GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E. CIVIL ENGINEERING - PART TIME 2023 REGULATIONS - CURRICULUM (Part Time Candidates admitted during 2023-2024 and onwards)

SECOND SEMESTER

SI.	Subject		СА	End	Total	Hours/week					
No.	Code	Course Title	Marks	Sem. Marks	Marks	L	Т	Р	С		
THEORY											
1	23PTC201	Construction Materials40601			100	3	0	0	3		
2	23PTC202	Plane and Geodetic Surveying	40	60	100	3	0	0	3		
3	23PTC203	Strength of Materials	40	60	100	3	0	0	3		
4	23PTC204	Engineering Geology	40	60	100	3	0	0	3		
	PRACTICAL										
5	23PTC205	Materials Testing Laboratory	40	60	100	0	0	3	1.5		
		TOTAL	200	300	500	12	0	3	13.5		

23PTC201	CONSTRUCTION MATERIAL	SEMESTER II				
PREREQUIS	ITES	CATEGORY	L	Τ	Р	С
	NIL	ES	3	0	0	3
Course	To learn the testing procedures and application	ons of material	s used	for	build	ling
Objectives	construction.					
UNIT – I	STONES, BRICKS AND TIMBER			9	Peri	ods
Stone as build	ing material – Tests on stones – Deterioration of	stone work – Br	icks – (Class	ificat	ion
– Manufacturi	ng of bricks - Tests onbricks - Timber - Clas	sification – Sea	soning	– De	efects	s in
Timber-Partic	le boards.					
UNIT – II	LIME, CEMENT, AGGREGATES ANDMO	RTAR		9	Peri	ods
Lime – Lime 1	nortar - Cement - Manufacturing process - Bogu	e's Compounds	– Type	s and	l Gra	des
- Cement and	Cement Mortar properties - Tests on Cement a	and Cement Mo	rtar – J	Aggr	egate	es –
Requirements	of good aggregate -Classifications- Tests on aggregate	regates.				
UNIT – III	CONCRETE			9	Peri	ods
Concrete – In	gredients - Manufacturing Process - Batching	plants - Mixin	g – Tı	ansp	ortin	g –
Placing and C	ompaction of concrete - Curing and Finishing -	- MixDesignand	Proport	ion_'	Tests	on
fresh and har	dened concrete - Destructive, Semi-destructiv	e and Non-des	tructive	Tes	sting	on
Concrete.						
UNIT – IV	OTHER CONSTRUCTIONMATERIALS			9	Peri	ods
Steel – Types	and Tests - Glass - Types and Applications	– Floor Finish	Materi	als –	Roof	ing
Materials–Pair	nts and Varnishes – Constituents and types–Acous	stic Materials –P	avemer	nt Ma	teria	ls –
Water Proofing	g Materials –Sealants for joints.					
$\mathbf{UNIT} - \mathbf{V}$	UNIT - VMODERN CONSTRUCTION MATERIALS9 Period					
Composite Ma	terials – Types and Applications–Fibre Reinforce	ed Plastics – Pol	ymer ba	ased	build	ing
materials – Cla	ay Products – Aluminum Products – Insulation Mat	terials –Propertie	es and A	Appli	catio	ns–
Smart Materials –Sustainable building materials.						
Contact Periods:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

TEXT BOOK

1	G.S.Birdie, T.D.Ahuja, "Building Construction and Construction Materials", Dhanpatrai
	publishing company, New Delhi, 2012.
2	Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, "Building Construction", Laxmi
	Publications Pvt.Ltd., 2016.

REFERENCES

1	Varghese.P.C, "Building Materials", PHI Learning Pvt. Ltd, New Delhi, 2015.
2	Gambhir. M.L., &NehaJamwal., "Building Materials, Products, Properties and Systems",
	Tata McGraw Hill Educations Pvt. Ltd, New Delhi, 2012.
3	Sushil Kumar, "Building Construction", Standard Publications, New Delhi, 2016.
4	Shetty, M.S&Jain, A.K, "Concrete Technology: Theory and Practice", S. Chand and Company
	Ltd, New Delhi, 2019.

COUR	SE OUTCOMES:	Bloom's
Upon d	completion of the course, the students will be able to:	Taxonomy
		Mapped
CO1	Examine and compare the properties of most common and advanced	K2
COI	building materials.	
CO2	Identify the appropriate quality of lime, cement, and aggregates.	K2
CO3	Demonstrate the specifications, production and testing methods of	K1
COS	concrete.	
CO4	Recognize the characteristics and applications of construction	K2
CO4	materials.	
CO5	Select the suitable modern materials for construction.	K3

23PTC202

PLANE AND GEODETIC SURVEYING

SEMESTER II

PREREQUIS	L	Т	Р	С					
	NIL	3	0	0	3				
Course	Course To understand the basic principle and concepts of different surveying methods to								
Objectives	Objectives calculate various measurements using survey instruments.								
UNIT – I	INTRODUCTION, LEVELLING AND CONTOURING		9 Pe	eriods					
Definition- Pr	inciples - Classification – Field and Office work – Scales – Co	onvent	ional	Signs	5.				
Basic Terms	- Types of Level - Fundamental Axes - Levelling staff	– Be	nch	Mark	s –				
Temporary an	nd Permanent Adjustments - Types of Levelling - Curva	ture a	nd R	efract	ion				
correction -	Reciprocal Levelling-Calculation of Areas and Volu	imes.	Co	ntouri	ng–				
Characteristic	s and Uses of Contours –Methods of contouring.								
UNIT – II	THEODOLITE SURVEYING		9 P	eriods	3				
Theodolite-ty	pes-Terms-Temporary and Permanent Adjustments-Measure	ement	of H	lorizoi	ntal				
Angles by l	Repetition and Reiteration – Closing Error and Distr	ibutior	ı —	Omit	tted				
measurements									
UNIT – III	CURVES AND HYDROGRAPHIC SURVEYING		9 Pe	eriods	1				
Simple curves	-Elements-Setting out of curves-Linear and angular methods.								
Shore line sur	vey–Sounding–Equipment– Methods of Locating.								
UNIT – IV	TRIANGULATION		9 Pe	eriods					
Triangulation	classification – Routine- Intervisibility - Signals and Towers.								
Trigonometric	al Levelling - Geodetical observations-Curvature cor	rection	- R	efract	ion				
correction – A	xis signal correction–Difference in elevation.								
UNIT – V	MODERN SURVEYING INSTRUMENTS		9 Pe	eriods					
Total Station-	Principle-classification-working. Drone Surveying – Introduc	ction -	App	licatio	ons.				
GPS-Developments -Basic Concepts-Segments -Applications. DGPS - Introduction.									
Contact Periods:									
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods To	tal: 4	l5 Pe	eriods					

TEXT BOOK:

1	Punmia B.C, Ashok K Jain, Arun K Jain. "Surveying, Vol. I &II", Lakshmi Publications, 2022.
2	Basak N.N, "Surveying and Levelling" , Tata McGraw-Hill, Publishing Company, 2 nd edition, 2014.

REFERENCES:

1	Kanetkar.T.P, and Kulkarni.S.V, "Surveying and Levelling, Vol. I & II", Pune
	Vidyarthi Griha Prakashan,2014.
2	Bhavikatti S.S, "Surveying and Levelling, Vol.I&II", I.K. International Pvt. Ltd., 2016.
3	Duggal S.K. "Surveying, Vol.I&II", Tata McGraw-Hill Publishing Company, 2017.
4	Charles D Ghilani, Paul R Wolf., "Elementary Surveying", PrenticeHall,2012.
5	Chandra A.M., "Plane Surveying", New Age International Pvt. Ltd, 2015.

COU	COURSE OUTCOMES:					
		Taxonomy				
On co	Mapped					
CO1	Apply different survey method, Interpret level data using different types	K3				
	of levelling techniques and plot contour map by various contouring					
	methods.					
CO2	Determine the horizontal distances, vertical distances and area by using	K3				
	theodolite.					
CO3	Set out the curves using survey instruments and apply the principles of	K3				
	hydrographic surveying.					
CO4	Execute triangulation method, Trigonometric levelling to find horizontal	K3				
	distance, difference in elevation and area.					
CO5	Apply modern surveying principles and techniques in civil engineering	K3				
	applications.					

COURSE ARTICULATION MATRIX:

8) CO	and F	PO Ma	apping	5										
COs/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3		2					1		2	2		2	2
CO2	3	3		2					1		2	2		2	2
CO3	3	3		2					1		2	2		2	2
CO4	3	3		2					1		2	2		2	2
CO5	3	3		2					1		2	2		2	2
23PT	3	3		2					1		2	2		r	2
C202	5	5							1			2		Δ	Δ
1 - Slight	1 – Slight, 2 – Moderate, 3 – Substantial														

23PTC203	C203STRENGTH OF MATERIALSSE								
PREREQUISITI	ËS	CATEGOR	RY	L	Т	P	С		
ENGINEE	ERING MECHANICS	ES		3	0	0	3		
Course Objectives	 To learn the basics of shear and bending stresses and evaluate complex stress problems. To understand the behaviour of beams in bending and twisting. To impart knowledge on different methods of finding deflection of beam. To get the concepts on analysis of stresses in cylinders and columns. 								
UNIT – I	SIMPLE AND COMPLEX STRESSES				9	Per	iods		
Simple Stresses: Axial Members - Deformation, strain, simple stress, Elastic constants - Compound Bars – Thermal Stresses Compound Stresses: Two mutually Perpendicular direct stresses – Principal Planes and Principal									
Stresses – Two-Di	mensional Stress System – Mohr's circle					.			
UNII – II	BEAMS		E		<u>,</u>	Per	10 0 S		
Bending and she stress.	ear stresses: Bending Stress – Combined Direct	and Bending	g Str	esse	s -	Shea	ring		
UNIT – III	DEFLECTION OF BEAMS				9	Per	iods		
Deflection of be	ams: Deflection Curve – Differential Equation	– Double Ir	ntegr	atio	n N	letho	od –		
Macaulay's Meth	od – Conjugate Beam Method.			1		<u> </u>	• •		
UNIT – IV	TORSION AND CYLINDERS		•		9	Per	iods		
Torsion: Torsion of Circular and Hollow Shafts –Elastic Theory of Torsion - Stresses and Deformation in Circular Solid and Hollow Shafts – Stepped Composite Shafts – Combined Bending Moment and Torsion on Shafts –Power Transmitted to a Shaft – Shafts in Series and Parallel. Thin Cylinders: Hoop and Longitudinal stresses – Volumetric Strain.									
UNIT – V	COLUMNS AND THEORIES OF ELASTIC	FAILURE			9	Per	iods		
Columns: Theory Load for Columns bending and axial Theories of Elas Theories for Two Contact Periods: Lecture: 45 Perio	y of Columns eccentric load – Slenderness Ra s- Euler's Theory – Assumptions and Limitations load. stic Failure: Failure theories – Factor of Safet Dimensional Stress System. 45 Periods ods Tutorial: 0 Periods Practical: 0 Period	atio – End Co – Rankine's l ty – Graphica ds Total: 45	ondit Form al R	ions nula epre	s –] – C esent	Buck omb tatio	tling ined n of		
TEXT BOOK	"Strength of Materials (Mechanics of Solid	s" S Chand	& c	omr	anv	Ltd	I N		

Delhi, 7th edition, 2018.
Vaidyanathan.R, Perumal.P and Lingeswari.S, "Mechanics of Solids and Structures, Volume I", Laxmi Publications Pvt Ltd, Chennai, 2017.

REFERENCES

1	Ferdinand Beer, E.Russell Johnston and John Dewolf, "Mechanics of Materials",
	Mc Graw Hill Education, 2015
2	Daniel Schodek and Martin Bechthold, "Structures", Pearson India Education Services
	Pvt Ltd, 2015
3	Singh. D.K., "Strength of Materials", Ane Books Pvt Ltd., New Delhi, 2021.
4	Beer. F.P. & Johnston. E.R. "Mechanics of Materials", Tata McGraw Hill, 8th Edition,
	New Delhi 2019.

COUI	RSE OUTCOMES:	Bloom's
On co	mpletion of the course, the students will be able to:	Taxonomy
		Mapped
CO1	Describe the fundamental concepts of stress, strain and principal stresses.	K2
CO2	Plot shear force and bending moment diagrams and determine bending	K3
	stress distribution in beams.	
CO3	Determine the deflection of beams.	K3
CO4	Analyze the shaft subjected to twisting.	K3
CO5	Identify the stresses in cylinders, behavior of columns and theory of	K3
	elastic failures.	

23PTC2	204	ENGINEERING GEOLOGY	SI	EMES	STER	X II
PREREQU	ISITES		L	Т	P	С
		NIL	3	0	0	3
Course	To unde	erstand the importance of geological knowledge such as earth	n, min	erals,	rock	s and
Objectives	apply G	eological Knowledge in projects such as dams, tunnels, brid	ge co	nstruc	tions	
UNIT – I	GENE	RAL GEOLOGY		91	Perio	ds
Interrelation	ship betv	veen Geology and civil engineering – Branches of Geology	– Ea	rth Sti	ructu	re and
composition	-Geolog	gical processes – Weathering – work of rivers, sea, wind	and t	heir E	Ingin	eering
significance	- Earthq	uakes -Earthquake Zones in India - Volcanoes - Gro	und	water	- 0	Drigin,
Occurrence,	Properti	es of rock – Geological work of ground water – Importance i	n Civ	il Eng	ineer	ing.
UNIT – II	MINE	CRALOGY		91	Perio	ds
Elementary	knowled	lge on symmetry elements of important Crystallographic	e syst	ems	– Ph	ysical
properties of	f mineral	s - Study of the following rock forming minerals - Quartz f	amily	, Fels	par fa	amily,
Augite, Hor	nblende,	Biotite , Muscovite, Calcite, Garnet. Ore minerals - I	Haem	atite,	Mag	netite,
Bauxite, Gra	phite, M	agnesite – Clay minerals – Properties and Engineering signif	ficanc	e.		
UNIT – III	PETR	COLOGY		91	Perio	ds
Formation a	and Clas	sification of rocks and their distinctive properties - Des	scripti	ion, C)ccur	rence,
Engineering	properti	es and Distribution of the following rocks - Igneous rocl	ks – (Granit	e, Sy	enite,
Diorite, Gal	obro, Pe	gmatite, Dolerite and Basalt. Sedimentary rocks- Sandsto	ne, L	imest	one,	shale,
Conglomera	te, and B	reccia – Metamorphic rocks – Quartzite, Marble, Slate, phyl	lite, C	Sneiss	and s	schist.
UNIT – IV	STRU	UCTURAL GEOLOGY		91	Perio	ds
Attitude of l	beds Dip	and Strike - Uses of Clinometer compass - Outcrops - Ge	eologi	ical m	aps -	- their
uses – Struct	tural feat	ures – Folds, Faults, Unconformities and Joints – their signif	ficanc	e on e	engin	eering
construction	s.					
$\mathbf{UNIT} - \mathbf{V}$	GEOI	LOGICAL INVESTIGATIONS		91	Perio	ds
Geophysical	investig	ations - Seismic and electrical resistivity methods - Aeri	ial Ph	oto a	nd sa	tellite
imageries-In	terpretat	ion of remote sensing data-Exploration for ground	water	r —	Geol	ogical
investigation	ns pertair	ing to Dam and Reservoir, Tunnels and Road cuttings - La	andsli	des –	cause	es and
prevention –	Sea eros	sion and coastal protection.				
Contact Per	riods:					
Lecture: 45	Periods	Tutorial: 0 Periods Practical: 0 Periods Total: 45	Perio	ods		
TEXT	ROOK					
1 Par	hin Sing	h "Engineering and General Geology" Fighth Revised	Editiv	on Sk	K Kat	aria &
Son	s New De	elhi. 2015		5.1		and a
2 Var	ghese, P	C., "Engineering Geology for Civil Engineering" PHI Lea	arnin	g Priv	ate L	imited,
New	y Delhi, 2	2012.				

REFERENCES

1	F.G.Bell.	"Fundamentals of	f Engineering	Geology", B.S.	Publications.	Hyderabad 2011
---	-----------	------------------	---------------	----------------	---------------	----------------

2 N. Chenna Kesavulu. "Textbook of Engineering Geology", Macmillan India Ltd., 2009.

3 Venkatareddy. D. "Engineering Geology", Vikas Publishing House Pvt. Ltd. 2010

4 KVGK Gokhale, "Principles of Engineering Geology", BS Publications, Hyderabad 2011.

COU	RSE OUTCOMES:	Bloom's
On co	mpletion of the course, the students will be able to:	Taxonomy
		Mapped
CO1	Understand the internal structure of earth and its relation to volcanism	
	and the various geological agents.	K1,K2
CO2	Identify the properties and uses of Minerals.	K1
CO3	Understand the formation and Engineering properties of rocks.	K1,K2
CO4	Apply fundamental knowledge in structural geology like fault, fold	K1,K2
	and Joints	
CO5	Knowledge in design and construction of major civil engineering	K1,K2
	structures.	

COURSE ARTICULATION MATRIX:

a) CO and I	PO M	appin	g											
COs/PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2						1						1	2
CO2	2												1	1
CO3	2					1				1			1	1
CO4		1		2		1	1	2		1	1	1	1	1
CO5		1	1	2	1	2	2	2		1	1	1	1	2
23PTC204	2	1	1	2	1	1	1	2	-	1	1	1	1	1
1 - Slight, 2	– Mod	lerate,	3-S	ubstar	ntial									

23PTC205	5	MATERIALS TESTING LABORATO	RY	SEN	1EST	ſER	III
PREREQUIS	SITES		CATEGOR	Y L	T	P	С
		NIL	ES	0	0	3	1.5
Course	To de	al with experimental determination and evaluation	n of mechanic	al cha	acter	istic	s and
Objectives	behav	iour of construction materials and to familiar	ize experiment	ntal p	roced	lures	and
	comn	non measurement instruments, equipment and devi	ces.				
		*LIST OF EXPERIMENTS					
1. Mecha	nical j	properties of tor steel rod as per IS Code 1786 (200)8)				
2. Weigh	t per r	unning metre of steel rod					
3. Tensio	n and	compression test on springs.					
4. Test or	n Bricl	ks: Visual observation, Compression test, Water al	osorption test	and Ef	flore	scen	ce
test as	per IS	3495-1 to 4 (1992)					
5. Hardne	ess tes	t on different metals.					
6. Deflect	tion te	st on simply supported beams (for different metals	s).				
7. Deflect	tion te	st on cantilever beams (for different metals).					
8. Bendin	ng test	on rolled steel joist					
9. Flexure	e test o	on tiles					
10. Compr	ressior	test on Hallow/Concrete Blocks					
Contact Perio	ods.						
Lecture: 0 Pe	eriods	Tutorial: 0 Periods Practical: 45 Periods	Total: 45 l	Period	S		

COU	RSE OUTCOMES:	Bloom's
On co	mpletion of the course, the students will be able to:	Taxonomy
		Mapped
C O 1	Determine the tensile strength of materials	K3
CO2	Obtain bending properties of structural materials	К3
C O 3	Determine the hardness properties of the materials	К3
CO4	Predict the compressive strength of the materials	K3