

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum For M. E. THERMAL ENGINEERING

2023
Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

(An Autonomous Institution affiliated to Anna University)

Coimbatore - 641 013

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- ➤ To achieve academic excellence through innovative teaching and learning practices.
- > To enhance employability and entrepreneurship.
- ➤ To improve the research competence to address societal needs.
- ➤ To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

(An Autonomous Institution affiliated to Anna University)

VISION

To create outstanding Mechanical Engineers with strong domain knowledge and skills capable of working in an Interdisciplinary environment with exemplary ethical values contributing to society through Innovation, Entrepreneurship and Leadership.

MISSION

- To develop in each student, a strong theoretical and practical knowledge, a global outlook for a sustainable future and problem solving skills.
- To make productive members of interdisciplinary teams, capable of adapting to changing environments of Engineering, technology and society.
- To inculcate critical thinking abilities among students to enhance innovative ideas and entrepreneurial skills, leadership qualities.
- To imbibe moral and ethical values along with leadership qualities in students.

(An Autonomous Institution affiliated to Anna University)

M.E. THERMAL ENGINEERING

PROGRAMME OUTCOMES (POs)

- **PO1**: An ability to independently carry out research / investigation and development work to solve practical problems.
- **PO2:** An ability to write and present a substantial technical report/ document.
- **PO3**: Demonstrate a degree of mastery over thermal engineering at a level higher than the Bachelor's program.
- **P04:** Identify feasible energy sources and develop adequate technologies to equipage them.
- **PO5:** Design, develop and analyze thermal systems for recapitulation.
- **PO6**: Engage in lifelong learning adhering to professional, ethical, legal, safety, environmental and societal aspects for career excellence.

(An Autonomous Institution affiliated to Anna University)

M.E. THERMAL ENGINEERING

PROGRAMME EDUCTAIONAL OBJECTIVES (PEOS)

- PEO1 : Apply their knowledge in basic science, Mathematics and engineering to solve thermal, industrial and societal problems with a strong emphasis on innovation ethics and social responsibility.
- PEO2: Apply state of the art of Thermal Engineering tools and techniques to develop products and processes.
- PEO3: Ability to solve interdisciplinary problems by working in cross-functional teams.
- PEO4: Develop and upgrade Thermal Engineering, intellectual and emotional skills for life-long learning to compete on the competitive world.
- PEO5: Nurture entrepreneurial ventures and foster modern research accomplishments that support sustainable environmental and economical factors to improve the quality of life.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE - 641 013 M.E. THERMAL ENGINEERING

FIRST SEMESTER

Sl.	Course			CA	End	Total		Hours	/Wee	k
No.	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	С
			THEORY		I	I .	1			
1	23TEFCZ1	RESEARCH METHODOLOGY AND IPR (Common to all branches)	FC	40	60	100	3	0	0	3
2	23TEFC02	ADVANCED MATHEMATICS FOR THERMAL ENGINEERING	FC	40	60	100	3	1	0	4
3	23TEPC01	ADVANCED THERMODYNAMICS	PC	40	60	100	3	1	0	4
4	23TEPC02	ADVANCED FLUID DYNAMICS	PC	40	60	100	3	1	0	4
5	23TEPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3
6	23TEPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3
7	23TEACXX	AUDIT COURSE I	AC	40	60	100	2	0	0	0
	PRACTICAL									
8	23TEPC03	ADVANCED IC ENGINES AND SIMULATION LABORATORY	PC	60	40	100	0	0	4	2
		TOTAL		340	460	800	20	3	4	23

SECOND SEMESTER

Sl.	Course	A	0	CA	End	Total		Hours,	/Weel	Week	
No.	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	С	
		100	THEORY		0						
1	23TEPC04	ADVANCED HEAT AND MASS TRANSFER	PC	40	60	100	3	1	0	4	
2	23TEPC05	COMPUTATIONAL FLUID DYNAMICS	PC	40	60	100	3	1	0	4	
3	23TEPC06	FUEL CELL TECHNOLOGY	PC	40	60	100	3	0	0	3	
4	23TEPC07	MANUFACTURING AND TESTING OF IC ENGINES AND COMPONENTS	PC	40	60	100	3	0	0	3	
5	23TEPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3	
6	23TEACXX	AUDIT COURSE II	AC	40	60	100	2	0	0	0	
			PRACTICA	L			•		•		
7	23TEPC08	ADVANCED COMBUSTION LABORATORY	PC	60	40	100	0	0	4	2	
8	23TEEE01	MINI PROJECT	EEC	60	40	100	0	0	4	2	
	•	TOTAL		360	440	800	17	2	8	21	

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E.MECHANICAL ENGINEERING

THIRD SEMESTER

Sl.	Course Code	Course Title	Category	egory CA End Sem		Total		Hours	s/Week	(
No	Course code	Course Title	category	Marks	Marks	Marks	L	T	P	С				
	THEORY													
1	23TEPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3				
2	23\$\$0EXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3				
			PRACTICAL											
3	23TEEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	1	100	0	0	*	2				
4	23TEEE03	PROJECT - I	EEC	60	40	100	0	0	24	12				
	TOTAL			240	160	400	6	0	24	20				

* Internship / Industrial Training Four Weeks

FOURTH SEMESTER

				0 32	1800							
Sl.	Course Code	Course Title	Category	CA	End Sem	Total		Hours	/Week			
No	course coue	course ride	Category	Marks	Marks	Marks	L	Т	P	С		
	THEORY											
1	23TEEE04	PROJECT - II	EEC	60	40	100	0	0	48	24		
		TOTAL		60	40	100	0	0	48	24		

TOTAL NO. OF CREDITS: 88

LIST OF EMPLOYABILITY ENHANCEMENT COURSE

S. No	Course Code	Course Title	Category	Continuous Assessment Marks	End Sem Marks	Total Marks	L	Т	P	С
1	23TEEE01	MINI PROJECT	EEC	60	40	100	0	0	4	2
2	23TEEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	-	100	0	0	*	2
3	23TEEE03	PROJECT - I	EEC	60	40	100	0	0	24	12
4	23TEEE04	PROJECT - II	EEC	60	40	100	0	0	48	24
		TOTAL		280	120	400	0	0	76	40

* Internship / Industrial Training Four Weeks

	•		ROFESSIONA	L ELECTIVE	, .		, .			
S. No	Course Code	Course Title	Category	Continuous Assessment Marks	End Sem Marks	Total Marks	L	Т	P	С
		PROFE	ESSIONAL ELI	ECTIVE I						
1	23TEPE01	THERMODYNAMICS AND COMBUSTION	PE	40	60	100	3	0	0	3
2	23TEPE02	ARTIFICIAL INTELLIGENCE IN THERMAL SYSTEMS	PE	40	60	100	3	0	0	3
3	23TEPE03	ADVANCED GAS TURBINES	PE	40	60	100	3	0	0	3
4	23TEPE04	DESIGN OF CONDENSERS, EVAPORATORS AND COOLING TOWERS	PE	40	60	100	3	0	0	3
5	23TEPE05	INSTRUMENTATION IN THERMAL ENGINEERING	PE	40	60	100	3	0	0	3
		PROFE	SSIONAL ELE	CCTIVE II						
6	23TEPE06	ENGINE ELECTRONICS	PE	40	60	100	3	0	0	3
7	23TEPE07	FINITE ELEMENT METHODS IN THERMAL ENGINEERING	PE	40	60	100	3	0	0	3
8	23TEPE08	ADVANCED GAS DYNAMICS AND SPACE PROPULSION	PE	40	60	100	3	0	0	3
9	23TEPE09	STEAM ENGINEERING	PE	40	60	100	3	0	0	3
10	23TEPE10	SUPERCHARGING AND SCAVENGING	PE	40	60	100	3	0	0	3
		PROFE	SSIONAL ELE	CTIVE III						
11	23TEPE11	REFRIGERATION AND CRYOGENICS	PE	40	60	100	3	0	0	3
12	23TEPE12	THERMAL ENERGY SYSTEMS	PE	40	60	100	3	0	0	3
13	23TEPE13	ENGINE POLLUTION AND CONTROL	PE	40	60	100	3	0	0	3
14	23TEPE14	AIR CONDITIONING SYSTEM DESIGN	PE	40	60	100	3	0	0	3
15	23TEPE15	SOLAR ENERGY AND WIND ENERGY	PE	40	60	100	3	0	0	3
		PROFES	SIONAL ELEC	CTIVE IV						
16	23TEPE16	BIO-ENERGY CONVERSION TECHNIQUES	PE	40	60	100	3	0	0	3
17	23TEPE17	ENVIRONMENTAL ENGINEERING AND POLLUTION CONTROL	PE	40	60	100	3	0	0	3
18	23TEPE18	MODELING OF CI ENGINE PROCESSES	PE	40	60	100	3	0	0	3
19	23TEPE19	ENERGY AUDITING AND MANAGEMENT	PE	40	60	100	3	0	0	3
20	23TEPE20	ELECTRIC AND HYBRID VEHICLES	PE	40	60	100	3	0	0	3

LIST OF OPEN ELECTIVE COURSES

SI.		LIST OF OPEN E	Catego	CA	End	Total	Н	lours,	/Weel	Week	
No	Course Code	Course Title	ry	Marks	Sem Marks	Marks	L	Т	P	С	
1	23SE0E01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3	
2	23SE0E02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3	
3	23SE0E03	GREEN BUILDING	OE	40	60	100	3	0	0	3	
4	23EE0E04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3	
5	23EE0E05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3	
6	23EE0E06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3	
7	23GEOE07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3	
8	23GEOE08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3	
9	23GEOE09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3	
10	23ED0E10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3	
11	23ED0E11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3	
12	23ED0E12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3	
13	23MF0E13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3	
14	23MF0E14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3	
15	23MFOE15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3	
16	23TE0E16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3	
17	23TE0E17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3	
18	23TE0E18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3	
19	23PS0E19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3	
20	23PS0E20	ELECTRICITY TRADING & ELECTRICITY ACTS	OE	40	60	100	3	0	0	3	

SI.	Course Code	Course Title	Catego	CA	End Sem	Total	Н	ours,	/Weel	K
No	Course Code	Course Title	ry	Marks	Sem Marks	Marks	L	L	L	L
21	23PS0E21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3
22	23PE0E22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PE0E23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PE0E24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AE0E25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AE0E26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3
27	23AE0E27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3
31	23CSOE31	ARTIFICIAL INTELLIGENCE	OE	40	60	100	3	0	0	3
32	23CS0E32	COMPUTER NETWORK MANAGEMENT	OE	40	60	100	3	0	0	3
33	23CSOE33	BLOCKCHAIN TECHNOLOGIES	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSE

S. No	Course Code	Course Title	Category	Continuous Assessment Marks	End Sem Marks	Total Marks	L	Т	P	С
			THEOR	Y						
1	23TEACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0
2	23TEACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0
3	23TEACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0
4	23TEACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0
5	23TEACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0
6	23TEACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0
7	23TEACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	AC	40	60	100	2	0	0	0
8	23TEACZ8	SANSKRIT FORTECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0

CURRICULUM DESIGN

	Course Work			No of Credit	ts		
S.No	Subject Area	I	II	III	IV	Total	Percentage
1.	Foundation Course	7	-	-	-	07	7.95 %
2.	Professional Cores	10	16	-	-	26	29.54%
3.	Employability Enhancement Courses	0	2	14	24	40	45.45%
4.	Professional Electives	6	3	3	-	12	13.63%
5.	Audit courses	0	0	-	-	-	-
6.	Open Elective Courses	-	-	3	-	03	3.40 %
	Total Credits	23	21	20	24	88	100.00%

23TEFCZ1	RESEARCH METHODOLOGY AND IPR	I
----------	------------------------------	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	FC	3	0	0	3

Course Objectives	 To impart knowledge on research methodology ,Quantitative problem solving, data interpretation and report writing To know the importance of IPR and patent rights. 	e methods for
UNIT – I	INTRODUCTION	9 Periods

Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question-Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code.

UNIT – II QUANTITATIVE METHODS FOR PROBLEM SOLVING 9 Periods

Statistical Modelling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis.

UNIT - III DATA DESCRIPTION AND REPORT WRITING 9 Periods

Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables, Relation between frequency distributions and other graphs, preparing data for analysis. Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing.

UNIT - IV INTELLECTUAL PROPERTY 9 Periods

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development.

International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT - V PATENT RIGHTS 9 Periods

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

Contact Periods:

Lecture: 45 Periods Tutorial:0 Periods Practical: 0 Periods Total:45 Periods

- 1 Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students", Juta Academic, 1996.
- 2 Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, engageLearning, 2013.
- 3 RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2014.
- 4 Dr. C. R. Kotharia and GauravGarg, "Research Methodology: Methods and Trends", New age international publishers, Fourth Edition, 2018.

COU	Bloom's Taxonomy Mapped	
Upon	completion of the course, the students will be able to:	
CO1	Formulate research question for conducting research.	K4
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K4
CO4	Develop a structured content to write technical report.	K4
CO5	Summarize the importance of IPR and protect their research work through intellectual property.	K4

COURSE ARTICULATION MATRIX							
COs/POs	P01	PO2	P03	P04	P05		
CO1	1	2	1	1	2		
CO2	2	-	-	-	-		
CO3	3	3	3	2	2		
CO4	2	2	2	2	2		
CO5	1	1	ammo	1	1		
23TEFCZ1	2	2 (81)	land of the state of the state of	9,00	2		
1 – Slight, 2 – Moderate, 3 – Substantial							
		18	V. San N	200			
A COPOCIATENTE		TODY.		S //			

ASSESSMENT PATT	ERN – THEOR	Y	7 /	- //			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	\\ -	-	-	100
CAT2	40	40	20	Va	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100
ESE	30	30	20	20	-	-	100

23TEFC02	ADVANCED MATHEMATICS FOR THERMAL ENGINEERING	I
		in the second se

PREREQUISITES	CATEGORY	L	T	P	C
NIL	FC	3	1	0	4

	112	0 1 0 1					
Course	The course is designed to teach students various technique	•					
Objective	nonlinear equations including boundary value problems occ						
	them to the important mathematical tool of numerical method						
UNIT – I	SYSTEM OF LINEAR AND NONLINEAR EQUATIONS	9 +3 Periods					
System of lin	ear equation: Gauss elimination method, Gauss Jordan method, Chole	ski method, Gauss					
Jacobi metho	od, Gauss-Seidel method-System of nonlinear equations: Iteration	method, Newton-					
Raphson met	Raphson method for single variable-Eigen value problems: Power method.						
UNIT – II	NUMERICAL DIFFERENTIATION AND INTEGRATION	9+3 Periods					
Interpolation	: Newton's forward and backward interpolation, Newton's d	ivided difference					
interpolation	, Lagrange's Interpolation-Differentiation: Newton's Formula-Nume	erical integration:					
Trapezoidal r	rule, Simpson's 1/3rd and 3/8 rules-Gaussian two- and three-point quad	lrature formula.					
UNIT – III	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL	9+3 Periods					
	EQUATIONS						
First order di	ifferential equations: Taylor's series method-Euler and modified Euler'	's methods-Runge-					
Kutta metho	d of fourth order- Milne's and Adam's predictor-corrector metho	ds -Second order					
differential ed	quations: Taylor's series method.						
UNIT – IV	NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS	9+3 Periods					
D 1 1100		15.					
	ential equations: Finite difference solution two dimensional Laplace equ						
-	plicit and explicit methods for one dimensional heat equation (Be	nder-Schmidt and					
	son methods)-Finite difference explicit method for wave equation.	T					
UNIT – V	FINITE ELEMENT METHOD	9+3 Periods					
	te element method: Weak formulation, weighted residual method-Sl	=					
	angular element-Finite element method for two point boundary value	problems, Laplace					
and Poisson e	•						
Contact Perio							
Lecture: 45 I	Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Pe	riods					

	1	S.S. Sastry, Introductory methods of numerical analysis , PHI, New Delhi, 5 th Edition, 2015.
	2	Ward Cheney, David Kincaid, Numerical Methods and Computing, Cengage Learning, Delhi, 7th
		Edition 2013.
Ī	3	James.G, "Advanced Modern Engineering Mathematics", Pearson Education Asia, 4th edition, 2011.
Γ	1	Crowal P.S. "Numerical Methods In Engineering And Science" Whanna Publishers New Dalhi, 2014

- 4 Grewal.B.S., "Numerical Methods In Engineering And Science", Khanna Publishers New Delhi, 2014.
 5 Veerarajan. Tand Ramachandran. T, "Numerical Methods With Programming C", Tata Mc Graw Hill
- Veerarajan. Tand Ramachandran. T, "Numerical Methods With Programming C", Tata Mc Graw Hill Publishing Company Ltd., New Delhi, 2011.
- 6 S.R.K.Iyengar, R.K Jain, "Numerical Methods", New Age International Publishers, New Delhi.

COUF	RSE OUTCOMES:	Bloom's		
Upon	completion of the course, the students will be able to:	Taxonom		
		y Mapped		
C01	Solve the linear, non-linear equations and Eigenvalue problems using an appropriate numerical method.	К6		
CO2	O2 Gain the knowledge of numerical differentiation and integration.			
CO3	Construct one-step and linear multistep methods for the numerical solution of initial-value problems for ordinary differential equations and systems of such equations.	К6		
CO4	Acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes, interpret solutions in a physical context of wave and heat equation in specified techniques.	К6		
C05	Acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes, interpret solutions in a physical context of wave and heat equation in specified techniques.	К6		

COs/POs	P01	PO2	PO3	P04	PO5	P06
CO1	3	3_0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-	1
CO2	3	3 3 0 0 0	NOTO BY THE BETTER	-	-	2
CO3	3	3	2.25 ma	-	-	2
CO4	2	2		-	-	1
CO5	1	2	1	-	-	1
23TEFC02	3	3	- A- /	-	-	1

ASSESSMENT I	PATTERN - THEO	RY	8 11 11	A. I			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	30	10	-	-	100
CAT2 Individual	20	40 50	30 30	10 20	-	-	100 100
Assessment 1 / Case Study 1 / Seminar 1 / Project 1							
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	-	50	30	20	-	-	100
ESE	20	40	30	10	-	-	100

23TEPC01	ADVANCED THERMODYNAMICS	Ţ
ZSTEPCUT	(Use of approved gas tables and charts are permitted)	1

PREREQUISITES	CATEGORY	L	T	P	С
ENGINEERING THERMODYNAMICS	PC	3	1	0	4

Course	To make the students learn the advanced concepts thermodynan	To make the students learn the advanced concepts thermodynamic properties,					
Objective	multi phase systems, chemical and statistical thermodynamics, energy at micro						
	level, conversion of heat energy in thermodynamic systems.						
UNIT – I	AVAILABILITY AND THERMODYNAMIC PROPERTY RELATIONS	9+3 Periods					

Reversible work, Availability, Irreversibility and Second-Law Efficiency for a closed System and Steady-State Control Volume. Thermodynamic Potentials, Maxwell relations, Generalized relations for changes in Entropy, Internal Energy and Enthalpy, C_p and C_v , Clausius Clayperon Equation, Joule-Thomson Coefficient, Bridgmann Tables for Thermodynamic relations.

UNIT - II SINGLE AND MULTI PHASE SYSTEMS

9+3 Periods

SINGLE-PHASE SYSTEMS: Simple System, Equilibrium Conditions, The Fundamental Relations, Legendre Transforms, Relations between Thermodynamic Properties, EXERGY ANALYSIS: Non flow Systems, Flow Systems, Generalized Exergy Analysis, Air Conditioning and its types. MULTIPHASE SYSTEMS: The Energy Minimum Principle, The Stability of a Simple System, The Continuity of the Vapor and Liquid States, Phase Diagrams, Corresponding States.

UNIT - III REAL GAS AND MULTI-COMPONENT SYSTEMS

9+3 Periods

Different Equations of State, Fugacity, Compressibility, Principle of Corresponding States, Use of generalized charts for enthalpy and entropy departure, fugacity coefficient, Lee-Kessler generalized three parameter tables, Fundamental property relations for systems of variable composition, partial molar properties, Real gas mixtures, Ideal solution of real gases and liquids, Equilibrium in multiphase systems, Gibbs phase rule for non-reactive components.

UNIT - IV CHEMICAL THERMODYNAMICS AND EQUILIBRIUM

9+3 Periods

Thermo chemistry, First Law analysis of reacting systems, Adiabatic Flame temperature, Entropy change of reacting systems, Second Law analysis of reacting systems, Criterion for reaction equilibrium, Chemical availability, Equilibrium constant for gaseous mixtures, evaluation of equilibrium composition, Availability of reacting systems.

UNIT - V STATISTICAL THERMODYNAMICS

9+3 Periods

Microstates and Macrostates, Thermodynamic probability, Degeneracy of energy levels, Maxwell-Boltzman, Fermi-Dirac and Bose-Einstein Statistics, Microscopic Interpretation of heat and work, Evaluation of entropy, Calculation of the Macroscopic properties from partition functions, Equilibrium constant statistical thermodynamics approach.

Contact Periods:

Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

TEXT BOOK:

- 1 Yunus Cengel, Michael Boles, "**Thermodynamics: An Engineering Approach**", 9th Edition, 2019.
- 2 *P.K.Nag,* "Engineering Thermodynamics", Tata McGraw Hill Education, 6 th Edition, 2017.

1	Kenneth Wark Jr., "Advanced Thermodynamics for Engineers, McGraw-Hill Inc. New York, 1995.
2	Holman, J.P., "Thermodynamics" , McGraw-Hill Inc, 4 th Edition, 1988.
3	Smith, J.M. and Van Ness., H.C., "Introduction to Chemical Engineering Thermodynamics", McGraw-Hill Inc., 4th Edition, 2005.
4	Bejan, A., "Advanced" Engineering Thermodynamics", John Wiley and Sons, 3 rd edition, 2006.
5	Domkundwar, Kothandaraman, "A Course in Thermal Engineering" , DhanpatRai and Co, 2008.

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Unon	completion of the course, the students will be able to:	Mapped
CO1	Understand the thermodynamics property and relation between them.	КЗ
CO2	Understand the concepts of Thermodynamics Phase systems.	K5
CO3	Discuss the properties of different types of gases.	K2
CO4	Discuss the basic concepts of Irreversible and Chemical Thermodynamics.	К3
CO5	Derive equations and calculating the properties related to statistical thermodynamics.	K5

COs/POs	P01	PO2	P03	P04	P05	P06
CO1	3	3	2	2	3	2
CO2	3	3	2	2	2	1
CO3	3	3	2	3	2	1
CO4	2	2	1	2	3	2
C05	3	3	3	3	3	3
23TEPC01	3	3	2	2	3	2

ASSESSMENT I	PATTERN - THEO	RY	COLD TO				
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	20	30	30	10	10	-	100
CAT2	30	30	20	10	10	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	20	10	10	30	30		100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	20	30	20	20	-	100
ESE	30	20	15	20	15	-	100

23TEPC02 ADVANCED FLUID DYNAMICS (use of approved gas tables and charts are permitted)	I
--	---

PREREQUISITES	CATEGORY	L	T	P	С
FLUID MECHANICS AND HYDRAULIC MACHINERY	PC	3	1	0	4

Course	To make the students learn the advanced concepts and equ	ations of various
Objective	types of fluid flows and realize the special effects due to tu	rbulence, friction
	and shock.	
UNIT – I	BASIC LAWS OF FLUID FLOW	9+3 Periods

Condition for irrotationality, circulation and vorticity Accelerations in Cartesian systems normal and tangential accelerations, Euler's, Bernoulli equations in 3D– Continuity and Momentum Equations, Ideal and non-ideal flows, general equations of fluid motion, Navier - stokes equations and their exact solutions. Boundary layer theory, wedge flows, laminar flow over plates and through cylinders.

UNIT - II BOUNDARY LAYER THEORY

9+3 Periods

Prandtl's contribution to real fluid flows – Prandtl's boundary layer theory -Boundary layer thickness for flow over a flat plate – Von-Karman momentum integral equation -Blasius solution- Laminar boundary layer – Turbulent Boundary Layer – Expressions for local and mean drag coefficients for different velocity profiles. – Total Drag due to Laminar & Turbulent Layers – Problems.

UNIT - III TURBULENT FLOW

9+3 Periods

Fundamental concept of turbulence – Time Averaged Equations –Boundary Layer Equations - Prandtl Mixing Length Model - Universal Velocity Distribution Law: Van Driest Model –Approximate solutions for drag coefficients – More Refined Turbulence Models – k- ϵ model - boundary layer separation and form drag – Karman Vortex Trail, Boundary layer control, lift on circular cylinders.

UNIT - IV SHOCK WAVE

9+3 Periods

Normal and oblique shocks – Prandtl – Meyer expansion – Rankine Hugnoit relation. Application of method of characteristics applied to two-dimensional case – simple supersonic wind tunnel Design of supersonic wind tunnel and nozzle.

UNIT - V EXPERIMENTAL TECHNIQUES

9+3 Periods

Role of experiments in fluid, layout of fluid flow experiments, sources of error in experiments, data analysis, design of experiments, review of probes and transducers, Introduction to Thermal Anemometry-Hot wire anemometer, Laser Doppler Velocimetry and Particle Image Velocimetry, Measurement of velocity components by 3 holes and 4 holes probes.

Contact Periods:

Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

TEXT BOOK:

1 Mohanty, A. K., "Fluid Mechanics", Prentice Hall of India, 2nd edition, 2006.

2 Yunus A Cengel, John M.Cimbala, "Fluid Mechanics: Fundamentals and Applications", McGraw-Hill, 4th Edition, 2019

- Muralidhar, K and Biswas, G., "Advanced Engineering Fluid Mechanics", Alpha Science International Ltd., 2015.
 Dively K. Kundy, Ing. M. Kelsen and David B. Davieling, "Elvid Mechanics", Academic Press, 5th Edition.
- 2 Pijush K. Kundu, Ira M Kohen and David R. Dawaling, "Fluid Mechanics", Academic Press, 5th Edition 2011.
- 3 White, F. M., "Viscous Fluid Flow", 3rd Edition, Tata McGraw Hill Book Company, 2017.
- 4 "Advanced Fluid Mechanics" by Dr. Suman Chakraborty (IIT Kharagpur), NPTEL Course (Link: https://nptel.ac.in/courses/112/105/112105218/#)
- 5 "Introduction to Turbulence" by Prof. Gautam Biswas (IIT Kanpur), NPTEL Course (Link: https://nptel.ac.in/courses/112/104/112104120/)

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand fundamentals and Basic laws of Fluid Flows.	К3
CO2	Discuss the various laws pertaining to different Boundary layer concepts.	K5
CO3	Identify, formulate and solve problems related to fluid flows.	K5
CO4	Understand and Evaluate different wave phenomena.	K5
CO5	Apply fluid concepts in the experimental setups.	K5

COURSE ARTICULATION	COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	3	3	2	2	3	2			
CO2	3	3	2	2	2	1			
CO3	3	3	2	3	2	1			
CO4	2	2	1	2	3	2			
CO5	3	3	3	3	3	3			
23TEPC02	3	3	2	2	3	2			
1 – Slight, 2 – Moderate,	3 – Substantia	AND STREET	2075	•	•	•			

	A COROCOMENTE DAMERIDAL MANDO DA									
ASSESSMENT I	PATTERN - THEO	RY								
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*		, ,	,		, ,	,				
CAT1	20	30	20	20	10	-	100			
CAT2	5	30	30	15	20	-	100			
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	10	20	30	20	20	-	100			
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	30	20	15	15	20	,	100			
ESE	20	25	25	15	15	-	100			

ADVANCED IC ENGINES AND SIMULATION LABORATORY	I
	ADVANCED IC ENGINES AND SIMULATION LABORATORY

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	0	0	4	2

Course	To make the students learn the importance of various types of I.C engines and					
Objective	analyze them using commercial open source software.					
LIST OF EXP	LIST OF EXPERIMENTS					

- 1. Performance test on Spark Ignition and Compression Ignition engines using Alternative fuels such as ethanol and Biofuels.
- 2. Performance test using pressure transducers in CI and SI Engines.
- 3. Performance and Heat balance test on I. C. Engines using a water dynamometer.
- 4. Performance test on variable compression ratio petrol and diesel engines.
- 5. Emission measurement in Spark Ignition and Compression Ignition Engines using smoke meter and gas analyzer.
- 6. Determination of Temperature Distribution using Thermal Imager.
- 7. Performance test on computerized Two Stage Air Compressor Test Rig.
- 8. Study on Drawing of Engine Components with Dimensions, Assembly and Disassembly.
- 9. Performance test on the effect of Air Fuel Ratio of the Two Stroke Single Cylinder Petrol Engine.
- 10. Study on Meshing Techniques and Turbulent Modeling.
- 11. Flow analysis over a Flat Plate for Boundary layer characteristics using CFD.
- 12. Convection Heat transfer analysis in laminar flow inside 2D pipe

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COUF	RSE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
CO1	Evaluate the performance of SI and CI engines.	K5
CO2	Analyze the emission characteristics of IC engines.	K4
CO3	Study the various equipment used for analysis.	K4
CO4	Apply the principles of CFD in fluid flow problems.	K5
CO5	Learn the various tools used in analysis.	К3

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	PO3	P04	PO5	P06		
CO1	2	2	3	2	2	2		
CO2	3	3	2	1	2	2		
CO3	2	3	2	1	2	2		
CO4	2	2	3	1	3	3		
CO5	2	2	3	1	3	3		
23TEPC03	2	3	3	1	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

PREREQUISITES	CATEGORY	L	T	P	С
1. NUMERICAL METHODS	PC	2	1	0	4
2. HEAT AND MASS TRANSFER		3	T	0	4

		C 1 .					
Course	To make the students learn the concepts of modes of heat transfer, heat						
Objective	exchangers along with numerical formulation of heat equations and to						
	analyze various heat transfer correlations.						
UNIT – I	CONDUCTION AND RADIATION HEAT TRANSFER	9+3 Periods					
One dimension	nal energy equations and boundary condition - Three dimensiona	l heat conduction					
equations - Ex	xtended surface heat transfer - Conduction with moving boundarie	s - Porous-media					
heat transfer	- Radiation in gases and vapour.						
UNIT – II	TURBULENT FORCED CONVECTIVE HEAT TRANSFER	9+3 Periods					
Momentum a	nd energy equations - Turbulent boundary layer heat transfer	- Mixing length					
concept - Tu	rbulence model - k-ε model - Analogy between heat and mome	entum transfer –					
Reynolds, Col	burn analogy, Von-karman, turbulent flow in a tube - High speed flov	VS.					
UNIT – III	PHASE CHANGE HEAT TRANSFER AND HEAT EXCHANGER	9+3 Periods					
Condensation	with shear edge on bank of tubes - Boiling, types - pool and fle	ow boiling - heat					
exchanger – 8	e-NTU approach and design procedure - Compact heat exchangers.						
UNIT – IV	NUMERICAL METHODS IN HEAT TRANSFER	9+3 Periods					
Finite differen	nce formulation of steady and transient heat conduction problems	s – Discretization					
schemes – Ex	xplicit, Crank Nicolson and fully implicit schemes - Control volui	ne formulation -					
Steady one-di	mensional convection and diffusion problems - Calculation of the flo	ow field – Simpler					
Algorithm.							
UNIT – V	MASS TRANSFER AND ENGINE HEAT TRANSFER	9+3 Periods					
	CORRELATION	7+3 Ferious					
Mass Transfer - Vaporization of droplets - Combined heat and mass transfer problems - Heat							
transfer correlations in I.C. Engines.							
Contact Periods:							
Lecture: 45 P	Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods						
1							

- Frank P.Incropera, David P.Dewitt, Adrienne S.Lavine and Theodore L.Bergman, "Fundamentals of Heat & Mass Transfer", John wiley, 7th Edition, 2011. Suhas V.Patankar, "Numerical Heat Transfer and Fluid Flow", CRC Press, 1st Edition, 2017.

1	Adrian Bejan, "Convection Heat Transfer" , John Wiley, 4 th Edition, 2013.									
2	Yunus A.Cengel and Afshin J.Ghajar, "Heat and Mass Transfer: Fundamentals and									
	Applications", McGraw Hill, 6th Edition, 2020.									
3	Dr. D.S.Kumar, "Heat & Mass Transfer" , S.K.Kataria & Sons, 9 th Edition, 2018.									
4	Mahesh M.Rathore, "Engineering Heat and Mass Transfer", University Science Press,									
	3 rd Edition, 2016.									
5	Yunus A.Cengel, "Heat and Mass Transfer: A Practical Approach", Mcgraw Hill, 5th Edition,									
	2015.									

COUF	RSE OUTCOMES:	Bloom's
Upor	a completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Apply the heat transfer concepts for conduction, convection and radiation heat transfer.	К3
CO2	Learn mathematical models for various flows in heat transfer.	K4
CO3	Evaluate the concepts of phase change in heat transfer and heat exchanger.	K5
CO4	Apply numerical methods for solving heat and mass transfer problems.	К3
CO5	Understand relation between mass and heat transfer in engine.	K2

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	P06			
CO1	3	3	2	2	3	2			
CO2	3	3	3	1	3	3			
CO3	3	3	3	2	3	3			
CO4	3	3	3	1	2	3			
CO5	3	3	3	2	2	2			
23TEPC04	3	3	3 3	2	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

WAS A STATE OF THE											
ASSESSMENT I	PATTERN - THE	ORY (5							
Test / Bloom's	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %				
Category*											
CAT1	20	25	25	10	20	-	100				
CAT2	15	15	15	25	30	-	100				
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	25	20	20	20	15	-	100				
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	20	20	25	20	15	-	100				
ESE	30	20	20	15	15	-	100				

23ТЕРС05	COMPUTATIONAL FLUID DYNAMICS	II
----------	------------------------------	----

PREREQUISITES	CATEGORY	L	T	P	С
1. NUMERICAL METHODS	PC	3	1	0	4
2. HEAT AND MASS TRANSFER					

Course	To make the students learn finite difference and finite volume discretized								
Objective	forms of CFD equations and their solutions.								
UNIT – I	GOVERNING EQUATIONS AND BOUNDARY CONDITION	9+3 Periods							
	Basics of CFD - Governing equations of fluid dynamics - Continuity, momentum and energy								
equations - Physical boundary conditions - Mathematical behavior of PDEs on CFD - Elliptic,									
parabolic and	hyperbolic equations.								
UNIT – II	DISCRETISATION TECHNIQUES AND SOLUTION	9+3 Periods							
	METHODOLOGIES	7+3 1 c110us							
Methods of d	leriving discretization equations – Finite difference & Finite volu	ıme methods -							
Finite differe	nce discretization of wave equation - Laplace equation, Burg	ger's equation,							
	or and stability analysis. Time dependent methods – Explicit, im	ıplicit, Crank –							
Nicolson met	nods, time split methods.								
UNIT - III CALCULATION OF FLOW-FIELD FOR N-S EQUATIONS 9+3 Periods									
Finite volume formulation of steady one - Dimensional convection and diffusion problems -									
Central, upwind, hybrid and power-law schemes – Discretization equations for two-dimensional									
Central, upwi	nd, hybrid and power-law schemes – Discretization equations for tw	vo-dimensional							
Central, upwi	nd, hybrid and power-law schemes – Discretization equations for tw nd diffusion. Representation of the pressure – Gradient term a	vo-dimensional and continuity							
Central, upwi convection a equation – St	nd, hybrid and power-law schemes – Discretization equations for tw nd diffusion. Representation of the pressure – Gradient term a taggered grid – Momentum equations – Pressure-Correction equa	vo-dimensional and continuity							
Central, upwi	nd, hybrid and power-law schemes – Discretization equations for two nd diffusion. Representation of the pressure – Gradient term a taggered grid – Momentum equations – Pressure-Correction equal lits variants.	vo-dimensional and continuity							
Central, upwi convection a equation – St algorithm and UNIT – IV	nd, hybrid and power-law schemes – Discretization equations for two nd diffusion. Representation of the pressure – Gradient term a caggered grid – Momentum equations – Pressure-Correction equal its variants. TURBULENCE MODELING	vo-dimensional and continuity ation - SIMPLE 9+3 Periods							
Central, upwi convection a equation – St algorithm and UNIT – IV Time – Avera	nd, hybrid and power-law schemes – Discretization equations for two diffusion. Representation of the pressure – Gradient term a caggered grid – Momentum equations – Pressure-Correction equal its variants. TURBULENCE MODELING ged equation for turbulent flow - Turbulence models – Zero equat	vo-dimensional and continuity ation - SIMPLE 9+3 Periods							
Central, upwi convection a equation – St algorithm and UNIT – IV Time – Avera	nd, hybrid and power-law schemes – Discretization equations for two nd diffusion. Representation of the pressure – Gradient term a caggered grid – Momentum equations – Pressure-Correction equal its variants. TURBULENCE MODELING	vo-dimensional and continuity ation - SIMPLE 9+3 Periods							
Central, upwi convection a equation – St algorithm and UNIT – IV Time – Avera equation mod UNIT – V	nd, hybrid and power-law schemes – Discretization equations for two diffusion. Representation of the pressure – Gradient term a taggered grid – Momentum equations – Pressure-Correction equalitis variants. TURBULENCE MODELING ged equation for turbulent flow - Turbulence models – Zero equation, two equation K-I models and advanced models. GRID GENERATION	vo-dimensional and continuity ation - SIMPLE 9+3 Periods							
Central, upwi convection a equation – St algorithm and UNIT – IV Time – Avera equation mod UNIT – V Algebraic Met	nd, hybrid and power-law schemes – Discretization equations for two diffusion. Representation of the pressure – Gradient term a taggered grid – Momentum equations – Pressure-Correction equal its variants. TURBULENCE MODELING ged equation for turbulent flow - Turbulence models – Zero equaturel, two equation K-I models and advanced models. GRID GENERATION chods – Methods – Differential Equation methods – Adaptive grids.	vo-dimensional and continuity ation - SIMPLE 9+3 Periods ion model, one							
Central, upwi convection a equation – St algorithm and UNIT – IV Time – Avera equation mod UNIT – V	nd, hybrid and power-law schemes – Discretization equations for two diffusion. Representation of the pressure – Gradient term a taggered grid – Momentum equations – Pressure-Correction equal its variants. TURBULENCE MODELING ged equation for turbulent flow - Turbulence models – Zero equaturel, two equation K-I models and advanced models. GRID GENERATION chods – Methods – Differential Equation methods – Adaptive grids.	vo-dimensional and continuity ation - SIMPLE 9+3 Periods ion model, one							
Central, upwi convection a equation – St algorithm and UNIT – IV Time – Avera equation mod UNIT – V Algebraic Met	nd, hybrid and power-law schemes – Discretization equations for two diffusion. Representation of the pressure – Gradient term a taggered grid – Momentum equations – Pressure-Correction equal its variants. TURBULENCE MODELING ged equation for turbulent flow - Turbulence models – Zero equatiel, two equation K-I models and advanced models. GRID GENERATION chods – Methods – Differential Equation methods – Adaptive grids.	vo-dimensional and continuity ation - SIMPLE 9+3 Periods ion model, one							

- John C.Tanne hill, Dale A.Anderson and Richard H.Pletcher, "Computational Fluid Mechanics and Heat Transfer", CRC Press, 3rd Edition, 2011.
- 2 H.Versteeg and W.Malalasekra, "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", Pearson, 2nd Edition, 2007.

1	K.Muralidhar and T.Sundararajan, "Computational Fluid Flow and Heat Transfer", Narosa
	Publishing House, 2 nd Edition, 2014.
2	Sunil Kumar Chakrabartty, Manas Kumar Laha and Pradip Niyogi, "Introduction to
	Computational Fluid Dynamics", Pearson, 1st Edition, 2009.
3	T.J.Chung, "Computational Fluid Dynamics", Cambridge University Press, 2 nd Edition, 2014.
4	Tapan Sen Gupta, "Computational Fluid Dynamics" , Universities Press, 1st Edition, 2004.
5	S.C.Gupta, "Applied Computational Fluid Dynamics", Wiley, 1st Edition, 2019.

COUF	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Appreciate different types of PDEs that arise in fluid flow and heat transfer problems.	K2
CO2	Develop finite volume discretized forms of the governing equations for diffusion processes.	К3
CO3	Analyze the consistency, stability and convergence of various discretization schemes for parabolic, elliptic and hyperbolic partial differential equations.	K4
CO4	Develop turbulent model for various engineering applications.	К3
CO5	Analyze various methods of grid generation techniques and application of finite difference and finite volume methods to various thermal problems.	K4

COs/POs	P01	PO2	P03	P04	P05	P06
CO1	2	3	3	1	3	1
CO2	2	3	3	~ 771	3	2
CO3	3	3	3	2	3	3
CO4	3	3	3	1	3	3
CO5	3	3	3	2	3	2
23TEPC05	3	3	3	1	3	2
1 – Slight, 2 –	Moderate, 3 -	- Substantial	F	29a.JL		

		(The state of the s				
ASSESSMENT I	PATTERN - THE	ORY Company	STA AN	ر مان			
Test / Bloom's	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
Category*							
CAT1	25	25	30	20	-	-	100
CAT2	20	20	20	40	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	25	20	25	30	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	15	25	20	40	-	-	100
ESE	20	20	25	35	-	-	100

22TEPC06 FUEL CELL TECHNOLOGY II

PREREQUISITES	CATEGORY	L	T	P	С
1. ENGINEERING CHEMISTRY					
2. THERMODYNAMICS	PC	3	0	0	3
3. HEAT AND MASS TRANSFER					

Course	 To provide the students about comprehensive understandi 	ng of fuel cell						
Objective	technology, enabling them to analyze, design and contribut	e to the						
	development of efficient and sustainable energy systems.							
	1 00 0							
UNIT – I	INTRODUCTION	9 Periods						
Principle, wo	rking, components, types of fuel cells; AFC, PAFC, SOFC, MCFC, D	MFC, PEMFC -						
	Relative merits and demerits - Performance evaluation of fuel cell - Comparison of battery and							
fuel cell.								
UNIT - II	THERMODYNAMICS OF FUEL CELLS	9 Periods						
Electrochemical and electrolysis cell - Energy conversion in fuel cells - Change in Gibbs free								
energy - Effect of operating conditions - Efficiency of fuel cell - Fuel consumption and supply								
rates - Water production rate - Heat generation in fuel cell.								
UNIT – III	HEAT AND MASS TRANSFER IN FUEL CELLS	9 Periods						
Fluid flow -	Heat transfer modes and rate equations - Inlet and boundar	y conditions -						
Conservation	of energy and heat equations - Mass transfer: Basic modes and	transport rate						
equation - Ma	ss species transport in fuel cell - Convective mass transfer - Diffusion	n coefficient.						
UNIT - IV	FUELING	9 Periods						
Hydrogen sto	rage technology - Pressure cylinders, liquid hydrogen, metal hy	drides, carbon						
fibers - Refo	rmer technology - Steam reforming, partial oxidation, auto ther	mal reforming						
water shift re	action, desulfurization, CO removal - Fuel cell technology from biom	ass.						
UNIT - V	APPLICATIONS AND STANDARD CODES	9 Periods						
Stationary po	wer applications - Transportation power, portable applications, la	ndfills, military						
applications	fuel cell codes and standards - Environmental effects - Emission	and life cycle						
assessments.								
Contact Perio	ods:							
1								

Lecture: 45 Periods

1 Shripad T.Revankar and Pradip Majumdar, "Fuel cells: Principles, Design and Analysis", CRC Press, 1st Edition, 2014.

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

2 Chris Rayment and Scott Sherwin, "Introduction to Fuel Cell Technology", Notre Dame, 1st Edition, 2003.

- 1 Bent Sorensen, "Hydrogen and Fuel Cells: Emerging Technologies and Applications", Elsevier Academic Press, 3rd Edition, 2018.
- 2 Rebecca L.Busby, "Hydrogen and Fuel Cells: A Comprehensive Guide", PennWell Corporation, American ed. Edition, 2005.
- 3 Peter Hoffmann, "Tomorrow's Energy: Hydrogen, Fuel cells and the prospects for a cleaner planet", The MIT Press, Revised and Expanded Edition, 2012.

- 4 Andrew Bocarsly and David Michael P.Mingos, "Fuel Cells and Hydrogen Storage", Springer, 2011th Edition, 2011.
- 5 Zhigang Qi, "Proton Exchange Membrane Fuel Cells", CRC Press, 1st edition, 2013.

COUF	RSE OUTCOMES:	Bloom's
Upon	n completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Outline the performance and design characteristics and operating issues	
001	for various fuel cells.	K2
CO2	Apply principles of thermodynamics, electrochemistry, heat transfer,	К3
	and fluid mechanics principles to design and analysis of fuel cells.	110
CO3	Understand the opportunities for using hydrogen and the impact of this	К2
	technology in a global and societal context.	112
CO4	Understand the various types of fueling techniques.	K2
CO5	Gain the knowledge of various applications and standard codes in fuel	К3
	cell technologies.	

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	P04	P05	P06				
CO1	3	2	m3m	3	2	3				
CO2	1	1, 898	3	9,000	1	1				
CO3	2	2	3	3	3	2				
CO4	2	2	2	3	3	2				
CO5	2	2	3	7/3	2	2				
23TEPC06	3	2	2	3	3	2				
1 – Slight, 2 –	Moderate, 3 -	- Substantial								

ASSESSMENT P	ATTERN - THEO	RY		//			
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	45	35	20	- (مار	-	-	100
CAT2	35	35	30	7 -	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	30	40	30	-	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	30	40	30	-	-	-	100
ESE	35	40	25	-	-	-	100

23TEPC07	MANUFACTURING AND TESTING OF IC ENGINES AND COMPONENTS	II

PREREQUISITES	CATEGORY	L	T	P	С
NII.	PC	3	0	0	3

Course	 To make the students learn a comprehensive module on the 	e aspects of					
Objective	materials, manufacturing and testing of engine piston asser	nblies,					
	components, subsystems and International Standards.						
UNIT – I	CYLINDER BLOCK AND CYLINDER HEAD	9 Periods					
Casting pract	ice and special requirements - Materials, machining, methods of t	esting - Cylinder					
liners, types a	nd manufacture.						
UNIT – II	PISTON ASSEMBLY	9 Periods					
Types, require	ements, casting, forging, squeeze casting, materials, machining, test	ing, manufacture					
piston rings –	Material, types and manufacture – Surface treatment, bimetallic pis	stons, articulated					
pistons.							
UNIT – III	DRIVE SYSTEMS	9 Periods					
Requirements	s, materials, forging practice, machining, balancing of crankshaft, tes	ting - Connecting					
rod, crank sha	ıft, cam shaft, valve timing.						
UNIT – IV	COMPUTER INTEGRATED MANUFACTURING	9 Periods					
Integration o	f CAD, CAM and business functions - CIM, networking - CNC p	programming for					
machining of	IC engines components.						
UNIT - V	QUALITY AND TESTING	9 Periods					
UNIT - V							
UNIT - V SPC - Introduc	QUALITY AND TESTING ction to ISO 9000, ISO L4000, TS L6949, its importance - BIS codes for	or testing various					
UNIT - V SPC - Introductypes of eng	QUALITY AND TESTING	or testing various engine testing -					
UNIT - V SPC - Introductypes of eng	QUALITY AND TESTING ction to ISO 9000, ISO L4000, TS L6949, its importance - BIS codes for the second secon	or testing various engine testing -					
UNIT - V SPC - Introductypes of eng Metrology for	QUALITY AND TESTING ction to ISO 9000, ISO L4000, TS L6949, its importance - BIS codes for ines - Equipments required, instrumentation, computer aided remanufacturing IC engine components - In site measurement -	or testing various engine testing -					

		2001
	1	Mikell P.Groover, "Automation, production Systems and Computer - Integrated
		Manufacturing" , Pearson Education, 4 th Edition, 2016.
I	2	Mahle GmbH, "Cylinder components: Properties, Application, Materials", Springer vieweg, 2 nd
		Edition, 2016.

REFERENCES:

1	P.Radhakrishnan, S.Subramanian and V.Raju, "CAD/CAM/CIM", New Age International
	Publishers, 4 th Edition, 2018.
2	Carl R. Loper, Philip C. Rosenthal and Richard W. Heine, "Principles of Metal Casting",
	McGrawHill, 2 nd Edition, 2017.
3	Mikell P.Groover and Emory W.Zimmers, "CAD/CAM: Computer-Aided Design and
	Manufacturing", Pearson Education, 1st Edition, 2003.
4	T.V.Ramana Rao, "Metal Casting: Principles and Practice", New Age International Publishers,
	2 nd Edition, 2020.
5	Itay Abuhav, "ISO 9001: 2015 - A Complete Guide to Quality Management Systems", CRC
	Press, 1st Edition, 2017.

.

COUF	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Specify the component material and manufacturing method for a	К2
	cylinder block and head of the IC engine.	
CO2	Specify the component material and manufacturing method for a piston	K2
	of IC engine.	
CO3	Understand the basic concepts about IC engine drive system.	K2
CO4	Implement advanced computer integrated techniques in Manufacturing	К3
	IC engine components.	
CO5	Relate and quality checks a component with International Standards.	К3

COs/POs	ICULATION I PO1	P02	P03	P04	P05	P06
CUS/FUS	ru1	FUZ	FU3	FU4	FU3	F00
CO1	2	3	2	2	2	2
CO2	3	3	2	3	2	2
CO3	2	3	1	3	2	2
CO4	3	3	3	2	3	3
CO5	1	2	3	2	2	2
23TEPC07	2	3	2 0	2	2	2
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT P	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %	
CAT1	45	55	00	-	-	-	100	
CAT2	45	35	20	Va -	-	-	100	
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	55	45	OG NORTH		-	-	100	
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	35	35	30	-	-	-	100	
ESE	40	35	25	-	-	-	100	

23ТЕРС08	ADVANCED COMBUSTION LABORATORY	II
----------	--------------------------------	----

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	0	0	4	2

Course Objective	 To make the students learn the various advancements in corresearch through experimental and analytical methods. 	mbustion
LIST OF EXPI	ERIMENTS	(60)

1. Studies on combustion kinetics and chemical dynamics.

- 2. Studies on low temperature combustion.
- 3. Experimental investigation on HCCI engine.
- 4. Experimental investigation on CRDI engine.
- 5. Particle ignition and char combustion characteristics of a solid fuel.
- 6. Modeling of large eddy simulation of IC engines.
- 7. Modeling of exhaust after treatment of IC engines.
- 8. Soot measurement using laser induced incandescence.
- 9. Stereoscopic and tomographic particle imaging velocimetry measurements.
- 10. Test on subsonic combustion tunnel.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Analyze the modern low temperature combustion strategies.	K4
CO2	Evaluate the combustion characteristics of CI engine fuelled with various fuels.	K5
CO3	Simulate the in-cylinder flows of IC engines.	K4
CO4	Analyze post combustion properties of flue gases.	K4
CO5	Explore and have insight on modern day analyzer and measuring instruments.	КЗ

COURSE ART	COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	P03	P04	P05	P06				
CO1	2	3	3	3	2	1				
CO2	3	2	3	2	2	2				
CO3	3	3	3	1	3	2				
CO4	2	2	3	2	1	2				
CO5	3	2	3	2	2	2				
23TEPC08	2	3	3	2	3	2				
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial									

23TEEE01	MINI PROJECT	II
----------	--------------	----

PREREQUISITES	CATEGORY	L	T	P	С
NIL	EE	0	0	4	2

Course Objective	To provide the opportunity for self-learning beyond the syllabus content related to the thrust area of Engineering and Technology.
Course Content	 Students can take up small problems in the field of thermal engineering as a Mini Project. It can be related to solutions to a thermal engineering problem, verification and analysis of experimental data, conducting experiments on various thermal engineering domains, material characterization, studying a simulation software tool for analyzing thermal engineering problems.
Contact Period Lecture: 0 Pe	

	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Get an opportunity to work in an actual industrial environment during internship.	КЗ
CO2	Solve industrial problems related to thermal engineering using software / analytical / computational tools.	K5
CO3	Learn to be creative, well planned and innovative.	К6
CO4	Develop skills to present and defend their work in front of a technically qualified person.	K4
CO5	Learn to draft technical reports and research articles.	К3

COURSE ARTICULATION MATRIX									
COs/POs	P01	PO2	P03	P04	PO5	P06			
CO1	2	3	2	0000	1	2			
CO2	3	2	3	1	2	2			
CO3	1	2	1	1	1	2			
CO4	2	2	2	1	2	1			
CO5	2	3	2	1	2	2			
23TEEE01	2	3	2	1	2	2			
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial								

23	TI	Œ	ΕO	2
43	11	بلاد	LU	_

INTERNSHIP / INDUSTRIAL TRAINING

III

Total: 0 Periods

PREREQUISITES	CATEGORY	L	T	P	С
NII.	EE	0	0	*	2

Course	Each student will learn through "hands-on" experiences at a qualified place
Objective	of employment (non-profit or governmental agency) about the daily
	expectations of employment within the agency. Students will engage in
	activities which are supervised by an agency employee, and will acquire the
	skills and knowledge base necessary to become successfully employed
	within the agency or a similar occupational or professional environment.
	1. Students must complete a minimum of 2 weeks of actual work-time to
	successfully complete the course.
	2. Internship hours and activities must be documented each time in a log
	notebook.
	3. Students should note the date, time, and activities of each agency
	experience.
	4. Students should engage in activities which provide a quality experience and
	should not be treated as glorified copy machines or file clerks.
	5. Students must maintain client confidentiality and act in an ethical and
	professional manner at all times while performing internship activities.
Course	
Content	The following activities must be completed and turned into the instructor of record
	by the last day of regular classes and before final exams begin.
	1. Students must turn in the log book of activities, signed and dated by the
	supervisor, to the instructor of record.
	2. Students must also write a report which discusses what the student gained
	from the internship experience and what problems they encountered
	during the experience.
	3. Students shall obtain completed intern evaluation form from agency
	supervisor and submit it to concerned faculty.

Contact Periods: Lecture: 0 Periods Tutorial: 0 Periods Practical: * Periods *Internship / Industrial Training Four Weeks

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Maintain current knowledge of practical situations encountered in professional practice.	К3
CO2	Provide an entry level, professionally trained personnel resource for a specifically designated period of time.	КЗ
CO3	Learn from a qualified and experienced professional in the field.	K2
CO4	Acquire leadership experience in a professional setting by participating in daily operations and by planning and implementing a major project.	К6
CO5	Apply the concepts of human development and education by maintaining appropriate professional relationships with coworkers, and agencies.	K5

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	P04	PO5	P06			
CO1	1	2	2	1	1	2			
CO2	1	3	3	1	1	2			
CO3	1	2	2	1	1	1			
CO4	2	2	3	1	2	2			
CO5	2	3	2	1	1	3			
23TEEE02	1	3	2	1	1	2			
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial								

23TEEE03	PROJECT - I	III
23ТЕЕЕ03	PROJECT - I	1111

PREREQUISITES	CATEGORY	L	T	P	С
NIL	EE	0	0	24	12

Course Objective	 To identify a specific problem for the current need of the society and collect information related to the same through detailed review of literature and to 					
Objective	develop the methodology to solve the identified problem then publish					
	paper at least in conferences or indexed journals.					
Course Content	 The project work will start in semester iii and should preferably be a problem with research potential and should involve scientific research in thermal engineering, generation/collection and analysis of data, determining solution and must preferably bring out the individual contribution. Seminars should be based on the area in which the candidate has undertaken the dissertation work as per the common instructions for all branches of M.Tech. Students should note the date, time, and activities of each agency experience. The examination shall consist of the preparation of a report consisting of a 					
	detailed problem statement and a literature review.4. The preliminary results (if available) of the problem may also be discussed in the report.					
	5. The work has to be presented in front of the examiners panel set by the Head and PG coordinator.					
	6. The candidate has to be in regular contact with his guide and the topic of dissertation must be mutually decided by the guide and student.					
Contact Perio Lecture: 0 Pe						

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Provide innovative ideas for practical engineering problems.	K4
CO2	Carry out literature surveys from various journals, books and identify the research gaps.	K5
CO3	Solve complex thermal engineering problems through analytical and experimental studies	К6
CO4	Develop oral and written communication skills to present and defend their thesis in front of a technically qualified audience.	КЗ
CO5	Draft technical reports and research articles.	К3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	P02	P03	P04	PO5	P06	
CO1	2	2	3	1	3	3	
CO2	2	3	3	2	2	3	
CO3	3	3	3	1	3	2	
CO4	1	1	3	2	1	3	
CO5	1	3	2	1	2	3	
23TEEE03	2	3	3	1	3	3	
1 – Slight, 2 – Moderate, 3 – Substantial							

23TEEE04 PROJECT - II IV	7
--------------------------	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	EE	0	0	48	24

Course	 To solve the identified problem based on the formulated Methodology and
Objective	to develop skills to analyze and discuss the test results and make
	conclusions then publish paper at least in conferences or indexed journals.
Course	1. It is a continuation of project work started in semester III.
Content	2. He / She has to submit the report in prescribed format and also present a seminar.
	3. The dissertation should be presented in standard format as provided by the department.
	4. The candidate has to prepare a detailed project report consisting of introduction of the problem, problem statement, literature review, objectives of the work, methodology (experimental set up or numerical details as the case may be) of solution and results and discussion.
	5. The report must bring out the conclusions of the work and future scope for the study.
	6. The work has to be presented in front of the examiners panel consisting of an approved external examiner, an internal examiner and a guide, co-guide etc as decided by the Head and PG coordinator.
	7. The candidate has to be in regular contact with his guide.
Contact Perio	ods:

Conte	ict i ci ious.	
Lectu	re: 0 Periods Tutorial: 0 Periods Practical: 720 Period	s Total: 720 Periods
COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Select suitable experimental techniques for given engineering	ng _{V2}
	problem.	К3
CO2	Select different software/computational/analytical tools for give	en K5
	problem statement.	N2
CO3	Work in different analytical equipment to obtain required output.	K4
CO4	Work in a research environment and industrial environment.	К3
CO5	Excel in technical report writing and present their work to tl	ne K3
	engineering community.	N2

COURSE ART	COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	P03	P04	P05	P06			
CO1	3	3	3	2	3	2			
CO2	3	2	3	2	3	3			
CO3	2	1	2	1	2	3			
CO4	2	2	3	1	2	2			
CO5	2	2	3	2	1	2			
23TEEE04	3	3	3	2	3	3			
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial								

23TEPE01	THERMODYNAMICS AND COMBUSTION	I
----------	-------------------------------	---

PREREQUISITES	CATEGORY	L	T	P	C
ENGINEERING THERMODYNAMICS	PE	3	0	0	3

Course	To make the students learn advanced concepts like maximum energy and				
Objective	minimum energy, combustion principles, energy at micro level, conversion of				
	heat energy into electrical flux of thermodynamic systems.				
UNIT – I	BASIC CONCEPTS OF THERMODYNAMICS	9 Periods			

Entropy ,Work and Quantity of Heat: First Law of Thermodynamics ,Temperature ,Pressure, The Free Energy and the Thermodynamic Potentials , Enthalpy, Nernst's Theorem, Carnot's Cycle and Carnot's Theorem, Le Chatelier Principle, Dependence of the Thermodynamic Quantities on the Number of Particles, Ideal Gases ,Ideal Gases with Constant Specific Heat: Equation of Poisson Adiabatic.

UNIT - II IDEAL, REAL GASES AND VAPOUR MIXTURES 9 Periods

Introduction, The Equation of State for a Perfect Gas, p-V-T Surface of an Ideal Gas, Internal Energy and Enthalpy of a Perfect Gas, Specific Heat Capacities of an Ideal Gas, Real Gases, Vander Waal's Equation, Virial Equation of State, Beattie-Bridgeman Equation, Reduced Properties, Law of Corresponding States, Compressibility Chart, Dalton's Law and Gibbs-Dalton Law, Volumetric Analysis of a Gas Mixture, The Apparent Molecular Weight and Gas Constant, Specific Heats of a Gas Mixture, Adiabatic Mixing of Perfect Gases, Gas and Vapour Mixtures

UNIT – III FUNDAMENTALS OF COMBUSTION

9 Periods

Thermodynamics, concepts of combustion – Combustion equations, heat of combustion Theoretical flame temperature, chemical equilibrium and dissociation, Combustion cycles. Stoichiometry, Theories of Combustion, Pre-flame reactions, Reaction rates, Rankine-Hugoniot relations – detonation branch-Analysis of the deflagration - Chapman-Jouguet waves, Laminar and Turbulent Flame propagation.

UNIT - IV FLAME PHENOMENA IN PREMIXED COMBUSTIBLE GASES

9 Periods

9 Periods

Introduction, Laminar flame structure, The laminar flame speed, Stability limits of laminar flames, Flame propagation through stratified combustible mixtures, Turbulent reacting flows and turbulent flames, The turbulent flame speed, Stirred reactor theory, Flame stabilization in high-velocity streams, Combustion in small volumes.

UNIT - V DETONATION AND ENVIRONMENTAL COMBUSTION CONSIDERATIONS

Introduction, Detonation phenomena, Hugoniot relations and the hydrodynamic theory of detonations, Comparison of detonation velocity calculations with experimental results, The ZND structure of detonation waves, The structure of the cellular detonation front and other detonation phenomena parameters, The nature of photochemical smog, Formation and reduction of nitrogen oxides, SOx emissions .

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 R.K Rajput, "Engineering Thermodynamics", Laxmi Publications Ltd, 6th edition, 2016.
- 2 | Irvin Glassman, Richard A. Yetter, "Combustion", Elsevier Inc., 5th edition,2014.

- 1 R. M. Helsdon, "Introduction to Applied Thermodynamics", Elsevier Science, 2013.
- 2 Kenneth Wark Jr., "Advanced Thermodynamics for Engineers", McGraw-Hill Inc. New York, 1995.
- 3 Michael Liberman, "Introduction to Physics and Chemistry of Combustion", Springer-Verlag Berlin Heidelberg, 2008.
- 4 Fawzy El-Mahallawy, Saad El-Din Habik, "Fundamentals and technology of Combustion", Elsevier Science Ltd, 2002.

COUF	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the conceptsin thermodynamics and its relevant properties.	КЗ
CO2	Discuss the properties of various types of gases and vapour mixtures.	K4
CO3	Concept in combustion and its principles.	K5
CO4	Understand the concepts of flame phenomena during the combustion process.	K4
C05	Gain knowledge on environmental considerations of combustion.	K5

COs/POs	P01	PO2	P03	P04	PO5	P06
C01	3	2	2	2	1	1
CO2	3	3	2	2	1	1
CO3	2	3	3	2	1	1
CO4	3	2	2	2	1	1
CO5	2	3	3	2	1	2
23TEPE01	3	3	2	2	1	1

ASSESSMENT PA	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %		
CAT1	-	30	35	35	-	-	100		
CAT2	10	25	25	20	20	-	100		
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 135	-	30	35	35	-	-	100		
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	25	25	20	20	-	100		
ESE	10	20	25	25	20	-	100		

23TEPE02	ARTIFICIAL INTELLIGENCE IN THERMAL SYSTEMS	I
----------	--	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

C	m	111						
Course	 To present a research oriented in depth knowledge of artificial 	intelligence and						
Objective	to address the underlying concepts, methods and applicati	ion of artificial						
	intelligence.							
UNIT – I	INTRODUCTION	9 Periods						
Core of AI - Go	oals of AI - Fields of application - Global economic effects of artificial intel	ligence.						
UNIT – II	BASICS AND DRIVERS OF ARTIFICIAL INTELLIGENCE	9 Periods						
Moore's law and the effects of exponential- digitalization and dematerialization of products, services								
and processe	and processes-connecting products, services, processes, animals and people- Big data- new							
technologies.	technologies.							
UNIT – III	ARTIFICIAL INTELLIGENCE IN HEAT TRANSFER ANALYSIS	9 Periods						
Application o	f New Artificial- Neural Network to Predict -Heat Transfer and Thermal	Performance of						
heat exchange	ers.							
UNIT – IV	ARTIFICIAL INTELLIGENCE IN COMBUSTION STUDIES	9 Periods						
Artificial-inte	ligence- based prediction and control of combustion instabilities in	n spark-ignition						
engines and c	ombustion - ignition engines.							
UNIT – V	ARTIFICIAL INTELLIGENCE IN THERMAL FLOW SIMULATION	9 Periods						
AI application	ns in thermal engineering – Artificial intelligence-based computational	fluid dynamics						
approaches.	approaches.							
Contact Perio	Contact Periods:							
Lecture: 45	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

- Adel Mellit, Soteris Kalogirou , "**Handbook of Artificial Intelligence Techniques in Photovoltaic Systems**
- Modeling, Control, Optimization, Forecasting and Fault Diagnosis", Elsevier Science, 23 June 2022.

 Ralf Herbrich, "Learning Kernel classifiers theory and algorithm", MIT Press, Cambridge, London, England, 2022.

- 1 Ralf T. Kreutzer, Marie Sirrenberg, "Understanding Artificial Intelligence Fundamentals, Use Cases and Methods for a Corporate Al Journey", Berlin, Germany Bad Wilsnack, Germany August 2019.
- Amit Konar, "Artificial Intelligence and Soft Computing Behavioral and Cognitive Modeling of the Human Brain", CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, 8 October 2018.
- 3 Siddhartha Bhattacharyya, Vaclav Snasel, "Hybrid Computational Intelligence challenges and applications A volume in hybrid computational intelligence for pattern analysis and understanding", Springer, 2020. https://doi.org/10.1016/B978-0-12-818699-2.00009-3
- 4 Bryan Maldonado, Brian Kaul, "Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines", Chapter 8, Springer, 2022. https://doi.org/10.1016/B978-0-323-88457-0.00006-0

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Obtain the fundamental knowledge of AI basics.	K2
CO2	Gain the knowledge on machine learning techniques	К3
CO3	Understand the role of Artificial Intelligence in numerical studies.	K5
CO4	Gain knowledge for combustion studies by using Artificial Intelligence	К3
CO5	Analyse the thermal flow simulations using Artificial Intelligence	K5
	0.0750-1.00000	

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	2	2	3	2	3	2			
CO2	3	2	3	3	3	3			
CO3	3	3	3	3	3	3			
CO4	2	2	2	1	2	2			
CO5	3	3	3- 3-	3	2	2			
23TEPE02	3	2	3	3	3	2			
1 – Slight, 2 – Mo	oderate, 3 – Su	bstantial							

Assessment	pattern - theory						
Test / Bloom's	Remembering (k1) %	Understandin g (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluating (k5) %	Creating (k6) %	Total %
Category*							
CAT1	30	35	35	ı	-	-	100
CAT2	10	30	30	ı	30	-	100
Individual	30	35	35	-	-	-	100
Assessmen							
t 1 / Case							
Study 1 /							
Seminar 1							
/ Project 1							
Individual	10	30	30	-	30	-	100
Assessmen							
t 2 / Case							
Study 2 /							
Seminar 2							
/ Project 2							
ESE	15	25	20	20	20	-	100

23TEPE03	ADVANCED GAS TURBINES	Ţ
231EFEU3	(Use of approved tables and charts are permitted)	1

PREREQUISITES	CATEGORY	L	T	P	С
THERMAL ENGINEERING	PE	3	0	0	3

Course	To make the students learn aircraft applications of power p	To make the students learn aircraft applications of power plant cycles and								
Objective	turbo machines like compressors, axial and radial flow	turbines and								
	combustors.									
UNIT – I	INTRODUCTION	9 Periods								

Power plant cycles for stationery and aircraft applications, component behaviors, Industrial applications, Marine and land transportation, Environmental issues, analysis of ramjet, turbojet and turbo-propeller, Inlets and nozzles.

UNIT - II COMPRESSORS 9 Periods

Principle and operations of Centrifugal and axial flow compressors momentum and energy transfer in rotors, velocity diagrams, calculation of stage performance, compressibility effects, cascade testing and characteristics.

UNIT - III AXIAL AND RADIAL FLOW TURBINE 9 Periods

Elementary theory of axial and radial flow turbine, Vortex theorem, choice of blade profile, Pitch and Chord Stage velocity diagrams, reaction stages, losses and coefficients, blade design principles, materials, testing and performance characteristics.

UNIT - IV COMBUSTORS 9 Periods

Different types and flow patterns, material requirements and cooling systems, air pollution and reduction.

UNIT - V MATCHING 9 Periods

Matching procedure of power plant components, engine off-design performance,Off-design performance of single shaft gas turbine, free turbine engine and jet engine, Methods of displacing the equilibrium running line, Design of Nozzles, afterburners, anti-icing mechanisms.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- Dixon S.L., "Fluid Mechanics and Thermodynamics of Turbomachinery", Pergamon Press, 7th edition 2013.
- 2 Ganesan V., "Gas Turbines", Tata McGraw Hill, 3rdEdition, 2017.

	1	Yahya S.M., "Turbines, Compressors and Fans", Tata mcgraw-Hill, 4th edition, 2017.
7	2	Sarvanamuttoo, H.I.H., Rogers, G. F. C. and Cohen, "Gas Turbine Theory", H., Pearson Prentice Hall, 7th Edition, 2019.
	3	Kerrebrock J.L., "Aircraft engines and gas turbines", The MIT Press, 2nd edition, 1992.
1	4	Gurranna Injeti, "Gas Turhines", IntechOpen, ISBN-978-953-51-1743-8, February 25th2015,

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify, formulate and solve problems related to gas turbines and jet propulsion.	K5
CO2	Analyze the operational aspects and control, including the system interaction of compressors	K5
CO3	Discuss the various laws pertaining to different fluid flow applications	K2
CO4	Learn the components of a combustor and its performance.	K2
CO5	Knowledge on matching the components.	K5

COs/POs	P01	P02	P03	PO4	PO5	P06
CO1	3	3	2	2	3	2
CO2	3	3	2	2	2	1
CO3	3	3	2/	3	2	1
CO4	2	2	1	2	3	2
CO5	3	3	3	3	3	3
23TEPE03	3	3	2	2	3	2

Assessment pa	ttern – theory	25		200			
Test / Bloom's Category*	Remembering (k1) %	Understandin g (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %
CAT1	15	25	20	20	20	-	100
CAT2	10	90	-	-	ı	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	15	25	20	20	20	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	90	-	-	-	-	100
ESE	10	30	20	20	20	-	100

23ТЕРЕ04	DESIGN OF CONDENSERS, EVAPORATORS AND COOLING TOWERS	I
----------	--	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	 To make the students learn the heat transfer processes and 	design of heat		
Objective	transfer equipment.			
UNIT – I	INTRODUCTION	9 Periods		
Principles of	heat transfer, Types of heat exchangers, Standard Representation, Par	ts description,		
TEMA classifi	cations, Applications.			
UNIT – II	CONDENSERS	9 Periods		
Estimation of	heat transfer coefficient, Fouling factor, Friction factor- Design procedure	s, Wilson plots,		
Design differ	rent types of condensers, BIS Standards.			
UNIT – III	EVAPORATORS	9 Periods		
Stress calcula UNIT – IV	tions, matching of components, Design of evaporative condensers. COOLING TOWERS			
Types of Cooling towers, Analytical and graphical design procedures, Tower Characteristics Parametric				
anaiysis, Kan	ing towers, Analytical and graphical design procedures, Tower Characterist ge of cooling tower, Tower efficiency, cooling tower load, Energy conservati	tics Parametric		
UNIT - V		tics Parametric		
UNIT – V	ge of cooling tower, Tower efficiency, cooling tower load, Energy conservation SELECTION OF CONDENSERS, EVAPORATORS AND COOLING	tics Parametric ion. 9 Periods		
UNIT - V Condenser se	ge of cooling tower, Tower efficiency, cooling tower load, Energy conservation SELECTION OF CONDENSERS, EVAPORATORS AND COOLING TOWER	tics Parametric ion. 9 Periods		
UNIT - V Condenser se	ge of cooling tower, Tower efficiency, cooling tower load, Energy conservation SELECTION OF CONDENSERS, EVAPORATORS AND COOLING TOWER lection – Water cooled – Air cooled, Selection of evaporators, Selection of umps and Fans.	on. 9 Periods		

- 1 Lieke Wang, Bengt Sunden, Raj M. Manglik, "Plate Heat Exchangers: Design, Applications and Performance", WIT Press, 2013.
- 2 Krishna P. Singh, Alan I. Soler, "Mechanical Design of Heat Exchangers And Pressure Vessel Components", Springer Berlin Heidelberg, 4 December 2014.

- 1 Manfred Nitsche, Raji Gbadamosi., "Design of Heat exchangers, condensers and evaporators", 2015.
- 2 Kern K.H., "Process heat transfer", McGraw-Hill, 2nd edition, 2017.
- 3 Wilfried Roetzel, Xing Luo, Dezhen Chen, "Design and Operation of Heat Exchangers and Their Networks", Elsevier Science, 4 October 2019.
- 4 S Chand, R S Khurmi, J K Gupta, "Modern Refrigeration and Air Conditioning", published, 2019.

COUF	RSE OUTCOMES:	Bloom's
		Taxonom
Upon	completion of the course, the students will be able to:	y Mapped
CO1	Utilize the principles of heat transfer for industrial applications.	K2
CO2	Design the condenser, evaporators and cooling towers.	K2
CO3	Understand the concepts of evaporators.	К3
CO4	Gain the knowledge of cooling towers, Analytical and graphical design procedures	К3
CO5	Select the suitable heat transfer equipment	К3

COURSE ARTIC	COURSE ARTICULATION MATRIX											
COs/POs	P01	P02	P03	P04	P05	P06						
CO1	2	2	2	2	2	2						
CO2	2	2	1	1	3	2						
C03	2	2	2	1	2	2						
CO4	3	3	2	1	2	2						
CO5	2	2	1	2	1	2						
23TEPE04	2	2	2	1	2	2						
1 – Slight, 2 – M	loderate, 3 – Su	bstantial	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %		
CAT1	50	50	7	-	-	-	100		
CAT2	25	35	40	-	-	-	100		
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	50	50		- -	-	-	100		
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	25	235	40	-	-	-	100		
ESE	25	25	50	-	-	-	100		

23ТЕРЕ05	INSTRUMENTATION IN THERMAL ENGINEERING	I
----------	--	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To learn different techniques involved in thermal quantity measure	ement and the	
Objective	concept of microprocessors in measurement, different kind of en	rors involved	
	and the transducers for different types of thermo-physical quantities		
UNIT – I	MEASUREMENT CHARACTERISTICS	9 Periods	

Instrument Classification, Characteristics of Instruments – Static and dynamic, experimental error analysis, Systematic and random errors, Statistical analysis, Uncertainty, Experimental planning and selection of measuring instruments, Reliability of instruments.

UNIT - II MICROPROCESSORS AND COMPUTERS IN MEASUREMENT 9 Periods

Basic Electrical measurements, Transducers and its types, Signal conditioning and processing-Measurement of temperature, pressure, velocity, flow – basic and advanced techniques, and radiation properties of surfaces.

UNIT – III MEASUREMENT OF PHYSICAL QUANTITIES

9 Periods

Thermo, Physical, Chemical and transport properties of solids, liquids and gaseous fuels, Analyses – Flame Ionization Detector, Non-Dispersive Infrared Analyses, Chemiluminescence detector, Smoke meters, and Gas chromatography.

UNIT – IV CONTROL SYSTEM, COMPONENTS AND CONTROLLERS

9 Periods

Introduction, Open and closed loop control systems, Transfer function. Types of feedback and feedback control system characteristics – Control system parameters – DC and AC servomotors, servo amplifier, potentiometer, synchronic transmitters, synchronic receivers, synchronic control transformer, stepper motors - Continuous, Discontinuous and Composite control modes – Analog and Digital controllers.

UNIT - V DESIGN OF MEASUREMENT AND CONTROL SYSTEMS

9 Periods

Data logging and acquisition - Sensors for error reduction, elements of computer interfacing, Timers, and Counters, Designing of measurement and control systems for specific applications - Fault finding – Computer based controls

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Holman, J.P., "Experimental methods for engineers", McGraw-Hill, 8th edition 2011.
- 2 Rangan, C.S., Sharma, G.R., Mani, V.S.V, "Instrumentation Devices and Systems", Tata McGraw Hill, 2nd edition, New Delhi, 2017.

- 1 | Alan S. Morris, Reza Langari, "Measurement and Instrumentation", Elsevier Science, 2015
- 2 Barney, "Intelligent Instrumentation", Prentice Hall of India, 2012.
- 3 Preobrazhensky, V., "Measurements and Instrumentation in Heat Engineering", Vol.1 and 2, MIR Publishers, 2013.
- 4 Doeblin, "Measurement System Application and Design", McGraw Hill, 2012.
- 5 | Morris.A.S, "Principles of Measurements and Instrumentation", Prentice Hall of India, 2006.

COUR	RSE OUTCOMES:	Bloom's
		Taxonom
Upon	completion of the course, the students will be able to:	y Mapped
CO1	Gain the knowledge on various measuring instruments and advance measurement	K2
	techniques.	
CO2	Evaluate the various steps involved in error analysis and uncertainty analysis.	K5
CO3	Analyze the various thermal and flow systems and their behaviour.	K5
CO4	Distinguish between measurement and control systems, and use appropriate	K2
	control	
	System for an application.	
CO5	Construct a complete control system for a thermal application.	K2

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	2	2	2	1	1	2			
CO2	2	2	2	1	2	2			
CO3	2	2	2	2	2	2			
CO4	2	2	2	1	2	2			
CO5	1	1	2	1	2	1			
23TEPE05	2	2	2	1	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	PATTERN - THEO	RY					
Test / Bloom's	Remembering (k1) %	Understandin g (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %
Category*		1 4 8	10.0				
CAT1	10	30	30	Va	30	-	100
CAT2	10	20	20	20	30	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	10	30	30		30	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	20	20	20	30	-	100
ESE	10	20	30	30	10	-	100

23TEPE06	ENGINE ELECTRONICS	I
----------	--------------------	---

PREREQUISITES	CATEGORY	L	T	P	C
APPLIED ELECTRONICS	PE	3	0	0	3

Course	 To make the students learn concepts of Automotive Electronics and 	l its evolution				
Objective	and trends of sensor monitoring mechanisms to design and n	nodel various				
	automotive ignition and injection systems control for different vehi	cles.				
UNIT – I	SENSORS	9 Periods				
Types – Air fl	ow, Pressure, Temperature, Speed Oxygen, Detonation, Position -Principle	of Operation,				
Arrangement	and material.					
UNIT – II	GASOLINE INJECTION SYSTEM	9 Periods				
Open loop an	d closed loop systems, Mono point, Multi point and direct injection system	ns –Principles				
and Features,	Bosch injection systems.					
UNIT – III	UNIT - III DIESEL INJECTION SYSTEM 9 Periods					
Inline injection	on pump, Rotary pump and injector – Construction and principle of operat	ion, Common				
rail and unit i	njector system – Construction and principle of operation.					
UNIT – IV	IGNITION SYSTEMS	9 Periods				
Ignition fund	amentals, Types of solid -state ignition systems, high energy ignition	distributors,				
Electronic spa	ark timing and control.					
UNIT – V	ENGINE MAPPING	9 Periods				
Combined ignition and fuel management systems. Digital control techniques – Dwell angle calculation,						
Ignition timing calculation and Injection duration calculation, Hybrid vehicles and fuel cells.						
Contact Peri	ods:					
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	ods				

- 1 | Tom Denton, "Automotive Electrical and Electronic Systems", Edward Amold, 5th edition 2017.
- 2 Robert N.Brady, "Automotive Computers and Digital Instrumentation", Prentice Hall, 2011.

- Ali Emadi, "Handbook of Automotive Power Electronics and Motor Drives", CRC Press, 19 December 2017.
 Konrad Reif, "Fundamentals of Automotive and Engine Technology Standard Drives, Hybrid Drives, Brakes, Safety Systems", Springer Fachmedien Wiesbaden, 16 June 2014.
- 3 Akhilendra Pratap Singh, Avinash Kumar Agarwal, "Novel Internal Combustion Engine Technologies for Performance Improvement and Emission Reduction", Springer Nature Singapore, 14 June 2021.
- 4 Heinz Heisler., "Advanced Engine Technology", SAE Publications, 2011.
- 5 Ronald K. Jurgan, "Electronic Engine Control", Edward Amold, 2017.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Obtain an overview on the types of sensors.	K2
CO2	Understand the various injection systems and its principal of operation.	K2
CO3	Develop the knowledge on ignition and fuel management systems.	K4
CO4	Gain the knowledge of Ignition fundamentals, types of solid, electronic sparking timing and control.	КЗ
CO5	Utilize the dwell angle calculation, Ignition timing calculation for engine mapping in hybrid vehicles and fuel cells.	K5

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	2	2	2	2	1	2			
CO2	2	2	1	1	2	2			
CO3	2	2	2	1	2	1			
CO4	1	1	2	1	1	1			
CO5	2	2	1	2	2	1			
23TEPE06	2	2_0	~~~~ <u>2</u>	1	2	2			
1 – Slight, 2 – M	loderate, 3 – Su	bstantial	TIGO BULLIO B FIGURA	P					

ASSESSMENT PA	TTERN - THEORY		STEEL STEEL				
Test / Bloom's Category*	Remembering (k1) %	Understandin g (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluating (k5) %	Creating (k6) %	Total %
CAT1	10	30	30	-	30	-	100
CAT2	10	20	20	20	30	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	10	30	30	-	30	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	20	M 20	20	30	-	100
ESE	10	20	30	30	10	-	100

23TEPE07 FINITE ELEMENT METHODS IN THERMAL ENGINEERING	I
--	---

PREREQUISITES	CATEGORY	L	T	P	C
HEAT AND MASS TRANSFER	PE	3	0	0	3

Course	To make the students learn different discretization methods for	or solving heat				
Objective	transfer and fluid flow problems.					
UNIT – I	INTRODUCTION	5 Periods				
Overview of r	numerical methods - Discretized representation of physical systems - thern	nal resistance –				
Governing eq	uations and Boundary conditions for thermal and flow systems.					
UNIT – II	ONE DIMENSIONAL HEAT CONDUCTION	6 Periods				
Principles of	variations calculus - applications of variational approach to one dir	nensional heat				
conduction -	element matrix contribution and assembly.					
UNIT - III	HEAT FUNCTIONS AND ANALYSIS	10 Periods				
Weighted residual methods - Galerkin's approach - Shape functions. Application of Galerkin's weighted						
residual appr	oach to one dimensional heat conduction - Three noded triangular eleme	nts- 1-D steady				
state conduct	ion using triangular elements - Radiation and natural convective bounda	ry conditions –				
incorporation	of variations in thermal properties.					
UNIT – IV	CONVECTIVE HEAT TRANSFER	12 Periods				
Higher order	elements and numerical integration solution of heat conduction and cree	ping flow using				
higher order	element - Solution of convective heat transfer.					
UNIT - V	HEAT EXCHANGER APPLICATIONS	12 Periods				
Incompressib	le laminar flow simulation - Stream function and Vorticity methods, Ve	locity Pressure				
formulation, mixed order interpolation for incompressible flow modifications for turbulent flow.						
Application to heat exchanger.						
Contact Periods:						
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Per	riods				
l	The A Price Colon					

- 1 S.S.Rao, "The Finite Element Method in Engineering", Pergamon Press, 5th edition, 2013.
- 2 Larry Segerlind "Applied Finite Element Analysis", John Wiley & Sons, 2nd edition, 2005.

- 1 C.S.Krishnamoorthy, "Finite Element Analysis Theory and Programming", Tata McGraw-Hill, 2nd edition, 2011.
- 2 J.N.Reddy, "An Introduction to Finite Elements Methods", McGraw-Hill, 2020.
- 3 O.C.Zienkiewiez, "Finite Element Methods", McGraw-Hill, 2003.
- 4 T.R.Chandrapatla and Belegundu, "Introduction to Finite Elements in Engineering", Prentice Hall of India, 2002.

COUF	RSE OUTCOMES:	Bloom's
		Taxonom
Upon	completion of the course, the students will be able to:	y Mapped
CO1	Understand the basic numerical methods and governing equations of heat transfer	К3
	and fluid flow conditions.	
CO2	Evaluate temperature distribution in one and two-dimensional conduction and	K5
	convection problems numerically.	
CO3	Analyze the various flow problems to evaluate the performance of heat	K5
	exchangers.	
CO4	Apply higher order elements and numerical integration solutions of heat	K5
	conduction and convective heat transfer.	
CO5	Analyze the laminar and turbulent flow problems to evaluate the performance of	K5
	heat exchangers	

COs/POs	P01	P02	P03	P04	P05	P06			
CO1	1	1	2	2	2	2			
CO2	2	2	1	1	2	2			
CO3	2	2	2	1	2	2			
CO4	2	2	2	1	2	2			
CO5	3	3	3	2	1	1			
23TEPE07	2	1	2	1	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	PATTERN - THEO	RY					
Test / Bloom's Category*	Remembering (k1) %	Understandin g (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluatin g (k5) %	Creating (k6) %	Total %
CAT1	10	30	30	V.S	30	-	100
CAT2	-	25	25	30	20	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	10	30	30	-	30	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	-	25	25	30	20	-	100
ESE	10	25	25	20	20	-	100

23TEPE08	ADVANCED GAS DYNAMICS AND SPACE PROPULSION	ī
ZSTEPEUO	(Use of approved tables and charts are permitted)	1

PREREQUISITES	CATEGORY	L	T	P	С
GAS DYNAMICS AND JET PROPULSION	PE	3	0	0	3

Course	 To make the students learn the compressible flow through different through different through different through the students learn the compressible flow through different through the students learn the compressible flow through different through the students learn through the st	ferent systems						
Objective	Objective and propulsion systems for jet and space vehicles.							
UNIT – I	BASIC CONCEPTS AND ISENTROPIC FLOWS	9 Periods						
Energy and n	nomentum equations of compressible fluid flows – isentropic flow - M	ach waves and						
Mach cone. I	Flow regimes, effect of Mach number on compressibility. Stagnation,	static, critical						
properties an	nd their interrelationship. Isentropic flow through variable area ducts	- nozzles and						
diffusers. Use	of Gas tables.							
UNIT – II	FLOW THROUGH DUCTS	9 Periods						
The Shock Tu	be: Propagating Expansion Fan - Flows through constant area ducts wit	h heat transfer						
and Friction	- variation of flow properties Use of tables and charts - Unsteady Sho	ck Waves: The						
Shock Tube -	Applications, Method of Characteristics: Flow through a diverging channe	el.						
UNIT – III	NORMAL AND OBLIQUE SHOCKS	9 Periods						
Governing eq	uations - Rankine-Hugoniot Relation. Variation of flow parameters acr	oss the normal						
and oblique s	hocks- Supersonic Flow over a Wavy wall - Finite Wave Theory: An intro	oduction to the						
Method of Ch	aracteristics. Prandtl - Meyer expansion and relation. Supersonic Flow J	past a HD Cone						
at an angle of	attack - Bluff Body at an angle of attack - Flow Visualization-Use of table a	and charts.						
UNIT – IV	JET PROPULSION	9 Periods						
Theory of jet	propulsion – thrust equation – thrust power and propulsive efficiency. C	peration, cycle						
analysis and p	performance of ramjet, turbojet, turbofan and turboprop engines.							
UNIT - V	SPACE PROPULSION	9 Periods						
Types of rock	ket engines and propellants. Characteristic velocity, Theory of single	and multistage						
rocket propulsion, Liquid fuel feeding systems, Solid propellant geometries. Space flights – orbital								
and escape velocity, Rocket performance calculations – nuclear and electrical rocket propulsion.								
Contact Periods:								
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	ods						

1	S.M. Yahya, "Fundamentals of Compressible Flow with Aircraft and Rocket propulsion" , New Age
	International (P) Limited, 6 th edition, 2018.
2	Radhakrishnan, E., "Gas Dynamics", Prentice Hall of India, 7th edition, 2020.

REFERENCES:

edition, 2014.

	1	H. Saravanamutto HIH, Cohen H., Rogers CEC&Straznicky PV, "Gas Turbine Theory",Printice Hall,
		7 th edition, 2019.
	2	L. Anderson, J.D., "Modern Compressible Flow", McGraw Hill, 3rdedition, 2017.
	3	Sutton, G.P., "Rocket Propulsion Elements", John wiley, New York,9th edition, 2017.
ſ	4	Shapiro, "Dynamics and Thermodynamics of Compressible Fluid Flow" , Prentice hall of India, 7 th

COUF	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Taxonomy	
		Mapped	
CO1	Understand the basic concepts of various flows.	K2	
CO2	Analyze the application using ducts.	K5	
CO3	Basic theorems derive to normal and oblique shocks.	K2	
CO4	Know the concepts of various jet engines.	K5	
CO5	Design and application of rocket science and engineering.	К3	

COURSE ARTICULATION MATRIX						
COs/POs	P01	PO2	P03	PO4	PO5	P06
CO1	2	2	1	1	1	2
CO2	2	2	1	1	1	2
CO3	2	2	2	1	2	2
CO4	2	2	2	1	2	2
CO5	2	2	2	1	2	2
23TEPE08	2	2	2	1	2	2
1 – Slight, 2 – Modera	ite, 3 – Substai	ntial				

ASSESSMENT I	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluating (k5) %	Creating (k6) %	Total %
CAT1	15	35	50	-	-	-	100
CAT2	10	25	25	20	20	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	15	35	50	-	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	25	25	20	20	-	100
ESE	10	25	25	30	10	-	100

23ТЕРЕ09	STEAM ENGINEERING	I
----------	-------------------	---

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

C	m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
Course	To make the students learn various power generation units, steam generators,					
Objective	heat balance and safety standards of various steam generating u	nits.				
UNIT – I	INTRODUCTION	9 Periods				
Parameter of	a steam Generator – Thermal calculations of Modern steam Generat	or – Tube Metal				
Temperature	Calculation and choice of Materials – Steam purity Calculations and Water	r treatment.				
UNIT – II	STEAM SYSTEM AND HEAT BALANCE	9 Periods				
Assessment o	f steam distribution losses, Steam leakages, Steam trapping, Condensate	and flash steam				
recovery syst	em- Heat transfer in Furnace – Furnace Heat Balance –Calculation of He	eating Surfaces –				
Features of Fi	ring systems for solid – Liquid and Gaseous Fuels – Design of Burners.					
UNIT – III	BOILER DESIGN	9 Periods				
Design of Boi	ler Drum – Steam Generator Configurations for Industrial Power and R	ecovery Boiler –				
Pressure Loss	and Circulation in Boilers.					
UNIT – IV	DESIGN OF ACCESSORIES	9 Periods				
Design of Air	Preheaters - Economizer and Superheater for high pressure Steam Gen	erators – Design				
Features of Fu	uel Firing Systems and Ash Removing Systems.					
UNIT – V	BOILER CODE	9 Periods				
IBR and Inte	rnational Regulations – ISI Code's Testing and Inspection of Steam Ge	nerator – Safety				
Methods in Boilers – Factor of safety in the Design of Boiler Drum and Pressure parts-Safety of Fuel						
Storage and Handling – Safety Methods of Automatic Operation of Steam Boilers.						
Contact Perio	ods:					
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 P	eriods				
	A STATE OF THE PARTY OF THE PAR					

1	P.K. Nag, "Power Plant Engineering" , McGraw Hill Education, 4 th edition 2017.

2 Domkundwar, "A Course in Power Plant Engineering", Dhanapat Rai & Co, 2016.

1	Kumar Rayaprolu, "Boilers" , A Practical Reference, CRC Press, 2012.
	Kayla Westra, Larry Drbal, Lawrence F. Drbal, Pat Boston, "Power Plant Engineering", Springer US,2012.
3	Kumar Rayaprolu , "Boilers for Power and Process", CRC Press, 2009.
4	Richard Dolezal, "Large Boiler Furnaces" Elsevier Company, 2008.

COUR	COURSE OUTCOMES:					
		Taxonomy				
Upon	completion of the course, the students will be able to:	Mapped				
CO1	Learn the parameters and calculations of steam generators.	K5				
CO2	Understand the steam systems and heat balance in steam generators.	K2				
CO3	Gain the knowledge in various designs of boilers.	K4				
CO4	Design the accessories of a steam generator.	K4				
CO5	Understand the codes and standards.	K5				

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05	P06			
CO1	3	2	2	2	2	2			
CO2	3	2	2	2	2	2			
CO3	2	2	2	1	3	2			
CO4	2	2	2	1	3	2			
CO5	2	2	3	1	2	2			
23TEPE09	2	2	2	1	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (k1) %	Understandin g (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluating (k5) %	Creating (k6) %	Total %			
CAT1	15	20	7.7	35	30	-	100			
CAT2	-	35	35	30	-	-	100			
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	15	20		35	30	-	100			
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	-	35	35	30	-	-	100			
ESE	10	35	30	15	10	-	100			

23TEPE10	SUPERCHARGING AND SCAVENGING	I
----------	------------------------------	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	 To make the students to learn effects of supercharging and sca 	venging in I.C					
Objective	engines and design of exhaust systems						
UNIT – I	SUPERCHARGING	8 Periods					
Objectives -	Effects on engine performance - engine modification required - Therm	odynamics of					
Mechanical s	upercharging and Turbocharging - Turbo charging methods - Engine exha	ust manifolds					
arrangements	S.						
UNIT – II	COMPRESSORS	10 Periods					
Types of cor	npressors - Positive displacement blowers - Centrifugal compressors -	Performance					
characteristic	curves- Suitability for engine application - Surging - Matching of	supercharger					
compressor a	nd Engine – Matching of compressor, Turbine Engine.						
UNIT – III	SCAVENGING OF TWO STROKE ENGINES	12 Periods					
Peculiarities	of two stroke cycle engines - Classification of scavenging systems - Mi	xture control					
through Reed	d valve induction - Charging Processes in two stroke cycle engine - Te	rminologies -					
Shankey diag	ram - Relation between scavenging terms - scavenging modeling - perfect	displacement,					
Perfect mixin	g Complex scavenging models.						
UNIT – IV	PORTS AND MUFFLER DESIGN	8 Periods					
Porting - Desi	Porting - Design considerations - Design of intake and Exhaust Systems - Tuning.						
UNIT - V	EXPERIMENTAL METHODS	7 Periods					
Experimental	techniques for evaluating scavenging - Firing engine tests - Non firing engine	ne tests – Port					
flow characte	ristics - Kadenacy system - Orbital engine combustion system, Sonic system.						
Contact Peri	ods:						

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

1	Obert, E.F., "Internal Combustion Engines and Air Pollution", McGraw-Hill, 2017.
2	Vincent, E.T., "Supercharging the I.C.Engines", Facsimile publishers, 2015.

1	Giancarlo Ferrari, Angelo Onorati, Gianluca D'Errico, "Internal Combustion Engines", Società Editrice
	Esculapio, 21 July 2022.
2	K.A. Zinner, "Supercharging of Internal Combustion Engines", 4 July 2012.
3	Evangelos G. Giakoumis, "Turbochargers and Turbocharging Advancements, Applications and
	Research" Nova Science Publishers, Incorporated, 2017.
4	JohnB. Heywood, "Two-Stroke Cycle Engine its Development, Operation and Design", CRC Press,
	November 2017.
5	Schweitzer, P.H., "Scavenging of Two Stroke Cycle Diesel Engine", MacMillan Co.2007.
6	John B.Heywood, "Two Stroke Cycle Engine" , SAE Publications 2010.

COUF	RSE OUTCOMES:	Bloom's		
Upon	Upon completion of the course, the students will be able to:			
		Mapped		
CO1	Design and make thermal analysis of the supercharging system and scavenging	K4		
	processes.			
CO2	Design and tune intake and exhaust systems to achieve desired performance	K5		
	results.			
CO3	Address specific issues arising in laboratory testing of modified engines.	К3		
CO4	Develop and design of ports and muffler design consideration	К3		
CO5	Evaluate the characteristics involved in non-firing engine tests using experimental	K5		
	techniques.			

COs/POs	P01	PO2	PO3	P04	PO5	P06
CO1	2	2	2	1	2	2
CO2	2	2	2	1	3	2
CO3	2	2	2	1	2	2
CO4	2	22	2	1	1	2
CO5	3	3	2	1	1	2
23TEPE10	2	2	2	1	2	2

ASSESSMENT I	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (k1) %	Understanding (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluating (k5) %	Creating (k6) %	Total %			
CAT1	-	30	30	20	20	-	100			
CAT2	-	50	50	08 E	-	-	100			
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	-	30	30	20	20	-	100			
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	-	25	25	25	25	-	100			

23TEPE11 REFRIGERATION AND CRYOGENICS (use of approved tables and charts are permitted)

PREREQUISITES	CATEGORY	L	T	P	С
REFRIGERATION AND AIR CONDITIONING	PE	3	0	0	3

Course	• To make the students learn different processes in cryogenic systems a							
Course Objective	to conduct activities related to design and the experimental study of low-							
Objective	temperature plant facilities and related industries.							
UNIT – I	INTRODUCTION	9 Periods						
	vogenics - Methods of producing cold - Thermodynamic basis, first a							
-	oour compression systems - Properties of cryogenic fluids and mate	erial properties						
at cryogenic t	emperatures.							
UNIT – II	LIQUEFACTION CYCLES	9 Periods						
Carnot liquef	faction cycle - F.O.M. and yield of liquefaction cycles - Inversion	curve - Joule						
	ect - Linde Hampson cycle – Precooled Linde Hampson cycle, Claud							
-	n refrigerated hydrogen liquefaction systems - Critical components	in liquefaction						
systems.								
UNIT – III	CRYOGENIC REFRIGERATORS	9 Periods						
	Binary Mixtures - T-C and H- C Diagrams - Principle of rectification - Rectification column							
	Cabe Thiele method - Adsorption systems for purification.							
UNIT – IV	SEPARATION OF CRYOGENIC GASES	9 Periods						
	rs - Stirling cycle refrigerators - G.M.Cryocoolers - Pulse tube	refrigerators -						
Regenerators	Regenerators used in cryogenic refrigerators - Magnetic refrigerators.							
UNIT – V	HANDLING OF CRYOGENS AND APPLICATIONS	9 Periods						
	Cryogenic storage dewar construction and design - Cryogenic transfer lines - Insulations used in							
	tems - Applications of cryogenics in space programmes.							
Contact Perio								
Lecture: 45 F	Periods Tutorial: 0Periods Practical: 0 Periods Tota	Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total: 45 Periods						

- 1 Valery V.Kostionk and D.Bhaskara Rao, "A Text book of Cryogenics", Discovery Publishing House, 1st Edition, 2019.
- 2 Klaus D.Timmerhaus and Thomas M.Flynn, "Cryogenic Process Engineering", Plenum Press, Softcover reprint of the original 1st Edition, 2013.

	21.21.020.
1	Mamata Mukhopadhyay, "Fundamentals of Cryogenic Engineering", PHI Publications, 2010.
2	G. Venkatarathnam, "Cryogenic Mixed Refrigerant Processes", Springer Publication, 2010.
3	Beth Evans, Tom Bradshaw and John Vandore, "Cryogenics: Fundamentals, Foundations
	and Applications", Institute of Physics Publishing, 1st Edition, 2022.
4	Dr. Zuyu Zhao and Dr. Chao Wang, "Cryogenic Engineering and Technologies: Principles
	and Applications of Cryogen-Free Systems", CRC Press, 2019.
5	Thomas M.Flynn, "Cryogenic Engineering" , Marcel Dekker, 2 nd Revise Edition, 2009.

COUF	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Understand the basic concepts of cryogenic systems.	K2
CO2	Learn the fundamentals of cycles and applications of liquefaction system.	K2
CO3	Understand the basic principle and working of cryogenic refrigerator.	K2
CO4	Perform analysis for a selecting suitable cryogenic refrigerator.	K5
CO5	Understand the concepts of storage systems and insulation techniques used in cryogenic applications.	K2

COs/POs	PO1	PO2	PO3	P04	PO5	P06
CO1	2	2	3	2	2	2
CO2	1	3	2	1	1	3
CO3	2	2	3	2	1	2
CO4	2	3	3	1	2	2
CO5	2	2	2	1	1	1
23TEPE11	2	2	m3m	1	1	2
1 – Slight, 2 –	Moderate, 3 -	Substantial		9300		,

ASSESSMENT I	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %	
CAT1	45	55	363)- V	\ -	-	-	100	
CAT2	10	20	30	30	10	-	100	
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	55	45	DO ALL	-	-	-	100	
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	30	20	30	10	-	100	
ESE	25	40	15	10	10	-	100	

23TEPE12	THERMAL ENERGY SYSTEMS	II
		1

PREREQUISITES	CATEGORY	L	T	P	С
THERMAL ENGINEERING	PE	3	0	0	3

	m 1 3 - 1 - 11 - 1 - 11 1 - 1 - 1	,				
Course	To make the stadents able to design, model and optimize thermal energy					
Objective	systems used in various engineering applications and ensuring its					
	stability.	J				
	Stability.					
UNIT – I	DESIGN OF THERMAL SYSTEMS	9 Periods				
Design syster	ns, workable systems and optimal systems - Matching of system	components -				
Economic ana	alysis, depreciation and gradient present worth factor.					
UNIT – II	MATHEMATICAL MODELLING	9 Periods				
Equation fitti	ng - Nomography, empirical equation, regression analysis - Diffe	erent modes of				
mathematical	models, selection - Computer programmes for models.					
UNIT - III	MODELLING THERMAL EQUIPMENTS	9 Periods				
Modelling of	heat exchangers, evaporators, condensers, absorption and rectific	ation columns,				
compressor a	nd pumps - Simulation studies - Information flow diagram - Solution	n procedures.				
UNIT - IV	OPTIMIZATION OF THERMAL SYSTEMS	9 Periods				
Objective fun	ction formulation - Constraint equations, mathematical formula	tion - Calculus				
methods, dyn	amic programming, linear programming methods - Solution procedu	ıres.				
UNIT - V	DYNAMIC BEHAVIOUR OF THERMAL SYSTEMS	9 Periods				
Steady state s	Steady state simulation - Laplace transformation - Feedback control loops - Stability analysis -					
Non linearities.						
Contact Perio	ods:					
Lecture:45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Tota	l:45 Periods				
	AL SECTION OF THE PARTY OF THE					

	Steven G.Penoncello, "Thermal Energy Systems: Design and Analysis", CRC Press, 2 nd Edition, 2018.
2	W.F.Stoecker, " Design of Thermal Systems ", Mcgraw Hill, 3 rd Edition, 2021.

1	Ibrahim Dinçer and Marc A. Rosen, "Thermal Energy Storage: Systems and Applications",
	Wiley, 2 nd Edition, 2011.
2	J.N.Kapur, "Mathematical Modelling", New Age International Publisher, 2 nd Edition, 2021.
3	Mcquiston, Parker and Spitler, "Heating, Ventilating and Air conditioning: Analysis and
	Design" , John Wiley & Sons, 6 th Edition, 2011.
4	W.F.Stoecker, " Refrigeration and Air Conditioning ", TMH, 2 nd Edition, 2014.
5	Fergus Nicol, Michael Humphreys and Susan Roaf, "Adaptive Thermal Comfort: Principles
	and Practice". Routledge. 2012.

COUF	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Develop simulate and integrate various components in thermal systems.	K5
CO2	Understand the modern engineering tools used in engineering practice.	К3
CO3	Develop mathematic models for thermal equipment.	K4
CO4	Optimize thermal energy systems.	K4
CO5	Analyze dynamic behavior of the thermal system.	K5

COURSE ARTICULATION MATRIX							
COs/POs	P01	PO2	PO3	PO4	P05	P06	
CO1	3	3	2	2	3	2	
CO2	3	3	2	1	2	2	
CO3	2	2	1	2	3	2	
CO4	3	3	2	2	3	3	
CO5	2	2	2	2	2	2	
23TEPE12 3 3 2 2 2 2							
1 – Slight, 2 – Moderate, 3 – Substantial							
Constitute the second							

ASSESSMENT I	PATTERN - THE	ORY		3			
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	10	25	30	25	10	-	100
CAT2	10	20	30	30	10	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	15	25	25	15	20	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	25	25	20	20	-	100
ESE	10	20	25	25	20	-	100

22TEPE13	ENGINE POLLUTION AND CONTROL	II
----------	------------------------------	----

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To make the students understand machanism of engine no	llution			
	To make the students understand mechanism of engine policy.				
Objective	formation, control, Measurement techniques and its impact	t on the			
	society.				
UNIT - I	POLLUTION - ENGINES AND TURBINES	9 Periods			
	pollution from piston engines and gas turbines - Global warming.				
UNIT - II	POLLUTANT FORMATION	9 Periods			
	Formation of oxides of nitrogen, carbon-monoxide, hydrocarbon, aldehydes and smoke particulate emission - effects of pollutants on environment.				
UNIT – III	MEASUREMENT OF POLLUTANTS	9 Periods			
Non dispersiv	ve infrared gas analyzer - Gas chromatography - Chemi-luminescer	nt analyzer and			
flame ionizati	on detector - Smoke measurement - Noise pollution - Measurement	and control.			
UNIT – IV	CONTROL OF ENGINE POLLUTION	9 Periods			
Engine compo	onents - Fuel modification - Evaporative emission control, EGR and	air injection in			
	tors - In cylinders control of pollution - catalytic converter - ors in emission control.	Application of			
UNIT - V	DRIVING CYCLES AND EMISSION STANDARDS	9 Periods			
Use of driving cycles for emission measurement - Chassis dynamometer - CVS system - National					
and International emission standards.					
Contact Peri	ods:				
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0 Periods Total	al: 45 Periods			
	A X. MA				

- 1 G.Amba Prasad Rao and T.Karthikeya Sharma, "Engine Emission Control Technologies", Apple Academic Press and CRC Press, 1st Edition, 2021.
- 2 Crouse William, "Automotive Emission Control", Gregg Division / McGraw-Hill, 2000.

REFERENCES:

George, Springer and Donald J.Patterson, "Engine emissions, pollutant Formation and Measurement", Plenum Press, 2012.
 C.S.Rao, "Environmental Pollution Control Engineering", New Age International Publishers, 2nd Edition, 2006.
 B.P.Pundir, "Engine Emissions: Fundamentals and Advances in Control", Alpha Science International, 2nd Edition, 2017.
 Ernest S.Starkman, "Combustion Generalized Air Pollutions", Plenum Press, 1993.
 Eran Sher, "Handbook of Air Pollution from Internal Combustion Engines", Academic Press, 1998.

COUR	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Taxonomy Mapped	
CO1	Identify the various sources of pollution.	K2	
CO2	Study the formation of various pollutants in the environment.	K2	
CO3	Develop the knowledge on pollutant measurement techniques.	K2	
CO4	Identify the strategies to control engine pollution.	К3	
CO5	Develop the knowledge on environment pollution and its standards.	K2	

COURSE ARTICULATION MATRIX							
COs/POs	P01	PO2	PO3	P04	PO5	P06	
CO1	3	3	2	3	2	2	
CO2	2	2	2	2	2	2	
CO3	3	2	3	2	3	2	
CO4	3	3	2	2	2	2	
CO5	3	2	2	1	1	1	
23TEPE13	2	3	2	2	2	2	
1 – Slight, 2 – Moderate, 3 – Substantial							
State of Delivery District of State of							

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Rememberin	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	g (K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1	60	40	- 7	/ -	-	-	100	
CAT2	50	40	10	-	-	-	100	
Individual		/ // 3/	1 1688	\\				
Assessment 1		118		1				
/ Case Study 1	30	70	70	JL -	-	-	100	
/ Seminar 1 /				48				
Project 1								
Individual		4.00	2) 32	ره				
Assessment 2		1523	O STORY	7				
/ Case Study 2	40	50	10	-	-	-	100	
/ Seminar 2 /								
Project 2								
ESE	50	50	-	-	-	-	100	

23TEPE14	AIR CONDITIONING SYSTEM DESIGN	TT
231EFE14	(use of approved tables and charts are permitted)	11

PREREQUISITES	CATEGORY	L	T	P	С
REFRIGERATION AND AIR CONDITIONING	PE	3	0	0	3

Course	 To make the students learn the design of air conditioning syste 	m components,			
Objective	equipments and their testing methods.				
UNIT – I	AIR CONDITIONING SYSTEMS	9 Periods			
Packaged air o	conditioning systems - Centralized air conditioning systems - VAV syste	ms - Underfloor			
distribution sy	stems - Radiant cooling systems - Hydronic systems - Air handling syste	ms.			
UNIT – II	COMPONENTS TESTING AS PER BIS CODES	9 Periods			
Testing of condensers and evaporators - Testing of cold storages - Code of practice for fire safety,					
storage - Spe	cification and testing of all types of air conditioners - Enthalpy de	viation curve –			
psychrometry.	8 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
UNIT – III	AIR CONDITIONING SYSTEM DESIGN AND LOAD CALCULATION	9 Periods			
Design condit	ions - Air distribution, pressure drop, duct design, fans and blowers	s design - Load			
calculations -	Thermal comfort - Solar radiation - Heat gain through envelopes -	Infiltration and			
ventilation loa	ds, Internal loads - Procedure for heating and cooling load estimation.				
UNIT - IV	APPLICATIONS OF AIR CONDITIONING	9 Periods			
Air conditioni	ng in automobiles - Railway wagons, marine vessels, aircraft and ot	her commercial			
applications.					
UNIT – V	AIR CONDITIONING ACCESSORIES AND CONTROL	9 Periods			
Performance and selection - Noise control, piping system, valves, receivers, oil trap, oil regenerators,					
driers and strainers - Control system of temperature, pressure and oil Flow - Compressor motor -					
Protection devices.					
Contact Periods:					
Contact Perio	us.				

- 1 Roger Legg, "Air Conditioning System Design", Butterworth-Heinemann, 1st Edition, 2017.
- 2 Herbert W. Stanford III and Adam F. Spach, "Analysis and Design of Heating, Ventilating, and Air-Conditioning Systems", CRC Press, 2ndEdition, 2019.

- 1 Dossat, R. J., "Principles of Refrigeration and Air Conditioning", John Wiley & Sons, 4th Edition, 2010.
- 2 Manohar Prasad, "Refrigeration & Air Conditioning", New Age Publishers, 3rdEdition, 2021.
- 3 Arora C.P., "Refrigeration and Air Conditioning", Tata McGraw Hill, 4th Edition, 2021.
- 4 Grondzik W T., "Air Conditioning System Design Manual", Elsevier Science, 2ndEdition, 2011.
- 5 Ashrae Press, "Air Conditioning System Design Manual", Butterworth-Heinemann, 2ndEdition, 2020.

COUR	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Taxonomy Mapped	
CO1	Understand different types of air conditioning systems.	K2	
CO2	Understand the testing of components as per BIS codes.	К3	
CO3	Impart the design and load calculations for air conditioning systems.	K5	
CO4	Select the suitable air conditioning system for engineering applications.	K2	
CO5	Study the performance of different air conditioning accessories.	К3	

COs/POs	PO1	PO2	PO3	PO4	PO5	P06
CO1	3	3	2	2	2	3
CO2	3	3	2	1	2	2
CO3	2	2	14 m n 0 1	a raging 1	3	2
CO4	2	2		2	3	3
CO5	3	3	2	1	2	2
23TEPE14	2	3	2	1	2	2
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT P	ATTERN - THEO	RY	(SES), 1	\			
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	20	30	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	10	35	25	20	10	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	10	30	30	20	10	-	100
ÉSE	15	25	30	20	10	-	100

23TEPE15 SOLAR ENERGY AND WIND ENERGY II	
--	--

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

	NIL	PE	3	UU	3	
Course	 To make the students learn properties, type 	s, energy conver	sion t	techniq	ues of	
Objective	solar and wind energy systems.					
	3, 7					
UNIT – I	SOLAR RADIATION			9 Peri	ods	
Availability -	Measurement and estimation - Capturing solar ra	adiation-Isotropi	c and	d anisc	tropic	
model - Introd	luction to solar collectors - Flat-plate collectors, air h	neater, concentra	ting (collecto	rs and	
thermal storag	ge - Steady state transient analysis - Solar Pond - Sola	r refrigeration.				
UNIT - II MODELLING AND SIMULATION OF SOLAR THERMAL SYSTEMS				9 Peri	ods	
	ve systems by f-chart and utilizability methods - W		tems	- Activ	ve and	
passive - Passi	ve heating and cooling of buildings - Solar distillation	ı - Solar Drying.				
UNIT – III	PHOTOVOLTAIC SOLAR CELL			9 Peri	ods	
P-N Junction -	Metal-Schottky junction – Electrolyte - Semiconduct	or junction - Typ	es of	solar c	ell and	
their applicat	ions - Experimental techniques to determine th	e characteristics	s of	solar	cells -	
Photovoltaic	hybrid systems - Photovoltaic thermal systems	- Storage batte	ry -	Solar	array	
	and evaluation – Solar chargeable battery.					
UNIT – IV	WIND TURBINE			9 Peri	ods	
	tatistics - Measurements and data presentation			-		
	neories – Basics of aerodynamics – Airfoils charact					
_	ndtl's lifting line theory – VAWT aerodynamic lo	oads in steady o	opera	tion –	Wind	
turbulence – Y	turbulence – Yawed operation and tower shadow.					
UNIT – V	WIND ENERGY CONVERSION SYSTEM			9 Peri	ods	
	Classification - Components - Yaw system - Synchronous and asynchronous generators and loads -					
_	wind energy into electrical systems -Testing of WE		-			
conversion st	conversion strategies for wind energy system - Applications - Future of WECS - Wind energy					
programmes.						
Contact Perio	ods:					

Lecture: 45 Periods

1 Mukund R. Patel, Omid Beik, "Wind and Solar Power Systems: Design, Analysis, and Operation", CRC Press, 3rd Edition, 2021.

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

2 S. P. Sukhatme, J. K. Nayak, "Solar Energy: Principles of Thermal Collection and Storage", Tata MgGraw-Hill, 3rd Edition, 2010.

REFERENCES:

D.A.Spera, "Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering", ASME Press, 2nd Edition, 2009.
 F.A.Duffie and W.A.Beckman, "Solar Engineering of Thermal Processes", John Wiley, Edition, 2013.
 Anup Goel, Mahesh A. Khot, Siddu Patil, "Wind & Solar Energy", Technical Publications, 2022.
 Mukund R. Patel, "Wind and Solar Power Systems", CRC Press, 1999.

5 J.F.Krider and F.Kreith, "Solar Energy Handbook", McGraw-Hill, 3rdEdition, 1986.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Familiarize with the methods to trap solar radiation for energy conversion.	K2
CO2	Able to model solar thermal systems.	K4
CO3	Impart knowledge on solar cells and its applications.	К3
CO4	Gain the knowledge of wind turbine systems.	K2
CO5	Familiarize with various wind energy conversion systems	К3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	P03	PO4	P05	P06	
CO1	2	3	2	2	2	2	
CO2	3	1	2	2	2	2	
CO3	3	3	3	1	1	1	
CO4	2	3	3	3	2	1	
CO5	2	2	2	1	3	2	
23TEPE15	2	3	2	2	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial							
Control of the state of the sta							

ASSESSMENT PA	ATTERN - THEOI	RY	A PERSON				
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	30	-	-	100
CAT2	30	35	35	-	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	20	35	25	20	-	,	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	35	30	35	- -	-	-	100
ESE	15	35	25	25	-	-	100

23TEPE16	BIO-ENERGY CONVERSION TECHNIQUES	SEMESTER III
----------	----------------------------------	--------------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Carrea	To make the students understand the sources properties and conversion	mathadalagias of			
Course	To make the students understand the sources, properties and conversion converting bio mass into sustainable biofuels.	methodologies of			
Objectives	converting did mass into sustamable diorucis.				
UNIT – I	INTRODUCTION	9 Periods			
	ergy source – Sources – Biomass conversion processes – Application of bio				
	hass properties for conversion process – Physical properties.	omass conversion			
	1 1 1 1	0 D J.			
UNIT – II	BIOMASS ENERGY CONVERSION PATHWAYS	9 Periods			
, 1 2	rolysis, gasification and liquefaction - Biological conversion - Methanol and e	1			
- Fermentation	- Anaerobic digestion biodegradation and biodegradability of substrate - Hyd	drogen generation			
from algae – Bio	ological pathways.				
UNIT – III	UNIT – III POWER GENERATION TECHNIQUES 9 Periods				
Gasifier design	- TOR, throughout, A/F ratio and equivalent ratio - Electrical power produ	ction - Bio mass			
combustion – Ty	pes of combustors, co-combustion and co-firing - Applications – Eutectic point	of biomass ash.			
UNIT – IV	INDUSTRIAL APPLICATIONS	9 Periods			
Industrial Applie	cations - Viability of energy production - Wood gasifier system - Operation of	spark ignition and			
compression ign	ition with wood gas - Operation and maintenance.				
UNIT - V ECONOMICS AND ENVIRONMENTAL ASPECTS 9 Periods					
Energy effectiveness and cost effectiveness - History of energy consumption and cost - Environmental aspects of					
bio-energy Conversion - Biomass energy programs in India.					
Contact Periods:					
Lecture: 45 Per	Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total: 45 Periods				

1	Sergio C. Capareda, "Introduction to Biomass Energy Conversions", CRC Press, 2019.
2	Bajbaipratima, "Biomass to Energy Conversion Technologies", Elsevier Science Publishing Co Inc, 1st
	Edition, 2019.

1	Ozcan Konur, "Bioenergy and Biofuels" , CRC Press, 1 st Edition, 2018.					
2	Erik Dahlquist, "Biomass as Energy Source: Resources, systems and applications", Sustainable Energy					
	Developments series, CRC Press, 2012.					
3	EL Halwagi.M.M., "Biogas Technology: Transfer and Diffusion", Elsevier Applied Science, London, 1986.					
4	Anju Dahiya, "Bioenergy: Biomass to Biofuels" , Academic press, 2014.					
5	D.P.Kothari, K.C Singal and Rakesh Ranjan, "Renewable Energy Sources And Emerging Technologies",					
	PHI Learning Private Ltd, 2011.					

	COURSE OUTCOMES: Jpon completion of the course, the students will be able to:						
CO1	Develop knowledge in properties of biomass for energy conversion process	K5					
CO2	Gain the knowledge on pathways for converting biomass into energy.	K2					
CO3	Assess the potential of electrical power production for biomass	K5					
CO4	Analyze performance and emission of fueled with wood gas engines.	K5					
CO5	Analyze energy and cost efficiency of biomass conversion techniques.	K5					

Course Articulation Matrix									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	2	2	2	1			
CO2	2	3	2	2	1	2			
CO3	2	3	2	3	2	2			
CO4	3	2	3	2	2	1			
CO5	2	2	2	3	3	2			
23TEPE16	2	3	2	2	2	1			
1 - Slight, 2 - N	Moderate, $3 - 3$	Substantial							

Assessment patte	Assessment pattern – theory							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	10	25	20	30	15	-	100	
CAT2	15	30	25	20	10	-	100	
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	10	30	30	20	10	-	100	
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	15	30	30	15	10	-	100	
ESE	10	25	30	25	10	-	100	

23TEPE17	ENVIRONMENTAL ENGINEERING AND POLLUTION	SEMESTER III
	CONTROL	

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course To make the students to learn sources and effects of air pollution, water p	oollution and soil				
Objectives contamination.					
UNIT - I AIR POLLUTION	9 Periods				
Definition - sources and effect - Ambient air quality standards-Air sampling and i	measurements –				
Dispersion of air pollutants – diurnal effects on the air pollutants dispersion – Meteoro					
Analysis of air pollutants - Control methods and equipment's - Issues in air pollution	control-Emission				
limits.					
UNIT - II SOLID WASTE MANAGEMENT	9 Periods				
Soil pollution - Sources and classification - Characteristics of solid waste- Potential metho	ds of solid waste				
disposal - Process and equipments for energy recovery from municipal solid waste and	l industrial solid				
waste- Hazardous waste disposal - Secure landfill-transformation technologies for waste					
UNIT - III WATER POLLUTION AND TREATMENT	9 Periods				
Water and wastewater - Standards of potable water for various purposes - Sources and	l classification of				
water pollutants - Characteristics wastewater - Waste water sampling techniques - Ty	pes of treatment				
and choice of wastewater treatment - Utilization and disposal of sludge.					
UNIT – IV OTHER TYPES OF POLLUTION AND LEGISLATIONS	9 Periods				
Sources - Health impact on humans, animals and plants - Control strategies for noise	pollution and oil				
pollution - Pesticides pollution - Radioactive Pollution - Environmental laws for	r prevention of				
environmental pollution.					
UNIT - V CASE STUDIES 9 Periods					
Industrial process description - Pollution sources - Methods available in abatement of pollution -					
Treatment technologies for thermal power, nuclear power, automobile, aeronautical and mining plants.					
Contact Periods:					
Lecture:45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods					

- 1 C.S.Rao, "Environmental Pollution Control Engineering", New Age International Private Limited, 4th Edition, 2021.
- 2 HS Bhatia, "A Text Book on Environmental Pollution and Control", JDM Publishers & Distributors, 2022.

- 1 G.Masters, "Introduction to Environmental Engineering and Science", Prentice Hall of India Pvt Ltd, New Delhi, 3rdEdition, 2003.
- 2 S.S.Dara and D.D.Mishra, "A Text Book of Environmental Chemistry & Pollution Control", S Chand & Company, 7th Edition, 2004.
- 3 O.P.Gupta, "Elements of Environmental Pollution Control", Khanna Publishing, 1st Edition, 2022.
- 4 H.S.Peavy, D.R.Rowe and G.Tchobanoglous, "Environmental Engineering", McGraw-Hill Book Company, 5th Edition, 1985.
- 5 S.M.Khopkar, "Environmental Pollution Monitoring and Control", New Age International Publishers, 2ndEdition, 2007.

COUR	Bloom's	
Upon	Taxonomy	
		Mapped
CO1	Identify and value the effect of the pollutants on the environment.	K5
CO2	Devise a potential strategy for effective solid waste management.	K5
CO3	Plan strategies to control, reduce and monitor water pollution in industrial area.	K2
CO4	Understand the Impacts of pollution and its control strategies.	K4
CO5	Understand the various environmental laws and act in accordance with them to reduce the environmental pollution.	К3

Course Articulation Matrix							
COs/POs	P01	PO2	P03	P04	PO5	P06	
CO1	2	3	2	2	2	2	
CO2	2	2	2	3	1	2	
CO3	3	2	2	2	1	1	
CO4	2	3	3	1	1	1	
CO5	2	2		2	1	2	
23TEPE17	2	3	2	1 C C C C C C C C C C C C C C C C C C C	1	2	
1 – Slight, 2 – Moderate, 3 – Substantial							

1 – Slight, 2	– Moderate, 3 – Su	bstantial		9)	 			
				7				
Assessment pattern - theory								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1	10	20	30	25	15	-	100	
CAT2	15	35	30	20	-	-	100	
Individual		Al	- 24	V3.				
Assessment 1 /		200		200				
Case Study 1 /	10	30	30	20	10	-	100	
Seminar 1 /		500	DO TO BUY					
Project 1		6.2%	O NO CO					
Individual								
Assessment 2 /								
Case Study 2 /	25	25	25	25	-	-	100	
Seminar 2 /								
Project 2								
ESE	10	25	25	25	15	-	100	

22TEPE18	MODELING OF CI ENGINE PROCESSES	SEMESTER III

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To make the students understand the concepts of combustion and flow modeling of CI								
Objectives	engines.								
TINITE I	CENTED AT CONCIDED ATTIONS OF MODELING	0 D! 1-							
UNIT – I	GENERAL CONSIDERATIONS OF MODELING	9 Periods							
	Governing equations - conservation of mass, conservation of energy - Second law analysis -Numerical								
methodology -	Computing mesh, discretization and grid Formation.								
UNIT – II	SPRAY MODELING	9 Periods							
Spray equation	models - Thin spray models - Thick spray models - Droplet turbulence	e inter- actions -							
Droplet imping	ement on walls.								
UNIT - III	IN-CYLINDER FLOW MODELING	9 Periods							
Full Field Mode	Full Field Model - k-ε model - Laminar flow modeling - Probability density functions - Ekman layers roll-up								
vortex - Vortex	structures - Compression generated turbulence - Effective viscosity turbule	ent diffusivity.							
UNIT – IV	COMBUSTION SYSTEMS AND EFFICIENCIES	9 Periods							
Classification -	Classification - zero-dimensional modeling - Quasi-dimensional modeling - Multidimensional modeling -								
Comparison of	Comparison of different combustion systems - Combustion efficiency - Applications.								
UNIT – V	COMBUSTION MODELS	9 Periods							
Single zone me	odels - Multi zone models - Kono's model - Cummins engine model - Hi	royasu's model -							
Premixed diffusive models - Single and double Wiebe function combustion model - Whitehouse-Way									
model.									
Contact Period	Contact Periods:								
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									
Lecture: 1510	ious iutorium o i crious i ructicum o i crious ioum io i	C11045							

1	J.I.Ramos, "Internal Combustion Engine Modeling", Hemisphere Publishing Corporation,
	1989.
2	James N.Mattavi and Charles A.Amann, "Combustion Modeling in Reciprocating
	Engines", Plenum Press, 1980

	A DIADITOLOI
1	John.B.Heywood, "Internal Combustion Engine Fundamentals", McGraw-Hill
	International Editions, Automotive technology Series, 2012
2	V. Ganesan, "Computer Simulation of CI Engine Processes", Universities Press, 2000.
3	Avinash Kumar Agarwal, Dhananjay Kumar, Nikhil Sharma and Utkarsha Sonawane,
	"Engine Modeling and Simulation", Springer, 2021.
4	Anthony J.Baxendale, "Computational Fluid Dynamics in Exhaust System Design
	and Development", SAE Paper, 1993.
5	Lino Guzzella and Christopher H.Onder, "Introduction to Modeling and Control of
	Internal Combustion Engine Systems", Springer, 2010.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the generalized governing equation for engine modeling.	К3
CO2	Develop the flow modeling, spray modeling equations and solve it.	K4
CO3	Develop in cylinder flow models of CI Engines.	K4
CO4	Understand multidimensional combustion models and study the combustion efficiency.	K2
CO5	Select suitable combustion model based on nature of the problem.	К3

Course Artic	ulation Matrix	<u> </u>				
COs/POs	P01	PO2	PO3	P04	P05	P06
CO1	2	2	1	2	3	2
CO2	3	2	2	2	3	2
CO3	3	3	\sim 2	1_	2	3
CO4	2	2	Marin Da 3 Sou DILLIN	2 2	2	2
CO5	3	2	2 ~~~	2	3	2
23TEPE18	3	2	2	2	2	2
1 – Slight, 2 –	Moderate, 3 – S	Substantial	7	~ 7/		

Assessment pat	tern – theory						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	30	20	30	-	-	100
CAT2	25	30	25	20	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	25	25	30 30	20	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	30	25	20	25	-	-	100
ESE	25	30	20	25	-	-	100

23TEPE19	ENERGY AUDITING AND MANAGEMENT	SEMESTER III
		1

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To make the students learn concepts of energy scenario, energy a	uditing thereby						
Objectives	identifying the ways for energy conservation and management.							
UNIT – I	INTRODUCTION	9 Periods						
Global energy	requirements - Depletion of conventional energy sources -Energy scena	ario – Principles						
and imperativ	and imperatives of energy conservation – Energy consumption pattern – Resource – Availability –							
Role of energ	y managers in industries - Duties and responsibilities of energy aud	litors - Energy						
conservation a	ict.							
UNIT – II	THERMAL ENERGY AUDITING	9 Periods						
Energy Audit	- Purpose, methodology with respect to thermal industries – Power	plants - Energy						
conservation i	n pumps, fans and compressors, air conditioning and refrigerating syste	ems, steam traps						
- Types, functi	on, necessity, heat distribution, temperature control, waste heat recover	y.						
UNIT – III	ROLE OF INSTRUMENTATION IN ENERGY CONSERVATION	9 Periods						
m . 1								
Total energy s	ystems - Concept of total energy - Advantages and limitations - Tota	l energy system						
	ystems – Concept of total energy – Advantages and limitations – Tota ns – Various possible schemes employing steam turbine movers used							
and applicatio		in total energy						
and applicatio	ns – Various possible schemes employing steam turbine movers used	in total energy						
and applicatio systems – Pote UNIT – IV	ns – Various possible schemes employing steam turbine movers used ential and economical of total energy systems - Energy conservation in t	in total energy ransportation. 9 Periods						
and applicatio systems – Pote UNIT – IV Potential area	ns – Various possible schemes employing steam turbine movers used ential and economical of total energy systems - Energy conservation in the ELECTRICAL ENERGY AUDITING	in total energy ransportation. 9 Periods y management						
and applicatio systems – Pote UNIT – IV Potential area opportunities	ns – Various possible schemes employing steam turbine movers used ential and economical of total energy systems - Energy conservation in transfer ELECTRICAL ENERGY AUDITING s for electrical energy conservation in various industries – Energy	in total energy ransportation. 9 Periods y management						
and application systems – Potestial areas opportunities	ns – Various possible schemes employing steam turbine movers used ential and economical of total energy systems - Energy conservation in to ELECTRICAL ENERGY AUDITING us for electrical energy conservation in various industries – Energin electrical heating, lighting system, cable selection – Energy efficient responses to the conservation in the	in total energy ransportation. 9 Periods y management						
and application systems – Potes UNIT – IV Potential area opportunities performance as UNIT – V	ns – Various possible schemes employing steam turbine movers used ential and economical of total energy systems - Energy conservation in to ELECTRICAL ENERGY AUDITING as for electrical energy conservation in various industries – Energy in electrical heating, lighting system, cable selection – Energy efficient ressessment of motors and variable speed drives.	in total energy ransportation. 9 Periods y management motors – Energy 9 Periods						
and application systems – Potes UNIT – IV Potential areas opportunities performance as UNIT – V Principles of E	ns – Various possible schemes employing steam turbine movers used ential and economical of total energy systems - Energy conservation in the ELECTRICAL ENERGY AUDITING as for electrical energy conservation in various industries – Energin electrical heating, lighting system, cable selection – Energy efficient ressessment of motors and variable speed drives. ENERGY MANAGEMENT	in total energy ransportation. 9 Periods y management motors – Energy 9 Periods y management-						
and application systems – Potes UNIT – IV Potential areas opportunities performance as UNIT – V Principles of E	ns – Various possible schemes employing steam turbine movers used ential and economical of total energy systems - Energy conservation in the ELECTRICAL ENERGY AUDITING as for electrical energy conservation in various industries – Energy in electrical heating, lighting system, cable selection – Energy efficient ressessment of motors and variable speed drives. ENERGY MANAGEMENT Therefore Management - Energy demand estimation - Importance of energy	in total energy ransportation. 9 Periods y management motors – Energy 9 Periods y management-						

TEXT BOOK:

Lecture: 45 Periods

1 Amlan Chakrabarti, "Energy Engineering and Management", PHI Learning Private Limited, 2nd Edition, 2018.

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

2 L.Ashok Kumar, Gokul Ganesan, "Energy Audit and Management: Concept, Methodologies, Procedures, and Case Studies", CRC Press, 1st Edition, 2022.

1	Roy L. Nersesian, "Energy for the 21 st Century" , Yes Dee Publishing Pvt Ltd, 2011.
2	Craig B Smith, "Energy Management Principles" , Pergamon Press, 2 nd Edition, 2015.
2	Daty S. and Turner W.C. "Energy Management Hand hook" Egirment Press, 7th Edition, 2000

- 3 Doty S. and Turner W.C., "Energy Management Hand book", Fairmont Press, 7th Edition, 2009.
 4 Dhungel, Suresh Kumar and G. Krishnakumar, "Energy Audit for Professionals", Daya Publishing
- 4 Dhungel, Suresh Kumar and G. Krishnakumar, **"Energy Audit for Professionals"**, Daya Publishing House, 2013.
- 5 Mehmet Kanoğlu and Yunus A. Çengel, "Energy Efficiency and Management for Engineers", McGraw-Hill Education, 1st Edition, 2020.

COUR	SE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy
		Mapped
CO1	Understand the role of energy manager and energy auditors in industries.	K2
CO2	Gain knowledge on the different energy auditing techniques and incorporate	K5
	them accordingly.	
CO3	Select suitable instrument to conserve energy in industries.	К3
CO4	Suggest appropriate solution to conserve electric energy in industries.	K4
CO5	Estimate energy demand and life cycle costing.	K5

Course Articulation Matrix								
COs/POs	P01	PO2	P03	PO4	P05	P06		
CO1	2	2	2	3	1	3		
CO2	2	2	3	2	2	3		
CO3	3	3	2	2	1	2		
CO4	2	2	3 10 01	3	3	2		
CO5	2	2	2	2	2	3		
23TEPE19	2	2 🚄	2	3	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial								
		1	Mary 1	11				

Assessment pat	tern – theory			1			
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	10	20	25	25	20	-	100
CAT2	20	15	20	25	20	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	15	15	25	20	25	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	25	20	25	20	10	-	100
ESE	25	20	20	25	10	-	100

23TEPE20	ELECTRIC AND HYBRID VEHICLES	SEMESTER III

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To present a comprehensive overview of electric and hybrid electric vehicle	les.						
Objectives								
UNIT – I	ELECTRIC VEHICLES	9 Periods						
	Components, vehicle mechanics – Roadway fundamentals, vehicle kineti- - Propulsion system design, Fuel cell EV, Solar powered vehicles.	ics, Dynamics of						
UNIT – II	- II ENERGY STORAGE 9 Periods							
and its analysis	Introduction to energy storage requirements in hybrid and electric vehicles - Battery based energy storage and its analysis, Fuel cell based energy storage and its analysis - Super capacitor based energy storage and its analysis, Hybridization of different energy storage devices - Selection of energy storage technology.							
UNIT – III	ENERGY MANAGEMENT STRATEGIES	9 Periods						
Introduction to	ns, supporting subsystems: In vehicle networks – CAN - Energy Manager o energy management strategies used in hybrid and electric vehicles - y management strategies - Comparison of different energy management str	Classification of						
UNIT – IV	ELECTRIC VEHICLE DRIVE TRAIN	9 Periods						
	Transmission configuration, Components – gears, differential, clutch, brakes regenerative braking, motor sizing - Configuration and control of switched reluctance Motor drives - Drive system efficiency - Fuel efficiency analysis							
UNIT – V	HYBRID ELECTRIC VEHICLES	9 Periods						
Drive-train top	, parallel and series, parallel configuration – Design – drive train, sizing cologies - Power flow control in hybrid drive-train topologies - Social an hybrid and electric vehicles. 1s:							
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods						

TEXT BOOK:

- 1 Ehsani, "Modern Electric, Hybrid Electric, and Fuel Cell Vehicles", CRC Press, 2019.
- 2 Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", 2nd Edition, CRC Press, 2011.

- 1 A. K. Babu, "Electric and Hybrid Vehicles", Khanna Publishing, 2022.
- 2 James Larminie and John Lowry, "Electric Vehicle Technology Explained", Wiley, 1st Edition, 2012.
- 3 Tom Denton, "Electric and Hybrid Vehicles", CBS Publishers and Distributors, 2nd Edition, 2020.
- 4 S. Onori, L. Serrao and G. Rizzoni, "Hybrid Electric Vehicles: Energy Management Strategies", Springer, 2015.
- 5 Lino Guzzella and Antonio Sciarretta, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 2nd Edition. 2009.

COUR Upon	Bloom's Taxonomy Mapped				
CO1	CO1 Understand the components and mechanics of electric vehicles.				
CO2	O2 Choose the proper energy storage systems for electric vehicle applications.				
CO3	К3				
CO4	Understand the electric vehicle drive system.	K2			
CO5	Design drive trains for hybrid electric vehicles.	К6			

Course Articulation Matrix						
COs/POs	PO1	PO2	PO3	PO4	P05	P06
CO1	2	3	2	2	2	2
CO2	3	2	3	3	3	2
CO3	2	2	3	3	2	3
CO4	2	3	2	1	3	2
CO5	3	3	2	2	3	2
23TEPE20	2	2	2	2	2	2
1 – Slight, 2 – Moderate, 3 – Substantial						
		76	BATISTO BE 110			

Assessment pat	Assessment pattern - theory						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	40	35	-	-	-	100
CAT2	10	30	30	10	10	10	100
Individual		/ / 3					
Assessment 1 /	0.5	4 A X		11			400
Case Study 1 /	25	35	40	Vla =	-	-	100
Seminar 1 /		800		608			
Project 1			2000000				
Individual		4	DIG ALL	0			
Assessment 2 /		TO THE	15 680 61	7			
Case Study 2 /	10	20	30	20	10	10	100
Seminar 2 /							
Project 2							
ESE	15	25	30	10	10	10	100

23SEOE01	BUILDING BYE-LAWS AND CODES OF PRACTICE
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	 To impart knowledge on the building bye –laws and to emphasize th 	ne significance of				
Objective	codes of practice in construction sector.	-				
UNIT – I	INTRODUCTION TO BUILDING BYE-LAWS	9 Periods				
Introduction to	Building Bye Laws and regulation, their need and relevance, General de	efinitions such as				
building heigh	building height, building line, FAR, Ground Coverage, set back line. Introduction to Master Plan and					
understanding	various land uses like institutional, residential etc Terminologies of Buil	ding bye-laws.				
UNIT – II	ROLE OF STATUTORY BODIES	9 Periods				
Role of variou	is statutory bodies governing building works like development author	orities, municipal				
corporations e	tc. Local Planning Authority, Town and Country planning organisation, M	Ministry of urban				
development.						
UNIT – III	APPLICATION OF BUILDING BYE-LAWS	9 Periods				
Interpretation	of information given in bye laws including ongoing changes as shown in	various annevure				
		various amicaure				
	s. Application of Bye-laws like structural safety, fire safety, earthquake					
and appendice						
and appendice	s. Application of Bye-laws like structural safety, fire safety, earthquake					
and appendice electricity, wat UNIT - IV Introduction to	s. Application of Bye-laws like structural safety, fire safety, earthquake er, and communication lines in various building types. INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations	safety, basement, 9 Periods to protect public				
and appendice electricity, wat UNIT - IV Introduction to	s. Application of Bye-laws like structural safety, fire safety, earthquake er, and communication lines in various building types. INTRODUCTION TO CODES OF PRACTICE	safety, basement, 9 Periods to protect public				
and appendice electricity, wat UNIT - IV Introduction to	s. Application of Bye-laws like structural safety, fire safety, earthquake er, and communication lines in various building types. INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations	safety, basement, 9 Periods to protect public				
and appendice electricity, wat UNIT – IV Introduction to health, safety a	s. Application of Bye-laws like structural safety, fire safety, earthquake er, and communication lines in various building types. INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations and welfare - Codes, regulations to ensure compliance with the local authors.	9 Periods to protect public rity. 9 Periods				
and appendice electricity, wat UNIT – IV Introduction to health, safety a UNIT – V Applications of	s. Application of Bye-laws like structural safety, fire safety, earthquake er, and communication lines in various building types. INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations and welfare - Codes, regulations to ensure compliance with the local author APPLICATION OF CODES OF PRACTICE	9 Periods to protect public rity. 9 Periods				
and appendice electricity, wat UNIT – IV Introduction to health, safety a UNIT – V Applications of	s. Application of Bye-laws like structural safety, fire safety, earthquake er, and communication lines in various building types. INTRODUCTION TO CODES OF PRACTICE o various building codes in professional practice - Codes, regulations and welfare - Codes, regulations to ensure compliance with the local author APPLICATION OF CODES OF PRACTICE f various codes as per various building types. Bureau of Indian Standard other international codes.	9 Periods to protect public rity. 9 Periods				

1	"National Building Code of India 2016 - SP 7", NBC 2016, Bureau of Indian Standards.
2	"Model Building Bye-Laws (MBBL) - 2016", Town and Country Planning Organization, Ministry of
	Housing and Urban Affairs, Government of India.
3	
	"Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
4	Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COUR	COURSE OUTCOMES:					
Upon	Upon completion of the course, the students will be able to:					
CO1	Apply the building bye-laws in planning, design and construction works.	КЗ				
CO2	Familiarize with the role of various statutory bodies.	K2				
CO3	Execute safety related work practices in the construction sector.	К3				
CO4	Ensure compliance with the rules and regulations in design and construction practices.	К3				
CO5	Perform design and construction practices based on national and international codal provisions.	КЗ				

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05	P06		
C01	1	3	1	1	2	3		
CO2	1	3	1	1	2	3		
CO3	1	3	1	1	2	3		
CO4	2	3	1	1	2	3		
CO5	2	3	1	1	2	3		
23SEOE01	2	3	P	1	2	3		
1 – Slight, 2 – Moderate, 3 – Substantial								
	(a The	Simon					
			5553230					

ASSESSMENT PAT	TERN – THEORY		and the				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	\\ -	-	-	100
CAT2	40	40	20	-	-	-	100
Individual	40	40	20	V.S	-	-	100
Assessment 1 /		200 TO		<u> </u>			
Case Study 1/		4.00	D 0 - 0"	ر م			
Seminar 1 /		12.2	10 the Car	7			
Project1							
Individual	40	40	20	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

23SE0E02	PLANNING OF SMART CITIES
23SEUEU2	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

	14117	OL	3 (0 0 3		
Course	 To have an exposure on planning of smart 	cities with consid	leration (of the recent		
Objective	challenges and to address the importance	of sustainable dev	velopmer	nt of urban		
	area.					
UNIT – I	SMART CITIES DEVELOPMENT POTENTIALS A	AND CHALLENG	ES	9 Periods		
	mart Cities: Introduction and Overview - Implen					
issues - Spatial	distribution of startup cities - Re imagining p	ostindustrial cit	ties - In	nplementation		
Challenges for Es	tablishing Smart Urban Information and Knowled	ge Management S	System.			
UNIT – II	SUSTAINABLE URBAN PLANNING			9 Periods		
	n Spaces for Sustainable Urban Planning - 3					
_	uality Indicators - Assessing the Rainwater Harve	esting Potential -	- The Str	rategic Role of		
•	onitoring Urban Expansion.					
UNIT – III	ENERGY MANAGEMENT AND SUSTAINABLE D	EVELOPMENT		9 Periods		
	Energy Stressed Cities - Social Acceptability of					
	Irban Dynamics and Resource Consumption -		lenges o	of Sustainable		
Tourism - Green I	Buildings: Eco-friendly Technique for Modern Citie	es.				
UNIT – IV	MULTIFARIOUS MANAGEMENT FOR SMART C	ITIES		9 Periods		
Assessment of Do	omestic Water Use Practices - Issue of Governanc	e in Urban Wate	r Supply	- Assessment		
	iption at Urban Household Level - Water Sustain		conomic	Determinants		
•	Healthcare System - Problems and Development	of Slums.				
UNIT – V	INTELLIGENT TRANSPORT SYSTEM			9 Periods		
Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network						
Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information -						
The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic						
Assignment - Traffic Enforcement. Urban Mobility and Economic Development.						
Contact Periods:						
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Pe	riods Total	: 45 Per i	iods		

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva" , 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems And
	Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.

COUR	Bloom's Taxonomy	
Upon	Upon completion of the course, the students will be able to:	
CO1	Indicate the potential challenges in smart city development.	K2
CO2	Select the different tools for sustainable urban planning.	К3
CO3	Choose appropriate energy conservation system for smart cities.	К3
CO4	Identify the proper method of water management system.	К3
CO5	Apply Intelligent Transport System concepts in planning of smart city.	К3

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
CO1	1	-	2	3	1	1		
CO2	1	1	1	3	2	1		
CO3	1	1		2	2	1		
CO4	1	-	1	2	1	1		
CO5	1	-	1	3	1	-		
23SEOE02	1	1,,,,,,,,	2	3	2	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

1 511811	c, 2 Proderate, 5	Substantial	TO SULLIES SELECT	<u> </u>							
		26775									
ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %					
CAT1	25	45	30	\\ -	-	-	100				
CAT2	25	45	30	-	-	-	100				
Individual	15	40	45	JL -	-	-	100				
Assessment 1 /				263							
Case Study 1/		(E) 1888									
Seminar 1 /		200	200 - DE	100							
Project1		69	TO NIE CE	7							
Individual	10	45	45	-	-	-	100				
Assessment 2 /											
Case Study 2/											
Seminar 2 /											
Project 2											
ESE	20	40	40	-	-	-	100				

23SE0E03	GREEN BUILDING
233EUEU3	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	 To introduce the different concepts of energy efficient buildings, inc 	
Objective	environmental quality management, green buildings and its design.	•
TINITE T	NITTO DIVIGINON	0.0. 1.1
UNIT - I	INTRODUCTION	9 Periods
	of materials and products - sustainable design concepts - strategies	
	sun-earth relationship and the energy balance on the earth's surface, clir	
	temperature - Sun shading and solar radiation on surfaces - Energy im	pact on the shape
	puildings – Thermal properties of building materials.	,
UNIT – II	ENERGY EFFICIENT BUILDINGS	9 Periods
9	d day lighting – Active solar and photovoltaic- Building energy analysis r	
	- Building energy efficiency standards-Lighting system design- Lightin	
aesthetics- Impact	s of lighting efficiency – Energy audit and energy targeting- Technolo	ogical options for
energy managemen		
UNIT – III	INDOOR ENVIRONMENTAL QUALITY MANAGEMENT	9 Periods
Psychrometry- Co	omfort conditions- Thermal comfort- Ventilation and air quality-	-Air conditioning
requirement- Visu	al perception- Illumination requirement- Auditory requirement- Ene	ergy management
options- Air condit	ioning systems- Energy conservation in pumps- Fans and blowers- Refrig	erating machines-
Heat rejection equi	pment- Energy efficient motors- Insulation.	
UNIT – IV	GREEN BUILDING CONCEPTS	9 Periods
Green building cor	ncept- Green building rating tools- Leeds and IGBC codes Material se	lection Embodied
energy- Operating	energy- Façade systems- Ventilation systems-Transportation- Water tr	eatment systems-
Water efficiency- B		•
UNIT – V	GREEN BUILDING DESIGN - CASE STUDY	9 Periods
Case studies - Buil	ding form, orientation and site considerations; conservation measures;	energy modeling;
heating system and	l fuel choices; renewable energy systems; material choices - construction l	budget
Contact Periods:	C. W. C.	
Lecture: 45 Period	ds Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ods

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", , Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

	E OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply the concepts of sustainable design in building construction.	K3
CO2	Execute green building techniques including energy efficiency management in the building design.	КЗ
CO3	Establish indoor environmental quality in green building.	КЗ
CO4	Perform the green building rating using various tools.	КЗ
CO5	Create drawings and models of green buildings.	К3

COURSE ARTICULATION MATRIX							
COs/POs	P01	PO2	P03	P04	P05	P06	
C01	3	3	2	3	3	3	
CO2	3	3	2	3	3	3	
CO3	2	2	2	2	3	3	
CO4	2	3	1	3	3	3	
CO5	3	3	1	3	3	3	
23SEOE03	3	3	2	3	3	3	
1 – Slight, 2 – Moderate, 3 – Substantial							
pylengo a strang							

ASSESSMEN	T PATTERN - THE	EORY	C-1/4/20				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	\\ -	-	-	100
Individual	40	40	20	\\ -	-	-	100
Assessment 1 /		1 4 8	10	. 11			
Case Study 1/		Al Sec		Va.			
Seminar 1 /		22 Th		28			
Project1		Carrow Control	(D) (2) - All	(قان			
Individual	40	40	20	J -	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

23EE0E04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

	NIL	OE	3	0	0	3		
Course	 To impart knowledge on occupational health 	hazards, safety n	ıeas	ures	at w	ork		
Objective	Objective place, accident prevention, safety management and safety measures in							
industries.								
UNIT – I	OCCUPATIONAL HEALTH HAZARDS			91	Peri	ods		
Occupation, H	ealth and Hazards - Safety Health and Manageme	nt: Occupational	Hea	alth	Haz	ards -		
	Importance of Industrial Safety - Radiation and Ind							
Vibration - Inc	lustrial Hygiene - Different air pollutants in industri	es and their effe	cts -	Elec	ctrica	al, fire		
and Other Haz								
UNIT – II	SAFETY AT WORKPLACE				Peri			
	kplace - Safe use of Machines and Tools: Safety							
	Ergonomics of Machine guarding - working in			s - (Эрег	ation,		
Inspection and	l maintenance - Housekeeping, Industrial lighting, V	ibration and Noi	se.					
UNIT – III	ACCIDENT PREVENTION				Peri			
	rention Techniques - Principles of accident preve							
	t tree analysis, Hazop studies, Job safety analysis - T							
	rst Aid: Body structure and functions - Fracture a	nd Dislocation, l	njur	ies	to va	arious		
body parts.								
UNIT – IV	SAFETY MANAGEMENT				Peri			
	ement System and Law - Legislative measures in Ind							
	wironment Management, Bureau of Indian Standar				, IS 1	14489		
	HA, Process safety management (PSM) and its princ	iples - EPA stand	ards					
UNIT – V	GENERAL SAFETY MEASURES				Peri			
Plant Layout for Safety - design and location, distance between hazardous units, lighting, colour								
coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work								
_	Permit System - Significance of Documentation - Case studies involving implementation of health and							
	safety measures in Industries.							
Contact Perio								
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications,2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rad
	PharmaMed Press. 1st edition. 2021.

COURS	COURSE OUTCOMES:		
Upon c	ompletion of the course, the students will be able to:	Mapped	
CO1	Identify the occupational health hazards.	К3	
CO2	Execute various safety measures at workplace.	К3	
CO3	Analyze and execute accident prevention techniques.	К3	
CO4	Implement safety management as per various standards.	К3	
CO5	Develop awareness on safety measures in Industries.	К3	

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05	P06	
CO1	1	2	2	2	3	2	
CO2	2	2	2	1	2	2	
CO3	2	3	2	1	2	2	
CO4	1	1	1	2	2	2	
CO5	1	1	1	1	1	2	
23EE0E04	1	2	2	1	2	2	
1 – Slight, 2 – Moderate, 3 – Si	ubstantial						

ASSESSMENT PAT	TERN – THEORY		The same				
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

23EE0E05

CLIMATE CHANGE AND ADAPTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objective	 To understand the Earth's climate system, changes and their effects identifying the impacts, adaptation, mitigation of climate change and knowledge on clean technology, carbon trading and alternate energy 	l for gaining
UNIT – I	EARTH'S CLIMATE SYSTEM	9 Periods

Introduction-Climate in the spotlight - The Earth's Climate Machine - Climate Classification- Global Wind Systems - Trade Winds and the Hadley Cell - The Westerlies - Cloud Formation and Monsoon Rains - Storms and Hurricanes - The Hydrological Cycle - Global Ocean Circulation - El Nino and its Effect - Solar Radiation - The Earth's Natural Green House Effect - Green House Gases and Global Warming - Carbon Cycle.

UNIT – II OBSERVED CHANGES AND ITS CAUSES

9 Periods

Observation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effects of Climate Changes – Patterns of Large-Scale Variability –Drivers of Climate Change – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – climate change modeling.

UNIT - III IMPACTS OF CLIMATE CHANGE

9 Periods

Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios – Projected Impacts for Different Regions – Uncertainties in the Projected Impacts of Climate Change – Risk of Irreversible Changes.

UNIT – IV CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES

9 Periods

Adaptation Strategy/Options in various sectors – Water – Agriculture – Infrastructure and Settlement including coastal zones – Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and Practices – Energy Supply – Transport – Buildings – Industry –Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) – Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation.

UNIT - V CLEAN TECHNOLOGY AND ENERGY

9 Periods

Clean Development Mechanism – Carbon Trading - examples of future Clean Technology –Biodiesel – Natural Compost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Biofuels– Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding.

Contact Periods:

Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total:45 Periods

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report –Working Group I Report, "The physical sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability", 2007
5	IPCC fourth assessment report - Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate Change,
	Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

COURSE	E OUTCOMES:	Bloom's Taxonomy			
Upon co	Upon completion of the course, the students will be able to:				
CO1	Classify the Earths climatic system and factors causing climate change and global	K2			
	warming.				
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise and	K2			
	Observed effects of Climate Changes				
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible	К3			
	changes.				
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	К3			
CO5	Discover clean technologies and alternate energy source for sustainable growth.	К3			

COs/POs	P01	P02	P03	P04	P05	P06
CO1	2	2	3	2	3	1
CO2	3	2	2	2	3	2
CO3	2	2	2	2	3	2
CO4	3	2	,,,,, <u>2</u>	2	2	2
CO5	3	3	2	3	3	3
23EE0E05	3	3	1 50 W 3	3	3	3
- Slight, 2 - Moderate	, 3 – Substanti	al	A. Prince			

ASSESSMENT	PATTERN - THEO	RY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	30	35	10	-	-	100
CAT2	25	30	35	10	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100
ESE	25	30	35	10	-	-	100

23EE0E06	WASTE TO ENERGY
ZSEEUEUO	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective	 To classify waste as fuel, introduce conversion devices, gain knowledge about Biomass Pyrolysis, demonstrate methods, factors for biomass gasification, and acquire knowledge about biogas and its development in India. 					
UNIT – I	INTRODUCTION 9 Periods					
Introduction to Energy from Waste: Classification of waste as fuel – Agro based, Forest residue, Industrial waste - MSW – Conversion devices – Incinerators, Gasifiers, Digestors.						
UNIT – II	BIOMASS PYROLYSIS	9 Periods				

Biomass Pyrolysis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis - Manufacture of charcoal - Methods - Yields and Applications - Manufacture of Pyrolytic oils and gases, Yields and Applications.

UNIT - III BIOMASS GASIFICATION 9 Periods

Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, Construction and Operation – Gasifier burner arrangement for thermal heating – Gasifier Engine arrangement and electrical power – Equilibrium and Kinetic Considerations in gasifier operation.

UNIT - IV BIOMASS COMBUSTION 9 Periods

Biomass Combustion – Biomass Stoves – Improved Chullahs, types, some exotic designs, Fixed bed combustors, types – Inclined grate combustors – Fluidized bed combustors, design, construction and operation of all the above biomass combustors.

UNIT - V BIOENERGY SYSTEM 9 Periods

Biogas: Properties of biogas (Calorific value and composition) – Biogas plant technology and status – Bio energy system – Design and constructional features – Biomass resources and their classification – Biomass conversion processes – Thermo chemical conversion – Direct combustion – biomass gasification – pyrolysis and liquefaction – biochemical conversion – anaerobic digestion – Types of biogas plants – Applications – Alcohol production from biomass – Bio diesel production – Urban waste to energy conversion – Biomass energy programme in India.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P Jayaram Reddy, Taylor and Francis Publications, 2016.
2	"Waste - to - Energy: Technologies and project Implementations", Marc J Rogoff, Francois Screve, ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles" , Brad Hill, NY RESEARCH PRESS Publications, Illustrated Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", Prabir ELSEVIER Publications, 2010.

Upon co	OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	К3
CO3	Demonstrate methods and factors considered for biomass gasification.	К3
CO4	Identify the features of different facilities available for biomass combustion.	K4
CO5	Analyze the potential of different Bioenergy systems with respect to Indian condition.	K2

COs/POs	P01	PO2	PO3	P04	P05	P06
CO1	2	3	3	2	3	1
CO2	3	2	2	2	3	1
CO3	3	3	2	3	2	1
CO4	3	2	2	3	3	1
CO5	2	3	3	3	2	1
23EE0E06	3	3	3	3	3	1
1 – Slight, 2 – Moderate, 3 – S	ubstantial	P00000	No.			
1 - Slight, 2 - Moderate, 3 - 3	ubstantiai (8)	de a De a Ser o	TIP BUILDING			

ASSESSMENT	PATTERN - THEO	RY	12000				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	20	20	25	15	10	100
CAT2	10	25	20	10	25	10	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	15	35	50	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	10	40	50	-	-	100
ESE	10	25	25	20	10	10	100

22650507	ENERGY IN BUILT ENVIRONMENT
23GEOE07	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

N)	IL		OE	3 0	0	3
			•			
Course	•	To understand constructional energy re	quirements of buil	dings,	ene	rgy
Objective		audit methods and conservation of ener	gy.			
UNIT-I	INTR	ODUCTION		9 Pc	erio	ds
Indoor activitie	s and	environmental control - Internal and	external factors of	n ene	rgy	use -
Characteristics	of ener	gy use and its management -Macro aspec	ct of energy use in	dwellii	ngs :	and its
implications -T	'herma	l comfort-Ventilation and air quality-A	ir-conditioning red	ղuirem	ent	-Visual
perception-Illun	ninatio	on requirement-Auditory requirement.				
UNIT-II		LIGHTING REQUIREMENTS IN BUILDING	G	9 P	erio	ds
The sun-earth	relatio	nship - Climate, wind, solar radiation a	nd temperature -	Sun sh	adir	ng and
solar radiation	on sur	faces-Energy impact on the shape and or	ientation of buildi	ngs-Lig	ghtii	ng and
day lighting :Ch	aracte	ristics and estimation, methods of day-lig	hting-Architectur	al cons	ider	ations
for day-lighting.	•	Braden Games and the assessor				
UNIT-III		ENERGY REQUIREMENTS IN BUILDING	Ĵ	9 P	erio	ds
Steady and un	steady	heat transfer through wall and glaze	ed window-Standa	rds fo	r tł	nermal
performance of	buildi	ng envelope- Evaluation of the overall t	hermal transfer- T	'herma	ıl ga	in and
net heat gain-Er	ıd-Use	energy requirements-Status of energy us	se in buildings-Esti	matior	of	energy
use in a building	g .					
UNIT-IV		ENERGY AUDIT		9 P	erio	ds
Energy audit	and er	nergy targeting-Technological options fo	or energy manager	ment-N	latu	ral an
forced ventilation	on–Ind	oor environment and air quality-Air flow	and air pressure	on buil	ding	gs-Flov
due to Stack effe	ect.					
UNIT-V		COOLING IN BUILT ENVIRONMENT		9 P	erio	ds
	_	9	ooling techniques			
		ventilation-Natural and active cooling	with adaptive con	nfort-F	Evap	orativ
		ouilding concept.				
Contact Period	S:					

Lecture: 45 Periods Tutorial: 0 Period

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill,
	2000.
2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinois ,USA.

Practical: 0 Period

Total: 45 Periods

COUR	COURSE OUTCOMES:						
Upon	Mapped						
CO1	Understand energy and its usage	K2					
CO2	Know lighting to be given to a building	K1					
CO3	Analyse the energy requirements in a building	К3					
CO4	Apply the energy audit concepts.	К3					
CO5	Study architectural specifications of a building	K1					

COs/POs	P01	PO2	PO3	PO4	PO5	P06
CO1	2	-	3	1	2	1
CO2	2	-	3	1	2	1
CO3	2	-am	~~~3	1	2	1
CO4	2	Banga Danga	101 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2	1
CO5	2	PACTOR N	3	1	2	1
23GEOE07	2	(SAN 1995)	3	1	2	1
l-Slight, 2-Moder	ate, 3–Substai	ntial	77			

ASSESSMENT P	ATTERN - THI	EORY		1.			
Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	<u>.</u>	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100
ESE	40	40	20	-	-	-	100

23GE0E08	EARTH AND ITS ENVIRONMENT
ZJULOLUU	(Common to all Branches)

PREREQUISITES	CATEGORY	11.	T	P	C
NIL	OE	3	0	0	3

Course	To know about the planet earth, the geosystems and the resources like					
Objective	ground water and air and to learn about the Environmental Assessment and					
	sustainability.					
UNIT-I	EVOLUTION OF EARTH 9 Periods					

Evolution of earth as habitable planet-Evolution of continents-oceans and landforms-evolution of life through geological times - Exploring the earth's interior - thermal and chemical structure - origin of gravitational and magnetic fields.

UNIT-II GEOSYSTEMS 9 Periods

Plate tectonics - working and shaping the earth - Internal geosystems - earthquakes - volcanoes - climatic excursions through time - Basic Geological processes - igneous, sedimentation - metamorphic processes.

UNIT-III GROUND WATER GEOLOGY 9 Periods

Geology of ground water occurrence –recharge process-Ground water movement-Ground water discharge and catchment hydrology – Ground water as a resource - Natural ground water quality and contamination-Modelling and managing ground water systems.

UNIT-IV ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY 9 Periods

Engineering and sustainable development - population and urbanization - toxic chemicals and finite resources - water scarcity and conflict - Environmental risk - risk assessment and characterization – hazard assessment-exposure assessment.

UNIT-V AIR AND SOLIDWASTE 9 Periods

Air resources engineering-introduction to atmospheric composition-behaviour-atmospheric photo chemistry-Solid waste management-characterization-management concepts.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods

1	L	John Grotzinger and Thomas H.Jordan, " Understanding Earth" , Sixth Edition, W.H.Freeman, 2010.							
2	2	Younger,P.L., "Ground water in the Environment: An introduction", Blackwell Publishing,2007.							
	3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,							
	Sustainability and Design", Wiley, NJ, 2010.								

COUR	SE OUTCOMES:	Bloom's				
		Taxonomy				
Upon	Upon completion of the course, the students will be able to:					
CO1	To know about evolution of earth and the structure of the earth.	K2				
CO2	To understand the internal geosystems like earthquakes and volcanoes and	K2				
	the Various geological processes.					
CO3	To able to find the geological process of occurrence and movement of Ground	К3				
	water and the modeling systems.					
CO4	To assess the Environmental risks and the sustainability developments.	К3				
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1				
	Management concepts.					

COs/POs	P01	P02	PO3	P04	P05	P06
CO1	1	-	-	2	2	-
CO2	3	-	3	3	-	3
CO3	2		D.	-	-	-
CO4	-	2	7.56 DI 116	(0)	1	-
CO5	2	2		1	-	-
23GE0E08	2	2	3	3	2	3
	1-Sli	ght, 2–Mode	rate, 3-Sub	stantial		
			AN I			
		// // 2	TOOL 1	1		

ASSESSMENT	PATTERN - THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	-	-	-	100

23GEOE09	NATURAL HAZARDS AND MITIGATION
23GEUEU9	(Common to all Branches)

PREREQUISITES:	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objective	To get idea on the causes, effects and mitigation measures of different types of hazards with case studies.						
UNIT-I	EARTH QUAKES	9 Periods					
causes of earth	basic concepts-different kinds of hazards-causes-Geologic quakes-effects-plate tectonics-seismic waves-measures of stant design concepts.	-					
UNIT-II	SLOPE STABILITY	9 Periods					
	and landslides-causes of landslides-principles of stability ares for slope stabilization.	analysis-remedial and					
UNIT-III	FLOODS	9 Periods					
	ds–Floods-causes of flooding-regional flood frequency routing-flood forecasting-warning systems.	analysis–flood control					
UNIT-IV	DROUGHTS	9 Periods					
_	es - types of droughts –effects of drought -hazard assessment hazard assessment–mitigation-management.	- decision making-Use					
UNIT-V	TSUNAMI	9 Periods					
	effects-under sea earthquakes-landslides-volcanic eruption dial measures-precautions-case studies.	s-impact of sea					
Contact Periods Lecture: 45 Per		otal: 45 Periods					

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage
	Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press,2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley & Sons,
	Inc,2005.
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering", John Wiley &
	Sons,Inc,2008

COURSE	OUTCOMES:	Bloom's
Ilnon cor	mpletion of the course, the students will be able to:	Taxonomy Mapped
opon cor	infliction of the course, the students will be able to.	маррец
CO1	Learn the basic concepts of earthquakes and the design concepts of	K2
	earthquake Resistant buildings.	
CO2	Acquire knowledge on the causes and remedial measures of slope	К3
	stabilization.	
CO3	As certain the causes and control measures of flood.	К3
CO4	Know the types, causes and mitigation of droughts.	K2
CO5	Study the causes, effects and precautionary measures of Tsunami.	К2

COURSE ARTICULATION MATRIX								
COs/POs	PO1	P02	PO3	P04	PO5	P06		
CO1	3	1	-	3	2	3		
CO2	3	1	2	3	3	3		
CO3	3	2	3	-	-	3		
CO4	3	-	Chuman D.	3	2	3		
CO5	3	-1 (884	THE OWNER OF THE BE	2 2	-	3		
23GEOE09	3	1	2	3	2	3		
1-Slight, 2-Moderate, 3-Substantial								

ASSESSMENT	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT 1	40	40	20	<u>-</u>	-	-	100		
CAT 2	40	40	20	-	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100		
ESE	40	40	20	-	-	-	100		

22ED0E10	BUSINESS ANALYTICS
23ED0E10	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

IINIT – I	To acquire insight on other analytical frameworks. BUSINESS ANALYTICS AND PROCESS	9 Periods			
	 To apprehend analytics the usage of Hadoop and Map Reduce frameworks. 				
	 To study modeling for uncertainty and statistical inference. 				
Objectives	 To gain knowledge about fundamental business analytics. 				
Course	 To apprehend the fundamentals of business analytics and its lif 	e cycle.			

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling andestimation methods overview.

UNIT – II REGRESSION ANALYSIS

9 Periods

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

UNIT – III STRUCTURE OF BUSINESS ANALYTICS

9 Periods

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

UNIT - IV FORECASTING TECHNIQUES

9 Periods

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

UNIT - V DECISION ANALYSIS AND RECENT TRENDS IN BUSINESS 9 Periods ANALYTICS

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making. Recent Trends: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop",Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R - A Practical Approach",Apress,
	2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press,
	2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson, "Essentials of
	Business Analytics", Cengage Learning, second Edition, 2016.
5	U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making", Wiley, 2017.
6	Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the real world business problems and model with analytical	K4
	solutions.	
CO2	Solve analytical problem with relevant mathematics background knowledge.	K4
CO3	Convert any real world decision making problem to hypothesis and apply	K4
	suitable statistical testing.	
CO4	Write and Demonstrate simple applications involving analytics using Hadoop	K4
	and Map Reduce	
CO5	Use open source frameworks for modeling and storing data.	K4

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
CO1	1	2	1	2	1			
CO2	1	1		2	1			
CO3	2	2	Contraction of	1	-			
CO4	2	2	SIS CEL	=	-			
CO5	1	2	-	-	-			
23EDOE10	1	2	1	2	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT	ASSESSMENT PATTERN - THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	25	25	25			100			
CAT2	20	25	25	30			100			
Assignment 1	25	30	25	20			100			
Assignment 2	30	20	30	20			100			
ESE	20	30	20	30			100			

23EDOE11 INTRODUCTION TO INDUSTRIAL SAFETY (Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	Summarize basics of industrial safety.	
Objectives	 Describe fundamentals of maintenance engineering. 	
	Explain wear and corrosion.	
	Illustrate fault tracing.	
	 Identify preventive and periodic maintenance. 	
UNIT – I	INTRODUCTION	9 Periods

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc., Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT – II FUNDAMENTALS OF MAINTENANCE ENGINEERING

9 Periods

Definition and aim of maintenance engineering, Primary and secondary functions andresponsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT – III WEAR AND CORROSION AND THEIR PREVENTION

9 Periods

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications,

Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT - IV FAULT TRACING 9 Per

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault-finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT - V PERIODIC AND PREVENTIVE MAINTENANCE

9 Periods

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London, 2013.
- 2 | "Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers, 2017
- 3 "Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
- 4 "Industrial Engineering And Production Management", S. Chand Publishing; Third edition ,2018
- 5 | "Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon	Upon completion of the course, the students will be able to:		
CO1	Ability to summarize basics of industrial safety	K4	
CO2	Ability to describe fundamentals of maintenance engineering	K4	
CO3	Ability to explain wear and corrosion	K4	
CO4	Ability to illustrate fault tracing	K4	
CO5	Ability to identify preventive and periodic maintenance	K4	

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	PO5		
CO1	2	1	1	-	-		
CO2	2	2	1	-	1		
CO3	1	2	1	1	1		
CO4	2	1	1	1	1		
CO5	2	1	2	1	1		
23ED0E11	2	chumbs -	1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	25	25	25	25			100	
CAT2	20	25	25	30			100	
Assignment 1	25	30	25	20			100	
Assignment 2	30	20	30	20			100	
ESE	20	30	20	30			100	

22ED0E12	OPERATIONS RESEARCH
23ED0E12	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	Solve linear programming problem and solve using graphical method.							
Objectives	Solve LPP using simplex method.							
o bjectives	Solve transportation, assignment problems.							
	 Solve project management problems. 	Solve project management problems.						
	Solve scheduling problems.							
UNIT – I	INTRODUCTION	9 Periods						
Optimization T	echniques, Model Formulation, models, General L.R Formulation, Simplex Tech	nniques, Sensitivity						
Analysis, Inven	tory Control Models							
UNIT – II	LINEAR PROGRAMMING PROBLEM	9 Periods						
Formulation o	f a LPP - Graphical solution revised simplex method - duality theory - dual	simplex method -						
sensitivity ana	lysis - parametric programming							
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM	9 Periods						
Nonlinear pro	gramming problem - Kuhn-Tucker conditions min cost flow problem - ma	ax flow problem -						
CPM/PERT								
UNIT – IV	SEQUENCING AND INVENTORY MODEL	9 Periods						
Scheduling an	d sequencing - single server and multiple server models - deterministic is	nventory models -						
Probabilistic in	ventory control models - Geometric Programming.							
UNIT – V	GAME THEORY	9 Periods						
Competitive M	Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in							
Networks, Eler	nentary Graph Theory, Game Theory Simulation							
Lecture: 45 Po	eriods Tutorial: 0 Periods Practical:0Periods Total:45 Periods	3						

1	H.A. Taha"Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", Anup Goel, Ruchi Agarwal, Technical Publications, Jan 2021.

COURS	SE OUTCOMES:	Bloom's Taxonomy
		Mapped
Upon	completion of the course, the students will be able to:	
CO1	Formulate linear programming problem and solve using graphical method.	K4
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
CO4	Solve project management problems.	K4
CO5	Solve scheduling problems	K4

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
CO1	2	1	1	-	-			
CO2	2	2	1	-	-			
CO3	1	1	2	1	1			
CO4	1	1	-	-	-			
CO5	2	1	-	-	-			
23ED0E12	2	1	1	1	1			
1 – Slight, 2 – Moderate, 3 – Subs	1 – Slight, 2 – Moderate, 3 – Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23MF0E13

OCCUPATIONAL HEALTH AND SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To gain knowledge about occupational health hazard and safety measures at
Objectives	work place.
	 To learn about accident prevention and safety management.
	 To learn about general safety measures in industries.
UNIT – I	OCCUPATIONAL HEALTH AND HAZARDS 9 Periods

Safety- History and development, National Safety Policy- Occupational Health Hazards - Ergonomics - Importance of Industrial Safety Radiation and Industrial Hazards- Machine Guards and its types, Automation.

UNIT – II SAFETY AT WORKPLACE

9 Periods

Safety at Workplace - Safe use of Machines and Tools: Safety in use of different types of unit operations - Ergonomics of Machine guarding - working in different workplaces - Operation, Inspection and maintenance, Plant Design and Housekeeping, Industrial lighting, Vibration and Noise Case studies.

UNIT – III ACCIDENT PREVENTION

9 Periods

Accident Prevention Techniques - Principles of accident prevention - Definitions, Theories, Principles - Hazard identification and analysis, Event tree analysis, Hazop studies, Job safety analysis - Theories and Principles of Accident causation - First Aid : Body structure and functions - Fracture and Dislocation, Injuries to various body parts.

UNIT – IV SAFETY MANAGEMENT

9 Periods

Safety Management System and Law - Legislative measures in Industrial Safety: Various acts involved in Detail- Occupational safety, Health and Environment Management: Bureau of Indian Standards on Health and Safety, 14489, 15001 - OSHA, Process safety management (PSM) and its principles - EPA standards-Safety Management: Organisational & Safety Committee - its structure and functions.

UNIT - V GENERAL SAFETY MEASURES

9 Periods

Plant Layout for Safety -design and location, distance between hazardous units, lighting, colour coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work Permit System: Significance of Documentation Directing Safety, Leadership -Case studies involving implementation of health and safety measures in Industries.

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Benjamin O.Alli, **Fundamental Principles of Occupational Health and Safety** ILO 2008.
- 2 Danuta Koradecka, **Handbook of Occupational Health and Safety**, CRC, 2010.
- 3 Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
- 4 Deshmukh. L.M., **Industrial Safety Management**, 3rd Edition, Tata McGraw Hill, New Delhi, 2008.
- 5 https://nptel.ac.in/courses/110105094
- 6 https://archive.nptel.ac.in/courses/110/105/110105094/

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Gain the knowledge about occupational health hazard and safety measures at	К3
	work place.	
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures in	К3
	industries.	
CO4	Know various laws, standards and legislations.	K2
CO5	Implement safety and proper management of industries.	K4

Cos/Pos P01 P02 P03 P04 P05									
C03/1 03	101	102	103	104	103				
CO1	2	1	1	1	1				
CO2	2	2	1	1	1				
CO3	1	2	1	1	1				
CO4	2	1	1	1	1				
CO5	2	1.0	2	1	1				
23MF0E13	2	8n5n 1	1	1	1				
1 – Slight, 2 – Moderate, 3 – Si	ubstantial								

ASSESSMENT PAT	TERN - THE	EORY	7	//			
Test / Bloom's Category*	Rememb ering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		50	50	Va			100
CAT2		50	30	20			100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50	50				100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50	30	20			100
ESE		40	40	20			100

23MF0E14		COST MANAGEMENT OF ENGINEERING PROJECTS (Common to all Branches)							
PREREQUISIT	TES	CATEGORY	L	T	P	C			
	NIL	OE	3	0	0	3			

Course	To understand the costing concepts and their role in decision making.
Objectives	 To acquire the project management concepts and their various aspects in selection. To gain the knowledge in costing concepts with project execution.
	To develop knowledge of costing techniques in service sector and various budgetary
	control techniques.
	To familiarize with quantitative techniques in cost management.
UNIT – I	INTRODUCTION TO COSTING CONCEPTS 9 Periods

Introduction and Overview of the Strategic Cost Management Process, Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision - Making.

UNIT – II PROJECT PLANNING ACTIVITIES

9 Periods

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

UNIT – III COST ANALYSIS

9 Periods

Cost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.

UNIT - IV PRICING STRATEGIES AND BUDGETORY CONTROL

9 Periods

Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

UNIT - V TQM AND OPERATIONS REASEARCH TOOLS

9 Periods

Total Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor & Francis,
	2016
3	Nigel J, Engineering Project Management , John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall of
	India, New Delhi, 2011.
5	https://archive.nptel.ac.in/courses/110/104/110104073/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the costing concepts and their role in decision making.	К3
CO2	Apply the project management concepts and analyze their various aspects in	K4
	selection.	
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various budgetary	K2
	control techniques.	
CO5	Become familiar with quantitative techniques in cost management.	К3
		•

COURSE ARTICULATION MATRIX:									
COs/Pos	P01	PO2	P03	P04	P05				
CO1	1	1/	2	1	1				
CO2	2	1	1	1	-				
CO3	2	2	2	-	-				
CO4	1 🔍	1	1	1	1				
CO5	1	2	1	1	-				
23MF0E14	1	SEE TOWN	3) 1	1	1				
1 – Slight, 2 – Moderate, 3 – Sub	stantial	No Contraction	17		ı				

ASSESSMENT PA	TTERN - THEORY	7					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1			40	60			100
CAT2		30	30	40			100
Individual			40	60			100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual		30	30	40			100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE		20	40	40			100

22ME0E1F	COMPOSITE MATERIALS
23MFUE15	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To summarize the characteristics of composite materials and effect of the characteristics of composite materials and effect of the characteristics of composite materials and effect of the characteristics of composite materials.	of rainfaraamant				
Objectives	 To summarize the characteristics of composite materials and effect of in composite materials. 	or remnorcement				
Objectives	 To identify the various reinforcements used in composite materials. 					
	 To compare the manufacturing process of metal matrix composites. 					
	To understand the manufacturing processes of polymer matrix composites.					
	 To analyze the strength of composite materials. 					
UNIT – I	INTRODUCTION	9 Periods				
Definition - Cl	assification and characteristics of Composite materials. Advantages and	l application of				
composites. Fu	nctional requirements of reinforcement and matrix. Effect of reinforcer	nent on overall				
composite perf	ormance.					
UNIT – II	REINFORCEMENT	9 Periods				
Preparation-lay	rup, curing, properties and applications of glass fibers, carbon fibers, Ke	evlar fibers and				
Boron fibers. P	roperties and applications of whiskers, particle reinforcements. Mechani	ical Behavior of				
composites: Ru	le of mixtures, Inverse rule of mixtures. Isostrain and Isosteresconditions.					
UNIT – III	MANUFACTURING OF METAL MATRIX COMPOSITES	9 Periods				
Casting - Solid	State diffusion technique, Cladding - Hot isostatic pressing- Manufactu	ring of Ceramic				
Matrix Compos	ites: Liquid Metal Infiltration – Liquid phase sintering–Manufacturing of C	arbon – Carbon				
composites: Kn	itting, Braiding, Weaving- Properties and applications.					
UNIT – IV	MANUFACTURING OF POLYMER MATRIX COMPOSITE	9 Periods				
Preparation of	Moulding compounds and prepregs – hand layup method – Autoclave me	thod –Filament				
winding metho	d - Compression moulding - Reaction injection moulding. Properties and a	applications.				
UNIT – V	STRENGTH ANALYSIS OF COMPOSITES	9 Periods				
Laminar Failur	e Criteria-strength ratio, maximum stress criteria, maximum strain crite	eria, interacting				
failure criteria,	hygrothermal failure. Laminate first play failure-insight strength; Lamina	ate strength-ply				
	discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.					

Lecture: 45 Periods

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials , Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz, 2013.
5	https://nptel.ac.in/courses/112104168

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Know the characteristics of composite materials and effect of reinforcement in	K2
	composite materials.	
CO2	Know the various reinforcements used in composite materials.	K2
CO3	Understand and apply the manufacturing processes of metal matrix composites	К3
CO4	Understand and apply the manufacturing processes of polymer matrix	К3
	composites.	
CO5	Analyze the strength of composite materials.	K4

		PO2	PO3	P04	P05
CO1	1	2	1	1	1
CO2	2	2	1	1	2
CO3	2	1	2	1	1
CO4	1	2	2	2	1
CO5	1	2	1	1	1
23MF0E15	1	2	2	1	1
l – Slight, 2 – Moderate, 3 – Sul	ostantial			•	

ASSESSMENT	PATTERN - THE	ORY					
Test / Bloom's	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		A.X	124	Jb.			
CAT1		60	40	2636			100
CAT2		10.83	60	40			100
Individual		60	40				100
Assessment		0.04					
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual			60	40			100
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE		40	40	20			100

23TEOE16	GLOBAL WARMING SCIENCE (Common to all Branches)					
PREREQUISITES CATEGORY L T P				С		
NIL		OE	3	0	0	3

Course Objective	 To make the students learn about the material consequences of clim level change due to increase in the emission of greenhouse gases an science behind mitigation and adaptation proposals. 	reenhouse gases and to examine the		
UNIT – I	INTRODUCTION	9 Periods		
Terminology re	elating to atmospheric particles – Aerosols - Types, characteristics, measu	rements – Particle		
mass spectrom	etry - Anthropogenic-sources, effects on humans.			
UNIT – II	CLIMATE MODELS	9 Periods		
General climate	e modeling- Atmospheric general circulation model - Oceanic general circ	ulation model, sea		
ice model, lan	d model concept, paleo-climate - Weather prediction by numerical pr	ocess. Impacts of		
climate change	- Climate Sensitivity - Forcing and feedback.			
UNIT – III	EARTH CARBON CYCLE AND FORECAST	9 Periods		
Carbon cycle-p	rocess, importance, advantages - Carbon on earth - Global carbon reserve	oirs - Interactions		
between huma	in activities and carbon cycle - Geologic time scales - Fossil fuels and e	nergy - Perturbed		
carbon cycle.	errolat Person			
UNIT – IV	GREENHOUSE GASES	9 Periods		
Blackbody rad	iation - Layer model - Earth's atmospheric composition and Green hous	se gases effects on		
weather and cl	imate - Radioactive equilibrium - Earth's energy balance.			
UNIT – V	GEO ENGINEERING	9 Periods		
Solar mitigatio	n - Strategies - Carbon dioxide removal - Solar radiation management	- Recent observed		
trends in globa	l warming for sea level rise, drought, glacier extent.			
Contact Period	ds:			
Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total: 45 Periods				

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and Its
	Consequences", Princeton University Press, 1st Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5th
	Edition, 2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions for
	Global Warming", Elsevier, 1st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change" ,Routledge, 1st edition, 2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global
	energybalance", Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand the global warming in relation to climate changes throughout the earth.	К2
CO2	Assess the best predictions of current climate models.	K4
CO3	Understand the importance of carbon cycle and its implication on fossil fuels.	K2
CO4	Know about current issues, including impact from society, environment, economy as well as ecology related to greenhouse gases.	K4
CO5	Know the safety measures and precautions regarding global warming.	K5

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05	P06		
CO1	2	1	2	1	1	2		
CO2	1	1	2	1	1	1		
CO3	1	2	1	1	1	2		
CO4	1	1	1	1	1	2		
CO5	2	1	2	1	1	2		
23TEOE16	1	1	2/10 pr 10	~~~)	1	2		
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PA	ATTERN - THEOR	Y	77				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	35	35	10	-	-	100
CAT2	15	25	25	20	15	-	100
Individual				200			
Assessment 1 /		1083	SEESES				
Case Study 1 /	25	20	20	35	-	-	100
Seminar 1 /		00					
Project 1							
Individual							
Assessment 2 /							
Case Study 2 /	20	20	35	15	10	-	100
Seminar 2 /							
Project 2							
ESE	25	20	25	20	10	-	100

23TEOE17

INTRODUCTION TO NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To make the students provide strong, essential, important methods	and foundations of				
Objective	quantum mechanics and apply quantum mechanics on engineering					
UNIT – I	INTRODUCTION	9 Periods				
Particles and V	Naves - Operators in quantum mechanics - The Postulates of quantum	mechanics - The				
Schrodinger equation values and wave packet Solutions - Ehrenfest's Theorem.						
UNIT – II	ELECTRONIC STRUCTURE AND MOTION	9 Periods				
Atoms- The H	ydrogen Atom - Many-Electron Atoms – Pseudopotentials, Nuclear Str	ucture, Molecules,				
Crystals - Tran	slational motion - Penetration through barriers - Particle in a box - Two	terminal quantum				
dot devices - T	wo terminal quantum wire devices.					
UNIT – III	SCATTERING THEORY	9 Periods				
The formulation	n of scattering events - Scattering cross section - Stationary scattering s	tate - Partial wave				
stationary scat	tering events - multi-channel scattering - Solution for Schrodinger equ	ation- Radial and				
wave equation	- Greens' function.					
UNIT – IV	CLASSICAL STATISTICS	9 Periods				
Probabilities a	nd microscopic behaviours - Kinetic theory and transport processes in	gases - Magnetic				
properties of n	naterials - The partition function.					
UNIT – V	QUANTUM STATISTICS	9 Periods				
Statistical mec	Statistical mechanics - Basic Concepts - Statistical models applied to metals and semiconductors - The					
thermal prope	thermal properties of solids- The electrical properties of materials - Black body radiation - Low					
temperatures a	temperatures and degenerate systems.					
Contact Period	Contact Periods:					
Lecture:45 Pe	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

REFERENCES:

2007.

- Vladimi V.Mitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications", Cambridge University Press, 1st Edition, 2007.
 Vinod Kumar Khanna, "Introductory Nanoelectronics: Physical Theory and Device Analysis", Routledge, 1st Edition, 2020.
 George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States Edition,
- 4 Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.
- Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian Edition, 2009.
- Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum Statistical Mechanics", Wiley, 2004.
- 7 A. F. J. Levi, **"Applied Quantum Mechanics"**, 2nd Edition, Cambridge, 2012.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand the postulates of quantum mechanics.	К2
CO2	Know about nano electronic systems and building blocks.	К2
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4
CO4	Learn the concepts involved in kinetic theory of gases.	К2
CO5	Know about statistical models applies to metals and semiconductor.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	P06	
CO1	1	1	1	1	1	1	
CO2	2	2	1	1	1	1	
CO3	2	2	2	1	1	1	
CO4	1	1	1	1	1	1	
CO5	1	1	21. 3	1	1	1	
23TEOE17	1	1	Den to be the	-5.1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT P	ATTERN - THEOR	Y	-7				
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		118		//			
CAT1	30	30	20	20	-	-	100
CAT2	30	30	20	20	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	35	25	20	20	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	30	25	20	25	-	-	100
ESE	20	30	30	20	-	-	100

22TEOE18

GREEN SUPPLY CHAIN MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To make the students learn and focus on the fundamental strategies	tools and					
Objective	techniques required to analyze and design environmentally sustains						
Objective		able supply chain					
	systems.						
UNIT – I	INTRODUCTION	9 Periods					
Intro to SCM	- complexity in SCM, Facility location - Logistics - Aim, activities, imp	ortance, progress,					
current trends	current trends - Integrating logistics with an organization.						
UNIT – II	9 Periods						
Basic concepts	of supply chain management - Supply chain operations - Planning and	sourcing - Making					
and delivering	- Supply chain coordination and use of technology - Developing supply cha	ain systems.					
UNIT – III	UNIT - III PLANNING THE SUPPLY CHAIN 9 Periods						
Types of decis	sions - strategic, tactical, operational - Logistics strategies, implement	ing the strategy -					
Planning reso	urces – types, capacity, schedule, controlling material flow, measuring	ng and improving					
performance.							
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN	9 Periods					
Procurement -	cycle, types of purchase - Framework of e-procurement - Inventory m	anagement – EOQ,					
uncertain dem	and and safety stock, stock control - Material handling – Purpose o	of warehouse and					
ownership, lay	out, packaging - Transport – mode, ownership, vehicle routing and so	cheduling models-					
Travelling sale:	sman problems - Exact and heuristic methods.						
UNIT – V	SUPPLY CHAIN MANAGEMENT STRATEGIES	9 Periods					
Five key confi	guration components - Four criteria of good supply chain strategies	- Next generation					
strategies- Nev	v roles for end-to-end supply chain management - Evolution of supply ch	ain organization –					
International is	International issues in SCM – Regional differences in logistics.						
Contact Perio	ds:						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

- 1 Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply Chain Management", Routledge, 1st Edition, 2019.
- 2 Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle Approach", McGraw-Hill Education, 1st Edition, 2011.

3	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management" , Routledge, 1 st Edition, 2017.				
4	Arunachalam Rajagopal,"Green Supply Chain Management: A Practical Approach", Replica, 2021.				
	442-1				
5	Mehmood Khan, Matloub Hussain and Mian M. Ajmal, "Green Supply Chain Management for				
	Sustainable Business Practice", IGI Global, 1st Edition, 2016.				
6	S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.				
7	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction",				
	Routledge, 1st Edition, 2017.				

COURSE	OUTCOMES:	Bloom's Taxonomy
Upon cor	npletion of the course, the students will be able to:	Mapped
CO1	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and operational decisions.	K5
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	К3
CO4	Analyze inventory management models and dynamics of supply chain.	K4
CO5	Identify issues in international supply chain management and outsources strategies.	К3

COURSE ARTICULA	TION MATRIX			- (E. 1888)		
COs/POs	P01	PO2	P03	P04	P05	P06
CO1	1	1	1	1	1	3
CO2	2	2	1	1	1	1
CO3	2	1	2	1	1	1
CO4	2	2	& 3-1	1	2	2
CO5	1	1	2	10.	1	3
23TEOE18	2	1	TERRET	E)	1	2
1 – Slight, 2 – Moder	ate, 3 – Substa	ntial	100 DO	TO DE US		

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	25	25	30	10	10	-	100		
CAT2	30	40	20	10	-	-	100		
Individual									
Assessment 1 /									
Case Study 1 /	30	20	25	15	10	-	100		
Seminar 1 /									
Project 1									
Individual									
Assessment 2 /									
Case Study 2 /	35	30	25	10	-	-	100		
Seminar 2 /									
Project 2									
ESE	30	30	20	10	10	-	100		

220000010	DISTRIBUTION AUTOMATION SYSTEM
23PSOE19	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objective	 To study about the distributed automation and economic evaluation schemes network 	of power			
UNIT – I	INTRODUCTION	9 Periods			
Introduction to	Distribution Automation (DA) - Control system interfaces- Control and data re	equirements-			
Centralized (vs)	decentralized control- DA system-DA hardware-DAS software.				
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS	9 Periods			
DA capabilities	- Automation system computer facilities- Management processes- Information n	nanagement-			
System reliabili	ty management- System efficiency management- Voltage management- Load manag	ement.			
UNIT – III	COMMUNICATION SYSTEMS	9 Periods			
Communication	requirements - reliability- Cost effectiveness- Data requirements- Two way	y capability-			
Communication	during outages and faults - Ease of operation and maintenance- Conforming to the	architecture			
of flow. Distrib	oution line carrier- Ripple control-Zero crossing technique- Telephone, cableT	V, radio, AM			
broadcast, FM	SCA,VHF radio, microwave satellite, fiber optics-Hybrid communication systems	used in field			
tests.	(Control of the Control of the Contr				
UNIT – IV	ECONOMIC EVALUATION METHODS	9 Periods			
	nd evaluation of alternate plans- select study area – Select study period- Project l	load growth-			
Develop alterna	tives- Calculate operating and maintenance costs-Evaluate alternatives.				
UNIT – V	ECONOMIC COMPARISON	9 Periods			
Economic com	parison of alternate plans-Classification of expenses - capital expenditures-Co	mparison of			
revenue requir	ements of alternative plans-Book life and continuing plant analysis- Year by y	ear revenue			
requirement analysis, Short term analysis- End of study adjustment-Break even analysis, sensitivity analysis -					
Computational	aids.				
Contact Period	s:				
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

- 1 M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications, Ltd., 2010.
- 2 Maurizio Di Paolo Emilio, **"Data Acquisition Systems: From Fundamentals to Applied Design"**, Springer Science & Business Media, 21-Mar-2013
- IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society. Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
- 4 | Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COURS	Bloom's Taxonomy	
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed automation.	К3
CO4	Study the economic evaluation method	K4
CO5	Understand the comparison of alternate plans	K5

COURSE ARTICULATION MATRIX						
COs/Pos	P01	P02	P03	P04		
CO1	2	-	1	3		
CO2	3	-	3	2		
CO3	3	-	3	2		
CO4	3	-	3	1		
CO5	2	-	1	2		
23PS0E19	3	mma .	3	2		
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT F	PATTERN - THE	ORY		10			
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	30%	20%	10%	20%	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual Assessment1/ Case study1/ Seminar 1/Project1	20%	10%	30%	20%	20%	-	100%
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20%	30%	10%	20%	20%	-	100%
ESE	30%	20%	20%	20%	10%	-	100%

23PS0E20	ELECTRICITY TRADING AND ELECTRICITY ACTS
23P3UE2U	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective	 To acquire expertise on Electric supply and demand of Indian Grid, gain expo energy trading in the Indian market and infer the electricity acts and regulate authorities. 	
UNIT – I	ENERGY DEMAND	9 Periods
Basic concepts	in Economics - Descriptive Analysis of Energy Demand - Decomposition Analysis an	d Parametric
Approach - Dei	mand Side Management - Load Management - Demand Side Management - Energ	y Efficiency -
Rebound Effect		
UNIT – II	ENERGY SUPPLY	9 Periods
Supply Behavio	or of a Producer - Energy Investment - Economics of Non-renewable Resources - I	Economics of
Renewable En	ergy Supply Setting the context - Economics of Renewable Energy Supply - E	Economics of
Electricity Supp	ply	
UNIT – III	ENERGY MARKET	9 Periods
	ition as a Market Form - Why is the Energy Market not Perfectly Competitive? - M	arket Failure
and Monopoly -	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC Era II - Oil Market: OPEC	1
UNIT – IV	LAW ON ELECTRICITY	9 Periods
	the Electricity Law; Constitutional Design - Evolution of Laws on Electricity Salier	it Features of
	2003 - Evolution of Laws on Electricity - Salient Features of the Electricity Act 2003	1
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRICITY ACT	9 Periods
	nmissions - Appellate Tribunal - Other Institutions under the Act - Electricity (Ame	
•	Critical Comment - Renewable Energy - Role of Civil Society; Comments on Dra	ft Renewable
Energy Act, 201		
Contact Period	AT MARKET	
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

- Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance". Springer.London, UK
 Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of Energy",
 - Vol.1, Edward Elgar, Cheltenham, UK.
- 3 Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
- 4 Mohammad Naseem, **"Energy Laws in India"**, Kluwer Law International, 3rd Edn, The Netherlands, 2017.
- 5 Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
- 6 Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and Practices", Cambridge University Press, 2014.

Linon co	Bloom's Taxonomy Mapped			
_	ompletion of the course, the students will be able to:	• •		
CO1	Describe electric supply and demand of power grid	K1		
CO2	Summarize various energy trading strategies	K2		
CO3	O3 Relate the electricity acts practically			
CO4	CO4 Cite the electricity regulatory authorities			
CO5	Analyze/check the existing power grid for its technical and economical	K4		
	sustainability			

P01 3 3	PO2 - -	P03 3 1	P04 3 1				
3	-	3 1	3 1				
	-	1	1				
2							
3	-	2	2				
3	-	1	2				
3	-	3	3				
3		2	2				
1 – Slight, 2 – Moderate, 3 – Substantial							
		<u> </u>	3 - 3				

ASSESSMENT P	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	30%	20%	30%	-	-	100%		
CAT2	20%	20%	20%	20%	20%	-	100%		
Individual Assessment1/ Case study1/ Seminar 1/Project1	20%	30%	30%	20%	-	-	100%		
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20%	30%	-	20%	-	40%	100%		
ESE	30%	30%	-	20%	20%	-	100%		

22DCOE24	MODERN AUTOMOTIVE SYSTEMS
23PSOE21	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To expose the students with theory and applications of Automotive Electrical	and					
Objective	Electronic Systems.						
•							
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIVE ELECTRONICS	9 Periods					
Introduction to	Introduction to modern automotive systems and need for electronics in automobiles- Role of electronics and						
microcontroller	rs- Sensors and actuators- Possibilities and challenges in automotive industr	ry- Enabling					
technologies an	d industry trends.						
UNIT – II	SENSORS AND ACTUATORS	9 Periods					
Introduction- b	asic sensor arrangement- Types of sensors- Oxygen sensor, engine crankshaft ang	ular position					
	e cooling water temperature sensor- Engine oil pressure sensor- Fuel metering- v						
	conation sensor- Pressure Sensor- Linear and angle sensors- Flow sensor- Temp						
	rs- Gas sensor- Speed and Acceleration sensors- Knock sensor- Torque sensor- Yaw	rate sensor-					
Tyre Pressure s	Tyre Pressure sensor- Actuators - Stepper motors - Relays.						
UNIT – III	POWERTRAIN CONTROL SYSTEMS IN AUTOMOBILE	9 Periods					
	smission Control - Digital engine control system: Open loop and close loop cont						
	and warm up control- Acceleration- Detonation and idle speed control - Exhau	ust emission					
	ring- Onboard diagnostics- Future automotive powertrain systems.						
UNIT – IV	SAFETY, COMFORT AND CONVENIENCE SYSTEMS	9 Periods					
	Anti-lock Braking Control- Traction and Stability control- Airbag control system	 Suspension 					
control- Steering control- HVAC Control.							
UNIT – V	ELECTRONIC CONTROL UNITS (ECU)	9 Periods					
	Introduction to Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotives - Design						
complexities of ECUs- V-Model for Automotive ECU's- Architecture of an advanced microcontroller (XC166							
Family, 32-bit Tricore) used in the design of automobile ECUs- On chip peripherals, protocol interfaces, analog							
and digital interfaces.							
Contact Periods:							

Lecture: 45 Periods

1 Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John Wiley and Sons, 2001.

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 2 M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press, series on Power Engineering, 2000.
- Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
- 4 G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

	E OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
_		• •
CO1	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering	K4
	applications	
CO4	Develop modern automotive control system for electrical and electronics systems	К6
CO5	Understand the function of sensors and actuators	K2

COs/Pos	P01	PO2	P03	P04			
CO1	3	-	1	3			
CO2	3	-	3	2			
CO3	3	-	3	2			
CO4	2	-	3	1			
C05	2	-	1	2			
23PS0E21	3	The same	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT P	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	30%	20%	30%	-	-	100%		
CAT2	20%	20%	20%	20%	20%	-	100%		
Individual Assessment1/ Case study1/ Seminar 1/Project1	20%	30%	(5) (5) (5) (5) (6) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	20%	-	30%	100%		
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20%	30%	-	20%	-	40%	100%		
ESE	30%	30%	20%	20%	-	-	100%		

22000022	VIRTUAL INSTRUMENTATION
23PE0E22	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To comprehend the Virtual instrumentation programming concepts towards				
Objective	measurements and control and to instill knowledge on DAQ, signal conditioning and				
	its associated software tools				
UNIT – I	INTRODUCTION	7 Periods			

Introduction - advantages - Block diagram and architecture of a virtual instrument - Conventional Instruments versus Traditional Instruments - Data-flow techniques, graphical programming in data flow, comparison with conventional programming.

UNIT - II GRAPHICAL PROGRAMMING AND LabVIEW

9 Periods

Concepts of graphical programming - LabVIEW software - Concept of VIs and sub VI - Display types - Digital - Analog - Chart and Graphs. Loops - structures - Arrays - Clusters- Local and global variables - String - Timers and dialog controls.

UNIT - III MANAGING FILES & DESIGN PATTERNS

11 Periods

High-level and low-level file I/O functions available in LabVIEW – Implementing File I/O functions to read and write data to files – Binary Files – TDMS – sequential programming – State machine programming – Communication between parallel loops –Race conditions – Notifiers & Queues – Producer Consumer design patterns

UNIT – IV PC BASED DATA ACQUISITION

9 Periods

Introduction to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, Resolution, - analog inputs and outputs - Single-ended and differential inputs - Digital I/O, counters and timers, DMA, Data acquisition interface requirements - Issues involved in selection of Data acquisition cards - Use of timer-counter and analog outputs on the universal DAQ card.

UNIT - V DATA ACQUISITION AND SIGNAL CONDITIONING

9 Periods

Components of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ hardware – Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation – Signal conditioning systems – Synchronizing measurements in single & multiple devices – Power quality analysis using Electrical Power Measurement tool kit.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd Edition), Prentice Hall, 2006.
- 2 | Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
- 3 Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional Publishing, 2019
- 4 Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
- 5 Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control", Newness, 2000

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	Mapped	
CO1	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	К6
CO5	Familiarize and experiment with DAQ and Signal Conditioning	К3

Course Articulation Matrix						
COs/POs	P01	P02	P03	P04	P05	
CO1	3	-mmmn	3	2	1	
CO2	3		3	2	1	
CO3	3	Children in	2	2	2	
CO4	3	1	3	3	1	
C05	3	1	3	3	2	
23PE0E22	3	1	3	2	1	
1 – Slight, 2 – Moderate, 3 –	Substantial	(23)	[\ \	•		

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		400	200-60	316			
CAT1	30	40	15	15	-	-	100
CAT2	15	10	25	30	20	-	100
Individual	10	10	20	30	20	10	100
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	25	40	20	15	-	-	100
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30	25	15	20	5	5	100

2200000	ENERGY MANAGEMENT SYSTEMS
23PEOE23	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

	NIL	OE	3	0 0	3	
Course	To Comprehend energy management scheme	es, perform energ	y auc	lit and	execut	
Objective economic analysis and load management in electrical systems.						
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND MANA	GEMENT		9	Period	
Energy Conser	vation Act 2001 and policies - Eight National Missio	ns - Basics of E	nergy	and i	ts form	
(Thermal and	Electrical) - Energy Management and Audit - Energy	Managers and A	udito	rs - Ty	pes and	
Methodology A	Audit Report - Material and energy balance diagrams -	Energy Monitori	ng an	d Targ	eting.	
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENERAT	ION		9	Period	
Boiler Systems	- Types - Performance Evaluation of boilers - Energ	y Conservation C)ppor	tunity	- Stear	
Distribution - E	Efficient Steam Utilisation - Furnaces:types and classifi	cation - Perform	ance	evalua	tion of	
typical fuel fire	ed furnace. Cogeneration: Need - Principle - Technica	l options - class	ificati	on - T	'echnica	
parameters and	d factors influencing cogeneration choice - Prime Move	rs - Trigeneratior	1.			
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS			9	Period	
	Electricity Billing – Electricity load management - Maximum Demand Control - Power Factor improvement					
	ts - pf controllers - capacitors - Energy efficient tr					
	l other factors influencing energy efficiency - Star					
distribution tra	insformers and IM - Analysis of distribution losses - de	mand side manag	geme	nt - ha	ırmonic	
- filters - VFD a	and its selection.					
UNIT – IV	STUDY OF ELECTRICAL UTILITIES				Period	
	pes - Performance - Air system components - Efficient o				-	
=	apacity assessment - HVAC: psychrometrics and air					
	ystem - Compressor types and applications - Perfo					
plants - Lighting Systems: Energy efficient lighting controls - design of interior lighting - Case study.						
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMENT				Period	
•	Performing Financial analysis: Fixed and variable costs - Payback period - ROI - methods - factors					
affecting analysis. Energy Performance Assessment: Heat exchangers - Fans and Blowers - Pumps. Energy						
	n buildings and ECBC.					
Contact Period	Contact Periods:					

Lecture: 45 Periods

L	1	Murphy W.R. and G.Mckay Butter worth , " Energy Management ", Heinemann Publications, 2007
	2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
		Publishers, 2012.

Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second edition, Technical Publications, 2019.

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 4 S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali Prakashan Publications, 2021.
- 5 www.em-ea.org/gbook1.asp

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Analyze the feature of energy audit methodology and documentation of report.	К3
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
CO4	Familiarize with electrical utilities.	K4
CO5	Perform assessment of different systems.	K5

Course Articulation Matr	ix				
COs/POs	P01	P02	P03	P04	P05
C01	3	2	2	1	1
CO2	3	2	2	1	1
CO3	3	2 01 100	2	1	1
CO4	3	2	2	1	1
CO5	3	2	2	1	1
23PE0E23	3	2	2	1	1
1 – Slight, 2 – Moderate, 3 -	- Substantial			•	•

ASSESSMENT P	ATTERN - THEOR	Y / 1 🖁	11				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/Project1	-	30	30	20	20	-	100
Individual Assessment2/ Case study2/ Seminar 2 /Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23PE0E24	ADVANCED ENERGY STORAGE TECHNOLOGY
ZSPEUEZ4	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To explore the fundamentals, technologies and applications of energy s	To explore the fundamentals, technologies and applications of energy storage				
Objective						
UNIT - I	ENERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION AND	9 Periods				
	CHANGES					

Storage Needs- Variations in Energy Demand- Variations in Energy Supply- Interruptions in Energy Supply- Transmission Congestion - Demand for Portable Energy-Demand and scale requirements - Environmental and sustainability issues-conventional energy storage methods: battery-types.

UNIT - II TECHNICAL METHODS OF STORAGE

9 Periods

Introduction: Energy and Energy Transformations, Potential energy (pumped hydro, compressed air, springs)- Kinetic energy (mechanical flywheels)- Thermal energy without phase change passive (adobe) and active (water)-Thermal energy with phase change (ice, molten salts, steam)- Chemical energy (hydrogen, methane, gasoline, coal, oil)- Electrochemical energy (batteries, fuel cells)- Electrostatic energy (capacitors), Electromagnetic energy (superconducting magnets)- Different Types of Energy Storage Systems.

UNIT – III PERFORMANCE FACTORS OF ENERGY STORAGE SYSTEMS

9 Periods

Energy capture rate and efficiency- Discharge rate and efficiency- Dispatch ability and load flowing characteristics, scale flexibility, durability – Cycle lifetime, mass and safety – Risks of fire, explosion, toxicity- Ease of materials, recycling and recovery- Environmental consideration and recycling, Merits and demerits of different types of Storage.

UNIT – IV APPLICATION CONSIDERATION

9 Periods

Comparing Storage Technologies- Technology options- Performance factors and metrics- Efficiency of Energy Systems- Energy Recovery - Battery Storage System: Introduction with focus on Lead Acid and Lithium- Chemistry of Battery Operation, Power storage calculations, Reversible reactions, Charging patterns, Battery Management systems, System Performance, Areas of Application of Energy Storage: Waste heat recovery, Solar energy storage, Green house heating, Power plant applications, Drying and heating for process industries, energy storage in automotive applications in hybrid and electric vehicles.

UNIT - V HYDROGEN FUEL CELLS AND FLOW BATTERIES

9 Periods

Hydrogen Economy and Generation Techniques, Storage of Hydrogen, Energy generation - Super capacitors: properties, power calculations – Operation and Design methods - Hybrid Energy Storage: Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor "Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation) Bacitor + Fuel Cell or Flow Battery operation-Applications: Storage for Hybrid Electric Vehicles, Regenerative Power, capturing methods.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.
- 2 Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy Storage and Conversion", John Wiley and Sons, 2012.
- 3 Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.
- 4 Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical Society, New Jersy, 2010.

COUR	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
CO1	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
CO4	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2

COURSE ARTICULATIO	N MATRIX	Bang Danger By US	CARREST			
COs/POs	P01	PO2	P03	P04	P05	
C01	3	1	3	3	3	
CO2	3	1	3	3	3	
CO3	3	1	3	3	3	
CO4	3	(1)	3	3	3	
CO5	3	8 1	3	3	3	
23PE0E24	3	1	3	3	3	
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT	PATTERN - THE	ORY	200	17.7			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23AE0E25	DESIGN OF DIGITAL SYSTEMS
Z3AEUEZ5	(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	OE	3	0	0	3

Course Objective

• To gain knowledge in the design and VHDL programming of synchronous and asynchronous sequential circuits, PLD's and the basic concepts of testing in VLSI circuits

UNIT-I SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9 Periods

Analysis of Clocked Synchronous Sequential Circuits - Modeling, state table reduction, state assignment, Design of Synchronous Sequential circuits, Design of iterative circuits- ASM chart -ASM realization.

UNIT-II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9 Periods

Analysis of Asynchronous Sequential Circuits - Races in ASC - Primitive Flow Table - Flow Table Reduction Techniques, State Assignment Problem and the Transition Table - Design of ASC - Static and Dynamic Hazards - Essential Hazards - Data Synchronizers.

UNIT-III SYSTEM DESIGN USING PLDS

9 Periods

Basic concepts – Programming Technologies - Programmable Logic Element (PLE) – Programmable Array Logic (PLA)-Programmable Array Logic (PAL) –Design of combinational and sequential circuits using PLDs–Complex PLDs (CPLDs).

UNIT- IV INTRODUCTION TO VHDL

9 Periods

Design flow -Software tools – VHDL: Data Objects-Data types – Operators –Entities and Architectures – Components and Configurations – Signal Assignment – Concurrent and Sequential statements ––Behavioral, Dataflow and Structural modeling– Transport and Inertial delays –Delta delays-Attributes - Generics–Packages and Libraries.

UNIT-V LOGIC CIRCUIT TESTING AND TESTABLE DESIGN

9 Periods

Digital logic circuit testing - Fault models - Combinational logic circuit testing - Sequential logic circuit testing-Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study: Traffic Light Controller.

Contact Periods:

Lecture:45Periods Tutorial:0Periods Practical: 0Periods Total: 45Periods

1	Donald G.Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni,"Circuit Design withVHDL",PHILearning,2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", Academic Press, 1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage 2nd Edition 2012.
6	NripendraN.Biswas, "Logic Design Theory" PrenticeHallofIndia, 2001.

COUR	SEOUTCOMES:	Bloom's Taxonomy
Upon	completion of the course ,students will be able to/have:	Mapped
CO1	To design synchronous sequential circuits based on specifications.	К3
CO2	To design asynchronous sequential circuits based on specifications	К3
CO3	Ability to illustrate digital design implementation using PLDs.	K2
CO4	To develop algorithm and VHDL code for design of digital circuits.	К3
CO5	Understand the different testing methods for combinational and sequential	K2
	circuits.	

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
C01	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2******	2	-	1
CO5	3	- 76	1.0 a 2 6 to the W	O PHONE OF	-	1
23AE0E25	3	- 0	2	200	-	1
– Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PAT	TTERN - THEORY	11.8 3		//			
Test / Bloom's	Remembering	Understandin	Applying	Analyzin	Evaluating	Creating	Total
Category*	(K1) %	g (K2) %	(K3) %	g (K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	Va.			100%
CAT2	40%	40%	20%	2000			100%
Individual		50%	50%				100%
Assessment 1		200	200 -10 BK	30			
/Case Study 1/		10.2	10 40 CS				
Seminar 1 /							
Project1							
Individual		50%	50%				100%
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20%	45%	35%				100%

TY

BASICS OF NANO ELECTRONICS

23AE0E26

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective

 The students will be able to acquire knowledge about nano device fabrication technology, nano structures, nano technology for memory devices and applications of nano electronics in data transmission.

UNIT - I TECHNOLOGY AND ANALYSIS

9 Periods

Fundamentals: Dielectric, Ferroelectric and Optical properties - Film Deposition Methods – Lithography Material removing techniques - Etching and Chemical Mechanical Polishing - Scanning Probe Techniques.

UNIT - II CARBON NANO STRUCTURES

9 Periods

Principles and concepts of Carbon Nano tubes - Fabrication - Electrical, Mechanical and Vibration Properties - Applications of Carbon Nano tubes.

UNIT - III LOGIC DEVICES

9 Periods

Silicon MOSFET's: Novel materials and alternative concepts - Single electron devices for logic applications - Super conductor digital electronics - Carbon Nano tubes for data processing.

UNIT - IV MEMORY DEVICES AND MASS STORAGE DEVICES

9 Periods

Flash memories - Capacitor based Random Access Memories - Magnetic Random Access Memories - Information storage based on phase change materials - Resistive Random Access Memories - Holographic Data storage.

UNIT - V DATA TRANSMISSION AND INTERFACING DISPLAYS

9 Periods

Photonic Networks - RF and Microwave Communication System - Liquid Crystal Displays - Organic Light emitting diodes.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronic materials and
	novel devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics
	Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer,
	2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher,
	California", 2003.

COURS	SE OUTCOMES:	oom's Taxonomy
Upon c	ompletion of the course, students will be able to/have:	Mapped
CO1	Explain principles of nano device fabrication technology.	K2
CO2	Describe the concept of Nano tube and Nano structure.	K2
CO3	Explain the function and application of various nano devices	К3
CO4	Reproduce the concepts of advanced memory technologies.	K2
CO5	Emphasize the need for data transmission and display systems.	K2

COURSE ARTICU	LATION N	IATRIX				
COs/POs	P01	P02	P03	P04	P05	P06
CO1	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3		2	10 - Q	-	1
23AE0E26	3	- 1(8	2	THE BUTTON	-	1
– Slight, 2 – Moder	ate, 3 – Su	ıbstantial	75E	Series -		•
				2000)	

ASSESSMENT PA	ATTERN - THEORY	Y	7				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creati ng (K6) %	Total %
CAT1	50%	25%	25%	V.G.			100%
CAT2	50%	25%	25%	250			100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50%	25%	25%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50%	25%	25%				100%
ESE	50%	25%	25%				100%

	ADVANCED PROCESSOR
23AE0E27	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective

• The students will be able to acquire knowledge about the high performance RISC, CISC and special purpose processors.

UNIT - I MICROPROCESSOR ARCHITECTURE

9 Periods

Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile – Cache – Virtual memory and paging – Segmentation – Pipelining – The instruction pipeline – pipeline hazards – Instruction level parallelism – reduced instruction set – Computer principles – RISC versus CISC – RISC properties – RISC evaluation.

UNIT - II HIGH PERFORMANCE CISC ARCHITECTURE -PENTIUM

9 Periods

The software model – functional description – CPU pin descriptions – Addressing modes – Processor flags – Instruction set – Bus operations – Super scalar architecture – Pipe lining – Branch prediction – Theinstruction and caches – Floating point unit – Programming the Pentium processor.

UNIT - III HIGH PERFORMANCE CISC ARCHITECTURE - PENTIUM INTERFACE

9 Periods

Protected mode operation – Segmentation – paging – Protection – multitasking – Exception and interrupts - Input /Output – Virtual 8086 model – Interrupt processing.

UNIT - IV HIGH PERFORMANCE RISC ARCHITECTURE: ARM

9 Periods

ARM architecture – ARM assembly language program – ARM organization and implementation – ARM instruction set - Thumb instruction set.

UNIT - V SPECIAL PURPOSE PROCESSORS

9 Periods

Altera Cyclone Processor – Audio codec – Video codec design – Platforms – General purpose processor – Digital signal processor – Embedded processor – Media Processor – Video signal Processor – Custom Hardware – Co-Processor.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, " The Pentium Microprocessor ", Pearson Education, 1997.
3	Steve Furber, " ARM System -On -Chip architecture ", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COUR	COURSE OUTCOMES:		
Upon	Upon completion of the course, students will be able to		
		Mapped	
CO1	Describe the fundamentals of various processor architecture.	K2	
CO2	Interpret and understand the high performance features in CISC	K2	
	architecture.		
CO3	Describe the concepts of Exception and interrupt processing.	K2	
CO4	Develop programming skill for ARM processor.	КЗ	
CO5	Explain various special purpose processor	K2	

COURSE ARTICULATION MATRIX					
P01	P02	P03	P04	P05	P06
3	-	2	-	-	1
3	-	2	-	-	1
3	-	2	-	-	1
3		2	-	-	1
3	A September 1	2	n - 0	-	1
3		2	-	-	1
erate, 3 – Substa	ntial				•
	P01 3 3 3 3 3 3 3 3 3	P01 P02 3 - 3 - 3 - 3 - 3 - 3 -	P01 P02 P03 3 - 2 3 - 2 3 - 2 3 - 2 3 - 2 3 - 2 3 - 2 3 - 2	PO1 PO2 PO3 PO4 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 - 3 - 2 -	PO1 PO2 PO3 PO4 PO5 3 - 2 - - 3 - 2 - - 3 - 2 - - 3 - 2 - - 3 - 2 - - 3 - 2 - - 3 - 2 - -

ASSESSMENT PA	TTERN - THEOI	RY	X	1			
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Total %
CAT1	40%	40%	20%	V3			100%
CAT2	40%	40%	20%	263 8			100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	30%	40%	30%				100%

23VL0E28	HDL PROGRAMMING LANGUAGES
23VLUE20	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course • To code and simulate any digital function in Verilog HDL and	understand the						
Objective difference between synthesizable and non-synthesizable codes							
UNIT - I VERILOG INTRODUCTION AND MODELING	9 Periods						
Introduction to Verilog HDL, Language Constructs and Conventions, Gate Level Mode	eling, Modeling						
at Dataflow Level, Behavioral Modeling, Switch Level Modeling, System Tasks,	Functions and						
Compiler Directives.							
UNIT - II SEQUENTIAL MODELING AND TESTING	9 Periods						
Sequential Models - Feedback Model, Capacitive Model, Implicit Model, Basic Memor	-						
Functional Register, Static Machine Coding, Sequential Synthesis. Test Bench -							
Circuits Testing, Sequential Circuit Testing, Test Bench Techniques, Design Verifica	ition, Assertion						
Verification.							
UNIT - III SYSTEM VERILOG	9 Periods						
Introduction, System Verilog declaration spaces, System Verilog Literal Values and	u Built-in Data						
Types, System Verilog User-Defined and Enumerated Types, system Verilog Arrays,							
Unions, system verilog Procedural Blocks, Tasks and Functions.							
UNIT - IV SYSTEM VERILOG MODELING	9 Periods						
System Verilog Procedural Statements, Modeling Finite State Machines with Sys	stem Verilog,						
System Verilog Design Hierarchy.	Ç.						
UNIT - V INTERFACES AND DESIGN MODEL	9 Periods						
System Verilog Interfaces, A Complete Design Modeled with System Verilog, Behavioral and							
Transaction Level Modeling.							
Contact Periods:	-						
Lecture: 45 Periods Tutorial:0 Periods Practical:0 Periods Total: 45 Perio	ods						

IXL	TERENCES.
1	T.R.Padmanabhan, B Bala Tripura Sundari, " Design through Verilog HDL" ,Wiley 2009.
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog For
	Design Second Edition A Guide to Using System Verilog for Hardware Design and
	Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, " Verilog Digital System Design" ,TMH,2ndEdition,2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of
	Projects on FPGAs and ASICs Using Verilog" , Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language
	Features", Springer 2006.

6 Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using System Verilog for Hardware Design and Modeling" 1st Edition, 2003

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Explain the verilog coding and simulate any digital function using	K2
	Verilog HDL	
CO2	Develop sequential modeling based Verilog HDL code and develop	К3
	the test bench for the modeling	
CO3	Explain the system verilog modeling	K2
CO4	Differentiate the synthesizable and non-synthesizable code	К3
CO5	Apply good coding techniques on system verilog interfaces and	К3
	complete design model	

COs/POs	P01	PO2	P03	PO4	P05	P06
CO1	3	3 Julian		2		2
CO2	3	3	65.4.3	2		2
CO3	3	3	ZZISON:	2		2
CO4	3	\3	Sec.	2		2
CO5	3	3	1 1	2		2
23VLOE28	3	3	100	2		2

ASSESSMEN'	Γ PATTERN – THE	ORY					
Test /	Remembering	Understandin	Applyin	Analyzin	Evaluating	Creating	Total
Bloom's	(K1) %	g (K2) %	g (K3) %	g (K4) %	(K5) %	(K6) %	%
Category*							
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

227/1 0520	CMOS VLSI DESIGN
23VLOE29	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To gain knowledge on CMOS Circuits with its characterization a	and to design						
Objective	CMOS logic and sub-system with low power							
UNIT – I	INTRODUCTION TO MOS CIRCUITS	9 Periods						
MOS Transisto	r Theory -Introduction MOS Device Design Equations -MOS Transistor as	s a Switches -						
Pass Transisto	Pass Transistor - CMOS Transmission Gate -Complementary CMOS Inverter - Static Load MOS							
Inverters - Inve	erters with NMOS loads - Differential Inverter - Tri State Inverter - BiCMC)S Inverter.						
UNIT – II	CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION	9 Periods						
Delay Estimat	ion, Logical Effort and Transistor Sizing, Power Dissipation, Sizin	g Routing						
Conductors, Ch	arge Sharing, Design Margin and Reliability.							
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN 9 Periods							
CMOS Logic G	ate Design, Physical Design of CMOS Gate, Designing with Transmiss	sion Gates,						
CMOS Logic Str	ructures, Clocking Strategies, I/O Structures.							
UNIT – IV	CMOS SUBSYSTEM DESIGN	9 Periods						
DataPath Oper	ations-Addition/Subtraction, Parity Generators, Comparators, Zero/One	Detectors,						
Binary Counte	ers, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Cor	ntrol Logic						
Implementatio	n.							
UNIT – V	LOW POWER CMOS VLSI DESIGN	9 Periods						
	LOW POWER CMOS VLSI DESIGN o Low Power Design, Power Dissipation in FET Devices, Power Diss							
Introduction t		sipation in						
Introduction t	o Low Power Design, Power Dissipation in FET Devices, Power Diss	sipation in S Circuits,						
Introduction t CMOS, Low-Po Architectural L	o Low Power Design, Power Dissipation in FET Devices, Power Diss ower Design through Voltage Scaling – VTCMOS Circuits, MTCMO	sipation in S Circuits,						
Introduction t CMOS, Low-Po Architectural L CMOS Gate and	o Low Power Design, Power Dissipation in FET Devices, Power Dissipation Design through Voltage Scaling – VTCMOS Circuits, MTCMO Level Approach – Pipelining and Parallel Processing Approaches, Low Pol Adder Design.	sipation in S Circuits,						
Introduction t CMOS, Low-Po Architectural L	o Low Power Design, Power Dissipation in FET Devices, Power Dissipation Design through Voltage Scaling – VTCMOS Circuits, MTCMO Level Approach – Pipelining and Parallel Processing Approaches, Low Pol Adder Design. ds:	sipation in S Circuits, wer Basics						

111	I LILLITOLDI
1	Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata Mc-
	Graw Hill, 2011.
2	N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley,1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems
	Perspective", Pearson Education 2013.
4	Kiat-Seng Yeo,Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill
	Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Ian M. Rabaev. "Diaital Integrated Circuits: A Design Perspective". Pearson Education, 2003.

COUF	COURSE OUTCOMES:	
		Taxonomy
Upon	Upon completion of the course, the students will be able to:	
CO1	Explain the MOS circuits and Transmission gates	K2
CO2	Illustrate the CMOS Circuits with its characterization	K2
CO3	Design CMOS logic circuits	К3
CO4	Design CMOS sub-system	КЗ
CO5	Discuss low power CMOS VLSI Design	K2

COURSE ARTICU	LATION MATE	RIX				
COs/POs	P01	P02	P03	P04	P05	P06
CO1	2	1	-	2	-	3
CO2	2	1	-	2	-	3
CO3	2	1	-	2	-	3
CO4	3	1	-mann	2	-	3
CO5	3	1 auden		2	-	3
23VLOE29	3	1	- German	2	-	3
1 – Slight, 2 – Mod	lerate, 3 – Sub	stantial		37		•
				57		
		11.70	7	1		

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creatin g (K6)	Total %
Category*	8 () //		(120)/0		g (110) / 0	%	,,,
CAT1	40%	40%	20%		-	-	100%
CAT2	40%	40%	20%	icua /-	-	-	100%
Individual	-	50%	50%	3 / -	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2			_				
ESE	40%	40%	20%	-	-	-	100%

23VLOE30	HIGH LEVEL SYNTHESIS (Common to all Branches)
----------	--

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objective	 To provide students with foundations in High level synthes and CAD Tools 	is, verification				
UNIT – I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS	9 Periods				
Overview HLS	Overview HLS flow, Scheduling Techniques, Resource sharing and Binding Techniques, Data-path					
and Controller	and Controller Generation Techniques.					
UNIT – II						
Introduction t	o HDL, HDL to DFG, operation scheduling: constrained and unconstrain	ed scheduling.				

Introduction to HDL, HDL to DFG, operation scheduling: constrained and unconstrained scheduling, ASAP, ALAP, List scheduling, Force directed Scheduling, operator binding, Static Timing Analysis: Delay models, setup time, hold time, cycle time, critical paths, Topological mvs. Logical timing analysis, False paths, Arrival time (AT), Required arrival Time (RAT), Slacks.

UNIT – III HIGH-LEVEL SYNTHESIS VERIFICATION 9 Periods Simulation based verification - Formal Verification of digital systems- BDD based approaches, functional equivalence, finite state automata, ω -automata, FSM verification.

UNIT - IV | CAD TOOLS FOR SYNTHESIS | 9 Periods CAD tools for synthesis, optimization, simulation and verification of design at various levels as well as for special realizations and structures such as microprogrammes, PLAs, gate arrays etc. Technology mapping for FPGAs. Low power issues in high level synthesis and logic synthesis.

UNIT - VADVANCED TOPICS9 PeriodsRelative Scheduling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling modes, free-floating scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for FPGA.9 Periods

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit", Springer, 2008.
- 2 | Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
- 3 D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
- 4 Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.
- 5 Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
- 6 David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and Synchronization Constraints", Kluwer Academic Publishers, 1992.
- 7 K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999, Wilev.
- 8 Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System Design and Analysis", Springer, 2006.

	completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the fundamentals of High level synthesis	K2
CO2	Synthesis the HDL for operation scheduling	K2
CO3	Simulate and verify any digital systems	К2
CO4	Apply CAD tools for synthesis	К2
CO5	Have knowledge on various scheduling modes	K2

COURSE ARTICULATION MATRIX:

COs/POs	P01	P02	P03	P04	P05	P06	
CO1	2	2	-	2	2	-	
CO2	2	2	-	2	2	-	
CO3	2	2	-	2	2	-	
CO4	2	2	-	2	2	-	
CO5	2	2	-	2	2	-	
23VL0E30	2	2		2	2	-	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT	PATTERN - THE	ORY	Series To				
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	50%	50%	YES	\ -	-	-	100%
CAT2	50%	50%		-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50%	50%		-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50%	50%	-	-	-	100%
ESE	50%	50%		_	_	_	100%

ARTIFICIAL INTELLIGENCE

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	Identify and apply AI techniques in the design of systems that	t act intelligently making
Objectives	automatic decisions and learn from experience.	t act intelligently, making
		0.0.1.1
UNIT – I	SEARCH STRATEGIES	9 Periods
Uninformed	Strategies – BFS, DFS, Djisktra, Informed Strategies – A* search	, Heuristic functions, Hill
Climbing, Adv	rersarial Search – Min-max algorithm, Alpha-beta Pruning	
UNIT - II	PLANNING AND REASONING	9 Periods
State Space se	earch, Planning Graphs, Partial order planning, Uncertain Reasoning	- Probabilistic Reasoning,
Bayesian Netv	works, Dempster Shafer Theory, Fuzzy logic	
UNIT - III	PROBABILISTIC REASONING	9 Periods
Probabilistic	Reasoning over Time - Hidden Markov Models, Kalman Filters, Dy	namic Bayesian Networks.
Knowledge Ro	epresentations – Ontological Engineering, Semantic Networks and de	escription logics.
UNIT - IV	DECISION MAKING	9 Periods
Utility Theory	y, Utility Functions, Decision Networks – Sequential Decision Proble	ems – Partially Observable
MDPs – Game	Theory.	•
UNIT - V	REINFORCEMENT LEARNING	9 Periods
Reinforcemer	t Learning - Passive and active reinforcement learning - Gene	rations in Reinforcement
	licy Search – Deep Reinforcement Learning.	
Contact Perio		
Lecture: 3 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	riods
	1 8 2 1	
REFERENCES		
	AL MILES	

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013								
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006								
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice								
	Hall,2010.								
4	Elaine Rich,Kevin Knight,Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill,								
	2009.								

	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	К3
CO3	Examine data using statistical codes and solve complex AI problems	К6
CO4	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	К6

COURSE ARTICUI	LATION N	IATRIX							
COs/POs	PO 1	P02	PO 3	PO 4	P05	P06			
CO1	3		2		3	3			
CO2	3		2		3	3			
CO3	3		3		3	3			
CO4	3		3		3	3			
CO5	3		3		3	3			
23CSOE31	3		3		3	3			
1 – Slight, 2 – Mod	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN'	Γ PATTERN – THI	EORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1		20	~~_40	20	20		100
CAT2		10	20	40	10	20	100
Individual		C S C C C C C C C C C C C C C C C C C C)			
Assessment		764	"SECTION"				
1/ Case			CONTRACTOR >	?	50	50	100
study 1/			77		30	30	100
Seminar 1/							
Project 1							
Individual		11 80					
Assessment		A 8	100				
2/ Case		Al Street		300	50	50	100
study 2/		44		25	30	30	100
Seminar 2/		Carrie	S S S S S S S S S S S S S S S S S S S	9)			
Project 2		The same	10 C P 23 P				
ESE	30	30	40				100

23CSOE32

COMPUTER NETWORK MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

	INTERCOLLOTION AND ADDITIONAL AVED
	implement IPv4 and IPv6 addressing schemes using Cisco Packet Tracer.
	simple LANs, perform basic configurations for routers and switches, and
	protocol suite, concepts related to network addressing and routing and build
Objective	concept of layering in networks, functions of protocols of each layer of TCP/IP
Course	 After the completion of the course, the students will be able to understand the

UNIT - I INTRODUCTION AND APPLICATION LAYER 9 Periods

Building network - Network Edge and Core - Layered Architecture - OSI Model - Internet Architecture

(TCP/IP) Networking Devices: Hubs, Bridges, Switches, Routers, and Gateways – Performance Metrics - Ethernet Networking – Introduction to Sockets – Application Layer protocols – HTTP – FTP Email Protocols – DNS.

UNIT – II TRANSPORT LAYER AND ROUTING

9 Periods

Transport Layer functions –User Datagram Protocol – Transmission Control Protocol – Flow Control – Retransmission Strategies – Congestion Control - Routing Principles – Distance Vector Routing – Link State Routing – RIP – OSPF – BGP – Introduction to Quality of Service (QoS).Case Study: Configuring RIP, OSPF BGP using Packet tracer

UNIT – III NETWORK LAYER

9 Periods

Network Layer: Switching concepts – Internet Protocol – IPV4 Packet Format – IP Addressing – Subnetting – Classless Inter Domain Routing (CIDR) – Variable Length Subnet Mask (VLSM) – DHCP – ARP – Network Address Translation (NAT) – ICMP – Concept of SDN.Case Study: Configuring VLAN, DHCP, NAT using Packet tracer

UNIT – IV INTERNETWORK MANAGEMENT

9 Periods

Introduction to the Cisco IOS - Router User Interface – CLI - Router and Switch Administrative Functions - Router Interfaces - Viewing, Saving, and Erasing Configurations - Switching Services - Configuring Switches - Managing Configuration Registers - Backing Up and Restoring IOS - Backing Up and Restoring the Configuration - Using Discovery Protocol (CDP) - Checking Network Connectivity

UNIT - V TRAFFIC MANAGEMENT AND WAN PROTOCOLS

9 Periods

Managing Traffic with Access Lists: Introduction to Access Lists - Standard Access Lists - Extended Access Lists - Named Access Lists - Monitoring Access Lists - Wide Area Networking Protocols: Introduction to Wide Area Networks - Cabling the Wide Area Network - High-Level Data-Link Control (HDLC) Protocol - Point-to-Point Protocol (PPP) - Frame Relay: Frame Relay Implementation and Monitoring - Integrated Services Digital Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring DDR

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

	EL ENERGED I
1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh Edition,
	Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education,
	2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNA™: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COURSE OUTCOMES:		
Upon con	npletion of the course, the students will be able to:	Mapped
CO1	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	К3
CO4	Build simple LANs, perform basic configurations for routers and switches	К6
CO5	Illustrate various WAN protocols	K2

COURSE ARTI	CULATION	MATRIX		- P		
COs/POs	P01	PO2	P03	PO4	P05	P06
CO1	3	//	3		2	1
CO2	3	- //	3		2	2
CO3	3	F	3	123 V2	3	2
CO4	3	999	3	200	3	3
CO5	3		3	- E	3	3
23CSOE32	3	3	3-26	SIS DUVE	3	2
1 – Slight, 2 – I	Moderate, 3 -	- Substantial	P. 200 .	69		

ASSESSMENT PATTERN – THEORY							
Test / Remembering Understanding Applying Anal				Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	30	20	20			100
CAT2		30	20	30	10	10	100
Individual	10	30	20	20	20		100
Assessment							
1 /Case							
Study 1 /							
Seminar 1 /							
Project 1							
Individual		20	20	20	20	20	100
Assessment							
2 / Case							
Study 2/							
Seminar 2/							
Project 2							
ESE	20	40	40				100

	BLOCKCHAIN TECHNOLOGIES
23CSOE33	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	• The objective of the course is to explore basics of block chain technology					
Objective	bjective and its application in various domain					
UNIT – I	INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN	9 Periods				
History of Blo	ckchain - Types of blockchain- CAP theorem and blockchain	- benefits and				
Limitations of	Blockchain - Decentalization using blockchain - Blockchain im	plementations-				
Block chain in	practical use - Legal and Governance Use Cases					
UNIT – II	BITCOIN AND CRYPTOCURRENCY	9 Periods				
Introduction to	Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining	Developments,				
Bitcoin Wallets	s, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM	I), Merkle Tree,				
Double-Spend	Problem, Blockchain and Digital Currency, Transactional Block	cks, Impact of				
Blockchain Teo	chnology on Cryptocurrency					
UNIT – III	ETHEREUM	9 Periods				
Introduction t	o Ethereum, Consensus Mechanisms, Metamask Setup, Ethereu	ım Accounts, ,				
Transactions, I	Receiving Ethers, Smart Contracts					
UNIT – IV	HYPERLEDGER AND SOLIDITY PROGRAMMING	9 Periods				
	o Hyperledger, Distributed Ledger Technology & its Challenges,					
	edger Technology, Hyperledger Fabric, Hyperledger Compo	ser. Solidity –				
Programming v						
UNIT – V	BLOCKCHAIN APPLICATIONS	9 Periods				
Ten Steps to b	uild your Blockchain application - Application: Internet of Things,	Medical Record				
Management S	ystem, Domain Name Service and Future of Blockchain, Alt Coins					
Contact Perio	ds:					

1	Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and
	Smart Contracts Explained", Second Edition, Packt Publishing, 2018.
2	Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law,

and Technology Solutions", McGraw Hill Education ,2018.

Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016.

4 Manav Gupta **"Blockchain for Dummies"**, IBM Limited Edition 2017.

Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018

NPTEL Course: Blockchain and its applications
https://archive.nptel.ac.in/courses/106/105/106105235/

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Comprehend the working of Blockchain technology	K2
CO2	Narrate working principle of smart contracts and create them using solidity for given scenario.	К3
CO3	Comprehend the working of Hyperledger in an real time application	K2
C04	Apply the learning of solidity to build de-centralized apps on Ethereum	К3
CO5	Develop applications on Blockchain	К3

COs/POs	P01	PO2	PO3	PO4	P05	P06
CO1	2		3	2		3
CO2	2	3	3	3	2	3
CO3	3		3	2		3
CO4	3	3	(3	3 n 6 n n 3)	2	3
CO5	3	3	3	3	2	3
23CSOE33	3	3	3	3	2	3
	<u> </u>	1 – Slig	ght, 2 – Mod	lerate, 3 – Substar	ntial	

ASSESSMENT PA	ATTERN - THEO	RY	3.72	N/a			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	40	7			100
CAT2	20	30	50				100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		30	70				100
Individual Assessment 2 /Case Study 2/Seminar 2 / Project 2		40	60				100
ESE	10	60	30				100

23VLACZ1

ENGLISH FOR RESEARCH PAPER WRITING

(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

		<u> </u>						
Course	The objective of the course is to make the learners understand t	he format and						
Objective	intricacies involved in writing a research paper.							
UNIT – I	PLANNING AND PREPARATION	6 Periods						
Need for publishin	Need for publishing articles, Choosing the journal, Identifying a model journal paper, Creation of files for							
each section, Expe	each section, Expectations of Referees, Online Resources.							
UNIT – II	SENTENCES AND PARAGRAPHS	6 Periods						
Basic word in English, Word order in English and Vernacular, placing nouns, Verbs, Adjectives, and Adverb								
suitably in a sentence, Using Short Sentences, Discourse Markers and Punctuations- Structure of a								
Paragraph, Breakir	ng up lengthy Paragraphs.							
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC) OF WRITING	6 Periods						
Accuracy, Brevity	and Clarity in Writing, Reducing the linking words, Avoiding redundan	cy, Appropriate						
use of Relative and	d Reflexive Pronouns, Monologophobia, verifying the journal style, Logic	cal Connections						
between others au	thor's findings and yours.							
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING	6 Periods						
Making your findi	ngs stand out, Using bullet points headings, Tables and Graphs- Availin	g non-experts						
opinions, Hedging, Toning Down Verbs, Adjectives, Not over hedging, Limitations of your research.								
UNIT – V	SECTIONS OF A PAPER	6 Periods						
Titles, Abstracts, Ir	ntroduction, Review of Literature, Methods, Results, Discussion, Conclusio	ns, References.						
Contact Periods:								
Lecture: 30 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods							

1	Goldbort R , "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.
4	Adrian Wallwork," English for Writing Research Papers" , Springer New York Dordrecht Heidelberg London, 2011.

COURSE	E OUTCOMES :	Bloom's
		Taxonomy
Upon co	mpletion of this course the learners will be able to	Mapped
CO1	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph writing.	K4
CO3	Practice unambiguous writing.	К3
CO4	Avoid wordiness in writing.	K2
CO5	Exercise the elements involved in writing journal paper.	К3

COs/POs	P01	P02	P03	P04	P05	P06	
CO1	3	3	1	1	1	1	
CO2	3	3	1	1	1	1	
CO3	3	3		1	1	1	
CO4	3	(3	150 OK 100	1	1	1	
CO5	3	3	1.1500	1	1	1	
23VLACZ1	3	3	1	3 1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Tota 1%		
CAT1	40	40	20	-	-	-	100		
CAT2	40	40	20	-	-	-	100		
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	-	50	50	-	-	-	100		
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100		
ESE	30	30	40	-	-	-	100		

	-
2271 4672	DISASTER MANAGEMENT
23VLACZ2	(Common to all branches)

Course Objectives

- To become familiar in key concepts and consequences about hazards, disaster and area of occurrence.
- To know the various steps in disaster planning.
- To create awareness on disaster preparedness and management.

UNIT - I INTRODUCTION

6 Periods

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude. Areas proneto ,Earthquakes Floods,Droughts, Landslides ,Avalanches ,Cyclone and Coastal Hazards with Special Reference to Tsunami.

UNIT - II REPERCUSSIONS OF DISASTERS AND HAZARDS

6 Periods

Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease and Epidemics, War and Conflicts.

UNIT – III DISASTER PLANNING

6 Periods

Disaster Planning-Disaster Response Personnel roles and duties, Community MitigationGoals, Pre-Disaster Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems.

UNIT - IV DISASTER PREPAREDNESS AND MANAGEMENT

6 Periods

Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental and Community Preparedness.

UNIT - V RISK ASSESSMENT

6 Periods

Total: 30 Periods

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment, Strategies for Survival.

Contact Periods:

Lecture:30 Periods

Tutorial: 0 Periods Practical: **0Periods**

- 1 R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies", New Royal book Company, 2007.
- 2 Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi, 2010
- 3 Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi, 2008.
- 4 Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International Publishing House Pvt. Ltd., New Delhi, 2007.
- 5 Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
- 6 Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
CO1	2	1	1	2	2			
CO2	1	2	1	1	1			
CO3	1	1	1	2	2			
CO4	1	1	1	2	2			
CO5	2	1	1	2	2			
23VLACZ2	1	1	1	2	2			
1 – Slight, 2 – Moderate, 3 – S	ubstantial		_	_				

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50		1			100
CAT2		000	100	W.			100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

23VLACZ3	VALUE EDUCATION
ZSVLACZS	(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course	Value of education and self- development	
Objectives	 Requirements of good values in students 	
	Importance of character	
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods

Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non-moral valuation. Standards and principles. Value judgements.

UNIT - II PERSONALITY AND BEHAVIOR DEVELOPMENT

6 Periods

Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance.

UNIT - III VALUES IN HUMAN LIFE

6 Periods

Importance of cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism. Love for nature, Discipline.

UNIT – IV VALUES IN SOCIETY

6 Periods

True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature.

UNIT - V POSITIVE VALUES

6 Periods

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively.

Contact Periods:

Lecture: 30 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

- 1 Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi,1998
- ² Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
- 3 | R.P Shukla, "Value Education and Human Rights", Sarup and Sons, New Delhi, 2004
- 4 https://nptel.ac.in/courses/109104068/36

	COURSE OUTCOMES:			
Upon	completion of the course, the students will be able to:	Mapped		
CO1	Know the values and work ethics.	К3		
CO2	Enhance personality and behaviour development.	К3		
CO3	Apply the values in human life.	К3		
CO4	Gain Knowledge of values in society.	К3		
CO5	Learn the importance of positive values in human life.	К3		

COURSE ARTICULATION MATRIX						
COs/POs	P01	PO2	PO3	P04	P05	P06
CO1	-	-	3	1	1	1
CO2	-	-	3	1	2	1
CO3	-	-	3	1	2	1
CO4	-	-	3	1	1	1
CO5	-	-	3	1	1	2
23VLACZ3	-	-	3	1	1	1
1 – Slight, 2 – Moderate, 3 – Substantial						

Test /	Rememberi	Understandi	Applying	Analyzin	Evaluatin	Creating	Total
Bloom's Category*	ng (K1) %	ng (K2) %	(K3) %	g (K4) %	g (K5) %	(K6) %	%
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	<u> </u>	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	1009

23VLACZ4	CONSTITUTION OF INDIA (Common to All Branches)
	(Common to Air Drunches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course Objectives	 To address the importance of constitutional rights and duties To familiarize about Indian governance and local administration. To know about the functions of election commission. 	
UNIT – I	INDIAN CONSTITUTION	6 Periods
	ing of the Indian Constitution: History Drafting Committee, (Composition & he Indian Constitution: Preamble Salient Features.	& Working) -

UNIT - II CONSTITUTIONAL RIGHTS & DUTIES

6 Periods

Contours of Constitutional Rights & Duties: Fundamental Rights , Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

UNIT – III ORGANS OF GOVERNANCE

6 Periods

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

UNIT – IV LOCAL ADMINISTRATION

6 Periods

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT - V ELECTION COMMISSION

6 Periods

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Contact Periods:

Lecture: 30 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

	1	"The Constitution of India", 1950 (Bare Act), Government Publication.
	2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution" , 1st Edition, 2015.
	3	M. P. Jain,"Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
ſ	4	D.D. Basu."Introduction to the Constitution of India". Lexis Nexis, 2015.

COUR	Bloom's Taxonomy Mapped	
opon (completion of the course, the students will be able to:	маррец
CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the	K2
	conceptualization of social reforms leading to revolution in India.	
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX						
COs/POs	P01	PO2	PO3	P04	P05	P06
CO1	-	-	1	1	1	1
CO2	-	-	1	1	1	2
CO3	-	-	1	1	2	1
CO4	-	-	1	1	1	1
CO5	-	-	1	1	1	1
23VLACZ4	-	-	1	1	1	1
1 – Slight, 2 – Mod	derate, 3 – Su	ıbstantial				

1100200112111	PATTERN – TH	EOI (1					
Test / Bloom's Category*	Rememberin g (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluati ng (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23VLACZ5	PEDAGOGY STUDIES
	(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

UNIT - I	INTRODUCTION 6 Periods						
	introduction of innovation in teaching methodology.						
	Application of knowledge in modification of curriculum, its assessment and						
Objectives	practices and design of curriculum in engineering studies.						
Course	To Understand of various theories of learning, prevailing pedagogical						

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

UNIT - II PEDAGOGICAL PRACTICES

6 Periods

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education. Evidence on the effectiveness of pedagogical practices Methodology for the in depth stage: quality assessment of included

UNIT - III PEDAGOGICAL APPROACHES

6 Periods

How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teacher's attitudes and beliefs and Pedagogic strategies.

UNIT - IV PROFESSIONAL DEVELOPMENT

6 Periods

Professional development: alignment with classroom practices and follow-up support. Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes.

UNIT - V CURRICULUM AND ASSESSMENT

6 Periods

Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.

Contact Periods:

Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

- 1 Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261, 2001.
- 2 Alexander RJ ,Culture and pedagogy: International comparisons in primary education.
 Oxford and Boston: Blackwell, 2001
- 3 Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282, 2013.
- 4 Agrawal M, Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379, 2004

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain the concept of curriculum, formal and informal education systems and teacher education.	К3
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	К3
CO3	Understand the relation between teacher and community, support from various levels of teachers to students and limitation in resources and size of the class.	К3
CO4	Perform research in design a problem in pedagogy and curriculum development.	К3

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
CO1	-	-	1	1	2	1
CO2	-	-	1	1	1	2
CO3	-	-	1	1	2	1
CO4	-	-	1	1	2	1
23VLACZ5	-		,	1	2	1
1 – Slight, 2 – Moder	ate, 3 – Substa	ntial	7077			
1 Slight, 2 - Model	acc, 5 Substa	iitiai				

ASSESSMEN	NT PATTERN – T	HEORY	1 7	7			
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	28 -	-	-	100%
CAT2	20%	50%	30%	57	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessme nt 2 / Case Study 2 / Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23VLACZ6	STRESS MANAGEMENT BY YOGA (Common to All Branches)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course Objectives	 To create awareness on the benefits of yoga and meditation. To understand the significance of Asana and Pranayama. 	
UNIT - I	PHYSICAL STRUCTURE AND ITS FUNCTIONS	6 Periods
exercises, hand	structure, Importance of physical exercise, Rules and regulation of simplification exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, maharessure, body relaxation.	
UNIT – II	YOGA TERMINOLOGIES	6 Periods
Yamas - Ahimsa Ishvarapranidh	a, satya, astheya, bramhacharya, aparigrahaNiyamas- Saucha, santosha, tapas ana.	s, svadhyaya,
UNIT – III	ASANA	6 Periods
Asana - Rules &	Reg	<u> </u>
UNIT – IV	PRANAYAMA	6 Periods
Regularization	of breathing techniques and its effects-Types of pranayama	
UNIT – V	MIND	6 Periods
	& mind - imprinting & magnifying - eight essential factors of living betten stages of mind, benefits of meditation, such as perspicacity, magnanimity eativity.	
Contact Period Lecture: 30 Pe	2.2.3.5.00 (Co.)	

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Training-Part-I",, Nagpur.
2	Swami Vivekananda," Rajayoga or conquering the Internal Nature ", AdvaitaAshrama (Publication Department), Kolkata.
3	Pandit Shambu Nath, " Speaking of Stress Management Through Yoga and Meditation ", New Dawn Press, New Delhi, 2016.
4	K. N. Udupa ,"Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi, 2007.

COUI	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
CO1	Practice physical exercises and maintain good health.	К3
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	К3
CO4	Practice breathing techniques in a precise manner.	К3
CO5	Attain emotional stability and higher level of consciousness.	K2

COURSE ARTICULATION MATRIX:								
COs/POs	P01	PO2	PO3	PO4	PO5	P06		
CO1	-	-	2	-	-	-		
CO2	-	-	2	-	-	-		
CO3	-	-	2	-	-	-		
CO4	-	-	2	-	-	-		
CO5	-	-	2	-	-	-		
23VLACZ6	•	-	2	-	-	-		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT	PATTERN - THI	EORY	Ca Dome				
Test / Bloom's Category*	Rememberi ng (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluati ng (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ÉSE	20%	50%	30%	-	-	-	100%

23VLACZ7

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

(Common to All Branches)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course Objectives	 To familiar with Techniques to achieve the highest goal in To become a person with stable mind, pleasing personali determination. 				
UNIT - I		6 Periods			
Neetisatakam-Holistic development of personality-Verses- 19,20,21,22 (wisdom)-Verses29,31,32 (pride & heroism)-Verses- 26,28,6.					
UNIT – II		6 Periods			
	Verses- 52,53,59 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day work and duties Shrimad BhagwadGeeta - Chapter 2-Verses 41, 47,48,				
UNIT – III		6 Periods			
Shrimad Bhag Chapter 18-Ver	wadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses ses 45, 46, 48.	5,13,17, 23, 35,-			
UNIT – IV	Seed A.C.	6 Periods			
	pasic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62, 5, 16,17, 18-Personality of Role model.	68 -Chapter 12 -			
UNIT - V		6 Periods			
Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39-Chapter18 – Verses 37,38,63.					
Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods					

1	Swami SwarupanandaAdvaita Ashram " Srimad Bhagavad Gita ",AdvaitaAshrama, Kolkata,2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Satakam" (Niti-sringar-vairagya), New Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog " Bhagavad Gita: The Song Of God ", USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada " Bhagavad-Gita As It Is ",Bhaktivedanta Book Trust Publications,2001

COUF	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Mapped	
CO1	Apply the Holistic development in life	K4	
CO2	Effective Planning of day to day work and duties	K4	
CO3	Identify mankind to peace and prosperity	K4	
CO4	Develop versatile personality.	K4	
CO5	Awakening wisdom in life	K4	

COURSE ART	COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	PO3	PO4	PO5	P06				
CO1	-	-	1	-	ı	-				
CO2	-	-	1	-	-	-				
CO3	-	-	1	-	-	-				
CO4	-	-	1	-	-	-				
CO5	-	-	1	-	-	-				
23VLACZ7		-	1	-	-	-				
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMEN	NT PATTERN – T	HEORY	Ra Ra	E. a			
Test / Bloom's Category*	Rememberin g (K1) %	Understandi ng (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Total %
CAT1	20%	50%	30%	V -	-	-	100%
CAT2	20%	50%	30%	J -	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

2271 4670	SANSKRIT FOR TECHNICAL KNOWLEDGE
23VLACZ8	(Common to all Branches)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course Objectives	 To get a working knowledge in illustrious Sanskrit, the so in the world. Learning of Sanskrit to improve brain functioning. Enhancing the memory power. Learning of Sanskrit to develop the logic in mathematics, subjects. 	
UNIT – I	BASICS OF SANSKRIT	6 Periods
Alphabets in	Sanskrit, Past/Present/Future Tense.	•
UNIT – II	SENTENCES AND ROOTS	6 Periods
Simple Senter	nces - Order, Introduction of roots	
UNIT – III	SANSKRIT LITERATURE	6 Periods
Technical info	ormation about Sanskrit Literature	•
UNIT - IV	TECHNICAL CONCEPTS -1	6 Periods
Technical con	cepts of Engineering-Electrical, Mechanical	ı
UNIT - V	TECHNICAL CONCEPTS -2	6 Periods
Technical con	cepts of Engineering-Architecture, Mathematics	'
Contact Period Lecture: 30 I	\C.S.S.P.B\D&\O\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	tal: 30 Periods

1	Dr Vishwas	"Abhvaspustakam". Samskrita -Bharti Publication. New Delhi. 20

² Prathama Deeksha Vempati Kutumbshastri, "**Teach Yourself Sanskrit**", Rashtriya Sanskrit Sansthanam, New Delhi, Publication, 2009.

3 Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi, 2006.

COURS	Bloom's	
Upon co	Taxonomy Mapped	
CO1	Recognize ancient literature and their basics	К3
CO2	Formulate the sentences with order and understand the roots of	K2
	Sanskrit	
CO3	Acquire familiarity of the major traditions of literatures written in	К3
	Sanskrit	
CO4	Distinguish the Technical concepts of Electrical & Mechanical	K2
	Engineering	
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	PO3	P04	PO5	P06		
C01	-	-	-	1	2	1		
CO2	-	-	-	1	2	-		
CO3	-	-	-	1	1	1		
CO4	-	-	-	2	1	1		
CO5	-	-	-	1	2	1		
23VLACZ8	-	-	-	1	2	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's	Rememberi ng (K1) %	Understand ing (K2) %	Applyi ng (K3)	Analyzi ng (K4)	Evaluati ng (K5)	Creating (K6) %	Total %
Category *			%	%	%		, ,
CAT1	20%	50%	30%	W -	-	-	100%
CAT2	20%	50%	30%	5	-	-	100%
Individual Assessme nt 1 / Case Study 1 / Seminar 1 / Project1	20%	50%	30%	v- <u>.</u>	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%