

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum & Syllabus For

B.E. (ELECTRONICS AND COMMUNICATION ENGINEERING)

(Part Time)

2023

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS

GOVERNMENT COLLEGE OF TECHNOLOGY

THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0423 - 2433355

E.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E & ELECTRONICS AND COMMUNICATION ENGINEERING (Part Time)

SI.	Course	Course	CA	End	Total		Hours	/Wee	k
No.	Code	Course Title	Marks	Sem Marks	Marks	L	Т	Р	С
		Т	HEORY						
1	23PTL1Z1	Applied Mathematics I	40	60	100	3	0	0	3
2	23PTL1Z2	Environmental Science and Engineering	40	60	100	3	0	0	3
3	23PTL103	Electric Circuits and Electron Devices	40	60	100	3	0	0	3
4	23PTL104	C Programming	40	60	100	3	0	0	3
	PRACTICAL								
5	23PTL105	C Programming Laboratory	60	40	100	0	0	3	1.5
	TOTAL 230 280 500 12 0 3 13.5								

FIRST SEMESTER

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course	This course mainly deals with topics such as linear algebra, single	variable			
Objectives	calculus and numerical methods and plays an important role in the				
	understanding of engineering science.				
UNIT – I	LINEAR ALGEBRA	9 Periods			
Consistency of	f System of Linear Equations, Eigenvalues and eigenvectors, Diagona	alization of			
matrices by o	rthogonal transformation, Cayley-Hamilton Theorem, Quadratic for	n to canonical			
forms.					
UNIT – II	DIFFERENTIAL CALCULUS	9 Periods			
Radius of cur	vature, Centre of curvature, Circle of curvature , Evolutes of a curve,	Envelopes			
UNIT – III	UNIT – III INTEGRAL CALCULUS 9 Periods				
Evaluation of	definite and improper integrals, Applications: surface area and volu	me of			
revolution (C	artesian coordinates only).				
UNIT – IV	NUMERICAL SOLUTION OF EQUATIONS	9 Periods			
Algebraic and	Transcendental equation: Fixed point iteration method, Bisection n	nethod,			
Newton-Raph	son method, Simultaneous equation: Gauss elimination method, Gau	ıss-Jordan			
method, Gaus	s Seidal method.				
UNIT – V	NUMERICAL INTERPOLATION	9 Periods			
Equal interva	l: Newton's forward and Backward difference interpolation formula	e, Gauss			
forward and Backward difference interpolation formulae, Unequal interval: Lagrange's					
interpolation, Newton's divided difference interpolation.					
	1				
Contact Peri	ods:				

TEXT BOOK

1	VeerarajanT., "Engineering Mathematics I", Tata McGraw-Hill Education(India)Pvt. Ltd, New
	Delhi,2015.
2	P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3nd
	Edition, Reprint 2013.

REFERENCE BOOK

1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44thEdition, 2017.
2	David C.Lay, "Linear Algebra and Its Application", PearsonPublishers, 6thEdition,2021.
3	Howard Anton, "Elementry Linear Algebra ",11 th Edition,WileyPublication, 2013.
4	Narayanan.S and Manicavachagom Pillai. T.K. – CalculasVol I and Vol II,S.chand& Co, Sixth
	Edition, 2014.
5	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5 th Edition, 2015.
	Ward Cheney, David Kincaid, "Numerical Methods and Computin"g, Cengage Learning,
	Delhi, 7 th Edition 2013.
6	Jain R.K. and Iyengar S.R.K., - Advanced Engineering Mathematics, NarosaPublicaitons,
	Eighth Edition, 2012.

COU	COURSE OUTCOMES:	
		Taxonomy
On co	ompletion of the course, the students will be able to:	Mapped
C01	Use the essential tool of matrices and linear algebra in a comprehensive manner.	КЗ
C02	Explain the fallouts of circle of curvature, evolute and envelops that is fundamental to application of analysis to Engineering problems.	К3
CO3	Interpret the integral calculus to notions of definite and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.	К3
CO4	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	КЗ
C05	Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations.	К3

PREREQUISITES	L	Т	Р	C
NIL	3	0	0	3

Course	The course is aimed at creating awareness among the students and	also inseminates the
Objectives	critical ideas of preserving environment.	
UNIT – I	ENVIRONMENTAL ENERGY RESOURCES	9 Periods
Food-effects	of modern agriculture, fertilizers, pesticides, eutrophication & bioma	gnifications-Energy
resources: re	newable resources - Hydro Energy, Solar & Wind. Non-renewable res	ources – Coal and
Petroleum - h	arnessing methods.	
UNIT – II	ECO SYSTEM AND BIODIVERSITY	9 Periods
Eco system a	nd its components - biotic and abiotic components. Biodiversity: type	es and values of
biodiversity,	hot spots of biodiversity, endangered and endemic species, conserva	tion of biodiversity:
In situ and ex	situ conservation. Threats to biodiversity-destruction of habitat, hab	oit fragmentation,
hunting, over	exploitation and man-wildlife conflicts. The IUCN red list categories.	
UNIT – III	ENVIRONMENTAL POLLUTION	9 Periods
Air pollution,	classification of air pollutants - sources, effects and control of gaseo	us pollutants SO ₂ ,
NO ₂ , H ₂ S, CO,	CO2 and particulates. Water pollution - classification of water polluta	nts, organic and
inorganic pol	lutants, sources, effects and control of water pollution. Noise pollutio	n - decibel scale,
sources, effec	rts and control.	
UNIT – IV	ENVIRONMENTAL THREATS	9 Periods
Global warm	ng-measure to check global warming - impacts of enhanced Greenho	use effect, Acid rain-
effects and co	ontrol of acid rain, ozone layer depletion- effects of ozone depletion, o	lisaster managemen
- flood, droug	ht, earthquake and tsunami.	
UNIT – V	SOCIAL ISSUES AND ENVIRONMENT	9 Periods
Water conser	vation, rain water harvesting, e-waste management, Pollution Contro	ol Act, Wild life
Protection Ad	t. Population growth- exponential and logistic growth, variation in p	opulation among
nations non	llation policy. Women and Child welfare programs. Role of information	on technology in
	ealth, COVID-19 - effects and preventive measures.	

TEXT BOOK:

1	Sharma J.P., "Environmental Studies", 4th Edition, University Science Press, New Delhi 2016.
2	AnubhaKaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New age
	International Publishers, New Delhi, 2021.

REFERENCES:

1	A k de, "Environmental Chemistry" , eight edition, new age international publishers, 2017.			
2	G. Tyler miller and scott e. Spoolman, "Environmental Science", cengage learning indiapvt, ltd, delhi,			
	2014.			
3	ErachBharucha, "Textbook of Environmental Studies", Universities Press(I) Pvt, Ltd, Hydrabad,			
	2015.			
4	Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 3rd Edition, Pearson			
	Education, 2015.			

COUF	RSE OUTCOMES:	Bloom's Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
C01	Recognize and understand about the various environmental energy resources and the effective utility of modern agriculture.	К2
CO2	Acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.	К2
CO3	Be aware of the sources of various types of pollution, their ill effects and preventive methods.	К2
CO4	Identify and take the preventive measures to control the environmental threats and effects of Global warming, Ozone depletion, Acid rain, and natural disasters.	К2
C05	Demonstrate an idea to save water and other issues like COVID -19.	K2

PREREQUISITES	L	Т	Р	C
NIL	3	0	0	3

Objectives	1. To learn the basic of circuit analysis and transient resonance in RL		
objectives	2. To learn functions and features of semiconductor devices.		
UNIT – I	CIRCUIT ANALYSIS TECHNIQUES	9 Periods	
R, L and C – N	rrent and voltage laws – series and parallel connection of indepe Network Theorems – Thevenin, Superposition, Norton, Maximun Star-delta conversion.		
UNIT – II	TRANSIENT RESONANCE IN RLC CIRCUITS	9 Periods	
	and RLC circuits and their responses to pulse and sinusoidal inj arallel and series resonances – Q factor – single tuned and doubl		
UNIT –III	SEMICONDUCTOR DIODES	9 Periods	
Review of intrinsic & extrinsic semiconductors – Theory of PN junction diode – Energy band structure – current equation – space charge and diffusion capacitances – effect of temperature and breakdown mechanism – Zener diode and its characteristics.			
UNIT –IV	TRANSISTORS	9 Periods	
Principle of operation of PNP and NPN transistors – study of CE, CB and CC configurations and comparison of their characteristics – Breakdown in transistors – operation and comparison of N-Channel and P-Channel JFET – drain current equation – MOSFET – Enhancement and depletion types – structure and operation – comparison of BJT with MOSFET – thermal effect on MOSFET.			
UNIT – V	SPECIAL SEMICONDUCTOR DEVICES	9 Periods	
Tunnel diodes – PIN diode, varactor diode – SCR characteristics and two transistor equivalent model – UJT – Diac and Triac – Laser, CCD, Photodiode, Phototransistor, Photoconductive and Photovoltaic cells – LED, LCD.			
Contact Perio		- 4-	
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods			

1	Joseph A. Edminister, Mahmood, Nahri, " Electric Circuits " – Shaum series,Tata
	McGraw Hill, (2001).
2	S. Salivahanan, N. Suresh kumar and A. Vallavanraj, " Electronic Devices and Circuits ",Tata McGraw Hill, 2 Edition, (2008)
3	David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5 Edition, (2008).

REFERENCE BOOK :

1	Robert	Т.	Paynter,	"Introducing	Electronics	Devices	and	Circuits",
	Pearson	Educ	cation, (200	6).				
2	William	Н. Н	ayt, J.V. Jac	k, E. Kemmebly	and steven M. I	Durbin, " En	igineer	ing Circuit
	Analysis", Tata McGraw Hill, 6 Edition, 2002.							
3	J. Millmo 2 Edition			tyebranta Jit, " E	lectronic Devi	ices & Circ	uits", To	ata McGraw Hill,

COUR	SE OUTCOMES:	Bloom's Taxonomy
0.0.000	mulation of the government of a students will be able to	
UII CO	mpletion of the course, the students will be able to:	Mapped
C01	Understand laws, theorems of circuit analysis	K1
CO2	Explain transient resonance in RLC circuits	K2
CO3	Learn Semiconductor diode characteristics	K2
C04	Learn JFET and MOSFET transistor characteristics	K2
C05	Understand special semiconductor devices Characteristics	K1

PREREQUISITESLTPCNIL3003

Course	The students will be able to acquire knowledge about the basic concepts of		
Objectives	Computer and programming fundamentals, Data types in C and Flow control		
	statements, Functions, Arrays, Pointers and Strings, Bit	wise Operators,	
	Preprocessor Directives, Structures and Unions, List Processing, I	nput and Output.	
UNIT – I	COMPUTER AND PROGRAMMING FUNDAMENTALS	9 Periods	
Computer fund	amentals – Evolution, classification, Anatomy of a computer: CPU, I	Memory, I/O –	
Introduction to	software – Generation and classification of programming language	es – Compiling –	
Linking and loa	iding a program – Translator – loader – linker – develop a program	– software	
Development -	Introduction to OS – Types of OS – Algorithms – Structured program	nming concept.	
UNIT – II	DATA TYPES AND FLOW OF CONTROL	9 Periods	
An overview o	f C – Programming and Preparation – Program Output – Variable	es – Expressions,	
and Assignmen	nt, The use of #include, printf(), scanf() - Lexical elements, ope	rators and the C	
systems – The	fundamental data types – Flow of control.		
UNIT – III	FUNCTIONS, ARRAYS, POINTERS AND STRINGS	9 Periods	
Functions and	storage classes - 1D Arrays – Pointers – Call by reference – Relation	ship between	
Arrays and Po	inters – Pointer arithmetic and element size – Arrays as func	tion argument –	
Dynamic Memo	ory allocation – Strings – String handing functions – Multidimension	nal Arrays.	
UNIT – IV	ARRAY OF POINTERS, BITWISE OPERATORS,	9 Periods	
	PREPROCESSOR DIRECTIVES		
Arrays of Point	ers – Arguments to main () - Ragged Arrays – Functions as Argume	nts – Arrays of	
Pointers to Fu	nctions - Type qualifiersBitwise operators and expressions – M	lasks – Software	
tools – Packing	tools – Packing and unpacking – Enumeration types – The preprocessor directives.		
UNIT – V	STRUCTURES AND UNIONS, I/O AND FILE OPERATIONS	9 Periods	
Structures and	Structures and Unions – Operator precedence and associativity – Bit fields – Accessing bits and		
	bytes - Input and Output functions – File Processing Functions – Environment variables – Use of		
make and touch.			
Contact Perio	Contact Periods:		
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods	

TEXT BOOK:

1	Pradip Dey, Manas Ghosh, "Computer Fundamentals and Programming in C", Second Edition,
	Oxford University Press, 2013.
2	Al Kelley, Ira Pohl, " A Book on C-Programming in C ", Fourth Edition, Addison Wesley, 2001.

REFERENCE BOOK :

1	Yashavant P. Kanetkar, "Let Us C", 14th edition, BPB Publications, 2016.
2	Herbert Schildt., "C: The Complete Reference", Fourth Edition. McGraw Hill Education, 2017.
3	Brian W. Kernighan and Dennis Ritchie, " The C Programming Language ", Second Edition, Prentice Hall Software Series, 1988.
4	E. Balagurusamy, "Programming in Ansi C", 6th Edition Tata McGraw-Hill Education, 2012

COURSE OUTCOMES: On completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Explain the fundamental of computers programming and Design algorithm for solving the given problem statement.	К3
CO2	Reproduce and explain the operation of various data types and flow control statements	K2
CO3	Design and Compute programs using functions, arrays, pointers and strings	КЗ
CO4	Illustrate the different right storage classes, preprocessor directives, bitwise operators in programs	К2
C05	Describe the concept of structures, unions and files in C programming.	K2

23PTL	.105
	100

PREREQUISITES	L	Т	Р	С
NIL	0	0	3	1.5

		The students will be able to write program and compile C programming using,	
Course		Data types and Flow control statements, Functions, Arrays, Pointers and Strings,	
Obje	ctives	Dynamic memory allocation and command line arguments, Files, Structures and	
		Unions.	
LIST	OF EXPE	RIMENTS:	
1	Operate	ors , Expressions and IO formatting	
2	Decisio	n Making and Looping	
3	Arrays	and Strings	
4	Functio	ns and Recursion	
5	Pointer	S	
6	Dynami	ic Memory Allocation	
7	Structu	res	
8	Unions		
9	Files		
10	Comma	nd line arguments	
11	Mini Pr	oject	
Conta	Contact Periods:		
Lectu	Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods		

REFERENCES :

1	Yashavant P. Kanetkar, "Let Us C", 14th edition, BPB Publications, 2016.	
2	Herbert Schildt., "C: The Complete Reference", Fourth Edition. McGraw Hill Education, 2017.	
3	Brian W. Kernighan and Dennis Ritchie, "The C Programming Language", Second Edition,	
	Prentice Hall Software Series, 1988.	
4	E. Balagurusamy, " Programming in Ansi C", 6th Edition Tata McGraw-Hill Education, 2012	

COURSE OUTCOMES:		Bloom's
On completion of the course, the students will be able to:		
		Mapped
C01	Reproduce and explain the operation of various data types and flow control	К2
	statements using simple programming.	
CO2	Write programs using functions, arrays, pointers and strings.	КЗ
CO3	Write programs using dynamic memory allocation	КЗ
C04	Implement programs using command line arguments, structures, unions, and files	K4
C05	Develop applications using C.	K5