

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum For

B. E. MECHANICAL ENGINEERING

(Part Time)

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE - 641 013 B.E.MECHANICAL ENGINEERING - PART TIME 2023 REGULATIONS (Candidates admitted during 2023-2024 and onwards)

FIRST SEMESTER

SL.	Course	Course Title	CA End Sem	СА	CA End Sem	Total	Hours/Week			
No.	Code	course rite	Marks	Marks	Marks	L	Т	Р	С	
		THEOF	RY							
1	23PTM1Z1	Applied Mathematics I (Common to Civil, Mech, EEE & ECE)	40	60	100	3	0	0	3	
2	23PTM1Z2	Environmental Sciences and Engineering (Common to Civil, Mech, EEE & ECE)	40	60	100	3	0	0	3	
3	23PTM103	Material Science	40	60	100	3	0	0	3	
4	23PTM104	Basics of Electrical and Electronics Engineering	40	60	100	3	0	0	3	
5	23PTM105	Applied Engineering Mechanics	40	60	100	3	0	0	3	
		TOTAL	200	300	500	15	0	0	15	

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course	urse This course mainly deals with topics such as linear algebra, single variable calculus and					
Objectives	jectives numerical methods and plays an important role in the understanding of engineering					
	science.					
UNIT – I	LINEAR ALGEBRA	9 Periods				
Consistency of	f System of Linear Equations, Eigenvalues and eigenvectors, Diagonaliza	ation of matrices				
by orthogonal	transformation, Cayley-Hamilton Theorem, Quadratic form to canonical	forms.				
UNIT – II	DIFFERENTIAL CALCULUS	9 Periods				
Radius of curv	ature, Centre of curvature, Circle of curvature , Evolutes of a curve, Enve	lopes				
UNIT – III	INTEGRAL CALCULUS	9 Periods				
Evaluation of	definite and improper integrals, Applications: surface area and volun	ne of revolution				
(Cartesian coordinates only).						
(Gai teolaii eoo	runates only j.					
UNIT – IV	NUMERICAL SOLUTION OF EQUATIONS	9 Periods				
UNIT – IV Algebraic and	NUMERICAL SOLUTION OF EQUATIONS Transcendental equation: Fixed point iteration method, Bisection m	9 Periods ethod, Newton-				
UNIT – IV Algebraic and Raphson meth	NUMERICAL SOLUTION OF EQUATIONS Transcendental equation: Fixed point iteration method, Bisection m nod, Simultaneous equation: Gauss elimination method, Gauss-Jordan	9 Periods ethod, Newton- method, Gauss				
UNIT – IV Algebraic and Raphson meth Seidal method.	NUMERICAL SOLUTION OF EQUATIONS Transcendental equation: Fixed point iteration method, Bisection m nod, Simultaneous equation: Gauss elimination method, Gauss-Jordan	9 Periods ethod, Newton- method, Gauss				
UNIT – IV Algebraic and Raphson method. Seidal method.	NUMERICAL SOLUTION OF EQUATIONS Transcendental equation: Fixed point iteration method, Bisection m nod, Simultaneous equation: Gauss elimination method, Gauss-Jordan NUMERICAL INTERPOLATION	9 Periods ethod, Newton- method, Gauss 9 Periods				
UNIT – IV Algebraic and Raphson meth Seidal method. UNIT – V Equal intervals	NUMERICAL SOLUTION OF EQUATIONS Transcendental equation: Fixed point iteration method, Bisection mod, Simultaneous equation: Gauss elimination method, Gauss-Jordan NUMERICAL INTERPOLATION Newton's forward and Backward difference interpolation formulae, Gaus	9 Periods ethod, Newton- method, Gauss 9 Periods uss forward and				
UNIT – IV Algebraic and Raphson metl Seidal method. UNIT – V Equal interval: Backward diff	NUMERICAL SOLUTION OF EQUATIONS Transcendental equation: Fixed point iteration method, Bisection mod, Simultaneous equation: Gauss elimination method, Gauss-Jordan NUMERICAL INTERPOLATION Newton's forward and Backward difference interpolation formulae, Gauss Ference interpolation formulae, Unequal interval: Lagrange's interpolation	9 Periods ethod, Newton- method, Gauss 9 Periods uss forward and ation, Newton's				
UNIT – IV Algebraic and Raphson meth Seidal method. UNIT – V Equal interval: Backward diff divided differe	NUMERICAL SOLUTION OF EQUATIONS Transcendental equation: Fixed point iteration method, Bisection mod, Simultaneous equation: Gauss elimination method, Gauss-Jordan NUMERICAL INTERPOLATION Newton's forward and Backward difference interpolation formulae, Gausference interpolation formulae, Unequal interval: Lagrange's interpolation.	9 Periods ethod, Newton- method, Gauss 9 Periods uss forward and ation, Newton's				
UNIT – IV Algebraic and Raphson metl Seidal method. UNIT – V Equal interval: Backward diff divided differe Contact Perio	NUMERICAL SOLUTION OF EQUATIONS Transcendental equation: Fixed point iteration method, Bisection method, Simultaneous equation: Gauss elimination method, Gauss-Jordan NUMERICAL INTERPOLATION Newton's forward and Backward difference interpolation formulae, Gaust Gerence interpolation formulae, Unequal interval: Lagrange's interpolation. ds:	9 Periods ethod, Newton- method, Gauss 9 Periods uss forward and ation, Newton's				
UNIT – IV Algebraic and Raphson meth Seidal method UNIT – V Equal interval: Backward differe Contact Perio Lecture: 45 Perio	NUMERICAL SOLUTION OF EQUATIONS Transcendental equation: Fixed point iteration method, Bisection method, Simultaneous equation: Gauss elimination method, Gauss-Jordan NUMERICAL INTERPOLATION Newton's forward and Backward difference interpolation formulae, Gaust ference interpolation formulae, Unequal interval: Lagrange's interpolation. ds: eriods Tutorial: 0 Periods Practical: 0 Periods Total: 60 Periods	9 Periods ethod, Newton- method, Gauss 9 Periods uss forward and ation, Newton's				

TEXT BOOK

VeerarajanT., "Engineering Mathematics I", Tata McGraw-Hill Education(India)Pvt. Ltd, New Delhi,2015.
 P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3nd Edition, Reprint 2013.

REFERENCE BOOK

1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44 th Edition, 2017.
2	David C.Lay, "Linear Algebra and Its Application", PearsonPublishers, 6thEdition,2021.
3	Howard Anton, "Elementry Linear Algebra" ,11 th Edition,WileyPublication, 2013.
Λ	Narayanan.S and Manicavachagom Pillai. T.K. – CalculasVol I and Vol II,S.chand& Co, Sixth
4	Edition, 2014.
	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5th Edition, 2015.
5	Ward Cheney, David Kincaid, "Numerical Methods and Computin"g, Cengage Learning, Delhi, 7 th
	Edition 2013.
(Jain R.K. and Iyengar S.R.K., - Advanced Engineering Mathematics, NarosaPublicaitons, Eighth
0	Edition, 2012.

COUF	Bloom's	
On completion of the course, the students will be able to:		Taxonomy Mapped
C01	Use the essential tool of matrices and linear algebra in a comprehensive manner.	К3
CO2	Explain the fallouts of circle of curvature, evolute and envelops that is fundamental to application of analysis to Engineering problems.	К3
CO3	Interpret the integral calculus to notions of definite and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.	К3
CO4	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	КЗ
CO5	Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations.	К3

PREREQUISI	TES	L	Т	Р	С						
	NIL	3	0	0	3						
Course	The course is aimed at creating awareness among the students	s and	also in	seminat	tes the						
Objectives	critical ideas of preserving environment.										
UNIT – I	ENVIRONMENTAL ENERGY RESOURCES		9	Period	s						
Food-effects of	of modern agriculture, fertilizers, pesticides, eutrophication &	bion	nagnifi	cations-	Energy						
resources: rea	newable resources - Hydro Energy, Solar & Wind. Non-renewa	ble r	esource	es – Co	al and						
Petroleum - ha	rnessing methods.										
UNIT – II	ECO SYSTEM AND BIODIVERSITY		9	Period	S						
Eco system an	d its components - biotic and abiotic components. Biodiversity: type	s and	values	of biodi	versity,						
hot spots of b	iodiversity, endangered and endemic species, conservation of biod	liversi	ty: In s	itu and	ex situ						
conservation.	Threats to biodiversity-destruction of habitat, habit fragmentation	, hun	ting, ov	er explo	oitation						
and man-wildl	ife conflicts. The IUCN red list categories.										
UNIT – III	ENVIRONMENTAL POLLUTION		9	Period	S						
Air pollution,	classification of air pollutants – sources, effects and control of gaseo	us po	llutants	SO_2 , NC) ₂ , H ₂ S,						
CO, CO_2 and pa	articulates. Water pollution - classification of water pollutants, orgar	nic an	d inorg	anic pol	lutants,						
sources, effect	s and control of water pollution. Noise pollution - decibel scale, sour	ces, ef	fects ar	nd contro	ol						
UNIT – IV	ENVIRONMENTAL THREATS		9	Period	s						
Global warmin	g-measure to check global warming - impacts of enhanced Greenho	use e	ffect, Ao	cid rain-	effects						
and control o	f acid rain, ozone layer depletion- effects of ozone depletion, dis	aster	manag	gement	- flood,						
drought, earth	quake and tsunami.										
UNIT – V	SOCIAL ISSUES AND ENVIRONMENT		9	Period	s						
Water conserv	vation, rain water harvesting, e-waste management, Pollution Cont	rol Ac	t, Wild:	life Pro	tection						
Act. Population growth- exponential and logistic growth, variation in population among nations, population											
policy. Women and Child welfare programs. Role of information technology in human and health, COVID-19 -											
effects and preventive measures.											
Contact Periods:											
Lecture:45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods											

TEXT BOOK:

1	Sharma J.P., "Environmental Studies", 4th Edition, University Science Press, New Delhi 2016.
2	AnubhaKaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New age
	International Publishers, New Delhi, 2021.

REFERENCES:

1	A k de, "Environmental Chemistry", eight edition, new age international publishers, 2017.
2	G Tyler miller and scott e. Spoolman, "Environmental Science" , cengage learning indiapyt, ltd, delhi, 2014.
3	ErachBharucha, "Textbook of Environmental Studies", Universities Press(I) Pvt, Ltd, Hydrabad, 2015.
4	Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 3 rd Edition, Pearson
	Education, 2015.

COUR	Bloom's	
On co	Taxonomy Mapped	
C01	Recognize and understand about the various environmental energy resources and the effective utility of modern agriculture.	K2
CO2	Acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.	K2
CO3	Be aware of the sources of various types of pollution, their ill effects and preventive methods.	К2
CO4	Identify and take the preventive measures to control the environmental threats and effects of Global warming, Ozone depletion, Acid rain, and natural disasters.	K2
CO5	Demonstrate an idea to save water and other issues like COVID -19.	K2

22PTM103

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course	To study the basic concepts and properties of conducting mate	rials, semiconducting			
Objectives	materials, magnetic and super conducting materials, nanomate	erials and advanced			
	engineering materials.				
UNIT – I	CONDUCTING MATERIALS	9 Periods			
Introduction to	o Conductors - classical free electron theory of metals - Draw backs	of classical theory -			
quantum theor	ry - Electrical and Thermal conductivity of Metals – Derivation for Wied	demann – Franz law –			
Lorentz numbe	er –– Fermi distribution function – density of energy states.				
UNIT – II	SEMICONDUCTING MATERIALS	9 Periods			
Introduction	- Properties - elemental and compound semiconductors - Int	rinsic and extrinsic			
semiconducto	ors – properties - Carrier concentration in intrinsic Semico	nductor - extrinsic			
semiconducto	ors - Carrier concentration in P- type and N-type semiconductors.				
UNIT – III	MAGNETIC AND SUPERCONDUCTING MATERIALS	9 Periods			
Introduction - Classification of magnetic materials-dia, para and ferromagnetic materials- domain theory-					
hysteresis – ha	ard and soft magnetic materials – superconducting materials and their	properties-Type I and			
Type II superc	onductors- applications for superconducting materials-Magnetic levitation	on-cryotron.			
UNIT – IV	NANOMATERIALS	9 Periods			
Nano material	s-preparation- top-down and bottom-up methods – Ball milling - chemi	cal vapour deposition			
- Properties ar	nd applications of nano materials-carbon nanotubes (CNT)- Structures	and types- Properties			
and applicatio	ns of carbon nanotubes.				
UNIT - V ADVANCED ENGINEERING MATERIALS 9 Periods					
Metallic glasses: melt spinning process, properties and applications - Shape memory alloys (SMA): two					
different phases-types of shape memory alloys, characteristics of SMA- Ni-Ti alloy -applications of SMA- Bio					
materials – Properties and applications.					
Contact Periods:					
Lecture: 45 Po	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

TEXT BOOK

1	K.Rajagopal , Engineering Physics , 3 rd edition, PHI Learning Private Ltd, 2015.
2	A. Marikani, Engineering Phyiscs, PHI Learning Private limited, 2013.

REFERENCES

1	P.K.Palanisamy, Engineering Physics-II, Scitech Publications (India) Pvt. Ltd, 2015.
2	William D Callister Jr., and David G. Rethwisch ,Materials science & Engineering : An
	<i>introduction,</i> 9 th edition , Wiley (2014)
3	Charles P.Poole, Jr; Frank J.Owens, Introduction to Nanotechnology, Wiley India, 2012.
4	S. M. Sze, Semiconductor Devices: Physics and Technology , 3 rd edition, Wiley (2015).
5	A. Marikani, "Engineering Phyiscs" , PHI Learning Private limited, 2013.

COUR	Bloom's	
On co	mpletion of the course, the students will be able to:	Taxonomy Mapped
C01	Calculate the Fermi energy and the carrier concentration in metals.	K4
CO2	Analyze the characteristics of solar cells.	K4
CO3	Select the magnetic and super conducting materials for the desired application.	K4
C04	Choose the method to synthesis a nanomaterial.	K5
C05	Apply the advanced engineering materials in various fields.	К3

BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

PREREQUISITES L T P C NIL 3 0 0 3

Course	To study the basic concepts of electric circuits, electrical machines	, analog and digital	
Objectives	electronics, house wiring and electrical installations.		
UNIT – I	ELECTRICAL CIRCUITS	9 Periods	
Electrical circui	t elements (R,L and C) - Voltage and Current sources – Ohm's Law – K	irchoff laws – Time	
domain analysis	s of First order RL and RC circuits – Representation of sinusoidal wa	veforms – Average,	
RMS and Peak v	values – Phasor representation – Real, Reactive, Apparent power and	power factor.	
UNIT – II	ELECTRICAL MACHINES AND MEASUREMENTS	9 Periods	
Construction, P	rinciple of Operation, basic equations and Types, Characteristics and	Applications of DC	
generators, DC	motors, Single phase Transformer, Single phase and Three phas	e Induction motor.	
Operating princ	ciples of Moving coil, Moving iron Instruments (Ammeter and Voltmet	ers).	
UNIT – III	ANALOG AND DIGITAL ELECTRONICS	9 Periods	
Analog Electron	ics: Semiconductor devices – P-N junction diode, Zener diode, BJT, Op	erational amplifier	
– principle of o	peration, Characteristics and applications. Digital Electronics: Introc	luction to numbers	
systems, basic l	Boolean laws, reduction of Boolean expressions and implementation w	vith logic gates.	
UNIT – IV	FUNDAMENTAL OF COMMUNICATION ENGINEERING	9 Periods	
Types of Signal	k: Analog and Digital Signals - Modulation and Demodulation: Prin	ciples of Amplitude	
and Frequency	Modulations – Resistive, Inductive, capacitive Transducers- Introducti	on.	
UNIT – V	ELECTRICAL INSTALLATIONS AND ENERGY CONSERVATION	9 Periods	
Single phase a	nd three phase system – phase, neutral and earth, basic house	wiring -tools and	
components, di	fferent types of wiring - basic safety measures at home and industry	v – Energy efficient	
lamps - Energy billing. Introduction to UPS and SMPS.			
Linps Lineigy	binnig. Ind budetion to or 5 and 501 5.		
Contact Period	s:		

TEXT BOOK:

1	R.Muthusubramaniam,	R.Salivaganan,	Muralidharan	K.A.,	"Basic	Electrical	and	Electronics
	Engineering" Tata McG	Graw Hill , Second	Edition, 2010.					
2	Mittle V.N and Aravind I	Mittal, "Basic Ele	ctrical Enginee	ring",	Tata Mc	Graw Hill, Se	econd .	Edition, New
	Delhi, 2005.							

REFERENCE BOOK:

1	D.P.Kothari, I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
2	Nagsarkar T.K and Sukhija M.S, " Basic Electrical Engineering ", Oxford Press, 2005.
3	E.Hughes,"Electrical and Elecronics Technology", Pearson, 2010.
4	MohmoodNahvi and Joseph A.Edminister, "Electric Circuits", Shaum Outline series, McGraw Hill, Sixth
	edition, 2014.
5	Premkumar N and Gnanavadivel J, "Basic Electrical and Electronics Engineering", Anuradha
	Publishers, 4th Edition, 2008.

COUF	COURSE OUTCOMES:		
		Taxonomy	
On co	mpletion of the course, the students will be able to:	Mapped	
CO1	Analyze the DC and AC circuits	K4	
CO2	Describe the operation and characteristics of electrical machines	K4	
CO3	Classify and compare various semiconductor devices and digital	КЗ	
	electronics.		
CO4	Infer the concept of communication engineering and Transducers.	K2	
CO5	Assemble and Implement electrical wiring and electrical installations	К6	

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course To study the forces and moments in various types of mechanical system	ns and to enable				
Objectives students to understand the relationship between processes, kinetics and kinematics.					
UNIT – I INTRODUCTION TO MECHANICS AND FORCE CONCEPTS	9 Periods				
Principles and Concepts - Laws of Mechanics - system of forces - resultant of a	force system -				
resolution and composition of forces – Lami's theorem – moment of a force – physica	l significance of				
moment-Varignon's theorem – resolution of a force into force and couple – forces in s	space – addition				
of concurrent forces in space – equilibrium of a particle in space, Classification of on supports.	of beams based				
UNIT - II FRICTION	9 Periods				
Frictional resistance – classification of friction- laws of friction – coefficient of friction- – angle of repose –– cone of friction – free body diagram-advantages-equilibrium of a l inclined plane – non-concurrent force system - ladder friction – rope friction – wedge fr	angle of friction body on a rough riction.				
UNIT – III GEOMETRICAL PROPERTIES OF SECTION	9 Periods				
Centroids – Determination by integration – centroid of an area – simple figures - comp bodies with cut parts - moment of inertia – theorems of moment of inertia – mome composite sections – principal moment of inertia of plane areas - radius of gyration.	Centroids – Determination by integration – centroid of an area – simple figures - composite sections – bodies with cut parts - moment of inertia – theorems of moment of inertia – moment of inertia of composite sections – principal moment of inertia of plane areas - radius of gyration				
UNIT - IV BASICS OF DYNAMICS	9 Periods				
Kinematics and kinetics – displacements, velocity and acceleration - Equations of motion – Rectilinear motion of a particle with uniform velocity, uniform acceleration, varying acceleration – motion curves – motion under gravity – relative motion – curvilinear motion of particles – projectiles – angle of projection – range – time of flight and maximum height. Newton's second law of motion – linear momentum – D'Alembert's principle, Dynamics equilibrium –– work energy equation of particles– law of conservation of energy – principle of work and energy					
UNIT – V IMPULSE MOMENTUM AND IMPACT OF ELASTIC BODIES	9 Periods				
Principle of impulse and momentum – Equations of momentum – Laws of conservation of momentum. Impact – Time of compression, restitution, collision – Co-efficient of restitution – types of impact – collision of elastic bodies by direct central impact and oblique impact – collision of small body with a massive body – Kinetic energy of a particle.					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Peri	ods				

ТЕХТ ВООК

1	S.S. Bhavikatti and K.G. Rajasekarappa, "Engineering Mechanics" New Age International (P) Ltd., 1999.
2	S.C. Natesan, "Engineering Mechanics" Umesh Publications, 2005.

REFERENCES :

1	F.B. Beer and E.R. Johnson, "Vector Mechanics for Engineers", Tata McGraw Hill Pvt. Ltd, 10th
	Edition, 2013.
2	S. Timoshenko, D.H.Young, J.V.Rao and Sukumar Pati, "Engineering Mechanics", McGraw Hill
	Education, 5 th Edition, 2017.
3	Irving Shames and Krishna Mohana Rao, "Engineering Mechanics", Prentice Hall of India Ltd, Delhi,
	2006.
4	R.C. Hibbeller, "Engineering Mechanics", Prentice Hall of India Ltd, 13th Edition, 2013.
5	Vela Murali, "Engineering Mechanics", Oxford university Press, 1 st Edition, 2010.

COURSE OUTCOMES: On completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Know the concept of mechanics and system of forces and moments.	K5
CO2	Calculate the frictional properties at different bodies.	K5
CO3	Identify the locations of centre of gravity and moment of inertia for different sections.	К5
C04	Understand the basics of dynamics of particles	K5
CO5	Know the impulse and momentum principle and impact of elastic bodies.	K5

