

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

II Semester syllabi for

B. E. ELECTRONICS AND COMMUNICATION ENGINEERING

(Part Time)

2023

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 FAX: +91 0422 - 2433355 E.mail: <u>coegct@gmail.com</u>

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE - 641 013 B.E.ELECTRONICS AND COMMUNICATION ENGINEERING -PART TIME 2023 REGULATIONS (Candidates admitted during 2023-2024 and onwards)

Second Semester

Sl.	Course	Course Title	СА	End	Total	ł	Hou	rs/V	Veek
No.	Code		Marks	Sem	Marks	L	Т	Р	С
				Marks					
	THEORY								
1	23PTL2Z1	APPLIED MATHEMATICS II	40	60	100	3	0	0	3
2	23PTL202	ELECTRONIC CIRCUITS	40	60	100	3	0	0	3
3	23PTL203	ANALOG INTEGRATED CIRCUITS	40	60	100	3	0	0	3
4	23PTL204	DIGITAL SYSTEM DESIGN	40	60	100	3	0	0	3
5	23PTL205	ANALOG AND DIGITAL INTEGRATED CIRCUITS LABORATORY	60	40	100	0	0	3	1.5
		TOTAL			500				13.5

23PTL2Z1

APPLIED MATHEMATICS II

(Common to Mech, EEE & ECE)

SEMESTER II

PREREQUISITES	L	Τ	Р	С
	NIL 3	0	0	3
Course	To focus on differential equations and Numerical Techniques which	h is	imno	ortant
Objectives	for comprehending engineering science.	11 13	mp	<i>n</i> tant
UNIT – I	ORDINARY DIFFERENTIAL EQUATIONS		0 Do	riods
-	ar differential equations with constant coefficients -variable coefficients			
-	auchy-Legendre equation-Method of variation of parameters.	lent	S: Ca	ucity-
UNIT – II	PARTIAL DIFFERENTIAL EQUATIONS		0 Po	riods
-	ial differential equations – First order partial differential equations –			
	near equation – Homogeneous linear partial differential equations –			
	constant coefficients.	01 5	econ	u anu
UNIT – III	NUMERICAL DIFFERENTIATION AND INTEGRATION		0 Do	riods
-	rentiation (using Newton's interpolation formula) – Numerica			
	and Simpson's rules (Both single and double integrals.		negi	ation
•	NUMERICAL SOLUTION OF FIRST ORDINARY DIFFERENTIA	I.		
UNIT – IV	EQUATIONS		9 Pe	riods
Single Step Meth	ods : Taylor's series method-Euler's and modified Euler's methods	-Ru	nge-	Kutta
method of fourth	order Multi Step methods - Milne's and Adam's predicator-corrector	me	thod	5
UNIT – V	NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATION	S	9 Periods	
Finite difference	solution of two dimensional Laplace equation and Poisson equation	n- In	nplic	it and
explicit methods	for one dimensional heat equation (Bender-Schmidt and Cr	ank∙	Nich	olson
methods)-Finite of	lifference explicit method for one dimensional wave equation.			
Contact Periods				
Lecture: 45 F	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 4	15 P	erio	ds
1 Veerarajan.T, ' New Delhi, 201	'Engineering Mathematics" , Tata McGraw Hill Education (India) 1 8.	Privo	ite L	imited
,	K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand &	Cor	npan	y, 3n
<u> </u>				

REFERENCES

1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44 th Edition, 2018.						
2	SrimantaPal, "Numerical Methods Principles, Analyses and Algorithms", Oxford University Press,						
	New Delhi, I st Edition 2009.						
3	Raisinghania.MD, "Ordinary And Partial Differential Equations", 20th Edition, S.						
	ChandPublishing,2020						
4	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5th Edition, 2015.						
5	S.Larsson and V.Thomee, "Partial Differential Equations with Numerical Methods", Springer,						
	2003.						

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
-	Obtain the knowledge for solving higher order linear differential equation with constant and variable coefficient techniques and simultaneous differential equation.	K3
CO2	Understand the knowledge of partial differential equations (PDEs), modeling; demonstrate accurate and efficient use of Lagrange's techniques.	КЗ
CO3	Demonstrate and understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	К3
CO4	Construct one-step and linear multistep methods for the numerical solution of initial-value problems for ordinary differential equations.	КЗ
C05	Acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes.	КЗ

COURSE ARTICULATION MATRIX

a) CO and PO	a) CO and PO Mapping													
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COs/POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	3	2	2	-	-	-	-	-	-	-	2	-	1
CO2	3	3	2	2	-	-	-	-	-	-	-	2	-	1
CO3	3	3	2	2	-	-	-	-	-	-	-	2	-	1
CO4	3	3	2	2	-	-	-	-	-	-	-	2	-	1
C05	3	3	2	2	-	-	-	-	-	-	-	2	-	1
23PTL2Z1	3	3	2	2	-	-	-	-	-	-	-	2	-	1
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial													

-

23PTL202

ELECTRONIC CIRCUITS

SEMESTER II

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PC	3	0	0	3

Course	To understand the functions and response of Basic Electronic circuit	S			
Objective	-				
UNIT – I	BJT AND FET AMPLIFIER	9 Periods			
Small Signal H	lybrid π equivalent circuit of BJT – Early effect -CE, CC and CB ampli	fiers AC Load			
Line Analysis-	Darlington Amplifier - Bootstrap technique - Cascade, Cascode confi	gurations - FET			
AMPLIFIERS.C	S, CD and CG amplifiers- BiCMOS circuits.				
UNIT – II	FREQUENCY RESPONSE OF BJT AND FET AMPLIFIERS	9 Periods			
	ency Considerations- Low and High Frequency response of BJT and F				
	current gain - cut off frequency – $f\alpha,f\beta$ and unity gain bandwidth	– Miller Effect			
Capacitance-M	lultistage Frequency Effects.				
UNIT – III	FEEDBACK AMPLIFIERS AND OSCILLATORS	9 Periods			
	cepts- effect of feedback on gain stability, distortion, bandwidth, in				
-	Types of feedback amplifiers-stability-Gain and Phase mar				
-	. OSCILLATORS: Barkhausen criterion for oscillation - Hartley & Colpit	tťs oscillators –			
crystal oscillat					
UNIT – IV	TUNED AMPLIFIERS AND WAVE SHAPING CIRCUITS	9 Periods			
	ned amplifiers – capacitor coupled single tuned amplifier – double tu				
	ading single tuned and double tuned amplifiers on bandwidth -				
-	ability of tuned amplifiers. WAVE SHAPING CIRCUITS: Pulse circuits	-RC integrator			
	ator circuits – diode clampers and clippers.				
UNIT – V	POWER SUPPLIES AND POWER AMPLIFIERS	9 Periods			
Linear mode power supply - HW & FW Rectifiers - Filters- Voltage regulators- Over voltage					
protection - Switched mode power supply (SMPS) - Regulated DC Power Supply.Power amplifiers-					
Class A-Class B-Class AB-Class C-Power MOSFET-Temperature Effect- Class AB Power amplifier					
using MOSFET					
Contact Perio					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK

1	Donald. A. Neamen, Electronic Circuits Analysis and Design, 3rd Edition, Mc Graw Hill
	Education (India) Private Ltd., 2010.
2	Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory", 11th Edition,
	Pearson Education, 2013.

REFERENCES

1	Millman J, Halkias.C.andSathyabradaJit, Electronic Devices and Circuits, 4th Edition, Mc Graw
	Hill Education (India) Private Ltd., 2015.
2	Salivahanan and N. Suresh Kumar, Electronic Devices and Circuits, 4th Edition, , Mc Graw Hill
	Education (India) Private Ltd., 2017.
3	Floyd, Electronic Devices, Ninth Edition, Pearson Education, 2012.
4	David A. Bell, Electronic Devices & Circuits, 5th Edition, Oxford University Press, 2008.
5	Anwar A. Khan and Kanchan K. Dey, A First Course on Electronics, PHI, 2006.
6	Rashid M, Microelectronics Circuits, Thomson Learning, 2007.

23PTL203	ANALOG INTEGRATED CIRCUITS	SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	С
ELECTRON DEVICES AND CIRCUITS	РС	3	0	0	3

	Upon completion of this course, the students will be familiar wit	h:				
Objective	• To understand the characteristics and applications of Operati	onal amplifiers,				
	data converters and operation and applications of special fun	ction ICs.				
UNIT – I	BASICS OF OPERATIONAL AMPLIFIERS	9 Periods				
Differential am	plifier-Differential mode gain, common mode gain and CMRR -curren	t mirror-Widlar				
current mirror	c - Building blocks of 741 operational amplifier-I/O stages, gain a	stage and level				
translator stage	e of 741op-amp -Characteristics of an Ideal and practical - Operationa	al Amplifier-Op-				
amp paramete	ers, DC & AC performance characteristics- frequency respons	e – frequency				
compensation.						
	APPLICATIONS OF OPERATIONAL AMPLIFIERS	9 Periods				
	cations: voltage follower - inverting, non-inverting amplifiers-sur					
	plifiers-instrumentation amplifiers-difference amplifier Nonlinear					
	erentiator-precision half wave & full wave rectifiers- peak detector					
0	nti-log amplifiers. Open loop applications: Comparator-zero cro	ssing detector-				
	tor-Schmitt trigger.					
	OSCILLATORS AND MULTIVIBRATORS	9 Periods				
	iterion- loop gain -Design of Oscillators: RC phase shift oscillato	0				
	lare wave generator - Triangular wave generator-Saw tooth wave gen					
	nal block diagram and description of Astable & Mono-stable multi-	vibrators using				
	tions: Missing pulse detector, PWM, FSK generator, Schmitt trigger.					
	ACTIVE FILTERS AND DATA CONVERTERS	9 Periods				
	Sallen-Key filter structure- Design of I order and II order Butterwo					
	s, Band pass filters- Switched capacitor filter- Data Converters: D					
	- weighted resistor type, Voltage Mode and Current-Mode R 2R					
	A converters, high speed sample-and-hold circuits- A/D Converters –	-				
Flash type – Counter type - Successive Approximation type - Dual Slope type A/D converters.						
	PLL AND SPECIAL FUNCTION ICS	9 Periods				
Operation of the basic PLL, Closed loop analysis, Voltage controlled oscillator, Monolithic PLL IC						
565, application of PLL for AM detection, FM detection, FSK demodulation and Frequency						
synthesizing -IC Voltage regulators – Three terminal fixed and adjustable voltage regulators - IC 723						
general purpos	e regulator - Voltage to Frequency converter- Audio Power amplifier	IC.				
a	ds:					
Contact Period						
Contact Period Lecture: 45 Pe		eriods				

TEXT BOOKS:

1	D.RoyChoudhry and Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd.,4th
	Edition 2010
2	Ramakant A. Gayakwad, "OP-AMPs and Linear Integrated Circuits", 4th Edition, Prentice Hall / Pearson Education, 2015.

REFERENCES:

1	Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", 4th
	Edition, Tata McGraw-Hill, 2014
2	Gray and Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley International,
	2009.
3	S.Salivahanan and V.S. Kanchana Bhaaskaran, "Linear Integrated Circuits", Tata McGraw Hill
	Publishing company Ltd, 1st Edition, 2009.
4	Somanathan Nair, "Linear Integrated Circuits, Analysis, Design and Applications", Wiley India
	Publishers, 1st Edition, 2009

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	РС	3	0	0	3

Course	ourse To understand the theoretical and design aspects of digital circuits for designing				
Objective	e digital system				
UNIT - I	DIGITAL FUNDAMENTALS	9 Periods			
Number Syste	Number Systems - Decimal, Binary, Octal, Hexadecimal, 1's and 2's complements, Codes - Binary,				
	, Gray, Alphanumeric codes, Boolean theorems, Logic gates, Universa				
	product of sums, Min terms and Max terms, Karnaugh map Minimiza				
-	thod of minimization. Introduction to Verilog HDL.	·			
UNIT - II	COMBINATIONAL CIRCUIT DESIGN	9 Periods			
Design of Half	and Full Adders, Half and Full Subtractors, Binary Parallel Adder - C	arry look ahead			
Adder, BCD Ad	dder, Binary Multiplier, Multiplexer, Demultiplexer, Magnitude Compa	arator, Decoder,			
Encoder, Prior	ity Encoder.				
UNIT - III	SYNCHRONOUS SEQUENTIAL CIRCUITS	9 Periods			
Flip flops - SR	, JK, T, D, Master/Slave. FF operation and excitation tables, Triggering	g of FF, Analysis			
and design o	f clocked sequential circuits - Moore/Mealy models, state mini	mization, state			
assignment, ci	rcuit implementation. Design of Counters- Ripple Counters: Binary,	BCD, Modulo n,			
	inters-Counter for Random Sequence - Shift registers: -Universal	Shift Register-			
Synchronous of	counters-Ring counter-Johnson counter.				
UNIT - IV	IIT - IVASYNCHRONOUS SEQUENTIAL CIRCUITS9 Periods				
	Design of Asynchronous Sequential Circuits-Reduction of Flow Tal				
Unstable state	es, state reduction, output specifications, cycles and races, race fre	ee assignments,			
Hazards: Esse	ntial Hazards, Pulse mode sequential circuits, Design of Hazard free	e circuits- Clock			
skews.	skews.				
UNIT - V	MEMORY AND PROGRAMMABLE LOGIC DEVICES	9 Periods			
Basic memory structure: ROM – PROM, EPROM, EEPROM, EAPROM, RAM: Static and dynamic RAM -					
Programmable Logic Devices: Programmable Logic Array (PLA) - Programmable Array Logic (PAL)					
- Field Programmable Gate Arrays (FPGA) - Implementation of combinational logic circuits using					
	PLA, PAL,CPLD's. TTL and CMOS Logic families.				
Contact Perio		_			
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods			

TEXT BOOK

1	M.Morris R.Mano and Michael D.Ciletti," Digital Design", 4th Edition, Pearson Education,2011.
2	M.Morris R.Mano and Michael D.Ciletti, "Digital Design: With an Introduction to the Verilog
	HDL", 5 th Edition, Pearson Education, 2013.

REFERENCES:

1	Charles H.Roth., "Fundamentals of Logic Design", 6thEdition,Thomson Learning, 2013
2	Thomas L. Floyd, "Digital Fundamentals",10thEdition, Pearson Education Inc,2011
3	S.Salivahanan and S.Arivazhagan, "Digital Electronics', Ist Edition, Vikas Publishing House pvt
	Ltd,2012.
4	Anil K.Maini, " Digital Electronics" , Wiley, 2014.8
5	Soumitra Kumar Mandal, "Digital Electronics", McGraw Hill Education Private Limited, 2016.

ANALOG AND DIGITAL INTEGRATED CIRCUITS LABORATORY

CATEGORY	L	Τ	P	С
РС	0	0	3	1.5
(

Course	To Design and construct analog circuits using ICs 741 and 555, Digital Circuits
Objective	using Logic gates, Flip Flops and MSI devices.
	Counters.
Contact Periods: Lecture: 0 Period	s Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

REFERENCES

1.	D. Roy Choudhry and Shail Jain, "Linear Integrated Circuits", New Age International Pvt.
	Ltd.,4th Edition 2010.
2.	Ramakant A. Gayakwad, "OP-AMPs and Linear Integrated Circuits", 4th Edition, Prentice Hall
	/ Pearson Education, 2015.
3.	Morris Mano, "Digital Design", 4th Edition, Pearson Education, 2011.
4.	A.Anand Kumar, "Fundamentals of Digital Circuits", 2nd Edition, PHI Learning Pvt. Ltd,
	NewDelhi,2011.