GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E. ELECTRICAL AND ELECTRONICS ENGINEERING - PART TIME 2023 REGULATIONS

(Candidates admitted during 2022-2023 and onwards)

SI	Course		Sossional	Final	Total	Credits			
No.	Code	Course Title	Marks	Exam Marks	Marks	L	Т	Р	С
TH	EORY								
		Applied Mathematics – I							
1	23PTE1Z1	(Common to CIVIL, MECH, EEE &	40	60	100	3	0	0	3
		ECE)							
		Environmental Science and Engineering							
2	23PTE1Z2	(Common to CIVIL, MECH, EEE &	40	60	100	3	0	0	3
		ECE)							
3	23PTE103	Programming in C	40	60	100	3	0	0	3
4	23PTE104	Electric Circuit Theory	40	60	100	3	0	0	3
PRA	ACTICAL								
5	23PTE105	Programming in C Laboratory	60	40	100	0	0	3	1.5
		TOTAL			500				13.5

FIRST SEMESTER

PREREQUISITES

APPLIED MATHEMATICS - I (Common to CIVIL, MECH, EEE & ECE)

SEMESTER I

C 3

	L	Т	Р
NIL	3	0	0

ã							
Course	This course mainly deals with topics such as linear algebra, single variable ca	lculus and					
Objectives	numerical methods and plays an important role in the understanding of engineering	science.					
UNIT – I	LINEAR ALGEBRA	9					
Consistency of	Consistency of System of Linear Equations, Eigenvalues and eigenvectors, Diagonalization of matrices by						
orthogonal tra	ansformation, Cayley-Hamilton Theorem, Quadratic form to canonical forms.						
UNIT – II	DIFFERENTIAL CALCULUS	9					
Radius of cur	Radius of curvature, Centre of curvature, Circle of curvature, Evolutes of a curve, Envelopes						
UNIT – III INTEGRAL CALCULUS							
Evaluation o	f definite and improper integrals, Applications: surface area and volume of	revolution					
(Cartesian coordinates only).							
(Cartesian co	ordinates only).						
(Cartesian co UNIT – IV	ordinates only). NUMERICAL SOLUTION OF EQUATIONS	9					
(Cartesian coo UNIT – IV Algebraic and	ordinates only). NUMERICAL SOLUTION OF EQUATIONS I Transcendental equation: Fixed point iteration method, Bisection method, Newton-	9 Raphson					
(Cartesian coo UNIT – IV Algebraic and method, Simu	ordinates only). NUMERICAL SOLUTION OF EQUATIONS I Transcendental equation: Fixed point iteration method, Bisection method, Newton- Iltaneous equation: Gauss elimination method, Gauss-Jordan method, Gauss Seidal r	9 Raphson nethod.					
(Cartesian coo UNIT – IV Algebraic and method, Simu UNIT – V	Distribution of the second sec	9 Raphson nethod. 9					
(Cartesian coo UNIT – IV Algebraic and method, Simu UNIT – V Equal interva	ordinates only). NUMERICAL SOLUTION OF EQUATIONS I Transcendental equation: Fixed point iteration method, Bisection method, Newton- ultaneous equation: Gauss elimination method, Gauss-Jordan method, Gauss Seidal r NUMERICAL INTERPOLATION I: Newton's forward and Backward difference interpolation formulae, Gauss fo	9 Raphson nethod. 9 rward and					
(Cartesian coo UNIT – IV Algebraic and method, Simu UNIT – V Equal interva Backward dif	Description Description NUMERICAL SOLUTION OF EQUATIONS I Transcendental equation: Fixed point iteration method, Bisection method, Newton- ultaneous equation: Gauss elimination method, Gauss-Jordan method, Gauss Seidal re- NUMERICAL INTERPOLATION I: Newton's forward and Backward difference interpolation formulae, Gauss for Ference interpolation formulae, Unequal interval: Lagrange's interpolation, Newton	9 Raphson nethod. 9 rward and 1's divided					
(Cartesian coo UNIT – IV Algebraic and method, Simu UNIT – V Equal interva Backward dif difference interva	Dystantial Description NUMERICAL SOLUTION OF EQUATIONS Internation Internation Internation Internation <t< td=""><td>9 Raphson nethod. 9 rward and 1's divided</td></t<>	9 Raphson nethod. 9 rward and 1's divided					
(Cartesian coo UNIT – IV Algebraic and method, Simu UNIT – V Equal interva Backward dif difference intu Contact Peri	bridinates only). NUMERICAL SOLUTION OF EQUATIONS I Transcendental equation: Fixed point iteration method, Bisection method, Newton- altaneous equation: Gauss elimination method, Gauss-Jordan method, Gauss Seidal restriction NUMERICAL INTERPOLATION II: Newton's forward and Backward difference interpolation formulae, Gauss for Ference interpolation formulae, Unequal interval: Lagrange's interpolation, Newtor erpolation. ods:	9 Raphson nethod. 9 rward and i's divided					
(Cartesian coo UNIT – IV Algebraic and method, Simu UNIT – V Equal interva Backward dif difference int Contact Peri Lecture: 45 I	ordinates only). NUMERICAL SOLUTION OF EQUATIONS I Transcendental equation: Fixed point iteration method, Bisection method, Newton- ultaneous equation: Gauss elimination method, Gauss-Jordan method, Gauss Seidal re- NUMERICAL INTERPOLATION I: Newton's forward and Backward difference interpolation formulae, Gauss for Ference interpolation formulae, Unequal interval: Lagrange's interpolation, Newtor erpolation. ods: Periods Tutorial: 0 Periods Practical: 0 Periods Total: 60 Periode	9 Raphson nethod. 9 rward and 1's divided iods					

TEXT BOOK

1	VeerarajanT., Delhi,2015.	Engineering	Mathematic	s I,	Tata	McGraw-Hill	Education(India)Pv	t. Ltd,	New
2	P. Kandasamy Edition, Reprin	v, K. Thilagav at 2013.	athy, K. Gun	avath	ni, Nu l	merical Metho	ds, S. Chand & Co	ompany,	3nd

REFERENCES

1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44 th Edition, 2017.
2	David C.Lay, "Linear Algebra and Its Application", Pearson Publishers, 6 th Edition, 2021.
3	Howard Anton, "Elementry Linear Algebra", 11 th Edition, Wiley Publication, 2013.
4	Narayanan.S and Manicavachagom Pillai. T.K. – "Calculas Vol I and Vol II", S.chand & Co, Sixth Edition, 2014.
5	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5 th Edition, 2015.
6	Ward Cheney, David Kincaid, "Numerical Methods and Computing", Cengage Learning, Delhi, 7 th Edition 2013.
7	Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Narosa Publicaitons, Eighth Edition, 2012.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Use the essential tool of matrices and linear algebra in a comprehensive manner.	K3
CO2	Explain the fallouts of circle of curvature, evolute and envelops that is fundamental to application of analysis to Engineering problems.	K3
CO3	Interpret the integral calculus to notions of definite and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.	K3
CO4	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	K3
CO5	Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations.	K3

COURSE ARTICULATION MATRIX

a) CO and PO	a) CO and PO Mapping													
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	2	2	-	-	-	-	-	-	-	2	-	1
CO2	3	3	2	2	-	-	-	-	-	-	-	2	-	1
CO3	3	3	2	2	-	-	-	-	-	-	-	2	-	1
CO4	3	3	2	2	-	-	-	-	-	-	-	2	-	1
CO5	3	3	2	2	-	-	-	-	-	-	-	2	-	1
23PTE1Z1	3	3	2	2	-	-	-	-	-	I	-	2	-	1
1- Slight, $2-$ M	Modera	ate, 3 –	- Subst	antial										

23PTE1Z2

ENVIRONMENTAL SCIENCE AND ENGINEERING (Common to CIVIL, MECH, EEE & ECE)

SEMESTER I

PREREQUISITES	L	Т	P	С
NIL	3	0	0	3

Course	Course The course is aimed at creating awareness among the students and also inseminates						
Objectives	the critical ideas of preserving environment.						
UNIT – I	ENVIRONMENTAL ENERGY RESOURCES	9					
Food-effects o	Food-effects of modern agriculture, fertilizers, pesticides, eutrophication & biomagnifications-Energy						
resources: rene	ewable resources - Hydro Energy, Solar & Wind. Non-renewable resources	s – Coal and					
Petroleum - ha	rnessing methods.						
UNIT – II	ECO SYSTEM AND BIODIVERSITY	9					
Eco system an	nd its components - biotic and abiotic components. Biodiversity: types ar	nd values of					
biodiversity, h	ot spots of biodiversity, endangered and endemic species, conservation of	biodiversity:					
In situ and ex	situ conservation. Threats to biodiversity-destruction of habitat, habit fra	gmentation,					
hunting, over e	exploitation and man-wildlife conflicts. The IUCN red list categories.						
UNIT – III	ENVIRONMENTAL POLLUTION	9					
Air pollution,	Air pollution, classification of air pollutants – sources, effects and control of gaseous pollutants SO ₂ ,						
NO_2 , H_2S , CO	, CO ₂ and particulates. Water pollution - classification of water pollutants,	organic and					
inorganic poll	utants, sources, effects and control of water pollution. Noise pollution - d	ecibel scale,					
sources, effect	s and control.						
UNIT – IV	ENVIRONMENTAL THREATS	9					
Global warming	ng-measure to check global warming - impacts of enhanced Greenhouse	effect, Acid					
rain- effects a	and control of acid rain, ozone layer depletion- effects of ozone depleti	ion, disaster					
management -	flood, drought, earthquake and tsunami.						
UNIT – V	SOCIAL ISSUES AND ENVIRONMENT	9					
Water conserv	Water conservation, rain water harvesting, e-waste management, Pollution Control Act, Wild life						
Protection Act. Population growth- exponential and logistic growth, variation in population among							
nations, population policy. Women and Child welfare programs. Role of information technology in							
human and health, COVID-19 - effects and preventive measures.							
Contact Periods:							
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total:45 Period	s					

TEXT BOOK:

1	Sharma J.P., "Environmental Studies", 4th Edition, University Science Press, New Delhi 2016.
2	AnubhaKaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New
	age International Publishers, New Delhi, 2021.

REFERENCES:

1	A k de, "environmental chemistry", eight edition, new age international publishers, 2017.
2	G. Tyler miller and scott e. Spoolman, "environmental science", cengage learning indiapvt, ltd,
	delhi, 2014.
3	ErachBharucha, "Textbook of Environmental Studies", Universities Press(I) Pvt, Ltd,
	Hydrabad, 2015.
4	Gilbert M.Masters, "Introduction to Environmental Engineering and
	Science", 3 rd Edition, Pearson Education, 2015.

COUI	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Recognize and understand about the various environmental energy resources and the effective utility of modern agriculture.	K2
CO2	Acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.	K2
CO3	Be aware of the sources of various types of pollution, their ill effects and preventive methods.	K2
CO4	Identify and take the preventive measures to control the environmental threats and effects of Global warming, Ozone depletion, Acid rain, and natural disasters.	К2
CO5	Demonstrate an idea to save water and other issues like COVID -19.	K2

Course Articulation Matrix															
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	-	-	-	-	1	-	-	-	-	-	1	-	-
CO2	1	1	-	-	-	-	1	-	-	-	-	-	1	-	-
CO3	2	1	-	-	-	-	1	-	-	-	-	-	1	-	-
CO4	2	2	1	-	-	-	1	-	-	-	-	-	1	-	-
CO5	2	2	1	-	-	-	1	-	-	-	-	-	1	-	-
23PTE1Z2	2	2	1	-	-	-	1	-	-	-	-	-	1	-	-
1 - Slight, 2	1 – Slight, 2 – Moderate, 3 – Substantial														

23PTE103

PROGRAMMING IN C

SEMESTER I

PREREQU	ISITES	L	Т	Р	С					
	NIL	3	0	0	3					
Course	1. To Familiarize with Computer and Programming fundamentals									
Objectives	2. To understand Data types in C and Flow control statements									
_	3. To outline Functions, Arrays, Pointers and Strings									
	4. To recognize Bitwise Operators, Pre-processor Directives, Structures an	d Un	ions							
	5. To build Structures, Unions, List Processing, Input and Output functions	3.								
UNIT – I	COMPUTER AND PROGRAMMING FUNDAMENTALS				9					
Computer f	undamentals -Anatomy of a computer: CPU, Memory, I/O - Introduct	ion t	0 SO	ftwar	re –					
Generation a	and classification of programming languages – Compiling – Linking and lo	ading	g a pi	ogra	.m —					
Translator –	loader - linker - develop a program - software development - Introduction	n to (OS –	Гуре	s of					
OS – Algori	thms – Structured programming concept.									
UNIT – II	DATA TYPES AND FLOW OF CONTROL				9					
An overview of C – Programming and Preparation – Program Input /Output – Variables – Expressions,										
and Assignm	nent, The use of #include, printf(), scanf() – Lexical elements, operators	- The	e funo	lame	ental					
data types –	Flow of control									
UNIT – III	FUNCTIONS, ARRAYS, POINTERS AND STRINGS				9					
Functions ar	id storage classes - Arrays – Pointers – Call by reference – Relationship b	etwee	en Ar	rays	and					
Pointers –	Pointer arithmetic and element size – Arrays as function argument –	Dyna	mic	men	lory					
allocation –	Strings – String handing functions – Multidimensional Arrays.			<u> </u>						
UNIT - IV	ARRAY OF POINTERS, BITWISE OPERATORS, PREPROCESSO	i R			9					
A (D	DIRECTIVES									
Arrays of Po	pinters – Arguments to main () - Functions as Arguments – Array of Poin	ters t	o Fu	nctio	ns -					
Type qualifi	ersBitwise operators and expressions – Masks – Software tools – Packin	g and	l unp	ackii	ng –					
Enumeration types – The preprocessor directives.										
UNIT - V	UNIT – V STRUCTURES AND UNIONS, I/O AND FILE OPERATIONS 9									
Structures and	nd Unions – Operator precedence and associativity – Bit fields – Accessi	ng bi	ts and	1 byt	es -					
Input and Ou	itput functions – File Processing Functions – Environment variables – Use (n ma	ke an	a tou	icn.					
Contact Per										
Lecture: 45	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									

TEXT BOOK:

1	PradipDey, ManasGhosh,	"Computer	Fundamentals	and	Programming	in	С",	Second	Edition,
	Oxford University Press, 2	013.							

2 Ashok H. Kamthane, Amit Ashok Kamthane, "Programming in C", Third Edition, Pearson, 2015.

REFERENCES:

1	Stephen G. Kochan, "Programming in C-A complete introduction to the C programminglanguage", Third Edition, Sams Publication, 2004.
2	Yashavant P. Kanetkar, "Let Us C", 13th edition, BPB Publications, 2013.
3	Brian W. Kernighan and Dennis Ritchie, "The C Programming Language", Second Edition, Prentice Hall Software Series, 1988.
4	Stephen Prata, "C Primer Plus", Fifth Edition, Sams Publishing, 2005.

COURS	SE OUTCOMES:	Bloom's Taxonomy Manned
CO1	Articulate the programming environment	K1
CO2	Write algorithm for solving the given problem statement	K2
CO3	Use right data types and flow control statements	K1
CO4	Write programs using functions, arrays, pointers and strings	K1
CO5	Use right storage classes, preprocessor directives, bitwise operators in programs	K3

COURSE ARTICULATION MATRIX:

a) CO a	a) CO and PO Mapping														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	3	1	3	-	-	-	-	-	-	-	-	2	1	1
CO2	3	3	1	3	-	-	-	-	-	-	-	-	3	3	1
CO3	3	3	1	3	-	-	-	-	-	-	-	-	3	3	1
CO4	3	3	1	3	-	-	-	-	-	-	-	-	3	2	2
CO5	3	3	1	3	-	-	-	-	-	-	-	-	2	2	2
23PTE 103	3	3	1	3	-	-	-	-	-	-	-	-	3	2	1
1 - Slight	nt, 2 –	Mode	rate, 3	- Sub	stantia	1									

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course	To gain knowledge in basic concepts of circuit theory and finally be able to analyze and						
Objectives	synthesize electric circuits						
UNIT – I	DC AND AC CIRCUIT ANALYSIS	9					
Ohm's law an	d Kirchhoff's Laws –Form Factor and Peak Factor derivation for alternating wave	eforms -					
R, L, C series	s-parallel circuits - Star-delta transformation - Source transformations - Mesh an	d nodal					
methods -Pov	ver factor - Real, reactive and apparent powers.						
UNIT – II	NETWORK THEOREMS AND POLYPHASE CIRCUITS	9					
Superposition	theorem - Thevenin's and Norton's theorems - Maximum power transfer the	eorem -					
Reciprocity t	heorem. Three phase system - Interconnection of three- phase sources and	loads -					
Balanced and	unbalanced circuits - Power measurement.						
UNIT – III	RESONANCE, COUPLED CIRCUITS AND TRANSIENTS	9					
Resonance in	series and parallel circuits - frequency response - derivation of bandwidth - Intro	duction					
to coupled cir	cuits - Mutual inductance - Coefficient of coupling - Dot rule - Single and double	le tuned					
circuits - Pro	blems. Transient responseusing Laplace transforms - DC response of RL, RC,	RLC					
circuits - Sinu	usoidal response of RL, RC, RLC circuits.						
UNIT – IV	TWO PORT NETWORKS	9					
Two port net	works - Open circuit impedance and short circuit admittance parameters - Trans	mission					
and inverse t	ransmission parameters - Hybrid and inverse hybrid parameters- Image parar	neters -					
Application.							
UNIT – V	FILTER DESIGN AND SYNTHESIS OF CIRCUITS	9					
Classification	of filters - Low pass and high pass filters - Band pass and Band stop filters- Cor	nstant K					
and m-derived filters. Hurwitz Polynomials - Positive Real Function - Synthesis of reactive one port							
RL, RC networks using Foster and Cauer methods.							
Contact Periods:							
Lecture: 45 I	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

TEXT BOOK:

1	Sudakar A. and Shyam Mohan S.Palli "Circuits and Networks (Analysis and Synthesis)" Tata McGraw Hill Book Co., New Delhi, III Ed., 2017.
2	Charles K. Alexander, Matthew N.O. Sadiku "Fundamentals of Electric Circuits" McGraw Hill Book Co., 7 Ed. 2020.

REFERENCES:

1	Hayt W.H and Kemmerley J.E, "Engineering Circuit Analysis", Tata McGraw Hill Book Co., V
	<i>Ed.</i> , 2019.
2	C.P. Kuriakose "Circuit Theory: Continuous and Discrete – time systems – Elements of
	Network Synthesis" PHI, Delhi, 2018.
3	Gangadhar K.A., "Circuit Theory", Khanna Publishers, II Ed., 2019.

4 M.E.VanValkenburg, "Network Analysis", PHI, Delhi, 2019.

COURS	E OUTCOMES:	Bloom's Taxonomy
On com	pletion of the course, the students will be able to:	Mapped
C01	Apply electric circuit laws to DC and AC circuits and solve problems	K3
CO2	Analyze complex circuits using theorems and solve three phase circuits	K4
CO3	Understand the concepts of resonance, coupled circuits and transients and solve problems	K2
CO4	understand two port networks and solve the networks using different parameters	K2
CO5	Design filter circuits and Synthesize electric networks.	K6

COURSE ARTICULATION MATRIX :

a) CO and PO Mapping															
COs/	PO	PSO	PSO	PSO											
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	3	1	3	-	-	-	-	-	-	-	-	2	1	1
CO2	3	3	1	3	I	I	I	-	-	-	-	-	3	3	1
CO3	3	3	1	3	-	-	-	-	-	-	-	-	3	3	1
CO4	3	3	1	3	-	-	-	-	-	-	-	-	3	2	2
C05	3	3	1	3	-	-	-	-	-	-	-	-	2	2	2
23PT E104	3	3	1	3	-	-	-	-	-	-	-	-	3	2	1
1 – Slight, 2 – Moderate, 3 – Substantial															

23PTE105

PROGRAMMING IN C LABORATORY

SEMESTER I

С

3

PREREQUISITESLTPNIL300

Course	Upon completion of this course, the Students will be familiar with										
Objectives	1.Data types in C and Flow control statements										
	2. Functions, Arrays, Pointers And Strings										
	3. Dynamic memory allocation and command line arguments										
	4.Bitwise Operators, Preprocessor Directives, Structures and Unions										
	5. Structures, List Processing, Input and Output.										
PRACTICALS EXERCISES ILLUSTRATING THE FOLLOWING CONCEPTS:											
1. Operators	perators, Expressions and IO formatting										
2. Decision	ion Making and Looping										
3. Arrays an	/s and Strings										
4. Functions	ions and Recursion										
5. Pointers	s										
6. Dynamic	6. Dynamic Memory Allocation										
7. Structures	. Structures										
8. Unions	ns										
9. Files	9. Files										
10. Command line arguments											
Contact Per Lecture: 45	iods: Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods										

COURSI On com	Bloom's Taxonomy Mapped		
C01	Use appropriate data types and flow control statements	K1	
CO2	Write programs using functions, arrays, pointers and strings	K3	
CO3	Write programs using dynamic memory allocation	КЗ	
CO4	Implement programs using right storage classes, preprocessor directives, bitwise operators	K2	
C05	Work with command line arguments, structures, unions and files	КЗ	

COURSE ARTICULATION MATRIX :

a) CO and PO Mapping															
COs/P	PO	PO 2	PO	P0	P0	P0	PSO	PSO	PSO						
Us	1	Z	3	4	5	6	7	8	9	10	11	12	1	Z	3
C01	3	3	1	3	-	-	-	-	-	-	-	-	2	1	1
CO2	3	3	1	3	-	-	-	-	-	-	-	-	3	3	1
CO3	3	3	1	3	-	-	-	-	-	-	-	-	3	3	1
CO4	3	3	1	3	-	-	-	-	-	-	-	-	3	2	2
C05	3	3	1	3	-	-	-	-	-	-	-	-	2	2	2
23PTE 105	3	3	1	3	-	-	-	-	-	-	-	-	3	2	1
1 – Slight, 2 – Moderate, 3 – Substantial															