

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum & Syllabi B. E. MECHANICAL ENGINEERING (Working Professionals)

2025
Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE - 641 013 B.E.MECHANICAL ENGINEERING - (Working Professionals) 2025 REGULATIONS

(Candidates admitted during 2025-2026 and onwards)

FIRST SEMESTER

Sl.	Course	Course Title	CA	End Sem	Total	Hours/Week			
No.	Code	course ritte	Marks	Marks	Marks	L	T	P	С
	THEORY								
1	25WPM1Z1	Applied Mathematics I (Common to Civil, EEE & ECE)	40	60	100	3	0	0	3
2	25WPM1Z2	Environmental Science and Engineering (Common to Civil, EEE & ECE)	40	60	100	3	0	0	3
3	25WPM103	Applied Engineering Mechanics	40	60	100	3	0	0	3
4	4 25WPM104 Manufacturing Technology		40	60	100	3	0	0	3
	PRACTICAL								
5	25WPM105	Manufacturing Technology Laboratory	60	40	100	0	0	3	1.5
		TOTAL	220	280	500	12	0	3	13.5

25WPM1Z1	APPLIED MATHEMATICS I	SEMESTER I
25771711771	(Common to CIVIL, EEE & ECE Branches)	SEMIESTERT

PREREQUISITES	L	T	P	C
NIL	3	0	0	3

Course Objectives	l and numerical methods and plays an important role in the understanding of							
UNIT – I	LINEAR ALGEBRA 9 Periods							
Consistency of	of System of Linear Equations, Eigen values and eigenvectors, Dia	gonalization of						
matrices by o	orthogonal transformation, Cayley-Hamilton Theorem, Quadratic for	m to canonical						
forms.								
UNIT – II	DIFFERENTIAL CALCULUS	9 Periods						
Radius of curv	vature, Centre of curvature, Circle of curvature, Evolutes of a curve, En	nvelopes.						
UNIT – III	INTEGRAL CALCULUS	9 Periods						
Evaluation of	definite and improper integrals, Applications: surface area and volume	of revolution						
(Cartesian coo	ordinates only).							
UNIT – IV	NUMERICAL SOLUTION OF EQUATIONS	9 Periods						
	Transcendental equation: Fixed point iteration method, Bisection method							
Raphson meth	od, Simultaneous equation: Gauss elimination method, Gauss-Jordan	method, Gauss						
Seidal method								
UNIT – V	NUMERICAL INTERPOLATION	9 Periods						
Equal interval: Newton's forward and Backward difference interpolation formulae, Gauss forward								
and Backward difference interpolation formulae, Unequal interval: Lagrange's interpolation,								
Newton's divided difference interpolation.								
Contact Periods:								
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								

TEXT BOOKS:

1	Veerarajan T., "Engineering Mathematics I", Tata McGraw-Hill Education(India)Pvt. Ltd,
	New
	Delhi, 2015.

2 P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3rd Edition, Reprint 2013.

1	B.S.Grewal, Higher Engineering Mathematics , Khanna Publishers, 44 th Edition, 2021.
2	David C.Lay, "Linear Algebra and Its Application", Pearson Publishers, 6 th Edition, 2021.
3	Howard Anton, "Elementry Linear Algebra", 11th Edition, Wiley Publications, 2013.
4	Narayanan.S and Manicavachagom Pillai. T.K., "Calculas Vol I and Vol II", S.chand & Co,
	6 th Edition, 2014.
5	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5 th Edition, 2015.
6	Ward Cheney, David Kincaid, Numerical Methods and Computing, Cengage Learning, Delhi,
	7 th Edition 2013.
7	Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publications,
	8 th Edition, 2012.

COU	RSE OUTCOMES:	Bloom's	
Upon	Upon completion of the course, the students will be able to:		
CO1	Use the essential tool of matrices and linear algebra in a comprehensive manner.	К3	
CO2	Explain the fallouts of circle of curvature, evolute and envelops that is fundamental to application of analysis to Engineering problems.	К3	
CO3	Interpret the integral calculus to notions of definite and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.	К3	
CO4	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	К3	
CO5	Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations.	К3	

25WPM1Z2

ENVIRONMENTAL SCIENCE AND ENGINEEREING

(Common to CIVIL, EEE & ECE Branches)

SEMESTER I

PREREQUISITES	L	T	P	С
NIL	3	0	0	3

Course The course is aimed at creating awareness among the students and also inseminates							
Objectives	the critical ideas of preserving environment.						
UNIT – I	ENVIRONMENTAL ENERGY RESOURCES 9 Periods						
Food-effects	Food-effects of modern agriculture, fertilizers, pesticides, eutrophication & biomagnifications-						
Energy		_					
resources: ren	ewable resources - Hydro Energy, Solar & Wind. Non-renewable resou	rces – Coal and					
	arnessing methods.						
UNIT – II	ECO SYSTEM AND BIODIVERSITY	9 Periods					
Eco system an	nd its components - biotic and abiotic components. Biodiversity: type	s and values of					
-	not spots of biodiversity, endangered and endemic species, conservation						
In situ and ex	situ conservation. Threats to biodiversity-destruction of habitat, habit	fragmentation,					
hunting, over	exploitation and man-wildlife conflicts. The IUCN red list categories.						
UNIT – III	ENVIRONMENTAL POLLUTION	9 Periods					
Air pollution,	classification of air pollutants - sources, effects and control of gaseous	pollutants SO ₂ ,					
NO_2 , H_2S , CO	, CO ₂ and particulates. Water pollution - classification of water polluta	nts, organic and					
inorganic poll	utants, sources, effects and control of water pollution. Noise pollution	- decibel scale,					
sources, effect	ts and control.						
UNIT – IV	ENVIRONMENTAL THREATS	9 Periods					
Global warming-measure to check global warming - impacts of enhanced Greenhouse effect, Acid							
rain- effects and control of acid rain, ozone layer depletion- effects of ozone depletion, disaster							
management - flood, drought, earthquake and tsunami.							
UNIT – V							
Water conserv	Water conservation, rain water harvesting, e-waste management, Pollution Control Act, Wild life						

Water conservation, rain water harvesting, e-waste management, Pollution Control Act, Wild life Protection Act. Population growth- exponential and logistic growth, variation in population among nations, population policy. Women and Child welfare programs. Role of information technology in human and health, COVID-19 - effects and preventive measures.

Contact Periods:

Lecture:45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

TEXT BOOKS:

- 1 Sharma J.P., "Environmental Studies", 4th Edition, University Science Press, New Delhi, 2016.
- 2 Anubha Kaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New age international publishers, New Delhi, 2021.

- 1 A k de, "Environmental Chemistry", 8^{th} edition, New age international publishers, 2017.
- 2 G. Tyler miller and scott e. Spoolman, "Environmental Science", cengage learning india pvt. Ltd., delhi, 2014.
- 3 Erach Bharucha, "Textbook of Environmental Studies", Universities press (I) pvt, Ltd., Hydrabad, 2015.
- 4 Gilbert M. Masters, "Introduction to Environmental Engineering and Science", 3rd Edition, Pearson Education, 2015.

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	Mapped	
CO1	Recognize and understand about the various environmental energy resources and the effective utility of modern agriculture.	K2
CO2	Acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.	K2
CO3	Be aware of the sources of various types of pollution, their ill effects and preventive methods.	K2
CO4	Identify and take the preventive measures to control the environmental threats and effects of Global warming, Ozone depletion, Acid rain, and natural disasters.	K2
CO5	Demonstrate an idea to save water and other issues like COVID -19.	K2

PREREQUISITES	L	T	P	C
NIL	3	0	0	3

Course	To study the forces and moments in various types of mechanical systems and to enable							
Objectives	students to understand the relationship between processes, kinetics and kinematics.							
UNIT – I	INTRODUCTION TO MECHANICS AND FORCE 9 Periods							
	CONCEPTS					9 Ferious		

Principles and Concepts – Laws of Mechanics – system of forces – resultant of a force system – resolution and composition of forces – Lami's theorem – moment of a force – physical significance of

moment-Varignon's theorem – resolution of a force into force and couple – forces in space – addition of concurrent forces in space – equilibrium of a particle in space, Classification of beams based on supports.

UNIT – II FRICTION

9 Periods

Frictional resistance – classification of friction- laws of friction – coefficient of friction-angle of friction – angle of repose — cone of friction – free body diagram-advantages-equilibrium of a body on a rough inclined plane – non-concurrent force system - ladder friction – rope friction – wedge friction.

UNIT – III GEOMETRICAL PROPERTIES OF SECTION

9 Periods

Centroids – Determination by integration – centroid of an area – simple figures - composite sections

bodies with cut parts - moment of inertia – theorems of moment of inertia – moment of inertia of composite sections – principal moment of inertia of plane areas - radius of gyration.

UNIT – IV BASICS OF DYNAMICS

9 Periods

Kinematics and kinetics – displacements, velocity and acceleration – Equations of motion – Rectilinear motion of a particle with uniform velocity, uniform acceleration, varying acceleration – motion curves – motion under gravity – relative motion – curvilinear motion of particles – projectiles – angle of projection – range – time of flight and maximum height. Newton's second law of motion – linear momentum – D'Alembert's principle, Dynamics equilibrium — work energy equation of particles – law of conservation of energy – principle of work and energy.

UNIT - V IMPULSE MOMENTUM AND IMPACT OF ELASTIC BODIES

9 Periods

Principle of impulse and momentum – Equations of momentum – Laws of conservation of momentum. Impact – Time of compression, restitution, collision – Co-efficient of restitution – types of impact – collision of elastic bodies by direct central impact and oblique impact – collision of small body with a massive body – Kinetic energy of a particle.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOKS:

- 1 S.S. Bhavikatti and K.G. Rajasekarappa, "Engineering Mechanics", New age international (P) ltd. 1999.
- 2 | S.C. Natesan, "Engineering Mechanics" Umesh Publications, 2005.

- 1 F.B. Beer and E.R. Johnson, "Vector Mechanics for Engineers", Tata McGraw Hill Pvt. Ltd, 10th Edition, 2013.
- 2 S. Timoshenko, D.H.Young, J.V.Rao and Sukumar Pati, "Engineering Mechanics", McGraw Hill Education, 5th Edition, 2017.

	Irving Shames and Krishna Mohana Rao, "Engineering Mechanics" , Prentice Hall of India Ltd, Delhi, 2006.
1	D.C. Hibbellov "Engineaving Machanies" Provides Hall of India Ltd. 12th Edition 2012

4 R.C. Hibbeller, "Engineering Mechanics", Prentice Hall of India Ltd, 13th Edition, 2013.
5 Vela Murali, "Engineering Mechanics", Oxford university Press, 1st Edition, 2010.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Know the concept of mechanics and system of forces and moments.	K5
CO2	Calculate the frictional properties at different bodies.	K5
CO3	Identify the locations of centre of gravity and moment of inertia for different sections.	K5
CO4	Understand the basics of dynamics of particles	K5
CO5	Know the impulse and momentum principle and impact of elastic bodies.	K5

201111101	William Tellinologi				
25WPM104	MANUFACTURING TECHNOLOGY	s	EME	STE	RΙ

PREREQUISITES	L	T	P	C
NIL	3	0	0	3

	To acquire knowledge about various types of manufacturing processes this					
Objectives	includes casting, joining, forming and conventional machining to produce a					
	product for competitive industrial applications.					
UNIT – I	METAL CASTING AND JOINING PROCESSES	9 Periods				

Introduction to Concepts of Manufacturing Process -Sand casting – Sand moulds - Type of patterns – Pattern materials – Pattern allowances – Core making – Special casting processes: Investment casting, die casting. Fusion welding – Types – Gas welding - Shielded metal arc welding - Gas metal arc welding - Gas tungsten arc welding - Submerged arc welding – Electro slag welding - Principles of resistance welding – Spot, butt, seam, projection and percussion welding.

UNIT – II BULK DEFORMATION AND SHEET METAL 9 Periods FORMING

Hot working and cold working of metals – Forging processes – Open and close die forging – Types of forging machines - Forging operations – Mechanism of rolling – Types of Rolling mills – Principles of Extrusion – Typical shearing operations, bending and drawing operations - Metal spinning.

UNIT – III | THEORY OF METAL CUTTING

9 Periods

Mechanics of chip formation – forces in machining – types of chips – cutting tools – single point cutting tool nomenclature – orthogonal and oblique metal cutting – thermal aspects – cutting tool materials – tool wears – tool life – surface finish – cutting fluids and machinability.

UNIT – IV LATHE, SHAPING, PLANING AND DRILLING 9 Periods MACHINES

Lathe – construction – types – operations – working principle of single and multi - spindle automats – shaping and planning machines – principle – types – construction - mechanism – different shaping operations – work holding devices - Drilling machines – types, operations – drill tool nomenclature.

UNIT – V GRINDING AND MILLING MACHINES

9 Periods

Grinding – types of grinding machines – grinding wheels, specifications – bonds – mounting and reconditioning of grinding wheels - Milling – types - cutter nomenclature – types of cutters – milling processes – indexing – gear generation - gear shaping and gear hobbing – gear finishing methods.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOKS:

- 1 P. N. Rao, "Manufacturing Technology: Foundry, Forming and Welding", McGraw Hill, 5th Edition, 2018.
- 2 P.N. Rao, "Manufacturing Technology Vol II: Metal Cutting and Machine Tools", McGraw Hill Education, 4th Edition, 2018.

- Serope Kalpakjian and Steven R. Schmid, "Manufacturing Engineering and Technology", Pearson Education, 7th Edition, 2018.
 P. C. Sharma, "A Text book of Production Technology", S. Chand and Co. Ltd., 2021.
 S. K. Hajra Choudhry, and Nirjhar Roy and A. K. Hajra Choudhury, "Elements of
- 3 S. K. Hajra Choudhry, and Nirjhar Roy and A. K. Hajra Choudhury, "Elements of Workshop Technology Vol II: Machine Tools", Media Promoters and Publishers Pvt. Ltd., 2018.
- 4 R.K. Rajput, "Manufacturing Technology", Laxmi Publication Pvt Ltd, 2nd Edition, 2007.
- 5 Mikell P. Groover, "Fundamentals of Modern Manufacturing: Materials, Processes, and System", John Wiley and Sons, 2010.

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the principle of metal casting and welding processes for engineering applications.	К3
CO2	Identify the suitable forging, rolling and metal forming processes.	K3
CO3	Apply the theory of metal cutting to solve the problems in industries.	K3
CO4	Understand the operating mechanism of lathe, shaping, planning and drilling machines.	K3
CO5	Familiarize the grinding, milling and gear generation process and its uses in industries.	К3

25PTM105	MANUFACTURING TECHNOLOGY LABORATORY	SEMESTER I
----------	-------------------------------------	------------

PREREQUISITES	L	T	P	C
NIL	0	0	3	1.5

	methods with idea of
Objectives the dimensional and form accuracy of products.	

LIST OF EXPERIMENTS

- 1. Facing, Step Turning, Taper Turning using Lathe.
- 2. External Thread Cutting. Groove Cutting, Knurling and Chamfering using Lathe.
- 3. Drilling and Counter Sinking using Lathe.
- 4. Drilling, Reaming, Tapping and Surface Grinding using Surface Grinder and Radial Drilling Machine.
- 5. External Cylindrical Grinding of Shaft.
- 6. V-Groove Cutting in Shaping Machine.
- 7. Spur Gear Milling.
- 8. Helical Gear Milling in Universal Milling Machine.
- 9. Gear Shaping.
- 10. Gear Hobbing.
- 11. Making Hexagonal Hole using Slotting Machine.
- 12. Letter Cutting in Vertical Milling Machine.
- 13. CNC Part Programming for Machining of Facing, Step Turning, Taper Turning, Milling in CNC machine.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

COUI Upon	Bloom's Taxonomy Mapped	
CO1	Have the capability of selecting suitable manufacturing processes to manufacture the products optimally.	K2
CO2	Maintain the accuracy and tolerance of components produced.	K4
CO3	Set up machines like lathe, shaper, grinding and milling machine for various applications.	K2
CO4	Prepare gears using forming and generating methods of gear manufacturing.	К3
CO5	Write the part programming and perform machining in CNC Machines.	K4