

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum & Syllabi
B. E. CIVIL ENGINEERING
(Working Professionals)

2025

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE - 641 013

B.E. CIVIL ENGINEERING - (Working Professionals)

2025 REGULATIONS

(Candidates admitted during 2025-2026 and onwards)

FIRST SEMESTER

Sl.	Course	Course Title	CA End	CA Sem Tota	Total]	Hour	rs/We	ek
No.	Code	course Title	Marks	Marks	Marks	L	T	P	С
		THEC	ORY						
1	25WPC1Z1	Applied Mathematics I (Common to Mech, EEE & ECE)	40	60	100	3	0	0	3
2	25WPC1Z2	Environmental Science and Engineering (Common to Mech, EEE & ECE)	40	60	100	3	0	0	3
3	25WPC103	Engineering Mechanics	40	60	100	3	0	0	3
4	25WPC104	Fluid Mechanics and Machinery	40	60	100	3	0	0	3
	PRACTICAL								
5	25WPC105	Fluid Mechanics and Machinery Laboratory	60	40	100	0	0	3	1.5
	TOTAL 220 280 500 12 0 3 13.5								

25WPC1Z1	APPLIED MATHEMATICS I	SEMESTER I
	(Common to MECH, EEE & ECE Branches)	

PREREQUIS	SITES	L	T	P	C
	NIL	3	0	0	3
Carres	This course mainly deals with topics such as linear algebra, single	varia	able o	calcul	us and
Course	numerical methods and plays an important role in the understan	ding	g of	engin	eering
Objectives	science.				
UNIT – I	LINEAR ALGEBRA			9 P	eriods
Consistency o	f System of Linear Equations, Eigenvalues and eigenvectors, Diagon	aliz	ation	of m	atrices
by orthogonal	transformation, Cayley-Hamilton Theorem, Quadratic form to cano	nica	al for	ms.	
UNIT – II	DIFFERENTIAL CALCULUS			9 P	eriods
Radius of curv	vature, Centre of curvature, Circle of curvature, Evolutes of a curve	e, Eı	nvelo	pes	
UNIT – III	UNIT – III INTEGRAL CALCULUS 9 Periods				
Evaluation of	Evaluation of definite and improper integrals, Applications: surface area and volume of revolution				
(Cartesian coo	ordinates only).				
UNIT – IV NUMERICAL SOLUTION OF EQUATIONS 9 Periods					
Algebraic and	l Transcendental equation: Fixed point iteration method, Bisection	n n	netho	d, No	ewton-
Raphson meth	nod, Simultaneous equation: Gauss elimination method, Gauss-Jo	rdan	n met	thod,	Gauss
Seidal method	l.				
UNIT – V	NUMERICAL INTERPOLATION			9 P	eriods
Equal interval: Newton's forward and Backward difference interpolation formulae, Gauss forward and					
Backward difference interpolation formulae, Unequal interval: Lagrange's interpolation, Newton's					
divided difference interpolation.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK

	1	Veerarajan T., Engineering Mathematics I, Tata McGraw-Hill Education(India)Pvt. Ltd, New
		Delhi, 1 st edition 2017.
İ	2	P. Kandasamy, K. Thilagayathy, K. Gunayathi, Numerical Methods, S. Chand & Company, 3rd

2 P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand & Company, 3rd Edition, Reprint 2013.

REFERENCES

1	B.S.Grewal, Higher Engineering Mathematics , Khanna Publishers, 44 th Edition, 2021.
2	David C.Lay, Linear Algebra and its Application, Pearson Publishers, 6th Edition, 2021.
3	Howard Anton, Elementry Linear Algebra ,11 th Edition,WileyPublication, 2013.
4	Narayanan.S and Manicavachagom Pillai. T.K Calculas Vol I and Vol II, S.chand & Co,
	6 th Edition, 2016.
5	S.S. Sastry, Introductory methods of numerical analysis, PHI, New Delhi, 5 th Edition, 2015.
6	Ward Cheney, David Kincaid, Numerical Methods and Computing, Cengage Learning,
	Delhi, 7 th Edition 2013.
7	Jain R.K. and Iyengar S.R.K., - Advanced Engineering Mathematics, Narosa Publications, 8 th
	Edition, 2012.

COU	Bloom's Taxonomy	
Upon	Upon completion of the course, the students will be able to:	
CO1	Use the essential tool of matrices and linear algebra in a comprehensive manner.	К3
CO2	Explain the fallouts of circle of curvature, evolute and envelops that is fundamental to application of analysis to Engineering problems.	К3
CO3	Interpret the integral calculus to notions of definite and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.	К3
CO4	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	К3
CO5	Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations.	К3

25WPC1Z2

ENVIRONMENTAL SCIENCE AND ENGINEEREING

(Common to MECH, EEE & ECE Branches)

SEMESTER I

PREREQUISITES	L	T	P	C
NIL	3	0	0	3

Course The course is aimed at creating awareness among the students and also insemir		
Objectives critical ideas of preserving environment.		
UNIT – I ENVIRONMENTAL ENERGY RESOURCES 9 P		9 Periods

Food-effects of modern agriculture, fertilizers, pesticides, eutrophication & biomagnifications-Energy resources: renewable resources - Hydro Energy, Solar & Wind. Non-renewable resources - Coal and Petroleum - harnessing methods.

UNIT – II ECO SYSTEM AND BIODIVERSITY

9 Periods

Eco system and its components - biotic and abiotic components. Biodiversity: types and values of biodiversity, hot spots of biodiversity, endangered and endemic species, conservation of biodiversity: In situ and ex situ conservation. Threats to biodiversity-destruction of habitat, habit fragmentation, hunting, over exploitation and man-wildlife conflicts. The IUCN red list categories.

UNIT – III ENVIRONMENTAL POLLUTION

9 Periods

Air pollution, classification of air pollutants – sources, effects and control of gaseous pollutants SO₂, NO₂, H₂S, CO, CO₂ and particulates. Water pollution - classification of water pollutants, organic and inorganic pollutants, sources, effects and control of water pollution. Noise pollution - decibel scale, sources, effects and control.

UNIT – IV ENVIRONMENTAL THREATS

9 Periods

Global warming-measure to check global warming - impacts of enhanced Greenhouse effect, Acid rain- effects and control of acid rain, ozone layer depletion- effects of ozone depletion, disaster management - flood, drought, earthquake and tsunami.

UNIT – V SOCIAL ISSUES AND ENVIRONMENT

9 Periods

Water conservation, rain water harvesting, e-waste management, Pollution Control Act, Wild life Protection Act. Population growth- exponential and logistic growth, variation in population among nations, population policy. Women and Child welfare programs. Role of information technology in human and health, COVID-19 - effects and preventive measures.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

1	Sharma J.P., "Environmental Studies", 4th Edition, University Science Press, New Delhi, 2016.
2	Anubha Kaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New age
	international publishers, New Delhi, 2021.

REFERENCES:

1	A k de, "Environmental Chemistry", 8 th edition, New age international publishers, 2017.
2	G. Tyler miller and scott e. Spoolman, "Environmental Science", cengage learning india pvt. Ltd.,
	delhi, 2014.
3	Erach Bharucha, "Textbook of Environmental Studies", Universities press (I) pvt, Ltd., Hydrabad,
	2015.
4	Gilbert M. Masters, "Introduction to Environmental Engineering and Science", 3rd Edition, Pearson
	Education, 2015.

COURSE	Bloom's Taxonomy	
Upon com	pletion of the course, the students will be able to:	Mapped
CO1	Recognize and understand about the various environmental energy resources and the effective utility of modern agriculture.	K2
CO2	Acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.	K2
CO3	Be aware of the sources of various types of pollution, their ill effects and preventive methods.	K2
CO4	Identify and take the preventive measures to control the environmental threats and effects of Global warming, Ozone depletion, Acid rain, and natural disasters.	K2
CO5	Demonstrate an idea to save water and other issues like COVID -19.	K2

25WPC103 ENGINEERING MECHAN	NICS SEMESTER I
-----------------------------	-----------------

PREREQUISITES:	L	T	P	C
NIL	3	0	0	3

Course	To expose the students to use the basic principles of mechanics in engineering applications.			
Objectives				
UNIT – I	BASIC CONCEPTS OF FORCES	9 Periods		

Basic Concepts and Principles of Forces—Laws of Mechanics—System of forces in Plane—Free body
Diagrams- resultant of a force system—resolution and composition of forces—Lami's theorem—moment of
a force—physical significance of moment-Varignon's theorem—resolution of a force and couple system—
forces in space—addition of concurrent forces in space—equilibrium of a particle in space.

UNIT – II STATIC AND DYNAMIC FRICTION

9 Periods

Frictional resistance – classification of friction- laws of friction – coefficient of friction-angle of friction – angle of repose — cone of friction –advantages-equilibrium of a body on a rough inclined plane – ladder friction – rope friction – wedge friction.

UNIT – III PROPERTIES OF SECTION

9 Periods

Centroid and Centre of Gravity for simple & Composite sections— theorems of moment of inertia Determination of moment of inertia of various sections—Product of Inertia — Principal moment of inertia of plane areas.

UNIT – IV BASICS OF DYNAMICS - KINEMATICS

9 Periods

Kinematics and kinetics – displacements, velocity and acceleration - Equations of motion – Rectilinear motion of a particle with uniform velocity, uniform acceleration, varying acceleration – motion under gravity – relative motion – curvilinear motion of particles – projectiles – angle of projection – range – time of flight and maximum height.

UNIT – V BASICS OF DYNAMICS - KINETICS

9 Periods

Newton's second law of motion – linear momentum – D'Alembert's principle, Dynamic equilibrium – equation of particles- principle of work and energy – law of conservation of energy – Principle of impulse and momentum – Equations of momentum – Laws of conservation of momentum. Impact – Time of compression, restitution, collision – Co-efficient of restitution – types of impact – collision of elastic bodies by direct central impact and oblique impact – collision of small body with a massive body – Kinetic energy of a particle.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Book:

- 1 F.B. Beer and E.R. Johnson, "Vector Mechanics for Engineers", Tata Mc.Graw Hill Pvt Ltd, 11th Edition, 2013.
- 2 Rajasekaran S & Sankara Subramanian, "Fundamentals of Engineering Mechanics", Vikas Publishing House Pvt Ltd. 3rd Edition, 2017.

REFERENCES:

1	S. Timoshenko and Young, "Engineering Mechanics", McGraw Hill, 4th Edition, 2017.
2	Bansal R.K, "A Text Book of Engineering Mechanics", Laxmi Publications, 2015.
3	R.C. Hibbeller, "Engineering Mechanics", Prentice Hall of India Ltd, 14 th Edition, 2017.
4	Dr.N.Kottiswaran "Engineering Mechanics" Sri Balaji Publications,2017.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Familiarize the principles and Concepts of Mechanics	K3
CO2	Calculate the friction force acting on a plane under various conditions.	K2
CO3	Determine the centre of gravity and moment of inertia for different	K2
	sections.	
CO4	Predict the Rectilinear and curvilinear motion of particles.	К3
CO5	Evaluate the dynamics of particles using kinetic principles.	К3

25WPC104 FLUID MECHANICS AND MACHINERY SEMESTER I

PREREQUISI	TES	L	T	P	C
	NIL	3	0	0	3
Course	To impart knowledge on properties and behaviour of fluid at static and dynamic				
Objectives conditions and also study the performance of turbines and pumps					
UNIT – I	FUNDAMENTALS OF FLUID STATICS		9 Periods		
Dimensions an	d Units - Properties of fluids - Density, specific gravity, viscos	sity,	sur	face	tension,
capillarity, elas	sticity, compressibility, vapour Pressure - Fluid statics - Pasca	al's	Lav	V -	Pressure
measurement -	Piezometer and Manometers - Hydrostatic forces on plane and curv	ved	surfa	aces	
UNIT – II	FLUID KINEMATICS AND DYNAMICS			9	Periods
Classification of	of fluid flow - Continuity equation - one dimensional and three di	mei	nsion	nal -	-Velocity
potential and st	ream functions - Energy equation – Euler's and Bernoulli's equatio	n –	App	licat	ions -
Venturimeter, 0	Orifice meter and Pitot tube				
UNIT – III	FLOW THROUGH CONDUITS AND BOUNDARY LAYER			9	Periods
	THEORY				
Laminar flow b	between parallel plates – laminar flow in pipes - Hagen Poiseuille ec	luati	ion f	or fl	ow
through circula	r pipes - Turbulent flow in pipes - Darcy - Weisbach formula for flo	ow 1	hrou	ıgh (circular
pipes - Bounda	ry layer - Definition - Boundary layer thickness - Displacement, en	erg	y an	d mo	omentum
thickness					
UNIT – IV	IMPACT OF JETS AND PUMPS			9	Periods
Impulse mome	ntum Principle- impact of Jet - force exerted by a jet on normal,	inc	line	d an	d curved
surfaces for star	tionary and moving vanes- Angular momentum principle- construct	ion	of ve	eloci	ty vector
diagrams. Pum	p- Classification of pumps - Centrifugal pump - reciprocating pur	np -	- W	ork (done and
efficiency					
UNIT – V	HYDRAULIC TURBINES			9	Periods
Turbines - classification - construction - working principles and design of Pelton wheel and Francis					
Turbines – wok	done and efficiency – specific speed – operating characteristics.				
Contact Period	ds:				
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Tot	al:	45 P	erio	ds

TEXT BOOKS:

- 1 P.N.Modi and S.M.Seth, "Hydraulics and Fluid Mechanics, Including Hydraulic Machines", Standard Book House, New Delhi, 2019.
- 2 R.K.Bansal, "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd., New Delhi, 2018.

REFERENCES:

1	R.K.Rajput, "A Text Book of Fluid Mechanics and Hydraulic Machines", S.Chand and
	Company, New Delhi,2015.
2	K.L.Kumar, "Engineering Fluid Mechanics", Eurasia Publishing House (P) Ltd., New Delhi,
	2018.
3	Jagdish Lal, "Fluid Mechanics & Hydraulic With Computer Applications", Tata McGraw Hill,
	New Delhi , 2008.

4 M.K.Natarajan "**Principles of Fluid Mechanics**", Anuradha Agencies, VidayalKaruppur, Kumbakonam, 2008.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the properties of fluids and fluid statics.	K2
CO2	Apply the continuity equation, Euler's equation and Bernoulli's equation for	К3
	solving fluid flow problems.	
CO3	Examine the fluid flow behaviour for laminar and turbulent flows and also	К3
	determine boundary layer thickness	
CO4	Apply the momentum principle for the determination of hydrodynamic	К3
	forces	
CO5	Acquire knowledge in selection and design of turbines based on head and	К3
	discharge requirements.	

25WPC105

FLUID MECHANICS AND MACHINERY LABORATORY

SEMESTER I

PREREQUISITES	L	T	P	C
NIL	0	0	3	1.5

Course Objectives	To impart knowledge in solving problems occurring in a pipes due to losses, the verification of bernoulli's theorem and its applications and conducting performance tests on different types of pumps and turbines.
----------------------	---

LIST OF EXPERIMENTS:

- 1. Determination of Darcy's friction factor
- 2. Verification of Bernoulli's Theorem
- 3. Determination of coefficient of discharge of Venturimeter / Orifice meter
- 4. Flow over Notches
- 5. Flow through Mouthpiece
- 6. Performance Study of Centrifugal pump
- 7. Performance Study of reciprocating pump
- 8. Load test on Pelton wheel
- 9. Load test on Francis turbine

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Solve different problems in pipes due to losses.	K3
CO2	Verify the Bernoulli's theorem and its applications.	K3
CO3	Can carry out flow measurement through notches	К3
CO4	Do performance tests on different types of pumps.	K3
CO5	Do performance tests on different types of turbines.	K3