

GOVERNMENT COLLEGE OF TECHNOLOGY

Curriculum & Syllabi B. E. ELECTRICAL AND ELECTRONICS ENGINEERING (Working Professionals)

2025
Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E. ELECTRICAL AND ELECTRONICS ENGINEERING – Working Professionals 2025 REGULATIONS

(Candidates admitted during 2025-2026 and onwards)

FIRST SEMESTER

Sl.	Course Code	Course Title	Sessional	Final	Total	Credits			
No.			Marks	Exam Marks	Marks	L	Т	P	C
	THEORY								
1	25WPE1Z1	Applied Mathematics - I (Common to Civil, Mech & ECE)	40	60	100	3	0	0	3
2	25WPE1Z2	Environmental Science and Engineering (Common to Civil, Mech, & ECE)	40	60	100	3	0	0	3
3	25WPE103	Programming in C	40	60	100	3	0	0	3
4	25WPE104	Electric Circuit Theory 40		60	100	3	0	0	3
	PRACTICAL								
5	25WPE105	Programming in C Laboratory	60	40	100	0	0	3	1.5
		TOTAL				12	0	3	13.5

25WPE1Z1	APPLIED MATHEMATICS - I (Common to CIVIL, MECH & ECE Branches)				SEMESTER I			
PREREQUIS	SITES	L	T	P	С			
	NIL	3	0	0	3			

		1				
Course	This course mainly deals with topics such as linear algebra, single variable					
Objectives	calculus and numerical methods and plays an important role in the					
	understanding of engineering science.					
UNIT – I	LINEAR ALGEBRA	9 Periods				
Consistency of	System of Linear Equations, Eigenvalues and eigenvectors, Diag	onalization of				
matrices by or	thogonal transformation, Cayley-Hamilton Theorem, Quadratic for	m to canonical				
forms.						
UNIT – II	DIFFERENTIAL CALCULUS	9 Periods				
Radius of curv	ature, Centre of curvature, Circle of curvature, Evolutes of a curve, En	nvelopes				
UNIT – III	INTEGRAL CALCULUS 9 Periods					
Evaluation of c	lefinite and improper integrals, Applications: surface area and volum	ne of revolution				
(Cartesian coo	rdinates only).					
UNIT – IV	NUMERICAL SOLUTION OF EQUATIONS	9 Periods				
Algebraic and	Transcendental equation: Fixed point iteration method, Bised	ction method,				
Newton-Raphs	on method, Simultaneous equation: Gauss elimination method,	Gauss-Jordan				
method, Gauss	Seidal method.					
UNIT – V	NUMERICAL INTERPOLATION	9 Periods				
Equal interval:	Newton's forward and Backward difference interpolation formulae,	Gauss forward				
and Backward difference interpolation formulae, Unequal interval: Lagrange's interpolation,						
Newton's divided difference interpolation.						
Contact Perio	ds:					
Lecture: 45 Pe	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK

1	Veerarajan T., " Engineering Mathematics I" , Tata McGraw-Hill Education (India)Pvt. Ltd,
	New
	Delhi, Edition 1, 2017.
2	P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3 rd
	Edition, Reprint ,2013.

REFERENCE BOOK

1	B.S.Grewal, " Higher Engineering Mathematics" , Khanna Publishers, 44 th Edition, 2021.
2	David C.Lay, "Linear Algebra and Its Application", Pearson Publishers, 6th Edition, 2021.
3	Howard Anton, "Elementary Linear Algebra" ,11 th Edition, Wiley Publication, 2013.
4	Narayanan.S and Manicavachagom Pillai. T.K. – Calculus Vol I and Vol II, S.chand & Co, Sixth
	Edition, 2016.
5	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5 th Edition, 2015.
	Ward Cheney, David Kincaid, "Numerical Methods and Computing", Cengage Learning, Delhi,
	7 th Edition 2013.
6	Jain R.K. and Iyengar S.R.K., - Advanced Engineering Mathematics, Narosa Publications,
	Eighth Edition, 2012.

COU	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Use the essential tool of matrices and linear algebra in a comprehensive manner.	К3
CO2	Explain the fallouts of circle of curvature, evolute and envelops that is fundamental to application of analysis to Engineering problems.	К3
CO3	Interpret the integral calculus to notions of definite and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.	КЗ
CO4	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	К3
CO5	Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations.	КЗ

25WPE1Z2

ENVIRONMENTAL SCIENCE AND ENGINEEREING

(Common to CIVIL, MECH & ECE Branches)

SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	C
NIL		3	0	0	3

Course Objectives	The course is aimed at creating awareness among the students an	d also inseminates the
	critical ideas of preserving environment.	
UNIT – I	ENVIRONMENTAL ENERGY RESOURCES	9 Periods
	n agriculture, fertilizers, pesticides, eutrophication & biomagnification	•
	esources - Hydro Energy, Solar & Wind. Non-renewable resources -	- Coal and
Petroleum - harnessing	methods.	
UNIT – II	ECO SYSTEM AND BIODIVERSITY	9 Periods
	aponents - biotic and abiotic components. Biodiversity: types and value	
	endangered and endemic species, conservation of biodiversity:	
	to biodiversity-destruction of habitat, habit fragmentation, hunting,	over exploitation and
man-wildlife conflicts.	The IUCN red list categories.	
UNIT – III	ENVIRONMENTAL POLLUTION	9 Periods
	ation of air pollutants - sources, effects and control of gaseous poll	
	tes. Water pollution - classification of water pollutants, organic and	
sources, effects and co	ntrol of water pollution. Noise pollution - decibel scale, sources, effe	ects and control.
UNIT – IV	ENVIRONMENTAL THREATS	9 Periods
Global warming-measi	are to check global warming - impacts of enhanced Greenhouse eff	fect, Acid rain- effects
and control of acid rain	n, ozone layer depletion- effects of ozone depletion, disaster manage	ement - flood, drought,
earthquake and tsunam	i.	
UNIT – V	SOCIAL ISSUES AND ENVIRONMENT	9 Periods
Water conservation, ra	in water harvesting, e-waste management, Pollution Control Act, W	ild life Protection Act.
Population growth- ex	ponential and logistic growth, variation in population among natio	ons, population policy.
Women and Child wel	fare programs. Role of information technology in human and health	n, COVID-19 - effects
and preventive measur		
Contact Periods:		
Lecture:45 Periods	Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods

TEXT BOOK:

1	Sharma J.P., "Environmental Studies", 4th Edition, University Science Press, New Delhi, 2016.
2	Anubha Kaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New
	age international publishers, New Delhi, 2021.

REFERENCES:

1	A k de, "Environmental Chemistry", 8th edition, New age international publishers, 2017.
2	G. Tyler miller and scott e. Spoolman, "Environmental Science", cengage learning india pvt. Ltd., delhi, 2014.
3	Erach Bharucha, "Textbook of Environmental Studies", Universities press (I) pvt, Ltd., Hydrabad, 2015.
4	Gilbert M. Masters, "Introduction to Environmental Engineering and Science", 3 rd Edition, Pearson Education, 2015.

COURSE OU	TCOMES:	Bloom's
Upon comple	etion of the course, the students will be able to:	Taxonomy Mapped
CO1	Recognize and understand about the various environmental energy resources and the effective utility of modern agriculture.	K2
CO2	Acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.	K2
C03	Be aware of the sources of various types of pollution, their ill effects and preventive methods.	K2
CO4	Identify and take the preventive measures to control the environmental threats and effects of Global warming, Ozone depletion, Acid rain, and natural disasters.	К2
C05	Demonstrate an idea to save water and other issues like COVID -19.	K2

25WPE103		PROGRAMMING IN C		SEMESTER I			
PREREQUISITES			CATEGORY	L	T	P	C
	NIL		ES	3	0	0	3

Objectives	V 1	
	3. To outline Functions, Arrays, Pointers and Strings	
	4. To recognize Bitwise Operators, Pre-processor Directives, Struct	tures and Unions
	5. To build Structures, Unions, List Processing, Input and Output functions.	
UNIT – I	COMPUTER AND PROGRAMMING FUNDAMENTALS	9 Periods

Computer fundamentals –Anatomy of a computer: CPU, Memory, I/O – Introduction to software – Generation and classification of programming languages – Compiling – Linking and loading a program – Translator – loader – linker – develop a program – software development – Introduction to OS –Types of OS – Algorithms – Structured programming concept.

UNIT – II DATA TYPES AND FLOW OF CONTROL

9 Periods

An overview of C – Programming and Preparation – Program Input /Output – Variables – Expressions, and Assignment, The use of #include, printf(), scanf() – Lexical elements, operators - The fundamental data types – Flow of control

UNIT – III | FUNCTIONS, ARRAYS, POINTERS AND STRINGS

9 Periods

Functions and storage classes - Arrays - Pointers - Call by reference - Relationship between Arrays and Pointers - Pointer arithmetic and element size - Arrays as function argument - Dynamic memory allocation - Strings - String handing functions - Multidimensional Arrays.

UNIT – IV ARRAY OF POINTERS, BITWISE OPERATORS, PREPROCESSOR DIRECTIVES

9 Periods

Arrays of Pointers – Arguments to main () - Functions as Arguments – Array of Pointers to Functions - Type qualifiers. -Bitwise operators and expressions – Masks – Software tools – Packing and unpacking – Enumeration types – The preprocessor directives.

UNIT – V STRUCTURES AND UNIONS, I/O AND FILE OPERATIONS

9 Periods

Structures and Unions – Operator precedence and associativity – Bit fields – Accessing bits and bytes - Input and Output functions – File Processing Functions – Environment variables – Use of make and touch.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Pradip Dey, Manas Ghosh, "Computer Fundamentals and Programming in C", Second Edition, Oxford University Press, 2013.
- 2 Ashok H. Kamthane, Amit Ashok Kamthane, "**Programming in C**", Third Edition, Pearson, 2015.

REFERENCES:

- 1 Stephen G. Kochan, "Programming in C-A complete introduction to the C programming language", Third Edition, Sams Publication, 2004.
- 2 Yashavant P. Kanetkar, "Let Us C", 13th edition, BPB Publications, 2013.
- 4 | Stephen Prata, "C Primer Plus", Fifth Edition, Sams Publishing, 2005.
- 3 Brian W. Kernighan and Dennis Ritchie, "**The C Programming Language**", Second Edition, Prentice Hall Software Series, 1988.

25WPE104	ELECTRIC CIRCUIT THEORY		SEMESTER I			
PREREQUISITES	CATEGORY	L	T	P	C	
NIL	PC	3	0	0	3	

Course	To gain knowledge in basic concepts of circuit theory and finally be able to analyze			
Objectives	and synthesize electric circuits			
UNIT – I	DC AND AC CIRCUIT ANALYSIS	9 Periods		
Ohm's law and	Ohm's law and Kirchhoff's Laws -Form Factor and Peak Factor derivation for alternating waveforms			
- R, L, C series-	parallel circuits - Star-delta transformation - Source transformations -	- Mesh and nodal		
methods -Powe	er factor - Real, reactive and apparent powers.			
UNIT – II	NETWORK THEOREMS AND POLYPHASE CIRCUITS	9 Periods		
Superposition t	heorem - Thevenin's and Norton's theorems - Maximum power tr	ansfer theorem -		
Reciprocity the	corem. Three phase system - Interconnection of three- phase sour	rces and loads -		
Balanced and u	nbalanced circuits - Power measurement.			
UNIT – III	RESONANCE, COUPLED CIRCUITS AND TRANSIENTS	9 Periods		
Resonance in series and parallel circuits - frequency response - derivation of bandwidth -				
Introduction to coupled circuits – Mutual inductance – Coefficient of coupling - Dot rule - Problems.				
UNIT – IV	TRANSIENTS	9 Periods		
Transient respo	nse of RL, RC and RLC circuits with DC excitation – Sinusoidal resp	onse of RL, RC,		
RLC circuits.				
UNIT – V	TWO PORT NETWORKS	9 Periods		
Two port networks - Impedance and Admittance parameters – Transmission and inverse transmission				
parameters – Hybrid and inverse hybrid parameters - Application.				
Contact Periods:				
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

TEXT BOOK:

1	Sudakar A. and Shyam Mohan S.Palli, "Circuits and Networks (Analysis and Synthesis)", Tata
	McGraw Hill Book Co., New Delhi, III Ed., 2017.
2	Charles K. Alexander, Matthew N.O. Sadiku, "Fundamentals of Electric Circuits", McGraw
	Hill Book Co., 7 Ed. 2020.

REFERENCES:

1	Hayt W.H and Kemmerley J.E, "Engineering Circuit Analysis", Tata McGraw Hill Book Co.,			
	V Ed., 2019.			
2	C.P. Kuriakose, "Circuit Theory: Continuous and Discrete – time systems – Elements of			
	Network Synthesis", PHI, Delhi, 2018.			
3	Gangadhar K.A., "Circuit Theory", Khanna Publishers, II Ed., 2019.			
4	M.E. VanValkenburg, "Network Analysis", PHI, Delhi, 2019.			

25WPE105 PROGRAMMING IN C LABORA	ATORY SEMESTER I
----------------------------------	------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	0	0	3	1.5

Course	Upon completion of this course, the Students will be familiar with	
Objectives	1.Data types in C and Flow control statements	
	2. Functions, Arrays, Pointers and Strings	
	3. Dynamic memory allocation and command line arguments	
	4.Bitwise Operators, Preprocessor Directives, Structures and Unions	
	5. Structures, List Processing, Input and Output.	

PRACTICALS EXERCISES ILLUSTRATING THE FOLLOWING CONCEPTS:

- 1 Operators, Expressions and I/O formatting
- 2 Decision Making and Looping
- 3 Arrays and Strings
- 4 Functions and Recursion
- 5 Pointers
- 6 Dynamic Memory Allocation
- 7 Structures
- 8 Unions
- 9 Files
- 10 Command line arguments

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 15 Periods Total: 45 Periods