

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum & Syllabi

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING

(Working Professionals)

2025

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS
GOVERNMENT COLLEGE OF TECHNOLOGY

THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0422 - 2433355

E.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE - 641 013 B.E ELECTRONICS AND COMMUNICATION ENGINEERING (Working Professionals) 2025 REGULATIONS

(Candidates admitted during 2025-2026 and onwards)

FIRST SEMESTER

S.	Course		CA End	Total	Hours/Week				
No.	Code	Course Title	Marks	Sem Marks	Marks	L	T	P	C
	THEORY								
1	25WPL1Z1	Applied Mathematics I (Common to Civil, Mech & EEE)	40	60	100	3	0	0	3
2	25WPL1Z2	Environmental Science and Engineering (Common to Civil, Mech & EEE)	40	60	100	3	0	0	3
3	25WPL103	Electric Circuits and Electron Devices	40	60	100	3	0	0	3
4	25WPL104	C Programming	40	60	100	3	0	0	3
	PRACTICAL								
5	25WPL105	C Programming Laboratory	60	40	100	0	0	3	1.5
		TOTAL	220	280	500	12	0	3	13.5

25WPL1Z1

APPLIED MATHEMATICS I

(Common to CIVIL, MECH & EEE Branches)

SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	C
NIL	BS	3	0	0	3

Course Objective						
UNIT – I	LINEAR ALGEBRA	9 Periods				
Consistency of	System of Linear Equations, Eigen values and eigen vectors, Diagonaliza	ation of matrices by				
orthogonal tran	sformation, Cayley-Hamilton Theorem, Quadratic form to canonical form	ıs.				
UNIT – II	DIFFERENTIAL CALCULUS	9 Periods				
Radius of curva	ature, Centre of curvature, Circle of curvature ,Evolutes of a curve, Envelo	opes				
UNIT – III	INTEGRAL CALCULUS	9 Periods				
Evaluation of d	efinite and improper integrals, Applications: surface area and volume of re	evolution (Cartesian				
coordinates onl	y).					
UNIT – IV	NUMERICAL SOLUTION OF EQUATIONS	9 Periods				
Algebraic and	Transcendental equation: Fixed point iteration method, Bisection method,	Newton-Raphson				
method, Simul	aneous equation: Gauss elimination method, Gauss-Jordan method, Gauss	s Seidal method.				
UNIT – V	NUMERICAL INTERPOLATION	9 Periods				
Equal interval: Newton's forward and Backward difference interpolation formulae, Gauss forward and						
Backward difference interpolation formulae, Unequal interval: Lagrange's interpolation, Newton's divided						
difference interpolation.						
Contact Periods:						

Lecture: 45 Periods Tutorial: 0 Periods **Practical: 0Periods Total: 45 Periods**

TEXT BOOK

1	VeerarajanT., " Engineering Mathematics I" , Tata McGraw-Hill Education (India)Pvt.Ltd, New Delhi, 1 st Edition 2015.
2	P.Kandasamy, K. Thilagavathy, K.Gunavathi, "Numerical Methods", S.Chand & Company, 3 rd Edition, Reprint 2013.

REFERENCES

<u> </u>	ERENCES
1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers,4 th Edition,2021.
2	David C.Lay, "Linear Algebra and Its Application", Pearson Publishers, 6 th Edition, 2021.
3	Howard Anton, "ElementryLinearAlgebra", 11 th Edition, Wiley Publication, 2013.
4	Narayanan.S and Manicavachagom Pillai. T.K.– Calculas Vol I and Vol II, S.chand & Co,Sixth Edition,2016.
5	S.S.Sastry, "Introductory methods of numerical analysis", PHI, New Delhi,5 th Edition, 2015.
6	Ward Cheney, David Kincaid, "Numerical Methods and Computing" , Cengage Learning, Delhi, 7 th Edition 2013.
7	JainR.K. and Iyengar S.R.K.,-Advanced Engineering Mathematics, Narosa Publications, Eighth Edition, 2012.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	Upon completion of the course, the students will be able to:	
CO1	Use the essential tool of matrices and linear algebra in a comprehensive manner.	К3
	Explain the fallouts of circle of curvature, evolute and envelops that is fundamental	
CO2	to application of analysis to Engineering problems.	К3
	Interpret the integral calculus to notions of definite and to improper integrals.	
CO3	Apart from some other applications they will have a basic Understanding of Beta	К3
	and Gamma functions.	
	Demonstrate understanding of common numerical methods and how they are used	
CO4	to obtain approximate solutions to polynomial and transcendental equations.	K3
	Derive numerical methods for various mathematical operations and tasks, such	
CO5	as interpolation, differentiation, integration, the solution of linear and nonlinear	К3
	equations.	

25WPL1Z2	ENVIRONMENTAL SCIENCE AND ENGINEEREING (Common to CIVIL, MECH & EEE Branches)	SEMESTER I
----------	---	------------

PREREQUISITES	L	T	P	C
NIL	3	0	0	3

	NIL	3	0	0	3		
Course The course is aimed at creating awareness among the students and also inseminates the critical ideas of preserving environment.							
UNIT – I	ENVIRONMENTAL ENERGY RESOURCES		9 I	Perio	ds		
Food-effects	of modern agriculture, fertilizers, pesticides, eutrophication & bior	nagn	ificati	ons-E	nergy		
resources: ren	ewable resources - Hydro Energy, Solar & Wind. Non-renewable	reso	urces	- Co	al and		
Petroleum - ha	arnessing methods.						
UNIT – II	ECO SYSTEM AND BIODIVERSITY			Perio			
Eco system a	nd its components - biotic and abiotic components. Biodiversity	: typ	es an	d valı	ues of		
biodiversity, h	not spots of biodiversity, endangered and endemic species, conserva	tion c	of biod	livers	ity: In		
situ and ex situ	u conservation. Threats to biodiversity-destruction of habitat, habit fi	ragm	entatio	on, hu	nting,		
over exploitat	ion and man-wildlife conflicts. The IUCN red list categories.						
	ENVIRONMENTAL POLLUTION			Perio			
Air pollution, classification of air pollutants – sources, effects and control of gaseous pollutants SO ₂ ,							
NO_2 , H_2S , CC	O, CO ₂ and particulates. Water pollution - classification of water p	ollut	ants, (organi	ic and		
inorganic poll	lutants, sources, effects and control of water pollution. Noise pol	lutior	ı - de	cibel	scale,		
sources, effect	ts and control.						
UNIT – IV	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Perio			
	ng-measure to check global warming - impacts of enhanced Greenh						
	ntrol of acid rain, ozone layer depletion- effects of ozone depletion	, disa	ster n	nanag	ement		
- flood, droug	ht, earthquake and tsunami.						
UNIT – V	SOCIAL ISSUES AND ENVIRONMENT			Perio			
	vation, rain water harvesting, e-waste management, Pollution C						
Protection Ac	ct. Population growth- exponential and logistic growth, variation	in p	opula	tion a	mong		
	lation policy. Women and Child welfare programs. Role of infor	matic	on tec	chnolo	ogy in		
human and he	alth, COVID-19 - effects and preventive measures.						

Contact Periods:

Lecture:45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

TEXT BOOKS:

	1	Sharma J.P., "Environmental Studies", 4 th Edition, University Science Press, New Delhi, 2016.
Ī	2	Anubha Kaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New
		age international publishers, New Delhi, 2021.

REFERENCES:

_		
	1	A k de, "Environmental Chemistry", 8^{th} edition, New age international publishers, 2017.
	2	G. Tyler miller and scott e. Spoolman, "Environmental Science", cengage learning india pvt. Ltd.,
		delhi, 2014.
Γ	3	Erach Bharucha, "Textbook of Environmental Studies", Universities press (I) pvt, Ltd., Hydrabad,
		2015.
	4	Gilbert M. Masters, "Introduction to Environmental Engineering and Science", 3 rd Edition,
		Pearson Education, 2015.

COUI	RSE OUTCOMES:	Bloom's Taxonomy	
Upon	Upon completion of the course, the students will be able to:		
CO1	Recognize and understand about the various environmental energy resources and the effective utility of modern agriculture.	K2	
CO2	Acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.	K2	
CO3	Be aware of the sources of various types of pollution, their ill effects and preventive methods.	K2	
CO4	Identify and take the preventive measures to control the environmental threats and effects of Global warming, Ozone depletion, Acid rain, and natural disasters.	K2	
CO5	Demonstrate an idea to save water and other issues like COVID -19.	K2	

25WPL103

ELECTRIC CIRCUITS AND ELECTRON DEVICES

SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

Course	To learn the concepts of circuit analysis and various semiconductor devices.		
Objectives			
UNIT – I	CIRCUIT ANALYSIS TECHNIQUES	9 Periods	

Kirchoff's current and voltage laws – Voltage and Current division – Mesh and Nodal Analysis (dc analysis) – Network Theorems – Thevenin, Superposition, Norton and Maximum power transfer theorem (dc analysis) – Star-delta conversion.

UNIT – II TRANSIENT AND RESONANCE CONCEPTS

9 Periods

Basic RL, RC and RLC circuits and their responses to pulse inputs – Series and Parallel resonance – Resonant frequency, Voltage and Current, Impedance, Bandwidth, Q factor – single tuned and double tuned circuits.

UNIT – III | SEMICONDUCTOR DIODES

9 Periods

Review of intrinsic & extrinsic semiconductors – Theory of PN junction diode – Energy band structure – current equation – space charge and diffusion capacitance – effect of temperature and breakdown mechanism – Zener diode and its characteristics.

UNIT – IV TRANSISTORS

9 Periods

PNP and NPN transistors Operation – CE, CB and CC configuration and comparison of their characteristics – Breakdown in transistors – operation and characteristics of N-Channel JFET – drain current equation – MOSFET – Enhancement and depletion mode – structure and operation – Comparison of BJT with FET- CMOS: Operation and Characteristics.

UNIT – V SPECIAL SEMICONDUCTOR DEVICES

9 Periods

Tunnel diode – PIN diode – Varactor diode – SCR, UJT, Diac and Triac – Operation and Characteristics – Solar Cell, Photodiode, Phototransistor, Photoconductive and Photovoltaic cells – LED, LCD, Laser diode.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 A.Sudhakar and Shyammohan S.Palli, "Circuits and Networks: Analysis and Synthesis", Tata McGraw Hill, 3rd Edition (2008).
- 2 S. Salivahanan, N. Suresh kumar and A. Vallavanraj, "Electronic Devices and Circuits", Tata McGraw Hill, 2nd Edition, (2018).

REFERENCES:

- 1 Joseph A. Edminister, Mahmood, Nahri, "Electric Circuits" Shaum series, TataMcGraw Hill, 6th Edition, (2013).
- William H. Hayt, J.V. Jack, E. Kemmebly and steven M. Durbin, "Engineering Circuit Analysis", Tata McGraw Hill, 6thEdition, (2011).
- 3 David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5thEdition, (2017).
- 4 J. Millman & Halkias, Satyebranta Jit, "Electronic Devices & Circuits", Tata McGraw Hill, 2ndEdition, (2013).
- Robert Boylestad and Louis Nashelsky, "Electron Devices and Circuit Theory" Pearson, Prentice Hall, 11th Edition, (2015).

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
CO1	Apply network laws and theorems in circuit analysis	К3
CO2	Analyze resonance and transient response in RLC circuits	K3
CO3	Understand Semiconductor diode characteristics	K2
CO4	Understand BJT, JFET and MOSFET characteristics	K2
CO5	Understand special semiconductor devices Characteristics	K2

25WPL104	C PROGRAMMING	SEMESTER I
----------	---------------	------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	3	0	0	3

Course Objective	The students will be able to acquire knowledge about the basic concept and programming fundamentals, Data types in C and Flow cont Functions, Arrays, Pointers and Strings, Bitwise Operators, Preproce Structures and Unions, List Processing, Input and Output.	rol statements, ssor Directives,
UNIT – I	COMPUTER AND PROGRAMMINGFUNDAMENTALS	9 Periods

Computer fundamentals – Evolution, classification, Anatomy of a computer: CPU, Memory, I/O – Introduction to software – Generation and classification of programming languages – Compiling – Linking and loading a program – Translator – loader – linker – develop a program – software

Development – Introduction to OS –Types of OS – Algorithms – Structured programming- Object Oriented Programming Concepts – C Vs C++.

UNIT – II DATA TYPES AND FLOW OF CONTROL

9 Periods

An overview of C – Programming and Preparation-The use of #include, printf(), scanf() ,Program output. The fundamental data types and variables. Expressions, Operators, Flow of control and branching statements. Data Structures – Introduction, Examples of Linear and non linear data structures – applications in real life.

UNIT – III | FUNCTIONS, ARRAYS, POINTERS AND STRINGS

9 Periods

Functions and storage classes - 1D Arrays – Pointers – Call by reference – Relationship between Arrays and Pointers – Pointer arithmetic and element size – Arrays as function argument – Dynamic Memory allocation – Strings – String handing functions – Multidimensional Arrays.

UNIT – IV ARRAY OF POINTERS, BITWISE OPERATORS, PREPROCESSOR DIRECTIVES

9 Periods

Arrays of Pointers – Arguments to main () - Ragged Arrays – Functions as Arguments – Arrays of Pointers to Functions - Type qualifiers.-Bitwise operators and expressions – Masks – Software tools – Packing and unpacking – Enumeration types – The preprocessor directives.

UNIT - V STRUCTURES AND UNIONS, I/O AND FILE OPERATIONS 9 Periods

Structures and Unions – Operator precedence and associativity – Bit fields – Accessing bits and bytes-Input and Output functions – File Processing Functions – Environment variables – Use of make and touch.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Pradip Dey, Manas Ghosh, "Computer Fundamentals and Programming in C", Second Edition, Oxford University Press, 2013.
- 2 Al Kelley, Ira Pohl, "A Book on C-Programming in C", Fourth Edition, Addison Wesley, 2001.
- 3 Narasimha Karumanchi, "Data Structures and Algorithms Made Easy", Fifth Edition, CareerMonk Publications, 2011
- 4 | Ira Pohl, : Object Oriented Programming Using C++", Second Edition, Pearson Publisher, 2012.

REFERENCES:

1	Yashavant P. Kanetkar, "Let Us C", 14th edition, BPB Publications, 2016.
2	Herbert Schildt., "C: The Complete Reference", Fourth Edition. McGraw Hill Education, 2017.
3	Brian W. Kernighan and Dennis Ritchie, " The C Programming Language ", Second Edition, Prentice Hall Software Series, 1988.
4	E. Balagurusamy, "Programming in Ansi C", 6th Edition Tata McGraw-Hill Education, 2012

COURSE OUTCOMES: Upon completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1 Explain the fundamental of computers programming and algorithmic design and fundamentals of data structures.	d K3
CO2 Reproduce and explain the operation of various data types and flow control statements	l K2
CO3 Design and Compute programs using functions, arrays, pointers and strings	К3
CO4 Illustrate the different right storage classes, preprocessor directives, bitwise operators in programs	e K2
CO5 Describe the concept of structures, unions and files in C programming.	K2

25WPL105	C PROGRAMMING LABORATORY		S	SEMESTER I			
PREREQUISITES CATEGORY		L	T	P	C		
NIL		ES	0	0	3	1.5	

Course	The students will be able to write program and compile C programming using, Data
Objective	types and Flow control statements, Functions, Arrays, Pointers and Strings, Dynamic
memory allocation and command line arguments, Files, Structures and Unio	
LIST OF EXP	ERIMENTS:
1 Operato	rs, Expressions and IO formatting
2 Decision	n Making and Looping
3 Arrays a	and Strings
4 Function	ns and Recursion
5 Pointers	
6 Dynami	c Memory Allocation
7 Structur	es
8 Unions	
9 Files	
10 Comma	nd line arguments
11 Mini Pro	pject
Contact Period	ls:

REFERENCES:

Lecture: 0 Periods

1	Yashavant P. Kanetkar, "Let Us C", 14th edition, BPB Publications, 2016.
2	Herbert Schildt., "C: The Complete Reference", Fourth Edition. McGraw Hill Education, 2017.
3	Brian W. Kernighan and Dennis Ritchie, "The C Programming Language", Second Edition,
	Prentice Hall Software Series, 1988.
4	E. Balagurusamy, "Programming in Ansi C", 6th Edition Tata McGraw-Hill Education, 2012

Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon completion of the course, the students will be able to:		Mapped
CO1	Reproduce and explain the operation of various data types and flow control	K2
	statements using simple programming.	
CO2	Write programs using functions, arrays, pointers and strings.	K3
CO3	Write programs using dynamic memory allocation	K3
CO4	Implement programs using command line arguments, structures, unions,	K4
	and files	
CO5	Develop applications using C.	K5