GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E.COMPUTER SCIENCE AND ENGINEERING

2018 A REGULATIONS : VERTICALS CURRICULA AND SYLLABI

Vertical I Artificial Intelligence	Vertical II Full Stack Development	Vertical III Data Science and Analytics	Vertical IV Cyber Security
18SPE\$19 -	18SPE\$25 -	18SPE\$12 -	18SPE\$33 -
Knowledge Representation	Web Application Security (Common to CSE & IT)	Big Data Analytics	Modern Cryptography (Common to CSE & IT)
18SPE\$20 -	18SPE\$26 -	18SPE\$17 -	18SPE\$34 -
Ethics and AI (Common to CSE & IT)	Dev-ops (Common to CSE & IT)	Data Warehousing and Data Mining	Network Security
18SPE\$21 -	18SPE\$01-	18SPE\$08 -	18SPE\$35 -
Deep Learning	Introduction to Web Technology	Computer Vision	Security and Privacy in cloud (Common to CSE & IT)
18SPE\$05 -	18SPE\$07 -	18SPE\$21 -	18SPE\$36 -
Natural Language Processing	Cloud Engineering	Deep Learning	Crypto-currency and Blockchain Technologies (Common to CSE & IT)
18SPE\$22 -	18SPE\$27 -	18SPE\$30 -	18SPE\$37 -
Game Theory (Common to CSE & IT)	Principles of Programming Languages (Common to CSE & IT)	Recommender Systems (Common to CSE & IT)	Ethical Hacking (Common to CSE & IT)
18SPE\$23 -	18SPE\$28 -	18SPE\$31 -	18SPE\$38 -
Soft Computing	UI & UX design (Common to CSE & IT)	Exploratory Data Analytics (Common to CSE & IT)	Digital and Mobile Forensics (Common to CSE & IT)
18SPE\$24	18SPE\$29 -	18SPE\$32 -	18SPE\$39 -
Cognitive Science (Common to CSE & IT)	App Development (Common to CSE & IT)	Video Analytics (Common to CSE & IT)	Social Network Security (Common to CSE & IT)

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E.COMPUTER SCIENCE AND ENGINEERING CBCS 2018 A REGULATIONS

<u>Verticals – I</u>

SI.	Course			СА	End	Total]	Hours	s/Wee	k
No.	Code	Course Title	CAT	Marks	Sem Marks	Marks	L	Т	Р	С
1	18SPE\$19	Knowledge Representation	PE	40	60	100	3	0	0	3
2	18SPE\$20	Ethics and AI (Common to CSE & IT)	PE	40	60	100	3	0	0	3
3	18SPE\$21	Deep Learning	PE	40	60	100	3	0	0	3
4	18SPE\$05	Natural Language Processing	PE	40	60	100	3	0	0	3
5	18SPE\$22	Game Theory (Common to CSE & IT)	PE	40	60	100	3	0	0	3
6	18SPE\$23	Soft Computing	PE	40	60	100	3	0	0	3
7	18SPE\$24	Cognitive Science (Common to CSE & IT)	PE	40	60	100	3	0	0	3

ARTIFICIAL INTELLIGENCE

<u>Verticals – II</u>

FULL STACK DEVELOPMENT

Sl.	Course			CA	End	Total	Hou	urs/We	eek	
No.	Code	Course Title	CAT	Marks	Sem Marks	Marks	L	Т	Р	С
1	18SPE\$25	Web Application Security (Common to CSE & IT)	PE	40	60	100	3	0	0	3
2	18SPE\$26	Dev-ops (Common to CSE & IT)	PE	40	60	100	3	0	0	3
3	18SPE\$01	Introduction to Web Technology	PE	40	60	100	3	0	0	3
4	18SPE\$07	Cloud Engineering	PE	40	60	100	3	0	0	3
5	18SPE\$27	Principles of Programming Languages (Common to CSE & IT)	PE	40	60	100	3	0	0	3
6	18SPE\$28	UI & UX design (Common to CSE & IT)	PE	40	60	100	3	0	0	3
7	18SPE\$29	App Development (Common to CSE & IT)	PE	40	60	100	3	0	0	3

Sl.	Course			CA	End	Total	Ноι	urs/W	/eek	
No.	Code	Course Title	CAT	Marks	Sem Marks	Marks	L	Т	Р	C
1	18SPE\$12	Big Data Analytics	PE	40	60	100	3	0	0	3
2	18SPE\$17	Data Warehousing and Data Mining	PE	40	60	100	3	0	0	3
3	18SPE\$08	Computer Vision	PE	40	60	100	3	0	0	3
4	18SPE\$21	Deep Learning	PE	40	60	100	3	0	0	3
5	18SPE\$30	Recommender Systems (Common to CSE & IT)	PE	40	60	100	3	0	0	3
6	18SPE\$31	Exploratory Data Analytics (Common to CSE & IT)	PE	40	60	100	3	0	0	3
7	18SPE\$32	Video Analytics (Common to CSE & IT)	PE	40	60	100	3	0	0	3

<u>Verticals – III</u>

DATA SCIENCE AND ANALYTICS

<u>Verticals – IV</u>

CYBER SECURITY

Sl.	Course			CA	End	Total	Hou	ırs/We	eek	
No.	Code	Course Title	CAT	Marks	Sem Marks	Marks	L	Т	Р	С
1	18SPE\$33	Modern Cryptography (Common to CSE & IT)	PE	40	60	100	3	0	0	3
2	18SPE\$34	Network Security	PE	40	60	100	3	0	0	3
3	18SPE\$35	Security and Privacy in cloud (Common to CSE & IT)	PE	40	60	100	3	0	0	3
4	18SPE\$36	Crypto-currency and Blockchain Technologies (Common to CSE & IT)	PE	40	60	100	3	0	0	3
5	18SPE\$37	Ethical Hacking (Common to CSE & IT)	PE	40	60	100	3	0	0	3
6	18SPE\$38	Digital and Mobile Forensics (Common to CSE & IT)	PE	40	60	100	3	0	0	3
7	18SPE\$39	Social Network Security (Common to CSE & IT)	PE	40	60	100	3	0	0	3

VERTICALS – I

ARTIFICIAL INTELLIGENCE

KNOWLEDGE REPRESENTATION

PRE-REQUISITES	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

Course	1.Basic of knowledge representation and classical logic									
Objectives	2.Representation of knowledge in propositional and predicate logics									
-	3. Representation of inheritable knowledge									
	4. Representation of Non Monotonic Logic	4. Representation of Non Monotonic Logic								
	5. Knowledge representation for simple application									
UNIT – I	INTRODUCTION TO KNOWLEDGE REPRESENTATION(9 Periods)									
Knowledge repr	resentation and classical logic - syntax, semantics and natural deducti	on - automated								
theorem proving	g - suitability of logic for knowledge representation - satisfiability solve	rs - SAT solver								
technology-cor	mplete methods - incomplete methods -beyond SAT: quantified Boolea	in formulas and								
model counting -	-approaches to knowledge representation -issues in knowledge representati	on.								
UNIT – II	PROPOSITIONAL AND PREDICATE LOGIC	(9 Periods)								
Propositional log	gic - syntax and semantics -natural deduction - direct proofs - tableau met	hod - first order								
logic - syntax	logic - syntax and semantics - resolution refutation - unification algorithm - horn clauses and logic									
programming - 1	-	C .								

UNIT – IIIREPRESENTATION OF INHERITABLE KNOWLEDGE(9 Periods)Semantic nets – frames – conceptual dependency –scripts –CYC – description logic and its extensions –
DLs and predicate logic - tableau based reasoning techniques - other reasoning technique - DLs in ontology
language applications –language independent representation0

UNIT – IV NON MONOTONIC LOGIC

(9 Periods)

Non monotonic logic – types - default logic – auto epistemic logic - circumscription –preliminaries - computational properties - non monotonic inference relations - semantic specification of inference relations - relating default and auto epistemic logics - relating default logic and circumscription – other non-monotonic logics

UNIT – V	KNOWLEDGE REPRESENTATION IN APPLICATIONS	(9 Periods)						
Ontological enginee	ering - categories and objects - events - mental events and mental obje	cts – reasoning						
systems for catego	ories - reasoning with default information- internet shopping world	d- knowledge						
representation and question answering - the semantic web: webizing knowledge representation								

Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Frank van Harmelen, Vladimir Lifschitz, Bruce Porter "Handbook of Knowledge
	Representation ", 1 st edition, ELSEVIER, 2007
2	Elaine Rich, Kevin Knight, Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, Tata McGraw Hill, 2009

1	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice
	Hall,2010
2	Ronald J. Brachman, Hector J. Levesque, "Knowledge Representation and Reasoning", Morgan
	Kaufmann, 2004
3	Deepak Khemani. "A First Course in Artificial Intelligence", McGraw Hill Education" 2013.
4	NPTEL Course: "Artificial Intelligence: Knowledge Representation And Reasoning"
	https://onlinecourses.nptel.ac.in/noc23_cs09/course

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1	Articulate the basics of knowledge representation and their methodology (Familiarity)
CO2	Apply propositional and predicate logic to represent knowledge required to explain the given
	scenario and create knowledge required base using PROLOG (Usage)
CO3	Use semantic nets, frames, conceptual dependency, scripts , CYC to express inheritable
	knowledge and description logic (Usage)
CO4	Identify the required non monotonic logic for the given scenario (Usage)
CO5	Identify suitable knowledge representation and create a knowledge base for simple applications.
	(Assessment)

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	L	М	М	М	L							Μ	L	L	L	L
CO2	L	М	М	М	L							М	L	L	L	L
CO3	L	Н	Н	Н	L							М	L	L	L	М
CO4	L	Н	Н	L	L							L	L	L	L	L
CO5	L	L	Н	L	Н							L	L	L	L	Н
18SPE\$19	L	М	Н	М	L							М	L	L	L	М
L-Low, M-	Mediu	ım, H-	High													

ETHICS AND AI (Common to CSE & IT)

PRE-REQUISITES	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

Course	1. Understand the need for ensuring ethics in Artificial Intelligence	
Objectives	2. Understand AI governance by human rights and other fundamenta	l values
o sjeen ves	3. Issues with accountability of AI systems	
	4. Technology driven perspectives to integrate ethics and economic v	values.
	5. Futuristic applications	
UNIT – I	INTRODUCTION	(9 Periods)
Role of Artificial I	ntelligence in human life – Understanding Ethics – Need for Et	
	l considerations of AI – Current initiatives of Ethics in AI – Ethical is	
entities.		
UNIT – II	FRAMEWORKS AND MODELS	(9 Periods)
AI Governance by	human rights – Incompatible initiatives of private sector AI – Nor	mative Models -
Codes and Standards	s – The role of professional norms in the governance of Artificial Intel	ligence.
UNIT – III	CONCEPTS AND ISSUES	(9 Periods)
Accountability in Co	omputing Systems – Transparency – Responsibility an AI – Ethical ar	nalysis and design
- Race and Gender-	AI as a moral right holder – autonomy.	
UNIT – IV	PERSPECTIVES AND APPROACHES	(9 Periods)
Social failure mode	s of technology and the Ethics of AI - A human centered approach	h for AI Ethics –
Integrating Ethical v	values and economical values - Fairness - The complexity of otherr	ness – Calculative
composition		
UNIT – V	CASES AND APPLICATIONS	(9 Periods)
Ethics of AI in Tra	nsport - The case for Ethical AI in Military - Ethics of AI in Bio	medical research,
patient care and pub	blic health- Ethics of AI in Law - Robot teaching: pedagogy and po	licy – Smart City
Ethics.		
Contact Periods :		
Lecture: 45 Period	s Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ds

TEXT BOOK :

1	Markus D Dubber, Frank Pasquale, Sunil Das, "The Oxford Handbook of Ethics of AI", Oxford University Press, 2020.
2	Paula Beddington, "Towards a Code of Ethics for Artificial Intelligence", Springer, 2017.

REFERENCES :

1	S. Matthew Liao, "Ethics of Artificial Intelligence", Oxford University Press, 2020.
2	<u>Nick Bostrom and Eliezer Yudkowsky, "The Ethics of Artificial Intelligence", Cambrige</u> <u>University Press, 2014.</u>
3	Wallach W and Allen C, "Moral Machines: Ceaching Robots Right From Wrong", Oxford University Press, 2008
4	Mark Coeckelbergh, "AI Ethics", MIT Press, 2020.

COUR	COURSE OUTCOMES:									
On completion of the course, the students will be able to:										
CO1	Identify the need for Ethics in Artificial Intelligence (Familiarity)									
CO2	Summarize frameworks for normative assessment and governance (Familiarity)									
CO3	Describe the ethical dimensions of Artificial Intelligence (Familiarity)									
CO4	Criticize selection of methodological approached for AI Ethics (Familiarity)									
CO5	Argue Ethics in AI for selected Artificial Intelligence applications (Usage)									

COs/POs	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	1	8	9	10	11	12	<u> </u>	2	- 3	4
CO1						Н		Н				Μ			М	L
CO2						Н		Н				Μ			Μ	Μ
CO3						Н		Н				Μ			М	М
CO4						Н		Н				Μ			М	Μ
CO5						Н		Н				Μ			М	М
18SPE\$20						Н		Н				Μ			М	М
L –Low, M-	Medi	um, H	[- Hig	h												

DEEP LEARNING

PRE-REQUISITE	PRE-REQUISITES CATEGORY L												
	NIL	PE 3 0 0											
Course Objectives	Emphasizing knowledge on various deep learning algorithms.												
UNIT – I	INTRODUCTION TO DEEP LEARNING	NTRODUCTION TO DEEP LEARNING (9 Periods)											
Thresholding logic,	Neuron, Biological Neuron, Idea of computatio Linear Perceptron, Perceptron Learning Algorith ron Learning Algorithm.												
UNIT – II	FEEDFORWARD NETWORKS			(9 Pe	eriods)							
Representation Pow Regularization, Aut	ver of Feedforward Neural Networks, Backpropagoencoders.	gation, Empirical H	Risk	Mir	nimi	zation,							
UNIT – III	DEEP NEURAL NETWORKS			(9 Pe	eriods)							
Gradient Descent (g deep neural networks, Greedy layerwise trainin, GD), Better Training of Neural Networks: New adadelta, rmsprop, adam, NAG), Regularization n	ver optimization n	neth	ods	for	neural							
UNIT – IV	CONVOLUTIONAL NEURAL NETWORKS			(9 Pe	eriods)							
	works: The Convolution Operation - Variants o - Data Types - Efficient Convolution Algorithms												
UNIT – V	NIT – V RECURRENT NEURAL NETWORKS (9 Periods												
	etworks: Bidirectional RNNs - Deep Recurrent Norman Memory and Other Gated RNNs	etworks Recursive	Neu	ral 1	Netv	vorks -							
Contact Periods: Lecture: 45 Period	s Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Perio	ods										

TEXT BOOK :

1 Ian Goodfellow and Yoshua Bengio and Aaron Courville., "Deep Learning ", MIT Press, 2016

REFERENCES :

1	Raúl Rojas, "Neural Networks: A Systematic Introduction ", Springer-Verlag, Berlin, 1996.												
2	Yegnanarayana, B., " Artificial Neural Networks ", PHI Learning Pvt. Ltd, 2009												
3	Christopher Bishop., " Pattern Recognition and Machine Learning ", Springer, 2016												
4	Nikhil Buduma, "Fundamentals of Deep Learning: Designing Next-Generation Machine												
	Intelligence Algorithms", O'Reilly publications, 2017												

COURSE	COURSE OUTCOMES:										
On comple	On completion of the course, the students will be able to:										
CO1	CO1 Summarize the basics of neural network and deep learning (Familiarity)										
CO2	O2 Implement basic neural network model with hidden layers (Usage)										
CO3	Analyze optimization and generalization in deep learning (Assessment)										
CO4	Criticize convolutional neural network and how it is applied to analyzing visual imagery										
	(Assessment)										
CO5	Appraise Recurrent Neural Network (RNN) and its temporal dynamic behavior which										
	helps us to remembers some information about a sequence to predict the next information										
	(Assessment)										

COs/POs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	М	L		L						L	Н	L	L	М
CO2	Н	Н	Н	М	Н	L						L	Н	М	М	М
CO3	Н	Н	Н	Н	Н	L						L	Н	L	М	L
CO4	Н	Н	Н	Н	Н	L						L	Η	L	М	М
CO5	Н	Н	Н	Н	Н	L						L	Н	L	М	М
18SPE\$21	Н	Н	Н	Н	Н	L						L	Н	L	М	М
L-Low, M-	Medi	um, H	- Higl	h												

18SPE\$05

NATURAL LANGUAGE PROCESSING

PRE-REQUISITES	CATEGORY	L	Т	Р	С
NIL	РЕ	3	0	0	3

Course	Upon completion of this course, the students will be familiar with:									
Objectives	To learn the fundamentals of natural language processing									
Ŭ	To understand the use of CFG and PCFG in NLP									
	To understand the role of semantics of sentences and pragmatics									
To apply the NLP techniques to IR applications										
UNIT – I	INTRODUCTION	(9 Periods)								
	nges of NLP - Language Modeling: Grammar-based LM, Statistical	\/								
-	e-State Automata – English Morphology, Transducers for lexic	-								
-	ting and Correcting Spelling Errors, Minimum Edit Distance									
UNIT – II	WORD LEVEL ANALYSIS	(9 Periods)								
Unsmoothed N-gran	ms, Evaluating N-grams, Smoothing, Interpolation and Backoff - Wor	d Classes, Part-								
of-Speech Tagging	, Rule-based, Stochastic and Transformation-based tagging, Issues in	PoS tagging -								
Hidden Markov and	Maximum Entropy models.									
UNIT – III	SYNTACTIC ANALYSIS	(9 Periods)								
Context-Free Gran	nmars, Grammar rules for English, Treebanks, Normal Forms f	or grammar –								
Dependency Gramm	nar – Syntactic Parsing, Ambiguity, Dynamic Programming parsing – Sh	nallow parsing -								
Probabilistic CFG,	Probabilistic CYK, Probabilistic Lexicalized CFGs – Feature structures	, Unification of								
feature structures.										
UNIT – IV	SEMANTICS AND PRAGMATICS	(9 Periods)								
	presentation, First-Order Logic, Description Logics – Syntax-Driven Ser									
analysis, Semantic attachments - Word Senses, Relations between Senses, Thematic Roles, selectional										
restrictions - Word	Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus									
restrictions – Word Bootstrapping meth	Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus ods – Word Similarity using Thesaurus and Distributional methods.	5,								
restrictions – Word Bootstrapping meth UNIT – V	Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus ods – Word Similarity using Thesaurus and Distributional methods. DISCOURSE ANALYSIS AND LEXICAL RESOURCES	, (9 Periods)								
restrictions – Word Bootstrapping meth UNIT – V Discourse segment	Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus ods – Word Similarity using Thesaurus and Distributional methods. DISCOURSE ANALYSIS AND LEXICAL RESOURCES ation, Coherence – Reference Phenomena, Anaphora Resolution us	, (9 Periods) ing Hobbs and								
restrictions – Word Bootstrapping meth UNIT – V Discourse segment Centering Algorithm	 Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus ods – Word Similarity using Thesaurus and Distributional methods. DISCOURSE ANALYSIS AND LEXICAL RESOURCES ation, Coherence – Reference Phenomena, Anaphora Resolution us n – Coreference Resolution – Resources: Porter Stemmer, Lemmatizer, 	(9 Periods) ing Hobbs and Penn Treebank,								
restrictions – Word Bootstrapping meth UNIT – V Discourse segment Centering Algorithm Brill's Tagger, Wor	Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus ods – Word Similarity using Thesaurus and Distributional methods. DISCOURSE ANALYSIS AND LEXICAL RESOURCES ation, Coherence – Reference Phenomena, Anaphora Resolution us	(9 Periods) ing Hobbs and Penn Treebank,								
restrictions – Word Bootstrapping meth UNIT – V Discourse segment Centering Algorithm	 Sense Disambiguation, WSD using Supervised, Dictionary & Thesaurus ods – Word Similarity using Thesaurus and Distributional methods. DISCOURSE ANALYSIS AND LEXICAL RESOURCES ation, Coherence – Reference Phenomena, Anaphora Resolution us n – Coreference Resolution – Resources: Porter Stemmer, Lemmatizer, dNet, PropBank, FrameNet, Brown Corpus, British National Corpus (BN) 	(9 Periods) ing Hobbs and Penn Treebank,								

1	Daniel Jurafsky, James H. Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech", Pearson Publication, 2014.
2	Steven Bird, Ewan Klein and Edward Loper, "Natural Language Processing with Python", First Edition, OReilly Media, 2009

1	Breck Baldwin, "Language Processing with Java and LingPipe Cookbook", Atlantic Publisher, 2015.
2	Richard M Reese, "Natural Language Processing with Java", OReilly Media, 2015.
3	Nitin Indurkhya and Fred J. Damerau, "Handbook of Natural Language Processing", Second Edition, Chapman and Hall/CRC Press, 2010.
4	Tanveer Siddiqui, U.S. Tiwary, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1	To tag a given text with basic Language features (Familiarity)
CO2	To design an innovative application using NLP components (Familiarity)
CO3	To implement a rule based system to tackle morphology/syntax of a language (Familiarity)
CO4	To design a tag set to be used for statistical processing for real-time applications (Familiarity)
CO5	To compare and contrast the use of different statistical approaches for different types of NLP
	applications (Familiarity)

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO 10	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	М	М	L	L	L	L							М		L	L
CO2	М	М	Н	Н	М	L						М	М	Н	М	М
CO3	М	М	Н	Н	М	L						М	М	Н	М	М
CO4	М	М	Н	Н	М	L						М	М	Н	М	М
CO5	М	Н	М	Н	М	L						М	М	Н	М	М
18SOE\$05	М	М	Н	Н	М	L						М	М	Н	М	М
L-Low, M-	Medi	um, H	- Hig	h	•		•		•	•		•				

GAME THEORY (Common to CSE & IT)

PRE-REQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objectives	 To understand the fundamentals of game theory. To formalize the notion of strategic thinking and rational choice by using the tools of game theory, and to provide insights into using game theory in modeling 									
		ory in modeling								
	applications3. To draw the connections between game theory, computer science, and economics,									
	3. To draw the connections between game theory, computer science, and economics, especially emphasizing the computational issues.									
	4. To introduce contemporary topics in the intersection of game	theory computer								
	science, and economics.	uncory, computer								
	5. To apply game theory in Coalitional games.									
UNIT – I	INTRODUCTION	(9 Periods)								
	is Game Theory - An outline of the history of game theory- Defin									
	Preferences, Payoffs – Examples - Strategic form games and exa									
	Stravinsky, Matching Pennies - Notion of Nash Equilibrium - Ex									
	Response Functions - Dominated Actions - Symmetric Games									
Equilibria.	· · ·	-								
UNIT – II	GAMES WITH PERFECT INFORMATION	(9 Periods)								
Mixed Strategy Na	ash Equilibrium- Randomization of Actions, Mixed strategy N	ash equilibrium,								
Dominated actions, 1	Pure strategy equilibria in the presence of randomization, Illustrations	expert diagnosis								
reporting a crime - F	inding all mixed strategy Nash equilibria of some representative game	<u>S.</u>								
UNIT – III	EXTENSIVE GAMES WITH PERFECT INFORMATION	(9 Periods)								
e	th Perfect Information- Extensive games, Strategies and outcomes, N	1 2								
	uilibrium, finding subgame perfect equilibria using backward induction									
	in extensive games with perfect information - Example of committee									
	sum Games: Maxminimization and Nash Equilibrium - Strictly con									
*	strictly competitive games - Minimax theorem - Solution via linear	r programming -								
Examples.										
UNIT – IV	GAMES WITH IMPERFECT INFORMATION	(9 Periods)								
	ted Games - Motivational Examples - Definition of a Bayesian Ga									
	nd examples - Auctions: Independent private values, Nash equilibri									
	price auction, common valuations, revenue equivalence of auctions - eated prisoner's dilemma, infinitely repeated prisoner's dilemma, strate									
	Nash equilibria and equilibria payoffs in infinitely repeated prisoner									
	ria and equilibria payoffs in infinitely repeated prisoner's dilemma.	i s unennna, suo-								
UNIT – V	COALITIONAL GAMES	(9 Periods)								
	- The Core - Illustrations: Ownership and distribution of weal									
	- exchanging heterogeneous items - voting – matching - Shapley value									
Contact Periods:	exenanging neurogeneous nems - voung - matering - onapicy value	una examples.								
	Tutovial: A Daviada Ducatical: A Daviada Tatal: 45 David	la								
Lecture: 45 Periods	Tutorial: 0 Periods Practical: 0 Periods Total: 45 Period	15								

TEXT BOOKS :

1

M. J. Osborne, "An Introduction to Game Theory", Oxford University Press, 2004.

	· · · · · · · · · · · · · · · · · · ·
1	M. Machler, E. Solan, S. Zamir, "Game Theory", Cambridge University Press, 2013
2	N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani (Editors), "Algorithmic Game Theory"
	Cambridge University Press, 2007.
3	A.Dixit and S. Skeath, "Games of Strategy", Second Edition, W W Norton & Co Inc, 2004.
4	YoavShoham, Kevin Leyton-Brown, "Multiagent Systems: Algorithmic, Game-Theoretic, and
	Logical Foundations", Cambridge University Press 2008.
5	Zhu Han, Dusit Niyato, Walid Saad, Tamer Basar and Hjorungnes, "Game Theory in Wireless
	and Communication Networks", Cambridge University Press, 2012.
6	Y.Narahari, "Game Theory and Mechanism Design", IISC Press, World Scientific.

COURSE OUTCOMES:

On con	On completion of the course, the students will be able to:								
CO1	D1 Summarize the fundamentals of game theory and concepts. (Familiarity)								
CO2	Discuss the use of Nash Equilibrium for other problems. (Familiarity)								
CO3	Identify key strategic aspects and based on these be able to connect them to appropriate game								
	theoretic concepts given a real world situation. (Usage)								
CO4	Identify some applications that need aspects of Bayesian Games. (Usage)								
CO5	Use various Coalitional games concepts. (Usage)								

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
COS/POS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	L	М	L	М	М							М	М	М	L	L
CO2	L	М	L	М	М				L	М	L	М	М	М	L	L
CO3	L	М	М	М	Н					М	М	L	М	М	М	М
CO4	L	М	М	М	Н				L	М	М	L	М	М	М	М
CO5	L	М	М	М	Н			L	М	М	М	М	М	М	М	М
18SPE\$22	L	М	М	М	Н			L	L	М	М	М	М	М	М	М
L –Low, M-	Medi	um, H	- Hig	h												

18SPE\$23

SOFT COMPUTING

PRE-REQUISITES CATEGORY L T											
	РЕ	3	0	0	3						
Course Objectives	ojectives 2. To explore fuzzy logic, genetic algorithm, multi-objective optimization problems3. To explain the various architectures and algorithms of neural networks.										
UNIT – I	INTRODUCTION TO SOFT COMPUTING			(9 Pe	eriods)					
	ng systems - Soft computing versus hard computing computing techniques	ng - Characteristics	of	soft	com	puting					
UNIT – II	FUZZY LOGIC			(9 Pe	eriods)					
rlations, rules, proj	zy logic -Fuzzy sets and membership functions positions, implications and inferences - Defuz oplications of fuzzy logic	*	•			2					
UNIT – III	ARTIFICIAL NEURAL NETWORKS			(9 Pe	eriods)					
Biological neurons a	nd its working - Simulation of biological neurons	to problem solving	; - D	Diffe	rent	ANNs					
architectures - Train Neuro Fuzzy system	ing techniques for ANNs - Applications of ANNs	Is to solve some re	al l	ife J	prob	lems –					
UNIT – IV	GENETIC ALGORITHM			(9 Pe	eriods)					
Concept of genetics	and evolution – Application to probabilistic searcl	n techniques – Basi	c G.	A fr	ame	work –					
	ectures – GA operators: encoding, crossover, se on problems using GA	election, mutation	- 5	Solv	ing	single-					
UNIT – V		(9 Periods)									
algorithm – Non-Par	jective Optimization problems – Issues in solving reto approaches to solve MOOPs - Pareto approa evolutionary algorithm			/e ev	/olu	tionary					
Contact Periods: Lecture: 45 Periods		s Total: 45 Perio	ds								

1	Pratihar, D. K., "Soft Computing: Fundamentals and Applications.", Narosa, 2015.
2	Kalyanmoy Deb, "Multi-Objective Optimization Using Evolutionary Algorithms", John Wiley &
	Sons, Ltd, 2008

1	George J. Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic-Theory and Applications", Prentice
	Hall, 1995.
2	James A. Freeman and David M. Skapura, "Neural Networks Algorithms, Applications, and
	Programming Techniques", Pearson Edn., 2003.
3	David E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning",
	Addison Wesley, 1997.
4	Simon Haykin, "Neural Networks and Learning Machines", Third Edition, Pearson Education,
	2009.

COURSE OUTCOMES:

On co	mpletion of the course, the students will be able to:					
CO1 Identify the essential components of soft computing. (Familiarity)						
CO2	Apply fuzzy rules for decision making in real-time scenarios. (Usage)					
CO3	Apply neural networks to real world applications. (Usage)					
CO4	Investigate ideas behind search strategies using genetic algorithms and multi-objective					
	optimization. (Assessment)					

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	Н	М	М	L						М		М	Н	М		L
CO2	Н	М	М	L						М		М	Н	М		L
CO3	Н	М	М	L						М		М	Н	М		L
CO4	Н	М	М	L						М		М	Н	М		L
18SPE\$23	Η	М	М	L						М		М	Н	М		L
L –Low, M-	Medi	um, H	- Hig	h												

COGNITIVE SCIENCE (Common to CSE & IT)

PRE-REQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objectives	1. To know the theoretical background of cognition.										
	2. To understand the link between cognition and computational intelligence.										
	3. To explore probabilistic programming language.										
	4. To study the computational inference models of cognition.										
	5. To study the computational learning models of cognition.										
UNIT – I	PHILOSOPHY, PSYCHOLOGY AND NEUROSCIENCE (9 Periods)										
Philosophy: Mental-	physical Relation - From Materialism to Mental Science - Detour befo	ore the									
naturalistic turn – Th	e Philosophy of Science - The Mind in Cognitive Science - Logic and	the Sciences									
	ology: Place of Psychology within Cognitive Science - Science of Info										
	ciences: Cognitive Neuroscience – Perception – Decision – Learning a	nd Memory –									
	Language Understanding and Processing.										
UNIT – II		COMPUTATIONAL INTELLIGENCE (9 Periods)									
	nition - Artificial Intelligence - Architectures of Cognition - Kn										
	Representation and Reasoning - Logical Decision Making - Decision	n making under									
Uncertainty – Learni	ng – Language – Vision – Robotics.										
UNIT – III	PROBABILISTIC PROGRAMMING LANGUAGE	(9 Periods)									
	- Syntax - Using Javascript Libraries - Manipulating probability										
	ng Inference - Exploring random computation - Coroutines: Function	ons that receive									
	neration – Other basic computation.										
UNIT – IV	IMPLEMENTING THE INFERENCE MODELS OF	(9 Periods)									
	COGNITION										
	- Conditioning - Causal and statistical dependence - Conditional dependence	ndence – Data									
Analysis – Algorithn											
UNIT – V	IMPLEMENTING THE LEARNING MODELS OF	(9 Periods)									
	COGNITION										
	onal Inference – Learning with a Language of Thought – Hierarchical M	Models –									
	arning (Deep) Continuous Functions – Mixture Models.										
Contact Periods :											
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods											

TEXT BOOKS :

1	Robert A. Wilson, Frank C. Keil, "The MIT Encyclopedia of the Cognitive Sciences", The MIT
	Press, 1999.

REFERENCES :

1	Noah D. Goodman, Andreas Stuhlmuller, "The Design and Implementation of Probabilistic Programming Languages" , Electronic version of book, https://dippl.org/.
2	Noah D. Goodman, Joshua B. Tenenbaum, The ProbMods Contributors, "Probabilistic Models of Cognition", Second Edition, 2016, https://probmods.org/.

COUH	RSE OUTCOMES:						
On con	On completion of the course, the students will be able to:						
CO1	Understand the theory behind cognition. (Familiarity)						
CO2	Connect to the cognition elements computationally. (Usage)						
CO3	Implement mathematical functions through WebPPL. (Usage)						
CO4	Develop a cognitive inference model. (Usage)						
CO5	Develop a cognitive learning model. (Usage)						

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	Н	М	Н	L						L		L	Н	М		
CO2	Н	М	Н	L						L		L	Н	М	L	
CO3	Н	М	Н	L	Н					L		L	Н	М	L	
CO4	Н	М	Н	L						L		L	Н	М	L	
CO5	Н	М	Н	L						L		L	Н	М		
18SPE\$24	Н	М	Н	L	М					L		L	Н	М	L	
L –Low, M-	Medi	um, H	[- Hig	h												

VERTICALS – II

FULL STACK DEVELOPMENT

WEB APPLICATION SECURITY (Common to CSE & IT)

PRE-REQUISITE	S	CATEGORY	L	Т	Р	С					
	NIL	РЕ	3	0	0	3					
Course Objectives	 To Equip students with common security threats faced by web applications, such as SQL injection, cross-site scripting (XSS), cross-site request forgery (CSRF), and man- in-the-middle attacks To Respond effectively to security threats and incidents To Design secure web applications from the ground up, including secure authentication and authorization, secure communication protocols, firewalls, intrusion detection systems To Apply industry standards and regulations, such as OWASP Top 10, and PCI DSS, that outline best practices for web application security To Understand the principles of web security, browser security and database security and prevent security vulnerabilities 										
UNIT – I	INTRODUCTION			(0 Da	riods)					
	ern Web Application – REST APIs – Javascript -	SDA Fromouvarle									
	es – Client-side data stores – Network Security vs A										
	P Top Ten List – Security Fundamentals – Input Va	alidation – Attack	surta	ice r	eau	ction -					
Classifying and Price											
UNIT – II	WEB SECURITY PRINCIPLES		(9 Perio			,					
	wo factor and Three factor authentication - Web										
	thentication – Best Practices – Authorization – A	ccess Control – Se	essio	n m	anag	gement					
fundamentals - Sec	uring web application session management										
UNIT – III	BROWSER SECURITY			(9 Pe	riods)					
Same origin policy	- Definition - Client side vs Server side - Exce	eptions – Cross sit	e So								
Discovery and Exp	loitation – Stored XSS – Reflected XSS – DOM Forgery – Query parameter tampering – Alternate	-based XSS - Mut	tatio	n-ba	sed	XSS -					
UNIT – IV	DATABASE AND FILE SECURITY			(9 P e	riods)					
SQL Injection – Code injection – Command injection – Setting database permissions – Stored procedure security – Insecure direct object references – File Security principles – Keeping source code secure – Security through Obscurity – Forceful browsing – Directory traversal											
UNIT – V	SECURE DEVELOPMENT AND DEPLOYM		I			riods)					
	veb applications - Secure application architecture										
	agement - Defending against XSS, CSRF, XXE,	Injection and DoS	atta	cks	– In	dustry					
standards - Maturit	y models – Securing third party dependencies										
Contact Periods: Lecture: 45 Period	ls Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Perio	ods								

1	Andrew Hoffman, "Web Application Security – Exploitation and Countermeasures for Modern Web Applications", O'Reilly, 2020.
2	Bryan Sullivan, Vincent Liu, "Web Application Security – A Beginner's Guide", McGraw Hill, 2012.

1	Mike Shema, "Hacking Web Apps – Detecting and Preventing Web Application Security
	Problems", Elsevier, 2012.
2	Ron Lepofsky, "The Manager's Guide to Web Application Security – A Concise guide to Web
	Application Security", Apress, 2014.
3	Dafydd Stuttard, Marcus Pinto, "The Web Application Hacker's Handbook - Finding and
	Exploiting Security flaws", John Wiley & Sons, Second Edition, 2011.

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1	Be familiar with secure coding best practices, such as OWASP Top 10. (Familiarity)
CO2	Write secure code, including input validation, error handling, and password protection. (Usage)
CO3	Comprehend the most common web security threats, such as cross-site scripting (XSS), cross-site
	request forgery (CSRF), SQL injection, and others. (Usage)
CO4	Implement and manage web security policies and procedures, including incident response planning
	and management, security auditing, and security monitoring. (Usage)
CO5	Identify and prioritize potential security threats to web applications and develop effective strategies
	for mitigating those threats. (Assessment)

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
COS/POS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	Н	Μ	Н	L	М			Н		L		L	Н	М		М
CO2	Н	М	Н	L	М			Н		L		L	Н	М	L	Н
CO3	Н	М	Н	L	М			Н		L		L	Н	М	L	Н
CO4	Н	М	Н	L	М			Н		L		L	Н	М	L	М
CO5	Н	М	Н	L	М			Н		L		L	Н	М		М
18SPE\$25	Н	М	Н	L	М			Н		L		L	Н	М	L	М
L –Low, M-	L –Low, M- Medium, H- High															

PE cluding continuous at methodologies d technologies, success elines for CI/CD such as Prometheus ystem performance DevOps and SDLC ts – Commits – Res nanager r vs. Virtual machi le – Building a docl	ch as s s and $C - V$ solvi	d Gi (Virtuing) (– M	rafan 9 Pe aliza Conf 9 Pe ain o	enkins, ha, and eriods) ation – flicts – eriods) docker
nt methodologies d technologies, suc eker and Kubernetes elines for CI/CD such as Prometheus /stem performance DevOps and SDLC ts – Commits – Res manager	ch as s s and $C - V$ solvi	d Gi (Virtuing) (– M	rafan 9 Pe aliza Conf 9 Pe ain o	enkins a, and eriods ation - flicts - eriods docket
ts – Commits – Res nanager r vs. Virtual machi	solvi ine -	/irtu ing ((– M	aliza Conf 9 Pe ain o	ation - flicts - eriods docket
ts – Commits – Res nanager r vs. Virtual machi	solvi ine -	ing ((– M	Conf 9 Pe ain o	flicts – eriods) docker
		– M	ain (dockei
		(9 Pe	riods)
ponents – Architect ata – Deploying Ku				
		(9 Pe	riods)
		(9 Pe	riods)
ng Vulnerabilities eus and Grafana	in			
1	s Delivery Principle ocker in Jenkins – C Performance monit ing Vulnerabilities eus and Grafana	s Delivery Principles - ocker in Jenkins – Conf Performance monitorin ing Vulnerabilities in eus and Grafana	s Delivery Principles - Intro ocker in Jenkins – Configuri (Performance monitoring – ing Vulnerabilities in Kul eus and Grafana	s Delivery Principles - Introduct ocker in Jenkins – Configuring Jene (9 Performance monitoring – Cor ing Vulnerabilities in Kuberne eus and Grafana

1	Mikael Krief, "Learning DevOps - The complete guide to accelerate collaboration with Jenkins, Kubernetes, Terraform and Azure DevOps", Packt Publishing, 2019
2	Jose Manuel Ortega Candel, "Implementing DevSecOps with Docker and Kubernetes", BPB Publications, First Edition, 2022

1	Joakim Verona, "Practical DevOps", Packt Publishing, 2016
2	Len Brass, Ingo Weber, Liming Zhu, "DevOps – A Software Architect's Perspective", Pearson
	Education, 2015
3	Gene Kim, Jez Humble, Patrick Debois, John Willis, "The DevOps Handbook – How to create
	world-class agility, reliability and security in technology organizations", IT Revolution, Second
	edition, 2016
4	Jennifer Davis, Katherine Daniels, "Effective DevOps", O'Reilley Media, 2015
5	https://github.com/milanm/DevOps-Roadmap
6	https://github.com/annfelix/DEVOPS-WORLD

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1	Explore the DevOps principles and practices, such as continuous integration, continuous delivery,
	infrastructure as code, and collaboration between development and operations teams.
	(Familiarity)
CO2	Implement containerization and container orchestration using tools such as Docker and Kubernetes.
	(Usage)
CO3	Create and manage infrastructure on public and private cloud platforms such as AWS, Azure, and
	GCP using tools such as Terraform and CloudFormation. (Assessment)
CO4	Write scripts to automate tasks and create pipelines for continuous integration and continuous
	delivery. (Usage)
CO5	Extrapolate the purpose of monitoring and logging tools such as Prometheus and Grafana and be
	able to use them to monitor and analyze system performance. (Assessment)

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	М	Н	Н	М	М	М	Н	L		М	М	Н	М	М	L	М
CO2	М	Н	Η	Η	Η	Η	Н	L	М	М	М	Н	М	М	L	L
CO3	М	Н	Η	Η	Η	Η	Н	L	М	М	М	Н	М	М	L	L
CO4	М	Н	Η	Η	Η	Η	Н	L	М	М	М	М	М	М	М	М
CO5	М	Н	Η	Η	Η	Η	Н	L	М	М	М	Н	М	М	М	L
18SPE\$26	М	Н	Н	Н	Н	Н	Н	L	М	М	М	Н	М	М	L	L
L-Low, M-	L –Low, M- Medium, H- High															

PRE-REQUISITE	S	CATEGORY	L	Т	Р	С		
	NIL	PE	3	0	0	3		
Course	Upon completion of this course, the students will	be familiar with:						
Objectives								
	Cascading Style Sheets							
	Client side scripting with Java script							
	XML and Ajax enabled Internet application desig	n						
	Server side Development							
UNIT – I	INTRODUCTION TO HTML AND CSS		(9	Peri	ods)		
Introduction to co	mputers and Internet – HTML: Basic HTML	Elements, Input a	nd j	page	str	ucture		
Elements- Cascadi	ng Style Sheet: Inline and embedded Styles,	Positioning element	nts,	Bac	kgr	ounds,		
Element Dimensio	ns, Box Model and Text Flow, Media Types	and queries, Sha	adov	vs,	Gra	dients,		
Animations, Transi	tions and Transformations, Web Font, Multi colum	n Layout.						
UNIT – II	CLIENT SIDE SCRIPTING			(9 P	eria	ods)		
Java script: Program	nming Basics- Introduction to Scripting, Control S	tatement, Function	s, A	rrays	s, 0	bjects:		
Math, String, Date,	Boolean, document Objects, Document Object Mo	del, Event Handlin	g.					
UNIT – III	XML and AJAX ENABLED RICH INTERNET	APPLICATIONS		(9 P	eria	ods)		
XML: Basics, Stru	cturing Data, XML Name spaces, DTDs-Schema	a Documents, Exte	ensił	ole s	style	sheet		
Language and XSI	L Transformation, DOM - Web application Dev	elopment: Traditio	nal	Vs	Aja	x web		
application Develop creation.	pment, RIA with Ajax, XML Http Request Object,	, Using XML and I	DON	Л, А	ppli	cation		
UNIT – IV	SERVER SIDE DEVELOPMENT			(9 P	eria	ods)		
	P Transactions, Multi tier Application Architectu				-	• ·		
•	Installation, IIS Express and Web Matrix-Data	•				• •		
· ·	String Processing, Form Processing and Busines	ss Logic, Reading	from	n a	Dat	abase,		
Cookies, Dynamic			r –	<u> </u>		• .		
UNIT – V	SERVER-SIDE DEVELOPMENT WITH JSF AI					ods)		
	Application Development, Model View Contro				-			
	Tracking, Accessing Databases in Web Apps, V							
	nsuming SOAP based web services, REST based	d XML Web servi	ces,	RE	ST	Based		
JSON Web Service								
	Contact Periods:							
Lecture: 45 Periods	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	Paul Deitel, Harvey Deitel, Abbey Deitel "Internet and World Wide Web- How to Program" Fifth
	Edition, Pearson, 2012.

ſ	1	Achyut Godbole, Atul Kahate, "Web Technologies:TCP/IP to Internet Application
		Architectures", Tata McGraw-Hill Education, 2002.
Ī	2	Nicholas C. Zakas, "Professional Javascript for Web Developers", Third Edition, Wrox
		Press,2011.
Ī	3	Jon Duckett, "Beginning Web Programming with HTML, XHTML and CSS", Wrox Press, 2004.

COURSE OUTCOMES:

On con	On completion of the course, the students will be able to:							
CO1	CO1 Design a web page with HTML elements and CSS. [Usage]							
CO2	Write client side scripts using Javascript. [Usage]							
CO3	Structure Data using XML. [Usage]							
CO4	Create and access the web servers. [Usage]							
CO5	Develop applications using JSF and Java [Usage]							

CO-/DO-	РО	РО	РО	РО	РО	PO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO	PSO
COs/POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	Н	Н	Н	Η	М			М		L	L	Н	Н	Н	Н	Н
CO2	Η	Н	Н	Η	Η			М		L	L	Н	Н	Н	Н	Н
CO3	Н	Н	Н	Н	Н			М		L	L	Н	Н	Н	Н	Н
CO4	Η	Н	Н	Η	Η			М		L	L	Н	Н	Н	Н	Н
CO5	Η	Н	Н	Η	Η			М		L	L	Н	Н	Н	Н	Н
18SPE\$01	Н	Н	Н	Н	Н			М		L	L	Н	Н	Н	Н	Н
L-Low, M-	Mediu	ım, H- 1	High													

18SPE\$07

CLOUD ENGINEERING

PRE-REQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	Upon completion of this course, the students will be familiar with:	
Objectives	Cloud Architecture	
	Cloud Services	
	Web Based Cloud Computing	
	Cloud Security	
UNIT – I	INTRODUCTION	(9 Periods)
Introduction - Clou	d types - Characteristics - Assessing the Value Proposition -Cloud Co	mputing Stack -
Connecting to the (Cloud -Infrastructure as a Service (IaaS) -Platform as a Service (PaaS)	-Software as a
Service (SaaS) -Ider	ntity as a Service (IDaaS)- Compliance as a Service (CaaS).	
UNIT – II	VIRTUALIZATION	(9 Periods)
Basics of virtualizat	ion – Types of Virtualization – Implementation Levels of Virtualization	–Virtualization
Structures - tools a	nd Mechanisms - Virtualization of CPU, Memory, I/O Devices -Virt	ual clusters and
resource manageme	nt – Virtualization for data –center Automation.	
UNIT – III	CLOUD INFRASTRUCTURE	(9 Periods)
Architectural Desig	n of Compute and Storage clouds - Layered Cloud Architecture Develop	oment –
Design Challenges -	- Inter Cloud Resource Management - Resource Provisioning and Platfo	orm Deployment
– Global Exchange	of Cloud Resources.	
UNIT – IV	CLOUD APPLICATION PROGRAMMING AND THE	(9 Periods)
	ANEKA PLATFORM	
Aneka - Framework	c overview - anatomy of the Aneka container - Cloud programming and	d management -
Programming appli	cations with threads - Multithreading with Aneka - Task computin	g - Task-based
application models	- Aneka task-based programming - Data-Intensive Computing - Ane	eka MapReduce
programming.		
UNIT – V	SECURITY IN THE CLOUD	(9 Periods)
Security Overview	- Cloud Security Challenges and Risks - Software-as-a-Service see	curity –Security
	Management - Security Monitoring - Security Architecture Design -	•
Application Securit	y - Virtual Machine Security- Identity Management and Access Contr	ol – Autonomic
Security.		
Contact Periods:		
Lecture: 45 Period	s Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

TEXT BOOKS :

1	Sosinsky, Barrie. "Cloud computing bible", Vol. 762. John Wiley & Sons, 2010.							
2	Kai Hwang, Geoffrey C. Fox, Jack, J. Dongarra "Distributed and Cloud Computing from Parallel							
	Processing to the Internet of Things", Elsevier 2012.							
3	Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi "Mastering Cloud Computing							
	Foundations and Applications Programming", 2013.							
4	John W. Rittinghouse, James F. Ransome, "Cloud Computing Implementation, Management, and							
	Security", CRC Press, 2010.							
5	Tim Mather, Subra Kumaraswamy, Shahed Latif, "Cloud Security & Privacy" O'ReillyMedia,							
	September 2009.							

REFERENCES :

1	Haley Beard, "Cloud Computing Best Practices for Managing and Measuring Processes for on
	demand Computing, Applications and Data Centers in the Cloud with SLAS". Emereo Pvt
	Limited, July 2008.
2	John Ritting house & James Ransome, "Cloud Computing, Implementation, Management and
	Strategy", CRC Press, 2010.

COURSE OUTCOMES:

	On completion of the course, the students will be able to:								
CO1	CO1 Explain the cloud architecture and cloud storage [Familiarity]								
CO2	CO2 Create Cloud computing applications [Usage]								
CO3	CO3 Use Cloud services [Usage]								
CO4	Explain web based cloud services and tools [Familiarity]								
CO5	CO5 Explain the necessity and approaches for cloud security.[Familiarity]								

COs/POs	PO 1	P O 2	P O 3	Р О 4	Р О 5	Р О 6	Р О 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	Н	Н	М				М				Н	Н	М	Н	Н
CO2	Н	Н	Н	Μ				М				Н	Н	М	Н	Н
CO3	Н	Н	Н	М				М				Н	Н	М	Н	Н
CO4	Н	Н	Н	М				М				Н	Н	М	Н	Н
CO5	Н	Н	Н	М				М				Н	Н	М	Н	Н
18SOE\$07	Н	Н	Н	М				М				Н	Н	М	Н	Н
L –Low, M-	L –Low, M- Medium, H- High															

PRINCIPLES OF PROGRAMMING LANGUAGES (Common to CSE & IT)

-	PRE-REQUISITES CATEGORY									
	NIL	PE	3	0	0	3				
Course Objectives UNIT – I	Objectives2.Understand call-return architecture and ways of implementing them 3.Analyze and Evaluate the different programming paradigms 4. Practice Functional and Concurrent programming with Haskell 5. Explain the design concepts and issues behind programming languages like C, Java, Scala, Lisp, Prolog, or any new language.									
	FOUNDATIONS r Programming Languages –Overview of Cor	milation Desar	ihin			,				
	and Syntax analysis - Names, Scopes and Bindi									
UNIT – II	CORE ISSUES IN LANGUAGE DESIGN			(9 Pe	eriods)				
Subroutines and Co	uctured and Unstructured Flow – Sequencing – ntrol Abstraction – Stack layout – Calling Seque Exception Handling – Coroutines - Events									
UNIT – III	OBJECT ORIENTED PARADIGM			(9 Pe	eriods)				
Abstract Data Types and Encapsulation Concepts – Design Issues – Namespaces - Inheritance - Inner Classes – Type Extensions – Dynamic Method Binding – Mix-in Inheritance – True Multiple Inheritance - Examples – Object Models – Smalltalk, C++, Java, Scala										
Examples – Object	FUNCTIONAL AND LOGIC PROGRAMMING (9 Periods)									
UNIT – IV	FUNCTIONAL AND LOGIC PROGRAMM	ING		(9 Pe	eriods)				
UNIT – IV Functional Program from Lisp - Introduc	ming – Programs as Functions – Delayed Evaluation to Haskell Programming – Comparison of F - Predicate Calculus – Proving theorems – Resc	tion – Lambda Ca unctional and Impe	erati	us – ve la	Exangu	amples ages –				
UNIT – IV Functional Program from Lisp - Introduc Logic Programming	ming – Programs as Functions – Delayed Evaluation to Haskell Programming – Comparison of F - Predicate Calculus – Proving theorems – Resc	tion – Lambda Ca unctional and Impe	erati	us – ve la - E	Exangu Iem	amples ages –				
UNIT – IV Functional Program from Lisp - Introduc Logic Programming Prolog – Application UNIT – V Parallel Processing a	ming – Programs as Functions – Delayed Evalua etion to Haskell Programming – Comparison of F - Predicate Calculus – Proving theorems – Resons	ition – Lambda Ca unctional and Impe olution and Unifica ores – Monitors –	erativation	us – ve la - E (Exangu lem 9 Pa	amples lages – ents of eriods)				

1	Robert W. Sebesta, "Concepts of Programming Languages", Pearson Education, Twelfth Edition, 2019
2	Michael L. Scott, "Programming Language Pragmatics", Morgan Kauffman, Fourth Edition, 2016

1	Kenneth C. Louden, Kenneth A. Lambert, "Programming Languages - Principles and
	Practice", Course Technology, Cengage Learning, Third Edition, 2011
2	Daniel P. Friedman, Mitchell Wand, "Essentials of Programming Languages", MIT Press,
	Third Edition, 2008
3	Carlo Ghezzi, Mehdi Jazayeri, "Programming Language Concepts", John Wiley & Sons,
	Third Edition, 2008
4	Peter Sestoft, "Programming Language Concepts", Springer-Verlag, Second Edition, 2017

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1	Understand key concepts and theories behind programming languages, including syntax, semantics, grammar, and parsing. (Familiarity)
CO2	Compare the different programming language paradigms and be able to choose the appropriate paradigm for different types of software. (Usage)
CO3	Explain the core issues in procedural and object-oriented programming language design. (Familiarity)
CO4	Apply functional programming concepts and logic programming concepts and be able to write functional code using languages such as Lisp or Prolog or Haskell or Scheme. (Usage)
CO5	Describe the principles of concurrent and parallel programming, including threads, locks, and semaphores, and be able to write concurrent and parallel code using languages Java or Haskell. (Usage)

COs/POs	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO	PSO						
005/105	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	L	L	М	L	М								М	М	М	М
CO2	М	М	М	L	М								М	М	Н	М
CO3	Μ	L	М	L	М								М	М	Н	М
CO4	Μ	L	L	L	Н								М	М	Н	М
CO5	Μ	М	L	L	Н								М	М	Н	М
18SPE\$27	М	L	М	L	М								М	М	Н	М
L-Low, M-	Medi	um, H	- Hig	h		•										

(9 Periods)

PRE-REQUISITES	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

Course Objectives	 1.Principles of UX design, such as user research, user personas and us mapping 2.Importance of color theory, typography, layout, and visual hierarchy 3.Usage of design tools and software, such as Sketch, Figma, Adobe X Invision 4.Usage of wireframes and prototypes using design software to commutideas 	XD and
	5.Methods for evaluating user interfaces	
UNIT – I	INTRODUCTION TO UI DESIGN	(9 Periods)

Basics of HCI - Design process- HCI in software process - Basics of interaction design - UI Design and Why it matters - UI disasters - Case studies - Design Process - Introduction - Usability Engineering -Task centered approaches – Use cases – Personas – Tasks – Scenarios – Design centered approaches – Psychology and human factors for UI Design – Fitts Law – Short-term – long-term – attention – perception - conceptual models - Design principles - visibility - feedback - mappings - constraints - High-level models – distributed cognition – activity theory – situated action

|--|

UserCentered Approaches to Interaction Design -User Research methods - Interview and Focus groups -Observations - Contextual inquiry - Ethics and Consent - User Research Protocol - Log Analysis -Surveys and Questionnaires - Translating User Research to Support design - Qualitative analysis -Quantitative analysis – Examples - Implications for Design – From Research to Ideas – Ideation – Selection - Communicating to Stakeholders

UNIT – III PROTOTYPING Interface Prototying techniques - Low fidelity - Paper prototype - Wireframing - Tool-based - Physical

low fidelity prototyping – Introduction to Design principles and patterns – Layout – Color and consistency - Cultural factors - Interaction design patterns - Google Material design - Design critiques - eliciting and giving feedback

UNIT – IV	UNIVERSAL DESIGN	(9 Periods)
Introduction – Senso older adults and ch Mobile UI design –	and contexts –	
UNIT – V	EVALUATING USER INTERFACES AND TOOLS	(9 Periods)
Introduction to Eva	luating User interfaces and Evaluation in UI Design process – Evaluation	on without users

Jser interfaces and Evaluation in UI Design pro - Action Analysis - Cognitive Walkthroughs - Heuristic Evaluation - Nielsen's heuristics - Evaluation with Users - User Testing - Goals - Formative and Summative Evaluation - Ethics in evaluation - Tools -Adobe XD – Figma – Invision - Sketch

Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Rex Hartson, Pardha S Pyla, "The UX Book: Agile UX Design for a Quality User Experience",
	Morgan Kaufmann, Second Edition, 2018
2	Joel Marsh, " UX for beginners ", O'Reilly Media, 2015

1	Alan Cooper, Robert Riemann, David Cronin, Christopher Noessel, "About Face: The Essentials
	of Interaction Design", Wiley, Fourth Edition, 2014
2	Ben Coleman, and Dan Goodwin, "Designing UX: Prototyping: Because Modern Design is
	Never Static", SitePoint, 2017
3	Westley Knight, "UX for Developers: How to Integrate User-Centered Design Principles Into
	Your Day-to-Day Development Work", Apress, 2018
4	https://in.coursera.org/specializations/user-interface-design
5	Helen Sharp, Yvonne Rogers, Jenny Preece, "Interaction design – beyond human computer
	interaction", Wiley, Fifth Edition, 2019
6	Elizabeth Goodman, Mike Kuniavsky, Andrea Moed, "Observing the User Experience – A
	Practitioner's Guide to User Research", Morgan Kaufmann, Second Edition, 2012

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1	Articulate UI/UXdesign principles, tools, and best practices, and apply them to real-world
	scenarios. (Usage)
CO2	Conduct user research to gain insights into user needs and behaviors, and apply these insights to
	inform design decisions. (Usage)
CO3	Create wireframes and prototypes using design software to communicate design ideas. (Usage)
CO4	Design interfaces that adapt to different devices and screen sizes using responsive design
	principles. (Usage)
CO5	Collaboratively design and evaluate interfaces for web and mobile applications using tools like
	Adobe XD, Figma, Invision and Sketch. (Assessment)

COs/POs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1			М	L	L							L	L	L	L	L
CO2			Н	L	L					L		L	L	L	L	L
CO3		L	Н	L	Н					L		L	Н	L	L	L
CO4			Н	L	Н							L	Н	L	L	L
CO5		L	Н	L	Н					М		L	Н	L	L	L
18SPE\$28		L	Н	L	Н					L		L	Н	L	L	L
L –Low, M-	Medi	um, H	- Hig	h		•	•	•			•		•	•		

18SPE\$29

APP DEVELOPMENT (Common to CSE & IT)

PRE-REQUISITE	S	CATEGORY	L	Т	Р	С			
	NIL	PE	3	0	0	3			
Course Objectives	 1.Apply the basic concepts of DART programming language to solve simple problem 2.Understand the development process of mobile application framework and development mobile application using Flutterthat provide a smooth, seamless us experience, using techniques such as user interface (UI) design, user testing, an iterative design 3. Collect and analyze data from mobile applications, using tools such as Goog Analytics and Firebase, and use the insights to improve the app's performance usability, and user engagement. 4. To understand the major mobile platforms, such as Android and iOS, and the respective development environments, including programming languages, tools, an APIs 5. To deploy mobile applications to the target platform, following best practices for distribution, monetization, and app store optimization. 								
UNIT – I	distribution, monetization, and app store optimiza	ation.		(9 Pe	riods			
Creating a DART project - main function – variables – data types – conditionals – loc									
	gramming – objects – classes – constructors - i								
project structure an									
UNIT – II	INTRODUCTION TO FLUTTER			(9 Pe	riods			
Flutter framework	- Installing Android Studio - Installing and Confi	guring Flutter SDK	. – I						
	device and mobile phone – Flutter widgets – Scaf								
	on - Layouts – State management – Form validation								
Lists – Maps - Exce									
UNIT – IIÎ	FLUTTER NAVIGATION AND ROUTING			(9 Pe	riods			
Button Widget – T	ypes – App Structure and navigation – Navigate v	with Named routes	- N						
	Send and return data among screens – Anima								
	erial design – Elements - Scrolling – Inputs and Se								
	vider – Consumer - Selector	C							
UNIT – IV	FIREBASE, GPS AND GOOGLE MAPS			(9 Pe	riods			
	ebase to app - Firebase authentication – signup a	nd login to Flutter	app	· · ·					
	tion – Firebase database – Real time database – clo								
	ps to Flutter app – Google map marker					11			
UNIT – V	APP TESTING AND PUBLISHING			(9 Pe	riods			
Debugging tools - Deployment - code	- Dart analyzer – Flutter performance and optime obfuscation – Build and release Android app – Bu			est p	oract	ices -			
delivery									
delivery Contact Periods:									
delivery Contact Periods: Lecture: 45 Period	ls Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Perio	ds						

1	Sanjib Sinha, "Beginning Flutter with Dart", Lean publishing, First Edition, 2021
2	Thomas Bailey, Alessandro Biessek, "Flutter for Beginners", Packt Publishing, Second Edition, 2021

1	Sufyan bin Uzayr, "Mastering Flutter – A Beginner's Guide", Taylor and Francis, First Edition,
	2022
2	Simone Alessandria, Brian Kayfitz, "Flutter Cookbook", Packt Publishing, First Edition, 2021
3	Rap Payne, "Beginning App Development with Flutter: Create cross platform mobile apps",
	Apress, First Edition, 2019
4	Marco L Napoli, "Beginning Flutter – A hands on guide to App Development", John Wiley &
	Sons, First Edition, 2020
5	https://docs.flutter.dev/
6	https://firebase.google.com/

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1	Setup a new Material App using Android Studio and use pre-made Flutter widgets for User
	Interface Design. (Familiarity)
CO2	Summarize the difference between Stateful and Stateless Widgets and Explore how Flutter widgets
	react to state changes. (Usage)
CO3	Apply common mobile design patterns to structure flutter apps and navigation. (Usage)
CO4	Design mobile applications with backend services, APIs and Create signup and login screens using Firebase Authentication and Cloud Firestore. (Usage)
CO5	Analyze the mobile app usage data and user feedback, and use the insights to improve app performance, usability, and user engagement. (Assessment)

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS	PS
008/108	1	2	3	4	5	6	7	8	9	10	11	12	01	02	O3	O4
CO1	М	Н	Н	Н	М				М	L	М	L	Н		М	
CO2	М	Н	Н	Н	М				М	L	М	L	Н		М	
CO3	М	Н	Н	Н	М				М	L	М	L	Н		М	
CO4	М	Н	Н	Н	М				М	L	М	L	Н		М	
CO5	М	Н	Н	Н	М				М	L	М	L	Н		М	
18SPE\$29	М	Н	Н	Н	М				М	L	М	L	Н		М	
L –Low, M-	Medi	um, H	I- Hig	h												

VERTICALS-III

DATA SCIENCE AND ANALYTICS

18SPE\$12

BIG DATA ANALYTICS

PRE-REQUISITES	CATEGORY	L	Т	Р	С
Database Management Systems	PE	3	0	0	3

Course	Upon completion of this course, the students will be familiar with,	
Objectives	Evolution of Big Data and its characteristics	
	Domain specific analysis of Big data	
	Mining larger data streams	
	Concepts related to Link analysis and handle large and frequent data se	ets
	Frameworks for Big Data and its applications.	
UNIT – I	INTRODUCTION	(9 Periods)
Introduction to Big	Data – Platforms for Big Data – Traits - Challenges - Web Data – Analy	ytic Scalability -
Modern Data Analy	rtic Tools - Big data sources - Acquisition - Big Data Security, Comp	liance, auditing
and protection - E	volution of Big data - Best Practices for Big data Analytics - Data	Appliance and
Integration tools		
UNIT – II	BIG DATA ANALYSIS	(9 Periods)
Evolution of analyt	ic scalability - Convergence - parallel processing systems - Cloud co	omputing – grid
computing – Map R	educe Framework - Hadoop - Hive - Sharding -Spark enterprise ana	lytic sand box –
analytic data sets	- Analysis approaches - Statistical significance - Multivariate ana	lysis, Bayesian
modeling, Analysis	of time series: linear systems analysis, nonlinear dynamics - Rule induc	tion.
UNIT – III	MINING DATA STREAMS	(9 Periods)
The stream data m	odel - Sampling data streams - counting distinct elements in a strea	m – Estimating
moments. Finding	similar items - Applications of nearest neighbor search - shingling	of documents -
similarity preservati	on - locality sensitive hashing- distance measures - methods for high de	egree similarity.
UNIT – IV	LINK ANALYSIS	(9 Periods)
Link analysis – Pag	e rank – Efficient computation of a page rank – topic sensitive page ran	ık – link spam –
Frequent datasets -	- the market basket model - A-Priori algorithm - handling larger d	atasets in main
memory -limited pa	ss algorithm – counting frequent items in a stream	
UNIT – V	BIG DATA FRAMEWORKS AND APPLICATIONS	(9 Periods)
NoSQL Databases	S3 - Hadoop Distributed file systems - Hbase - Impala -Big data fo	r ECommerce –
Big data for blogs -	Case Study - Analyzing big data with twitter - Futuristic vision and app	olications of Big
Data.		
Contact Periods:		
Contact I critous.		

1	Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.
2	Anand Rajaraman and Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.

1	Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, "Understanding Big
	Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGrawHill Publishing,
	2012.
2	Michael Berthold, David J. Hand, "Intelligent Data Analysis", Springer, 2007.
3	Glenn J. Myatt, "Making Sense of Data", John Wiley & Sons, 2007.
4	Paul Zikopoulos, Dirk deRoos, Krishnan Parasuraman, Thomas Deutsch , James Giles, David
	Corrigan, "Harness the Power of Big data – The big data platform", McGraw Hill, 2012.

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1	Explain platforms, traits and best practices of Big Data. [Familiarity]
CO2	Use statistical techniques to analyze Big Data and identify sample and mine larger data
	streams. [Usage]
CO3	Apply nearest neighbor search to calculate degree similarity between data. [Assessment]
CO4	Compare frameworks for Big Data and list their performance. [Usage]
CO5	Explain futuristic vision and applications of Big Data. [Familiarity]

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	М	Н	Н	Н	Н				Н	Н	Н	Н	М	Н	Н	Н
CO2	Н	Н	Н	Н	Н				Н	Н	Н	Н	М	Н	Н	Н
CO3	М	Н	L	L	Н				L	L	L	Н	М	Н	Н	Н
CO4	М	Н	М	М	Н				Н	М	L	Н	L	Н	Н	Н
CO5	Н	Н	Н	М	Н				Н	Н	М	Н	М	Н	Н	Н
18SPE\$12	Н	Н	Н	М	Н				Н	М	М	Н	М	Н	Н	Н
L - Low, M -	Mode	erate, l	H – Hi	gh					•	•	•	•	•	•	•	

DATA WAREHOUSING AND DATA MINING

PRE-REQUISIT	ES	CATEGORY	L	Т	Р	С												
	NIL	PE	3	0	0	3												
Course	Upon completion of this course the students will	be familiar with:																
Objectives	Building data warehouse using data model, ware		and		P s	erver												
3	Association mining techniques used for the d																	
system. Classification and prediction methods. Clustering the data using clustering techniques.																		
													Applications of data mining.					
												UNIT – I	INTRODUCTION TO DATA WAREHOUSE	1		(9	Per	iods)
Introduction- a mu	lti dimensional data model – Data cube technology	J-Data warehouse a	archi	itect	ure-	Types												
of OLAP servers-I	Data warehouse implementation-Data warehousing t	o data mining.																
UNIT – II				iods)														
	ctionalities - Major issues - Data cleaning - Data i																	
	ization and concept hierarchy generation-Efficient	-				-												
•	arious kinds of association rules-Association mini	ing to correlation	anal	ysis-	Cor	istraint												
based association r																		
UNIT – III	CLASSIFICATION AND PREDICTION			· ·		iods)												
	ues - Classification by decision tree induction -	•																
	sification by back propagation- Other classificatio	n methods- Predic	tion	-Acc	cura	cy and												
	aluating the accuracy.																	
UNIT – IV	CLUSTER ANALYSIS					iods)												
•	Types of data – Partitioning methods – Hierarchica		-															
	ds – Model based Clustering methods – Clustering	g High dimensiona	l dat	a –	Cor	istraint												
	sis – outlier analysis.																	
UNIT – V	DATA MINING APPLICATIONS	· 1 · D' 1 ·	1 1			iods)												
-	nancial analysis-Retail industry-Telecommunication	industry-Biologica	il da	ta ai	nalys	31S-												
	plications-Intrusion detection.																	
Contact Periods:	da Tutanial () Daviada Dugatical () David	a Tatal 45 Dania	. da															
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Perio	ds															

TEXT BOOKS

1 Jiewei Han, MichelineKamber, "**Data mining concepts and techniques**", Morgan Kaufmann Pub, Third Edition, 2011.

REFERENCES

1	William H. Inmon, "Building the data ware house", Wiley DreamtechPvt Ltd., Fourth
	<i>Edition, 2005.</i>
2	Ian H.Witten, Eibe Frank, "Data Mining: Practical M/c Learning tools and techniques with
	Javaimplementation", Morgan Kaufmann Pub, Third Edition, 2011.
3	K.P.Soman,ShyamDiwakar,V.Ajay, "Insight into Data Mining, theory and practice", PHI
	Pvt Ltd, 2006.
4	Ronen Feldman, James Sangee, "The Text Mining Handbook: Advanced Approaches in
	analyzing unstructured data", Cambridge University Press, 2007.

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1	Develop financial data warehouse using Stars, snowflake, fact constellations schema and OLAP
	concepts. [Assessment]
CO2	Transform data to normalized form and solve problems using association mining. [Assessment]
CO3	Apply classification techniques like decision tree induction, Bayesian classification, Rule based
	classification and back propagation to classify an unlabeled data. [Usage]
CO4	Apply model based clustering method and remove the irrelevant data using outlier analysis.
	[Usage]
CO5	Analyze data mining for transaction analysis, biological data analysis, social network analysis.
	[Familiarity]

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	М	Н	Н	Н	Н				Н	Н	Н	Н	М	Н	Н	М
CO2	Н	Η	Η	Η	Н				Н	Н	Н	Н	М	Н	Н	М
CO3	М	Η	L	L	Н				L	L	L	Н	М	Н	Н	М
CO4	М	Η	М	М	Н				Н	М	L	Н	L	Н	Н	L
CO5	Н	Η	Η	М	Н				Н	Н	М	Н	М	Н	Н	М
18SPE\$17	Н	Н	М	Н	Н				Н	М	М	Н	М	Н	Н	М
L - Low, M -	Mode	erate, l	H - Hi	gh							•				1	L

COMPUTER VISION

PE be familiar with: res and camera mo S ctional Hemisphe hadows and Sha g Models - Globa Image Features: E arameters - Calibi r systems - Spati es with Finite Dif s as Templates - F	eric ding l Sh Elem ratic ial l	(-Re g: R adir ents on. (Freq	flecta adio ng M s - C (9 Pe juences - N	metric Iodels ontour riods) cy and Noise -
es and camera mo S ctional Hemisphe hadows and Sha g Models - Globa Image Features: E arameters - Calibi r systems - Spati es with Finite Dif s as Templates - F	eric ding l Sh Elem ratic ial l	(-Re g: R adir ents on. (Freq	flecta adio ng M s - C (9 Pe juences - N	ance - metric Iodels ontour riods cy and Noise -
ctional Hemisphe hadows and Sha Models - Globa Image Features: E arameters - Calib r systems - Spati es with Finite Dif s as Templates - F	ding I Sh Elem ratic ial I ffere	-Re g: R adir ents on. (Freq ence	flecta adio ng M s - C (9 Pe juences - N	ance metric Iodels ontou riods cy and Noise
ctional Hemisphe hadows and Sha Models - Globa Image Features: E arameters - Calib r systems - Spati es with Finite Dif s as Templates - F	ding I Sh Elem ratic ial I ffere	-Re g: R adir ents on. (Freq ence	flecta adio ng M s - C (9 Pe juences - N	ance metric Iodels ontour riods cy anc
r systems - Spati es with Finite Dif s as Templates - F	ial I ffere	(Freq ence	juenc es - N	cy and Noise
es with Finite Dit s as Templates - F	ffere	Freq	juenc es - N	cy and Noise
s and Orientation presenting Texture - Shape from Text	e - A	pres Anal	senta	tions
			9 Pe	riods
e Structure from M Euclidean Image ve Scene Reconst	Moti s - truct	ion: Affi tion	Elen ine M fron	nents Motion n Two
		(9 Pe	riods
hage Segmentatio Transform -Fittir Abstract Inference Filtering - Data As ive Cameras - Aff eses by Pose Clus - Building Class ection - Recogni	on b ng I e -L ssoc fine steri steri	y C Line inea iatic and ng - rs F By	Cluste s - ur Dy on (9 Pe l Proj - Obt From 7 Rel	ring Fitting namic riods jective caining Clas lation
Vellovn 1900 PFire	Views. Stereopsis Structure from I Euclidean Image re Scene Recons ation from Mult g and Gestalt -/ age Segmentatio Fransform -Fittin Abstract Inferenc Siltering - Data A ve Cameras - Af ses by Pose Clus - Building Class ection - Recogni	Views. Stereopsis: Re Structure from Moti Euclidean Images - re Scene Reconstruct ation from Multiple g and Gestalt -Appl age Segmentation b Fransform -Fitting I Abstract Inference -L Tiltering - Data Assoc ve Cameras - Affine ses by Pose Clusteri - Building Classifie ection - Recognition	Views. Stereopsis: Recor Structure from Motion: Euclidean Images - Affi re Scene Reconstruction ation from Multiple Vie (g and Gestalt -Applicat age Segmentation by C Fransform -Fitting Line Abstract Inference -Linea View Cameras - Affine and ses by Pose Clustering - - Building Classifiers F ection - Recognition By Templates - Relational	(9 Pe Views. Stereopsis: Reconstruct Structure from Motion: Elen Euclidean Images - Affine M re Scene Reconstruction from ation from Multiple Views - (9 Pe g and Gestalt -Applications: age Segmentation by Cluste Fransform -Fitting Lines - I Abstract Inference -Linear Dy Filtering - Data Association (9 Pe ve Cameras - Affine and Proj sess by Pose Clustering - Obt - Building Classifiers From ection - Recognition By Rel

Contact Periods:Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods

TEXT BOOKS :

1 David Forsyth and Jean Ponce "**Computer vision: a modern approach**" 2nd edition, Pearson India Education Services Pvt. Ltd, 2012.

REFERENCES :

1	Richard Szeliski, "Computer Vision- Algorithms and Applications", Springer Science & Business
	Media, 2011.
2	Simon J.D. Prince, "Computer Vision - Models, Learning and Inference", Cambridge University
	Press, 2012.
3	Linda G. Shapiro, George C. Stockman, "Computer Vision", Prentice Hall, 2001

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1	Apply fundamentals concepts of camera model and calibration to image formation and image
	model [Usage]
CO2	Apply Filters, Features, Texture and Edge detection techniques to enhance an image [Usage]
CO3	Recover 3D structure and Motion of objects using two views and multiple views of an object.
	[Usage]
CO4	Identify objects or other relevant information in digital images using segmentation, clustering and
	tracking methods. [Assessment]
CO5	Find the relationship between the position of image features, and the position and orientation of an
	object. [Usage]

COs/POs	PO 1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	Н	М	М	L							М	Н	М	М	М
CO2	Н	Н	Μ	Μ	L							М	Н	М	М	М
CO3	Н	Н	Μ	Μ	L							М	Н	М	М	М
CO4	Н	Н	L	М	L							М	Н	М	М	М
CO5	Н	Н	L	М	L							М	Н	М	М	М
18SPE\$08	Н	Η	М	М	L							М	Н	М	М	М
L - Low, M -	Mode	erate,	H - Hi	igh												

PRE-REQUISITE	s	CATEGORY	L	Т	Р	С		
	NIL	PE	3	0	0	3		
Course Objectives	Emphasizing knowledge on various deep learning	g algorithms.						
UNIT – I	INTRODUCTION TO DEEP LEARNING			(9 Pe	eriods)		
Thresholding logic,	Neuron, Biological Neuron, Idea of computatio Linear Perceptron, Perceptron Learning Algorith ron Learning Algorithm.							
UNIT – II		(9 Periods)						
Representation Pov Regularization, Aut	ver of Feedforward Neural Networks, Backpropagoencoders.	gation, Empirical	Risk	Min	nimi	zation,		
UNIT – III	DEEP NEURAL NETWORKS			(9 Periods)				
Gradient Descent (g deep neural networks, Greedy layerwise trainin (GD), Better Training of Neural Networks: New adadelta, rmsprop, adam, NAG), Regularization r	ver optimization r	neth	ods	for	neural		
UNIT – IV	CONVOLUTIONAL NEURAL NETWORKS			(9 Pe	eriods)		
	works: The Convolution Operation - Variants o - Data Types - Efficient Convolution Algorithms							
UNIT – V	RECURRENT NEURAL NETWORKS			(9 Pe	eriods)		
	etworks: Bidirectional RNNs - Deep Recurrent Nerror Memory and Other Gated RNNs	etworks Recursive	Neu	ral 1	Netv	vorks -		
Contact Periods: Lecture: 45 Period	s Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Peri	ods					

TEXT BOOK :

1 Ian Goodfellow and Yoshua Bengio and Aaron Courville., " Deep Learning ", MIT Press, 2016

REFERENCES :

1	Raúl Rojas, " Neural Networks: A Systematic Introduction ", Springer-Verlag, Berlin, 1996.
2	Yegnanarayana, B., " Artificial Neural Networks ", PHI Learning Pvt. Ltd, 2009
3	Christopher Bishop., " Pattern Recognition and Machine Learning ", Springer, 2016
4	Nikhil Buduma, "Fundamentals of Deep Learning: Designing Next-Generation Machine
	Intelligence Algorithms", O'Reilly publications, 2017

COURSE	OUTCOMES:									
On comple	On completion of the course, the students will be able to:									
CO1	CO1 Summarize the basics of neural network and deep learning. (Familiarity)									
CO2	Implement basic neural network model with hidden layers. (Usage)									
CO3	Analyze optimization and generalization in deep learning. (Assessment)									
CO4	Criticize convolutional neural network and how it is applied to analyzing visual imagery.									
	(Assessment)									
CO5	Appraise Recurrent Neural Network (RNN) and its temporal dynamic behavior which									
	helps us to remembers some information about a sequence to predict the next information.									
	(Assessment)									

COs/POs	PO 1	PO 2	PO 2	PO	PO 5	PO	PO 7	PO o	PO 9	PO	PO	PO	PSO 1	PSO	PSO 2	PSO
001	1	<u> </u>	<u>3</u>	4	3	0 T	1	8	9	10	11	12	1	2	3	4
CO1	Н	L	M	L		L						L	Н	L		M
CO2	Н	Н	Η	Μ	Н	L						L	Н	М	М	Μ
CO3	Н	Н	Н	Н	Н	L						L	Н	L	М	L
CO4	Н	Н	Н	Н	Н	L						L	Н	L	М	М
CO5	Н	Н	Н	Н	Н	L						L	Н	L	М	М
18SPE\$21	Н	Н	Н	Н	Н	L						L	Н	L	М	М
L-Low, M-	Medi	um, H	- Hig	h												

RECOMMENDER SYSTEMS (Common to CSE & IT)

PRE-REQUISITES	8	CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
Course	To summarize the various types of recommenda	tion systems.				
Objectives	To learn the content and knowledge based recon	•				
-	To Understand the hybrid recommendations and					
	To familiarize various evaluating strategies to ev	*	er s	vstei	ms	
	To learn advanced recommender systems and th		e r 5.	,	110.	
UNIT – I	INTRODUCTION	en applications.		(0 Po	riods)
	recent developments – Collaborative recommen	dation _ User base	ad a			,
	commendation, Rating, Model based and Prep					
UNIT – II	CONTENT AND KNOWLEDO	GE BASEL)	(9 Pe	riods)
	RECOMMENDATION			(-	,
Content representat	ion and content similarity - Similarity based re	trieval, Text class	ifica	atior	n me	thods,
	tation, Interacting with constraints based recomm	ender systems - Int	erac	ting	with	n Case
	systems – Example applications.					
UNIT – III	HYBRID RECOMMENDATIONS AND EXI					riods)
	ybridization – Monolithic hybridization design – tion design – Explanations in recommender syst					
UNIT – IV	EVALUATING RECOMMENDER SYSTEM	19		(9 Po	riods)
	tions – Popular evaluation designs – Evaluation		asets			
	Case study: Personalized game recommendations			, 1	inci	nunve
UNIT – V	RECOMMENDER SYSTEMS AND	THE NEXT		(9 Pe	riods)
	GENERATION WEB			(
Trust-aware recomm web- Recommenda domains.	nender systems- Folksonomies- Ontological filte ations in ubiquitous environments- Context-av	ring- Extracting s ware recommenda	ema tion	ntics - A	s fro Appli	m the cation
Contact Periods:						
Lecture: 45 Periods	s Tutorial: 0 Periods Practical: 0 Period					

TEXT BOOK

1	Dietmar Jannach, Markus Zanker, Alexander Felfernig, and Gerhard Friedrich, "Recommender
	Systems An Introduction", Cambrige University Press, 2011
2	Charu C. Aggarwal, "Recommender Systems", Springer, 2016.

REFERENCES

1	Manouselis N, Drachsler H, Verbert K, Duval E, "Recommender Systems For Learning ",
	Springer, 2013
2	Ricci F, Rokach L, Shapira D, Kantor B.P, "Recommender Systems Handbook" Springer, 2015
3	Kim Falk, "Practical Recommender Systems", Manning Publications, 2019.
4	Michael Schrage, "Recommendation Engines", MIT Press, 2020.

COURSE	OUTCOMES:
On comple	etion of the course, the students will be able to:
CO1	Summarize various types of recommendation techniques. (Familiarity)
CO2	Compare content based recommendations and Knowledge based recommendations.
	(Familiarity)
CO3	Identify appropriate hybrid recommendation models for specific underlying applications.
	(Usage)
CO4	Assess the recommendations based on well-defined metrics. (Analyze)
CO5	Describe emerging applications based on Web 2.0 and Semantic Web technologies.
	(Familiarity)

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
COS/POS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	L	Н													М	М
CO2	L	Н	L												Н	Н
CO3	L	М	L	Н									М		Н	Н
CO4	L	Н	L	Н									М		Н	Н
CO5	L	М	L	Н									М		Н	Н
18SPE\$30	L	Н	L	М									М		Н	Н
L-Low, M-	L –Low, M- Medium, H- High															

EXPLORATORY DATA ANALYSIS (Common to CSE & IT)

PRE-REQUISITE	S	CATEGORY	L	Τ	Р	С
	NIL	PE	3	0	0	3
Course Objectives	 1.To understand the representations and distribut statistics. 2.To learn the basics of inferential statistics and 3.To learn the estimation of parameters using base 4.To perform t-test for one sample and two indep 5.To use different techniques for analysis of variant. 	sampling distributions ic and hypotheses pendent samples.	on.	ptiv	e	
UNIT – I	DESCRIPTIVE STATISTICS			(9	Peri	ods)
	ion for quantitative and qualitative data – Graph		d qu			
	s and standard (z) scores – correlation – regression	L.				
normal distributions UNIT – II Populations – samp sampling distribution	s and standard (z) scores – correlation – regression INFERENTIAL STATISTICS bles – random sampling – probability and statistic on – mean of all sample means – standard error of	cs Sampling distril the mean –Hypoth	esis	n – testi	crea ng –	- z-tes
normal distributions UNIT – II Populations – samp sampling distributio – z-test procedure – calculations – decis	INFERENTIAL STATISTICS bles – random sampling – probability and statistion – mean of all sample means – standard error of – statement of the problem – null hypothesis – a ions – interpretations.	cs Sampling distril the mean –Hypoth alternate hypothese	esis	n – testi lecis	crea ng – sion	ting a - z-tes rule -
normal distributions UNIT – II Populations – samp sampling distributio – z-test procedure – calculations – decis UNIT – III Need for hypothesi Influence of sample	INFERENTIAL STATISTICSbles – random sampling – probability and statisticon – mean of all sample means – standard error of– statement of the problem – null hypothesis – aions – interpretations.INFERENTIAL STATISTICS CONTINUEDis tests – Strong or weak decisions – one-tailede size – power and sample size Estimation – point	cs Sampling distril the mean –Hypoth alternate hypothese and two-tailed tes	esis s – c ts –	on – testi decis (9 case	crea ng – sion Peri e stu	ting a z-tes rule - ods) idies
normal distributions UNIT – II Populations – samp sampling distributio – z-test procedure – calculations – decis UNIT – III Need for hypothesi Influence of sample of confidence – effe UNIT – IV	INFERENTIAL STATISTICS oles – random sampling – probability and statistic on – mean of all sample means – standard error of – statement of the problem – null hypothesis – a ions – interpretations. INFERENTIAL STATISTICS CONTINUED is tests – Strong or weak decisions – one-tailed e size – power and sample size Estimation – point ect of sample size. T-TEST	cs Sampling distril the mean –Hypoth alternate hypothese and two-tailed tes estimate – confide	esis s – c ts – nce i	on – testi decis (9 case inter (9	crea ng – sion Peri e stu val - Peri	ods) ods) ods) ods) ods)
normal distributions UNIT – II Populations – samp sampling distributio – z-test procedure – calculations – decis UNIT – III Need for hypothesi Influence of sample of confidence – effe UNIT – IV t-test for one sample standard error –t-te	INFERENTIAL STATISTICS oles – random sampling – probability and statistic on – mean of all sample means – standard error of – statement of the problem – null hypothesis – a ions – interpretations. INFERENTIAL STATISTICS CONTINUED is tests – Strong or weak decisions – one-tailed e size – power and sample size Estimation – point ect of sample size.	cs Sampling distril the mean –Hypoth alternate hypothese and two-tailed tes estimate – confide – degrees of freedo otheses – sampling	esis s – c ts – nce i m – dist	n – testi decis (9 case inter (9 esti ribu	crea ng – sion Peri e stu val - Peri mati tion	ods) od
normal distributions UNIT – II Populations – samp sampling distributio – z-test procedure – calculations – decis UNIT – III Need for hypothesi Influence of sample of confidence – effe UNIT – IV t-test for one sampl standard error –t-te procedure – p-value	INFERENTIAL STATISTICS oles – random sampling – probability and statisti on – mean of all sample means – standard error of – statement of the problem – null hypothesis – a ions – interpretations. INFERENTIAL STATISTICS CONTINUED is tests – Strong or weak decisions – one-tailed e size – power and sample size Estimation – point ect of sample size. T-TEST le – sampling distribution of t – t-test procedure - est for two independent samples – statistical hype	cs Sampling distril the mean –Hypoth alternate hypothese and two-tailed tes estimate – confide – degrees of freedo otheses – sampling	esis s – c ts – nce i m – dist	n – testi decis (9 caso inter (9 esti rribu for t	crea ng – sion Peri val - Peri mati tion	ods) od
normal distributions UNIT – II Populations – samp sampling distributio – z-test procedure – calculations – decis UNIT – III Need for hypothesi Influence of sample of confidence – effe UNIT – IV t-test for one sampl standard error –t-te procedure – p-value samples. UNIT – V F-test – ANOVA –	INFERENTIAL STATISTICS oles – random sampling – probability and statistic on – mean of all sample means – standard error of – statement of the problem – null hypothesis – a ions – interpretations. INFERENTIAL STATISTICS CONTINUED is tests – Strong or weak decisions – one-tailed e size – power and sample size Estimation – point ect of sample size. T-TEST le – sampling distribution of t – t-test procedure - est for two independent samples – statistical hype e – statistical significance – estimating effect size ANALYSIS OF VARIANCE estimating effect size – multiple comparisons – of - Two-factor experiments – three f-tests – two-factor	cs Sampling distril the mean –Hypoth alternate hypothese and two-tailed tes estimate – confide – degrees of freedo otheses – sampling – meta analysis -t-	esis s - c ts - nce i m - dist test	n – testi decis (9 caso inter (9 esti tribu for t (9 f var	crea ng – sion Peri e stu val - Peri mati tion WO 1	ods) ods) idies - leve ods) ng the - tes related ods) e with

TEXT BOOK

1 Robert S. Witte and John S. Witte, "Statistics", 11th Edition, Wiley Publications, 2017.

REFERENCES

1	Allen B. Downey, "Think Stats: Exploratory Data Analysis in Python", Green Tea Press, 2014
2	Peter Bruce, Andrew Bruce, and Peter Gedek, "Practical Statistics for Data Scientists", 2 nd
	Edition, O'Reilly Publishers, 2020
3	Bradley Efron and Trevor Hastie, "Computer Age Statistical Inference", Cambridge University
	Press, 2016
4	Charles R. Severance, "Python for Everybody: Exploring Data in Python 3", Shroff Publishers,
	2017
5	David Spiegelhalter, "The Art of Statistics: Learning from Data", Pelican Books, 2019.

COURSE	OUTCOMES:
On comple	tion of the course, the students will be able to:
CO1	Understand the description and distribution of data. (Understand)
CO2	Understand the concept of sampling and derive hypothesis for data. (Understand)
CO3	Perform basic tests and hypotheses test for estimation of parameters. (Usage)
CO4	Apply t-test for one sample and two independent samples. (Usage)
CO5	Analyze the variance by applying different types of tests. (Assessment)

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
0.05/105	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	Н	Н	Н	Н	L					L		L	Н	М		L
CO2	Н	Н	Н	Н	L					L		L	Н	М	L	Н
CO3	Н	Н	Н	Н	L					L		L	Н	М	М	Н
CO4	Н	М	М	М	L					L		L	Н	М	L	М
CO5	Н	М	М	М	L					L		L	Н	М		L
18SPE\$31	Н	М	М	М	L							L	Н	М	L	М
L-Low, M-	Medi	um, H	- High													

VIDEO ANALYTICS

PRE-REQUISITES	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

C	1 To loom about a day and a sine to about and and and a day of the set	1
Course	1. To learn about video processing techniques and understand the video standards.	ieo
Objectives	2. To understand about motion estimation algorithms.	
	 To understand about motion estimation algorithms. To appreciate various techniques used for segmentation and tracking and traching and tracking and tracking and tracking and tracking and	ng for
	analysis video data	lig ioi
	4. To apply filtering and compression techniques for video analysis	
	5. To learn about current trends and applications in video analysis	
UNIT – I	VIDEO FUNDAMENTALS	(9 Periods)
	Ferminology – Analog Video Standards – Digital Video Basics – Anal	()
	n – Sampling for analog and digital video – Rectangular and periodic 2	-
Video Features	Sampling Rate and Standards Conversion – Digital Video Formats –	
	TWO DIMENSIONAL MOTION FORMATION	$(0 \mathbf{D} \mathbf{n} \mathbf{n}^2 \mathbf{n} \mathbf{d} \mathbf{n})$
UNIT – II	TWO DIMENSIONAL MOTION ESTIMATION	(9 Periods)
	tion Estimation – Optical Flow Methods: 2D Motion Estimation, OF	
	Block Based Methods: Block Motion, Phase correlation and Block	
	el Recursive Methods – Bayesien Methods: Optimizations, MAP motio	on
	s – Frequency Domain Motion Estimation.	
UNIT – III	3D MOTION ESTIMATION AND SEGMENTATION	(9 Periods)
	es Methods: Orthographic model, Perspective model, 3D planer surfac	
	Direct methods – Motion segmentation: Dominant-Motion Segmentation	
	gmentation - Region-Based Motion Segmentation: Fusion of Color an	d
	us Motion Estimation and Segmentation – Motion Tracking : Kalman,	
Particle Filter based t	racking - Multi-target/Multi-camera tracking	
UNIT – IV	VIDEO FILTERING AND COMPRESSION	(9 Periods)
Video Filtering – Mo	tion Compensated Filtering – Noise filtering – Intra frame and motion	. ,
	estoration – Intraframe and multiframe restoration – Super resolution -	
	Approaches, basic compression standards: MPEG-1, MPEG-2 – H.264	
	multi view video compression	
	r	
UNIT – V	VIDEO ANALYSIS AND APPLICATIONS	(9 Periods)
	sment - Video Indexing, Summarization and Retrieval – Video Securit	()
	eless video Streaming – Video Surveillance – Face Recognition from	,
	speech processing - Automatic Video Trailer Generation– Video in	
painting– Forensic V		
1 0	y	
Contact Periods:		
Lecture: 45 Periods	Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

TEXT BOOK :

A. Murat Tekalp, "Digital Video Processing", Second Edition, Prentice Hall, 2015.

REFERENCES :

1	Oges Marques, "Practical Image and Video Processing Using MATLAB", Wiley and Sons (IEEE
	Press), 2011
2	Alan C. Bovik, "Handbook of Image and Video processing", Second Edition, Academic Press,
	2005
3	Al Bovik (Alan C Bovik, "The Essential Guide to Video Processing", Academic Press, Second
	Edition, 2009
4	Yunqian Ma, Gang Qian, "Intelligent Video Surveillance: Systems and Technology",
	CRC Press (Taylor and Francis Group), 2009.

COURSE OUTCOMES:

On completion of the course, the students will be able to:

Analyze and implement the basic video processing algorithms in modern technologies
(Usage)
Analyze the approaches for identifying and tracking objects and person with motion based
algorithms (Assessment)
Segment video based on its features. (Usage)
Analyze the various filtering and video compression standards (Assessment)
Analyze the usage of video in various applications (Usage)

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	РО 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	Н	М	М	L							L	М	М	L	L
CO2	М	Н	М	М	М							L	М	М	L	М
CO3	Н	Н	М	М	М							L	М	М	L	М
CO4	Н	Н	М	М	М							L	М	М	L	М
CO5	Н	Н	Н	Н	М							М	М	М	М	М
18SPE\$32	Н	Н	М	М	М							L	М	М	L	М
L –Low, M-	Medi	um, H	- Hig	h							•					

$\underline{VERTICAL-IV}$

CYBER SECURITY

MODERN CRYPTOGRAPHY (Common to CSE &IT)

PRE-REQUISITES	CATEGORY	L	Т	Р	С
Knowledge on number theory and basic cryptography	PE	3	0	0	3

Course	1. Principles and concepts of modern cryptography.	
Objectives	2.Modern public key cryptographic algorithms.	
5	3.Number Theory and private key cryptography.	
	4. Identity based encryption mechanism.	
	5.Post quantum cryptographic algorithms.	
UNIT – I	INTRODUCTION	(9 Periods)
Cryptography and	Modern Cryptography- Basic Principles of Modern Cryptography -	Perfectly-Secret
Encryption - Com	putational Complexity - Zero-knowledge Properties - Zero-knowled	ge Argument -
Protocols with Two	-sided-error - Round Efficiency - Non-interactive Zero-knowledge.	
UNIT – II	SYMMETRIC CRYPTOGRAPHY	(9 Periods)
Computational Ap	proach to Cryptography - Defining Computationally-Secure Encry	ption – Secure
Communication and	d Message Integrity-Collision-Resistant Hash Functions - NMAC and	d HMAC -One-
Way Functions -Lin	nitations of Private-Key Cryptography.	
UNIT – III	ASYMMETRIC CRYPTOGRAPHY	(9 Periods)
Primes and Divisib	ility - Modular Arithmetic - Cyclic Groups - Algorithms for Factorin	g -, Computing
Discrete Logarithm	s - Goldwasser-Micali Encryption Scheme - Rabin Encryption Sc	heme - Paillier
	e - Digital Signature Schemes - Lamport's One-Time Signature Scheme	me - Signatures
from Collision-Resi		
UNIT – IV	IDENTITY BASED ENCRYPTION	(9 Periods)
	urity Model- Hardness Assumptions - Boneh-Franklin Identity based En	
	al System Encryption - Waters' IBE - Boneh-Boyen IBE - Secu	rity Model for
Hierarchical IBE - V	Waters' Realization – Generic Group Model.	
UNIT – V	POST QUANTUM CRYPTOGRAPHY	(9 Periods)
	NTRU Cryptosystem - Lattice-Based Cryptography - Ring Variants o	
	arning with Rounding (LWR) - (LWE+LWR)-Based Public-Key End	
Variant of Lizard- C	Code based Cryptography: McEliece&Niederreiter Cryptosystem, Securi	ty Analysis.
Contact Periods :		
	ls Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

TEXT BOOK :

1	Jonathan Katz and Yehuda Lindell, "Introduction toModern Cryptography", CRC press, 2008.
2	Intae Kim, Wai Kong Lee, SeongOun Hwang, "Modern Cryptography with Proof Techniques
	and Implementations", CRC press, 2021.

REFERENCES :

1	William Stallings, "Cryptography and Network security Principles and Practices", Pearson/PHI,
2	2016. We de Turner Laurence C. Washington, "Later du stien to Counterpart with as diag theory"
2	Wade Trappe, Lawrence C Washington, "Introduction to Cryptography with coding theory", Pearson, 2020.
3	W. Mao, "Modern Cryptography – Theory and Practice", Pearson Education, 2003.
4	Song Y. Yan, "Computational Number Theory and Modern Cryptography", Wiley, 2013.

COURSE	OUTCOMES:
On comple	tion of the course, the students will be able to:
CO1	Realize the modern cryptographic principles and concepts. (Familiarity)
CO2	Apply symmetric cryptography mechanism for encryption using hash functions. (Usage)
CO3	Apply asymmetric cryptography mechanism for public key encryption. (Usage)
CO4	Demonstrate identity based encryption using hardness assumption and security models.
	(Usage)
CO5	Use post-quantum standardization algorithms. (Usage)

COs/POs	PO	PSO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	М	М										L	М			L
CO2	М	М	М	L		L						L	М			L
CO3	М	М	М	L		L						L	М		L	L
CO4	М	М	М	Н		L					L	L	М		L	L
CO5	М	М	L	Н	М	L					М	L	М		L	L
18SPE\$33	М	М	М	М	L	L					L	L	М		L	L

NETWORK SECURITY

PRE-REQUISITE	S	CATEGORY	L	Τ	Р	C								
	NIL	РЕ	3	0	0	3								
Course Objectives	 To learn about basic concepts of network security and cryptographic algorithms To understand the need of transport layer security, email security and wireless network security. To learn about various intrusion detection systems and firewalls used for network security 													
UNIT – I	INTRODUCTION			(9 Pe	eriods)								
Model for Network Standard (DES)- Ad	Concepts - OSI Security Architecture - Security Security - Classical Encryption Techniques - Bloc dvanced Encryption Standard (AES) - Stream Ciph	k Cipher Principles ers - RC4.		ata]	Enci	ryption								
UNIT – II	PUBLIC-KEY CRYPTOGRAPHY & DATA	(9 Po	eriods)										
*	-key cryptosystems – RSA algorithm - Diffie-Hell tosystem – Secure hash algorithm – Message author Kerberos TRANSPORT-LEVEL SECURITY & E-MAI	entication codes – I			•	atures - eriods)								
Transport-Level Se HTTPS standard, S	curity: Web Security Considerations, Secure Soch ecure Shell (SSH) application. curity: Pretty Good Privacy, S/MIME, DomainKeys	kets Layer, Transpo	ort I											
UNIT – IV	INTRUSION AND FIREWALLS			(9 Pe	eriods)								
software – Distribu Firewall: Need for Virtual private netw			• •											
UNIT – V	WIRELESS NETWORK SECURITY					eriods)								
	ž	on Protocol- Wireles	ss T	rans	por									
TEXT BO														
1 177.11.														

1 William Stallings, **"Cryptography and Network security Principles and Practices", 5**th edition, Pearson Education, 2010

REFERENCES :

1	William Stallings, "Network security essentials - application and standards", 6 th edition,
	Prentice Pearson Education, 2017
2	J. Michael Stewart; Denise Kinsey, "Network Security, Firewalls, and VPNs", 3 rd Edition, Jones
	& Bartlett Learning, 2020
3	Michael Gregg, "The Network Security Test Lab - A Step-by-Step Guide", John Wiley & Sons
	Inc, 2015

COURSE O	UTCOMES:										
On completi	on of the course, the students will be able to:										
CO1	Explain the basic concepts of network security and classical encryption techniques.										
	amiliarity)										
CO2	Apply public key cryptography for encryption and authentication. (Usage)										
CO3	Explain the security needs in transport layer and for e-mail. (Familiarity)										
CO4	Analyze the type of firewall to overcome intrusion in the system. (Assessment)										
CO5	Explain the standards used in wireless network security. (Familiarity)										

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	М	Н	L	L		L				L		L	Н		М	L
CO2	Μ	Н	Н	L		L				L		L	Н		М	L
CO3	Μ	Н	L	L		L				L		L	Н		М	L
CO4	Μ	Н	Н	L		L				L		L	Н		М	L
CO5	Μ	Н	L	L		L				L		L	Н		М	L
18SPE\$34	М	Н	Μ	L		L				L		L	Н		М	L
L –Low, M-	Medi	um, H	- Hig	h												

SECURITY AND PRIVACY IN CLOUD (Common to CSE & IT)

PRE-REQUISITE	8	CATEGORY	L	Т	Р	С				
	NIL	РЕ	3	0	0	3				
Course Objectives	 1.To understand the evolution of Cloud Computing and IT infrastructure security capabilities at the network, host, and application levels 2.To familiarize with data security and storage of data in the cloud, identity and access management (IAM) 3.To learn about security management frameworks and the standards 4.To understand the fundamentals of privacy aspects to consider within the context of 									
	cloud computing 5.To know about the importance of audit and com	npliance functions	with	in tł	ne cl	oud				
UNIT – I	INTRODUCTION AND SECURITY LEVELS					eriods)				
on Users, Governar	loud Computing, Key Drivers to Adopting the Cl ice in the Cloud Barriers to Cloud Computing Ado york Level, The Host Level, The Application Leve	ption in the Enterp								
UNIT – II	DATA SECURITY AND STORAGE			(9 P	eriods)				
Management- Trus Practice, IAM Sta	ecurity, Data Security Mitigation, Provider Data t Boundaries and IAM, IAM Challenges, IAM andards and Protocols for Cloud Services, IA agement, Cloud Service Provider IAM Practice	Definitions, IAM	Ar	chit	ectu	re and				
UNIT – III	SECURITY MANAGEMENT IN THE CLOU	D		(9 P	eriods)				
Availability Manag	ent Standards, Security Management in the Clou ement, PaaS Availability Management, IaaS Availa ity, Patch, and Configuration Management.									
UNIT – IV	PRIVACY			(9 P	eriods)				
	Cycle, Privacy Concerns in the Cloud, Protectin ompliance in Relation to Cloud Computing, Legal					y Risk				
UNIT – V	AUDIT AND COMPLIANCE					eriods)				
Internal Policy Con Cloud Computing, Objectives, Control	Incremental CSP-Specific Control Objectives, A Considerations for CSP Users, Regulatory/Externance, Auditing the Cloud for Compliance.	Additional Key Ma nal Compliance, O	inag her	Obj eme Req	ecti nt (uire	ves for Control				
Letture, 45 1 criou		10us 10tai; 43	10	100	.3					

TEXT BOOK :

1 *Tim Mather, Subra Kumaraswamy, and Shahed LatifCopyright, "Cloud Security and Privacy", O'Reilly Media, 2009.*

REFERENCES :

1	John R. Vacca, "Cloud Computing Security Foundations and Challenges", CRC Press,2nd
	Edition,2020.
2	Siani Pearson, George Yee "Privacy and Security for Cloud Computing" Computer Communications and Networks, Springer, 2013.
3	Ronald L. Krutz, Russell Dean Vines, "Cloud Security: A Comprehensive Guide to Secure Cloud Computing", Wiley Publishing, 2010
4	Ben Halper, "Auditing Cloud Computing: A Security and Privacy Guide" John Wiley & Sons, Inc. Publications, 2011.

COURSE OUTCOMES:

On completion of the course, the students will be able to:

on romprono	
CO1	Describe the evolution of cloud computing and IT infrastructure security capabilities that
	cloud services generally offer. (Familiarity)
CO2	Examine the current state of data security and the storage of data in the cloud and Explain the
	identity and access management (IAM) practice and support capabilities for authentication,
	authorization, and auditing of users who access cloud services. (Usage)
CO3	Depicts security management frameworks and the standards that are relevant for the cloud.
	(Familiarity)
CO4	Explain the privacy aspects to be consider within the context of cloud computing and
	analyzes the similarities and differences with traditional computing models
	(Familiarity)
CO5	Enumerate the importance of audit and compliance functions within the cloud along with the
	various standards and frameworks. (Assessment)

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	L	М	Μ	L	М	L					Μ	L	L	М	М	М
CO2	L	М	М	L	М	L					М	L	L	М	М	М
CO3	L	М	М	L	М	L					М	L	L	М	М	М
CO4	L	М	М	L	М	L					М	L	L	М	М	М
CO5	L	М	М	L	М	L					М	L	L	М	М	М
18SPE\$35	L	М	М	L	М	L					М	L	L	М	М	М
L-Low, M-	L –Low, M- Medium, H- High															

CRYPTOCURRENCY AND BLOCKCHAIN TECHNOLOGIES (Common to CSE & IT)

PRE-REQUISITES	CATEGORY	L	Т	Р	С
Knowledge on Cryptography and Computer Networks	PE	3	0	0	3

Course	Upon completion of this course, the students will be familiar with,							
Objectives	Blockchain concepts and its types.							
	Blockchain networks and Block synchronization.							
	Basics of bitcoins in cryptocurrency.							
	Smart contracts and Ethereum networks.							
	Applications of Blockchain in financial and non financial projects.							
UNIT – I	INTRODUCTION	(9 Periods)						
Blockchain definition	ons- Database vs. blockchain- History, motivations & Characteristics -	· Background of						
Distributed Ledger	Technology - Different types of blockchain- Building blocks-	Moore's Law						
&Blockchain - Cryp	tography in blockchain- Cryptographic hashing- Digital signatures in bl	ockchain.						
UNIT – II	NETWORKS IN BLOCKCHAIN	(9 Periods)						
P2P networking arc	hitecture- Network discovery - Block synchronization - Building a simp	le blockchain in						
a P2P network -	Blockchain structure - Blockchain networks - Bitcoin hard forks	and altcoins -						
cryptocurrency appl	ication.							
UNIT – III	BITCOIN & CRYPTOCURRENCY	(9 Periods)						
Tokens in Cryptoc	urrency - Non-Fungible Tokens: Types, Extrinsic Elements, Creatin	g and Minting,						
Buying and Selling	- Fungible Tokens: Bitcoin basics, Keys and addresses, Transaction	is - Mining and						
consensus - Bitcoi	n Network and Payments- Bitcoin Clients and APIs - Alternative Co	ins- MultiChain						
platform - Setting u	p a blockchain environment.							
UNIT – IV	SMART CONTRACTS & ETHEREUM	(9 Periods)						
Proof of Existence	architecture - Building the Proof of Existence application - Digital asse	ets and identity -						
Proof of ownership	- Smart contracts- NEO blockchain - Choosing the smart contract plat	form –Ethereum						
network - Compon	ents of the Ethereum ecosystem- Test networks -Setting and Starting	ng up a private						
network.								
		(0 D · 1)						

UNIT - VBLOCKCHAIN APPLICATIONS(9 Periods)Financial blockchainprojects- Non-financial blockchain projects- Blockchain optimizations - Blockchainenhancements - Transaction security model- Decentralized security model - Attacks on the blockchain-
Block in Financial system and crowdfunding.

Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK :

1	Bashir Imran, "Mastering Blockchain: Distributed ledger technology, decentralization, and smart contracts explained" Packt publisher, 2017.
2	Koshik Raj, "Foundations of Blockchain: The pathway to cryptocurrencies and decentralized blockchain applications", Packt publisher, 2019.

REFERENCES :

1	Fortnow Matt, Terry QuHarrison, "The NFT Handbook: How to Create, Sell and Buy Non-
	Fungible Tokens", Wiley, 2021.
2	Chris Dannen, "Introducing Ethereum and Solidity: Foundations of Cryptocurrency and
	Blockchain Programming for Beginners", Apress publisher, 2017.
3	S. Shukla, M. Dhawan, S. Sharma and S. Venkatesan, "Blockchain Technology: Cryptocurrency
	and Applications", Oxford University Press, 2019.
4	Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, Steven Goldfeder, "Bitcoin
	and Cryptocurrency Technologies: A Comprehensive Introduction", Princeton University Press,
	2016.

COURSE OUTCOMES:

On completion of the course, the students will be able to:

CO1	Understand the basics and apply cryptographic concepts in blockchain. (Familiarity)
CO2	Apply the concepts P2P to achieve decentralization in the blockchain network. (Usage)
CO3	Demonstrate the concepts of Tokens and decentralized application development using MultiChain blockchain framework. (Usage)
CO4	Apply proof of existence and ownership through smart contracts. (Usage)
CO5	Examine blockchain concepts for various financial and Non-financial applications. (Assessment)

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	М	М		L									М	L	L	
CO2	М	М	L	L										L	М	L
CO3	М	М	М	М	М								М	L	Н	
CO4	М	М	М	М			L	М				L	М			М
CO5	М	М	М	М	М	L	L					L			L	М
18SPE\$36	М	М	М	М	L	L	L	L				L	М	L	L	М
L-Low, M-	L –Low, M- Medium, H- High															

ETHICAL HACKING (Common to CSE & IT)

PRE-REQUISITES	8	CATEGORY	L	Τ	Р	С			
Knowledge on Con	owledge on Computer networks and Web technology PE 3 0								
Course Objectives UNIT – I	 ves against the hacker and attackers. 2. To understand reconnaissance and the publicly available tools used to gather information on potential targets. 3. To discover the scanning techniques used to identify network systems open ports. 4. To identify network system vulnerabilities and confirm their exploitability. 5. To explore techniques for identifying web application vulnerabilities and attacks. 								
	king –Important Terminologies – Hacktivism -	- Computer Crimes	9n(
	Vulnerability Assessments versus Penetration								
	ation Testing Methodologies: OSSTMM–NIST								
	etration Tests – Vulnerability Assessment Summa	-	1105	01 1	CIIC	uation			
UNIT – II	INFORMATION GATHERING AND SCAN	<i>v</i>			0 D/	mia da)			
	ing Techniques: Active Information Gathering		atio			ring _			
	ion Gathering – Tracing the Location – Tracerou								
	Fingerprinting the Webservers – Google Hack								
	get Enumeration and Port Scanning Technique								
Techniques.	get Enumeration and Fort Scanning Teeninque		, wai		5 L	vaung			
UNIT – III	NETWORK ATTACKS			(0 P/	eriods)			
	Types of Sniffing – Promiscuous versus Nonpa	romiscuous Mode -	- MI						
	C flooding - Denial of Service Attacks – Hijacki								
	TPS Traffic –DNS Spoofing – ARP Spoofing At	-							
	Remote Exploitation –Attacking Network Rem								
	ers – Testing for Weak Authentication.			2					
UNIT – IV	EXPLOITATION			(9 Pe	eriods)			
	etasploit – Reconnaissance with Metasploit -	- Port Scanning	with						
	Vindows Host with Metasploit – Client Side E	-			_				
	ents – PDF Hacking – Social Engineering Too	*							
	king the Hashes: Brute force Dictionary Attacks		-						
1	athering OS Information – Harvesting Stored Cre								
UNIT – V	WIRELESS AND WEB HACKING			(9 Pe	eriods)			
	Introducing Aircrack- Cracking the WEP - Crac	king a WPA/WPA2	Wi						
	Evil Twin Attack – Causing Denial of Service								
	ntication – Brute Force and Dictionary Attack	-				-			
-	Flaw –Captcha RESET Flaw – Manipulating Use	-							
-	ntication Bypass Attacks – Testing for the Vi	• • • •	-						
Injection Attacks.		2				Ì			
Contact Periods:									
Lecture: 45 Periods	s Tutorial: 0 Periods Practical: 0 Perio	ds Total: 45 Peri	ods						

TEXT BOOK :

1 RafayBaloch, "Ethical Hacking and Penetration Testing Guide", CRC Press, 2014.

REFERENCES :

1	Kevin Beaver, "Ethical Hacking for Dummies", Sixth Edition, Wiley, 2018.
2	Kimberly Graves, Certified Ethical Hacker STUDY GUIDE, Wiley publication, 2010.
3	Michael Gregg, Certified Ethical Hacker, Pearson publication, 2014.
4	Matt Walker, All-in-one Certified Ethical Hacker Exam Guide, McGraw Hill Edition, 2012.
5	Jon Erickson, "Hacking: The Art of Exploitation", Second Edition, Rogunix, 2007.

COURSE OU	JTCOMES:							
On completion	On completion of the course, the students will be able to:							
CO1	Use the various security tools to assess and to predict the vulnerabilities across any							
	computing system using penetration testing. (Familiarity)							
CO2	Identify prediction mechanism to prevent any kind of attacks using information gathering							
	mechanisms. (Usage)							
CO3	Protect the system using scanning techniques from malicious software and worms.							
	(Usage)							
CO4	Evaluate the wireless network flaws and able to apply security patches with different							
	exploitations. (Assessment)							
CO5	Analyze the risk and support the organization for effective security measures. (Familiarity)							

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
CO1	М		М	L	М			L		М			L		L	
CO2	М	Η	L	L	М			L					М		М	
CO3	Н		Н	L	М	М		Н		М			Н	М	Н	
CO4	Н	Н	Н	М	Н	М		М					М		М	
CO5	Н	Н	L	L	L			L					L		М	М
18SPE\$37	Н	Η	Η	L	М	L		L		М			М	М	М	М
L – Low, M	L – Low, M – Moderate, H – High															

DIGITAL AND MOBILE FORENSICS (Common to CSE & IT)

PRE-REQUISITES	5	CATEGORY	L	Т	Р	С
Knowledge on Digi functionalities of N	РЕ	3	0	0	3	
	1					
Course	1. Aspects and principles of digital data as evide	nce.				
Objectives	2. Cybercrime laws and duties of experts.					
	3. Techniques to conduct/report a digital forensi	cs investigation.				
	4. Recovery of digital evidence using a variety of	of software utilities.				
	5. Role of internet in cyber crime investigation.					
UNIT – I	DIGITAL EVIDENCE			(9 P	eriods)
Digital Evidence- In	creasing Awareness of Digital Evidence- Princip	les of Digital Fore	ensic			
Aspects of Digital H	Evidence- Following the Cybertrail- Language of	Computer Crime I	nves	tiga	tion	- Role
of Computers in Cri	me.	-		-		
UNIT – II	CYBER CRIME AND LAWS			(9 P	eriods)
	E Evidence- Presenting Digital Evidence- Federal (e Offenses- Computer-Integrity Crimes- Computer DIGITAL INVESTIGATIONS			onte	ent-I	
		Colontific Matha	4			
Handling Digital Cr Handle, Surveying,	n Process Models- Scaffolding- Applying the ime Scenes- Fundamental Principles- Authorization Preserving- Equivocal Forensic Analysis- Crimes S Operandi- Motive and Technology.	on- Digital Crime S	Scen	e: P	repa	ring to
UNIT – IV	COMPUTER AND MOBILE FORENSICS			(9 P	eriods)
Representation of Data- Storage Media and Data Hiding- File Systems and Location of Data- Dealing with Password Protection and Encryption- Applying Forensic Science to Computers- Digital Evidence: Windows Systems, UNIX Systems, Macintosh Systems- Understanding Mobile Device Security - Analyzing SIM Cards - Analyzing Android, BlackBerry and iOS devices.						
UNIT – V	NETWORK FORENSICS			(9 P	eriods)
Role of the Internet	in Criminal Investigations- Connecting Networks	Using Internet Pro	otoc	ols-	Leg	itimate
	es- Using the Internet as an Investigative Tool- O					
	ing: E-mail, Usenet- Linking the Data-Link a					
Documentation, Co Evidence.	llection, and Preservation- Analysis Tools and	Techniques- TCP/	/IP-F	Relat	ted	Digital
Contact Periods:						
Lecture: 45 Period	s Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Perio	ahe			
Lecture, 45 I 61100			<i>J</i> U3			

TEXT BOOK :

1	Eoghan Casey, "Digital Evidence and Computer Crime: Forensic Science, Computers and the Internet", Elsevier, Third Edition, 2011.
2	Reiber Lee, "Mobile Forensic Investigations: A Guide to Evidence Collection, Analysis, and
	Presentation", McGraw Hill LLC, Second Edition, 2018.

REFERENCES :

1	Soufiane Tahiri, "Mastering Mobile Forensics", Packt Publishing, 2016.
2	Oleg Afonin, "Mobile Forensics – Advanced Investigative Strategies", Packt Publishing, 2016.
3	Filipo Sharevski, "Mobile Network Forensics Emerging Research and Opportunities", IGI
	Global, 2018.
4	Ali Dehghantanha, Kim-Kwang Raymond Choo, "Investigations of Cloud and Mobile
	Applications", Elsevier Science, 2016.

COURSE OUTCOMES:

On completion of the course, the students will be able to:

1	
CO1	Define the terminologies involved in digital evidence and different aspects of computer
	crime investigations. (Familiarity)
CO2	Recite legal issues that arise in computer-related investigations and cyber laws.
	(Familiarity)
CO3	Demonstrate the usage of digital evidence in reconstructing a crime or incident, identify
	suspects and understand criminal motivations. (Usage)
CO4	Recognize the role of computers and digital devices in crime investigations. (Assessment)
CO5	Examine and understand the underlying complexity of computer networks in digital
	investigation mechanism. (Assessment)

COs/POs	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO	PO	PO 12	PSO	PSO	PS O2	PSO
	I	2	3	4	5	6	1	8	9	10	11	12	1	2	03	4
CO1	М	L		L		L										
CO2	М	L	L	L		L						L				
CO3	М	L	М	М	L	L	L	L				L		М	М	
CO4	М	М	М	М	L	L	L	L				L		М	М	
CO5	М	L	М	М	L	L	L	L				L		М	М	
18SPE\$38	М	L	М	М	L	L	L	L				L		М	М	
L –Low, M-	Mediu	ım, H-	High									1				

SOCIAL NETWORK SECURITY (Common to CSE &IT)

PRE-REQUISITES	CATEGORY	L	Τ	Р	С
Knowledge on Cryptography, Information Security and Network Security	РЕ	3	0	0	3

Course	1. The need for security and privacy in online social networks.					
Objectives	2. Understand issues and challenges associated with securing social r	networks.				
, , , , , , , , , , , , , , , , , , ,	3. Crowdsourcing and its effects					
	4. Trust management and context aware resource discovery in online	social				
	networks.					
	5. Understand the behavioral characteristics of end users.					
UNIT – I	INTRODUCTION	(9 Periods)				
Structure and Evolu	tion of Online Social Networks - Diffusion of Information - Securit	y and Privacy in				
Social Networks - 1	Social Networks - Privacy and anonymization in Social Networks - Interdisciplinary Impact Analysis of					
Privacy in Social Networks.						
UNIT – II	SECURITY ISSUES AND TECHNICAL CHALLENGES	(9 Periods)				
Dicks of Social Net	vorking Ealso information and information lookage Datantion	Poolaup Logg of				

Risks of Social Networking – False information and information leakage – Retention – Backup – Loss of
data – Risk Management – Policies and privacy – Handling fake account, passwords, privacy and
information sharing – content security.UNIT – IIICROWDSOURCING AND ITS MEASURES(9 Periods)

Recognizing Your Digital Friends - Encryption and Decryption for Peer-to-Peer Social Networks -Crowdsourcing and Ethics - The Effect of Social Status on Decision-Making - Applications of k-Anonymity and ℓ -Diversity in Publishing Online Social Networks

UNIT – IV	CONTROLLED INFORMATION SHARING	(9 Periods)						
Managing security is	Managing security issues in social networks – Trust Management – Types of trust – Controlled Information							
Sharing - Secure re	esource discovery - Context Awareness - Access Control and Infe	erence for Social						
Networks.								
UNIT – V	PROFILING ONLINE USERS	(9 Periods)						
Profiling Online Us	sers: Emerging Approaches and Challenges - Securing Mobile S	Social Networks-						
Protecting Regular a	and Social Network Users in a Wireless Network by Detecting Rog	ue Access Point:						
Limitations and Cou	ntermeasures- Cross-Site Scripting Attack - Defense against Online So	ocial Networks						
Contact Periods:								
Lecture: 45 Periods	s Tutorial: 0 Periods Practical: 0 Periods Total: 45 Period	ls						

TEXT BOOK :

1	Yaniv Altshuler, Yuval Elovici, Armin B.Cremers, Nadav Aharony, Alex Pentland, " Security and Privacy in Social Networks", Springer, 2012
2	Michael Cross, "Social Media Security: Leveraging Social Networking While Mitigating Risk", Syngress, 2013.

REFERENCES :

1	Barbara Carminati, Elena Ferrari, Marco Viviani, "Security and Trust in Online Social
	Networks", Springer, 2014.
2	Al-Sakib Khan Pathan, "Securing Social Networks in Cyberspace", CRC Press, 2022
3	Bhavani Thuraisingham, Satyen Abrol, Raymond Heatherly, Murat Kantarcioglu, Vaibhav
	Khadilkar, Latifur Khan, "Analyzing and Securing Social Networks", Auerbach Publications,
	2020.
4	Brij B. Gupta, Somya Ranjan Sahoo, "Online Social Networks Security Principles, Algorithm,
	Applications, and Perspectives", CRC Press, 2021.

COURSE OUTCOMES:

On completion of the course, the students will be able to:CO1Recite the need for security and privacy in Social Networks. (Familiarity)CO2Argue Risk Management, Policies and Decision making in Social Networks. (Familiarity)CO3Describe Crowdsourcing and its countermeasures for Online Social Networks. (Familiarity)CO4Examine trust, privacy and access control mechanisms for Social Networks. (Usage)CO5Determine and analyze attacks on Social Networks. (Usage)

COs/POs	PO	PO	PO	PO	PO	PO	PO 7	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO
	1	2	3	4	5	6	1	8	9	10	11	12	1	2	3	4
CO1		L													М	М
CO2		М	L										L		М	Н
CO3	L	М	L	Н	Η	М		М					L		М	Н
CO4	L	М	L	М	Η			М					М		М	Η
CO5	L	М	L	Н	Η	М		М					М		М	Н
18SPE\$39	L	М	L	М	Н	М		М					М		М	Н
L-Low, M-	Medi	um, H	l- Hig	h												