

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

Curriculum For B. E. Computer Science and Engineering (Full Time)

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE : 0422 - 2433355 E.mail: gctcoe@gct.ac.in

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VISION AND MISSION

VISION

To be in the frontier of Computer Science and Engineering and to produce globally competent graduates with moral values committed to build a vibrant nation.

MISSION

- To strengthen the core competence in Computer Science and Engineering through analytical learning.
- To produce successful graduates with personal and professional responsibilities and committed to lifelong learning.
- To uplift innovative research in Computer Science and Engineering to serve the needs of Industry, Government and Society.

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- **PEO 1:** Graduates will be in computing profession as experts in solving hardware/software engineering problems by their depth of understanding in core computing knowledge or will have completed or will be pursuing research leading to higher degrees.
- **PEO 2:** Graduates will have sufficient breadth of understanding to enable continued professional development and lifelong learning throughout their career.
- **PEO 3:** Graduates will demonstrate creativity in their engineering practices including entrepreneurial and collaborative ventures with strategic thinking, planning and execution.
- **PEO 4:** Graduates will communicate effectively, recognize and incorporate societal needs and constraints in their professional endeavors, and practice their profession with high regard to legal and ethical responsibilities.

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PROGRAMME OUTCOMES(POs)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/Development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

PROGRAMME SPECIFIC OUTCOMES (PSOs)

The Programme Specific Outcomes of B.E. Computer Science and Engineering programme are:

- **PSO1:** Students at the time of graduation will be able to apply mathematics and theoretical computer science and develop computing solutions using state-of-art hardware and software techniques.
- **PSO2:** Students at the time of graduation will be able to design efficient innovative solutions to interdisciplinary societal problems using standard practices, tools and technologies.
- **PSO3:** Students at the time of graduation will be able to apply theoretical computer science knowledge and use appropriate technology for innovative research.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E. COMPUTER SCIENCE AND ENGINEERING

CL N Course				СА	End	Total	Hours/Week				
SI. No.	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С	
	÷										
	22SMC1Z0	Induction Programme	MC	-	-	-	-	-	-	0	
1	22SHS1Z1	தமிழர் மரபு Heritage of Tamils	HSMC	40	60	100	1	0	0	1	
2	22SHS1Z2	Professional English	HSMC	40	60	100	2	1	0	3	
3	22SBS1Z1	Linear Algebra and Calculus	BS	40	60	100	3	1	0	4	
4	22SBS1Z2	Engineering Physics	BS	40	60	100	3	0	0	3	
5	22SES101	Programming in C	ES	40	60	100	3	0	0	3	
6	22SMC1Z1	Environmental Science and Engineering	MC	40	60	100	3	0	0	0	
		PR	ACTICAL	1							
7	22SHS1Z3	Cambridge English	HSMC	60	40	100	0	0	2	1	
8	22SBS1Z3	Physics Laboratory	BS	60	40	100	0	0	3	1.5	
9	22SES1Z2	Workshop Practice	ES	60	40	100	0	0	3	1.5	
10	22SES103	Programming in C Laboratory	ES	60	40	100	0	0	3	1.5	
		TOTAL		480	520	1000	15	2	11	19.5	

FIRST SEMESTER

SECOND SEMESTER

SI.				СА	End	Total		Ho	ours/W	eek
No.	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
			THEORY	Y						
1	22SHS2Z4	தமிழரும் தொழில்நுட்பமும் Tamils and Technology	HSMC	40	60	100	1	0	0	1
2	22SHS2Z5	Values and Ethics	HSMC	40	60	100	3	0	0	3
3	22SBS204	Vector Spaces and Differential Equations with MATLAB	BS	40	60	100	3	1	0	4
4	22SBS205	Physics for Information Science	BS	40	60	100	3	0	0	3
5	22SBS206	Applied Chemistry	BS	40	60	100	3	0	0	3
6	22SES204	Basics of Electrical and Electronics Engineering	ES	40	60	100	3	0	0	3
		NCC Credit Course (Optional)					2	0	0	0
]	PRACTIC	AL						
7	22SBS2Z7	Chemistry Laboratory	BS	60	40	100	0	0	3	1.5
8	22SES2Z5	Engineering Graphics	ES	60	40	100	1	0	4	3
		TOTAL		360	440	800	17	1	7	21.5

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University) Coimbatore–641013.

COMPUTER SCIENCE AND ENGINEERING

22SMC1Z0	INDUCTION PROGRAMME	SEMESTER I
Details of the P	rogramme:	
Day 0: College	Admission	
Day1: Orientat	on Programme	
•	Induction Programme	
5	č	
Activities:		
Physical activit		
Playground Eve	ents,	
Yoga Practices,		
Literary,		
Proficiency mo		
Team Building		
Lectures by En		
	to department,	
Branch oriente		
Motivational sp		
Talent exposure Quiz completio		
Visit to local ar		
visit to local al		

22SHS1Z1	

தமிழர் மரபு Heritage of Tamils (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	HSMC	1	0	0	1

Comme		
Course		
Objectives		
UNIT – I	LANGUAGE AND LITERATURE	3 Periods
	ilies in India - Dravidian Languages – Tamil as a Classical Language - Cla	
	amil – Secular Nature of Sangam Literature – Distributive Justice in	
	rinciples in Thirukural - Tamil Epics and Impact of Buddhism & Jaini	
	re Azhwars and Nayanmars - Forms of minor Poetry - Development of	
	oution of Bharathiyar and Bharathidhasan.	
UNIT – II	HERITAGE - ROCK ART PAINTINGS TO MODERN ART	- 3 Periods
	SCULPTURE	
	modern sculpture - Bronze icons - Tribes and their handicrafts - Art of te	
	cotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari,	
	Aridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in S	ocial and Economic
Life of Tamils.		
UNIT – III	FOLK AND MARTIAL ARTS	3 Periods
Therukoothu, H	Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Si	lambattam,
Valari, Tiger	dance - Sports and Games of Tamils.	
UNIT – IV	THINAI CONCEPT OF TAMILS	3 Periods
Flora and Faur	a of Tamils & Aham and Puram Concept from Tholkappiyam and Sanga	am Literature- Aram
	nils - Education and Literacy during Sangam Age - Ancient Cities and Po	
·	port during Sangam Age - Overseas Conquest of Cholas.	0 0
UNIT – V	CONTRIBUTION OF TAMILS TO INDIAN NATIONA	L 3 Periods
	MOVEMENT AND INDIAN CULTURE	
	f Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils ov	
•	- Self-Respect Movement - Role of Siddha Medicine in Indigenous Sys	tems of Medicine –
Inscriptions &	Manuscripts – Print History of Tamil Books.	
Contact Peri	ods:	
Lecture: 15 I	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Peri	ods

TEXT BOOK:

1	தமிழக வரலாறு – மக்களும் பண்பாடும் – கே.கே. பிள்ளை (வெளியீடு:									
	தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).									
2	2 கணினித்தமிழ் – முனைவர் இல.சுந்தரம் . (விகடன் பிரசுரம்).									
3	கீழடி – வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை									
	ស្រីមួយ ខ្លាំង ខ្ញាំង ខ្ញ									
4	பொருநை – ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)									

1	Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
2	Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by:International Institute of Tamil Studies.
3	Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies).
4	The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by:International Institute of Tamil Studies.)
5	Keeladi - 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation,Tamil Nadu)
6	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: The Author)
7	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
8	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.

COURSE OUTCOME	S: Belani Danisto BL Was arigina	Bloom's
Upon completion of the	course, the students will be able to:	Taxonomy Mapped
CO1	1	
CO2		
CO3		
CO4		
CO5		

COURSE ARTICULATION MATRIX															
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															
22SHS1Z1															
1 – Slight, 2 -	l – Slight, 2 – Moderate, 3 – Substantial														

22SHS1Z1	தமிழர் மரபு Heritage of Tamils (Common to all Branches)	SEMESTER I
----------	--	------------

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	HSMC	1	0	0	1

Course		
Objectives		
அலகு I	மொழி மற்றும் இலக்கியம்	3 Periods
	<u>ு அது அது கலைக்கு</u> ரழிக் குடும்பங்கள்- திராவிட மொழிகள்- தமிழ் ஒரு செம்ெ	மாமி- கமிம்
	கியங்கள் –சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை-	0
	தில் பகிர்தல் அறம்-திருக்குறளில் மேலாண்மைக் கருத்து	
	ள், தமிழகத்தில் சமண பௌத்தசமயங்களின் தாக்கம்-பச்	-
ஆழ்வார்கள்	••••	
00	ு மற்றும் நாடின்மார்ள்-நேறுணையாலன்-தம நின் வளர்ச்சி-தமிழ் இலக்கிய வளர்ச்சியில் பாரதி	
	ரதன் வைளர்ச்சுத்துக்கு இசைகளையில் வளர்ச்சுயால் பாரத 1 ஆகியோரின் பங்களிப்பு.	
		a 3 Periods
	வரை–சிற்பக் கலை	
I		
_	ல் நவீன சிற்பங்கள் வரை – ஐம்பொன் சிலைகள்– பழங்கு பக்கள் கயாசிக்கும் கைவைனர் பொகும் கன் பொல்கைக்	
	பர்கள் தயாரிக்கும் கைவினைப் பொருட்கள்-பொம்மைகள் காக கலைக்க திர்பாட்டாக்க காட் இர்பாடிக் கொட்டார்கள் காட	• •
	லை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத் தெய்வங்கள் – குட	
	வர சிலை – இசைக் கருவிகள் – மிருதங்கம், பறை, எ	U
-) – தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்க – – – – – – – – – – – – – – – – – – –	
	நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்	3 Periods
	து, கரகாட்டம்-வில்லுப்பாட்டு-கணியான் கூத்து – ஒ	
-	வக் கூத்து-சிலம்பாட்டம் –வளரி-புலியாட்டம் - தமிழர்களி · ·	ன்
விளையாட		3 Periods
-	தமிழர்களின் திணைக் கோட்பாடுகள் 	
•	ள் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றுட 	
	தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழர்கள் போற்ற	
	பாடு –சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வி	யும் –சங்ககால
	லதுறை முகங்களும் – சங்ககாலத்தில் ஏற்றுமதி மற்றும்	
<u>ஹைர் கு பிரி</u>	– கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி.	

_	இந்திய தேசிய இயக்கம் மற்றும் இந்திய	3 Periods
	பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு	
இந்திய வி	டுதலைபோரில் தமிழர்களின் பங்கு – இந்தியாவின் பிறப்பகு	திகளில்

தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில் சித்த மருத்துவத்தின் பங்கு – கல்வெட்டுகள், கையெழுத்துப்படிகள் - தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு.

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

TEXT BOOK:

¹ தமிழக வரலாறு – மக்களும் பண்பாடும் – கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).

2 கணினித்தமிழ் – முனைவர் இல.சுந்தரம் . (விகடன் பிரசுரம்).

- ³ கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4 பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)

- Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print) Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by:International 2 Institute of Tamil Studies. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: 3 International Institute of Tamil Studies). The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by:International 4 Institute of Tamil Studies.) Keeladi - 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) 5 Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: 6 The Author) Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and 7 Educational Services Corporation, Tamil Nadu)
- 8 Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.

COUR	SE OUTCOMES:	Bloom's
Upon c	ompletion of the course, the students will be able to:	Taxonomy Mapped
CO1		
CO2		
CO3		
CO4		
CO5		

COURSE A	RTICU	JLATI	ON M	ATRIX	K										
COs/POs	РО	РО	PO	РО	РО	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															
22SHS1Z1															
1 – Slight, 2 -	- Mode	erate, 3	– Subs	tantial											

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	HSMC	2	1	0	3

Course Objectives	 To engage learners in meaningful language activities to improve their L To enhance learners' awareness of general rules of writing for specific a To help learners understand the purpose, audience, contexts of different To develop analytical thinking skills for problem solving in communica To demonstrate an understanding of job applications and interviews for 	udiences types of writing tive contexts
UNIT – I	FUNDAMENTALS OF COMMUNICATION	9 Periods
Speaking - S Reading -Rea Writing - Wr Grammar - P Parts of Spee Vocabulary -	Word Formation with Prefixes; Antonyms; Portmanteau Words	Perfect Continuous);
UNIT – II	SUMMATION AND PROBLEM SOLVING	9 Periods
Speaking - N Reading - Re Writing - Re Grammar –P	Listening to Short-Stories / Personal Experiences/Watching Movies. Harrating Personal Experiences / Events and Short Stories eading Travelogues and Books. port on an event (Field Trip, Industrial Visit, Educational Tours etc.), Review ast Tense (Simple Past, Past Progressive, Past Perfect, Past Perfect Continu Word Formation with suffixes; Synonyms; Phrasal Verbs.	
UNIT – III	DESCRIPTION OF A PROCESS / PRODUCT	9 Periods
Speaking Reading – Re Writing – Grammar -Fr	 Listening to Digital Marketing Advertisements for Product -Describing/Interpreting a Picture; Giving instructions to eading Advertisements, Gadget Reviews; User Manuals. Writing Definitions; Product /Process Description; Transcoc uture Tense(Simple Future, future continuous, Future Perfect, Future Perfect Homonyms; Homophones, One Word Substitutes. 	use the product. ding; Content Writing
UNIT – IV	EXPRESSION	9 Periods
Speaking – F Reading – C Newspaper, J Writing – Jol Grammar – C	Listening to/Watching Formal Job interviews or Celebrity Interviews Participating in a Face to Face or Virtual Interview (Job/Celebrity Interview) ompany profiles, Statement of Purpose, (SOP), Excerpts of interview with p Magazine and other Resources b / Internship Application – Cover letter & Resume Question types: 'Wh' / Yes or No/ and Tags; Subject- Verb Agreement. - Idiomatic Expressions	
UNIT – V	PUBLIC SPEAKING	9 Periods
Speaking – L Reading – E Writing – Dr Grammar – O Vocabulary – Contact Per		and Felicitation
Lecture: 30	Periods Tutorial: 15 Periods Practical: 0 Periods Total: 45 Pe	eriods

TEXT BOOK

1	English for Science & Technology Cambridge University Press, 2021. Authored by Dr. Veena Selvam,
	Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani,
	Department of English, Anna University.
2	Communicative English, Global Publishers, Chennai 2017 by Dr.J.Anbazhagan Vijay

1	Raman.Meenakshi, Sharma.Sangeeta(2019). Professional English. Oxford University Press. New Delhi.
2	Learning to Communicate – Dr. V. Chellammal, Allied Publishing House, New Delhi, 2003
3	Using English, Orient Blackswan, Chennai, 2017 by Board of Editors
4	OER (Authentic Open Educational Resources)

	COURSE OUTCOMES: On completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Participate in a basic communicative task.	K3
CO2	Analyse problems in order to arrive at feasible solutions and communicate them orally and in the written format.	К3
CO3	Describe a product or process or mechanism.	K2
CO4	Present their opinions in a planned and logical manner, and draft effective resumes in context of job search.	К3
CO5	Deliver speeches at formal functions.	K3

COURSE A	RTIC	ULAT	ION N	MATR	IX:										
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	1	-	-	2	-	-	-	2	-	-	-	1	1
CO2	-	1	1	-	-	2	-	-	1	2	-	1	-	1	-
CO3	-	-	1	1	-	-	-	-	-	2	-	-	-	1	1
CO4	-	-	1	-	-	-	-	-	2	2	-	-	-	-	-
CO5	-	-	-	-	-	-	-	-	2	2	-	-	-	-	-
22SHS1Z2	-	1	1	1	-	1	-	-	1	2	-	1	-	1	1
1 – Slight, 2 -	– Mod	erate, 1	3 – Sul	bstanti	al	•	•	•	•	•		•			

	ITES	CATEGORY	L	Т	Р	С
	NIL	BS	3	1	0	4
	-					
Course Objectives	 To acquire knowledge of system of equations, of matrices and reduction of quadratic forms to ca To obtain the knowledge of analyze the freecognize the appropriate tools of differential ca To obtain the knowledge of definite and in appropriate tools of Integral Calculus to solve at To develop the skills in solving the functions of derivatives. To acquire knowledge of multiple integration at various geometry 	anonical forms. functions using alculus to solve ap mproper integrat pplied problems several variables	Lim pplie ion by p	iits a d pro and artial	and blem reco	derivativ s.
UNIT – I	LINEAR ALGEBRA				9+	3 Period
	f System of Linear Equations - Eigen values and eigenv nsformation - Cayley-Hamilton Theorem - Quadratic to DIFFERENTIAL CALCULUS					3 Period
	ntinuity of function - Rolle's theorem - Mean value lication of Differential Calculus: Radius of curvature.					
	lication of Differential Calculus: Radius of curvature,					
theorems. App	lication of Differential Calculus: Radius of curvature,				le of	
theorems. App and Evolutes of UNIT – III Evaluation of integrals - Ber	lication of Differential Calculus: Radius of curvature, (of a curve.	Centre of curvat	ure,	Circl genc	le of 9+. e of	curvatur 3 Period imprope
theorems. App and Evolutes of UNIT – III Evaluation of integrals - Ber	lication of Differential Calculus: Radius of curvature, of a curve. INTEGRAL CALCULUS definite integral by trigonometric substitution - Con ta & Gamma functions and their properties - Applica	Centre of curvat	ure,	Circl genc	e of 9+, e of ils to	curvatur 3 Period imprope
theorems. App and Evolutes of UNIT – III Evaluation of integrals - Be surface areas a UNIT – IV Partial derivat	lication of Differential Calculus: Radius of curvature, of a curve. INTEGRAL CALCULUS definite integral by trigonometric substitution - Con ta & Gamma functions and their properties - Applica and volume of revolution (Cartesian coordinates only).	Centre of curvat vergence and D ations of definit	Diver	Circl genc tegra	le of 9+, e of ils to 9+,	curvatur 3 Perioc imprope evaluat 3 Perioc
theorems. App and Evolutes of UNIT – III Evaluation of integrals - Be surface areas a UNIT – IV Partial derivat	lication of Differential Calculus: Radius of curvature, of a curve. INTEGRAL CALCULUS definite integral by trigonometric substitution - Con ta & Gamma functions and their properties - Applicand nd volume of revolution (Cartesian coordinates only). PARTIAL DERIVATIVES AND ITS APPLICATION ives - total derivative - Taylor's series – Jacobians -	Centre of curvat vergence and D ations of definit	Diver	Circl genc tegra	e of 9+, e of ils to 9+, addle	curvatur 3 Perioc imprope evaluat 3 Perioc
theorems. App and Evolutes of UNIT – III Evaluation of integrals - Be surface areas a UNIT – IV Partial derivat Method of Lag UNIT – V Double integra Integrals - Vol	 Integral Differential Calculus: Radius of curvature, of a curve. INTEGRAL CALCULUS definite integral by trigonometric substitution - Con ta & Gamma functions and their properties - Applicand volume of revolution (Cartesian coordinates only). PARTIAL DERIVATIVES AND ITS APPLICATION ives - total derivative - Taylor's series – Jacobians - grange multipliers. MULTI VARIABLE INTEGRAL CALCULUS al - Area as double integral - change of order of in tume as Triple Integral. Change of variables: Cartesian lar coordinates. 	Centre of curvat vergence and D ations of definit NS Maxima, minin ntegration in do	Diver Diver te in ma a	circl genc tegra nd s	le of 9+ e of ils to 9+ addle 9+ cgrals	curvatur 3 Period imprope evaluat 3 Period 3 Period 3 Period 5 - Trip

TEXT BOOK

Veerarajan T., "Engineering Mathematics I", Tata McGraw-Hill Education(India)Pvt. Ltd, New Delhi, 2015.
 David C.Lay, "Linear Algebra and Its Application", Pearson Publishers, 6th Edition, 2021.

B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44 th Edition, 2017.
Howard Anton, "Elementry Linear Algebra", 11 th Edition, Wiley Publication, 2013.
Narayanan.S and Manicavachagom Pillai. T.K. – "Calculas Vol I and Vol II", S.chand & Co, Sixth Edition, 2014
H.K. Dass, "Advance Engineering Mathematics", S. Chand and company, Eleventh Edition, 2015.
Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publicaitons, Eighth Edition,
2012.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Solve the linear system of equations, diagonalize matrix by orthogonal transformation and reduce quadratic form to canonical form.	K5
CO2	Compare and contrast the ideas of continuity and differentiability and use them to solve engineering problems.	K5
CO3	Acquire fluency in integration of one variable and apply them to find surface area and volumes.	K5
CO4	Apply the techniques of partial derivatives in functions of several variables.	K5
CO5	Use multiple integration for finding area, surface and volume of different geometry.	K5

COURSE ARTICULATION MATRIX

COs/POs	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	1	1	-	-	-	-	-	-	-	1	3	3	2
CO2	3	3	1	1	-	-	-	-	-	-	-	1	3	3	1
CO3	3	3	1	1	-	-	-	-	-	-	-	1	3	2	1
CO4	3	3	1	1	-	-	-	-	-	-	-	1	3	2	-
CO5	3	3	1	1	-	-	-	-	-	-	-	1	3	2	-
22SBS1Z1	3	3	1	1	-	-	-	-	-	-	-	1	3	2	1
1 – Slight, 2	2 - Mod	$\begin{array}{c c c c c c c c c c c c c c c c c c c $													

22SBS1Z2

ENGINEERING PHYSICS (Common to all Branches)

PREREQUISI	PREREQUISITES CATEGORY											
	NIL	BS	3	0	0	3						
Course	1. To understand the basics about crystal systems and	l defects.										
Objectives	2. To understand the principle, characteristics, wo optical fiber.	rking and applicat	ions	of	lasei	and						
	3. To solve problems in bending of beams.											
	4. To solve quantum mechanical problems with the u	inderstanding of Qu	iantu	ım P	rinci	ples.						
	5. To understand the properties, production and appli	•										
UNIT – I CRYSTAL PHYSICS 9 Periods												
	Crystalline and amorphous materials - Lattice - U	Jnit Cell –Crystal	syst									
per unit cell -	er indices – Reciprocal lattice - d spacing in cubic lattice - Atomic radius – Coordination number – Packing frystal defects – Point, line and surface defects.											
UNIT – II	LASER PHYSICS AND FIBER OPTICS				9 Pe	riods						
Introduction- I	Principle of laser action - characteristics of laser - S	pontaneous emissio	on ar	nd S	timu	lated						
	stein's coefficients - population inversion - methods											
	ator -Types of Lasers – Principle, construction and wo											
laser.		0 2		11								
	Basic Principles involved in fiber optics- Total inte	ernal reflection-Pro	opag	atio	1 of	light						
	fiber –Derivation for Numerical Aperture and accepta					•						
UNIT – III	PROPERTIES OF MATTER					riods						
(Q) – Torque	oke's law- stress-strain diagram - Factors affecting (Q) – Beam - Bending moment - Depression of a ca hiform bending - I shaped girders.											
UNIT – IV	QUANTUM PHYSICS AND APPLICATIONS				9 Pe	riods						
	classical Physics - Introduction to Quantum theory -											
U	elength in terms of voltage, energy, and temperature -	e		~ 1								
	physical significance of a wave function- Schrödi											
	e equations Particle in a one dimensional potential	well - Scanning Ele	ectro	n M	icros	scope						
· · · · ·	ission Electron Microscope (TEM).											
UNIT – V	ULTRASONICS					riods						
	properties of ultrasonic waves - production of ultras											
Magnetostricti	•			-		•						
	of wavelength and velocity of ultrasonic waves-											
-	onic welding- ultrasonic soldering and ultrasonic clea	ning-Non- destruct	ive .	lesti	ng-	Pulse						
echo system.	l											
Contact Period		Total, 15 Daviad										
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods	•									

TEXT BOOK:

1	K. Rajagopal, "Engineering Physics", PHI Learning Private Limited, 2015.
2	P. K. Palanisamy, "Engineering Physics-I", Scitech publications Private Limited, 2015.
3	M. Arumugam, "Engineering Physics", Anuradha Publishers, 2010.

- 1 Arthur Beiser, "Concepts of Modern Physics", Tata McGraw-Hill, 2010.
- 2 D. Halliday, R. Resnick and J. Walker, "Fundamentals of Physics", 6th Edition, John Wiley and Sons, 2001.
- 3 William T. Silfvast, "Laser Fundamentals", 2nd Edition, Cambridge University Press, New York 2004.
- 4 *M. N. Avadhanulu and P.G. Kshirsagar, "A Textbook of Engineering Physics", S. Chand and Company Ltd, 2010.*
- 5 R. K. Gaur and S. L. Gupta, "Engineering Physics", Dhanpat Rai Publishers, 2009.

	RSE OUTCOMES: a completion of the course, the students will be able to:	Bloom's Taxonomy Mapped							
CO1	CO1 Interpret the crystal structure and analyse the type of defect.								
CO2	Explain the principle, characteristics, working and applications of laser and optical fiber, Analyse and solve problems in laser and optical fiber.	K4							
CO3	Solve problems in bending of beams. Apply the knowledge in construction of buildings.	K3							
CO4	Explain the importance of quantum mechanics. Solve problems in basic quantum physics. Apply the wave equations in real time problems.	К3							
CO5	Explain the properties and production of ultrasonic waves. Apply ultrasonic waves for industrial problems.	K3							

COURSE AR	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-	1	1	-
CO3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	2	1	-	-	-	-	-	-	-	-	-	-	2	-	-
CO5	2	-	-	-	-	-	-	-	-	-	-	-	2	1	-
22SBS1Z2	2	1	-	-	-	-	-	-	-	-	-	-	1	1	-
1 – Slight, 2 -	– Mode	erate, 3	– Sut	ostantia	1	•						•			•

PROGRAMMING IN C

(Common to all Branches Except MECH & PRODN)

SEMESTER I

PREREQUIS	ITES	CATEGORY	LI	P	С
	NIL	ES	3 (0	3
Course Objectives	 To study the basic concepts of computer and To understand the data types in C , flow cont Pointers, Structures, Unions and File concept 	trol statements, A			ons
UNIT – I	COMPUTER AND PROGRAMMING FUNDAM	ENTALS		9]	Periods
Introduction to	damentals – Evolution, classification, Anatomy of software –Classification of programming languages oduction to OS – Types of OS.				
UNIT – II	DATATYPES AND FLOW OF CONTROL	Contraction of		9]	Periods
	gramming – Algorithms – Structure of a C program - s – Input and Output statements – Tokens – Type Conv	- / Advantage of the second			perators
UNIT – III	ARRAYS AND FUNCTIONS		A	91	Periods
•	Arrays – Multidimensional Arrays – Strings – String h ray as function arguments – Storage Classes – Enumer		s – Fu	nctions	<u>;</u> —
UNIT – IV	POINTERS		10	9]	Periods
Pointers - Rela	pointers – Pointers arithmetic – call by reference tionship between String and pointers – pointers to poi amic memory allocation – Arguments to main().				
UNIT – V	STRUCTURES AND UNIONS, FILE OPERATION	ONS	0	91	Periods
•	irectives – Structures – Unions – Bit fields – Openin - Random access to file of records.	ig and closing a	file –	Worki	ng with
Contact Perio Lecture: 45 Pe		ods Total: 45 Po	eriods		

TEXT BOOK:

PradipDey, Manas Ghosh, "Computer Fundamentals and Programming in C", Second Edition, Oxford University Press, 2018.

1	Al Kelley, Ira Pohl , "A Book on C- Programming in C ", Fourth Edition, Addison Wesley, 2001.
2	Herbert Schildt, "C: The Complete Reference", Fourth Edition, McGraw Hill Education, 2017.
3	YashavantP.Kanetkar, "Let Us C",15 th edition, BPB Publications,2016.
4	Brian W. Kernighan and Dennis Ritchie, "The C Programming Language", Second Edition, Prentice Hall Software Series, 2015.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Articulate the basics of computer and evolution of programming languages.	K1
CO2	Write simple C programs using appropriate datatypes and control statements.	K3
CO3	Write C programs using arrays, functions and enumerations.	К3
CO4	Use pointers effectively to develop programs.	K3
CO5	Create user defined datatypes using structures & union and effectively manipulate them in file operations.	K6

COURSE A	RTICU	JLATI	ON M	ATRI	X										
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	-	-	-	-	-	-	-	-	-	-	3	3	3
CO2	1	2	1	-	-	-	-	-	-	-	-	-	3	3	3
CO3	1	2	1	-	-	-	-	-	-	-	-	-	3	3	3
CO4	2	2	1	-	-	-	-	-	-	-	-	-	3	3	3
CO5	1	2	1	-	-	-	-	-	-	-	-	-	3	3	3
22SES101	1	2	1	-	-	-	-	-	-	-	-	-	3	3	3
1 - Slight, 2	– Mod	lerate,	3 – Su	bstanti	ial										

22SMC1Z1

ENVIRONMENTAL SCIENCE AND ENGINEERING (Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	MC	3	0	0	0

Course	1. To study the modern agriculture related problems, natural resources a	nd its hornossing				
	methods.	nu ns namessing				
Objectives	2. To study the interrelationship between living organism and environmer	. t				
	3. To educate the people about causes of pollutions and its controlling me					
	4. To impart the knowledge of various environmental threats and its consets. To study the various water conservation methods, Act, Population					
		policy, wellate				
UNIT – I	programs. ENVIRONMENTAL ENERGY RESOURCES	9 Periods				
	f modern agriculture, fertilizers, pesticides, eutrophication & biomagni					
	ewable resources - Hydro Energy, Solar & Wind. Non-renewable resources in methods.	ices – Coar and				
	8	0 Derrie da				
UNIT – II	ECO SYSTEM AND BIODIVERSITY	9 Periods				
	nd its components - biotic and abiotic components. Biodiversity: type					
	ot spots of biodiversity, endangered and endemic species, conservation of					
	conservation. Threats to biodiversity-destruction of habitat, habit fragme	ntation, nunting,				
	on and man-wildlife conflicts. The IUCN red list categories.					
UNIT – III	ENVIRONMENTAL POLLUTION	9 Periods				
	lassification of air pollutants – sources, effects and control of gaseous poll					
	and particulates. Water pollution - classification of water pollutants, organ					
and control.	rces, effects and control of water pollution. Noise pollution - decibel scale	, sources, effects				
UNIT – IV	ENVIRONMENTAL THREATS	9 Periods				
Global warmin	g-measure to check global warming - impacts of enhanced Greenhouse e	effect, Acid rain-				
effects and con	trol of acid rain, ozone layer depletion- effects of ozone depletion, disast	er management -				
flood, drought,	earthquake and tsunami.	-				
UNIT – V	SOCIAL ISSUES AND ENVIRONMENT	9 Periods				
Water conserv	ation, rain water harvesting, e-waste management, Pollution Control	Act, Wild life				
	. Population growth- exponential and logistic growth, variation in po					
	tion policy. Women and Child welfare programs. Role of information tech					
· • •	VID-19 - effects and preventive measures.	0,				
	Contact Periods:					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ds				
Lectures 1010		40				

TEXT BOOK:

1	Sharma J.P., "Environmental Studies" , 4 th Edition, University Science Press, New Delhi 2016.
2	Anubha Kaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New Age
	International Publishers, New Delhi, 2021.

1	A K De, "Environmental Chemistry", 8 th Edition, New Age International Publishers, 2017.
2	G. Tyler Miller and Scott E. Spoolman, "Environmental Science", Cengage Learning India Pvt, Ltd,
	Delhi, 2014.
3	ErachBharucha, "Textbook of Environmental Studies", Universities Press(I) Pvt, Ltd, Hyderabad,
	2015.
4	Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 3 rd Edition, Pearson
	Education, 2015.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Recognize and understandabout the various environmental energy resources and the effective utility of modern agriculture.	K2
CO2	Acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.	K2
CO3	Be aware of the sources of various types of pollution, their ill effects and preventive methods.	K2
CO4	Identify and take the preventive measures to control the environmental threats and effects of Global warming, Ozone depletion, Acid rain, and natural disasters.	K2
CO5	Demonstrate an idea to save water and other issues like COVID -19.	K2

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	1	-	1	1	-	3	-	-	-	-	1	-	-	-
CO2	1	1	-	1	1	2	2	-	-	-	-	1	-	-	-
CO3	1	1	1	1	1	2	3	-	-	-	-	1	-	-	-
CO4	1	1	1	1	1	2	3	-	-	-	-	1	-	-	-
CO5	1	1	1	1	2	2	2	-	-	1	-	1	-	-	-
22SMC1Z1	1	1	1	1	1	2	3	-	-	1	-	1	-	-	-

22SBS1Z3

PHYSICS LABORATORY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	BS	0	0	3	1.5

Course Objectives	 To impart practical knowledge on the concept of properties of matter and utilize the experimental techniques to measure the properties To impart practical knowledge on the modulii of elasticity To analyze the properties of semiconductors To learn practically the basic electronic concepts of transistor and logic gates To realize the principle, concepts and working of a solar cell and study the properties of ferromagnetic material To understand the concept of quantum physics
S. No.	LABORATORY EXPERIMENTS
1.	Determination of refractive index of the glass and given liquid – Spectrometer diffraction method.
2.	Determination of Planck's constant.
3.	Determination of Young's Modulus of the material in the form of bar – Cantilever Bending - Koenig's Method.
4.	a) Particle size determination using diode laser.b) Determination of numerical aperture and acceptance angle in an optical fiber.
5.	Hall effect - Determination of semiconductor parameters.
6.	Determination of band gap of semiconductor material.
7.	Determination of velocity of sound and compressibility of the given liquid-Ultrasonic Interferometer.
8.	Determination of moment of inertia of disc and rigidity modulus of a wire-Torsional pendulum.
9.	Transistor characteristics.
10.	Solar cell characteristics.
11.	Determination of Hysteresis losses in a Ferromagnetic material-B-H curve unit.
12.	Logic Gates – Verification and Construction.
Contact Peri Lecture: 0 P	

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Determine refractive index and compressibility of liquids, micro size of particles and numerical aperture of an optical fibre	K5
CO2	Measure the Young's and rigidity modulii of the given material	K5
CO3	Determine the bandgap of a given semiconductor material and identify the type of semiconductor and its carrier concentration through Hall measurement	K5
CO4	Analyze the characteristics of transistor and verify the truth table of logic gates	K4
CO5	Measure the efficiency of a solar cell and energy loss associated with the ferromagnetic material by plotting B-H curve	K5
CO6	Determine the Planck's constant and work function	K5

COURSE ARTICULATION MATRIX

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-	1	1	-
CO3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	2	-	-	-	-	-	-	-	-	-	-	-	2	-	-
CO5	2	-	-	-	-	-	-	-	-	-	-	-	2	1	-
CO6	2	-	-	-	-	-	-	-	-	-	-	-	1	1	-
22SBS1Z3	2	-	-	-	-	-	-	-	-	-	-	-	1	1	-
1 – Slight, 2 –	– Slight, 2 – Moderate, 3 – Substantial														

22656172	WORKSHOP PRACTICE	SEMESTER I
22SES1Z2	(Common to all Branches)	SEIVIESTER I

PREREQUISTES	CATEGORY	L	Т	Р	С
NIL	ES	0	0	3	1.5

Course	1. To make various basic prototypes in the carpentry trade such as Half Lap
Objectives	joint, Lap Tee joint, Dovetail joint, Mortise & Tenon joint.
	2. To make various welding joints such as Lap joint, Lap Tee joint, Edge joint,
	Butt joint and Corner joint.
	3. To make various moulds in foundry such as Cube, Straight pipe, V pulley, and Conical bush.
	4. To make various components using sheet metal such as Tray, Frustum of cone and Square box.
	5. To understand the working and identify the various components of CNC Machines.

LIST OF EXPERIMENTS

1. Introduction to use of tools and equipment's in Carpentry, Welding, Foundry and Sheet metal

- 2. Safety aspects in Welding, Carpentry, Foundry and sheet metal.
- 3. Half Lap joint and Dovetail joint in Carpentry.
- 4. Welding of Lap joint and Butt joint and T-joint.
- 5. Preparation of Sand mould for Cube, Conical bush, Pipes and V pulley
- 6. Fabrication of parts like Tray, Frustum of cone and Square box in sheet metal
- 7. CNC Machines demonstration and lecture on working principle.
- 8. Electrical wiring and simple house wiring.

Contact periods:

COURSE OUTCOMES:

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Safely Use tools and equipment's used in Carpentry, Welding, Foundry and	K2
	Sheet metal to create basic joints.	
CO2	Prepare sand mould for various basic pattern shapes.	K3
CO3	Fabricate parts like Tray, Frustum of cone and Square box in sheet metal.	K3
CO4	Practice on the Welding and Carpentry	K3
CO5	Demonstrate the working of CNC Machines.	K2

3

_

1

-

_

1

1

COURSE ARTICULATION MATRIX PO PSO PSO **PSO** COs/ POs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 1 3 1 1 2 **CO1** ---1 --_ _ _ 2 2 3 3 **CO2** --1 -3 2 1 ---**CO3** 2 3 3 3 -2 -1 2 1 ----2 **CO4** 2 3 3 3 2 1 -_ 1 _ -_ -**CO5** _ -_ _ 1 _ _ _ -2 _ 1 _ _ 22SES1Z2 1 1 1 2 2 1 -3 1 1 ----1 – Slight, 2 – Moderate, 3 – Substantial

22SES103 PROGRAMMING IN C LABORATO (Common to all Branches Except MECH &	5	SEM	EST	ER I	[
PREREQUISITES CATH		ORY	L	Т	Р	С
NIL	ES		0	0	3	1.5

	To understand the concepts like Data types, Flow control statements, Functions,
Objectives	Arrays, command line arguments, Pointer, Dynamic memory allocation,
	Preprocessor Directives, Structures ,Unions and Files in C.

EXER	RCISES ILLUSTRA	ATING THE FOLLOW	ING CONCEPTS:						
1	Operators, Expressions and IO formatting.								
2	Decision Making and Looping.								
3	Arrays and Strin	ngs.							
4	Functions and R	Recursion.							
5	Pointers.								
6	Dynamic Memory Allocation.								
7	Command line	arguments.							
8	Preprocessor Di	irectives.							
9	Structures.								
10	Unions.								
11	Files.								
12	12 MiniProject.								
Conta	ct periods:								
Lectu	Lecture: 0 PeriodsTutorial: 0 PeriodsPractical: 45 PeriodsTotal: 45 Periods								

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Use appropriate data types and flow control statements to write C programs.	K6
CO2	Write C programs using arrays, functions and command line arguments.	K6
CO3	Write C programs using pointers, dynamic memory allocation and preprocessor directives.	K6
CO4	Implement user defined data types using structures & union and effectively manipulate them in file operations.	K6
CO5	Develop simple applications using C.	K6

COURSE AR	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	-	-	-	-	-	-	-	-	-	-	3	3	3
CO2	-	1	-	-	-	-	-	-	-	-	-	-	3	3	3
CO3	-	1	-	-	-	-	-	-	-	-	-	-	3	3	3
CO4	-	1	-	-	-	-	-	-	-	-	-	-	3	3	3
CO5	2	2	2	-	-	-	-	-	3	3	-	-	3	3	3
22SES103	1	1	1	-	-	-	-	-	1	1	-	-	3	3	3
1 – Slight, 2 –	- Moder	rate, 3 –	Substa	ntial											

22SHS2Z4

தமிழரும் தொழில்நுட்பமும் TAMILS AND TECHNOLOGY (Common to all Branches)

SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	HSMC	1	0	0	1

Course		
Objectives		
		2.0.1
UNIT – I	WEAVING AND CERAMIC TECHNOLOGY	3 Periods
Weaving Indust Potteries.	ry during Sangam Age – Ceramic technology – Black and Red Ware Potter	ies (BRW)– Graffiti on
UNIT – II	DESIGN AND CONSTRUCTION TECHNOLOGY	3 Periods
Designing and	Structural construction House & Designs in household materials during	Sangam Age- Building
	ero stones of Sangam age – Details of Stage Constructions in	
	- Sculptures and Temples of Mamallapuram - Great Temples of Cholas and o	
	· Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thiru	
	- Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British I	
UNIT – III	MANUFACTURING TECHNOLOGY	3 Periods
	ding - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and	
	of history - Minting of Coins - Beads making-industries Stone beads -Glass b	
	eads -Shell beads/ bone beats - Archeological evidences - Gem stor	ne types described in
Silappathikaram		-
UNIT – IV	AGRICULTURE AND IRRIGATION TECHNOLOGY	3 Periods
	ds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husba	
	for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisherie	s –
	living - Ancient Knowledge of Ocean - Knowledge Specific Society.	
	SCIENTIFIC TAMIL & TAMIL COMPUTING	3 Periods
	f Scientific Tamil - Tamil computing - Digitalization of Tamil Books -	Development of Tamil
	il Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries –	
Sorkuvai Projec	t.	
Contact Perio	ode:	
Lecture: 15 F		ode
		14 5

TEXT BOOK:

1	தமிழக வரலாறு – மக்களும் பண்பாடும் – கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு								
	பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).								
2	கணினித்தமிழ் – முனைவர் இல.சுந்தரம் . (விகடன் பிரசுரம்).								
	கீழடி – வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை								
	வெளியீடு)								
4	பொருநை – ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)								

1	Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
2	Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by:International Institute of Tamil Studies.
	Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies).
4	The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by:International Institute of Tamil Studies.)
	Keeladi - 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
6	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: The Author)
7	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
8	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.

COURSE OUTCOM	ES: e course, the students will be able to:	Bloom's Taxonomy
CO1		Mapped
CO2		
CO3	T	
<u> </u>		
CO4 CO5		
	R. A.	

COURSE AR	TICU	LATIO	N MA	TRIX				22							
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															
22SHS2Z4															
1 – Slight, 2 –	Moder	ate, 3 –	Substa	antial		1	1	1	1	1	1	1	1		1

தமிழரும் தொழில்நுட்பமும் TAMILS AND TECHNOLOGY (Common to all Branches)

SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	HSMC	1	0	0	1

Course		
Objectives		
அலகு I	நெசவு மற்றும் பானைத் தொழில்நுட்பம்	3 Periods
	ல் நெசவுத் தொழில் – பானைத் தொழில்நுட்பம் - கருப்பு	சிவப்பு
பாண்டங்கள்–	பாண் டங்களில் கீறல் குறியீடுகள்	
அலகு II	வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்	3 Periods
சங்க காலத்தி	ல் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்த	தில் வீட்டுப்
பொருட்களில்	ல வடிவமைப்பு- சங்க காலத்தில் கட்டுமான பொருட்களு	ம் நடுகல்லும்–
சிலப்பதிகாரத்	தில் மேடைஅமைப்பு பற்றிய விவரங்கள் –	மாமல்லபுரச்
சிற்பங்களும்,	கோவில்களும்- சோழர் காலத்துப் பெருங்கோயில்க	ர் மற்றும் பிற
வழிபாட்டுத் த	தலங்கள் – நாயக்கர் காலக் கோயில்கள்-மாதிரிகட்டன	ைப்புகள் பற்றி
0 07 7		
• • •	வீடுகள் – பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ	
கட்டிடக் கலை		,
	 உற்பத்தித் தொழில் நுட்பம்	3 Periods
	் கலை – உலோகவியல் – இரும்புத் தொழிற்சாலை –	இரும்பை
உருக்குதல், எ	ாஃகு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்ச	₅ நாணயங்கள்
	ா அச்சடித்தல் – மணி உருவாக்கும் தொழிற்	
கல்மணிகள்,	கண்ணாடி மணிகள் – சுடுமண் மணிகள் – சங்கு	5 மணிகள் –
	் டுகள் –தொல்லியல் சான்றுகள் – சிலப்பதிகாரத்தில	
வகைக்கள்.		
அலகு IV	வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம்	3 Periods
அணை, ஏரி, கு	தளங்கள் , மதகு – சோழர்காலக் குமுழித்தூம்பின் மு	க்கியத்துவம் –
கால்நடை பர	ாமரிப்பு – கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கின	னறுகள் –
வேளாண்மை	் மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் – கட	ல்சார்அறிவு –
மீன்வளம் – பு	ழத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த	ந பண்டைய
அறிவு –அறிவ		
	அறிவியல் தமிழ் மற்றும் கணினித்தமிழ்	3 Periods
		ற நூல்களை
-	 சய்தல் – தமிழ் மென்பொருட்கள் உருவாக்கம் – தமி	
-	் – தமிழ் மின் நூலகம் – இணையத்தில் தமிழ்	•
சொற்குவைத்		- , , ,
و	· ~··	

Contact Periods:			
Lecture: 15 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 15 Periods

TEXT BOOK:

1	தமிழக வரலாறு – மக்களும் பண்பாடும் – கே.கே. பிள்ளை (வெளியீடு:							
	தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).							
2	கணினித்தமிழ் – முனைவர் இல.சுந்தரம் . (விகடன் பிரசுரம்).							
3	கீழடி – வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை							
	வெளியீடு)							
4	பொருநை – ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)							

1	Social Life of Tamils	(Dr.K.K.Pillay) A joint	publication of TNTB &	& ESC and RMRL – (in print)
---	-----------------------	-------------------------	-----------------------	-----------------------------

- 2 Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by:International Institute of Tamil Studies.
- 3 Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies).
- 4 The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by:International Institute of Tamil Studies.)
- Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department of 5 Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 6 Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: The Author)
- 7 Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 8 Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.

COURSE OUTCOMES:	Bloom's Taxonomy
Upon completion of the course, the students will be able to:	Mapped
CO1	
CO2	
CO3	
CO4	
CO5	

COURSE AI	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1															
CO2															
CO3															
CO4															
CO5															
22SHS2Z4															
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial														

22SHS2Z5	VALUES AND ETHICS (Common to all Branches)	SEMESTER II
----------	---	-------------

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	HSMC	3	0	0	3

Course Objectives	1. To understand and appreciate the ethical issues faced by an individ	ual in profession,				
Objectives		society and polity.				
	6 6	2. To learn about Engineering Ethics and case studies.				
	3. To understand the negative health impacts of certain unhealthy behaviours.					
	4. To appreciate the need and importance of physical, emotional health and social health.					
	5. To get familiar with the global issues.					
UNIT – I	BEING GOOD AND RESPONSIBLE	9 Periods				
Morals, Values and Ethics - Integrity - Work Ethics - Service Learning - Civic Virtue - Respect for Others -						

Living Peacefully - Caring - Sharing - Honesty - Courage - Valuing Time - Cooperation - Commitment - Empathy - Self-Confidence - Character

UNIT – II	ENGINEERING AS SOCIAL EXPERIMENTATION	9 Periods
Engineering Ethic	s: Senses of 'Engineering Ethics' - variety of moral issued - types of	inquiry - moral
dilemmas - moral	autonomy - Models of Professional Roles. Engineering as Experimentation	n – Engineers as
responsible Experi	menters - Research Ethics - Codes of Ethics - Industrial Standards - A B	alanced Outlook
on Law – Case stud	lies : Chernobyl disaster and Titanic disaster	

UNIT – III ADDICTION AND HEALTH

9 Periods

Peerpressure - Alcoholism: Ethicalvalues, causes, impact, laws, prevention–Illeffects of smoking-Prevention of Suicides; Sexual Health: Prevention and impact of premarital pregnancy and Sexually Transmitted Diseases. DrugAbuse: Abuse of different types of legal and illegal drugs: Ethical values, causes, impact, laws and prevention

UNIT – IV	PROFESSIONAL ETHICS	9 Periods
AbuseofTechnolog	ies: Hacking and other cybercrimes, Addiction to mobile phone usage, V	Video games and
Social networking	websites	

UNIT – V	GLOBAL ISSUES	9 Periods						
Multinational co	rporations - Environmental ethics - computer ethics - weapons	development -						
engineers as managers - consulting engineers - engineers as expert witnesses and advisors - Code of								
Conduct – Corpo	rate Social Responsibility							

Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

1	Mike W Martin and Roland Schinzinger, "Ethics in Engineering", 4 th Edition, McGraw-Hill, New
	York 2017.
2	Govindarajan M, Natarajan S and Senthil Kumar VS, "Engineering Ethics", Prentice Hall of India,
	New Delhi, 2013.

1	Dhaliwal,K.K, "Gandhian Philosophy of Ethics: A Study of Relationship between his Presupposition and Precepts", WritersChoice, NewDelhi, India, 2016.
2	Jayshreesuresh, B.S.Raghavan, "Human values and professional ethics", S.Chand and company Ltd, New Delhi, 2nd Edition, 2007.
3	L.A. and Pagliaro, A.M, "Handbook of Child and Adolescent Drug and Substance Abuse: Pharmacological, Developmental and Clinical Considerations", Wiley Publishers, U.S.A, 2012.
4	Pandey, P.K (2012), "SexualHarassmentandLawinIndia", LambertPublishers, Germany. 2012.
5	Kiran D.R, "Professional ethics and Human values," Tata McGraw Hill, New Delhi, 2007.
6	Edmund G See Bauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.
7	David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, 2003.
8	Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics" , Prentice Hall of India, New Delhi, 2004.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Follow sound morals and ethical values scrupulously to prove as good citizens.	K3
CO2	Assess the relevance of ethics and morals in engineering and to learn case studies.	K3
CO3	Describe the concept of addiction and how it will affect the physical and mental health.	K2
CO4	Identify ethical concerns while using advanced technologies.	K2
CO5	Judge the code of conduct, Environmental ethics and computer ethics.	K3

COURSE A	COURSE ARTICULATION MATRIX														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	3	3	3	3	2	1	-	-	-	-
CO2	-	-	-	-	-	3	-	3	3	-	1	-	-	-	-
CO3	I	-	-	-	-	3	-	3	3	2	1	-	-	-	-
CO4	-	-	-	-	-	3	3	3	3	1	1	1	-	-	2
CO5	-	-	-	-	-	3	3	3	3	-	1	3	-	-	2
22SHS2Z5	•	-	-	-	-	3	2	3	3	1	1	1	-	-	1
1 - Slight, 2	- Moc	lerate,	3 - Su	bstantia	al										

22SBS204

VECTOR SPACES AND DIFFERENTIAL EQUATIONS WITH MATLAB

SEMESTER II

(Common to CSE & IT Branches)

Course	NIL	DC				1							
Course		BS	3	1	0	4							
Objectives	Course1. To be familiar with MATLAB and solving the simple equationsDbjectives2. To gain methods to solve second order differential equations with constant and variable coefficients.3. To acquire knowledge of testing convergence of sequences and series.4. To gain the concepts of vector spaces and linear transformations.5. To obtain the knowledge of decomposition and inner product spaces.												
UNIT – I	MATLAB					Periods							
	ics- Simple problems: solving equations, matrix oper solving linear system of equations, differentiation.	ations, calculatir	ng e	igen	valu	ies and							
UNIT – II	ORDINARY DIFFERENTIAL EQUATIONS OF HI	GHER ORDER			9+3 1	Periods							
equation, Cauc	near differential equations with constant coefficients hy-Legendre equation-Method of variation of parame constant coefficients.												
UNIT – III	SEQUENCES AND SERIES				9+3 1	Periods							
D' Alembert's	of sequence, tests for convergence of series of ratio test, Cauchy's Integral test, Raabe's test, logarit series: Leibnitz test – power series: absolutely conver	hmic test, Gauss	test	, Ca	uchy	y's root							
UNIT – IV	VECTOR SPACES I				9+3 1	Periods							
kernel of a lin	inear dependence of vectors, basis, dimension, Linea near map, rank and nullity, Inverse of a linear tra linear maps, Matrix associated with a linear map.												
UNIT – V	VECTOR SPACES II			(9+3 1	Periods							
U I	Cholesky Decomposition, Inner product spaces- nidt orthogonalization.	norm, orthogor	nalit	у, с	ortho	normal							
Contact Period Lecture: 45 Per		s Total: 60 Peri	ods										

TEXT BOOK

1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44 th Edition, 2018.
2	Howard Anton, Chris Rorres, "Elements of Linear Algebra with Applications", Wiley, New Delhi,
	2 nd Edition, 2015.
3	Brain R.Hunt, Ronald L.Lipsman, Jonathan M. Rosenberg with Kevin R.Coombes, John E. Osborn and
	Garrett J.Stuck, "A Guide to MATLAB for beginners and experienced users", Published in the United
	States of America by Cambridge University Press, New York 2001.

1	E. A. Coddington, "An Introduction to Ordinary Differential Equations", Prentice Hall India, 1995.
1	E. A. Coulington, An Introduction to Orainary Differential Equations , Frentice Hatt India, 1995.
2	G.F. Simmons and S.G. Krantz, "Differential Equations", Tata McGraw Hill, 2007.
3	Srimanta Pal and suboth.C.Bhunia, "Engineering Mathematics", Oxford university publications, New
	Delhi, 2015.
4	Gilbert Strang, "Linear Algebra and its Applications" , Cengage Learning, Delhi, 4 th Edition, 2006.
5	D.Poole, "Linear Algebra: A Modern Introduction", 2 nd Edition, Brooks/Cole, 2005.
6	V. Krishnamurthy, V.P. Mainra and J.L. Arora, "An introduction to Linear Algebra", Affiliated East–West
	press, Reprint 2005.
7	Amos Gilat, "MATLAB: An Introduction with Applications", Wiley, The Ohio State University, 6 th Edition,
	2013.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Solve algebraic equations by using MATLAB.	K5
CO2	Find solution for higher order linear differential equation with constant and variable coefficients and simultaneous differential equation.	K5
CO3	Perform basic computation in convergence and divergence of sequences and series	K5
CO4	Demonstrate the concepts of vector spaces and linear transformation orientation with matrices.	K5
CO5	Use Cholesky Decomposition and orthogonal transformation including Inner product spaces in the applications of many different fields.	K5

COURSE ARTICULATION MATRIX															
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	-	3	-	4	-	-	-	1	-	2	3	3	2
CO2	2	1	-	-	-	4	-	-	-	-	-	2	3	3	1
CO3	2	1	-	-	-	4	-	-	-	-	-	2	3	2	1
CO4	2	1	-	-	-	4	-	-	-	-	-	2	3	2	-
CO5	2	1	-	-	-	4	-	-	-	-	-	2	3	2	-
22SBS204	2	1	-	1	-	4	-	-	-	1	-	2	3	2	1
1 – Slight, 2 -	- Mode	erate, 3 -	- Subst	antial	•		•					•	•		

22SBS205

PHYSICS FOR INFORMATION SCIENCE (Common to CSE & IT Branches)

SEMESTER II

PREREQUISTIES		CATEGORY	L	Т	Р	C				
	NIL	BS	3	0	0	3				
Course	1. To understand the properties of									
Objectives	2. To understand the characteristics of semiconductors.									
	3. To explain different number sy	• •		•	•					
		4. To understand the properties of magnetic and superconducting materials								
		and apply them for specific purpose								
	5. To explain engineered semicor	ductor materials and	their A	Applic						
UNIT – I	ELECTRONIC MATERIALS				9 Per					
	on theory of metals – Postulates – Elec									
	eman – Franz law – Lorentz number									
	n – Effect of temperature – Density of e als - Calculation of Fermi energy at 0 K	nergy states in meta	is (der	Ivation	1) – Ca	anne				
				-						
UNIT – II	SEMICONDUCTORS	· 1 ·	. 1	1.	9 Per					
	nductors – elemental and compound sen									
	sic semiconductors - Fermi level - Carri ii level on temperature – Electrical condi									
Dependence of Ferm	ii level on temperature – Electrical cond	uctivity – band gap d	leteriii	паноп	– exu	Insic				
comison dustors C					a of I	arm				
	arrier concentration in P-type and N-ty	pe semiconductors	- Depe		e of F	Ferm				
level on impurity co	arrier concentration in P-type and N-ty ncentration and temperature for P-type a	pe semiconductors	- Depe							
level on impurity co UNIT – III	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS	pe semiconductors nd N-type semicondu	- Depe actors.	endenc	9 Pe	riods				
level on impurity co UNIT – III Introduction – Binary	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim	pe semiconductors nd N-type semicondu al to Binary convers	- Depe actors.	endenc Binary	9 Per to de	riods cima				
level on impurity co UNIT – III Introduction – Binary conversion – Octal a	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates	pe semiconductors nd N-type semicondu al to Binary convers – Three basic Logic	- Depe actors. ion – Gates	endenc Binary :OR, A	9 Per to dea	riods cima NOT				
level on impurity co UNIT – III Introduction – Binar conversion – Octal a operation, circuit, tru	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim	pe semiconductors nd N-type semicondu al to Binary convers – Three basic Logic gate: NAND and NO	- Depe actors. ion – Gates	endenc Binary :OR, A	9 Per to dea	riods cima NOT				
level on impurity co UNIT – III Introduction – Binary conversion – Octal a operation, circuit, tru OR from NAND & N	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal NOR Gates – Exclusive OR Gate - Problem	pe semiconductors nd N-type semicondu al to Binary convers – Three basic Logic gate: NAND and NO	- Depe actors. ion – Gates	endenc Binary :OR, A	9 Pe to de AND, 1 F, ANI	riods cima NOT D and				
level on impurity co UNIT – III Introduction – Binary conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal NOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT	pe semiconductors nd N-type semicondu al to Binary convers – Three basic Logic gate: NAND and NO IS	- Depe actors. ion – i Gates R Gate	endenc Binary :OR, A es:NOT	9 Per to de AND, 1 F, ANI 9 Per	riods cima NOT D and riods				
level on impurity co UNIT – III Introduction – Binar conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic m	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal NOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT noment - Bohr magneton - Dia, Para, and	pe semiconductors nd N-type semicondu al to Binary convers – Three basic Logic gate: NAND and NO is FING MATERIALS Ferro magnetic mate	- Depe actors. ion – Gates R Gate rials -	Binary :OR, A es:NOT	9 Per to dec AND, 1 F, ANI 9 Per in theo	riods cima NOT D and riods				
level on impurity co UNIT – III Introduction – Binar conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic m ferromagnetism - Hy	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal NOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT	pe semiconductors nd N-type semicondu al to Binary convers – Three basic Logic gate: NAND and NO is FING MATERIALS Ferro magnetic mate ials. Magnetic record	- Dependent - Depe	Binary :OR, A es:NOT Doma	9 Per to dea ND, 1 F, ANI 9 Per in theo tic Taj	riods cima NOT D and riods riods				
level on impurity co UNIT – III Introduction – Binary conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic m ferromagnetism - Hy Floppy disk – Optic Construction.	arrier concentration in P-type and N-type ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal VOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT noment - Bohr magneton - Dia, Para, and esteresis - Hard and Soft magnetic mater cal Recording – Magneto Optical Record	rpe semiconductors nd N-type semiconductors al to Binary convers – Three basic Logic gate: NAND and NO s FING MATERIALS Ferro magnetic mate ials. Magnetic record rding – Principle –	- Dependent - Depe	Binary OR, A es:NOT Domai Magne ling –	9 Per to dea ND, 1 F, ANI 9 Per in theo tic Taj Readi	riods NOT NOT and riods riods ory of pes - ng -				
level on impurity co UNIT – III Introduction – Binary conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic m ferromagnetism - Hy Floppy disk – Optic Construction. Superconductivity	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal VOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT noment - Bohr magneton - Dia, Para, and steresis - Hard and Soft magnetic mater cal Recording – Magneto Optical Record - Types of superconductors - BCS t	pe semiconductors nd N-type semiconductors al to Binary convers – Three basic Logic gate: NAND and NO s FING MATERIALS Ferro magnetic mate ials. Magnetic record rding – Principle – heory of supercond	- Deperiod - Deperiod - Deperiod - Deperiod - Deperiod - Dependence -	endenc Binary :OR, A es:NOT Domat Magne ling – ty (qu	9 Per to dea ND, 1 F, ANI 9 Per in theo tic Tap Readi alitativ	riods cima NOT) and riods ory of pes - ng - ng -				
level on impurity co UNIT – III Introduction – Binary conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic m ferromagnetism - Hy Floppy disk – Optic Construction. Superconductivity – properties- Meissner	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal NOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT noment - Bohr magneton - Dia, Para, and esteresis - Hard and Soft magnetic mater cal Recording – Magneto Optical Record - Types of superconductors - BCS to r effect, effect of magnetic field and	pe semiconductors nd N-type semiconductors al to Binary convers – Three basic Logic gate: NAND and NO s FING MATERIALS Ferro magnetic mate ials. Magnetic record rding – Principle – heory of supercond	- Deperiod - Deperiod - Deperiod - Deperiod - Deperiod - Dependence -	endenc Binary :OR, A es:NOT Domat Magne ling – ty (qu	9 Per to dea ND, 1 F, ANI 9 Per in theo tic Tap Readi alitativ	riods cima NOT) and riods ory of pes - ng - ng -				
level on impurity co UNIT – III Introduction – Binar conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic n ferromagnetism - Hy Floppy disk – Optic Construction. Superconductivity – properties- Meissner Cryotron, Magnetic I	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal NOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT noment - Bohr magneton - Dia, Para, and esteresis - Hard and Soft magnetic mater cal Recording – Magneto Optical Record - Types of superconductors - BCS to r effect, effect of magnetic field and levitation.	pe semiconductors nd N-type semicondu al to Binary convers – Three basic Logic gate: NAND and NO is FING MATERIALS Ferro magnetic mate ials. Magnetic record rding – Principle – heory of supercond current - Applicatio	- Deperiod - Deperiod - Deperiod - Deperiod - Deperiod - Dependence -	endenc Binary :OR, A es:NOT Domat Magne ling – ty (qu	9 Per to ded ND, 1 F, ANI 9 Per in theo tic Taj Readi alitative conduct	riods cima NOT O and riods ory of opes - ng - ng - ve) - ctors				
level on impurity co UNIT – III Introduction – Binary conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic m ferromagnetism - Hy Floppy disk – Optic Construction. Superconductivity – properties- Meissner Cryotron, Magnetic M UNIT – V	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal NOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT noment - Bohr magneton - Dia, Para, and steresis - Hard and Soft magnetic mater cal Recording – Magneto Optical Record - Types of superconductors - BCS to r effect, effect of magnetic field and levitation. ENGINEERED SEMICONDUCTOR	rpe semiconductors nd N-type semiconductors al to Binary convers – Three basic Logic gate: NAND and NO is FING MATERIALS Ferro magnetic mate ials. Magnetic record rding – Principle – heory of supercond current - Applicatio	- Depe actors. ion – Gates R Gate rials - ing – Record luctivitions of	Binary :OR, A es:NOT Doma Magne ling – ty (qu super	9 Per to ded ND, 1 T, ANI 9 Per in theo tic Taj Readi alitativ conduc 9 Pe	riods cima NOT) and riods ory of opes - nng - nng - ve) ve) ve) riods				
level on impurity co UNIT – III Introduction – Binar conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic m ferromagnetism - Hy Floppy disk – Optic Construction. Superconductivity properties- Meissner Cryotron, Magnetic M UNIT – V Introduction - Quant	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal NOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT noment - Bohr magneton - Dia, Para, and steresis - Hard and Soft magnetic mater cal Recording – Magneto Optical Record - Types of superconductors - BCS t r effect, effect of magnetic field and levitation. ENGINEERED SEMICONDUCTOR tum confinement – Density of states in	rpe semiconductors nd N-type semiconductors al to Binary convers – Three basic Logic gate: NAND and NO is FING MATERIALS Ferro magnetic mate ials. Magnetic record rding – Principle – heory of supercond current - Application MATERIALS in 2D, 1D and 0D (q	- Depe ictors. ion – Gates R Gate rials - ling – Record luctivi ons of	endenc Binary :OR, A es:NOT Domai Magne ling – ty (qu supera	9 Per to ded AND, 1 G, ANI 9 Per in theo tic Taj Readi alitativ conduc 9 Pe	riods cima NOT) and riods ory o: oes - ng - ng - ve) ve) ctors riods				
level on impurity co UNIT – III Introduction – Binar conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic n ferromagnetism - Hy Floppy disk – Optic Construction. Superconductivity – properties- Meissner Cryotron, Magnetic I UNIT – V Introduction - Quant examples of low-di	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal NOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT noment - Bohr magneton - Dia, Para, and esteresis - Hard and Soft magnetic mater cal Recording – Magneto Optical Record - Types of superconductors - BCS to r effect, effect of magnetic field and levitation. ENGINEERED SEMICONDUCTOR tum confinement – Density of states in mensional systems such as quantum	pe semiconductors nd N-type semiconductors al to Binary convers – Three basic Logic gate: NAND and NO is FING MATERIALS Ferro magnetic mate ials. Magnetic record rding – Principle – heory of supercond current - Application MATERIALS n 2D, 1D and 0D (q wells, wires, and d	- Depe ictors. ion – Gates R Gate rials - ing – Record luctivitions of ualitation	Binary :OR, A es:NOT Domai Magne ling – ty (qu supere ively) Nanoi	9 Per to dec AND, 1 G, ANI 9 Per in theo tic Taj Readi alitativ conduc 9 Pe - Prac nateria	riods cima NOT O and riods ory o pes - ng - ve) ctors riods ctica als -				
level on impurity co UNIT – III Introduction – Binary conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic n ferromagnetism - Hy Floppy disk – Optic Construction. Superconductivity – properties- Meissner Cryotron, Magnetic I UNIT – V Introduction - Quant examples of low-di Properties – Method	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal VOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT noment - Bohr magneton - Dia, Para, and steresis - Hard and Soft magnetic mater cal Recording – Magneto Optical Record - Types of superconductors - BCS t r effect, effect of magnetic field and levitation. ENGINEERED SEMICONDUCTOR tum confinement – Density of states in mensional systems such as quantum ds of synthesize – Top-down & Botton	pe semiconductors nd N-type semiconductors al to Binary convers – Three basic Logic gate: NAND and NO is FING MATERIALS Ferro magnetic mate ials. Magnetic record rding – Principle – heory of supercond current - Application MATERIALS n 2D, 1D and 0D (q wells, wires, and d	- Depe ictors. ion – Gates R Gate rials - ing – Record luctivitions of ualitation	Binary :OR, A es:NOT Domai Magne ling – ty (qu supere ively) Nanoi	9 Per to dec AND, 1 G, ANI 9 Per in theo tic Taj Readi alitativ conduc 9 Pe - Prac nateria	riods cima NOT O and riods ory o opes - ng - ve) ctors riods ctica als -				
level on impurity co UNIT – III Introduction – Binary conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic m ferromagnetism - Hy Floppy disk – Optic Construction. Superconductivity properties- Meissner Cryotron, Magnetic I UNIT – V Introduction - Quant examples of low-di Properties – Method vapour deposition – A	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal NOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT noment - Bohr magneton - Dia, Para, and esteresis - Hard and Soft magnetic mater cal Recording – Magneto Optical Record - Types of superconductors - BCS to r effect, effect of magnetic field and levitation. ENGINEERED SEMICONDUCTOR tum confinement – Density of states in mensional systems such as quantum	pe semiconductors nd N-type semiconductors al to Binary convers – Three basic Logic gate: NAND and NO is FING MATERIALS Ferro magnetic mate ials. Magnetic record rding – Principle – heory of supercond current - Application MATERIALS n 2D, 1D and 0D (q wells, wires, and d	- Depe ictors. ion – Gates R Gate rials - ing – Record luctivitions of ualitation	Binary :OR, A es:NOT Domai Magne ling – ty (qu supere ively) Nanoi	9 Per to dec AND, 1 G, ANI 9 Per in theo tic Taj Readi alitativ conduc 9 Pe - Prac nateria	riods cima NOT O and riods ory of opes - ng - ve) - ctors riods ctica als -				
level on impurity co UNIT – III Introduction – Binary conversion – Octal a operation, circuit, tru OR from NAND & N UNIT – IV Origin of magnetic n ferromagnetism - Hy Floppy disk – Optic Construction. Superconductivity – properties- Meissner Cryotron, Magnetic I UNIT – V Introduction - Quant examples of low-di Properties – Method	arrier concentration in P-type and N-ty ncentration and temperature for P-type a DIGITAL ELECTRONICS y number system – place value – decim and hectadecimal numbers. Logic Gates th table, Boolean expression – Universal NOR Gates – Exclusive OR Gate - Problem MAGNETIC AND SUPER CONDUCT noment - Bohr magneton - Dia, Para, and steresis - Hard and Soft magnetic mater cal Recording – Magneto Optical Record - Types of superconductors - BCS t r effect, effect of magnetic field and levitation. ENGINEERED SEMICONDUCTOR tum confinement – Density of states in mensional systems such as quantum ds of synthesize – Top-down & Botton Applications of Nanomaterials.	rpe semiconductors nd N-type semiconductors – nd N-type semiconductors – Three basic Logic gate: NAND and NO is TING MATERIALS Ferro magnetic mate ials. Magnetic record rding – Principle – heory of supercond current - Application MATERIALS n 2D, 1D and 0D (q wells, wires, and d n-up Approach – B	- Deperior - Dependence - D	endenc Binary :OR, A es:NOT Domai Magne ling – ty (qu supero ively) Nanon Iling –	9 Per to dec AND, 1 G, ANI 9 Per in theo tic Taj Readi alitativ conduc 9 Pe - Prac nateria	riods cima NOT O and riods ory o opes - ng - ve) ctors riods ctica als -				

TEXT BOOK:

1.	P.K.Palanisamy, "EngineeringPhysics-II", Scitech Publications (India) pvt.Ltd, 2015.
2.	V.Rajendran, "Material Science", Tata McGraw-Hill Publications, 2011.
3.	S. Jayakumar, "Materials Science", R.K.publishers, 2008.
4.	V. K. Mehta and Shalu Mehta, "Principles of Electronics", S. Chand& Company Ltd., 2001.

REFERENCES:

1.	William D Callister and David G. Rithwish, "Materials science & Engineering: An introduction", Wiley, 2013.							
2.	P. Bhattacharya, "Semiconductor Optoelectronic Devices", Prentice Hall of India, 1997.							
3.	G.W. Hanson, "Fundamentals of Nanoelectronics", Pearson Education, 2009.							
4.	M.Moris Mano, "Digital Logic and Computer Design", Prentice- Hall of India Pvt. Ltd., 1998.							

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:							
CO1	D1 Explain the physical properties of conducting materials.							
CO2	Explain the characteristics of intrinsic and extrinsic semiconductors.	K2						
CO3	Explain different number systems. Apply logic gates in circuits.	K3						
CO4	Explain magnetic and superconductor characteristics. Apply magnetic materials and superconductors for industrial problems.	K3						
CO5	Explain low dimensional systems and Choose suitable method for the synthesis. Apply nanomaterials for real time problems.	К3						

COURSE ARTICULATION MATRIX

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
05/105	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-	1	1	-
CO3	3	1	1	-	1	-	-	-	-	-	-	-	-	-	-
CO4	2	-	1	1	1	-	-	-	-	-	-	-	2	-	-
CO5	2	-	1	-	-	-	-	-	-	-	-	-	2	1	-
22SBS205	2	1	1	1	1	-	-	-	-	-	-	-	1	1	-
1-Slight,	1-Slight, 2 – Moderate, 3 - Substantial														

22SBS206

APPLIED CHEMISTRY (Common to EEE, ECE, EIE, CSE & IT Branches)

SEMESTER II

PREREQUIS	TES	CATEGORY	L	Т	Р	С
	NIL	BS	3	0	0	3
Course	1. To know about the second law of thermodynamics an					
Objectives	2. To understand the concept of electrochemistry, prin	nary, secondary b	oattei	ries,	const	ruction
	and its uses.		_			
	3. To understand the basic principles of corrosion, mech					
	4. To acquire basic knowledge about the nanoparticles,	its preparations,	prop	pertie	es, typ	pes and
	applications in various field.	(1 C			• • • •	<i>,</i> -
	5. To impart the knowledge of preparations of single c	ystal, water prep	arati	on, I	2-N J	unction
	formation by various methods.					
UNIT – I	CHEMICAL THERMODYNAMICS					Periods
	w of thermodynamics-Concepts of entropy, Work and					
	or reversible and irreversible process - Gibbs Helmholtz		al m	olar	free	energy
	tial-Gibb's Duhem Equation, Clausius - Clapeyron equation					
UNIT – II	ELECTRO CHEMISTRY AND STORAGE DEVIC			9 Perio		
	chemical cell and electrolytic cell - electrodes- electrod					
reduction poter	ntials-Hydrogen and Calomel electrodes- EMF series and	1 its significance	. Bat	terie	s - T	ypes o
	ary - Zn/MnO ₂ and Li/SOCl ₂ - Construction, working a			onda	ry ba	itteries
	ry and lithium-ion battery – Li-TiS ₂ - Construction, working	ng and Applicatio	ns.		0.1	<u>, , ,</u>
UNIT – III	CORROSION	1 . 1 .		1		Period
	nition -Classifications: Chemical Corrosion and Electro					
	-Galvanic series and its importance- preventing methods- current conversion method). Protective Coatings-Inorgan					
	applied to Cr and Ni, Organic coating- paints - constituen			epara		Electro
UNIT – IV	NANO MATERIALS	its and its functio	IIS.		0.1	Periods
	and bulk materials; Size-dependent properties (Optical,	Electrical and M	looh	nia		
	Definition- properties and uses of nanoparticle, nar					
	chemical vapour deposition, electrochemical deposition					
medicine and e	1 1 / 1	n. reprications	01	nuno	mater	1415 11
UNIT – V	FABRICATION				91	Period
	chips - single crystal – preparation by Czochralski and flo	pat zone processe	2S- W	afer		
	formation – Ion implantation. Diffusion and epitaxial g					
	ting of circuits by photolithography – masking and electro					
and electrocher					., . ,	
Contact Perio						
Lecture: 45 Pe		Total 45 David				

TEXT BOOK:

1	Jain. P.C. and Monica Jain, "Engineering Chemistry", DhanpatRai Publications Pvt Ltd, New Delhi, 16th Edition, 2017.
2	S.S. Dara, "A text book of Engineering Chemistry", S. Chand Publishing, 12th Edition, 2018.

1	Dara. S.S, Umarae, "Text book of Engineering Chemistry", S. Chand Publications, 2013.
2	M.S.Tyagi, "Introduction to semiconductor materials and devices", WileyIndia, 2012.
3	B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James Murday, "Textbook of nanoscience and nanotechnology", Universities Press-IIM Series in Metallurgy and Materials Science, 2018.
4	B.R Puri, L.R Sharma & M. S. Pathania, "Principles of Physical Chemistry" aginN .S Chand and Co., 2017.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
CO1	Analyze the applications of thermodynamics and its various functions.	К3				
CO2	Implement the new ideas related to batteries which find uses in the society including engineering fields.	K3				
CO3	Identify the corrosion mechanisms and its controlling methods.	К3				
CO4	Applying the concepts of nanoscience and nanotechnology in the synthesis of nanomaterials for engineering applications.	K3				
CO5	Construct the silicon chips and their fabrication methods and to apply in preparation of electrical and electronic instruments.	K3				

COURSE ARTICULATION MATRIX

COs/POs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	1	-	-	-	1	-	-	-	-	-	-	-	-
CO2	2	2	1	-	1	-	1	-	-	-	-	-	-	1	-
CO3	2	2	1	1	-	-	1	-	-	-	-	-	-	-	-
CO4	2	2	1	1	1	-	1	-	-	-	-	-	-	-	-
CO5	3	2	1	1	1	-	1	-	-	-	-	-	-	1	-
22SBS206	2	2	1	1	1	-	1	-	-	-	-	-	-	1	-

22SES204

BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

SEMESTER II

(Common to CIVIL, MECH, PRODN, CSE, IT & IBT Branches)

PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	NIL	ES	3	0	0	3
~				1		
Course	1. To study the basic concepts of electric circuits,	electronic devices	and	con	nmu	nication
Objectives	engineering.					
	2. To know the fundamentals of DC and AC machines.	:				
	3. To familiar with the basics of analog and digital electron	ICS.				
	4. To understand the basics of house wiring.	tions and manage		~ ~ ~	4:	
	5. To introduce the components of electrical installa	ations and energy	con	serva	lion	1.
UNIT – I	ELECTRICAL CIRCUITS					Periods
	t elements (R,L and C) - Voltage and Current sources - Ohr					
	order RL and RC circuits - Representation of sinusoidal way	veforms – Average,	RMS	S and	Peal	c values
	ntation – Real, Reactive, Apparent power and power factor.					
UNIT – II	ELECTRICAL MACHINES AND MEASUREMENTS				-	Periods
	inciple of Operation, basic equations and Types, Characteri					
	gle phase Transformer, Single phase and Three phase In	duction motor. O	perat	ıng p	rinci	ples of
	oving iron Instruments (Ammeter and Voltmeters).					
UNIT – III	ANALOG AND DIGITAL ELECTRONICS		<u> </u>	1:0		Periods
	ics: Semiconductor devices – P-N junction diode, Zener dio					
of operation, Characteristics and applications. Digital Electronics: Introduction to numbers systems, basic Boolean						
	of Boolean expressions and implementation with logic gates.	NODUCEDC			•	.
UNIT – IV	FUNDAMENTAL OF COMMUNICATION AND TRA			<u> </u>		Periods
	ls : Analog and Digital Signals – Modulation and Dem		es o	t Am	plitt	ide and
	alations – Resistive, Inductive, capacitive Transducers- Introd				•	.
UNIT – V	ELECTRICAL INSTALLATIONS AND ENERGY C					Periods
	d three phase system – phase, neutral and earth, basic house					
J1 U	basic safety measures at home and industry - Energy efficient	ent lamps - Energy t	niin	g. Int	roau	ction to
UPS and SMPS.						
Contact Period Lecture: 45 Per		otal. 15 Daviada				
Lecture: 45 Per	ious iutoriai: v rerious rracticai: v Perious i	otal: 45 Periods				

TEXT BOOKS:

1	<i>R.Muthusubramaniam,R.Salivaganan, Muralidharan K.A.,</i> "Basic Electrical and Electronics Engineering" <i>Tata McGraw Hill , Second Edition 2010.</i>
2	Mittle V.N and Aravind Mittal, "Basic Electrical Engineering", Tata McGraw Hill, Second Edition, New Delhi, 2005.

1	D.P.Kothari, I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
2	Nagsarkar T.K and Sukhija M.S, "Basic Electrical Engineering", Oxford Press, 2005.
3	E.Hughes, "Electrical and Elecronics Technology", Pearson, 2010.
4	MohmoodNahvi and Joseph A.Edminister, "Electric Circuits", Shaum Outline series, McGraw Hill, Sixth edition, 2014.
5	Premkumar N and Gnanavadivel J, "Basic Electrical and Electronics Engineering", Anuradha Publishers, 4 th Edition, 2008.
6	Allan S Morris, "Measurement and Instrumentation Principles" Elsevier, First Indian Edition, 2008.
7	S.L. Uppal, "Electrical Wiring Estimating and Costing", Khanna publishers, New Delhi, 2006.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Analyze the DC and AC circuits.	K4
CO2	Describe the operation and characteristics of electrical machines.	K4
CO3	Classify and compare various semiconductor devices and digital electronics.	K3
CO4	Infer the concept of communication engineering and Transducers.	K2
CO5	Assemble and Implement electrical wiring and electrical installations.	K6

COURSE ARTICULATION MATRIX COs/POs PO PSO PSO PSO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 CO1 3 2 1 3 -----------CO2 2 1 1 ------------CO3 3 1 -------------CO4 1 2 2 1 -----------CO5 2 2 1 1 -1 -------3 -22SES204 1 1 2 1 1 --1 -------1 – Slight, 2 – Moderate, 3 – Substantial

22SBS2Z7 CHEMISTRY LABORATORY (Common to all Branches) SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	BS	0	0	3	1.5

Course	To inculcate the practical applications of Chemistry to students and make them apply in
Objectives	the fields of engineering and technology.

LIST	OF EXPERIMENT	ГS						
1.	Estimation of hardness by EDTA method.							
2	Conductometric t	titration of mixture of stron	ng acid and weak acid using	strong base.				
3.	Estimation of chl	oride by Argentometric m	ethod.					
4.	Potentiometric tit	tration of ferrous iron by d	ichromate.					
5.	Determination of	Saponification value of a	n oil.					
6.	Estimation of Iron	n by Spectrophotometry.						
7.	Estimation of Dissolved Oxygen.							
8.	Estimation of H	Cl by pH titration.						
9.		pper in brass sample.						
10.	Estimation of Ma	inganese in Pyrolusite ore.						
11.	Anodiziation of a	ıluminium.						
12.	Determination of	corrosion rate and inhibit	itor efficiency of mild steel	in acid media by weight				
	loss method.							
Conta	Contact Periods:							
Lectu	re: 0 Periods	Tutorial: 0 Periods	Practical: 45 Periods	Total: 45 Periods				

REFERENCE BOOKS:

A.O. Thomas, "**Practical Chemistry**", Scientific Book Centre, Cannanore, 2006. Vogel's "**Text book of Quantitative Analysis**", Jeffery G H, Basset J. Menthom J, Denney R.C., 6th Edition, EBS, 2009. 1 2

	E OUTCOMES: completion of the course, the student will be able to:	Bloom's Taxonomy Mapped
CO1	Analyze the quality of water samples with respect to their hardness and DO.	K3
CO2	Determine the amount of metal ions through potentiometric and spectroscopic techniques.	K3
CO3	Infer the strength of acid, mixtures of acids by pH meter and conductivity cell.	K3
CO4	Estimate the chloride, manganese and copper from various samples.	K3
CO5	Interpret the corrosion rate determination and anodizing method.	K2

COURSE ARTICULATION MATRIX

COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	1	-	-	2	3	-	2	1	-	1	-	-	-
CO2	2	1	-	-	-	-	3	-	2	1	-	1	-	-	-
CO3	2	1	-	1	-	-	3	-	2	1	-	1	-	-	-
CO4	2	1	-	-	-	-	3	-	2	1	-	1	-	-	-
CO5	2	1	1	1	-	-	3	-	2	1	-	1	-	1	-
22SBS2Z7	2	1	1	1	-	1	3	-	2	1	-	1	-	1	-
1 – Slight, 2	1 – Slight, 2 – Moderate, 3 – Substantial														

22SES2Z5

ENGINEERING GRAPHICS

(Common to all Branches)

SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	ES	1	0	4	3

Course	1. Understand the accumentical constructions						
	 Understand the geometrical constructions. Study the various types of projections. 						
Objectives	3. Identify different section of solids.						
	4. Perform the development of surfaces and view of solids.						
UNIT – I	5. Familiarize with CAD packages.	2 1 1 D					
	GEOMETRICAL CONSTRUCTIONS AND PLANE CURVES	3+12 Periods					
	Engineering Graphics and their significance - Basic geometrical constr falling parabols and has abala by accountright mathed - Drawing of the						
to the above ci	of ellipse, parabola and hyperbola by eccentricity method – Drawing of ta	ngents and normal					
to the above ci	irves.						
UNIT – II	ORTHOGRAPHIC PROJECTIONS	3+12 Periods					
	Orthographic Projection - Conversion of pictorial views to orthographic						
	jection of straight lines with traces - Projection of planes (polygonal and						
	h the principal planes.	enediai sariaees)					
inclined to bot	n die principal planes.						
UNIT – III	PROJECTION AND SECTION OF SOLIDS	3+12 Periods					
Projection of si	mple solids like prisms, pyramids, cylinder, cone and truncated solids, when	the axis is inclined					
to both the prir	cipal planes by rotating object method. Sectioning of prisms, pyramids, cy	linder and cone in					
simple vertica	I position when the cutting plane is inclined to the one of the prin	ncipal planes and					
perpendicular	to the other – obtaining true shape of section.						
UNIT – IV	DEVELOPMENT OF SURFACES AND ISOMETRIC PROJECTIONS	3+12 Periods					
Development	of lateral surfaces of simple and sectioned solids – prisms, pyramids, c	vlinder and cone.					
	sometric projection – isometric scale – isometric projections of simple so						
solids - prisms	, pyramids, cylinder, cone- combination of two solid objects in simple ver	tical positions.					
UNIT – V	COMPUTER AIDED DRAFTING	3+12 Periods					
	o computer aided drafting package to make 2D Drawings. Object Constru						
- Layers and line types - Creating, editing and selecting the geometric objects. Mechanics: Viewing,							
annotating, ha	annotating, hatching and dimensioning the drawing – Creating blocks and attributes. Drafting: Create 2D						
drawing. A number of chosen problems will be solved to illustrate the concepts clearly.							
drawing. A nu	mber of chosen problems will be solved to illustrate the concepts clearly.						
	n purpose only, not to be included in examination).						
	n purpose only, not to be included in examination).						

TEXT BOOKS:

K. Venugopal, "Engineering Graphics", New Age International (P) Limited, 2016.
 K. V.Natarajan, "A text book of Engineering Graphics", Dhanalakashmi Publishers, Chennai, 2016.

1	K.L.Narayana and P.Kannaiah, "Text book on Engineering Drawing" , 2 nd Edition, SciTech Publications (India) Pvt. Ltd, Chennai, 2009.
2	N.S.Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University Press, New Delhi, 2015.
3	K.R.Gopalakrishna, "Engineering Drawing" (Vol. I&II combined), Subhas Publications, Bangalore, 2014.
4	Basant Agarwal and C.M.Agarwal, "Engineering Drawing", Tata McGraw Hill Publishers, New Delhi, 2013.
5	Kevin Lang and Alan J.Kalameja, "AutoCAD 2012 Tutor for Engineering Graphics", Cengage Learning Publishers, 1 st Edition, 2011.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Acquire on representing solids as per international standards.	K3
CO2	Impart knowledge on different types of projections.	K3
CO3	Generate and interrupt the true shape of section.	K3
CO4	Develop the various surfaces according to the standards.	K3
CO5	Know the concept of computers in drafting engineering diagrams.	K6

COURSE ARTICULATION MATRIX															
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	-	-	1	1	1	2	-	-	1	2	-	-	-	-	-
CO2	2	-	1	1	1	-	-	1	1	2	-	-	-	-	-
CO3	1	1	1	1	1	-	-	-	1	2	-	-	-	-	-
CO4	1	1	1	1	1	2	-	-	1	2	-	-	-	-	-
CO5	1	1	1	1	1	-	-	-	1	2	-	-	-	3	3
22SES2Z5	1	1	1	1	1	1	-	1	1	2	-	-	-	1	1
1 – Slight, 2	- Mc	oderate	e, 3 – S	Substa	ntial	•	•	•	•		•	•	•	•	