CO3	-	-	1	-	-	-			
CO4	-	-	1	-	-	-			
CO5	-	-	1	-	-	-			
23EDACZ7	-	-	1	-	-	-			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	50%	30%	-	-	-	100%		
CAT2	20%	50%	30%	-	-	-	100%		
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%		
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%		
ESE	20%	50%	30%	-	-	-	100%		

SANSKRIT FOR TECHNICAL KNOWLEDGE

(Common to all Branches)

PREREQUISITES:	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	1. To get a working knowledge in illustrious Sanskrit, the scientific language in						
Objectives	the world.						
	2. Learning of Sanskrit to improve brain functioning.						
	3. Enhancing the memory power.						
	4. Learning of Sanskrit to develop the logic in mathematics, science	& other					
	subjects.						
UNIT – I	BASICS OF SANSKRIT	6 Periods					
Alphabets in S	Sanskrit, Past/Present/Future Tense.						
UNIT – II	SENTENCES AND ROOTS	6 Periods					
Simple Senter	nces - Order, Introduction of roots						
UNIT – III	SANSKRIT LITERATURE	6 Periods					
Technical info	ormation about Sanskrit Literature						
UNIT – IV	TECHNICAL CONCEPTS -1	6 Periods					
Technical con	cepts of Engineering-Electrical, Mechanical						
UNIT – V	UNIT - V TECHNICAL CONCEPTS -2 6 Periods						
Technical concepts of Engineering-Architecture, Mathematics							
Contact Periods:							
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods							

1	Dr.Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.
2	Prathama Deeksha Vempati Kutumbshastri, " Teach Yourself Sanskrit ", Rashtriya Sanskrit
	Sansthanam, New Delhi, Publication, 2009.
3	Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi,2006.

COURS	E OUTCOMES:	Bloom's			
Upon c	Upon completion of the course, the students will be able to:				
		Mapped			
C01	Recognize ancient literature and their basics	К3			
C02	Formulate the sentences with order and understand the roots of	K2			
	Sanskrit				
CO3	Acquire familiarity of the major traditions of literatures written in	КЗ			
	Sanskrit				
C04	Distinguish the Technical concepts of Electrical & Mechanical	K2			
	Engineering				
C05	Categorize the Technical concepts of Architecture & Mathematics	K2			

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	-	-	-	1	2	1		
CO2	-	-	-	1	2	-		
CO3	-	-	-	1	1	1		
CO4	-	-	-	2	1	1		
C05	-	-	-	1	2	1		
23EDACZ8	-	-	-	1	2	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	50%	30%	-	-	-	100%		
CAT2	20%	50%	30%	-	-	-	100%		
Individual Assessmen t 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%		
Individual Assessmen t 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%		
ESE	20%	50%	30%	-	-	-	100%		