

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

Curriculum For M. E. MANUFACTURING ENGINEERING

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

VISION

To create outstanding Mechanical Engineers with strong domain knowledge and skills capable of working in an Interdisciplinary environment with exemplary ethical values contributing to society through Innovation, Entrepreneurship and Leadership.

MISSION

- To develop in each student, a strong theoretical and practical knowledge, a global outlook for a sustainable future and problem solving skills.
- To make productive members of interdisciplinary teams, capable of adapting to changing environments of Engineering, technology and society.
- To inculcate critical thinking abilities among students to enhance innovative ideas and entrepreneurial skills, leadership qualities.
- To imbibe moral and ethical values along with leadership qualities in students.

	Course					Tatal	J	Hours/	Week						
S. No	Code	Course Title	Category	CA Marks	End Sem Marks	Total Marks	L	Т	Р	С					
		Т	HEORY CO	DURSES											
1.	23MFFCZ1	RESEARCH METHODOLOGY AND IPR (Common to all branches)	FC	40	60	100	3	0	0	3					
2.	23MFFC02	APPLIED MATHEMATICS FOR MANUFACTURING ENGINEERING	FC	40	60	100	3	1	0	4					
3.	23MFPC01	THEORY OF METAL CUTTING AND PRACTICES	РС	40	60	100	3	1	0	4					
4.	23MFPC02	ADVANCES IN CASTING AND WELDING TECHNOLOGIES	РС	40	60	100	3	0	0	3					
5.	23MFPC03	CORROSION AND SURFACE ENGINEERING	РС	40	60	100	3	1	0	4					
6.	23MFPEXX	PROFESSIONAL ELECTIVE - I	PE	40	60	100	3	0	0	3					
7.	23MFACXX	AUDIT COURSE - I	AC	40	60	100	2*	0	0	0					
		PR	ACTICAL (COURSES			•	•							
8.	23MFPC04	PROCESS MODELING AND SIMULATION LABORATORY	РС	60	40	100	0	0	4	2					
		TOTAL		340	460	800	20	3	4	23					

SECOND SEMESTER

S.	Course		6	СА	End Sem	Total	Hours/Week						
No	Code	Course Title	Category	Marks	Marks	Marks	L	Т	Р	C			
			THEORY CO	URSES	1								
1.	IN MANUFACTURING												
2	23MFPC06	MATERIAL TESTING AND CHARACTERIZATION	РС	40	60	100	3	1	0	4			
3.	23MFPC07	INDUSTRIAL AUTOMATION	РС	40	60	100	3	0	0	3			
4.	23MFPEXX	PROFESSIONAL ELECTIVE - II	PE	40	60	100	3	0	0	3			
5.	23MFPEXX	PROFESSIONAL ELECTIVE - III	PE	40	60	100	3	0	0	3			
6.	23MFACXX	AUDIT COURSE - II	AC	40	60	100	2*	0	0	0			
		P	RACTICAL C	OURSES									
7.	23MFPC08	MODERN MANUFACTURING ENGINEERING LABORATORY	РС	60	40	100	0	0	4	2			
8.	23MFEE01	MINI PROJECT	EEC	40	60	100	0	0	4	2			
		TOTAL		340	460	800	17	2	8	21			

THIRD SEMESTER

S.	Course	Course Title	Catagory	CA Marks	End Sem	Total	Hours/Week					
No	Code	course ritte	Category	CA Marks	Marks	Marks	L	Т	Р	С		
		Т	HEORY CO	URSES								
1	23MFPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3		
2	23MFOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3		
	PRACTICAL COURSES											
3	23MFFF02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	-	100	-	-	*	2		
4	23MFEE03	PROJECT PHASE I	EEC	100	100	200	0	0	12	6		
		TOTAL		280	220	500	6	0	12	14		

* - FOUR WEEKS OF INTERNSHIP / INDUSTRIAL TRAINING

FOURTH SEMESTER

S.	Course	Course Title	Category	CA Marks	End Sem Marks	Total Marks				eek
No	Code	dourse mile	category		Marks	Marks	L	Т	Р	С
PRA	RACTICAL COURSES									
1	23MFEE04	PROJECT PHASE II	EEC	200	200	400	0	0	24	12
		TOTAL		200	200	400	0	0	24	12

Note:* No Credit Courses

TOTAL CREDITS : 70

		LIST OF P	ROFESSION	AL ELECTI	VES					
S. No	Course Code	Course Title	Category	CA Marks	End Sem Marks	Total Marks	L	Т	Р	С
		PROF	ESSIONAL E	LECTIVE I						
1	23MFPE01	DIGITAL MANUFACTURING	PE	40	60	100	3	0	0	3
2	23MFPE02	ADVANCES IN METROLOGY AND MEASUREMENTS	PE	40	60	100	3	0	0	3
3	23MFPE03	INDUSTRY 4.0 AND IoT	PE	40	60	100	3	0	0	3
4	23MFPE04	ADVANCED ENGINEERING MATERIALS AND METALLURGY	PE	40	60	100	3	0	0	3
5	23MFPE05	ADVANCED FINITE ELEMENT METHODS	PE	40	60	100	3	0	0	3
			ESSIONAL EI	LECTIVE II						
6	23MFPE06	WEAR ANALYSIS AND CONTROL	PE	40	60	100	3	0	0	3
7	23MFPE07	MACHINE TOOL DRIVES AND CONTROL	PE	40	60	100	3	0	0	3
8	23MFPE08	SENSORS FOR INTELLIGENT MANUFACTURING	PE	40	60	100	3	0	0	3
9	23MFPE09	MEMS AND NEMS	PE	40	60	100	3	0	0	3
10	23MFPE10	LEAN MANUFACTURING SYSTEMS AND IMPLEMENTATION	PE	40	60	100	3	0	0	3
		PROFI	ESSIONAL EL	ECTIVE II	I					
11	23MFPE11	HIGH SPEED MACHINING	PE	40	60	100	3	0	0	3
12	23MFPE12	SUPPLY CHAIN MANAGEMENT	PE	40	60	100	3	0	0	3
13	23MFPE13	DESIGN FOR MANUFACTURE, ASSEMBLY AND MANUFACTURING ENVIRONMENT	PE	40	60	100	3	0	0	3
14	23MFPE14	THEORY OF METAL FORMING	PE	40	60	100	3	0	0	3
15	23MFPE15	NON-DESTRUCTIVE EVALUATION	PE	40	60	100	3	0	0	3
		PROF	ESSIONAL EL	ECTIVE IV	7					
16	23MFPE16	GREEN MANUFACTURING	PE	40	60	100	3	0	0	3
17	23MFPE17	VIBRATION CONTROL AND CONDITION MONITORING	PE	40	60	100	3	0	0	3
18	23MFPE18	PRODUCT DESIGN AND DEVELOPMENT	PE	40	60	100	3	0	0	3
19	23MFPE19	RELIABILITY AND QUALITY ENGINEERING	PE	40	60	100	3	0	0	3
20	23MFPE20	ADVANCES IN MANUFACTURING PROCESSES	PE	40	60	100	3	0	0	3

LIST OF OPEN ELECTIVE COURSES

SI.				CA	End	Total	Н	ours	/Weel	ĸ
No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
1	23SEOE01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3
2	23SEOE02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3
3	23SEOE03	GREEN BUILDING	OE	40	60	100	3	0	0	3
4	23EEOE04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3
5	23EEOE05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3
6	23EEOE06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3
7	23GEOE07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3
8	23GEOE08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3
9	23GEOE09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3
10	23EDOE10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3
11	23ED0E11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3
12	23ED0E12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3
13	23MFOE13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3
14	23MFOE14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3
15	23MFOE15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3
16	23TEOE16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3
17	23TEOE17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3
18	23TEOE18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3
19	23PSOE19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3
20	23PSOE20	ELECTRICITY TRADING & ELECTRICITY ACTS	OE	40	60	100	3	0	0	3
21	23PSOE21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3
22	23PEOE22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PEOE23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PEOE24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AE0E25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AE0E26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3
27	23AE0E27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3
31	23CS0E31	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	OE	40	60	100	3	0	0	3
32	23CSOE32	COMPUTER NETWORK ENGINEERING	OE	40	60	100	3	0	0	3
33	23CSOE33	BIG DATA ANALYTICS	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSES

S.	Course	Course Title	Category	CA	End Sem	Total	HOURS			
No	Code		0,	Marks	Marks	Marks	L	Т	Р	C
1	23MFACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0
2	23MFACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0
3	23MFACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0
4	23MFACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0
5	23MFACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0
6	23MFACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0
7	23MFACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	AC	40	60	100	2	0	0	0
8	23MFACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0

(Common to all branches)

SUMMARY OF CREDIT DISTRIBUTION

S.No	Course /			Credits			Deveentege
5.NO	Subject Area	I SEM	IISEM	IIISEM	IVSEM	Total	Percentage
1.	FC	7	0	0	0	07	10 %
2.	РС	13	13	0	0	26	37.14%
3.	PE	3	6	3	0	12	17.14 %
4.	OE	0	0	3	0	03	4.30 %
5.	AC	0	0	0	0	(Non Credit)	0%
6.	EEC	0	2	8	12	22	31.42 %
	Total Credits	23	21	14	12	70	100.00%

CATEGORY-WISE CREDIT DISTRIBUTION

FUNDAMENTAL COURSE (FC)

S.	Course	Course Title	Category	CA Marilar	End Sem Marks	Total	I	lours/	Week	
No	Code			Marks	Marks	Marks	L	Т	Р	С
1.	23MFFC71	RESEARCH METHODOLOGY AND IPR (Common to all branches)	FC	40	60	100	3	0	0	3
2.	231111102	APPLIED MATHEMATICS FOR MANUFACTURING ENGINEERING	FC	40	60	100	3	1	0	4
	Total				120	200	6	1	0	7

PROFESSIONAL CORE (PC)

S.	Course	Course Title	Category	CA	End Sem	Total	ŀ	lours/	Week	
No	Code		0,	Marks	Marks	Marks	L	Т	Р	C
1.	23MFPC01	THEORY OF METAL CUTTING AND PRACTICES	РС	40	60	100	3	1	0	4
2.	23MFPC02	ADVANCES IN CASTING AND WELDING TECHNOLOGIES	РС	40	60	100	3	0	0	3
3.	23MFPC03	CORROSION AND SURFACE ENGINEERING	РС	40	60	100	3	1	0	4
4.	23MFPC04	PROCESS MODELING AND SIMULATION LABORATORY	РС	60	40	100	0	0	4	2
5.	23MEPC05	OPTIMIZATION TECHNIQUES IN MANUFACTURING	РС	40	60	100	3	1	0	4
6.	23MFPC06	MATERIAL TESTING AND CHARACTERIZATION	РС	40	60	100	3	1	0	4
7.	23MFPC07	INDUSTRIAL AUTOMATION	РС	40	60	100	3	0	0	3
8.	23MFPC08	MODERN MANUFACTURING ENGINEERING LABORATORY	РС	60	40	100	0	0	4	2
		Total		360	440	800	18	4	8	26

PROFESSIONAL ELECTIVE (PE)

S.	Course	Course Title	Category	_	End Sem		Hours/Week				
No	Code	course ritte	Category	Marks	Marks	Marks	L	Т	Р	С	
1.	23MFPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3	
2.	23MFPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3	
3.	23MFPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3	
4.	23MFPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3	
		Total		160	240	400	12	0	0	12	

OPEN ELECTIVE (OE)

S.	Course	Course Title	Category	CA	End Sem	Total	Hours,		urs/Week	
No	Code	Category	Marks	Marks	Marks	L	Т	Р	С	
1.	23MFOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3
	Total			40	60	100	3	0	0	3

AUDIT COURSE (AC)

S.	Course	Course Title	Category CA End Sem Total Hours		Category	rse Title Category	End Sem	End Sem	End Sem Total		lours/	Week	
No	Code	course mile	category	Marks	Marks	Marks	L	Т	Р	С			
1.	23MFACXX	AUDIT COURSE - I	AC	40	60	100	2	0	0	0			
2.	23MFACXX	AUDIT COURSE - II	AC	40	60	100	2	0	0	0			
	Total			80	120	200	4	0	0	0			

EMPLOYABILITY ENHANCEMENT COURSE (EEC)

S.	Course			CA	End Sem	Total		Hour	s/We	ek
S. No	Code	Course Title	Category	Marks	Marks	Marks	L	Т	Р	C
1	23MFEE01	MINI PROJECT	EEC	40	60	100	0	0	4	2
2	23MFEE02	INDUSTRIAL TRAINING	EEC	100	0	100	0	0	**	2
3	23MFEE03	PROJECT PHASEI	EEC	100	100	200	0	0	12	6
4	23MFEE04	PROJECT PHASE II	EEC	200	200	400	0	0	24	12
				440	360	800	0	0	40	22

**4 WEEKS OF INTERNSHIP / INDUSTRIAL TRAINING

23MFFCZ1

RESEARCH METHODOLOGY AND IPR (Common to all branches)

I

PREREQUISITES	CATEGORY	L	Τ	Р	С				
	FC	3	0	0	3				
Course 1.To impart knowledge on research methodology, Quantitative methods for									
		meth	lods	for					
Objectives	problem solving, data interpretation and repo	0							
	. To know the importance of IPR and patent rig	hts.							
0.000	NTRODUCTION				iod				
	bjectives of Research - Types of research, Va								
Mathematical tool	ls for analysis, Developing a research question-Ch	pice of a problem	Liter	atur	e rev	view,			
Surveying, synthe	esizing, critical analysis, reading materials, reviev	ving, rethinking,	critic	al ev	valua	tion,			
interpretation, Re	search Purposes, Ethics in research – APA Ethics co	ode.							
UNIT – II Q	UANTITATIVE METHODS FOR PROBLEM SOLVI	NG	9	Per	iod	5			
Statistical Modell	ing and Analysis, Time Series Analysis Probabil	ity Distributions,	, Fun	dam	enta	ls of			
Statistical Analys	is and Inference, Multivariate methods, Concer	ots of Correlation	n and	1 Re	gres	sion,			
Fundamentals of	Time Series Analysis and Spectral Analysis, Erro	r Analysis, Applie	catior	ns of	^c Spe	ctral			
Analysis.									
UNIT – III D	ATA DESCRIPTION AND REPORT WRITING		9	Per	iod	5			
Tabular and grap	hical description of data: Tables and graphs of fre	quency data of or	ne va	riab	e, Ta	ables			
and graphs that sh	how the relationship between two variables , Relat	ion between frequ	iency	dist	ribut	tions			
	, preparing data for analysis. Structure and Compo								
	f Research Report, Mechanism of writing a resear	rch report, refere	encing	g in	acad	emic			
writing.									
UNIT – IV IN	NTELLECTUAL PROPERTY		9	Per	riod	5			
Nature of Intelle	ctual Property: Patents, Designs, Trade and Co	pyright. Process	of P	aten	ting	and			
Development: tecl	hnological research, innovation, patenting, develop	ment.							
International Sce	nario: International cooperation on Intellectual	Property. Proced	lure	for	grant	ts of			
patents, Patenting	patents, Patenting under PCT.								
UNIT – V PA	ATENT RIGHTS		9	Per	iod	5			
Patent Rights: Sco	ope of Patent Rights. Licensing and transfer of t	echnology. Paten	t info	orma	tion	and			
databases. Geogra	phical Indications.								
Lecture: 45 Per	iods Tutorial:0 Periods Practical: 0 Pe	riods Total	:45 F	Perio	ods				
REFERENCES									

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science &
	engineering students", Juta Academic, 1996.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, engageLearning, 2013.
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2014.
4	Dr. C. R. Kotharia and GauravGarg, "Research Methodology: Methods and Trends", New age
	international publishers, Fourth Edition, 2018.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Formulate research question for conducting research.	K4
CO2	Analyze qualitative and quantitative data.	К4
CO3	Interpret research findings and give appropriate conclusions.	K4
C04	Develop a structured content to write technical report.	K4
C05	Summarize the importance of IPR and protect their research work through intellectual property.	K4

Course Artic	Course Articulation Matrix										
COs/POs	P01	P02	P03	P04	P05						
CO1	1	2	1	1	2						
CO2	2	-	-	-	-						
CO3	3	3	3	2	2						
CO4	2	2	2	2	2						
CO5	1	1	1	1	1						
23MFFCZ1	2	2	1	2	2						
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	40	40	20	-	-	-	100				
CAT2	40	40	20	-	-	-	100				
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100				
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100				
ESE	30	30	20	20	-	-	100				

23MFFC02

APPLIED MATHEMATICS FOR MANUFACTURING ENGINEERING

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	FC	3	1	0	4

Course	To gain the concepts of probability, random variables, test of hy	ypothesis, numerical
Objectives	interpolation, numerical differentiation, numerical integration, n	umerical solution of
	ordinary differential equations and partial differential equations.	
UNIT – I	PROBABILITY AND RANDOM VARIABLES	9+3 Periods
Sample Space	es, Events, Probability Axioms, Conditional Probability, Indepen	dent Events, Bayes'
Theorem. Ra	ndom Variables: Distribution Functions, Expectation, Moments,	Moment Generating
Functions.		
UNIT – II	TESTING OF HYPOTHESIS	9+3 Periods
Large sample	es: Tests for Mean and Proportions, Small Samples: Tests for	Mean, Variance and
Attributes usi	ng t, F, Chi–Square Distribution.	
UNIT – III	INTERPOLATION, NUMERICAL DIFFERENTIATION AND	9+3 Periods
UNII – III	INTEGRATION	
Interpolation	with equal interval: Newton's forward and backward difference me	ethods -Interpolation
with unequa	al intervals: Newton's divided difference and Lagrange's	method-Numerical
Differentiatio	n: Newton's methods-Numerical integration: Trapezoidal rule and	Simpson's 1/3 rd and
3/8 rules.		
UNIT – IV	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL	9+3 Periods
	EQUATIONS	
Ordinary diffe	erential equations: Taylor's series method-Euler and modified Euler	r's methods – Runge-
Kutta methoo	d of fourth order for solving first and second order equations-	Milne's and Adam's
predicator-co	rrector methods	
UNIT – V	NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS	9+3 Periods
Partial differ	ential equations: Finite difference solution two dimensional La	place equation and
	tion- Implicit and explicit methods for one dimensional heat equation	
	cholson methods)-Finite difference explicit method for wave equation	
Contact Perio		
Lecture: 45 F	Periods Tutorial: 15 Periods Practical: 0 Periods Total: 6	0 Periods

1	B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44 th Edition,
	2018.
2	Veerarajan T, "Probability and Random Processes:, (with Queuing Theory and Queuing
	Networks), McGraw Hill Education(India) Pvt Ltd., New Delhi, 4 th Edition,2016.
3	Gupta S.C and Kapoor V.K., "Fundamentals of Mathematical Statistics", Sultan Chand &
	Sons, New Delhi, 2015.
4	S.S. Sastry, "Introductory Methods of Numerical Analysis", PHI, New Delhi, 5th Edition, 2015.
5	Ward Cheney, David Kincaid, "Numerical Methods and Computin", Cengage Learning,
	Delhi, 7 th Edition 2013.
6	P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3 rd
	Edition, Reprint 2013.
7	S. Larsson, V. Thomee, "Partial Differential Equations with Numerical Methods", Springer,
	2003.
8	Trivedi K.S, "Probability and Statistics with Reliability, Queuing and Computer Science
	Applications", Prentice Hall of India, New Delhi.
	Apprecisions , Frencice Hun of man, New Denn.

COUR	SE OUTCOMES:	Bloom's				
Unon	Upon completion of the course, the students will be able to:					
-		Mapped				
C01	Acquire fluency in solving probability oriented problems	K4				
CO2	Test for significance of hypothesis connected to small and large samples using different parameters.	K4				
C03	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations, derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations.	K4				
C04	Construct one-step and linear multistep methods for the numerical solution of initial-value problems for ordinary differential equations and systems of such equations.	K4				
CO5	Acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes, interpret solutions in a physical context of wave and heat equation in specified techniques.	K4				

COURSE ARTICULATION MATRIX

COs/POs	P01	P02	P03	P04	P05
C01	3	2	1	2	1
C02	1	1	2	1	3
CO3	3	3	1	1	1
CO4	1	2	3	1	2
C05	3	1	1	2	1
23MFFC02	3	2	1	1	1

٦

ASSESSMENT PATTERN – THEORY (Applicable for PG only)

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	30	30	20	-	-	100
CAT2	20	30	30	20	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	30	30	20	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	30	30	20	-	-	100
ESE	20	30	30	20	-	-	100

23MFPC01

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PC	3	1	0	4

Course	To acquire knowledge in orthogonal cutting, oblique cutti	ng, thermal aspects,
Objectives	cutting fluids, cutting tool materials, tool life, tool wear an	U :
-	tools.	0 0
UNIT – I	ORTHOGONAL CUTTING	(9+3 Periods)
Introduction	- Machining fundamentals – Metal Cutting - Chip formation - 1	types of chips – Chip
	pression for Shear plane angle - Cutting force and velocity rela	*
	per bound solution - Lee and Shaffer Lower bound solution	-
zone model -	Stress and Strain in the chip - Energy consideration in machini	
UNIT- II	OBLIQUE CUTTING	(9+3 Periods)
Direction of C	hip flow - Normal, Velocity and Effective Rake angles - Relation	onship between rake
angles - Cuttin	ng ratio in oblique cutting - Shear angle and Velocity relationsh	nip - Stabler's rule.
UNIT – III	THERMAL ASPECTS AND CUTTING FLUIDS	(9+3 Periods)
Heat distribut	tions in machining - Experimental determination and Analytica	al calculation of
0	emperature -Methods of Controlling Cutting Temperature - Cu	0
	d - Functions - Requirements -Types and Selection of Cutting F	
UNIT – IV	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL	(9+3 Periods)
	WEAR	
Essential requ	WEAR uirements of tool materials – Desirable Properties of tool mate	erials, Characteristics
Essential requ of Cutting T	WEAR nirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we	erials, Characteristics ear and Tool life -
Essential requ of Cutting T Machinability	WEAR uirements of tool materials – Desirable Properties of tool mater ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec	erials, Characteristics ear and Tool life -
Essential requ of Cutting T Machinability and tool hold	WEAR uirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers.	erials, Characteristics ear and Tool life - cifications for inserts
Essential requ of Cutting T Machinability and tool hold UNIT – V	WEAR urements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS	erials, Characteristics ear and Tool life - cifications for inserts (9+3 Periods)
Essential requ of Cutting T Machinability and tool hold UNIT – V Geometry of s	WEAR uirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Sig	erials, Characteristics ear and Tool life - cifications for inserts (9+3 Periods) gnificance of various
Essential requ of Cutting T Machinability and tool hold UNIT – V Geometry of s angles of sing	WEAR uirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Sig gle point cutting tools, Orthogonal Rake System (ORS), Conver-	erials, Characteristics ear and Tool life - cifications for inserts (9+3 Periods) gnificance of various ersions between ASA
Essential requ of Cutting T Machinability and tool hold UNIT - V Geometry of s angles of sing and ORS syst	WEAR airements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Sig le point cutting tools, Orthogonal Rake System (ORS), Conve- ems – Graphical and Analytical Methods, Normal Rake System	erials, Characteristics ear and Tool life - cifications for inserts (9+3 Periods) gnificance of various ersions between ASA em (NRS) & relation
Essential requ of Cutting T Machinability and tool hold UNIT – V Geometry of s angles of sing and ORS syst with ORS. Dr	WEAR airements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Single point cutting tools, Orthogonal Rake System (ORS), Conver- ems – Graphical and Analytical Methods, Normal Rake System ill Geometry and Mechanics of Drilling Process, Geometry of	erials, Characteristics ear and Tool life - cifications for inserts (9+3 Periods) gnificance of various ersions between ASA em (NRS) & relation f Milling Cutters and
Essential requ of Cutting T Machinability and tool hold UNIT – V Geometry of s angles of sing and ORS syst with ORS. Dr Mechanics of	WEAR mirements of tool materials – Desirable Properties of tool materials ool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Single point cutting tools, Orthogonal Rake System (ORS), Conve- ems – Graphical and Analytical Methods, Normal Rake System ill Geometry and Mechanics of Drilling Process, Geometry of Milling process, Mechanics of Grinding (plunge grinding an	erials, Characteristics ear and Tool life - cifications for inserts (9+3 Periods) gnificance of various ersions between ASA em (NRS) & relation f Milling Cutters and
Essential requ of Cutting T Machinability and tool hold UNIT - V Geometry of s angles of sing and ORS syst with ORS. Dr Mechanics of Grinding whe	WEAR airements of tool materials – Desirable Properties of tool materials tool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Sig le point cutting tools, Orthogonal Rake System (ORS), Conve- ems – Graphical and Analytical Methods, Normal Rake System ill Geometry and Mechanics of Drilling Process, Geometry of Milling process, Mechanics of Grinding (plunge grinding an el wear.	erials, Characteristics ear and Tool life - cifications for inserts (9+3 Periods) gnificance of various ersions between ASA em (NRS) & relation f Milling Cutters and
Essential requ of Cutting T Machinability and tool hold UNIT – V Geometry of s angles of sing and ORS syst with ORS. Dr Mechanics of Grinding whe Contact Perio	WEAR airements of tool materials – Desirable Properties of tool materials tool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Sig le point cutting tools, Orthogonal Rake System (ORS), Conver- ems – Graphical and Analytical Methods, Normal Rake System ill Geometry and Mechanics of Drilling Process, Geometry of Milling process, Mechanics of Grinding (plunge grinding and el wear. ods:	erials, Characteristics ear and Tool life - cifications for inserts (9+3 Periods) gnificance of various ersions between ASA em (NRS) & relation f Milling Cutters and ad surface grinding),
Essential requ of Cutting T Machinability and tool hold UNIT - V Geometry of s angles of sing and ORS syst with ORS. Dr Mechanics of Grinding whe	WEAR airements of tool materials – Desirable Properties of tool materials tool Materials, Indexable inserts Coated tools - Tool we - Economics of metal machining - Theory of Chatter – ISO spec- ers. DESIGN OF CUTTING TOOLS single-point cutting tool: Tool-in hand system, ASA system, Sig le point cutting tools, Orthogonal Rake System (ORS), Conver- ems – Graphical and Analytical Methods, Normal Rake System ill Geometry and Mechanics of Drilling Process, Geometry of Milling process, Mechanics of Grinding (plunge grinding and el wear. ods:	erials, Characteristics ear and Tool life - cifications for inserts (9+3 Periods) gnificance of various ersions between ASA em (NRS) & relation f Milling Cutters and

1	A. Bhattacharyya, "Metal Cutting Theory and Practice", Central Book Publishers,
	Calcutta, 2012.
2	Geoffrey Boothroyd and W.A. Knight, "Fundamentals of Machining and Machine
	Tools", Marcel Dekkor, New York, 2006.
3	M C Shaw, "Metal Cutting Principles", Oxford Press, 2005.
4	B.LJuneja and G.S. Sekhon, "Fundamentals of Metal Cutting and Machine Tools",
	New Age International Publishers Limited, 2003.

COUF	COURSE OUTCOMES:				
Upon	Upon completion of the course, the students will be able to:				
C01	Apply the metal cutting theory in engineering materials and employ	КЗ			
	the various aspects in orthogonal cutting activities.				
C02	Evaluate the oblique cutting principle in machinability and practice	К4			
	its various aspects.	N4			
CO3	Select cutting fluids for different machining conditions	К3			
C04	Choose appropriate cutting tools and machining conditions for	КЗ			
	different materials.				
C05	Design the cutting tools for metal removal process.	K4			

COs/POs	P01	P02	P03	P04	P05
C01	2	1	1	1	3
C02	1	1	3	2	1
CO3	3	2	2	1	1
CO4	1	3	1	1	2
C05	3	1	2	3	1
23MFPC01	3	1	2	1	1
1 – Slight, 2 – Moderate, 3 –	Substantial				

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1			50	50			100			
CAT2			50	50			100			
Individual			50	50			100			
Assessment 1										
/Case Study 1/										
Seminar 1 /										
Project1										
Individual			50	50			100			
Assessment 2										
/Case Study 2/										
Seminar 2 /										
Project 2										
ESE			50	50			100			

23MFPC02

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	PC	3	0	0	3

re the metallurgical concepts during solidification of met asting processes, metallurgical concepts during welding relding processes, recent advances in casting and welding G METALLURGY AND DESIGN Metal and Mould – Solidification of Pure Metal and Alloy rive and Directional Solidification – Principles of Gatin Melt – Design Considerations in Casting – Designing num Stress – Casting Defects. C CASTING PROCESSES In Investment Casting – CO ₂ Molding – Centrifugal Castin IG METALLURGY AND DESIGN d its characteristics – Weldability of Steels, Cast Iron,	<pre>metallurgy, g.</pre>						
relding processes, recent advances in casting and welding G METALLURGY AND DESIGN Metal and Mould – Solidification of Pure Metal and Alloy rive and Directional Solidification – Principles of Gatin Melt – Design Considerations in Casting – Designing num Stress – Casting Defects. L CASTING PROCESSES In Investment Casting – CO ₂ Molding – Centrifugal Castin IG METALLURGY AND DESIGN	g. 9 Periods rs – Shrinkage in ng and Rising – for Directional 9 Periods g – Die Casting – 9 Periods Stainless Steel,						
G METALLURGY AND DESIGN Metal and Mould – Solidification of Pure Metal and Alloy vive and Directional Solidification – Principles of Gatin Melt – Design Considerations in Casting – Designing num Stress – Casting Defects. C CASTING PROCESSES on Investment Casting – CO ₂ Molding – Centrifugal Castin NG METALLURGY AND DESIGN	9 Periodsvs - Shrinkage inng and Rising -for Directional9 Periodsg - Die Casting -9 PeriodsStainless Steel,						
vive and Directional Solidification – Principles of Gatin Melt – Design Considerations in Casting – Designing num Stress – Casting Defects. CASTING PROCESSES on Investment Casting – CO ₂ Molding – Centrifugal Castin NG METALLURGY AND DESIGN	ng and Rising – for Directional 9 Periods g – Die Casting – 9 Periods Stainless Steel,						
Melt – Design Considerations in Casting – Designing num Stress – Casting Defects. CASTING PROCESSES In Investment Casting – CO ₂ Molding – Centrifugal Castin IG METALLURGY AND DESIGN	for Directional 9 Periods g - Die Casting - 9 Periods Stainless Steel,						
num Stress – Casting Defects. C CASTING PROCESSES on Investment Casting – CO ₂ Molding – Centrifugal Castin IG METALLURGY AND DESIGN	9 Periodsg - Die Casting -9 PeriodsStainless Steel,						
C CASTING PROCESSES In Investment Casting – CO2Molding – Centrifugal Castin IG METALLURGY AND DESIGN	g – Die Casting – 9 Periods Stainless Steel,						
n Investment Casting – CO2Molding – Centrifugal Castin	g – Die Casting – 9 Periods Stainless Steel,						
NG METALLURGY AND DESIGN	9 Periods Stainless Steel,						
	Stainless Steel,						
	Stainless Steel,						
d its characteristics - Weldahility of Steels Cast Iron							
	· Residual Stress						
n Alloys – Hydrogen Embrittlement – Lamellar Tearing -							
lidification - Analysis of Stress in Welded Structures	– Pre and Post						
ts – Weld Joint Design – Welding Defects – Testing of We	ldment.						
VENTIONAL AND SPECIAL WELDING PROCESSES	9 Periods						
ion Stir Welding-Friction Stir Processing-Explosive Wel	ding – Diffusion						
ncy Induction Welding – Ultrasonic Welding – Electron	Beam Welding –						
ADVANCES IN CASTING AND WELDING	9 Periods						
oundry – Sand Reclamation – Material Handling in Fou	ndry – Pollution						
Control in Foundry - Recent Trends in Casting - Computer Aided Design of Castings, Low							
Recent Trends in Casting – Computer Aided Design c	Pressure Die Casting, Squeeze Casting and Full Mould Casting Process – Automation in Welding						
	- Welding Robots - Overview of Automation of Welding in Aerospace, Nuclear, Surface						
queeze Casting and Full Mould Casting Process – Automa	ucical, Juliate						
queeze Casting and Full Mould Casting Process – Automa	ucical, Sullact						
queeze Casting and Full Mould Casting Process – Automa Overview of Automation of Welding in Aerospace, N							

1	Richard W. Heine, Carl R. Loper, Philip C. Rosenthal, "Principles of Metal Casting",
	McGraw Hill Education, 2014.
2	Ghosh, Ghosh Amitabha, Mallik AsokKumar, "Manufacturing Science", EAST WEST,
	2010.
3	Chakrabarti A K, "Casting technology and casting alloys", PHI Publishing Co, New
	Delhi, 2015.
4	P.N.Rao, "Manufacturing Technology (Foundry, Forming and Welding)", 2 nd
	Edition, Tata McGraw Hill Pub.Co. Ltd, 2004.
5	R S Parmar, "Welding Processes and Technology", Khanna Publications, 2013.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Apply the Thermal, Metallurgical aspects during solidification in	К2
	Casting.	
CO2	Apply on special casting process for specific applications.	К3
CO3	Analyze the metallurgical aspects during solidification in welding.	К3
C04	Relate the Unconventional and Special Welding processes for	К3
	Industrial production of components.	
C05	Evaluate the recent advances in Casting and Welding in Industrial	К3
	applications.	

COs/POs	P01	P02	P03	P04	P05			
C01	1	1	2	1	3			
CO2	3	2	3	2	1			
CO3	2	1	2	2	3			
CO4	3	2	1	2	1			
C05	1	3	1	2	2			
23MFPC02	2	2	2	2	2			
1 – Slight, 2 – Moderate, 3 – S	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PAT	SSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1		50	50				100		
CAT2			100				100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50	50				100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2			100				100		
ESE		50	50				100		

23MFPC03

CORROSION AND SURFACE ENGINEERING

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	РС	3	1	0	4

Course	To understand the different types of corrosion on engin	eering structures and					
Objectives							
UNIT – I	MECHANISMS AND TYPES OF CORROSION (9+3 Periods)						
Principles of	direct and Electro Chemical Corrosion, Hydrogen evolution a	nd Oxygen absorption					
mechanisms	- Galvanic corrosion, Galvanic series-specific types of corro	sion such as uniform,					
Pitting, Interg	granular, Cavitation's, Crevice Fretting, Erosion and Stress	s Corrosion – Factors					
influencing co	prrosion						
UNIT – II	TESTING AND PREVENTION OF CORROSION	(9+3 Periods)					
Corrosion tes	sting techniques and procedures - Prevention of Corros	ion – Design against					
corrosion -M	Iodifications of corrosive environment – Inhibitors – (Catholic Protection -					
Protective sur	face coatings.						
UNIT – III	CORROSION BEHAVIOR OF MATERIALS	(9+3 Periods)					
Corrosion of	steels, stainless steel, Aluminum alloys, copper alloys, Nicke	el and Titanium alloys					
corrosion of F	olymers, Ceramics and Composite materials.						
UNIT – IV	SURFACE ENGINEERING FOR WEAR AND CORROSION	(9+3 Periods)					
	RESISTANCE						
Diffusion coa	tings - Electro and Electro less Plating - Hot dip coating	– Hard facing, Metal					
spraying, Flan	me and Arc processes - Conversion coating - Selection of	coating for wear and					
Corrosion res							
UNIT – V	THIN LAYER ENGINEERING PROCESSES	(9+3 Periods)					
	ctron Beam hardening – Effect of process variables such as						
– Physical va	por deposition, Thermal evaporation, Arc vaporization, Sp	uttering, Ion plating –					
-	Chemical vapor deposition – Coating of tools, TiC, TiN, Al ₂ O ₃ and Diamond coating – Properties						
and application	ons of thin coatings.						
Contact Peri	ods:						
Lecture: 45 F	Periods Tutorial: 15 Periods Practical: 0 Periods T	otal: 60 Periods					

1	Ken N. Strafford, "Surface Engineering: Processes and Applications", A Technomic
T	Publication, Lanchester, Pennsylvania, 2018.
2	P. A. Dearnley, "Surface Engineering Basics", Published online by Cambridge University Press,
2	2017.
	J. DuttaMajumdar; I. Manna,"Laser Surface Engineering of Titanium and Its Alloys for
3	Improved Wear, Corrosion and High-Temperature Oxidation Resistance", Indian Institute
	of Technology, Kharagpur, India, 2015.
4	Andrew W Batchelor, MargamChandrasekaran Material, "Degradation and Its Control by
4	Surface Engineering", Bio-Scaffold International Pvt, Ltd, Singapore, 2013.

	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Identify the mechanisms and types of corrosion	K1
CO2	Analyze the corrosion and know the prevention of corrosion	K1
CO3	Select the type of corrosion in the different materials and its	КЗ
	behavior	
C04	Evaluate the surface coating for wear and corrosion resistance	КЗ
C05	Apply thin layer engineering processes for engineering materials	КЗ

COs/POs	P01	P02	P03	P04	P05		
C01	1	1	2	2	2		
CO2	1	1	2	2	2		
C03	1	1	2	2	3		
CO4	1	1	2	3	3		
C05	1	2	2	3	3		
23MFPC03	1	1	2	1	3		
1 – Slight, 2 – Moderate, 3 –	1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PAT	SSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	100						100		
CAT2			100				100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	100						100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2			100				100		
ESE	50		50				100		

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PC	0	0	4	2

Course	To give an overview of various methods of process modeling and different
Objectives	computational techniques for simulation.

List of Exercises:

- 1. Model and simulate the Coupling Joint used in Railway Passenger Coaches
- 2. Model and simulate the Impeller Assembly
- 3. Model and simulate the Stapler Assembly
- 4. Model and simulate the Oldham's Coupling
- 5. Model and analyse the Crane Hook
- 6. Model and analyse the 3D Printed Components
- 7. Conduct stress analysis of Axis Symmetric Components using ANSYS
- 8. Conduct dynamic analysis of Mechanical Engineering Components
- 9. Make CNC Turning and Milling simulations

Contact Periods:			
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 60 Periods	Total: 60 Periods

COUF Upon	Bloom's Taxonomy Mapped	
C01	Apply the concept of modeling and simulation techniques for different mechanical joints	K3
CO2	Apply the techniques in model and simulation for manufacturing assembly	К3
CO3	Analyze structural problems for mechanical engineering components	K4
C04	Analyze dynamic problems for mechanical engineering components	K4
C05	Apply the knowledge in the simulation practices in CNC machining	КЗ

COs/POs	P01	PO2	PO3	P04	PO5
C01	2	3	2	1	1
CO2	2	3	2	1	1
C03	2	3	3	1	1
CO4	3	3	2	1	1
C05	2	3	2	1	1
23MFPC04	2	3	2	1	1
1 – Slight, 2 – Moderate, 3 – Substantial					

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

Course	To gain knowledge in concepts of rapid product development, va	rious software
Objectives	tools, processes, techniques of additive manufacturing, industry	
	computing and data analytics.	,,
UNIT – I	INTRODUCTION	9 Periods
Rapid Produc	ct Development (RPD) – Product Development Cycle – Detail Des	ign– Prototype
-	Principle of AM Technologies and Their Classification of AM System	• • • •
AM Process; I	ssues in AM – IOT.	
UNIT – II	ADDITIVE MANUFACTURING (AM)	9 Periods
Stereo Lithog	raphy Systems – Fusion Deposition Modeling – Laminated Object M	lanufacturing –
Selective Lase	er Sintering - Direct Metal Laser Sintering (DMLS) - Three Dimensi	ional Printing -
Reverse Engin	neering - Engineering Applications – 4D Printing – Medical Applicati	ons – Principle
– Process Para	ameters – Process Details – Applications – Case Study.	
UNIT – III	PROCESSING POLYHEDRAL DATA	9 Periods
Polyhedral B-	Rep Modeling–STL Format – Defects and Repair of STL Files– Proce	essing STL Files
– Overview o	of the Algorithms Required for RP and RT - Slicing, Support Gene	ration, Feature
Recognition.		
UNIT – IV	ADDITIVE TOOLING (AT)	9 Periods
Introduction	to AT –Indirect AT Processes – Silicon Rubber Molding, Epoxy Tooli	ng, Spray Metal
Tooling and I	nvestment Casting Direct AT Processes – Laminated Tooling, Pow	der Metallurgy
Based Techno	ologies, Welding Based Technologies, Direct Pattern Making (Quick	Cast, Full Mold
Casting); Eme	erging Trends in AT.	
UNIT – V	INDUSTRY 4.0	9 Periods
Digitalization	and the Networked Economy - Introduction to Industry 4.0 -	Comparison of
Industry 4.0	Factory and Today's Factory - Internet of Things (IoT) - Industry	rial Internet of
Things (IoT)	- Smart Devices and Products - Smart Logistics - Support System for	r Industry 4.0 –
Cyber- Physic	cal Systems Requirements - Data as a New Resource for Organiz	ations - Cloud
Computing -	Trends of Industrial Big Data and Predictive Analytics for Sr	nart Business-
Architecture	of Industry 4.0.	
Contact Peri	ods:	
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Pariods

1	Kaushik Kumar Divya Zindani, J.Paulo Davim., "Digital Manufacturing and Assembly
	Systems in Industry 4.0", CRC Press, 2022.
2	Chee Kai & K F Leong "3D Printing and Additive Manufacturing - Principles and
	Applications", 5 th EditionBSP Publishers, 2019.
3	Kaushik Kumar, Divya Zindani, J.Paulo Davim., "Additive Manufacturing Technologies From
	an Optimization Perspective", IGI Global. 2019.
4	Alp Ustundag, Emre Cevikcan, "Industry 4.0: Managing The Digital Transformation",
	Springer, 2018.

5 Alasdair Gilchrist, **"Industry 4.0: The Industrial Internet of Things"**, A Press, 2016.

6 Gibson, I, Rosen, D.W., Stucker, B., "Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing", 2nd Edition, Springer, 2015.

COUR	COURSE OUTCOMES:		
Upon	Upon Completion of the Course, the Students will be Able to:		
C01	Apply the Concept of Liquid, Solid and Powder Based Rapid Prototyping Techniques for Rapid Product Development.	КЗ	
CO2	Apply the Rapid Tooling and Software for Rapid Manufacturing to Meet International Needs.	КЗ	
CO3	Select Appropriate Process for Production of a Part/Component that Meet International Standards of Quality and Time Constraints	КЗ	
CO4	To Demonstrate the Basic Technical Understanding of the Physical Principles, Materials, and Operation of the Types of AM Processes.	K4	
C05	Realize the Need of Industry 4.0 and it's Inter- Connectivity.	K2	

COs/POs	P01	PO2	PO3	P04	P05
C01	1	2	1	1	1
CO2	1	1	2	2	1
CO3	2	2	2	1	1
CO4	2	1	2	2	2
C05	1	2	1	2	3
23MFPE01	1	2	2	2	2

ASSESSMENT PA	SSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1			100				100
CAT2			50	50			100
Individual			100				100
Assessment 1 /Case Study 1/ Seminar 1 / Project1							
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2			50	50			100
ESE			50	50			100

23MFPE02

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РЕ	3	0	0	3

Course	To gain knowledge in the methods of measurement, selection	of measuring			
Objectives	instruments, standards of measurement, various measuring	-			
objectives	accurate and precise measurement of a given quantity.	,			
UNIT – I	LASER METROLOGY	9 Periods			
-					
	– Types of Lasers – Laser in Engineering Metrology – Metrological				
	ons in Machine Systems – Interferometer Applications – Speckle In				
	rometers in Manufacturing and Machine Tool Alignment Testing				
-	ndustrial Robot's Laser Doppler Technique – Laser Doppler Anemon	-			
UNIT – II	MEASUREMENT OF SURFACE FINISH AND MEASURING	9 Periods			
	MACHINES				
	Types of Surface Texture: Surface Roughness Measurement Methods	s– Comparison,			
Profilometer,	3D Surface Roughness Measurement – Instruments.				
UNIT – III	CO-ORDINATE MEASURING MACHINE	9 Periods			
Co-Ordinate	Metrology – CMM Configurations – Hardware Components – Sof	tware – Probe			
Sensors – Dis	placement Devices - Performance Evaluations - Software - Hardw	vare – Dynamic			
Errors – Th	ermal Effects Diagram – Temperature Variations Environme	ent Control –			
Applications.					
UNIT – IV	OPTO ELECTRONICS AND VISION SYSTEM	9 Periods			
Optoelectron	c Devices – CCD – On-Line and In-Process Monitoring in Production	n –Applications			
Image Analys	is and Computer Vision – Image Analysis Techniques – Spatial Fe	eature – Image			
Extraction -	Segmentation - Digital Image Processing - Vision System for M	leasurement –			
Comparison I	aser Scanning with Vision System.				
UNIT – V	QUALITY IN MANUFACTURING ENGINEERING	9 Periods			
Importance of	Importance of Manufacturing Planning for Quality – Concepts of Controllability – Need or				
Quality Management System and Models - Quality Engineering Tools and Techniques -					
Statistical Process Control – Six Sigma Concepts – Poka Yoke – Computer Controlled					
Systems Used in Inspection.					
Contact Peri	*				
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	N.V. Raghavendra, L. Krishnamurthy, "Engineering Metrology and Measurements", Oxford
	University Press, USA, 2013.
2	Brian cantor, "Automotive Engineering: Light Weight, Functional and Novel Materials",
	Taylor and Francis, 2010.
3	S. K. Singh, "Industrial Instrumentation and Control", 3rd Edition, McGraw Hill Education
	(India) Private Limited, New Delhi, 2009.
4	B.C. Nakra and K.K. Choudhary, "Instrumentation measurement and analysis", 3rd Edition,
	McGraw Hill Education (India) Private Limited, New Delhi, 2009.
5	A.K. Sawhney and Puneet Sawhney, "Mechanical Measurement and Instrumentation and
	Control ", 12 th Edition, Dhanpat Rai& Co, 2009.
6	Thomas G. Beckwith, Roy D. Marangoni and John H. Lienhard V, "Mechanical Measurements"
	6 th Edition, by, Published by Addison Wesley, 2007.

COUF	COURSE OUTCOMES:				
Upon	Mapped				
C01	Apply principle of metrology in working of various measuring instruments.	K2			
CO2	Select the different measuring in the manufacturing inspection	КЗ			
CO3	Use the different measuring instruments to measure the qualitative and quantitative characteristics of components.	K2			
C04	Analyze the data statistically	К3			
C05	Evaluate the data and decision to be taken for controlling the quality complying with international standards.	К3			

COs/POs	P01	P02	P03	P04	P05					
C01	1	1	1	2	1					
C02	1	2	2	2	1					
C03	1	2	3	2	1					
CO4	2	1	1	2	1					
C05	1	2	3	2	2					
23MFPE02	1	2	2	2	1					
1 – Slight, 2 – Moderate, 3 –	Substantial		1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remem bering (K1) %	Understandin g (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Tota 1%			
CAT1		50	50				100			
CAT2		50	50				100			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50	50				100			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50	50				100			
ESE		50	50				100			

23MFPE03

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To introduce and familiarize the industry 4.0 physi	cal structure,			
Objectives	interconnectivity, architecture, IoT, cloud computing, data analyti	,			
objectives	integrated IoT, cloud computing and data analytics.				
UNIT – I	INDUSTRY 4.0	9 Periods			
Digitalization	and the Networked Economy -Introduction to Industry 4.0 -	Comparison of			
Industry 4.0 Factory and Today's Factory –Internet of Things (IoT) –Industrial Internet of Things					
(IoT) -Smart	Devices and Products -Smart Logistics -Support System for Indus	stry 4.0 -Cloud			
Computing -	Trends of Industrial Big Data and Predictive Analytics for Sm	art Business –			
Architecture of	of Industry 4.0.				
UNIT – II	IOT AND ITS PROTOCOLS	9 Periods			
Definitions an	nd Functional Requirements – Motivation – Architecture - Web 3.0	View of IoT –			
Ubiquitous Io	T Applications – Four Pillars of IoT – DNA of IoT – Communication	Middleware for			
	rmation Security. IoT Reference Architecture - Unified Data Standard				
	4 – BAC Net Protocol – Modbus –KNX – Zigbee Architecture – Netv	vork Layer APS			
Layer – Secur					
UNIT – III	CLOUD COMPUTING	9 Periods			
	s versus Internet of Things – Two Pillars of the Web – Architecture S				
	tform Middleware for WoT – Unified Multitier WoT Architecture – W				
	lligence. Cloud of Things: Grid/SOA and Cloud Computing – Cloud				
	ds – Cloud Providers and Systems – Mobile Cloud Computing – The	Cloud of Things			
	and Data Analytics.				
UNIT – IV	INTEGRATED IOT	9 Periods			
	ling Solutions in the Internet of Things Business Models for the Inter				
-	amics: Population Models - Information Cascades - Network Eff				
5	tructural Models – Cascading Behavior in Networks – The	e Small–World			
Phenomenon.		0.0.1.1			
UNIT – V	APPLICATIONS	9 Periods			
	the Internet of Things for Increased Autonomy and Agility in				
Production Environments – Resource Management in the Internet of Things: Clustering,					
Synchronization and Software Agents–Industry 4.0 in Car Manufacturing – Electronics					
Manufacturing – IOT Based Building Automation –Agricultural Automation.					
Contact Perio		Devie de			
Lecture 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods			

1	Kiran Kumar Pabbathi, "Quick Start Guide to Industry 4.0: One-Stop Reference Guide for						
	Industry 4.0", Create space Independent Publishing Platform, 2018.						
2	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A Press, 2016.						
3	Natalie Enright Jerger and Li ShiuanPeh, "On-Chip Networks, Synthesis Lectures on						
	Computer Architecture", Morgan and Claypool Publishers, 2009.						
4	Duato J, Yalamanchili S, and Lionel Ni, "Interconnection Networks: An Engineering						
	Approach", Morgan Kaufmann Publishers, 2004.						

COUF Upon	Bloom's Taxonomy Mapped	
C01	Realize the need of industry 4.0 and its inter-connectivity.	K4
CO2	Interpret the architecture of IoT and its protocols	K4
CO3	Recognize the uses of cloud computing and data analytics	K4
CO4	Familiar the concepts of integrated IoT.	K4
C05	Plan the uses of IoT, cloud computing, data analytics and Industry 4.0 technologies.	K4

COs/POs	P01	P02	PO3	P04	PO5		
C01	2	1	2	1	1		
C02	1	2	2	1	2		
C03	1	2	1	2	3		
CO4	1	1	2	1	3		
C05	2	2	3	2	2		
23MFPE03	1	2	2	1	3		
1 – Slight, 2 – Moderate, 3 – Substantial.							

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1				100			100			
CAT2				100			100			
Individual				100			100			
Assessment 1										
/Case Study 1/										
Seminar 1 /										
Project1										
Individual				100			100			
Assessment 2										
/Case Study 2/										
Seminar 2 /										
Project 2										
ESE				100			100			

23MFPE04

ADVANCED ENGINEERING MATERIALS AND METALLURGY

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To Gain the Concepts, Fracture Behavior, selection of modern me	tallic materials				
Objectives	and non - metallic materials.					
UNIT – I	ELASTIC AND PLASTIC BEHAVIOR	9 Periods				
	Ietals and Polymers An Elastic and Visco- Elastic Behavior – Mecha					
	and Non- Metallic Shear Strength of Perfect and Real Crystals –					
Mechanisms, Work Hardening, Solid Solutioning, Grain Boundary Strengthening, Poly Phase						
	pipitation, Particle, Fiber and Dispersion Strengthening. Effect of	•				
	rain Rate on Plastic Behavior – Super Plasticity – Deformation of No	=				
Materials.						
UNIT – II	FRACTURE BEHAVIOUR	9 Periods				
Griffith's theo	ry, Stress Intensity Factor and Fracture Toughness – Toughening	Mechanisms –				
	le Transition in Steel – High Temperature Fracture, Creep					
Parameter – I	Deformation and Fracture Mechanism Maps – Fatigue, Low and Hig	h Cycle Fatigue				
Test, Crack I	nitiation and Propagation Mechanisms and Paris Law Effect of	of Surface and				
Metallurgical	Parameters on Fatigue - Fracture of Non - Metallic Materials - Fa	ailure Analysis,				
Sources of Fai	lure, Procedure of Failure Analysis.					
UNIT – III	SELECTION OF MATERIALS	9 Periods				
Motivation fo	or Selection, Cost Basis and Service Requirements – Selection	for Mechanical				
Properties,						
Strength, Tou	ghness, Fatigue and Creep – Selection for Surface Durability Corro	sion and Wear				
Resistance -	Relationship Between Materials Selection and Processing - C	ase Studies in				
Materials Sele	ection With Relevance to Aero, Auto, Marine, Machinery and Nuclear	Applications –				
Computer Aid	ed Materials Selection.					
UNIT – IV	MODERN METALLIC MATERIALS	9 Periods				
Dual Phase S	teels, High Strength Low Alloy (HSLA) Steel, Transformation Ind	uced Plasticity				
(TRIP)						
Steel, Maragi	ng Steel, Nitrogen Steel – Intermetallics, Ni and Ti-Aluminides – St	mart Materials,				
Shape						
Memory Alloys – Metallic Glass and Nano Crystalline Materials.						
UNIT – V	NON - METALLIC MATERIALS	9 Periods				
Bio Materials – Polymeric Materials – Formation of Polymer Structure – Production Techniques						
of Fibers, Foams, Adhesives and Coating – Structure, Properties and Applications of Engineering						
Polymers – Advanced Structural Ceramics, WC, TiC, TaC, Al_2O_3 , SiC, Si_3N_4 CBN and Diamond –						
Properties, Processing and Applications.						
	Contact Periods					
Lecture: 45 F	eriods Tutorial: 0 Periods Practical:0 Periods Total: 45	Periods				

REFERENCES:

1	Pravin Kumar, "Basic Mechanical Engineering", Pearson Education; 2 nd Edition. 2018.
2	Yongchang Liu, Yingquan Peng, "Advanced Material Engineering - Proceedings Of The

- 2015 International Conference", World Scientific Publishing Co Pt Ltd, 2015.
- 3 R. Balasubramaniam, Callister's, "Materials Science and Engineering", Wiley; 2ndEdition 2014.
- 4 Datta B.K, **"Powder Metallurgy: An Advanced Technique of Processing Engineering Materials"**, Prentice Hall India Learning Private Limited; 2ndedition 2013.

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Analyze the Concepts of Material Behavior for Specific Applications.	КЗ
CO2	Identify the Performance Requirements of a Desired Material for a	K2
	Specific Engineering Application.	
CO3	Select Modern Materials for Automotive and Aerospace Applications.	K2
C04	Identify and Describe Different Types of Material Processing Techniques	К3
	for Advanced Materials	
C05	Ability to Select Suitable Material for Specific Applications	K2

COs/POs	P01	P02	P03	P04	PO5			
C01	1	2	2	1	3			
C02	1	1	2	1	1			
C03	2	1	2	1	2			
CO4	2	1	2	1	3			
C05	1	2	2	1	3			
23MFPE04	1	2	2	1	3			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PA	ATTERN – THEO	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		50	50				100
CAT2		50	50				100
Individual							
Assessment 1							
/Case Study		50	50				100
1/ Seminar 1							
/ Project1							
Individual							
Assessment 2							
/Case Study		50	50				100
2/ Seminar 2							
/ Project 2							
ESE		50	50				100

23MFPE05	

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	PE	3	0	0	3

Course	To introduce non- linear computational methods to solve problems	s in colide &							
Objectives	structure, basic principles of finite element analysis procedure, sol								
Objectives									
	structural, thermal, dynamic and formulation methods in FEM.	0 Deada da							
UNIT – I	MATHEMATICAL MODELS	9 Periods							
-	d Discretization – Interpolation, Elements, Nodes and degre								
-	al Procedures-Stiffness Matrices – Boundary Conditions-Solution of	Equations Ritz							
	Method, Variation Method, Method of Weighted residuals								
UNIT – II	BASIC ELEMENTS	9 Periods							
Interpolation	and Shape Functions – Element Matrices – Linear Triangular Ele	ements (CST) –							
Quadratic Tr	iangular Elements – Bilinear Rectangular Elements – Quadrat	ic Rectangular							
Elements –So	blid Elements – Higher Order Elements – Nodal Loads-Stress	Calculations –							
Example Prob	lems.								
UNIT – III	UNIT – III ISOPARAMETRIC ELEMENTS 9 Periods								
Introduction-	Bilinear Quadrilateral Elements – Quadratic Quadrilaterals	- Hexahedral							
Elements – D	etermination of Shape Functions - Numerical Integration - Quad	rature – Static							
Condensation	- Load Considerations - Stress Calculations - Examples O	f 2D and 3D							
Applications.									
UNIT – IV	FINITE ELEMENT FORMULATION FOR STRUCTURAL	9 Periods							
	APPLICATIONS								
Linear Elastic	: Stress Analysis –2D, 3D and Ax Symmetric Problems – Analysi	s of Structural							
Vibration – M	ass And Damping Matrices – Damping – Harmonic Response – Dir	ect Integration							
Techniques –	Explicit And Implicit Methods.								
UNIT – V	HEAT TRANSFER AND FLUID MECHANICS APPLICATIONS	9 Periods							
Nonlinear Pr	oblems – Element Formulation – Heat Conduction, Fluid flow,	etc-Transient							
Thermal Anal	ysis–Acoustic Frequencies and Modes- Incompressible and Rotation	al Flows.							
Contact Peri	ods: 45								
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 4	5 Periods							

1	Gilbert Strang & George Fix, "An Analysis of the Finite Element Method", Wellesley-
	Cambridge Press,2018.
2	W.B. Bickford, "Advanced Mechanics of Materials", Pearson; 1st Edition, 2015
3	Thomas Apel, "Advanced Finite Element Methods and Applications", Springer; 2013th
	edition 2014.
4	R. D. Cook & W. C. Young, "Advanced Mechanics of Materials", Pearson; 2 nd edition, 2003

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply numerical solutions to elasticity and possibly heat transfer	К2
	problems using the finite element method.	
C02	Describe Energy Theorems and their implementation in the finite	К2
	element setting	
CO3	Evaluate approximations associated with the finite element method	К3
C04	Apply convergence requirements and associated modeling techniques	K4
	and methods.	
CO5	Select appropriate elements and analysis types given a physical system.	K4

COs/POs	P01	P02	P03	P04	P05			
C01	1	2	2	1	3			
C02	1	2	1	3	3			
C03	1	1	3	2	2			
C04	1	2	2	3	1			
C05	1	1	2	2	3			
23MFPE05	1	2	2	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial.								

ASSESSMENT PAT	TERN – TH	-	-	-			
Test / Bloom's Category*	Remem bering (K1) %	Understandin g (K2) %	Applyin g (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Total %
CAT1		100					100
CAT2			50	50			100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		100					100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2			50	50			100
ESE		50	25	25			100

SEMESTER

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course	The objective of the course is to make the learners understand t	he format and		
Objectives	intricacies involved in writing a research paper.			
UNIT – I	PLANNING AND PREPARATION	6 Periods		
Need for p	ublishing articles, Choosing the journal, Identifying a model j	ournal paper,		
Creation of f	iles for each section, Expectations of Referees, Online Resources			
UNIT – II	SENTENCES AND PARAGRAPHS	6 Periods		
Basic word	in English, Word order in English and Vernacular, placing	nouns, Verbs,		
Adjectives, a	nd Adverb suitably in a sentence, Using Short Sentences, Discourse	e Markers and		
Punctuation	s- Structure of a Paragraph, Breaking up lengthy Paragraphs			
UNIT – III ACCURACY, BREVITY AND CLARITY (ABC) OF WRITING				
Accuracy, Br	evity and Clarity in Writing, Reducing the linking words, Avoidin	g redundancy,		
Appropriate	use of Relative and Reflexive Pronouns, Monologophobia, verifyi	ng the journal		
style, Logica	l Connections between others author's findings and yours			
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING	6 Periods		
Making you	findings stand out, Using bullet points headings, Tables and Gra	aphs- Availing		
non-experts	opinions, Hedging, Toning Down Verbs, Adjectives, Not o	over hedging,		
Limitations	of your research.			
UNIT – V	SECTIONS OF A PAPER	6 Periods		
Titles, Abst	racts, Introduction, Review of Literature, Methods, Results	s, Discussion,		
Conclusions,	References			
Contact Per	iods:			
contact Per				

1	Goldbort R, "Writing for Science", Yale University Press (available on GoogleBooks), 2006.
2	Day R, "How to Write and Publish a Scientific Paper", Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.
4	Adrian Wallwork, "English for Writing Research Papers", Springer New York Dordrecht
	Heidelberg London, 2011.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:			
C01	Understand the need for writing good research paper.	K2		
CO2	CO2 Practice the appropriate word order, sentence structure and paragraph writing			
CO3	Practice unambiguous writing	K3		
C04	Avoid wordiness in writing	K2		
C05	Exercise the elements involved in writing journal paper.	К3		

Course Articulation Matrix	Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05					
C01	3	3	1	1	1					
CO2	3	3	1	1	1					
C03	3	3	1	1	1					
CO4	3	3	1	1	1					
C05	3	3	1	1	1					
23MFACZ1	3	3	1	1	1					
1 – Slight, 2 – Moderate, 3 – S	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMEN	T PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	50	50	-	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	50	50	-	-	-	100
ESE	30	30	40	-	-	-	100

DISASTER MANAGEMENT (Common to all branches)

SEMESTER

PREREQUISITES	CATEGORY	L	Τ	Ρ	С
NIL	AC	2	0	0	0

Course	1. To become familiar in key concepts and consequences about hazard	ls, disaster
Objectives	and area of occurrence.	
	2. To know the various steps in disaster planning.	
	3. To create awareness on disaster preparedness and management.	
UNIT – I	INTRODUCTION	6 Periods
Disaster: Defin	ition, Factors and Significance; Difference between Hazard and Disaster;	Natural and
Manmade Disa	sters: Difference, Nature, Types and Magnitude. Areas proneto ,Earthq	uakesFloods ,
	slides ,Avalanches ,Cyclone and Coastal Hazards with Special Reference to Ts	
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods
Economic Dam	nage, Loss of Human and Animal Life, Destruction of Ecosystem. Natu	ral Disasters:
Earthquakes, V	olcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides an	d Avalanches,
Man-made disa	ster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills,	Outbreaks of
Disease and Ep	idemics, War and Conflicts.	
UNIT – III	DISASTER PLANNING	6 Periods
Disaster Plann	ing-Disaster Response Personnel roles and duties, Community Mitigati	onGoals, Pre-
Disaster Mitiga	tion Plan, Personnel Training, Comprehensive Emergency Management, E	arly Warning
Systems.		
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT	6 Periods
Preparedness:	Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Ris	k: Application
of Remote Sen	sing, Data from Meteorological and other Agencies, Media Reports: Gove	rnmental and
Community Pre	eparedness.	
UNIT – V	RISK ASSESSMENT	6 Periods
		01 crious
Disaster Risk: (Concept and Elements, Disaster Risk Reduction, Global and National Disaster	
Techniques of	Risk Assessment, Global Co-Operation in Risk Assessment and Warr	Risk Situation.
Techniques of		Risk Situation.
Techniques of Participation in	Risk Assessment, Global Co-Operation in Risk Assessment and Warr	Risk Situation. hing, People's

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies" , New Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections" , Prentice Hall Of India, New Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies" , Deep &Deep Publication Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities" , I.K. International Publishing House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUI	RSE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
C01	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
C04	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

Course Articulation Matri	Course Articulation Matrix									
COs/POs	P01	P02	P03	P04	P05					
C01	2	1	1	2	2					
CO2	1	2	1	1	1					
C03	1	1	1	2	2					
CO4	1	1	1	2	2					
C05	2	1	1	2	2					
23MFACZ2	1	1	1	2	2					
1 – Slight, 2 – Moderate, 3 –	Substantial									

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2			100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

VALUE EDUCATION (Common to all branches)

SEMESTER

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course	1. Value of education and self- development.	
Objectives	2. Requirements of good values in students.	
	3. Importance of character.	
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods
Social values	and individual attitudes. Work ethics, Indian vision of humanism. Moral a	ind non-moral
valuation. Sta	ndards and principles. Value judgements.	
UNIT – II	PERSONALITY AND BEHAVIOR DEVELOPMENT	6 Periods
Soul and Scie	ntific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love	and Kindness.
Avoid fault Th	ninking. Free from anger, Dignity of labour. Universal brotherhood and religio	ous tolerance.
UNIT – III	VALUES IN HUMAN LIFE	6 Periods
Importance o	f cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence,	Concentration.
Truthfulness,	Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriot	ism. Love for
nature,Discip	line.	
UNIT – IV	VALUES IN SOCIETY	6 Periods
True friendsh	ip. Happiness Vs suffering, love for truth. Aware of self-destructive habits. A	ssociation and
Cooperation.	Doing best for saving nature.	
UNIT – V	POSITIVE VALUES	6 Periods
Character and	d Competence -Holy books vs Blind faith. Self-management and Good hea	lth. Science of
reincarnation	. Equality, Nonviolence, Humility, Role of Women. All religions and same r	nessage. Mind
your Mind, Se	lf-control. Honesty, Studying effectively.	
Lecture:30	Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 P	eriods

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University
	Press, New Delhi,1998
2	Dr.Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi,2004
4	https://nptel.ac.in/courses/109104068/36

	COURSE OUTCOMES:			
Upon	completion of the course, the students will be able to:	Mapped		
C01	Know the values and work ethics.	K3		
CO2	Enhance personality and behaviour development.	K3		
CO3	Apply the values in human life.	K3		
C04	Gain Knowledge of values in society.	K3		
C05	Know the importance of positive values in human life.	КЗ		

Course Articulation Matri	x				
COs/POs	P01	PO2	PO3	P04	PO5
C01	1	1	1	2	2
C02	1	2	1	1	2
CO3	1	2	1	2	2
CO4	1	1	1	2	2
CO5	1	1	2	2	2
23MFACZ3	1	1	1	2	2
1 – Slight, 2 – Moderate, 3 –	Substantial				

ASSESSMEN	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1			100				100				
CAT2			100				100				
Individual Assessment 1/Case Study 1/Seminar 1/Project 1			100				100				
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100				
ESE			100				100				

CONSTITUTION OF INDIA (Common to all branches.)

SEMESTER

PREREQUISI	ſES	CATEGORY	L	Т	Р	С	
v	NIL	AC	2	0	0	0	
Course	1. To address the importance of constitutional r	ights and duties					
Objectives	2. To familiarize about Indian governance and le	ocal administratio	on.				
	3. To know about the functions of election comr						
UNIT – I	INDIAN CONSTITUTION			(6 Pei	riods	
History of Mal	ing of the Indian Constitution: History Drafting Co	ommittee, (Compos	ition	& V	Vork	(ing)	
Philosophy of t	he Indian Constitution: Preamble Salient Features.						
UNIT – II	CONSTITUTIONAL RIGHTS & DUTIES			(6 Pei	riods	
	onstitutional Rights & Duties: Fundamental Rights ,						
	Exploitation, Right to Freedom of Religion, Cultur		al Ri	ights	, Rig	ght to	
Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.							
UNIT – III ORGANS OF GOVERNANCE					6 Periods		
	vernance: Parliament, Composition, Qualifications						
	cutive, President, Governor, Council of Ministers, Ju	diciary, Appointme	ent a	nd 'l	rans	ster o	
	ations, Powers and Functions.						
UNIT – IV	LOCAL ADMINISTRATION					riods	
	ration: District's Administration head: Role and Imp						
	of Elected Representative, CEO of Municipal Corpora						
	Elected officials and their roles, CEO Zila Panch						
	Hierarchy (Different departments), Village level: Ro	ole of Elected and	Арро	ointe	d of	ticials	
	grass root democracy.						
UNIT – V	ELECTION COMMISSION					riods	
Election Comn	nission: Election Commission: Role and Functionir	-					
	Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the					or the	
		welfare of SC/ST/OBC and women.					
welfare of SC/S							
welfare of SC/S	T/OBC and women. eriods Tutorial: 0 Periods Practical: 0Peri	iods Total: 3	0 Pe	rioc	ls		

REFERENCES:

"The Constitution of India", 1950 (Bare Act), Government Publication. 1

2 Dr. S. N. Busi, Dr. B. R. Ambedkar"Framing of Indian Constitution", 1st Edition, 2015.

3 M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.

4 D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Discuss the growth of the demand for civil rights in India.	К2
CO2	Discuss the intellectual origins of the framework of argument that informed the	К2
	conceptualization of social reforms leading to revolution in India.	
CO3	Know the various organs of Indian governance.	К2
CO4	Familiarize with the various levels of local administration.	К2
CO5	Gain knowledge on election commission of India.	К2

Course Articulation Matri	x				_
COs/POs	P01	P02	P03	P04	PO5
C01	1	1	1	2	2
CO2	1	1	2	1	2
CO3	1	2	1	1	2
CO4	1	1	1	2	2
CO5	1	1	1	2	2
23MFACZ4	1	1	1	2	2
1 – Slight, 2 – Moderate, 3 –	Substantial			•	

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1		100					100		
CAT2		100					100		
Individual Assessment 1/Case Study 1/Seminar 1/Project 1		100					100		
Individual Assessment 2/Case Study 2/Seminar 2/Project 2		100					100		
ESE		100					100		

PEDAGOGY STUDIES (Common to all branches)

SEMESTER

PREREQUIS	ITES	CATEGORY	L	Т	Р	C
	NIL	AC	2	0	0	0
Course	1. To Understand of various theories of learning,	prevailing pedag	ogic	al p	ract	ices
Objectives	and design of curriculum in engineering studies.					
Objectives	2. Application of knowledge in modification of	curriculum, its a	asses	sme	ent	and
	introduction of innovation in teaching methodolog	у.				
UNIT – I	INTRODUCTION		(6 Pe	riod	S
Introduction	and Methodology: Aims and rationale, Policy backgr	ound, Conceptual	fran	new	ork	and
terminology	Theories of learning, Curriculum, Teacher education.	Conceptual fram	ewor	rk, F	Resea	arcł
questions. Ov	erview of methodology and Searching.					
UNIT – II PEDAGOGICAL PRACTICES				6 Pe	riod	S
Thematic over	erview: Pedagogical practices are being used by teachers	in formal and info	orma	l cla	ssro	oms
in developing	g countries. Curriculum, Teacher education. Evidence o	on the effectivenes	ss of	ped	agog	gica
practices Met	hodology for the in depth stage: quality assessment of inc	cluded studies.				
UNIT – III	PEDAGOGICAL APPROACHES			6 Pe	riod	S
How can teac	her education (curriculum and practicum) and the school	l curriculum and gı	uidan	ice n	natei	rials
	effective pedagogy? Theory of change. Strength and r					
-	agogical practices. Pedagogic theory and pedagogical a	pproaches. Teache	er's a	ttitu	des	and
beliefs and Pe	edagogic strategies.					
UNIT – IV	PROFESSIONAL DEVELOPMENT				riod	-
Professional	development: alignment with classroom practices and	d follow-up suppo	rt. P	eer	sup	por
	n the head teacher and the community. Curriculum an	d assessment Bari	riers	to l	earn	ing
limited resou	rces and large class sizes.					
UNIT – V	CURRICULUM AND ASSESSMENT		(6 Pe	riod	S
	s and future directions Research design Contexts Pedago	gy Teacher educati	on Cı	urric	culur	n
	ent Dissemination and research impact.					
and assessme	ent Dissemination and research impact. Periods Tutorial: 0 Periods Practical: 0Perio	ds Total: 30) Per	riod	s	

1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261,
	2001.
2	Alexander RJ , Culture and pedagogy: International comparisons in primary education. Oxford and
	Boston: Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and
	reading in Africa: Does teacher preparation count? International Journal Educational Development,
	33 (3): 272–282, 2013.
4	Agrawal M , Curricular reform in schools: The importance of evaluation, Journal of Curriculum
	Studies, 36 (3): 361-379, 2004

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Explain the concept of curriculum, formal and informal education systems and	КЗ
	teacher education.	
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical	КЗ
	approaches	
CO3	Know the relation between teacher and community, support from various levels of	КЗ
	teachers to students and limitation in resources and size of the class.	
CO4	Perform research in design a problem in pedagogy and curriculum development.	K3

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05		
C01	1	2	1	2	2		
C02	1	1	2	1	1		
C03	1	2	1	1	1		
CO4	1	2	1	1	1		
23MFACZ5	1	2	1	1	1		
1 – Slight, 2 – Moderate, 3 – Su	1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1			100				100
CAT2			100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1			100				100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE			100				100

23MFACZ6	STRESS MANAGEMENT BY YOGA	SEMESTER
25MIAC20	(Common to all branches)	SEMESTER

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course	1. To create awareness on the benefits of yoga and meditation.	
Objectives	2. To understand the significance of Asana and Pranayama.	
UNIT – I	PHYSICAL STRUCTURE AND ITS FUNCTIONS	6 Periods
-	l structure, Importance of physical exercise, Rules and regulation of sin	
exercises, han	l exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, m	
0 1	ressure, body relaxation.	
UNIT – II	YOGA TERMINOLGIES	6 Periods
Yamas - Ahims	a, satya, astheya, bramhacharya, aparigrahaNiyamas- Saucha, santosha, t	apas, svadhyaya,
Ishvarapranidl	nana.	
UNIT – III	ASANA	6 Periods
Asana - Rules &	د Regulations – Types & Benefits	
UNIT – IV	PRANAYAMA	6 Periods
Regularization	of breathing techniques and its effects-Types of pranayama	
UNIT – V	MIND	6 Periods
Bio magnetism	& mind - imprinting & magnifying – eight essential factors of living beings,	Mental
frequency and	ten stages of mind, benefits of meditation, such as perspicacity, magnanimi	ty, receptivity,
adaptability, cr	eativity.	

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Tarining-Part-I" , Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", AdvaitaAshrama (Publication
	Department), Kolkata.
3	PanditShambuNath, "Speaking of Stress Management Through Yoga and Meditation", New Dawn
	Press, New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga" , MotilalBanarsidassPublishers,New Delhi, 2007.

COUR	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
C01	Practice physical exercises and maintain good health.	КЗ
CO2	Attain knowledge on the various concepts of Yoga.	КЗ
CO3	Perform various Asanas with an understanding on their benefits.	КЗ
C04	Practice breathing techniques in a precise manner.	КЗ
CO5	Attain emotional stability and higher level of consciousness.	К3

Course Articulation Matr	ix					
COs/POs	P01	P02	P03	P04	PO5	
C01	-	-	-	2	2	
CO2	-	-	-	2	1	
CO3	-	-	-	1	2	
CO4	-	-	-	2	1	
CO5	-	-	-	1	2	
23MFACZ6	-	-	-	2	2	
1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		50	50				100
CAT2			100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1		50	50				100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE		50	50				100

23MFACZ7
2JMIAUL/

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

SEMESTER

(Common to all branches)

DDEDEOLUCITES	CATECODY	т	т	n	C
PREREQUISITES	CATEGORY	L	I	Υ	L
NIL	AC	2	0	0	0

Course	1. To familiar with Techniques to achieve the highest goal in life.				
Objectives	2. To become a person with stable mind, pleasing personality and c	letermination.			
UNIT – I		6 Periods			
Neetisatakam-	Holistic development of personality-Verses- 19,20,21,22 (wisdom)-Verse	s29,31,32 (pride			
& heroism)-Ve	rses- 26,28,6.				
UNIT – II		6 Periods			
Verses- 52,53,5	59 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day work and	duties Shrimad			
BhagwadGeeta	- Chapter 2-Verses 41, 47,48,				
UNIT – III		6 Periods			
Shrimad Bhagy	wadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23,	35,- Chapter 18-			
Verses 45, 46, 4	48.				
UNIT – IV		6 Periods			
Statements of I	oasic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62, 68 -Ch	apter 12 -Verses			
13, 14, 15, 16,1	7, 18-Personality of Role model.				
UNIT – V		6 Periods			
Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39-					
Chapter18 – Ve	erses 37,38,63.				
Lecture:30 F	Periods Tutorial: 0 Periods Practical: 0Periods Total: 30	Periods			

1	Swami SwarupanandaAdvaita Ashram "Srimad Bhagavad Gita" , AdvaitaAshrama , Kolkata,2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Satakam" (Niti-sringar-vairagya), New Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog "Bhagavad Gita: The Song Of God" , USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada "Bhagavad-Gita As It Is" ,Bhaktivedanta Book Trust Publications,2001.

	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the Holistic development in life.	K4
CO2	Effective Planning of day to day work and duties.	K4
CO3	Identify mankind to peace and prosperity.	K4
C04	Develop versatile personality.	K4

Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	P05			
C01	-	-	-	1	1			
CO2	-	-	-	2	1			
CO3	-	-	-	1	1			
CO4	-	-	-	2	1			
23MFACZ7	-	-	-	2	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1				100			100		
CAT2				100			100		
Individual Assessment 1/Case Study 1/Seminar 1/Project 1				100			100		
Individual Assessment 2/Case Study 2/Seminar 2/Project 2				100			100		
ESE				100			100		

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course	1. To get a working knowledge in illustrious Sanskrit, the scientific language in the						
Objectives	world.						
	2. Learning of Sanskrit to improve brain functioning.						
	3. Enhancing the memory power.	3. Enhancing the memory power.					
	4. Learning of Sanskrit to develop the logic in mathematics, science & ot	her subjects.					
UNIT – I	BASICS OF SANSKRIT	6 Periods					
Alphabets in S	anskrit, Past/Present/Future Tense.						
UNIT – II	SENTENCES AND ROOTS	SENTENCES AND ROOTS 6 Periods					
Simple Senten	ces - Order, Introduction of roots.						
UNIT – III	SANSKRIT LITERATURE	6 Periods					
Technical info	rmation about Sanskrit Literature						
UNIT – IV	TECHNICAL CONCEPTS -1	6 Periods					
Technical cond	epts of Engineering-Electrical, Mechanical						
UNIT – V	TECHNICAL CONCEPTS -2	6 Periods					
Technical conc	epts of Engineering-Architecture, Mathematics						
Lecture:30 Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 Periods							

1	Dr.Vishwas, "Abhyaspustakam", Samskrita-Bharti Publication, New Delhi, 2020.					
2	Prathama DeekshaVempatiKutumbshastri, " Teach Yourself Sanskrit ", Rashtriya Sanskrit Sansthanam, New Delhi, Publication, 2009.					
-						
3	Suresh Soni, "India's Glorious Scientific Tradition ", Ocean books (P) Ltd., New Delhi,2006.					

COUR	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
C01	Recognize ancient literature and their basics	КЗ
CO2	Formulate the sentences with order and understand the roots of Sanskrit	КЗ
CO3	Acquire familiarity of the major traditions of literatures written in Sanskrit	КЗ
C04	Distinguish the Technical concepts of Electrical & Mechanical Engineering	K3
CO5	Categorize the Technical concepts of Architecture & Mathematics	К3

Course Articulation Matrix								
COs/POs	P01	P02	PO3	P04	P05			
C01	1	2	1	2	2			
CO2	1	2	-	1	2			
CO3	1	1	1	1	2			
CO4	2	1	1	1	1			
CO5	1	2	1	1	1			
23MFACZ8	1	2	1	1	2			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1		50	50				100			
CAT2		50	50				100			
Individual Assessment 1/Case Study 1/Seminar 1/Project 1		50	50				100			
Individual Assessment 2/Case Study 2/Seminar 2/Project 2		50	50				100			
ESE		50	50				100			