

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

Curriculum For M. E. THERMAL ENGINEERING

2023 Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

VISION

To create outstanding Mechanical Engineers with strong domain knowledge and skills capable of working in an Interdisciplinary environment with exemplary ethical values contributing to society through Innovation, Entrepreneurship and Leadership.

MISSION

- To develop in each student, a strong theoretical and practical knowledge, a global outlook for a sustainable future and problem solving skills.
- To make productive members of interdisciplinary teams, capable of adapting to changing environments of Engineering, technology and society.
- To inculcate critical thinking abilities among students to enhance innovative ideas and entrepreneurial skills, leadership qualities.
- To imbibe moral and ethical values along with leadership qualities in students.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 M.E. THERMAL ENGINEERING

SL	Course			CA	End	Total		Hours	/Wee	k
No.	Code	Course Title	Category	ategory Marks		Marks	L	Т	Р	C
		•	THEORY							
1	23TEFCZ1	RESEARCH METHODOLOGY AND IPR (Common to all branches)	FC	40	60	100	3	0	0	3
2	23TEFC02	ADVANCED MATHEMATICS FOR THERMAL ENGINEERING	FC	40	60	100	3	1	0	4
3	23TEPC01	ADVANCED THERMODYNAMICS	РС	40	60	100	3	1	0	4
4	23TEPC02	ADVANCED FLUID DYNAMICS	РС	40	60	100	3	1	0	4
5	23TEPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3
6	23TEPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3
7	23TEACXX	AUDIT COURSE I	AC	40	60	100	2	0	0	0
			PRACTICAL	Red	0					
8	23TEPC03	ADVANCED IC ENGINES AND SIMULATION LABORATORY	РС	60	40	100	0	0	4	2
		TOTAL		340	460	800	20	3	4	23

FIRST SEMESTER

SECOND SEMESTER

SI	Course	A	Q.	CA	End	Total		Hours,	/Weel	K
No.	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
			THEORY	ST LAND						
1	23TEPC04	ADVANCED HEAT AND MASS TRANSFER	PC	40	60	100	3	1	0	4
2	23TEPC05	COMPUTATIONAL FLUID DYNAMICS	РС	40	60	100	3	1	0	4
3	23TEPC06	FUEL CELL TECHNOLOGY	РС	40	60	100	3	0	0	3
4	23TEPC07	MANUFACTURING AND TESTING OF IC ENGINES AND COMPONENTS	PC	40	60	100	3	0	0	3
5	23TEPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3
6	23TEACXX	AUDIT COURSE II	AC	40	60	100	2	0	0	0
			PRACTICA	L						
7	23TEPC08	ADVANCED COMBUSTION LABORATORY	РС	60	40	100	0	0	4	2
8	23TEEE01	MINI PROJECT	EE	40	60	100	0	0	4	2

TOTAL	340	460	800	17	2	8	21
-------	-----	-----	-----	----	---	---	----

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E.MECHANICAL ENGINEERING

THIRD SEMESTER

SI.	Course Code	Course Title	Category	СА	End Sem	Total		Hour	s/Week	Ι.
No	course coue	course rick	category	Marks	Marks	Marks	L	Т	Р	С
			THEORY							
1	23TEPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3
2	23\$\$OEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3
			PRACTICAI							
3	23TEEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	-	100	0	0	*	2
4	23TEEE03	PROJECT PHASE I	EEC	100	100	200	0	0	12	6
	TOTAL			280	220	500	6	0	12	14

* Internship / Industrial Training Four Weeks

FOURTH SEMESTER

SL	SL CA End Sem Total Hours/Week											
No	Course Code	Course Title	Category	Marks	Marks	Marks	L	T	P	C		
	THEORY											
1	23TEEE04	PROJECT PHASE II	EEC	200	200	400	0	0	24	12		
		TOTAL		200	200	400	0	0	24	12		
			1 8 0									

LIST OF EMPLOYABILITY ENHANCEMENT COURSE

S. No	Course Code	Course Title	Category	Continuous Assessment Marks	End Sem Marks	Total Marks	L	Т	Р	С
1	23TEEE01	MINI PROJECT	EEC	40	60	100	0	0	4	2
2	23TEEE02	INDUSTRIAL TRAINING	EEC	100	-	100	0	0	*	2
3	23TEEE03	PROJECT PHASE I	EEC	100	100	200	0	0	12	6
4	23TEEE04	PROJECT PHASE II	EEC	200	200	400	0	0	24	2
		TOTAL		440	360	800	0	0	40	12

* Internship / Industrial Training Four Weeks

S. No	Course Code	Course Title	Category	Continuous Assessment Marks	End Sem Marks	Total Marks	L	Т	Р	С
		PROFE	ESSIONAL ELE	CTIVE I			I			
1	23TEPE01	THERMODYNAMICS AND COMBUSTION	PE	40	60	100	3	0	0	3
2	23TEPE02	ARTIFICIAL INTELLIGENCE IN THERMAL SYSTEMS	PE	40	60	100	3	0	0	3
3	23TEPE03	ADVANCED GAS TURBINES	PE	40	60	100	3	0	0	3
4	23TEPE04	DESIGN OF CONDENSERS, EVAPORATORS AND COOLING TOWERS	PE	40	60	100	3	0	0	3
5	23TEPE05	INSTRUMENTATION IN THERMAL ENGINEERING	PE	40	60	100	3	0	0	3
		PROFE	SSIONAL ELE	CTIVE II						
6	23TEPE06	ENGINE ELECTRONICS	PE	40	60	100	3	0	0	3
7	23TEPE07	FINITE ELEMENT METHODS IN THERMAL ENGINEERING	PE	40	60	100	3	0	0	3
8	23TEPE08	ADVANCED GAS DYNAMICS AND SPACE PROPULSION	PE	40	60	100	3	0	0	3
9	23TEPE09	STEAM ENGINEERING	PE	40	60	100	3	0	0	3
10	23TEPE10	SUPERCHARGING AND SCAVENGING	PE	40	60	100	3	0	0	3
		PROFE	SSIONAL ELEO	CTIVE III						
11	23TEPE11	REFRIGERATION AND CRYOGENICS	PE	40	60	100	3	0	0	3
12	23TEPE12	THERMAL ENERGY SYSTEMS	PE	40	60	100	3	0	0	3
13	23TEPE13	ENGINE POLLUTION AND CONTROL	PE	40	60	100	3	0	0	3
14	23TEPE14	AIR CONDITIONING SYSTEM DESIGN	PE	40	60	100	3	0	0	3
15	23TEPE15	SOLAR ENERGY AND WIND ENERGY	PE	40	60	100	3	0	0	3
		PROFES	SIONAL ELEC	TIVE IV						
16	23TEPE16	BIO-ENERGY CONVERSION TECHNIQUES	PE	40	60	100	3	0	0	3
17	23TEPE17	ENVIRONMENTAL ENGINEERING AND POLLUTION CONTROL	PE	40	60	100	3	0	0	3
18	23TEPE18	MODELING OF CI ENGINE PROCESSES	PE	40	60	100	3	0	0	3
19	23TEPE19	ENERGY AUDITING AND MANAGEMENT	PE	40	60	100	3	0	0	3
20	23TEPE20	ELECTRIC AND HYBRID VEHICLES	PE	40	60	100	3	0	0	3

LIST OF PROFESSIONAL ELECTIVE

LIST OF OPEN ELECTIVE COURSES

SI	SI. C		Catego	CA	End	Total	Н	ours/	ours/Week	
No	Course Code	Course Title	ry	Marks	Sem Marks	Marks	L	Т	Р	С
1	23SEOE01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3
2	23SEOE02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3
3	23SEOE03	GREEN BUILDING	OE	40	60	100	3	0	0	3
4	23EEOE04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3
5	23EEOE05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3
6	23EEOE06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3
7	23GEOE07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3
8	23GEOE08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3
9	23GEOE09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3
10	23ED0E10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3
11	23ED0E11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3
12	23EDOE12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3
13	23MF0E13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3
14	23MFOE14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3
15	23MF0E15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3
16	23TEOE16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3
17	23TEOE17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3
18	23TEOE18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3
19	23PSOE19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3
20	23PSOE20	ELECTRICITY TRADING & ELECTRICITY ACTS	OE	40	60	100	3	0	0	3
21	23PSOE21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3
22	23PEOE22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PEOE23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PEOE24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AEOE25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AEOE26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3
27	23AE0E27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3
31	23CSOE31	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	OE	40	60	100	3	0	0	3
32	23CSOE32	COMPUTER NETWORK ENGINEERING	OE	40	60	100	3	0	0	3
33	23CSOE33	BIG DATA ANALYTICS	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSE

S. No	Course Code	Course Title	Category	Continuous Assessment Marks	End Sem Marks	Total Marks	L	Т	Р	С	
			THEOR	Y							
1	23TEACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0	
2	23TEACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0	
3	23TEACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0	
4	23TEACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0	
5	23TEACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0	
6	23TEACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0	
7	23TEACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	AC	40	60	100	2	0	0	0	
8	23TEACZ8	SANSKRIT FORTECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0	

CURRICULUM DESIGN

	Course Work			No of Credi	ts		Dongontago	
S.No	SubjectArea	Ι	II	III	IV	Total	Percentage	
1.	Foundation Course	7	0	0	0	07	10.00 %	
2.	Professional Cores	10	16	0	0	26	37.14%	
3.	Employability Enhancement Courses	0	2	8	12	22	31.43 %	
4.	Professional Electives	6	3	3	0	12	17.14 %	
5.	Open Elective Courses	0	0	3	0	03	4.29 %	
Total Credits		23	21	14	12	70	100.00%	

23TEFCZ1	RESEARCH METHODOLOGY AND IPR	Ι
23TEFCZ1	RESEARCH METHODOLOGY AND IPR	Ι

PREREQUISIT	TES	CATEGORY	L	Т	Р	C		
	NIL	FC	3	0	0	3		
Course	1.To impart knowledge on research methodolog	gy ,Quantitative m	etho	ods f	or p	roblem		
Objectives	solving, data interpretation and report writing							
	2. To know the importance of IPR and patent rights							
UNIT – I	INTRODUCTION			9 F	Perio	ods		
Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical								
tools for analy	rsis, Developing a research question-Choice of a	problem Literature	e re	view	Sui	veying,		
synthesizing, c	ritical analysis, reading materials, reviewing, rethinl	king, critical evalu	atior	ı, in	terpr	etation,		
Research Purpo	ses, Ethics in research – APA Ethics code.							
UNIT – II	QUANTITATIVE METHODS FOR PROBLEM SOLVIN	G		9 F	erio	ods		
Statistical Modelling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical								
Analysis and In	ference, Multivariate methods, Concepts of Correlation	n and Regression, F	unda	amer	tals (of Time		
Series Analysis	and Spectral Analysis, Error Analysis, Applications of S	pectral Analysis.						
UNIT – III	DATA DESCRIPTION AND REPORT WRITING			9 F	Perio	ods		
Tabular and gra	aphical description of data: Tables and graphs of free	quency data of one	var	iable	, Tab	les and		
graphs that sho	w the relationship between two variables , Relation bet	tween frequency di	strib	utio	ıs an	d other		
graphs, prepari	ng data for analysis. Structure and Components of Rese	earch Report, Types	s of I	Repo	rt, La	yout of		
Research Repor	t, Mechanism of writing a research report, referencing	in academic writin	g.					
UNIT – IV	INTELLECTUAL PROPERTY			9 F	Perio	ods		
Nature of Intelle	ectual Property: Patents, Designs, Trade and Copyright.	. Process of Patenti	ng a	nd D	evek	opment:		
technological re	search, innovation, patenting, development.							
International S	cenario: International cooperation on Intellectual Pro	operty. Procedure f	for g	rant	s of	patents,		
Patenting under	PCT.							
UNIT – V	PATENT RIGHTS			9 F	erio	ods		
Patent Rights: S	cope of Patent Rights. Licensing and transfer of techno	ology. Patent inforn	natio	on an	d da	abases.		
Geographical In	dications.							
Lecture: 45 Periods Tutorial:0 Periods Practical: 0 Periods Total:45 Periods								

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students", Juta Academic, 1996.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, engageLearning, 2013.
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2014.
4	Dr. C. R. Kotharia and GauravGarg, "Research Methodology: Methods and Trends", New age international publishers, Fourth Edition, 2018.

COURSE OUTCOMES:	Bloom's Taxonomy Mapped
Upon completion of the course, the students will be able to:	
CO1 Formulate research question for conducting research.	K4
CO2 Analyze qualitative and quantitative data.	K4
CO3 Interpret research findings and give appropriate conclusions.	K4
CO4 Develop a structured content to write technical report.	K4
CO5 Summarize the importance of IPR and protect their research work through the intellectual property.	ough K4
	1

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05				
C01	1	2		1	2				
CO2	2	- //		-	-				
CO3	3	3	8 3	2	2				
CO4	2	2	2	2	2				
CO5	1	1	1	1	1				
23TEFCZ1	2	2	00,0100	2	2				
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	40	40	20	-	-	-	100		
CAT2	40	40	20	-	-	-	100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100		
ESE	30	30	20	20	-	-	100		

ADVANCED MATHEMATICS FOR THERMAL ENGINEERING

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	FC	3	1	0	4

Course	Course The course is designed to teach students various techniques to solve linear, nonlinear							
Objective	equations including boundary value problems occur in engineer	ring them to the						
	important mathematical tool of numerical methods.							
UNIT – I	SYSTEM OF LINEAR AND NONLINEAR EQUATIONS	9 +3 Periods						
System of lin	System of linear equation: Gauss elimination method, Gauss Jordan method, Choleski method, Gauss							
Jacobi metho	d, Gauss-Seidel method-System of nonlinear equations: Iteration	method, Newton-						
Raphson met	hod for single variable-Eigen value problems: Power method.							
UNIT – II	9+3 Periods							
Interpolation	: Newton's forward and backward interpolation, Newton's d	ivided difference						
interpolation,	Lagrange's Interpolation-Differentiation: Newton's Formula-Nume	erical integration:						
Trapezoidal r	ule, Simpson's 1/3rd and 3/8 rules-Gaussian two- and three-point quad	lrature formula.						
UNIT – III	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL	9+3 Periods						
	EQUATIONS							
First order di	fferential equations: Taylor's series method-Euler and modified Euler'	s methods-Runge-						
Kutta metho	d of fourth order- Milne's and Adam's predictor-corrector metho	ds -Second order						
differential ec	uations: Taylor's series method.							
UNIT – IV	NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS	9+3 Periods						
Partial differe	ential equations: Finite difference solution two dimensional Laplace equ	uation and Poisson						
equation- Im	plicit and explicit methods for one dimensional heat equation (Be	nder-Schmidt and						
Crank-Nichols	son methods)-Finite difference explicit method for wave equation.							
UNIT – V	FINITE ELEMENT METHOD	9+3 Periods						
Basics of fini	Basics of finite element method: Weak formulation, weighted residual method-Shape functions for							
linear and triangular element-Finite element method for two point boundary value problems, Laplace								
and Poisson equations.								
Contact Periods:								
Lecture: 45 P	Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods							

1	S.S. Sastry, Introductory methods of numerical analysis, PHI, New Delhi, 5th Edition, 2015.
2	Ward Cheney, David Kincaid, Numerical Methods and Computing, Cengage Learning, Delhi, 7th
	Edition 2013.
3	James.G, "Advanced Modern Engineering Mathematics", Pearson Education Asia, 4th edition, 2011.
4	Grewal.B.S., "Numerical Methods In Engineering And Science", Khanna Publishers New Delhi, 2014.
5	Veerarajan.Tand Ramachandran.T, "Numerical Methods With Programming C", Tata Mc Graw Hill
	Publishing Company Ltd., New Delhi, 2011.
6	S.R.K.Iyengar, R.K Jain, "Numerical Methods", New Age International Publishers, New Delhi.

COUF	RSE OUTCOMES:	Bloom's		
On completion of the course, the students will be able to:				
C01	Solve the linear, non-linear equations and Eigenvalue problems using an appropriate numerical method.	K6		
CO2	Gain the knowledge of numerical differentiation and integration.	K6		
CO3	Construct one-step and linear multistep methods for the numerical solution of initial-value problems for ordinary differential equations and systems of such equations.	K6		
CO4	Acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes, interpret solutions in a physical context of wave and heat equation in specified techniques.	K6		
C05	Acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes, interpret solutions in a physical context of wave and heat equation in specified techniques.	K6		

ation Matrix	€ ^M	~~~~			
P01	PO2	PO3	P04	PO5	P06
3	3	The same	-	-	1
3	3		-	-	2
3	3		-	-	2
2	2		-	-	1
1	2	-	-	-	1
3	3		-	-	1
	PO13333213	PO1 PO2 3 3 3 3 3 3 3 3 2 2 1 2 3 3	P01 P02 P03 3 3 - 3 3 - 3 3 - 3 3 - 1 2 - 3 3 -	P01 P02 P03 P04 3 3 - - 3 3 - - 3 3 - - 3 3 - - 1 2 - - 3 3 - - 1 2 - - 3 3 - -	P01 P02 P03 P04 P05 3 3 - - - 3 3 - - - 3 3 - - - 3 3 - - - 3 3 - - - 2 2 - - - 1 2 - - - 3 3 - - - 3 3 - - - 3 3 - - - 1 2 - - - 3 3 - - -

ASSESSMENT H	ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	20	40	30	10	-	-	100			
CAT2	20	40	30	10	-	-	100			
Individual	-	50	30	20	-	-	100			
Assessment 1										
/ Case Study 1										
/ Seminar 1 /										
Project 1										
Individual	-	50	30	20	-	-	100			
Assessment 2										
/ Case Study 2										
/ Seminar 2 /										
Project 2										
ESE	20	40	30	10	-	-	100			

23TEPC01

ADVANCED THERMODYNAMICS

(Use of approved gas tables and charts are permitted)

PREREQUISITES	CATEGORY	L	Т	Р	С
ENGINEERING THERMODYNAMICS	РС	3	1	0	4

Course	To make the students learn the advanced concepts thermodynamic pro	perties, multi					
Objective	phase systems, chemical and statistical thermodynamics, energy at	micro level,					
	conversion of heat energy in thermodynamic systems.						
UNIT – I	AVAILABILITY AND THERMODYNAMIC PROPERTY RELATIONS	9+3 Periods					
Reversible w	Reversible work, Availability, Irreversibility and Second-Law Efficiency for a closed System and Steady-						
State Control	Volume. Thermodynamic Potentials, Maxwell relations, Generalized relation	ns for changes					
in Entropy, l	Internal Energy and Enthalpy, C_p and C_v , Clausius Clayperon Equation, Jo	oule-Thomson					
Coefficient, B	ridgmann Tables for Thermodynamic relations.						
UNIT – II	SINGLE AND MULTI PHASE SYSTEMS	9+3 Periods					
SINGLE-PHAS	SE SYSTEMS: Simple System, Equilibrium Conditions, The Fundament	tal Relations,					
Legendre Tra	ansforms, Relations between Thermodynamic Properties, EXERGY ANALYS	SIS: Non flow					
Systems, Flo	w Systems, Generalized Exergy Analysis, Air Conditioning and its types.	MULTIPHASE					
SYSTEMS: Th	ne Energy Minimum Principle, The Stability of a Simple System, The Con	tinuity of the					
Vapor and Lie	quid States, Phase Diagrams, Corresponding States.						
UNIT – III	REAL GAS AND MULTI-COMPONENT SYSTEMS	9+3 Periods					
Different Eq	uations of State, Fugacity, Compressibility, Principle of Corresponding S	states, Use of					
generalized of	charts for enthalpy and entropy departure, fugacity coefficient, Lee-Kessle	r generalized					
three parame	eter tables, Fundamental property relations for systems of variable compo	sition, partial					
molar prope	rties, Real gas mixtures, Ideal solution of real gases and liquids, Equilibri	um in multi -					
phase system	is, Gibbs phase rule for non-reactive components.						
UNIT – IV	CHEMICAL THERMODYNAMICS AND EQUILIBRIUM	9+3 Periods					
Thermo cher	mistry, First Law analysis of reacting systems, Adiabatic Flame tempera	ture, Entropy					
change of rea	cting systems, Second Law analysis of reacting systems, Criterion for reaction	n equilibrium,					
Chemical av	vailability, Equilibrium constant for gaseous mixtures, evaluation of	equilibrium					
composition,	Availability of reacting systems.						
UNIT – V	STATISTICAL THERMODYNAMICS	9+3 Periods					
Microstates	and Macrostates, Thermodynamic probability, Degeneracy of energy lev	els, Maxwell-					
Boltzman, Fe	Boltzman, Fermi-Dirac and Bose-Einstein Statistics, Microscopic Interpretation of heat and work,						
Evaluation of	fentropy, Calculation of the Macroscopic properties from partition functions	s, Equilibrium					
constant stat	istical thermodynamics approach.						
Contact Peri	ods:						
Lecture: 45	Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods						

TEXT BOOK:

Yunus Cengel, Michael Boles, "Thermodynamics: An Engineering Approach", 9th Edition, 2019.
 P.K.Nag, "Engineering Thermodynamics", Tata McGraw Hill Education, 6 th Edition, 2017.

REFERENCES:

Kenneth Wark Jr., "Advanced Thermodynamics for Engineers, McGraw-Hill Inc. New York, 1995.
 Holman, J.P., "Thermodynamics", McGraw-Hill Inc, 4th Edition, 1988.
 Smith, J.M. and Van Ness., H.C., "Introduction to Chemical Engineering Thermodynamics",

3 Smith, J.M. and Van Ness., H.C., Introduction to Chemical Engineering Inermodynamics, McGraw-Hill Inc., 4thEdition, 2005.

4 Bejan, A., "Advanced" Engineering Thermodynamics", John Wiley and Sons, 3rd edition, 2006.

⁵ Domkundwar, Kothandaraman, **"A Course in Thermal Engineering**", DhanpatRai and Co, 2008.

COUR On co	Bloom's Taxonomy Mapped	
C01	Understand the thermodynamics property and relation between them.	КЗ
CO2	Understand the concepts of Thermodynamics Phase systems.	K5
CO3	Discuss the properties of different types of gases.	K2
C04	Discuss the basic concepts of Irreversible and Chemical Thermodynamics.	K3
C05	Derive equations and calculating the properties related to statistical thermodynamics.	К5

Course Articulation Matrix			- >			
COs/POs	P01	P02	P03	P04	P05	P06
CO1	3	3	2	2	3	2
CO2	3	3	2	2	2	1
CO3	3	3	2	3	2	1
CO4	2	2	1	2	3	2
CO5	3	3	3	3	3	3
23TEPC01	3	3	2	2	3	2
1 – Slight, 2 – Moderate, 3 – Sul	ostantial	2000	SILUE			

	The second se		 		
_	-	-	 	-	_
				~ ~	

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	20	30	30	10	10	-	100			
CAT2	30	30	20	10	10	-	100			
Individual										
Assessment 1										
/ Case Study 1	20	10	10	30	30	-	100			
/ Seminar 1 /										
Project 1										
Individual										
Assessment 2										
/ Case Study 2	10	20	30	20	20	-	100			
/ Seminar 2 /										
Project 2										
ESE	30	20	15	20	15	-	100			

ADVANCED FLUID DYNAMICS

(use of approved gas tables and charts are permitted)

PREREQUISITES	CATEGORY	L	Т	Р	С
FLUID MECHANICS AND HYDRAULIC MACHINERY	РС	3	1	0	4

Course	Course To make the students learn the advanced concepts and equations of various types of								
Objective	fluid flows and realize the special effects due to turbulence, friction an	nd shock.							
UNIT – I	BASIC LAWS OF FLUID FLOW	9+3 Periods							
Condition for ir	Condition for irrotationality, circulation and vorticity Accelerations in Cartesian systems normal and								
tangential accele	erations, Euler's, Bernoulli equations in 3D– Continuity and Momentum	n Equations, Ideal							
and non-ideal f	lows, general equations of fluid motion, Navier - stokes equations	and their exact							
solutions. Bound	lary layer theory, wedge flows, laminar flow over plates and through c	ylinders.							
UNIT – II	9+3 Periods								
Prandtl's contri	bution to real fluid flows – Prandtl's boundary layer theory -Boundar	y layer thickness							
for flow over a	flat plate – Von-Karman momentum integral equation -Blasius se	olution- Laminar							
boundary layer	- Turbulent Boundary Layer - Expressions for local and mean dra	g coefficients for							
different velocit	y profiles. – Total Drag due to Laminar & Turbulent Layers –Problems.								
UNIT – III	TURBULENT FLOW	9+3 Periods							
Fundamental co	ncept of turbulence – Time Averaged Equations –Boundary Layer Eq	uations - Prandtl							
Mixing Length M	Aodel - Universal Velocity Distribution Law: Van Driest Model – Appro	ximate solutions							
for drag coeffici	ents – More Refined Turbulence Models – k-ε model - boundary laye	r separation and							
form drag – Kar	man Vortex Trail, Boundary layer control, lift on circular cylinders.								
UNIT – IV	SHOCK WAVE	9+3 Periods							
Normal and obl	ique shocks - Prandtl - Meyer expansion - Rankine Hugnoit relatio	n. Application of							
method of chara	acteristics applied to two-dimensional case - simple supersonic wind	tunnel Design of							
supersonic wind	l tunnel and nozzle.								
UNIT – V	EXPERIMENTAL TECHNIQUES	9+3 Periods							
Role of experim	ents in fluid, layout of fluid flow experiments, sources of error in e	xperiments, data							
analysis, design	n of experiments, review of probes and transducers, Introduct	ion to Thermal							
Anemometry-Hot wire anemometer, Laser Doppler Velocimetry and Particle Image Velocimetry,									
Measurement of velocity components by 3 holes and 4 holes probes.									
Contact Period	Contact Periods:								
Lecture: 45 Pe	riods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Per	riods							

TEXT BOOK:

1	Mohanty, A. K., "Fluid Mechanics" , Prentice Hall of India, 2 nd edition, 2006.
2	Yunus A Cengel, John M.Cimbala, "Fluid Mechanics: Fundamentals and Applications", McGraw-Hill, 4th
	Edition, 2019

1	Muralidhar, K and Biswas, G., "Advanced Engineering Fluid Mechanics" , Alpha Science International
	Ltd., 2015.
2	Pijush K. Kundu, Ira M Kohen and David R. Dawaling, "Fluid Mechanics", Academic Press, 5 th Edition
	2011.
3	White, F. M., "Viscous Fluid Flow", 3 rd Edition, Tata McGraw Hill Book Company, 2017.
4	"Advanced Fluid Mechanics" by Dr. Suman Chakraborty (IIT Kharagpur), NPTEL Course
	(Link: https://nptel.ac.in/courses/112/105/112105218/#)
5	"Introduction to Turbulence" by Prof. Gautam Biswas (IIT Kanpur), NPTEL Course
	(Link: https://nptel.ac.in/courses/112/104/112104120/)

COUR On co	SE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand fundamentals and Basic laws of Fluid Flows.	K3
CO2	Discuss the various laws pertaining to different Boundary layer concepts.	K5
CO3	Identify, formulate and solve problems related to fluid flows.	K5
C04	Understand and Evaluate different wave phenomena.	K5
C05	Apply fluid concepts in the experimental setups.	K5

Course Articulation Matrix										
COs/POs	P01	P02	🔨 РОЗ	P04	P05	P06				
C01	3	3	2	2	3	2				
CO2	3	3	2	2	2	1				
CO3	3	& 3	2	3	2	1				
C04	2	2	1	2	3	2				
C05	3 🖉	3	3	3	3	3				
23TEPC02	3	3	2	2	3	2				
	10 At 18 00 00 20 1									

ASSESSMENT F	ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
Category*											
CAT1	20	30	20	20	10	-	100				
CAT2	5	30	30	15	20	-	100				
Individual											
Assessment 1											
/ Case Study 1	10	20	30	20	20	-	100				
/ Seminar 1 /											
Project 1											
Individual											
Assessment 2											
/ Case Study 2	30	20	15	15	20	-	100				
/ Seminar 2 /											
Project 2											
ESE	20	25	25	15	15	-	100				

23TEPC03

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	0	0	4	2

Course	To make the students learn the importance of various types of I.C engine	s and analyze						
Objective	them using commercial open source software.							
LIST OF EXP	ERIMENTS	(45)						
1. Performance test on Spark Ignition and Compression Ignition engines using Alternative								
fı	els such as ethanol and Biofuels.							
2. P	erformance test using pressure transducers in CI and SI Engines.							
3. P	erformance and Heat balance test on I. C. Engines using a water dynamomete	er.						
4. P	erformance test on variable compression ratio petrol and diesel engines.							
5. E	mission measurement in Spark Ignition and Compression Ignition Engines	using smoke						
n	neter and gas analyzer.							
6. D	etermination of Temperature Distribution using Thermal Imager.							
7. P	erformance test on computerized Two Stage Air Compressor Test Rig.							
8. St	tudy on Drawing of Engine Components with Dimensions, Assembly and Disa	ssembly.						
9. P	erformance test on the effect of Air Fuel Ratio of the Two Stroke Single Cy	linder Petrol						
E	ngine.							
10. St	tudy on Meshing Techniques and Turbulent Modeling.							
11. F	low analysis over a Flat Plate for Boundary layer characteristics using CFD.							
12. Convection Heat transfer analysis in laminar flow inside 2D pipe								
Contact Periods:								
Lecture: 0 P	eriods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Period	ds						
COUDCE OUT	ECOMEC.	a Tawan am						

COUF	RSE OUTCOMES:	Bloom's Taxonomy Mapped
On co	mpletion of the course, the students will be able to:	
C01	Evaluate the performance of SI and CI engines.	K5
CO2	Analyze the emission characteristics of IC engines.	K4
CO3	Study the various equipment used for analysis.	K4
CO4	Apply the principles of CFD in fluid flow problems.	K5
CO5	Learn the various tools used in analysis.	К3

Course Articulation Matrix										
COs/POs	COs/POs PO1 PO2 PO3 PO4 PO5 PO6									
C01	2	2	3	2	2	2				
C02	3	3	2	1	2	2				
CO3	2	3	2	1	2	2				
C04	2	2	3	1	3	3				
C05	2	2	3	1	3	3				
23TEPC03	2	3	3	1	2	2				

PREREQUISITES	CATEGORY	L	Т	Р	С
ENGINEERING THERMODYNAMICS	PE	3	0	0	3

Course	To make the students learn advanced concents like maximum energy and	minimum								
Objective	energy combustion principles energy at micro level conversion of heat	energy into								
Objective	electrical flux of thermodynamic systems	incigy into								
UNIT – I	IINIT - I BASIC CONCEPTS OF THERMODYNAMICS 9 Periods									
Entropy Mon	basic concertist of Heat. First Low of Thermodynamics Temperature Dre	91 cilous								
Entropy ,Work and Quantity of Heat: First Law of Thermodynamics ,Temperature ,Pressure, The Free										
Energy and th	le Thermodynamic Potentials , Enthalpy, Nernst's Theorem, Carnot's Cyc	le and Carnot s								
Ineorem, Le	Chateller Principle, Dependence of the Inermodynamic Quantities on	the Number of								
Particles, Idea	Il Gases ,Ideal Gases with Constant Specific Heat: Equation of Poisson Adial	batic.								
UNIT – II	IDEAL, REAL GASES AND VAPOUR MIXTURES	9 Periods								
Introduction,	The Equation of State for a Perfect Gas, p-V-T Surface of an Ideal Gas,Inter	nal Energy and								
Enthalpy of a	Perfect Gas, Specific Heat Capacities of an Ideal Gas , Real Gases ,Vander V	Vaal's Equation,								
Virial Equation	on of State, Beattie-Bridgeman Equation, Reduced Properties, Law of	Corresponding								
States, Compr	essibility Chart,Dalton's Law and Gibbs-Dalton Law,Volumetric Analysis o	f a Gas Mixture,								
The Apparent	Molecular Weight and Gas Constant ,Specific Heats of a Gas Mixture, Adia	abatic Mixing of								
Perfect Gases	,Gas and Vapour Mixtures									
UNIT – III	FUNDAMENTALS OF COMBUSTION	9 Periods								
Thermodynar	nics, concepts of combustion – Combustion equations, heat of combust	ion Theoretical								
flame tempera	ature, chemical equilibrium and dissociation, Combustion cycles. Stoichion	metry, Theories								
of Combustio	n, Pre-flame reactions, Reaction rates, Rankine-Hugoniot relations – dete	onation branch-								
Analysis of the	e deflagration - Chapman- Jouguet waves, Laminar and Turbulent Flame p	ropagation.								
UNIT – IV	FLAME PHENOMENA IN PREMIXED COMBUSTIBLE GASES	9 Periods								
Introduction	, Laminar flame structure, The laminar flame speed , Stability limits of	laminar flames,								
Flame propag	ation through stratified combustible mixtures, Turbulent reacting flows	s and turbulent								
flames, The tu	urbulent flame speed, Stirred reactor theory ,Flame stabilization in high-v	elocity streams,								
Combustion in	n small volumes .	-								
UNIT – V	DETONATION AND ENVIRONMENTAL COMBUSTION									
	CONSIDERATIONS	9 Periods								
Introduction,	Detonation phenomena, Hugoniot relations and the hydrodynamic theory	of detonations,								
Comparison of detonation velocity calculations with experimental results, The ZND structure of										
detonation waves, The structure of the cellular detonation front and other detonation phenomena										
parameters, The nature of photochemical smog, Formation and reduction of nitrogen oxides,SOx										
emissions .										
Contact Periods:										
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	riods								

TEXT BOOK:

1	R.K Rajput, "Engineering Thermodynamics", Laxmi Publications Ltd, 6th edition, 2016.
2	Irvin Glassman, Richard A. Yetter, "Combustion", Elsevier Inc., 5 th edition,2014.

REFERENCES:

|--|

2	Kenneth Wark Ir	"Advanced Therm	odvnamics for	Enaineers".	McGraw-Hill I	ıc. New York. 1995.
_			,,,, j	,		

3	Michael Liberman, "Introduction to Physics and Chemistry of Combustion",	Springer-Verlag
	Berlin Heidelberg, 2008.	

4 Fawzy El-Mahallawy, Saad El-Din Habik, **"Fundamentals and technology of Combustion"**, Elsevier Science Ltd, 2002.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
On co	ompletion of the course, the students will be able to:	Mapped
C01	Understand the conceptsin thermodynamics and its relevant properties.	K3
CO2	Discuss the properties of various types of gases and vapour mixtures.	K4
CO3	Concept in combustion and its principles.	K5
C04	Understand the concepts of flame phenomena during the combustion process.	K4
C05	Gain knowledge on environmental considerations of combustion.	K5
	a Church Barris	

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	3	2	2	2	1	1			
CO2	3	3	2	2	1	1			
CO3	2	3	3	2	1	1			
C04	3	2 2	2	2	1	1			
CO5 2 3 3 2 1 2									
23TEPE01	3	3	2	2	1	1			
1 – Slight, 2 – M	loderate, 3 – Sι	ibstantial							

		1///	THE REAL PROPERTY OF						
		TIL SALAN	CONCELENT.						
Assessment pattern – theory									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(k1) %	(k2) %	(k3) %	(k4) %	(k5) %	(k6) %	%		
CAT1	-	30	35	35	-	-	100		
CAT2	10	25	25	20	20	-	100		
Individual	-	30	35	35	-	-	100		
Assessment 1 /									
Case Study 1 /									
Seminar 1 /									
Project 135									
Individual	10	25	25	20	20	-	100		
Assessment 2 /									
Case Study 2 /									
Seminar 2 /									
Project 2									
ESE	10	20	25	25	20	-	100		

23TEPE02

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	Course To present a research oriented in depth knowledge of artificial intelligence and to					
Objective	address the underlying concepts, methods and application of artificial intelligence.					
UNIT – I	INTRODUCTION	9 Periods				
Core of AI - G	bals of AI - Fields of application - Global economic effects of artificial intel	ligence.				
UNIT – II	BASICS AND DRIVERS OF ARTIFICIAL INTELLIGENCE	9 Periods				
Moore's law a and processe technologies.	and the effects of exponential- digitalization and dematerialization of pr es-connecting products, services, processes, animals and people-	oducts, services Big data- new				
UNIT – III	ARTIFICIAL INTELLIGENCE IN HEAT TRANSFER ANALYSIS	9 Periods				
Application o	f New Artificial- Neural Network to Predict -Heat Transfer and Thermal	Performance of				
heat exchange	ers.					
UNIT – IV	ARTIFICIAL INTELLIGENCE IN COMBUSTION STUDIES	9 Periods				
Artificial-inte	lligence- based prediction and control of combustion instabilities ir	n spark-ignition				
engines and c	ombustion - ignition engines.					
UNIT – V	ARTIFICIAL INTELLIGENCE IN THERMAL FLOW SIMULATION	9 Periods				
AI application	ns in thermal engineering – Artificial intelligence-based computational	fluid dynamics				
approaches.						
Contact Periods:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
TEYT BOOK						

TEXT BOOK:

1	Adel Mellit, Soteris Kalogirou , "Handbook of Artificial Intelligence Techniques in Photovoltaic Systems					
	Modeling, Control, Optimization, Forecasting and Fault Diagnosis", Elsevier Science, 23 June 2022.					
2	Ralf Herbrich, "Learning Kernel classifiers theory and algorithm", MIT Press, Cambridge, London,					
	England, 2022.					

REFERENCES:

-

1	Ralf T. Kreutzer, Marie Sirrenberg, "Understanding Artificial Intelligence Fundamentals, Use
	Cases and Methods for a Corporate AI Journey", Berlin, Germany Bad Wilsnack, Germany August
	2019.
2	Amit Konar, "Artificial Intelligence and Soft Computing Behavioral and Cognitive Modeling of
	the Human Brain", CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, 8 October 2018.
3	Siddhartha Bhattacharyya, Vaclav Snasel, "Hybrid Computational Intelligence challenges and
	applications A volume in hybrid computational intelligence for pattern analysis and
	understanding", Springer, 2020. https://doi.org/10.1016/B978-0-12-818699-2.00009-3
4	Bryan Maldonado, Brian Kaul, "Artificial Intelligence and Data Driven Optimization of Internal
	Combustion Engines", Chapter 8, Springer, 2022. https://doi.org/10.1016/B978-0-323-88457-
	0.00006-0

COUF On co	RSE OUTCOMES: Impletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Obtain the fundamental knowledge of AI basics.	K2
CO2	Gain the knowledge on machine learning techniques	К3
CO3	Understand the role of Artificial Intelligence in numerical studies.	K5
C04	Gain knowledge for combustion studies by using Artificial Intelligence	К3
C05	Analyse the thermal flow simulations using Artificial Intelligence	K5

COs/POs	P01	P02	PO3	P04	P05	P06
C01	2	2	3	2	3	2
CO2	3	2 &	3	3	3	3
CO3	3	3	3	3	3	3
C04	2	2	2	1	2	2
CO5	3	3	3	3	2	2
23TEPE02	3	2	10 AP 3 200	3	3	2

Assessment	Assessment pattern – theory							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(k1) %	(k2) %	(k3) %	(k4) %	(k5) %	(k6) %	%	
Category*								
CAT1	30	35	35	-	-	-	100	
CAT2	10	30	30	-	30	-	100	
Individual	30	35	35	-	-	-	100	
Assessmen								
t 1 / Case								
Study 1 /								
Seminar 1								
/ Project 1								
Individual	10	30	30	-	30	-	100	
Assessmen								
t 2 / Case								
Study 2 /								
Seminar 2								
/ Project 2								
ESE	15	25	20	20	20	-	100	

23**TEPE03**

ADVANCED GAS TURBINES

(Use of approved tables and charts are permitted)

I

PREREQUISITES	CATEGORY	L	Т	Р	С
THERMAL ENGINEERING	PE	3	0	0	3

Course	To make the students leave size of any issues of neuron plant of	value and turks				
Course	Course To make the students learn ancrait applications of power plant cycles and turbo					
Objective	objective machines like compressors, axial and radial now turbines and combustors.					
UNIT – I	INTRODUCTION	9 Periods				
Desirer alert an	alar fan stationsen ond simmelt soulistiens, sounderset heberi	ana Induatorial				
Power plant cy	cles for stationery and aircraft applications, component benavi	ors, Industrial				
applications, Mar	fine and land transportation, Environmental issues, analysis of ramje	et, turbojet and				
turbo-propeller, l	nlets and nozzles.					
UNIT – II	COMPRESSORS	9 Periods				
Principle and ope	erations of Centrifugal and axial flow compressors momentum and en	ergy transfer in				
rotors, velocity d	iagrams, calculation of stage performance, compressibility effects, casc	ade testing and				
characteristics.	Contract Con					
UNIT – III	AXIAL AND RADIAL FLOW TURBINE	9 Periods				
Elementary theor Chord Stage vel materials, testing	ry of axial and radial flow turbine, Vortex theorem, choice of blade procity diagrams, reaction stages, losses and coefficients, blade des and performance characteristics.	ofile, Pitch and sign principles,				
UNIT – IV	COMBUSTORS	9 Periods				
Different types a reduction.	and flow patterns, material requirements and cooling systems, air	pollution and				
UNIT – V	MATCHING	9 Periods				
Matching procedure of power plant components, engine off-design performance,Off-design performance of single shaft gas turbine, free turbine engine and jet engine, Methods of displacing the equilibrium running line, Design of Nozzles, afterburners, anti-icing mechanisms.						
LONGACE PERIOUS:						
Lecture: 45 Peri	ous iutoriai: o periods practical: o periods i otal: 45 Period	us				

TEXT BOOK:

	1	Dixon S.L., "Fluid Mechanics and Thermodynamics of Turbomachinery", Pergamon Press, 7th
		edition 2013.
Γ	2	Ganesan V., "Gas Turbines" , Tata McGraw Hill, 3 rd Edition, 2017.

REFERENCES:

	1	1 Yahya S.M., "Turbines, Compressors and Fans" , Tata mcgraw-Hill, 4th edition, 2017.				
2 Sarvanamuttoo, H.I.H., Rogers, G. F. C. and Cohen, "Gas Turbine Theory", H., Pearson 7 th Edition, 2019.						
	3	Kerrebrock J.L., "Aircraft engines and gas turbines", The MIT Press, 2 nd edition, 1992.				
	4	Gurrappa Injeti, "Gas Turbines" , IntechOpen, ISBN-978-953-51-1743-8, February 25 th 2015.				

COUR	SE OUTCOMES:	Bloom's
On cor	npletion of the course, the students will be able to:	Taxonomy Mapped
C01	Identify, formulate and solve problems related to gas turbines and jet	K5
	propulsion.	
CO2	Analyze the operational aspects and control, including the system interaction	K5
	of compressors	
CO3	Discuss the various laws pertaining to different fluid flow applications	K2
C04	Learn the components of a combustor and its performance.	K2
C05	Knowledge on matching the components.	K5

NYTTY

Course Articulation Ma	trix	Ann Damber at	to arreging			
COs/POs	P01	PO2	P03	P04	PO5	P06
C01	3	3	2	2	3	2
C02	3	3	2	2	2	1
C03	3	3	2	3	2	1
C04	2	2	1	2	3	2
C05	3	3	3	3	3	3
23TEPE03	3	33	2	2	3	2

Assessment pa	ttern – theory						
Test / Bloom's Category*	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %
CAT1	15	25	20	20	20	-	100
CAT2	10	90	-	-	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	15	25	20	20	20	_	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	90	-	-	-	-	100
ESE	10	30	20	20	20	-	100

23TEPE04

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

Course	To make the students learn the heat transfer processes and design o	f heat transfer
Objective	equipment.	
UNIT – I	INTRODUCTION	9 Periods
Principles of	heat transfer, Types of heat exchangers, Standard Representation, Par	rts description,
TEMA classifi	cations, Applications.	
UNIT – II	CONDENSERS	9 Periods
Estimation of	heat transfer coefficient, Fouling factor, Friction factor- Design procedure	s, Wilson plots,
Design differ	ent types of condensers, BIS Standards.	
UNIT – III	EVAPORATORS	9 Periods
Different type Stress calcula	es of evaporators, Design procedure, Factors affecting the evaporator cap tions, matching of components, Design of evaporative condensers.	oacity, Thermal
UNIT – IV	COOLING TOWERS	9 Periods
Types of Cool	ing towers, Analytical and graphical design procedures, Tower Characteris	tics Parametric
analysis, Rang	ge of cooling tower, Tower efficiency, cooling tower load, Energy conservat	ion.
UNIT – V	SELECTION OF CONDENSERS, EVAPORATORS AND COOLING TOWER	9 Periods
Condenser se	lection – Water cooled – Air cooled, Selection of evaporators, Selection of	cooling tower,
Selection of P	umps and Fans.	
Contact Peri	ods:	
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Per	riods
	All	

TEXT BOOK:

1	Lieke Wang, Bengt Sunden, Raj M. Manglik, "Plate Heat Exchangers: Design, Applications
	and Performance", WIT Press, 2013.
2	Krishna P. Singh, Alan I. Soler, "Mechanical Design of Heat Exchangers And Pressure Vessel
	Components", Springer Berlin Heidelberg, 4 December 2014.

1	Manfred Nitsche, Raji Gbadamosi., "Design of Heat exchangers, condensers and evaporators",
	2015.
2	Kern K.H., "Process heat transfer" , McGraw-Hill, 2 nd edition, 2017.
3	Wilfried Roetzel, Xing Luo, Dezhen Chen, "Design and Operation of Heat Exchangers and Their
	Networks", Elsevier Science, 4 October 2019.
4	S Chand, R S Khurmi, J K Gupta, "Modern Refrigeration and Air Conditioning" , published, 2019.

COUR On co	RSE OUTCOMES:	Bloom's Taxonom y Mapped
C01	Utilize the principles of heat transfer for industrial applications.	K2
CO2	Design the condenser, evaporators and cooling towers.	K2
CO3	Understand the concepts of evaporators.	К3
C04	Gain the knowledge of cooling towers, Analytical and graphical design procedures	К3
C05	Select the suitable heat transfer equipment	K3

Course Articulation Matrix

						•
COs/POs	P01	PO2	P03	P04	P05	P06
C01	2	2	2	2	2	2
CO2	2	2	1	1	3	2
CO3	2	2	2	1	2	2
CO4	3	3	2	1	2	2
C05	2	2	Son pr. 11 1 1 Sugar	2	1	2
23TEPE04	2	2	2	1	2	2
1 – Slight, 2 – M	loderate, 3 – Su	bstantial	X I			

Assessment pa	attern – theory						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(k1) %	(k2) %	(k3) %	🔒 (k4) %	(k5) %	(k6) %	%
Category*							
CAT1	50	0.50	CT POLICE	- /	-	-	100
CAT2	25	35	40	-	-	-	100
Individual	50	50	000	-	-	-	100
Assessment 1							
/ Case Study 1							
/ Seminar 1 /							
Project 1							
Individual	25	35	40	-	-	-	100
Assessment 2							
/ Case Study 2							
/ Seminar 2 /							
Project 2							
ESE	25	25	50	-	-	-	100

INSTRUMENTATION IN THERMAL ENGINEERING

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

Course	To learn different techniques involved in thermal quantity measurem	nent and the
Objective	concept of microprocessors in measurement, different kind of errors inve	olved and the
	transducers for different types of thermo-physical quantities	
UNIT – I	MEASUREMENT CHARACTERISTICS	9 Periods
Instrument C	lassification, Characteristics of Instruments – Static and dynamic, exper	imental error
analysis, Syst	ematic and random errors, Statistical analysis, Uncertainty, Experimental	planning and
selection of m	easuring instruments, Reliability of instruments.	
UNIT – II	MICROPROCESSORS AND COMPUTERS IN MEASUREMENT	9 Periods
Basic Electri	cal measurements, Transducers and its types, Signal conditioning and	d processing-
Measurement	t of temperature, pressure, velocity, flow – basic and advanced techniques,	and radiation
properties of	surfaces.	
UNIT – III	MEASUREMENT OF PHYSICAL QUANTITIES	9 Periods
Thermo, Phys	sical, Chemical and transport properties of solids, liquids and gaseous fue	ls, Analyses –
Flame Ioniza	tion Detector, Non-Dispersive Infrared Analyses, Chemiluminescence det	ector, Smoke
meters, and G	as chromatography.	
UNIT – IV	CONTROL SYSTEM, COMPONENTS AND CONTROLLERS	9 Periods
Introduction,	Open and closed loop control systems, Transfer function. Types of feedback	and feedback
control system	n characteristics – Control system parameters – DC and AC servomotors, se	rvo amplifier,
potentiomete	r, synchronic transmitters, synchronic receivers, synchronic control transfo	rmer, stepper
motors - Cont	inuous, Discontinuous and Composite control modes – Analog and Digital co	ontrollers.
UNIT – V	DESIGN OF MEASUREMENT AND CONTROL SYSTEMS	9 Periods
Data logging	and acquisition - Sensors for error reduction, elements of computer interfa	acing, Timers,
and Counters	, Designing of measurement and control systems for specific applications - H	Fault finding –
Computer bas	sed controls	
Contact Peri	ods:	
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	ods
-		

TEXT BOOK:

1	Holman, J.P., "Experimental methods for engineers", McGraw-Hill, 8th edition 2011.
2	Rangan, C.S., Sharma, G.R., Mani, V.S.V, "Instrumentation Devices and Systems", Tata McGraw Hill, 2nd adition Naw Dolhi 2017
	2 nd edition, New Denn, 2017.

1	Alan S. Morris, Reza Langari, "Measurement and Instrumentation", Elsevier Science, 2015
2	Barney, "Intelligent Instrumentation", Prentice Hall of India, 2012.
3	Preobrazhensky, V., "Measurements and Instrumentation in Heat Engineering", Vol.1 and 2, MIR
	Publishers, 2013.
4	Doeblin, "Measurement System Application and Design", McGraw Hill, 2012.
5	Morris.A.S, "Principles of Measurements and Instrumentation", Prentice Hall of India, 2006.

COUF On co	RSE OUTCOMES: Impletion of the course, the students will be able to:	Bloom's Taxonom y Mapped
C01	Gain the knowledge on various measuring instruments and advance measurement techniques.	K2
CO2	Evaluate the various steps involved in error analysis and uncertainty analysis.	K5
CO3	Analyze the various thermal and flow systems and their behaviour.	K5
CO4	Distinguish between measurement and control systems, and use appropriate control System for an application.	К2
CO5	Construct a complete control system for a thermal application.	K2

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06			
C01	2	2	2	1	1	2			
CO2	2	2	2	1	2	2			
CO3	2	2	2	2	2	2			
CO4	2	2	2	1	2	2			
C05	1	1	_2	1	2	1			
23TEPE05	2	2	2	1	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

Assessment pattern – theory									
Test / Bloom's	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %		
	10	20	20	340	20		100		
CATT	10	50	50	7	30	-	100		
CAT2	10	20	20	20	30	-	100		
Individual	10	30	30	-	30	-	100		
Assessment									
1 / Case									
Study 1 /									
Seminar 1 /									
Project 1									
Individual	10	20	20	20	30	-	100		
Assessment									
2 / Case									
Study 2 /									
Seminar 2 /									
Project 2									
ESE	10	20	30	30	10	-	100		

PREREQUISITES	CATEGORY	L	Τ	Ρ	С
APPLIED ELECTRONICS	PE	3	0	0	3

Course	To make the students learn concepts of Automotive Electronics and its e	evolution and				
Objective	trends of sensor monitoring mechanisms to design and model variou	s automotive				
	ignition and injection systems control for different vehicles.					
UNIT – I	SENSORS	9 Periods				
Types – Air fl	ow, Pressure, Temperature, Speed Oxygen, Detonation, Position –Principle	of Operation,				
Arrangement	and material.					
UNIT – II	GASOLINE INJECTION SYSTEM	9 Periods				
Open loop an	d closed loop systems, Mono point, Multi point and direct injection system	ns –Principles				
and Features,	Bosch injection systems.					
UNIT – III	DIESEL INJECTION SYSTEM	9 Periods				
Inline injectio	on pump, Rotary pump and injector – Construction and principle of operat	ion, Common				
rail and unit i	njector system – Construction and principle of operation.					
UNIT – IV	IGNITION SYSTEMS	9 Periods				
Ignition fund	amentals, Types of solid -state ignition systems, high energy ignition	distributors,				
Electronic spa	ark timing and control.					
UNIT – V	ENGINE MAPPING	9 Periods				
Combined ign	iition and fuel management systems. Digital control techniques – Dwell ang	le calculation,				
Ignition timing calculation and Injection duration calculation, Hybrid vehicles and fuel cells.						
Contact Periods:						
Lecture: 45	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					
	Artige Star Arve					

TEXT BOOK:

Tom Denton, "Automotive Electrical and Electronic Systems", Edward Amold, 5th edition 2017.
 Robert N.Brady, "Automotive Computers and Digital Instrumentation", Prentice Hall, 2011.

Co the do at 20

1	Ali Emadi, "Handbook of Automotive Power Electronics and Motor Drives", CRC Press, 19 December
	2017.
2	Konrad Reif, "Fundamentals of Automotive and Engine Technology Standard Drives, Hybrid Drives,
	Brakes, Safety Systems", Springer Fachmedien Wiesbaden, 16 June 2014.
3	Akhilendra Pratap Singh, Avinash Kumar Agarwal, "Novel Internal Combustion Engine Technologies for
	Performance Improvement and Emission Reduction", Springer Nature Singapore, 14 June 2021.
4	Heinz Heisler., "Advanced Engine Technology", SAE Publications, 2011.
5	Ronald K. Jurgan, "Electronic Engine Control" , Edward Amold, 2017.

COUR On co	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonom y Mapped
C01	Obtain an overview on the types of sensors.	K2
CO2	Understand the various injection systems and its principal of operation.	K2
CO3	Develop the knowledge on ignition and fuel management systems.	K4
CO4	Gain the knowledge of Ignition fundamentals, types of solid, electronic sparking timing and control.	К3
CO5	Utilize the dwell angle calculation, Ignition timing calculation for engine mapping in hybrid vehicles and fuel cells.	K5

Course Articulation Matrix								
COs/POs	P01	P02	P03	PO4	PO5	P06		
C01	2	2	2	2	1	2		
CO2	2	2	1	1	2	2		
CO3	2	2	2	1	2	1		
CO4	1	1	2	1	1	1		
CO5	2	2	1	2	2	1		
23TEPE06	2	2 2 000	150 01 12 1000	1	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial								
				1				

Assessment patte	Assessment pattern – theory									
Test / Bloom's Category*	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluating (k5) %	Creating (k6) %	Total %			
CAT1	10	30	30	-	30	-	100			
CAT2	10	20	20	20	30	-	100			
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	10	30		-	30	-	100			
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	20	20	20	30	-	100			
ESE	10	20	30	30	10	-	100			

23TEPE07

FINITE ELEMENT METHODS IN THERMAL ENGINEERING

PREREQUISITES	CATEGORY	L	Т	Ρ	C
HEAT AND MASS TRANSFER	PE	3	0	0	3

Course	To make the students learn different discretization methods for solvin	g heat transfer					
Objective	and fluid flow problems.						
UNIT – I	INTRODUCTION	5 Periods					
Overview of r	numerical methods - Discretized representation of physical systems - therr	nal resistance –					
Governing eq	uations and Boundary conditions for thermal and flow systems.						
UNIT – II	ONE DIMENSIONAL HEAT CONDUCTION	6 Periods					
Principles of	variations calculus - applications of variational approach to one din	nensional heat					
conduction –	element matrix contribution and assembly.						
UNIT – III	HEAT FUNCTIONS AND ANALYSIS	10 Periods					
Weighted res	idual methods - Galerkin's approach - Shape functions. Application of Gale	rkin's weighted					
residual appr	oach to one dimensional heat conduction - Three noded triangular eleme	nts- 1-D steady					
state conduct	ion using triangular elements - Radiation and natural convective bounda	ry conditions –					
incorporatior	of variations in thermal properties.						
UNIT – IV	CONVECTIVE HEAT TRANSFER	12 Periods					
Higher order	elements and numerical integration solution of heat conduction and cree	ping flow using					
higher order	element - Solution of convective heat transfer.						
UNIT – V	HEAT EXCHANGER APPLICATIONS	12 Periods					
Incompressib	Incompressible laminar flow simulation - Stream function and Vorticity methods, Velocity Pressure						
formulation, mixed order interpolation for incompressible flow modifications for turbulent flow.							
Application to heat exchanger.							
Contact Periods:							
Lecture: 45	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

TEXT BOOK:

1	S.S.Rao, "The Finite Element Method in Engineering", Pergamon Press, 5 th edition, 2013.
2	Larry Segerlind "Applied Finite Element Analysis", John Wiley & Sons, 2 nd edition, 2005.

1	C.S.Krishnamoorthy, "Finite Element Analysis Theory and Programming", Tata McGraw-Hill, 2 nd
	edition, 2011.
2	J.N.Reddy, "An Introduction to Finite Elements Methods", McGraw-Hill, 2020.
3	O.C.Zienkiewiez, "Finite Element Methods", McGraw-Hill, 2003.
4	T.R.Chandrapatla and Belegundu, "Introduction to Finite Elements in Engineering", Prentice Hall
	of India, 2002.

COUR On co	RSE OUTCOMES: Impletion of the course, the students will be able to:	Bloom's Taxonom y Mapped
C01	Understand the basic numerical methods and governing equations of heat transfer and fluid flow conditions.	К3
CO2	Evaluate temperature distribution in one and two-dimensional conduction and convection problems numerically.	K5
CO3	Analyze the various flow problems to evaluate the performance of heat exchangers.	K5
CO4	Apply higher order elements and numerical integration solutions of heat conduction and convective heat transfer.	K5
CO5	Analyze the laminar and turbulent flow problems to evaluate the performance of heat exchangers	K5

Course Articulation Matrix

COs/POs	P01	P02	P03	P04	P05	P06				
C01	1	1	2	2	2	2				
CO2	2	2	<u>1</u>	1	2	2				
CO3	2	2	2	1	2	2				
CO4	2	2	2	1	2	2				
CO5	3	3	3	2	1	1				
23TEPE07	2	1	-2	1	2	2				
1 – Slight, 2 – Moderate, 3 – Substantial										

Assessment p	Assessment pattern – theory									
Test / Bloom's	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %			
Category*		998 // NY		7,68						
CAT1	10	30	30		30	-	100			
CAT2	-	25	25	30	20	-	100			
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	10	30	30	-	30	-	100			
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	-	25	25	30	20	-	100			
ESE	10	25	25	20	20	-	100			

PREREQUISITES	CATEGORY	L	Т	Р	С
GAS DYNAMICS AND JET PROPULSION	PE	3	0	0	3

Course Objective	To make the students learn the compressible flow through different systems and propulsion systems for jet and space vehicles.						
UNIT – I	BASIC CONCEPTS AND ISENTROPIC FLOWS	9 Periods					
Energy and momentum equations of compressible fluid flows – isentropic flow - Mach waves and Mach cone. Flow regimes, effect of Mach number on compressibility. Stagnation, static, critical properties and their interrelationship. Isentropic flow through variable area ducts – nozzles and diffusers. Use of Gas tables.							
UNIT – II	FLOW THROUGH DUCTS	9 Periods					
The Shock Tu and Friction Shock Tube -	be: Propagating Expansion Fan - Flows through constant area ducts wit - variation of flow properties Use of tables and charts - Unsteady Sho Applications, Method of Characteristics: Flow through a diverging channe	h heat transfer ck Waves: The el.					
UNIT – III	NORMAL AND OBLIQUE SHOCKS	9 Periods					
Governing eq and oblique s Method of Ch at an angle of	uations - Rankine-Hugoniot Relation. Variation of flow parameters acr hocks- Supersonic Flow over a Wavy wall - Finite Wave Theory: An intr- aracteristics. Prandtl – Meyer expansion and relation. Supersonic Flow p attack - Bluff Body at an angle of attack - Flow Visualization-Use of table a	oss the normal oduction to the past a HD Cone and charts.					
UNIT – IV	JET PROPULSION	9 Periods					
Theory of jet analysis and p	propulsion – thrust equation – thrust power and propulsive efficiency. C performance of ramjet, turbojet, turbofan and turboprop engines.	peration, cycle					
UNIT – V	SPACE PROPULSION	9 Periods					
Types of rocket engines and propellants. Characteristic velocity, Theory of single and multistage rocket propulsion, Liquid fuel feeding systems, Solid propellant geometries. Space flights – orbital and escape velocity, Rocket performance calculations – nuclear and electrical rocket propulsion.							
Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

TEXT BOOK:

1	S.M. Yahya, "Fundamentals of Compressible Flow with Aircraft and Rocket propulsion", New Age
	International (P) Limited, 6 th edition, 2018.
2	Radhakrishnan, E., "Gas Dynamics" , Prentice Hall of India, 7 th edition, 2020.

REFERENCES:

- 1 *H. Saravanamutto HIH, Cohen H., Rogers CEC&Straznicky PV, "Gas Turbine Theory"*, *Printice Hall, 7*th edition, 2019.
- 2 L. Anderson, J.D., "Modern Compressible Flow", McGraw Hill, 3rdedition, 2017.

3 Sutton, G.P., **"Rocket Propulsion Elements"**, John wiley, New York,9th edition, 2017.

4 Shapiro, **"Dynamics and Thermodynamics of Compressible Fluid Flow"**, Prentice hall of India, 7th edition, 2014.

COUR On co	COURSE OUTCOMES: On completion of the course, the students will be able to:			
C01	Understand the basic concepts of various flows.	K2		
CO2	Analyze the application using ducts.	K5		
CO3	Basic theorems derive to normal and oblique shocks.	K2		
CO4	Know the concepts of various jet engines.	K5		
C05	Design and application of rocket science and engineering.	К3		

Course Articulation Matrix

course Articulation	course in treatation matrix								
COs/POs	P01	PO2	P03	P04	P05	P06			
C01	2	2		1	1	2			
CO2	2	2	1	1	1	2			
CO3	2	2	-2	1	2	2			
CO4	2	2	2	1	2	2			
CO5	2	2	2	1	2	2			
23TEPE08	2	2	2	1	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial									
		1 0							

Assessment pa	Assessment pattern – theory									
Test / Bloom's	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluating (k5) %	Creating (k6) %	Total %			
Category*		and the second	JOB OF							
CAT1	15	35	50	-	-	-	100			
CAT2	10	25	25	20	20	-	100			
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	15	35	50	-	-	-	100			
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	25	25	20	20	-	100			
ESE	10	25	25	30	10	-	100			

23TEPE09

STEAM ENGINEERING

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РЕ	3	0	0	3

Course	To make the students learn various power generation units, steam	generators, heat						
Objective	balance and safety standards of various steam generating units.							
UNIT – I	INTRODUCTION	9 Periods						
Parameter of	a steam Generator - Thermal calculations of Modern steam Generat	or – Tube Metal						
Temperature	Temperature Calculation and choice of Materials – Steam purity Calculations and Water treatment.							
UNIT – II	STEAM SYSTEM AND HEAT BALANCE	9 Periods						
Assessment o	f steam distribution losses, Steam leakages, Steam trapping, Condensate	and flash steam						
recovery syst	em- Heat transfer in Furnace – Furnace Heat Balance –Calculation of He	eating Surfaces –						
Features of Fi	ring systems for solid – Liquid and Gaseous Fuels – Design of Burners.							
UNIT – III	BOILER DESIGN	9 Periods						
Design of Boi	ler Drum – Steam Generator Configurations for Industrial Power and R	ecovery Boiler –						
Pressure Loss	and Circulation in Boilers.							
UNIT – IV	DESIGN OF ACCESSORIES	9 Periods						
Design of Air	Preheaters – Economizer and Superheater for high pressure Steam Gen	erators – Design						
Features of Fu	el Firing Systems and Ash Removing Systems.							
UNIT – V	BOILER CODE	9 Periods						
IBR and Inter	IBR and International Regulations - ISI Code's Testing and Inspection of Steam Generator - Safety							
Methods in Boilers - Factor of safety in the Design of Boiler Drum and Pressure parts-Safety of Fuel								
Storage and Handling – Safety Methods of Automatic Operation of Steam Boilers.								
Contact Peri	ods:							
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 P	eriods						
	Contraction of the second seco							

TEXT BOOK:

1	P.K. Nag, "Power Plant Engineering", McGraw Hill Education, 4 th edition 2017.
2	Domkundwar, "A Course in Power Plant Engineering", Dhanapat Rai & Co, 2016.

1	Kumar Rayaprolu, "Boilers", A Practical Reference, CRC Press, 2012.
	Kayla Westra, Larry Drbal, Lawrence F. Drbal, Pat Boston, "Power Plant Engineering", Springer
	<i>US,2012.</i>
3	Kumar Rayaprolu, "Boilers for Power and Process", CRC Press, 2009.
4	Richard Dolezal, "Large Boiler Furnaces" Elsevier Company, 2008.

COUR On co	RSE OUTCOMES: Impletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Learn the parameters and calculations of steam generators.	K5
CO2	Understand the steam systems and heat balance in steam generators.	K2
CO3	Gain the knowledge in various designs of boilers.	K4
C04	Design the accessories of a steam generator.	K4
CO5	Understand the codes and standards.	K5

Course Articula	Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05	P06				
C01	3	2	2	2	2	2				
CO2	3	2	2	2	2	2				
CO3	2	2	2	1	3	2				
C04	2	2	2	1	3	2				
C05	2	2	3	1	2	2				
23TEPE09	2	2	2	1	2	2				
1 – Slight, 2 – Mo	1 – Slight, 2 – Moderate, 3 – Substantial									

Constanting of the second									
Assessment pattern – theory									
Test / Bloom's Category*	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluating (k5) %	Creating (k6) %	Total %		
CAT1	15	20		35	30	-	100		
CAT2	-	35	35	30	-	-	100		
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	15	20	A CONTRACT	35	30	-	100		
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	-	35	35	30	-	-	100		
ESE	10	35	30	15	10	-	100		

23TEPE10

PREREQUISITES

SUPERCHARGING AND SCAVENGING

I

С

T P

L

CATEGORY

	NIL PE 3						
Course	To make the students to learn effects of supercharging and	l scavenging in I	.C ei	ngin	es and		
Objective	design of exhaust systems						
UNIT – I	UNIT - I SUPERCHARGING 8 Periods						
Objectives -	Effects on engine performance - engine modification re	quired - Therm	iody	nan	nics of		
Mechanical s	upercharging and Turbocharging - Turbo charging method	ls - Engine exha	ust	mai	nifolds		
arrangements	5.						
UNIT – II	COMPRESSORS		10) Pe	riods		
Types of cor	npressors – Positive displacement blowers - Centrifugal	compressors -	Pe	rfor	mance		
characteristic	curves- Suitability for engine application - Surging	- Matching of	sup	ercl	harger		
compressor a	nd Engine – Matching of compressor, Turbine Engine.						
UNIT – III	SCAVENGING OF TWO STROKE ENGINES		12	2 Pe	riods		
Peculiarities	of two stroke cycle engines - Classification of scavengir	ng systems - M	ixtu	re c	ontrol		
through Reed	d valve induction - Charging Processes in two stroke cy	cle engine - Te	ermi	nolo	ogies -		
Shankey diag	ram – Relation between scavenging terms - scavenging mo	deling - perfect	disp	olace	ement,		
Perfect mixin	g Complex scavenging models.						
UNIT – IV	PORTS AND MUFFLER DESIGN		8	Per	riods		
Porting - Desi	gn considerations - Design of intake and Exhaust Systems - '	Tuning.					
UNIT – V	EXPERIMENTAL METHODS		7	Per	riods		
Experimental	Experimental techniques for evaluating scavenging - Firing engine tests - Non firing engine tests - Port						
flow characteristics - Kadenacy system - Orbital engine combustion system, Sonic system.							
Contact Peri	Contact Periods:						
Lecture: 45	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
	Charles In Collins During						
1	195 W 300 20						

TEXT BOOK:

Obert, E.F., "Internal Combustion Engines and Air Pollution", McGraw-Hill, 2017.
 Vincent, E.T., "Supercharging the I.C.Engines", Facsimile publishers, 2015.

1	Giancarlo Ferrari, Angelo Onorati, Gianluca D'Errico, "Internal Combustion Engines", Società Editrice
	Esculapio, 21 July 2022.
2	K.A. Zinner, "Supercharging of Internal Combustion Engines", 4 July 2012.
3	Evangelos G Giakoumis, "Turbochargers and Turbocharging Advancements, Applications and
	Research" Nova Science Publishers, Incorporated, 2017.
4	JohnB. Heywood, "Two-Stroke Cycle Engine its Development, Operation and Design", CRC Press,
	November 2017.
5	Schweitzer, P.H., "Scavenging of Two Stroke Cycle Diesel Engine", MacMillan Co.2007.
6	John B.Heywood, "Two Stroke Cycle Engine" , SAE Publications 2010.

COUR	SE OUTCOMES:	Bloom's	
On co	On completion of the course, the students will be able to:		
		Mapped	
C01	Design and make thermal analysis of the supercharging system and scavenging	K4	
	processes.		
CO2	Design and tune intake and exhaust systems to achieve desired performance	K5	
	results.		
CO3	Address specific issues arising in laboratory testing of modified engines.	КЗ	
C04	Develop and design of ports and muffler design consideration	КЗ	
C05	Evaluate the characteristics involved in non-firing engine tests using experimental	К5	
	techniques.		

COs/POs	P01	P02	P03	P04	P05	P06
C01	2	2	2	1	2	2
CO2	2	2	2	1	3	2
CO3	2	2	2	1	2	2
CO4	2	2-2	2	1	1	2
C05	3	(3) and a land	150 81 12 11 10 10	1	1	2
23TEPE10	2	2	Drever 2: CV	1	2	2
1 – Slight, 2 – Me	oderate, 3 – Su	bstantial	_		•	•

Assessment pattern – theory									
Test / Bloom's Category*	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluating (k5) %	Creating (k6) %	Total %		
CAT1	-	30	30	20	20	-	100		
CAT2	-	50	50	-	-	-	100		
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	-		30 1958 0.00	20	20	-	100		
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	-	50	50	-	-	-	100		
ESE	-	25	25	25	25	-	100		

ENGLISH FOR RESEARCH PAPER WRITING (Common to all branches)

SEMESTER

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

UNIT – V	SECTIONS OF A PAPER	rcn. 6 Periods						
Making your fi	ndings stand out, Using bullet points headings, Tables and Graphs- Availing	non-experts						
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING	6 Periods						
between others	s author's findings and yours.							
use of Relative	and Reflexive Pronouns, Monologophobia, verifying the journal style, Logical	Connections						
Accuracy, Brev	ity and Clarity in Writing, Reducing the linking words, Avoiding redundancy,	Appropriate						
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC) OF WRITING	6 Periods						
Paragraph. Bre	aking un lengthy Paragraphs.	ucture or u						
suitably in a s	sentence. Using Short Sentences, Discourse Markers and Punctuations- Str	ucture of a						
Basic word in I	English Word order in English and Vernacular placing nouns. Verhs. Adjectives	and Adverb						
	SENTENCES AND PARACRAPHS	6 Periods						
each section F	vnectations of Referees. Online Resources							
Need for publi	shing articles. Choosing the journal Identifying a model journal namer. Creation	n of files for						
IINIT – I	5.10 make learners understand the elements involved in writing journal paper.	6 Pariode						
	4.10 train the learners avoid wordiness in writing							
	3. To make learners practice unambiguous writing							
	paragraph writing							
Objective	2.To expose them to know the intricacies involved in word order, sentence s	tructure and						
	Course 1.To make the learners understand the need for writing good research paper							

1	Goldbort R , "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.
4	Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011.

COUR Upon	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the need for writing good research paper.	K4
CO2	Practice the appropriate word order, sentence structure and paragraph writing.	K4
CO3	Practice unambiguous writing.	K4
CO4	Avoid wordiness in writing.	K4
CO5	Exercise the elements involved in writing journal paper.	K4

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05		
C01	2	1	2	2	1		
C02	2	2	1	1	1		
C03	2	1	1	1	1		
CO4	2	2	1	1	1		
C05	1	2	1	1	1		
23TEACZ1	2	2	1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	40	40 60%	20 20	STORE T	-	-	100	
CAT2	40	40	20		-	-	100	
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	50	50		-	-	100	
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	50	50		-	-	100	
ESE	30	30	40	-	-	-	100	

23TEACZ2	2 DISASTER MANAGEMENT SEMESTER							
	(Common to all branches)							
				_				
PREREQUISIT	`ES	CATEGORY	L	Т	Р	С		
	NIL	AC	2	0	0	0		
Course	1. To become familiar in key concepts and conseq	uences about ha	ızard	s, di	saste	er and		
Objectives	area of occurrence.							
	2. To know the various steps in disaster planning.							
	3. To create awareness on disaster preparedness and management.							
UNIT – I	INTRODUCTION 6 Periods							
Disaster: Defini	tion, Factors and Significance; Difference between Hazard	d and Disaster; N	latura	l an	d Ma	inmad		
Disasters: Diffe	rence, Nature, Types and Magnitude. Areas proneto ,Ea	arthquakesFloods ,I	Droug	nts,	Lands	slides		
Avalanches ,Cycl	one and Coastal Hazards with Special Reference to Tsunami.							
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS				6 Pe	riods		
Economic Dama	age, Loss of Human and Animal Life, Destruction of Ecos	ystem. Natural Di	isaste	rs: E	artho	Juakes		
Volcanisms, Cycl	ones, Tsunamis, Floods, Droughts and Famines, Landslides and	Avalanches, Man-	made	disas	ter: N	Vuclea		
Reactor Meltdow	n, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Dise	ase and Epidemics,	Wara	and C	Confli	cts.		
UNIT – III	DISASTER PLANNING				6 Pe	riods		
Disaster Plannin	g-Disaster Response Personnel roles and duties, Community	MitigationGoals, P	're-Di	saste	r Mit	igatio		
Plan, Personnel	Fraining, Comprehensive Emergency Management, Early War	ning Systems.						
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT				6 Pe	riods		
Preparedness: M	Ionitoring of Phenomena Triggering a Disaster or Hazard; E	valuation of Risk: .	Applio	catio	n of F	Remot		
Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.								
UNIT – V RISK ASSESSMENT 6 Periods								
Disaster Risk: Co	oncept and Elements, Disaster Risk Reduction, Global and Nat	ional Disaster Risk	c Situa	tion.	Tech	nique		
of Risk Assessm	ent, Global Co-Operation in Risk Assessment and Warning, P	eople's Participatic	on in F	≀isk A	Asses	smen		
Strategies for Survival.								

Lecture:30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies", New
	Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New
	Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt.
	Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International Publishing
	House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUF	RSE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
C01	Differentiate hazard and disaster with their significance.	K4
CO2	Analyze the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

Course Articulation Matrix

COs/POs	P01	P02	P03	P04	PO5				
C01	2	1	1	2	2				
CO2	1	2	1	1	1				
CO3	1	1	1	2	2				
CO4	1	1	1	2	2				
CO5	2	1	1	2	2				
23TEACZ2	1	1	1	2	2				
	0 1	- C1010	P. 198						

1 – Slight, 2 – Moderate, 3 – Substantial

ASSESSMENT PATTERN – THEORY

			AND A				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	k				100
CAT2		esa	100	ALUNO			100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

VALUE EDUCATION (Common to all branches)

SEMESTER

PREREQUIS	ITES	CATEGORY	L	Т	P	С			
	NIL	AC	2	0	0	0			
Course	1. Value of education and self- development.								
Objectives 2. Requirements of good values in students.									
	3. Importance of character.								
UNIT – I	ETHICS AND SELF-DEVELOPMENT			6	Peri	ods			
Social values a	nd individual attitudes. Work ethics, Indian vision of hum	anism. Moral and n	on-m	oral	valu	ation.			
Standards and	principles. Value judgements.								
UNIT – II	UNIT – II PERSONALITY AND BEHAVIOR DEVELOPMENT								
Soul and Scien	ntific attitude. Positive Thinking. Integrity and discipline.	Punctuality, Love a	nd K	indn	ess. A	Avoid			
fault Thinking	. Free from anger, Dignity of labour. Universal brotherhoo	d and religious toler	ance	•					
UNIT – III VALUES IN HUMAN LIFE						ods			
Importance o	Importance of cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence, Concentration.								
Truthfulness,	Cleanliness. Honesty, Humanity. Power of faith, M	lational Unity. Pat	trioti	sm.	Love	e for			
nature,Discipl	ine. Broker an US a signal								
UNIT – IV	VALUES IN SOCIETY			6	Peri	ods			
True friendsh	ip. Happiness Vs suffering, love for truth. Aware of s	elf-destructive habi	ts. A	ssoci	atior	and			
Cooperation. I	Doing best for saving nature.								
UNIT – V	POSITIVE VALUES			6	Peri	ods			
Character and	d Competence -Holy books vs Blind faith. Self-mana	gement and Good	heal	th. S	cien	ce of			
reincarnation.	Equality, Nonviolence, Humility, Role of Women. All re	ligions and same m	iessa	ge. N	lind	your			
Mind, Self-control. Honesty, Studying effectively.									
Lecture:30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods									
REFERENCES:									
1 Chakrobo New Delhi	1 Chakroborty, S.K. "Values and Ethics for organizations Theory and practice" , Oxford University Press, New Delhi,1998								

2 Dr.Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010

3 R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi, 2004

4 https://nptel.ac.in/courses/109104068/36

COUR	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Know the values and work ethics.	K3
CO2	Enhance personality and behaviour development.	K3
CO3	Apply the values in human life.	K3
CO4	Gain Knowledge of values in society.	K3
C05	Know the importance of positive values in human life.	КЗ

Course Articulation Matrix					
COs/POs	P01	P02	P03	P04	P05
C01	1	1	1	2	2
CO2	1	2	1	1	2
CO3	1	2	1	2	2
CO4	1	1	1	2	2
CO5	1	1	2	2	2
23TEACZ3	1	1	1	2	2
1 – Slight, 2 – Moderate, 3 – S	ubstantial				

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1			100				100
CAT2		(Car	100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1			100	h			100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE			100				100

CONSTITUTION OF INDIA (Common to all branches.)

SEMESTER

							-
PREREQUISI	ΓES	CATEGORY	L	Τ	P	С	
	NIL	AC	2	0	0	0	
Course	1. To address the importance of constitutional rig	ghts and duties					
Objectives	2. To familiarize about Indian governance and lo	cal administration	1.				
	3. To know about the functions of election comm	ission.					
UNIT – I	INDIAN CONSTITUTION				6 Pe	riods	
History of Mal	king of the Indian Constitution: History Drafting Co	ommittee, (Compos	ition	&	Work	ing)	-
Philosophy of th	e Indian Constitution: Preamble Salient Features.						
UNIT – II	CONSTITUTIONAL RIGHTS & DUTIES				6 Pe	riods	
Contours of Co	nstitutional Rights & Duties: Fundamental Rights , Rig	ht to Equality, Righ	t to	Free	dom,	Righ	ıt
against Exploita	tion, Right to Freedom of Religion, Cultural and Edu	cational Rights, Rig	ght to	o Co	nstit	ıtiona	ıl
Remedies, Direc	tive Principles of State Policy, Fundamental Duties.						
UNIT – III	ORGANS OF GOVERNANCE				6 Pe	riods	
Organs of Gove	rnance: Parliament, Composition, Qualifications and D	isqualifications, Po	wers	and	Fun	ctions	5,
Executive, Pres	sident, Governor, Council of Ministers, Judiciary, A	ppointment and '	Tran	sfer	of]	udges	5,
Qualifications, P	owers and Functions.						
UNIT – IV	LOCAL ADMINISTRATION				6 Pe	riods	
Local Administr	ation: District's Administration head: Role and Importa	nce, Municipalities:	Intro	oduct	tion,	Mayo	r
and role of Ele	ected Representative, CEO of Municipal Corporation.	Panchayat raj: Int	trodu	ctior	n, PR	I: Zil	а
Panchayat. Elec	ted officials and their roles, CEO Zila Panchayat: Positi	on and role. Block	level	Org	aniz	ationa	ıl
Hierarchy (Diffe	erent departments), Village level: Role of Elected and App	ointed officials, Imp	ortar	ice o	f gra	ss roo	t
democracy.							
UNIT - V ELECTION COMMISSION 6 Periods							
Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election							
Commissioners	State Election Commission: Role and Functioning. In	nstitute and Bodies	for	the	welf	are o	f
SC/ST/OBC and	SC/ST/OBC and women.						
Lecture:30 Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 Periods							
REFERENCES:							

1	"The Constitution of India", 1950	(Bare Act), Government Publication.

2 Dr. S. N. Busi, Dr. B. R. Ambedkar" **Framing of Indian Constitution**", 1st Edition, 2015.

3 M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.

4 D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

COUR	SE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Mapped
C01	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the	K2
	conceptualization of social reforms leading to revolution in India.	
CO3	Know the various organs of Indian governance.	K2
C04	Familiarize with the various levels of local administration.	K2
C05	Gain knowledge on election commission of India.	K2

Course Articulation Matrix					
COs/POs	P01	P02	P03	P04	P05
C01	1	1	1	2	2
CO2	1	1	2	1	2
CO3	1	2	1	1	2
CO4	1	1	1	2	2
C05	1	1	1	2	2
23TEACZ4	1	1	1	2	2
1 – Slight, 2 – Moderate, 3 – Si	ubstantial				

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		100					100
CAT2		100		K ((100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1		100					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2		100					100
ESE		100					100

PREREQUISITES

PEDAGOGY STUDIES

SEMESTER

Т Р

6 Periods

С

L

CATEGORY

(Common t	to all	brancl	hes)
-----------	--------	--------	------

	NIL	AC	2 0 0 0		
6	1. To Understand of various theories of learning, prevailing pedage				
Course	and design of curriculum in engineering studies.				
Objectives 2. Application of knowledge in modification of curriculum, its assessment					
	introduction of innovation in teaching methodology	/.			
UNIT – I	- I INTRODUCTION 6 Periods				
Introduction a	nd Methodology: Aims and rationale, Policy background, C	onceptual framewor	k and terminology		
Theories of lea	arning, Curriculum, Teacher education. Conceptual framev	vork, Research quest	ions. Overview of		
methodology a	nd Searching.				
UNIT – II	UNIT - II PEDAGOGICAL PRACTICES 6 Periods				
Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in					
developing countries. Curriculum, Teacher education. Evidence on the effectiveness of pedagogical practices					
Methodology for	Methodology for the in depth stage: quality assessment of included studies.				
UNIT – III	PEDAGOGICAL APPROACHES		6 Periods		

How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teacher's attitudes and beliefs and Pedagogic strategies.

UNIT – IV **PROFESSIONAL DEVELOPMENT**

Professional development: alignment with classroom practices and follow-up support. Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes. 6 Periods

UNIT – V **CURRICULUM AND ASSESSMENT**

Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.

Lecture:30 Periods **Tutorial: 0 Periods** Practical: 0Periods Total: 30 Periods

1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools,Compare, 31 (2): 245-261, 2001.
2	Alexander RJ , Culture and pedagogy: International comparisons in primary education. Oxford and Boston:
	Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and
	reading in Africa: Does teacher preparation count? International Journal Educational Development, 33
	(3): 272–282, 2013.
4	Agrawal M , Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36
	(3): 361-379, 2004

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Explain the concept of curriculum, formal and informal education systems and teacher	К3
	education.	
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical	КЗ
	approaches	
CO3	Know the relation between teacher and community, support from various levels of	КЗ
	teachers to students and limitation in resources and size of the class.	
CO4	Perform research in design a problem in pedagogy and curriculum development.	К3

Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05				
CO1 1 2 1 2 2									
CO2	1	1	2	1	1				
CO3	1	2	1	1	1				
CO4	1	2	1	1	1				
23TEACZ5	1	2	1	1	1				
1 Slight 2 Moderate 3 Su	hetantial a	m							

1 – Slight, 2 – Moderate, 3 – Substantial

By Star Banger By US ST SURT

0

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1			100				100
CAT2		A	100	A			100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1			100				100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE			100				100

22754076	STRESS MANAGEMENT BY YOGA	CEMECTED
23 I LACLU	(Common to all branches)	SEMESTER

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course	1. To create awareness on the benefits of yoga and meditation.				
Objectives	2. To understand the significance of Asana and Pranayama.				
,					
UNIT – I	PHYSICAL STRUCTURE AND ITS FUNCTIONS	6 Periods			
Yoga - Physical	structure, Importance of physical exercise, Rules and regulation of simplified ph	ysical exercises,			
hand exercise,	leg exercise, breathing exercise, eye exercise, kapalapathy, maharasana,	body massage,			
acupressure, bo	dy relaxation.				
UNIT – II	YOGA TERMINOLGIES	6 Periods			
Yamas - Ahims	sa, satya, astheya, bramhacharya, aparigrahaNiyamas- Saucha, santosha, ta	pas, svadhyaya,			
Ishvarapranidha	ana.				
UNIT – III	ASANA	6 Periods			
Asana - Rules &	Regulations – Types & Benefits				
UNIT – IV	PRANAYAMA	6 Periods			
Regularization of	Regularization of breathing techniques and its effects-Types of pranayama				
UNIT – V	MIND	6 Periods			
Bio magnetism& mind - imprinting & magnifying – eight essential factors of living beings, Mental frequency and					
ten stages of mind, benefits of meditation, such as perspicacity, magnanimity, receptivity, adaptability, creativity.					
Lecture:30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods					

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Tarining-Part-I" , Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", AdvaitaAshrama (Publication
	Department), Kolkata.
3	PanditShambuNath, "Speaking of Stress Management Through Yoga and Meditation", New Dawn Press,
	New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", MotilalBanarsidassPublishers,New Delhi, 2007.

COUR	Bloom's Taxonomy	
Upon	Mapped	
C01	Practice physical exercises and maintain good health.	КЗ
CO2	Attain knowledge on the various concepts of Yoga.	КЗ
CO3	Perform various Asanas with an understanding on their benefits.	КЗ
C04	Practice breathing techniques in a precise manner.	К3
CO5	Attain emotional stability and higher level of consciousness.	КЗ

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05		
C01	-	-	-	2	2		
C02	-	-	-	2	1		
C03	-	-	-	1	2		
CO4	-	-	-	2	1		
C05	-	-	-	1	2		
23TEACZ6	-	-	-	2	2		
1 – Slight, 2 – Moderate, 3 –	Substantial						

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1		50	50				100	
CAT2			100				100	
Individual Assessment 1/Case Study 1/Seminar 1/Project 1		50	50				100	
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100	
ESE		50	50	1			100	

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS (Common to all branches)

SEMESTER

PREREQUISI	TES	CATEGORY	L	Т	Р	С
	NIL	AC	2	0	0	0
Course	1. To familiar with Techniques to achieve the highest	goal in life.				
Objectives	2. To become a person with stable mind, pleasing pers	sonality and determ	ninat	ion.		
UNIT – I				6 P	erio	ds
Neetisatakam-I	Holistic development of personality-Verses- 19,20,21,2	22 (wisdom)-Verse	s29,3	31,32	(pr	ide &
heroism)-Verse	es- 26,28,6.					
UNIT – II				6 P	erio	ds
Verses- 52,53,5	59 (dont's)-Verses- 71,73,75,78 (do's) Approach to a	lay to day work an	d du	ties	- Shr	imad
BhagwadGeeta	- Chapter 2-Verses 41, 47,48,					
UNIT – III				6 P	erio	ds
Shrimad Bhagy	wadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6	-Verses 5,13,17, 23	3, 35	,- Ch	apte	r 18-
Verses 45, 46, 4	48.					
UNIT – IV				6 P	erio	ds
Statements of b	oasic knowledgeShrimad BhagwadGeeta: -Chapter2-V	verses 56, 62, 68 -0	Chap	ter 1	2 -V	erses
13, 14, 15, 16,1	.7, 18-Personality of Role model.					
UNIT – V	UNIT – V 6 Perio				ds	
Shrimad Bhag	wadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36	,37,42, Chapter 4	-Vers	es 1	8, 3	8,39-
Chapter18 – Ve	erses 37,38,63.					
Lostuno.20 De	wiede Tuteviel O Deviede Dreatiesh O Deviede	Total: 20 Dort	oda			
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 Periods						
REFERENCES						
1 Sugari Sugarungangan da Aducita Ashram "Snimad Dhagguad Cita" Aducita Ashrama, Vollecta 2016						

1	Swami SwarupanandaAdvaita Ashram "Srimad Bhagavad Gita" , AdvaitaAshrama , Kolkata,2016						
2	P.Gopinath, Rashtriya Sanskrit Sansthanam"Bhartrihari's Three Satakam" (Niti-sringar-vairagya), New						
	Delhi, 1986.						
3	Swami Mukundananda, JagadguruKripalujiYog "Bhagavad Gita: The Song Of God" , USA,2019						
4	A.C. Bhaktivedanta Swami Prabhupada"Bhagavad-Gita As It Is",Bhaktivedanta Book Trust						
	Publications,2001.						

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1 Apply the Holistic development in life.		K4
CO2	Effective Planning of day to day work and duties.	K4
CO3	Identify mankind to peace and prosperity.	K4
C04	Develop versatile personality.	K4

Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	PO5			
C01	-	-	-	1	1			
CO2	-	-	-	2	1			
CO3	-	-	-	1	1			
CO4	-	-	-	2	1			
23TEACZ7	-	-	-	2	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1				100			100			
CAT2				100			100			
Individual Assessment 1/Case Study 1/Seminar 1/Project 1				100			100			
Individual Assessment 2/Case Study 2/Seminar 2/Project 2				100			100			
ESE			-Cump	100			100			

SANSKRIT FOR TECHNICAL KNOWLEDGE (Common to all branches)

NIL

SEMESTER

Р	R	E	R	E	Q	U	IS	IT	ES	
					•					

 CATEGORY
 L
 T
 P
 C

 AC
 2
 0
 0
 0

Course	1. To get a working knowledge in illustrious Sanskrit, the scientific language in the world.							
Objectives	2. Learning of Sanskrit to improve brain functioning.							
0.0,000.00	3. Enhancing the memory power.							
	4. Learning of Sanskrit to develop the logic in mathematics, science & other	subjects.						
UNIT – I	BASICS OF SANSKRIT	6 Periods						
Alphabets in Sa	nskrit, Past/Present/Future Tense.							
UNIT – II	SENTENCES AND ROOTS 6 Periods							
Simple Sentence	Simple Sentences - Order, Introduction of roots.							
UNIT – III	SANSKRIT LITERATURE 6 Periods							
Technical inform	nation about Sanskrit Literature							
UNIT – IV	TECHNICAL CONCEPTS -1	6 Periods						
Technical concepts of Engineering-Electrical, Mechanical								
UNIT – V	TECHNICAL CONCEPTS -2 6 Periods							
Technical conce	Technical concepts of Engineering-Architecture, Mathematics							
Lecture:30 Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 Periods								

REFERENCES:

1	Dr.Vishwas, "Abhyaspustakam", Samskrita-Bharti Publication, New Delhi, 2020.
2	Prathama DeekshaVempatiKutumbshastri, "Teach Yourself Sanskrit", Rashtriya Sanskrit Sansthanam,
	New Delhi, Publication, 2009.
3	Suresh Soni, "India's Glorious Scientific Tradition". Ocean books (P) Ltd., New Delhi.2006.

COURSE OUTCOMES: Bloom's Taxonomy Upon completion of the course, the students will be able to: Mapped Recognize ancient literature and their basics C01 K3 Formulate the sentences with order and understand the roots of Sanskrit КЗ CO2 Acquire familiarity of the major traditions of literatures written in Sanskrit КЗ CO3 Distinguish the Technical concepts of Electrical & Mechanical Engineering К3 CO4 Categorize the Technical concepts of Architecture & Mathematics К3 C05

Course Articulation Matrix								
COs/POs	P01	PO2	PO3	P04	PO5			
C01	1	2	1	2	2			
CO2	1	2	-	1	2			
CO3	1	1	1	1	2			
CO4	2	1	1	1	1			
CO5	1	2	1	1	1			
23TEACZ8	1	2	1	1	2			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1		50	50				100			
CAT2		50	50				100			
Individual Assessment 1/Case Study 1/Seminar 1/Project 1		50	50				100			
Individual Assessment 2/Case Study 2/Seminar 2/Project 2		50	50				100			
ESE		50	50 mg				100			

