

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

Curriculum For

ELECTRICAL AND ELECTRONICS ENGINEERING (PART TIME)

OFFICE OF CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355

email: coegct@gmail.com

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E. ELECTRICAL AND ELECTRONICS ENGINEERING - PART TIME 2023 REGULATIONS

(Candidates admitted during 2022-2023 and onwards)

SI	Course		Sessional	Final	Total	Credits				
No.	Code	Course Title	Marks	Exam Marks	Marks	L	Т	Р	С	
THE	EORY									
1	23PTF271	Applied Mathematics – II	40	60	100	3	0	0	3	
	251 10221	(Common to MECH, EEE & ECE)				5	U	0	5	
2	23PTE202	Electronic Devices and Circuits	40	60	100	3	0	0	3	
3	23PTE203	Field Theory	40	60	100	3	0	0	3	
4	23PTE204	Digital Circuits	40	60	100	3	0	0	3	
5	23PTE205	Electrical Machines-I	40	60	100	3	0	0	3	
		TOTAL			500				15	

SECOND SEMESTER

02DTE071	CEMECTED II													
23F I E2Z1	(Common to MECH, EEE & ECE)	51	LIVIE	SIE	X 11									
PREREQUIS	ITES	L	Т	Р	С									
	NIL 3													
Course To focus on differential equations and Numerical Techniques which is in														
Objectives	comprehending engineering science.	comprehending engineering science.												
UNIT – I	ORDINARY DIFFERENTIAL EQUATIONS		9	Peri	ods									
Higher order l	inear differential equations with constant coefficients -variable coe	ffici	ents:	Cau	chy-									
Euler equation	, Cauchy-Legendre equation-Method of variation of parameters.													
UNIT – II	PARTIAL DIFFERENTIAL EQUATIONS		9	Peri	ods									
Formation of p	partial differential equations – First order partial differential equation	s – 5	Stand	lard t	ypes									
and Lagrange's	s linear equation – Homogeneous linear partial differential equations of	sec	ond a	nd hi	gher									
order with cons	stant coefficients.													
UNIT – III	NUMERICAL DIFFERENTIATION AND INTEGRATION		9	9 Periods										
Numerical D	ifferentiation (using Newton's interpolation formula) – Nume	erica	l in	integration:										
Trapezoidal ru	le and Simpson's rules (Both single and double integrals.													
UNIT – IV	NUMERICAL SOLUTION OF FIRST ORDINA DIFFERENTIAL EQUATIONS	ARY	9	Peri	ods									
Single Step M	lethods : Taylor's series method-Euler's and modified Euler's meth	ods	Run	ge- k	Lutta									
method of four	rth order Multi Step methods - Milne's and Adam's predicator-correct	tor n	netho	ods										
UNIT – V	NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS		9	Peri	ods									
Finite differen	ce solution of two dimensional Laplace equation and Poisson equa	tion	- Im	plicit	and									
explicit metho	ds for one dimensional heat equation (Bender-Schmidt and Crank-Ni	chol	son 1	netho	ods)-									
Finite differen	ce explicit method for one dimensional wave equation.													
Contact Perio	ds:													
Lecture: 4	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods													

TEXT BOOK

1	Veerarajan.T, "Engineering Mathematics", Tata McGraw Hill Education (India) Private Limited,
	New Delhi, 2018.
2	P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3nd
	Edition, Reprint 2013.

REFERENCES

1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44 th Edition,
	2018.
2	SrimantaPal, "Numerical Methods Principles, Analyses and Algorithms", Oxford University
	Press, New Delhi, I st Edition 2009.
3	Raisinghania.MD, "Ordinary And Partial Differential Equations", 20th Edition, S.
	ChandPublishing,2020
4	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5 th Edition, 2015.
5	S.Larsson and V.Thomee, "Partial Differential Equations with Numerical Methods", Springer,
	2003.

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Obtain the knowledge for solving higher order linear differential equation with constant and variable coefficient techniques and simultaneous differential equation.	К3
CO2	Understand the knowledge of partial differential equations (PDEs), modeling; demonstrate accurate and efficient use of Lagrange's techniques.	K3
CO3	Demonstrate and understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	К3
CO4	Construct one-step and linear multistep methods for the numerical solution of initial-value problems for ordinary differential equations.	K3
CO5	Acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes.	К3

a) CO and PO	a) CO and PO Mapping													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COS/POS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	2	-	-	-	-	-	-	-	2	-	1
CO2	3	3	2	2	-	-	-	-	-	-	-	2	-	1
CO3	3	3	2	2	-	-	-	-	-	-	-	2	-	1
CO4	3	3	2	2	-	-	-	-	-	-	-	2	-	1
CO5	3	3	2	2	-	-	-	-	-	-	-	2	-	1
23PTE2Z1	3	3	2	2	-	-	-	-	-	-	-	2	-	1
1 – Slight, 2 -	- Mod	erate, 3	3 - Su	bstanti	al									

23PTE202	ELECTRONIC DEVICES AND CIRCUITS	SE	MES	l II							
PREREQUISITES L											
NIL 3											
Course	To impart knowledge about various electronic devices and circuits										
Objectives To identify the suitability of electronic devices for real time applications.											
			0.1	<u>.</u>	1						
UNIT - I	DIODES, SPECIAL DIODES AND APPLICATIONS	1.	91	'er10	ds						
PN diode: V	characteristics-transition and diffusion capacitance-reverse recovery tim	1e-di	ode	mode	sls-						
Applications:	Half-wave and Full-wave rectifiers and filters-power supply regulat	ors–(lipp	ing	and						
clamping circ	uits-Avalanche and Zener breakdown-Zener diodes-varactor and optical did	odes.	0.1								
	BI-POLAR JUNCTION TRANSISTORS AND AMPLIFIERS		<u>91</u>	'erio	ds						
BJT: Structur	e-operation and characteristics- as an amplifier and switch-DC opera	ting	poin	t_ba	ase,						
emitter and v	oltage-divider bias –Miller's theorem –BJT amplifier : operation –AC ec	uiva	lent (circu	its-						
CE,CC,CB (configurations-multistage–KC coupled–transformer coupled–Darlington	and	d 11	Teren	tiai						
amplifiers.			0.1		1						
	FIELD-EFFECT TRANSISTORS AND BIASING		9 Periods								
JFE1: Struct	ure, operation and characteristics with parameters-biasing configurat	lons	-M	USF.	EI:						
Structure-typ	es (Depletion and Ennancement)-operation and characteristics-blasing	g co	nngu	ratio	ns–						
VMOSFEI-C	AMDI IELED ANAL VSIS AND EEEDDACK TECHNIQUES		0.1	Dania							
UNII – IV	AMPLIFIER ANALYSIS AND FEEDBACK TECHNIQUES		91	Derio	as						
BJI and FEI	amplifiers – basics of frequency response – Low–nign and total Frequency is	respo	nse -	-POW	er						
Amplification	verting and non-inverting amplifiers (Overtitative) concerts of feedbacks	Jpera Nac		11							
faadbaakt abu	nt and sories feedback. Desitive feedback: Wien Pridge and PC phase shift		ative								
INIT V	OTHER SEMICONDUCTOR DEVICES	osciii). Domio	da						
UNII – V	other services of the services of applications is SCD.	T			us Ini						
junction Trop	culous, characteristics curves, parameters and applications : SCR – DIAC	- I	ALX ond	$-\mathbf{c}$	JIII-						
couplers Nov	isisions - programmable Oni-junction manifisions -10B1 -photo transi	51015	anu	opt	icai						
Contact Pari	ada										
Contact Perio	Jus.										
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods										

TEXT BOOK :

1	ThomasL. Floyd, "Electronic Devices", 9 th Edition., Prentice Hall Inc., 2012
2	Robert Boylestad, "Electronic Devices and Circuit Theory", 9th Edition, Pearson, 2010

REFERENCES:

1	Jacob Millman, Christos C Halkias and Satyabrata JIT, "Electron Devices and Circuits", 2 nd Ed., Tata Mc Graw Hill, 2008
2	Allen Mottershead, "Electronic Devices and Circuits, An Introduction", Eastern Economy Ed., Prentice - Hall of India, 2009

COUR On cor	SE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the construction and working of semiconductor devices	K2
CO2	Analyze the characteristics of the devices and their equivalent circuit models	K4
CO3	Design of electronic circuits using devices and components	КЗ
C04	Explore the suitability the device for various applications	K5
CO5	Study the special semiconductor and power electronic devices	K2

a) CO and PO Mapping															
COs/P	P0	PO 2	PO 2	PO	PO	PO	PO 7	PO	PO	PO	P0	PO	PSO 1	PSO 2	PSO 2
US	1	2	3	4	5	0	/	8	9	10	11	12	1	Z	3
C01	2	2	2	2	2	2	2	-	-	1	1	-	3	3	1
CO2	3	3	1	2	2	-	-	-	-	-	-	2	2	3	1
CO3	3	3	1	2	2	-	-	-	-	2	3	2	2	3	2
C04	3	2	2	2	2	-	2	-	-	1	2	-	3	2	3
C05	3	2	2	2	2	-	2	2	-	1	3	3	2	2	2
23PTE 202	3	2	2	2	2	2	2	2	-	1	2	2	2	3	2
1 – Sligh	t, 2 – I	Moder	ate, 3	- Subs	tantia	1									

23PTE203	23PTE203 FIELD THEORY Statement									
PREREQUIS	ITES	L	Т	Р	С					
NIL 3										
Course Objectives	To learn the concepts of static and dynamics of charges, understan- fields and work on problem solving and application of these ideas for d	d elec	ctron	nagn	etic					
Objectives	fields and work on problem solving and appreation of these ideas for d	csign								
UNIT – I	ELECTROSTATIC POTENTIAL AND FIELD		9 P	erio	ds					
Types of charge	ges - Charge distribution - Coulomb's Law - Gauss' law - their application	ations	- Po	tenti	al -					
Electric field	intensity - Boundary Conditions - Laplace and Poisson's equation	s – I	Diele	ctric	s –					
Capacitance - I	Electrostatic energy.									
UNIT – II	MAGNETIC POTENTIAL AND FIELD		9 P	erio	ds					
Biot - Savart's	law - Ampere's law - applications - Scalar and Vector magnetic pot	entials	- N	lagn	etic					
torque - Forc	e - Boundary conditions - Energy density in magnetic field -	Liftin	g po	ower	of					
electromagnet.										
UNIT – III	ELECTRO MAGNETIC FIELDS		9 P	erio	ds					
Problems in di	vergence and curl of vector fields in various coordinates - Faraday's	laws	- M	axwe	ell's					
equations - Cur	rent densities - Time harmonics fields.									
UNIT – IV	ELECTROMAGNETIC WAVES		9 P	erio	ds					
Wave equation	s - Uniform plane waves in free space - Uniform plane waves in los	ssless	diele	ectric	:s –					
Uniform plane	waves in lossy dielectrics - Uniform plane waves in good condu	ictor ·	- Po	yntir	ıg's					
theorem.					-					
UNIT – V	FIELD MODELING, EMI AND EMC		9 P	erio	ds					
Field plotting - Laplace equation in rectangular coordinates – Separation of variables - Finite difference method - Finite element method - Infinite square through with lid – Infinite square through with different potentials on four sides – Moment method – EMI and EMC – Sources – Conducted and Radiated EMI – Elimination methods.										
Contact Perio	ds:									
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical:0 Periods T	'otal: 4	45 Po	eriod	ls					

TEXT BOOK:

1	John D. Kraus and Daniel A. Fleisch "Electromagnetics with Applications" Mc Graw Hill
	International Ed., 2018.
2	William H.Hayt "Engineering Electromagnetics" McGraw Hill Book Co., 2020

REFERENCES:

1	AshutoshPramanik, "Electromagnetism", Prentice Hall of India Pvt. Ltd, 2018
2	Gangadhar K.A., "Field Theory", Khanna Publishers, 2017
3	Joseph Edminister, "Electromagnetics", 2 nd Ed., Tata McGraw Hill Book Co., 2019
4	Mathew N.D Sadiku, "Elements of Electromagnetics", Oxford university press, Fourth Edition., 2021
5	Dr.Dhananjayan.P. "Engineering Electromagnetics", Lakshmi Publications, 2021

COUR On cor	SE OUTCOMES: npletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the basics of electric field	K2
CO2	Ascertain the concepts of magnetic field	КЗ
CO3	Master the fundamentals of electromagnetic field	КЗ
C04	Illustrate the knowledge gained to analyze electromagnetic waves	K3
C05	Estimate the field parameters for a given problem based on field modeling	K4

a) CO a	a) CO and PO Mapping														
COs/P Os	РО 1	PO 2	РО 3	PO 4	РО 5	P0 6	PO 7	PO 8	РО 9	PO 10	P0 11	PO 12	PS0 1	PSO 2	PSO 3
C01	3	3	3	3	1	2	-	-	-	-	-	-	2	1	1
CO2	3	3	3	3	1	2	-	-	-	-	-	I	3	3	1
CO3	3	3	3	3	1	2	-	-	-	-	-	I	3	3	1
CO4	3	3	3	3	1	2	-	-	-	-	-	-	3	2	2
CO5	3	3	3	3	1	2	-	-	-	-	-	-	2	2	2
23PTE 203	3	3	3	3	1	2	-	-	-	-	-	-	3	2	1
1 – Sligh	t, 2 – N	Modera	ate, 3 -	- Subs	tantial										

23PTE204	DIGITAL CIRCUITS	SE	MES	STER	II							
PREREQUIS	ITES	L	Т	Р	С							
	NIL	3	0	0	3							
Course	Course To learn the fundamental concepts and design techniques used in digital electron											
Objectives	and also to familiarize with the basics of Hardware description language in the design of digital circuits											
UNIT – I	BOOLEAN ALGEBRA AND LOGIC GATES		9 I	Perio	ds							
Binary System - Digital Logic Implementation	s, Boolean Algebra and Logic gates – Boolean functions - Canonical ar c gates – Integrated circuits. Gate level minimization – Map methods- n.	nd Sta NAI	andaı ND a	d For nd N	rms OR							
UNIT – II	COMBINATIONAL LOGIC		9 I	Perio	ds							
Combinational Binary multipl	circuits - Analysis and Design Procedure- Binary adder subtractor - Decier – Magnitude comparator – Decoders – Encoders – Multiplexers.	cimal	adde	er –								
UNIT – III	SYNCHRONOUS AND ASYNCHRONOUS SEQUENTIAL LOGI	IC	9 I	Perio	ds							
Sequential circ	uits- Latches – Flip flops – Analysis of Clocked Sequential Circuits – Se	tate F	Reduc	ction	and							
Assignment - Reduction of S	Design Procedure. Asynchronous Circuits - Analysis Procedure - Circu State Flow Tables – Race Free State Assignment – Hazards - Design Exa	iits w mple	ith L	atche	es –							
UNIT – IV	REGISTERS, COUNTERS AND MEMORY		9 I	Perio	ds							
Registers, Shif	t Registers, Ripple Counters, Synchronous Counters, Random Access	Mem	ory,	Mem	ory							
Decoding, Erre	or Detection and Correction, Read Only Memory, Programmable Log	ic A	rray.	Regi	ster							
Transfer Level	Introduction, Algorithmic State Machines, Binary Multiplier.											
UNIT – V	HARDWARE DESCRIPTION LANGUAGE		9 I	Perio	ds							
Introduction to	Verilog: Structure of Verilog module, Operators, data types, Styles of	dese	cripti	on- D) ata							
flow description, Implement logic gates, half adder and full adder using Verilog data flow description.												
Behavioral description: Structure, variable assignment statement, Verilog behavioral description of Multiplexers (2:1,4:1) and Encoders (8 to 3), Decoders (2 to 4).												
Contact Perio Lecture: 45 Pe	ds: eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Peri	ods									

TEXT BOOK:

1 Morris Mano.M "Digital Design" Pearson Education, New Delhi, 6th Ed., 2018.

² Samir Palnitkar, "Verilog HDL- A guide to Digital Design and Synthesis" Pearson Education, New Delhi, 2ndEd., 2003.

REFERENCES:

1	Ronald J. Tocci, Neal S Widmer, Gregory L Moss, "Digital Systems: Principles and Applications", Prentice Hall, 12thEd., 2017
2	Floyd Thomas L., "Digital fundamentals" Pearson Education, New Delhi, 11 th Ed., 2015.
3	Charles H.Roth, "Fundamentals of Logic Design"7thEd., Cl-Engineering, 2013.
4	Nazeih M. Botros, "HDL Programming VHDL and Verilog "Dreamtech press, 2009.

COUR	SE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the fundamentals of digital electronics and logic families.	K2
CO2	Illustrate reduction of logical expressions using Boolean algebra and k-map.	K4
CO3	Use the procedures for the analysis and design of combinational circuits	КЗ
CO4	Analyze the design capability in synchronous and asynchronous sequential circuits	K4
C05	Design digital logic circuits in different types of modeling using HDL	K6

a) CO a	a) CO and PO Mapping														
COs/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	2	2	-	-	-	-	-	-	-	2	3	2	2
CO2	3	3	2	3	-	-	-	-	-	-	-	I	2	2	2
CO3	3	3	3	3	-	-	-	1	-	-	-	1	3	3	3
CO4	3	3	3	3	-	-	-	-	-	-	-	2	3	3	2
C05	3	3	3	3	3	-	-	-	-	-	-	2	3	3	3
23PTE 204	3	3	3	3	3	-	-	-	-	-	-	2	3	3	2
1 – Sligh	t, 2 – N	Modera	ate, 3 -	- Subs	tantial										

23	PTE205	ELECTRICAL MACHINES - I	SEMESTER II										
PR	REREQUI	SITES	L	Т	Р	С							
		ENGINEERING PHYSICS – FIELD THEORY	3	0	0	3							
Co	urse	1.To obtain knowledge about energy in magnetic system											
Ob	ojectives	2. To understand the working principle of DC generators											
	3.To understand the working principle of DC motors												
		4. To know about the principle of operation of Transformers											
	5.To perform testing in various DC machines and transformers												
UN	UNIT - I PRINCIPLES OF ELECTROMECHANICAL ENERGY CONVERSION 9 Periods												
En	ergy in ma	agnetic system - Field energy and co energy - Force and torque equation	ons- e	ddy c	urrent	is and							
edo	ly current	losses - flux distribution curve in the air gap - Singly and multiply e	excite	ed ma	gnetic	field							
sys	stems - m	nf of distributed ac windings - Winding Inductances - Rotating Mag	gnetic	: Fiel	d and	mmf							
wa	ves - Mag	netic saturation and leakage fluxes.											
UN	II – II	DC GENERATORS			9 Pe	riods							
Co	nstruction	al details and principle of operation – Armature winding -Emf equation	on – '	Гурея	- Arn	nature							
rea	ction: Ef	fects - demagnetizing & cross magnetizing ampere-turns -comp	ensat	ing v	vindir	igs –							
inte	erpoles; C	ommutation – Characteristics of DC generators - losses and efficiency	-Para	allel o	operati	on of							
dc	generators	- applications.			1								
					0 Do	rioda							
	nstruction	al details and principle of operation- back emf - Types of dc motors - 7	orau	e eau	ation	LIUUS							
and	1 efficienc	x = nower flow diagram = Electrical and mechanical characteristics	of d	e equ iffere	nt tyr	losses							
mo	tors – Sta	ters – Speed control methods – Types of Electric braking	or u	mere	ni typ	05 01							
		ters speed control methods Types of Electric staking.											
UN	NIT – IV	TRANSFORMERS			9 Pe	riods							
Pri	nciple of o	operation – Types and constructional features of single phase and three	e phas	se trai	nsform	ners –							
EN	IF equation	n - Phasor diagram – Transformers on load - Equivalent circuit – Vo	oltage	e Reg	ulatio	n and							
eff	iciency- A	ll day efficiency Three phase transformer connections – Scott connectio	n - F	Parall	el oper	ration							
of	three phas	e transformers – Inrush current phenomenon and its prevention - Auto	transf	orme	rs, Of	f-load							
and	d on-load t	ap changing transformer-Isolation Transformers.											
UN	NIT – V	TESTING OF DC MACHINES AND TRANSFORMERS			9 Pe	riods							
DC	machine	: Brake test, field test, Retardation test, Swinburne's test, Hopkinsor	n's tes	st. Tr	ansfor	mers:							
Op	en Circui	t and Short Circuit Tests- Phasing, Identification and Polarity of t	ransf	ormer	wind	ling -							
Su	mpner's te	st.				U							
0	1 ((D)	- 1											
	ontact Per	1008: Dowieda Tystowiels () Dowieda Dysecticals () Dowieda () -4-1: 45 (Dorr! -	da									
Le	cture:45 I	rerious intoriai: o rerious practicai: o rerious iotal: 45	rerio	us									
]	ГЕХТ ВО	OK:											
1	Nagrath .	I. and D. P. Kothari, "Theory of Electric Machines", Tata McGraw Hi	ill, 20	06									
-													

² Fitzgerald A. E., C. Kingsley and S. Umans, "Electric Machinery", 7/e, McGraw Hill, 2020

REFERENCES:

1	Bimbra P. S., "Electrical Machinery", 7/e, Khanna Publishers, 2021.
2	Theraja B. L., "A Textbook of Electrical Technology", S. Chand, New Delhi. Reprint 2019.
3	AbhijithChakrabarti, SudiptaDebnath, "Electrical Machines", McGraw Hill Education,
	NewDelhi, 2015.
4	Deshpande M. V., "Electrical Machines", Prentice Hall India, New Delhi, 2011.
5	Theodore Wilde, "Electrical Machines, Drives and Power System", Pearson Ed. Asia, 2001.
6	Jacek F. Gieras, "Electrical Machines: Fundamentals of Electromechanical Energy
	Conversion", CRC press, 2016

COURSE OUTCOMES:

COUR On co	COURSE OUTCOMES: On completion of the course, the students will be able to:									
C01	Apply basic laws of electromagnetic principles for static and dynamic electric machines.	K1								
CO2	Analyze the performance of electrical machines for the different level of utilization in Industries.	K4								
CO3	Identify suitable machines for any specific application.	К6								
CO4	Perform testing of the electrical machines.	КЗ								
CO5	Evaluate the performance of electrical machines.	K5								

a) CO a	a) CO and PO Mapping														
COs/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	3	2	2	2	1	-	-	-	-	1	1	2	3	2	2
CO2	3	3	3	3	1	-	-	-	-	1	1	1	3	3	3
CO3	3	2	2	2	2	-	-	-	-	-	1	1	3	2	2
C04	2	2	2	3	1	-	-	-	-	1	1	1	2	2	2
CO5	2	2	1	3	1	-	-	-	-	-	1	2	2	2	1
23PTE 205	3	2	2	3	1	-	-	-	-	1	1	1	3	2	2
1 – Sligh	nt, 2 –	Mode	rate, 3	– Sub	stanti	al									