

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University)

Coimbatore - 641 013

Curriculum For M. E. ENGINEERING DESIGN

2023
Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University)

Coimbatore - 641 013

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- ➤ To achieve academic excellence through innovative teaching and learning practices.
- > To enhance employability and entrepreneurship.
- ➤ To improve the research competence to address societal needs.
- ➤ To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

VISION

To create outstanding Mechanical Engineers with strong domain knowledge and skills capable of working in an Interdisciplinary environment with exemplary ethical values contributing to society through Innovation, Entrepreneurship and Leadership.

MISSION

- To develop in each student, a strong theoretical and practical knowledge, a global outlook for a sustainable future and problem solving skills.
- To make productive members of interdisciplinary teams, capable of adapting to changing environments of Engineering, technology and society.
- To inculcate critical thinking abilities among students to enhance innovative ideas and entrepreneurial skills, leadership qualities.
- To imbibe moral and ethical values along with leadership qualities in students.

PROGRAMME OUTCOMES (POs):

The students of M.E- Engineering Design will be able to

PO1:- Independently conduct investigation and develop methodology to solve practical problems.

PO2:- Prepare, write and present comprehensive technical reports / documents.

PO3:- Demonstrate the degree of mastery and expertise in Engineering Design.

PO4:- Develop the sustainable research attitude through lifelong learning to full fill the Global needs.

PO5:- Acquire the competency for resolving the societal issues in Product design/ Environment/ Recyclable/ Disposal through Inter disciplinary activities.

PROGRAMME EDUCATIONAL OUTCOMES (PEOs):

The students of M.E- Engineering Design will be able to

PEO1:- Develop an aptitude to use engineering principles and concepts to create, test and evaluate designs for local and global needs.

PEO2:- Become effective and excellent need based engineer, participating in efforts to provide solutions to social and technical challenges.

PEO3:- Develop innovative technologies and find solutions to contemporary issues in Engineering Design using basic principles in combination with latest tools and concepts.

PEO4:- Pursue advanced research and development and other innovative efforts in their career.

FIRST SEMESTER

					- I.a	m . 1	l	Hours/	Week	
S. No	Course Code	Course Title	Category	CA Marks	End Sem Marks	Total Marks	L	Т	P	С
		Т	HEORY CO	URSES			ı		ı	
1.	23EDFCZ1	RESEARCH METHODOLOGY AND IPR	FC	40	60	100	3	0	0	3
2.	23EDFC02	APPLIED MATHEMATICS FOR ENGINEERING DESIGN	FC	40	60	100	3	1	0	4
3.	23EDPC01	APPLIED MECHANICS OF MATERIAL	PC	40	60	100	3	1	0	4
4.	23EDPC02	VIBRATION ANALYSIS AND CONTROL	PC	40	60	100	3	1	0	4
5.	L 23EDPC03	GEOMETRIC DIMENSIONING AND TOLERANCING	PC	40	60	100	3	0	0	3
6.	23EDPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3
7.	23EDACXX	AUDIT COURSE – I	AC	40	60	100	2*	0	0	0
PRACTICAL COURSES										
8.	23EDPC04	VIBRATION LAB	PC	60	40	100	0	0	4	2
		TOTAL	-927	340	460	800	20	3	4	23

SECOND SEMESTER

S.	Course	a mul	X. 1	CA	End Sem	Total	I	Hours/	Week			
No	Code	Course Title	Category	Marks	Marks	Marks	L	T	P	C		
	THEORY COURSES											
1.	23EDPC05	FINITE ELEMENT METHODS IN MECHANICAL DESIGN	PC	40	60	100	3	1	0	4		
2	23EDPC06	COMPUTER APPLICATIONS IN DESIGN	PC	40	60	100	3	0	0	3		
3.	23EDPC07	TRIBOLOGY IN DESIGN	PC	40	60	100	3	1	0	4		
4.	23EDPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3		
5.	23EDPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3		
6.	23EDACXX	AUDIT COURSE – II	AC	40	60	100	2	0	0	0		
		P	RACTICAL C	OURSES								
7.	23EDPC08	SIMULATION LAB	PC	60	40	100	0	0	4	2		
8.	23EDEE01	MINI PROJECT	EEC	60	40	100	0	0	4	2		
	TOTAL				440	800	17	2	8	21		

THIRD SEMESTER

S.	Course	Course Title Ca	Category	CA Marks	End Sem	Total		Hou	rs/Week			
No	Code	course ride	category	CA Marks	Marks	Marks	L	Т	P	С		
THE	HEORY COURSES											
1	1 23EDPEXX PROFESSIONAL ELECTIVE IV PE 40 60 100 3 0 0 3											
2	23EDOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3		
PRA	CTICAL CO	URSES										
3	1.23EDEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	-	100	-	-	*	2		
4	4 23EDEE03 PROJECT - I		EEC	60	40	100	0	0	24	12		
	TOTAL			240	160	400	6	0	24	20		

 $\ensuremath{^*}$ - Four weeks of internship / industrial training

FOURTH SEMESTER

S. Course No Code	Course	Course Title C	Category	CA Marks	End Sem	Total		Hou	rs/We	ek		
	004100 1100	category	CA Mai KS	Marks	Marks	L	T	P	С			
PRA	RACTICAL COURSES											
1	23EDEE04	PROJECT - II	EEC	60	40	100	0	0	48	24		
		TOTAL		60	40	100	0	0	48	24		

Note:* No Credit Courses TOTAL CREDITS: 88

		LIST OF	PROFESSION	IAL ELECTI	VES					
S. No	Course Code	Course Title	Category	CA Marks	End Sem Marks	Total Marks	L	Т	P	С
		PRO	FESSIONAL 1	ELECTIVE I						
1.	23EDPE01	DESIGN FOR SUSTAINABILITY	PE	40	60	100	3	0	0	3
2.	23EDPE02	COMPOSITE MATERIALS AND MECHANICS	PE	40	60	100	3	0	0	3
3.	23EDPE03	DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS	PE	40	60	100	3	0	0	3
4.	23EDPE04	QUALITY CONCEPTS IN DESIGN	PE	40	60	100	3	0	0	3
5.	23EDPE05	SURFACE ENGINEERING	PE	40	60	100	3	0	0	3
		PRO	FESSIONAL E	ELECTIVE II						
6.	23EDPE06	DESIGN FOR X	PE	40	60	100	3	0	0	3
7.	23EDPE07	DESIGN OF MACHINE TOOL	PE	40	60	100	3	0	0	3
8.	23EDPE08	PRODUCT LIFE CYCLE MANAGEMENT	PE	40	60	100	3	0	0	3
9	23EDPE09	OPTIMIZATION TECHNIQUES IN DESIGN	PE	40	60	100	3	0	0	3
10	23EDPE10	BIO MATERIALS	PE	40	60	100	3	0	0	3
		PRO	FESSIONAL E	LECTIVE III	Į.					
		MECHANICAL	1	7 7						
11	23EDPE11	MEASUREMENTS AND ANALYSIS	PE	40	60	100	3	0	0	3
12	23EDPE12	VIBRATION CONDITION MONITORING AND CONTROL	PE	40	60	100	3	0	0	3
13	23EDPE13	VEHICLE DYNAMICS	PE	40	60	100	3	0	0	3
14	23EDPE14	ENGINEERING FRACTURE MECHANICS FOR DESIGN	PE	40	60	100	3	0	0	3
15	23EDPE15	WEARABLE DEVICES AND TECHNOLOGIES	PE	40	60	100	3	0	0	3
		PRO	FESSIONAL E	LECTIVE IV	7					
16	23EDPE16	MATERIAL HANDLING SYSTEMS AND DESIGN	PE	40	60	100	3	0	0	3
17	23EDPE17	BEARING DESIGN AND ROTOR DYNAMICS	PE	40	60	100	3	0	0	3
18	23EDPE18	DESIGN OF HYBRID AND ELECTRIC VEHICLES	PE	40	60	100	3	0	0	3
19	23EDPE19	CREATIVITY AND INNOVATION	PE	40	60	100	3	0	0	3
20	23EDPE20	DESIGN OF PRESSURE VESSELS AND PIPING	PE	40	60	100	3	0	0	3

LIST OF OPEN ELECTIVE COURSES

SI.				CA	End	Total	Н	ours	/Weel	ζ
No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	С
1	23SE0E01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3
2	23SE0E02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3
3	23SE0E03	GREEN BUILDING	OE	40	60	100	3	0	0	3
4	23EE0E04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3
5	23EE0E05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3
6	23EE0E06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3
7	23GE0E07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3
8	23GEOE08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3
9	23GE0E09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3
10	23ED0E10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3
11	23ED0E11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3
12	23ED0E12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3
13	23MFOE13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3
14	23MF0E14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3
15	23MF0E15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3
16	23TE0E16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3
17	23TE0E17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3
18	23TE0E18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3
19	23PSOE19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3
20	23PSOE20	ELECTRICITY TRADING AND ELECTRICITY ACTS	OE	40	60	100	3	0	0	3
21	23PSOE21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3
22	23PE0E22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PE0E23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PE0E24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AE0E25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AE0E26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3

SI.	Course Code	Course Title	Category	CA	End Sem	Total	Н	ours/	'Weel	ζ.
No	course code	Course ritte	Marks		Marks	Marks	L	Т	P	С
27	23AE0E27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3
28	23VL0E28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3
29	23VL0E29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3
31	23CSOE31	ARTIFICIAL INTELLIGENCE	OE	40	60	100	3	0	0	3
32	23CSOE32	COMPUTER NETWORK MANAGEMENT	OE	40	60	100	3	0	0	3
33	23CSOE33	BLOCKCHAIN TECHNOLOGIES	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSES

(Common to all branches)

	C			CA	End	m-4-1		HOU	RS	
S. No	Course Code	Course Title	Category	CA Marks	Sem Marks	Total Marks	L	Т	P	С
1	23EDACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0
2	23EDACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0
3	23EDACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0
4	23EDACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0
5	23EDACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0
6	23EDACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0
7	23EDACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	AC	40	60	100	2	0	0	0
8	23EDACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0

SUMMARY OF CREDIT DISTRIBUTION

S.No	Course /			Credits			Dongontogo
3.NO	Subject Area	I SEM	II SEM	III SEM	IV SEM	Total	Percentage
1.	FC	7	-	-	-	07	7.95 %
2.	PC	13	13	-	-	26	29.54%
3.	PE	3	6	3	-	12	13.63%
4.	OE	-	-	3	-	03	3.40%
5.	AC	0	0	-	-	(Non Credit)	0%
6.	EEC	-	2	14	24	40	45.45 %
	Total Credits	23	21	20	24	88	100.00%

CATEGORY-WISE CREDIT DISTRIBUTION

FUNDAMENTAL COURSE (FC)

S. No	Course Code	Course Title	Category	CA Marks	End Sem Marks	Total	I	Hours/	Week	
NU	Code			Marks	Marks	Marks	L	T	P	С
1.	23EDFCZ1	RESEARCH METHODOLOGY AND IPR	FC	40	60	100	3	0	0	3
2.	23EDFC02	APPLIED MATHEMATICS FOR ENGINEERING DESIGN	FC	40	60	100	3	1	0	4
	Total			80	120	200	6	1	0	7

PROFESSIONAL CORE (PC)

S. No	Course	Course Title	Category	CA Marks	End Sem Marks	Total	ŀ	lours/	Week	
NO	Code			Maiks	Maiks	Marks	L	T	P	С
1.	23EDPC01	APPLIED MECHANICS OF MATERIAL	PC	40	60	100	3	1	0	4
2.	23EDPC02	VIBRATION ANALYSIS AND CONTROL	PC	40	60	100	3	1	0	4
3.	23EDPC03	GEOMETRIC DIMENSIONING AND 《 TOLERANCING	PC	40	60	100	3	0	0	3
4.	23EDPC04	VIBRATION LAB	PC	60	40	100	0	0	4	2
5.	23EDPC05	FINITE ELEMENT METHODS IN MECHANICAL DESIGN	PC	40	60	100	3	1	0	4
6.	23EDPC06	COMPUTER APPLICATIONS IN DESIGN	PC	40	60	100	3	0	0	3
7.	23EDPC07	TRIBOLOGY IN DESIGN	PC	40	60	100	3	1	0	4
8.	8. 23EDPC08 SIMULATION LAB PC		PC	60	40	100	0	0	4	2
	Total			360	440	800	18	4	8	26

PROFESSIONAL ELECTIVE (PE)

S.	Course	Course Title	Category	CA	End Sem	Total	ŀ	lours/	Week	
No	Code			Marks	Marks	L	T	P	С	
1.	23EDPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3
2.	23EDPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3
3.	23EDPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3
4.	23EDPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3
	•	Total	•	160	240	400	12	0	0	12

OPEN ELECTIVE (OE)

S. No	Course	Course Title Category	Total	I	lours/	Week				
NO	Code			Maiks	Mai KS	Marks	L	T	P	С
1.	23EDOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3
	Total		40	60	100	3	0	0	3	

AUDIT COURSE (AC)

S.	S. Course Course Title	Course Title	Category	CA	End Sem	Total	H	lours/	Week	
No	Code	course ritte		Marks	Marks	Marks	L	T	P	С
1.	23EDACXX	AUDIT COURSE - I	AC	40	60	100	2	0	0	0
2.	23EDACXX	AUDIT COURSE - II	AC	40	60	100	2	0	0	0
	Total			80	120	200	4	0	0	0

EMPLOYABILITY ENHANCEMENT COURSE (EEC)

S.	Subject	Course Title	Category	CA	End Sem	Total		Hour	s/We	ek
No	Code	1		Marks	Marks	Marks	L	T	P	С
1	23EDEE01	MINI PROJECT	EEC	60	40	100	0	0	4	2
2	23EDEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	0	100	0	0	**	2
3	23EDEE03	PROJECT - I	EEC	60	40	100	0	0	24	12
4	23EDEE04	PROJECT - II	EEC	60	40	100	0	0	48	24
				280	120	400	0	0	76	40

^{**4} WEEKS OF INTERNSHIP / INDUSTRIAL TRAINING

22EDEC71	RESEARCH METHODOLOGY AND IPR	T
23EDFCZ1	(Common to all branches)	1

PREREQUISITES	CATEGORY	L	T	P	С
NIL	FC	3	0	0	3

	NIE TO						
Course	1.To impart knowledge on research methodology, Quantitative	methods for					
Objectives	problem solving, data interpretation and report writing						
	2. To know the importance of IPR and patent rights.						
UNIT – I	INTRODUCTION	9 Periods					
Definition and	objectives of Research – Types of research, Various Steps	s in Research process,					
Mathematical t	ools for analysis, Developing a research question-Choice of a pro	blem Literature review,					
Surveying, syn	thesizing, critical analysis, reading materials, reviewing, rethin	king, critical evaluation,					
interpretation,	Research Purposes, Ethics in research – APA Ethics code.						
UNIT – II	QUANTITATIVE METHODS FOR PROBLEM SOLVING	9 Periods					
Statistical Mod	lelling and Analysis, Time Series Analysis Probability Distribu	tions, Fundamentals of					
Statistical Ana	lysis and Inference, Multivariate methods, Concepts of Corre	elation and Regression,					
Fundamentals	of Time Series Analysis and Spectral Analysis, Error Analysis,	Applications of Spectral					
Analysis.							
UNIT – III	DATA DESCRIPTION AND REPORT WRITING	9 Periods					
Tabular and gr	aphical description of data: Tables and graphs of frequency data	of one variable, Tables					
and graphs tha	t show the relationship between two variables , Relation between	frequency distributions					
and other grap	hs, preparing data for analysis. Structure and Components of Re	search Report, Types of					
Report, Layout	of Research Report, Mechanism of writing a research report, i	referencing in academic					
writing.	/ : CDL \						
UNIT – IV	INTELLECTUAL PROPERTY	9 Periods					
Nature of Into	ellectual Property: Patents, Designs, Trade and Copyright. Pro	ocess of Patenting and					
Development:	technological research, innovation, patenting, development.						
International S	Scenario: International cooperation on Intellectual Property. F	rocedure for grants of					
patents, Patent	ing under PCT.						
UNIT – V	PATENT RIGHTS	9 Periods					
Patent Rights:	Scope of Patent Rights. Licensing and transfer of technology.	Patent information and					
databases. Geo	graphical Indications.						
Contact Perio	Contact Periods:						
Lecture: 45 Pe	eriods Tutorial:0 Periods Practical: 0 Periods Total	:45 Periods					
		·					

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science &
	engineering students", Juta Academic, 1996.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, engageLearning, 2013.
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2014.
4	Dr. C. R. Kotharia and GauravGarg, "Research Methodology: Methods and Trends", New age
	international publishers, Fourth Edition, 2018.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Formulate research question for conducting research.	K4
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K4
CO4	Develop a structured content to write technical report.	K4
CO5	Summarize the importance of IPR and protect their research work through	K4
	intellectual property.	

OURSE ARTICUL	ATION MATRIX	<u> </u>			
COs/POs	P01	P02	PO3	PO4	P05
CO1	1	2	1	1	2
CO2	2	-	-	-	-
CO3	3	3	3	2	2
CO4	2	2	2	2	2
CO5	1	1	1	1	1
23EDFCZ1	2	2	1	2	2
– Slight, 2 – Mode	erate, 3 – Substa	ntial	- Tropia		•

ASSESSMENT P	ATTERN – THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	·	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100
ESE	30	30	20	20	-	-	100

23EDFC02	APPLIED MATHEMATICS FOR ENGINEERING DESIGN	I
----------	--	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	FC	3	1	0	4

	1. To gain the concepts of Correlation and Regression.					
	2. To gain the knowledge of test of hypothesis applicable to small and large samples.					
Course	urse 3. To be familiar with numerical solutions of algebraic, transcendental equation					
Objectives	and system of linear equations.					
	4. To acquire knowledge of numerical solution to first order ordinary differential					
	equations using single and multi-step techniques.					
	5.To gain the knowledge of numerical solution to second order partial					
	differential equations using explicit and implicit methods.					
UNIT – I						
Correlation coef	Correlation coefficients- Equation of the lines of regression, Regression coefficients, Regression curves-					

Correlation coefficients- Equation of the lines of regression, Regression coefficients, Regression curves-Multiple and Partial correlation, Partial regression.

UNIT – II TESTING OF HYPOTHESIS

9+3 Periods

Large samples: Tests for Mean and proportions, Small samples: Tests for Mean, Variance and Attributes using t, F, Chi–Square distribution.

UNIT - III NUMERICAL SOLUTION OF EQUATIONS, LINEAR SYSTEM AND INVERSE OF MATRIX

9+3 Periods

Newton-Raphson method for single variable and simultaneous equations with two variables- Solution of linear system by Gauss elimination, Gauss-Jordan, Crout's and Gauss Seidal Methods – Matrix inversion: Gauss elimination and Gauss-Jordan methods.

UNIT - IV NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

9+3 Periods

Single step methods: Taylor's series method – Euler's method – Modified Euler's method – Runge - Kutta method of fourth order - Multi step methods: Miline's Predictor and Corrector methods: Adam Bashforth predictor and corrector method. Numerical solution of ordinary differential equation by finite difference method.

UNIT - V NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

9+3 Periods

Finite difference solution for two-dimensional Laplace equation: Gauss Jacobi and Gauss Seidal methods – Poisson equation. Finite difference method for one dimensional heat equation: Parabolic equation – Hyperbolic Equation.

Contact Periods:

Lecture: 45 Periods Tu

Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

- VeerarajanT., Probability and Statistics, Random Processes and Queuing Theory (First edition),
 Graw Hill Education(India) Pvt Ltd., New Delhi, Fourth Edition,2018.
 P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand & Company, 3nd Edition,
 - P. Kandasamy, K. Thilagavathy, K. Gunavathi, **Numerical Methods**, S. Chand & Company, 3nd Edition, Reprint 2013.
 - Trivedi K.S, **Probability and Statistics with Reliability, Queuing and Computer Science Applications**, Prentice Hall of India, New Delhi.

4.	P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods , S. Chand & Company, 3nd Edition,
	Reprint 2013.
5.	S.S. Sastry, Introductory methods of numerical analysis, PHI, New Delhi, 5 th Edition, 2015.
	Ward Cheney.
6.	S. Larsson, V. Thomee, Partial Differential Equations with Numerical Methods, Springer, 2003.
7.	B.S.Grewal, Higher Engineering Mathematics , Khanna Publishers, New Delhi, 44 th Edition, 2018.
8.	Gupta S.C and Kapoor V.K., Fundamentals of Mathematical Statistics , Sultan Chand & Sons, New Delhi,
	2015.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Describe how correlation is used to identify relationships between variables and how regression analysis is used to predict outcomes.	K5
CO2	Test for significance of hypothesis connected to small and large samples using different parameters.	K5
CO3	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations, the solution of system linear equations.	K5
CO4	Construct one-step and multistep methods for the numerical solution of initial-value problems for ordinary differential equations and systems of such equations.	K5
CO5	To acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes, interpret solutions in a physical context of wave and heat equation in specified techniques.	K5
	AND STREET	

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
CO1	3	2	1					
CO2	3	2	1					
CO3	3	2	1					
CO4	3	2	1					
CO5	3	2	1					
23EDFC02	3	2	1					
1 – Slight, 2 – Moderate, 3 – S	Substantial	•	•	•	•			

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	20	15	15		100
CAT2	20	30	15	15	20		100
Assignment 1		30	25	20	25		100
Assignment 2		30	20	30	20		100
ESE	10	30	20	10	30		100

23EDPC01	APPLIED MECHANICS OF MATERIALS	I
----------	--------------------------------	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	1	0	4

1. To learn the concepts of theory of elasticity in three-dimensional stress system.					
2. To study the shear center of various cross-sections and deflections in beams subjected					
to unsymmetrical bending.					
3. To learn the stresses in flat plates and curved members.					
4. To study torsional stress of non-circular sections.					
5. To learn the stresses in rotating members, contact stresses in point and line contact					
applications.					
ELASTICITY	9+3 Periods				
	 To study the shear center of various cross-sections and deflections in to unsymmetrical bending. To learn the stresses in flat plates and curved members. To study torsional stress of non-circular sections. To learn the stresses in rotating members, contact stresses in point applications. 				

Stress-Strain relations and general equations of elasticity in Cartesian, Polar and curvilinear coordinates, differential equations of equilibrium-compatibility-boundary conditions-representation of three-dimensional stress of a tension generalized hook's law - St. Venant's principle - plane stress - Airy's stress function. Energy methods.

UNIT - II SHEAR CENTER AND UNSYMMETRICAL BENDING

9+3 Periods

Location of shear center for various sections - shear flows. Stresses and deflections in beams subjected to unsymmetrical loading-kern of a section

UNIT - III CURVED FLEXIBLE MEMBERS AND STRESSES IN FLAT PLATES

9+3 Periods

Circumference and radial stresses - deflections-curved beam with restrained ends-closed ring subjected to concentrated load and uniform load-chain links and crane hooks. Stresses in circular and rectangular plates due to various types of loading and end conditions, buckling of plates.

UNIT – IV TORSION OF NON-CIRCULAR SECTIONS

9+3 Periods

Torsion of rectangular cross section - St. Venants theory - elastic membrane analogy Prandtl's stress function.

UNIT - V STRESSES DUE TO ROTARY SECTIONS AND CONTACT STRESSES

9+3 Periods

Radial and tangential stresses in solid disc and ring of uniform thickness and varying thickness. Methods of computing contact stress-deflection of bodies in point and line contact applications.

Contact Periods:

Lecture: 45 Periods

Tutorial: 15 Periods

Practical: 0 Periods

Total:60 Periods

1	Seely and Smith,"Advanced Mechanics of Materials", John Wiley International Edn.
2	Sadhusingh, " Theory of Elasticity ",Khanna Publishers, 2003.
3	Timoshenko and Goodier, " Theory of Elasticity ", McGraw Hill, 2010
4	Wang, "Applied Elasticity", McGraw Hill, 2007
5	J.Case,L.Chilver and Carl T.F "Strength of Materials and structures", Arnold publisher 1999.
6	Robert D. Cook, Warren C. Young, "Advanced Mechanics of Materials", Mc-millan pub. Co., 1985.

COUR	COURSE OUTCOMES:					
Upon	Upon completion of the course, the students will be able to:					
		Mapped				
CO1	Apply the concepts of theory of elasticity in three-dimensional stress system.	K4				
CO2	Determine the shear centre of various cross-sections and deflections in beams	K4				
	subjected to unsymmetrical bending.					
CO3	Evaluate the stresses in flat plates and curved members.	K4				
CO4	O4 Calculate torsional stress of non-circular sections.					
CO5	Determine the stresses in rotating members, contact stresses in point and line	K4				
	contact applications.					

COs/POs	P01	P02	P03	P04	P05
C01	1	2	2	-	-
CO2	-	2	2	-	-
CO3	1	2	2	1	1
CO4	1	2	2	-	-
CO5		2	2	1	1
23EDPC01	1	2 /	2	1	1
Slight, 2 – Moderate, 3 – S	ubstantial	200	l	l	l

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
Category*							
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment	25	30	25	20			100
1	20	30	20	20			100
Assignment	30	20	30	20			100
2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPC02	VIBRATION ANALYSIS AND CONTROL	I

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	1	0	4

Course Objectives

- 1. To appreciate the basic concepts of vibration in damped and undamped systems.
- 2. To calculate the natural frequencies and mode shapes of the two-degree freedom systems.
- 3. To determine the natural frequencies and mode shapes of the multi degree freedom and continuous systems.
- 4. To learn the fundamentals of control techniques of vibration and noise levels.
- 5. To use the instruments for the measuring and analyzing the vibration levels in a body.

UNIT - I FUNDAMENTALS OF VIBRATION

9+3 Periods

Introduction -Sources of Vibration-Mathematical Models- Displacement, velocity and Acceleration-Review of Single Degree Freedom Systems -Vibration isolation Vibrometers and accelerometers - Response to Arbitrary and non- harmonic Excitations – Transient Vibration –Impulse loads -Critical Speed of Shaft-Rotor systems.

UNIT – II TWO DEGREE OF FREEDOM SYSTEM

9+3 Periods

Simple harmonic motion, definition of terminologies, Newton's Laws, D'Alembert's principle, Energy methods. Free vibrations, free damped vibrations, and forced vibrations with and without damping, base excitation.

UNIT - III MULTI-DEGREES OF FREEDOM SYSTEMS

9 Periods

Two degrees of freedom systems, Static and dynamic couplings, eigen values, eigen vectors and orthogonality conditions of eigen vectors, Vibration absorber, Principal coordinates, Principal modes. Hamilton's Principle, Lagrangian equation and their applications.

UNIT – IV VIBRATION CONTROL

9+3 Periods

Specification of Vibration Limits –Vibration severity standards- Vibration as condition Monitoring tool - Vibration Isolation methods - Dynamic Vibration Absorber, Torsional and Pendulum Type Absorber, Damped Vibration absorbers - Static and Dynamic Balancing-Balancing machines - Field balancing – Vibration Control by Design Modification- - Active Vibration Control

UNIT - V EXPERIMENTAL METHODS IN VIBRATION ANALYSIS

9+3 Periods

Vibration Analysis Overview - Experimental Methods in Vibration Analysis - Vibration Measuring Instruments - Selection of Sensors - Accelerometer Mountings. Vibration Exciters - Mechanical, Hydraulic, Electromagnetic and Electrodynamics - Frequency Measuring Instruments - System Identification from Frequency Response - Testing for resonance and mode shapes.

Contact Periods:

Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

1	Timoshenko, S. "Vibration Problems in Engineering ", John Wiley & Sons, Inc., 1987.
2	Meirovitch, L. "Elements of Vibration Analysis", McGraw-Hill Inc., 1986.
3	Thomson W.T, Marie Dillon Dahleh, " Theory of Vibrations with Applications ", Prentice Hall, 1997.
4	F.S. Tse., I.F. Morse and R.T. Hinkle, "Mechanical Vibrations", Prentice-Hall of India, 1985.
5	Rao.J.S. and Gupta.K. "Theory and Practice of Mechanical Vibrations", Wiley Eastern Ltd., New Delhi,
	1999.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand the basics of vibration and its importance in engineering field.	K4
CO2	Apply the basic concepts of vibration in damped and undamped systems.	K4
CO3	Identify the reasons for vibrations in engineering systems.	K4
CO4	Design and analyze two and multi-degree vibratory systems.	K4
CO5	Apply vibration measuring instruments, vibration control and analysis	K4
	techniques in the engineering field.	

COs/POs	PO1	PO2	PO3	P04	PO5
CO1	1 %	2	2	-	-
CO2		2	2	-	-
CO3	2	2	-	-	-
CO4	1	2	2	2	-
CO5	1	2	2	1	-
23EDPC02	1	2	2	2	-

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPC03	GEOMETRIC DIMENSIONING AND TOLERANCING	I

PREREQUISITES	CATEGORY	L	T	P	С
Machine Drawing	PC	3	0	0	3

Course	1. GD&T, as well as selecting the appropriate symbols and applying ge	eneral design
Objectives	principles for manufacturability.	
	2. Datum concept in the field of GD&T.	
	3.Determining the material conditions and material boundary.	
	4.Knowledge of the various tolerance types.	
	5.Knowledge of profile and run out tolerances.	
UNIT – I	DIMENSIONING, TOLERANCING AND INTRODUCTION TO SYMBOLS,	9 Periods
	TERMS	91 enous

Dimensioning Units, Fundamental Dimensioning Rules, Definitions Related to Tolerancing, Single Limits, Maximum Material Condition (MMC), Least Material Condition (LMC), Extreme Form Variation, Basic Fits of Mating Parts, Clearance Fit, Allowance, Clearance, Force Fit, Chain Dimensioning, Baseline Dimensioning, Direct Dimensioning, Alternate Dimensioning Practices. Geometric Dimensioning and Tolerancing for CADD/CAM. Dimensioning Symbols-Dimensioning and Tolerancing Templates. Datum Feature Symbols, Datum Target Symbols, Geometric Characteristic Symbols, Material Boundary Symbols. Feature Control Frame Basic Dimensions Additional Symbols.

UNIT – II DATUMS

9 Periods

Datum Feature Symbol, Reference Frame Concept, Datum Target Symbols, Partial Datum Surface, Coplanar Surface Datums, Datum Axis, Movable Datum Target Symbols and Datum Target Points, Movable Datum Target Symbols and Datum Target Spheres, Datum Center Plane, The Center of a Pattern of Features as the Datum Axis, applying a Translation Modifier to a Datum Reference Using a Contoured Surface as a Datum Feature.

UNIT - III MATERIAL CONDITION AND MATERIAL BOUNDARY

9 Periods

Features of Size, Conventional Tolerance. Limits of Size, Perfect Form Boundary. Regardless of Feature Size (RFS) and Regardless of Material Boundary (RMB). Maximum Material Condition (MMC). Least Material Condition (LMC). Primary Datum Feature, Secondary and Tertiary Datum Feature. Datum Precedence and Material Condition. Placing the MMB value in the Feature Control Frame Material Condition Analysis and Applications Material Boundary Calculation Examples.

UNIT – IV FORM, ORIENTATION AND LOCATION TOLERANCES

10 Periods

Straightness, Flatness, Circularity. Free State Variation. Cylindricity, Applying Form Control to a Datum Feature. Orientation Tolerances -Parallelism, Perpendicularity Tolerance. Combination of Parallelism and Perpendicularity Tolerances. Angularity Tolerance. Application of Orientation Tolerances at RFS, MMC, and Zero Tolerance at MMC. Location Tolerances-Positional Tolerance. Locating Multiple Features, Positional Tolerancing of Coaxial Features, Positional Tolerancing of Nonparallel Holes. Locating Slotted Features, Positional Tolerancing of Spherical Features. Location Tolerances and Virtual Condition. Fasteners, Projected Tolerance Zone, Virtual Condition, Concentricity Tolerance, Positional Tolerancing for Coaxially.

UNIT - V PROFILE TOLERANCES AND RUNOUT TOLERANCES

8 Periods

Profile Tolerances -Non-Uniform Profile Tolerance Zone, Specifying Basic Dimensions in a Note, Combination of Geometric Tolerances. Runout Tolerances-Combination of Geometric Tolerances, Specifying Independency.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Alex Krulikowski, "Fundamentals of Geometric Dimensioning and Tolerancing", Delmar Cengage
	Learning, 2012.
2	P.S.Gill, "Geometric Dimensioning and Tolerancing", S.K.Kataria& sons, 2013
3	Bruce A.Wilson, "GD&T- Application and Interpretation", Goodeheart-Willcox, 2019
4	James D Meadows, "Geometric Dimensioning and Tolerancing Handbook", James D. Meadows &
	Associates, 2009.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Select relevant process; apply the general design principles for	K4
	manufacturability; GD&T	
CO2	Applying the concept of datums in GD&T	K4
CO3	Understanding about the material condition and material boundary	K4
CO4	Know the various types of tolerances	K4
CO5	Know about the profile and runout tolerances	K4

COs/POs	P01	PO2	PO3	PO4	P05
CO1	2	7	-	2	-
CO2	2	- 1/2m	2	-	-
CO3	2	2	2	1	2
CO4	1 8	2	-	2	2
CO5	2	2	-	-	2
23EDPC03	2	2	2	2	2

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPC04	VIBRATION LAB	I
1		l l

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	0	0	4	2

Cou	rse To supplement the principles learnt in vibration and dynamics of machine	inery and expose to					
Object	tives various measuring devices for vibration analysis.						
1	Modal analysis of Simply Supported beam						
2	Modal analysis of Cantilever beam						
3	Natural frequency and modal analysis of Disc.						
4	4 Amplitude and frequency of simple harmonic motion.						
5	Verify the laws of gyroscopic and determination of gyroscopic couple.						
6	6 Find the Whirling speed of given shaft.						
7	Governors – determination of sensitivity, effort for Watt, Porter, Proell, governors						
8	Determination of Cam jump and generation of Cam profile.						
9	9 Vibrating system – spring mass system analysis.						
10	Determination of damping co-efficient of rotary system.						
	ct Periods:						
Lectur	e: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total:60 P	1					
COURS	SE OUTCOMES:	Bloom's					
		Taxonomy					
Upon c	ompletion of the course, the students will be able to:	Mapped					
CO1	Use signal analyzers for vibrating systems.	К6					
CO2	Demonstrate the use of gyroscope and governors.	К6					
CO3	Use the knowledge for balancing of machine components.	К6					
CO4	Depict the results of experiments in written and graphical format.	K6					
CO5	Respond as instructed while working in groups.	К6					

COs/POs PO1 PO2 PO3 PO4 PO							
200/100		102			100		
CO1	1	2	2	-	1		
CO2	1	2	2	1	-		
CO3	1	2	2	-	1		
CO4	1	2	2	1	-		
CO5	1	2	2	-	1		
23EDPC04	1	2	2	1	1		

23EDPC05	FINITE ELEMENT METHOD IN MECHANICAL DESIGN	II
----------	--	----

PREREQUISITES	CATEGORY	L	T	P	С
Solid Mechanics/Numerical methods in Engineering	PC	3	1	0	4

Course	1.To develop a thorough understanding of the basic principles of finite ele	ment analysis
Objectives	2.To develop techniques for solving practical design problems in engineer	ing
	3.To understand the basic concepts of application to Heat conduction and	torsion problems
	4. To study the Implementation issues, locking, reduced integration, B-Bar	method
	5.To acquire knowledge in application of FEA in structural analysis.	
UNIT – I	INTRODUCTION	6+3 Periods
Introduction, Box	indary value problems and solution methods, Direct approach - exampl	e, advantage and
limitations.		
UNIT – II	RELEVANCE OF FINITE ELEMENT ANALYSIS IN DESIGN	9+3 Periods
Elements of calcu	llus of variation, Strong form and weak form, equivalence between strong	and weak forms,
Rayleigh-Ritz met	chod. Method of weighted residuals – Galerkin and Petrov -Galerkin approa	ch; Axially loaded
bar, governing ed	quations, discretization, derivation of element equation, assembly, imposi	tion of boundary
condition and sol		
UNIT – III	FINITE ELEMENT FORMULATION FOR ONE-DIMENSIONAL	10+3 Periods
	PROBLEMS	
Finite element for	mulation for Euler-Bernoulli beams, Timoshenko beams, plane trusses and	frames
UNIT – IV	FINITE ELEMENT FORMULATION FOR TWO-DIMENSIONAL	10+3 Periods
	PROBLEMS	
Finite element fo	rmulation for two-dimensional problems - completeness and continuity, d	ifferent elements
(triangular, recta	ngular, quadrilateral etc.), shape functions, Gauss quadrature techniqu	ue for numerical
integration. Scala	r field problems; Iso-parametric formulation, Application to Heat conduc	ction and torsion
problems. Linear	elasticity; Formulation.	
UNIT – V	FINITE ELEMENT FORMULATION FOR THREE-DIMENSIONAL	10+3 Periods
	PROBLEMS	
•	ssues, locking, reduced integration, B-Bar method; Finite element formu	
dimensional prob	lems-Different elements, shape functions, Gauss quadrature in three dimens	ions.
Contact Periods:		
Lecture: 45 Peri	ods Tutorial: 15 Periods Practical: 0 Periods Total:60 Periods	3

1	J. N. Reddy.,"Introduction to Finite Element Method",McGraw-Hill Education (2019).
2	Jacob Fish and Ted Belytschko .," First Course in Finite Elements" .John Wiley & Sons, Ltd(2007).
3	Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt .,"Concept and Applications of Finite
	Element Analysis ",Willy publication(2007).
4	Thomas J. R. Hughes .,"The Finite Element Method: Linear Static and Dynamic Finite Element Analysis",
	Courier Corporation, (2012).

COURSE O	UTCOMES:	Bloom's				
Upon com	pletion of the course, the students will be able to:	Taxonomy				
		Mapped				
CO1	CO1 Distinguish different numerical methods involved in Finite Element Analysis					
CO2	Apply equations in finite element methods for 1D, 2D and 3D problems.	K4				
CO3	Apply shape functions in finite element formulations and use linear, quadratic,	K4				
	and cubic shape functions for interpolation					
CO4	Formulate and solve basic problems in heat transfer, solid mechanics and fluid	K4				
	mechanics.					
CO5	Analyze beams and truss, frames using finite element analysis	K4				

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
CO1	1	2	2	-	-			
CO2	-	2	2	-	-			
CO3	1	2	2	1	1			
CO4	1	2	2	-	-			
CO5	-	2	2	1	1			
23EDPC05	1	2	2	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		W. 72		g.			
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

. 8

23EDPC06 COMPUTER APPLICATIONS IN DESIGN	II
--	----

PREREQUISITES	CATEGORY	L	T	P	С
 Student required the knowledge of drafting principles and basic PC (Windows) computer skills. 	PC	3	0	0	3

Course	1. Impart knowledge on computer graphics on various engineering, medi	cine and
Objectives	scientific areas.	
	2. Demonstrate basics of CAD concepts.	
	3. Explain computer graphics and solid modelling techniques.	
	4. Demonstrate part programs and group technology techniques.	
	5. Explain Optimization in CAD aspect.	
UNIT - I	INTRODUCTION TO CAD APPLICATIONS	9 Periods
CAD Applicat	ions: Engineering Products, analogy: documentation, Design Repre	sentation, FEM,
Optimization,	Software/AutoCAD/Mechanical Desktop/I-DEAS	
UNIT – II	SOLID MODELING	9 Periods
Representation	n of Solids, Topology, wireframe modelling, Boundary Representation,	CSG, Operations:
extrude, revolv	ve, examples.	
UNIT - III	DESIGN OF CURVES, SURFACE PATCHES	10 Periods
Representation	n, piecewise continuous, differential geometry of curves, Ferguson, s	egments, Bezier
segments, B-S	plines, Rational Curves/NURBS. Design of Surfaces-Piecewise continu	ous, differential
geometry. Des	ign of Surface patches: Fersugon,16 point form, Bezier, B-spline.	
UNIT - IV	DESIGN OF COMPOSITE SURFACES	9 Periods
Design of Com	posite Surfaces: Ferguson and Bezier surfaces, Computational geometry, M	esh generation.
UNIT - V	OPTIMIZATION IN CAD	8 Periods
Optimization:	Single variable methods, KKT conditions, Stochastic Methods.	
Contact Perio	ds:	
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total:45 Perio	ods

1	J. Srinivas," CAD/CAM - Principles and Applications", Oxford HED, 2016.
2	Saxena, A., and Sahay., B "Computer Aided Engineering Design," Anamaya and Springer,2006.
3	Faux I. D. and Pratt M. J., "Computational Geometry for Design and Manufacture", Ellis Harwood
	Limited, West Sussex, England, 1979.
4	Mortenson M. E., "Geometric Modeling", John Wiley and Sons, New York., 1985.
5	P.N.Rao, "CAD/CAM: Principles and Applications"-3rd Edition, Tata McGraw Hill, India, 2010.

COUR	COURSE OUTCOMES:					
Upon	Upon completion of the course, the students will be able to:					
		Mapped				
CO1	Apply design concepts	K4				
CO2	Appreciate visual realism through modelling techniques	K4				
CO3	Develop the idea to design the composite surfaces	K4				
CO4	Develop part programs for solid models	K4				
CO5	Make use of FEM concept for analysis	K4				

COURSE ARTICULATION MA	TRIX				
COs/POs	P01	P02	P03	P04	P05
CO1	1	2	2	-	-
CO2	-	2	2	-	-
CO3	1	2	2	1	1
CO4	1	2	2	-	-
CO5	-	2	2	1	1
23EDPC06	1	2	2	1	1
1 – Slight, 2 – Moderate, 3 – Si	ıbstantial	1-27-20	•	•	•

	8, =	9	A TOTAL	2			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISITES	CATEGORY	L	T	P	С
Fluid mechanics	PC	3	1	0	4

Course Objectives	Learn the principles of friction and wear Understand the standard procedure available for tribology using stand	ard data and	
	catalogues 3. Design the fluid film bearings, rolling element bearings etc.,		
	4. Study the Tribological aspects of rolling motion		
UNIT - I	INTRODUCTION,FRICTION AND WEAR	8+3 Periods	

Tribology in Design - Mechanical design of oil seals and gasket - Tribological design of oil seals and gasket. Tribology in Industry (Maintenance). Lubrication-Basic Modes of Lubrication, Properties of Lubricants, Lubricant Additives. Bearing - Terminology, sliding contact bearings, Rolling contact bearings. Comparison between Sliding and Rolling Contact Bearings. Friction - Laws of friction, classification, Causes of friction. Theories of Dry Friction, Friction Measurement, Stick-Slip Motion and Friction Instabilities. Wear - classification, Wear between solids, Wear between solid and liquid, Factors affecting wear, Measurement of wear. Theories of Wear, Approaches to Friction Control and Wear Prevention, Boundary Lubrication, Bearing Materials and Bearing Construction.

UNIT - II LUBRICATION OF BEARINGS

10+3 Periods

Mechanics of Fluid Flow - Theory of hydrodynamic lubrication - Mechanism of pressure development in oil film. Two-Dimensional Reynolds's Equation and its Limitations. Idealized Bearings. Infinitely Long Plane Fixed Sliders, Infinitely Long Plane Pivoted Sliders, Infinitely Long Journal Bearings, Infinitely Short Journal Bearings. Designing Journal Bearing - Sommerfeld number - Raimondi and Boyd method - Petroff's Solution - Parameters of bearing design - Unit pressure - Temperature rise - Length to diameter ratio - Radial clearance - Minimum oil-film thickness.

UNIT - III HYDRODYNAMIC THRUST BEARING

8+3 Periods

Introduction, Pressure Equation, Load, Center of Pressure, Friction- Flat plate thrust bearing, tilting pad thrust bearing.

UNIT - IV HYDROSTATIC, ELASTO-HYDRODYNAMIC AND GAS (AIR-) LUBRICATED BEARINGS 11+3 Periods

Hydrostatic Lubrication - Basic concept, Advantages and limitations, Viscous flow through rectangular slot, Load carrying capacity and flow requirement, Energy losses, Optimum design, Application to journal bearings, Piston Pin Lubrications. Elasto-Hydrodynamic Lubrication-Principles and Applications, Pressure viscosity term in Reynolds's equation, Hertz's Theory, Ertel-Grubin equation, Lubrication of spheres, Gear teeth bearings, Rolling element bearings. Gas (Air-) Lubricated Bearings-Introduction, Merits, Demerits and Applications, tilting pad bearings, Magnetic recording discs with flying head, Hydrostatic bearings with air lubrication, Hydrodynamic bearings with air lubrication, Thrust bearings with air lubrication.

UNIT – V	TRIBOLOGICAL	ASPECTS	OF	ROLLING	MOTION	AND	FINITE	5.0D 1.1
	BEARINGS							7+3 Periods

Tribological aspects of rolling motion-The mechanics of tyre-road interactions, Road grip and rolling resistance, Tribological aspects of wheel on rail contact. Finite Bearings-Hydrostatic bearings, Hydrodynamic bearings, Thrust oil bearings, Porous Bearings, Foil bearings, Heat in bearings.

Contact Periods:

Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total:60 Periods

1	Harish Hirani., "Fundamentals of Engineering Tribology with Applications", Cambridge University
	Press (2016).
2	Ajayi, Layo; Ludema, K. C., "Friction, wear, lubrication: a textbook in tribology [Second edition"],
	Taylor & Francis (2019).
3	Martin Dienwiebel, Maria-Isabel De Barros Bouchet., "Advanced Analytical Methods in Tribology [1st
	ed.]",Springer International Publishing (2018).
4	Catalin I. Pruncu (editor), AmitAherwar (editor), StanislavGorb (editor).," Tribology and Surface
	Engineering for Industrial Applications [1 ed.]",CRC Press (2021).
5	G W Stachowiak; A W Batchelor., "Engineering tribology" [4th ed.], Butterworth-Heinemann (2013).

COURS	SE OUTCOMES:	Bloom's Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Apply knowledge of friction and wear in engineering applications.	K4
CO2	Design hydrostatic and hydrodynamic bearings for machineries and equipments.	K4
CO3	Design bearings of various types.	K4
CO4	Perform the various measurements on surfaces and bearings.	K4
CO5	Apply knowledge of lubrication in engineering applications.	K4

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
CO1	1	2	2	-	-		
CO2	10.535	2	2	-	-		
CO3	1	2	2	1	1		
CO4	1	2	2	-	-		
CO5	-	2	2	1	1		
23EDPC07	1	2	2	1	1		
1 – Slight, 2 – Moderate, 3 – Su	bstantial	,	,		•		

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPC08 SIMULATION LAB II	23EDPC08	SIMULATION LAB	■ ■
----------------------------	----------	----------------	-----

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	0	0	4	2

Course Objectives	1. To impart practical training on simulation and analysis of mechanical systems using advanced software tools.
Objectives	Z. To give exposure to software tools needed to analyze engineering problems.
LIST OF EXPE	RIMENTS
Analysis of Me analysis of	chanical Components – Use of FEA Packages like ANSYS and CFD. Exercises shall include
1	Introduction to ANSYS and FEA software.
2	Static structural analysis of truss.
3	Static structural analysis of cantilever beam with point load (3D)
4	Static structural analysis of simply supported beam with uniformly varying load.
5	Indirect coupled field analysis
6	Modal analysis of two mass spring system.
7	Harmonic analysis of cantilever beam
8	Transient thermal analysis
9	Thermal stress of a cylinder using axi-symmetric elements (thermal to structural)
10	Simulation of four bar mechanism.
11	Simulation of pipe flow.
Contact Perio	ds:
Lecture: 0 Pe	riods Tutorial: 0 Periods Practical: 60 Periods Total:60 Periods

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Use the software tool for analyzing structural systems.	К6
CO2	Demonstrate the use of simulation tool.	К6
CO3	Use the knowledge of mechanism of synthesis or modelling.	К6
CO4	Depict the results of simulation in graphical format.	K6
C05	Respond as instructed while working in groups.	К6

COs/POs	P01	P02	P03	P04	P05
CO1	1	2	2	-	1
CO2	1	2	2	1	-
CO3	1	2	2	-	1
CO4	1	2	2	1	-
CO5	1	2	2	-	1
23EDPC08	1	2	2	1	1

23EDEE01	MINI PROJECT	II

PREREQUISITES	CATEGORY	L	T	P	С
NIL	EEC	0	0	4	2

Course	To make the student to feel/understand the magnitude of engineering design and then
Objectives	apply.
CTIT T A DITIC	

SYLLABUS

Students can take up small problems in the field of design engineering as mini project. It can be related to solution to an engineering problem, verification and analysis of experimental data available, conducting experiments on various engineering subjects, material characterization, studying a software tool for the solution of an engineering problem etc.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total:60 Periods

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Get an opportunity to work in actual industrial environment if they opt for	К6
	internship.	
CO2	Solve a live problem using software/analytical/computational tools.	К6
CO3	Write technical reports.	К6
CO4	Develop skills to present and defend their work in front of technically	К6
	qualified audience.	
CO5	execute the Project experimental Work	К6

COs/POs	P01	P02	P03	P04	P05
CO1	3	3	3	3	3
CO2	3	2	3	2	1
CO3	3	2	3	3	3
CO4	1	1	2	1	2
CO5	1	2	1	1	1
23EDEE01	3	2	3	3	3

23EDEE02
23EDEE02

PREREQUISITES	CATEGORY	L	T	P	С
NIL	EEC	0	0	*	2

Course	1.To make students get ready to become an entrepreneur or an effective administrator.
Objectives	2. To acquire the knowledge about industrial programs.
CONTENTS	

Four week continuously industrial training of any industry, the report of the training must have a literature survey of selected company product and training certificate.

Total Periods: 4 Weeks

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify gaps in published literatures and find scope of improvement.	К6
CO2	Write technical report about any industrial activity.	К6
CO3	Perform the differential analysis between theory and practical.	К6
CO4	Innovate new mechanism design and estimate cost for a product or process.	К6
CO5	analyze tolerances and engineering drawings.	К6
	activity a Compa	•

COs/POs	P01	PO2	PO3	P04	P05
CO1	2	2	1	1	1
CO2	1 8	3	2	1	-
CO3	2	1	1	2	1
CO4	1	1	3	1	2
CO5	1	2	1	1	1
23EDEE02	1	2	1	1	1

23EDEE03	PROJECT I	III
23EDEE03	PROJECT I	III

PREREQUISITES	CATEGORY	L	T	P	С
NIL	EEC	0	0	24	12

Course Objectives	To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature and to develop the methodology to solve the identified problem then publish paper at least in conference.
SYLLABUS	

- 1. The student individually works on a specific topic approved by the head of the division under the guidance of a faculty member who is familiar in this area of interest.
- 2. The student can select any topic which is relevant to the area of Engineering Design. The topic may be theoretical or case studies.
- 3. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work and report on the preliminary study conducted.
- 4. The students will be evaluated through a viva-voce examination.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 360 Periods Total: 360 Periods

COURSE	OUTCOMES:	Bloom's
	A STATE OF THE PARTY OF THE PAR	Taxonomy
Upon com	pletion of the course, the students will be able to:	Mapped
CO1	Identify the project work scientifically in a systematic way	К6
CO2	Analyze the problem and data of literatures clearly to explore the ideas and methods.	К6
CO3	Formulate the objectives and methodology to solve the identified problem.	К6

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
C01	3	3	3	3	3		
CO2	3	2	3	3	2		
CO3	3	2	3	3	3		
23EDEE03	3	2	3	3	2		
1 – Slight, 2 – Moderate, 3 – Substantial							

23EDEE04	PROJECT II	IV
----------	------------	----

PREREQUISITES	CATEGORY	L	T	P	С
NIL	EEC	0	0	48	24

Course	To solve the identified problem based on the formulated methodology and to
Objectives	develop skills to analyze and discuss the test results and make conclusions.
,	

SYLLABUS

- 1. The student should continue the phase I work on the selected topic as per the formulated methodology under the same supervisor.
- 2. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department.
- 3. The students will be evaluated based on the report submitted and the viva-voce examination by a panel of examiners including one external examiner

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 720 Periods Total: 720 Periods

COURSE	OUTCOMES:	Bloom's
	and the second section of the section of the second section of the secti	Taxonomy
Upon con	npletion of the course, the students will be able to:	Mapped
CO1	Execute the project work on challenging practical problem in a	К6
	structured manner.	
CO2	Investigate the findings and infer observations logically.	К6
CO3	Evaluate the results and confirm the solution to the practical	К6
	application and social benefit.	

COURSE ARTICULATION MATRIX					
COs/POs	P01	P02	P03	P04	P05
C01	3	2	3	3	2
CO2	3	2	3	3	3
CO3	3	3	3	3	3
23EDEE04	3	2	3	3	3
1 – Slight, 2 – Moderate, 3 – Substantial					

23EDPE01	DESIGN FOR SUSTAINABILITY	I
----------	---------------------------	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

REFERENCES:

Course	1. GD&T, as well as selecting the appropriate process and applying general design			
Objectives	Objectives principles for manufacturability.			
	2. Designing cast and welded components with design concerns in mind.			
	3. Designing formed and machined components with design concerns in mind.			
	4. Consider design factors when putting together a system.			
	5. Consider environmental factors when designing.			
UNIT - I	INTRODUCTION 9 Periods			
Introduction -	Economics of process selection - General design principles for manufacturability;			

Introduction - Economics of process selection - General design principles for manufacturability; Geometric Dimensioning &Tolerance (GD&T) - Form tolerancing: straightness, flatness, circularity, cylindricity - Profile tolerancing: profile of a line, and surface - Orientation tolerancing: angularity, perpendicularity, parallelism - Location tolerancing: position, concentricity, symmetry - run out tolerancing: circular and total - Supplementary symbols.

UNIT - II CAST & WELDED COMPONENTS DESIGN

9 Periods

Design considerations for: Sand cast – Die cast – Permanent mold parts. Arc welding – Design considerations for: Cost reduction – Minimizing distortion – Weld strength – Weldment. Resistance welding – Design considerations for: Spot – Seam – Projection – Flash & Upset weldment.

UNIT - III FORMED & MACHINED COMPONENTS DESIGN

9 Periods

Design considerations for: Metal extruded parts – Impact/Cold extruded parts – Stamped parts – Forged parts. Design considerations for: Turned parts – Drilled parts – Milled, planned, shaped and slotted parts– Ground parts.

UNIT – IV DESIGN FOR ASSEMBLY

9 Periods

Design for assembly – General assembly recommendations – Minimizing the no. of parts – Design considerations for: Rivets – Screw fasteners – Gasket & Seals – Press fits – Snap fits – Automatic assembly – Computer Application for DFMA

UNIT - V DESIGN FOR ENVIRONMENT

9 Periods

Introduction – Environmental objectives – Global issues – Regional and local issues – Basic DFE methods – Design guide lines – Example application – Lifecycle assessment – Basic method – AT&T's environmentally responsible product assessment - Weighted sum assessment method – Lifecycle assessment method – Techniques to reduce environmental impact – Design to minimize material usage – Design for disassembly – Design for recyclability – Design for manufacture – Design for energy efficiency – Design to regulations and standards

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

1	Boothroyd, G, Heartz and Nike, "Product Design for Manufacture", Marcel Dekker, 1994				
2	Bralla, "Design for Manufacture handbook", McGraw hill, 1999				
3	Dickson, John. R, and Corroda Poly, "Engineering Design and Design for Manufacture and				
	Structural Approach", Field Stone Publisher, USA, 1995				
4	Fixel, "J. Design for the Environment", McGraw Hill., 1996				
5	Kevin Otto and Kristin Wood, "Product Design. Pearson Publication", 2009.				

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Select relevant process; apply the general design principles for manufacturability; GD&T	K4
CO2	Apply design considerations while designing the cast and welded components	K4
CO3	Apply design considerations while designing the formed and machined components	K4
CO4	Apply design considerations for assembled systems.	K4
CO5	Apply design considerations for environmental issues	K4

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
CO1	1	1	2	2	1			
CO2	1	2	2	2	1			
CO3	1	2	2	1	1			
CO4	2	1	3	2	1			
CO5	1	1	1	2	3			
23EDPE01	1	1	2	2	1			
1 – Slight, 2 – Moderate, 3 – Si	ıbstantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE02	COMPOSITE MATERIALS AND MECHANICS	I
----------	-----------------------------------	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	1. The study of various composite materials and the determination of their mechanical
Objectives	strength.
	2. Different manufacturing technologies are used to fabricate FRP and other composites.
	3. Fiber reinforced stress analysis Laminates for various combinations of plies with
	various fiber orientations.
	4. Stresses in the laminate's lamina calculated using various failure theories
	5. The Classical Laminate Theory was used to calculate residual stresses in various types
	of laminates under thermo-mechanical load.

UNIT - I INTRODUCTION TO COMPOSITE MATERIALS

9 Periods

Definition-Matrix materials-polymers-metals-ceramics - Reinforcements: Particles, whiskers, inorganic fibers, metal filaments- ceramic fibers- fiber fabrication- natural composite wood, Jute -Advantages and drawbacks of composites over monolithic materials. Mechanical properties and applications of composites, Particulate-Reinforced composite Materials, Dispersion-Strengthened composite, Fiber-reinforced composites Rule of mixtures-Characteristics of fiber-Reinforced composites, Manufacturing fiber and composites,

UNIT - II MANUFACTURING OF COMPOSITES

9 Periods

Manufacturing of Polymer Matrix Composites (PMCs)-handlay-up, spray technique, filament winding, Pultrusion, Resin Transfer Moulding (RTM)-, bag moulding, injection moulding, Sandwich Mould Composites (SMC) - Manufacturing of Metal Matrix Composites (MMCs) - Solid state, liquid state, vapour state processing, Manufacturing of Ceramic Matrix Composites (CMCs) -hot pressing-reaction bonding process-infiltration technique, direct oxidation- interfaces

UNIT – III LAMINA CONSTITUTIVE EQUATIONS

9 Periods

Lamina Constitutive Equations: Lamina Assumptions – Macroscopic Viewpoint. Generalized Hooke's Law. Reduction to Homogeneous Orthotropic Lamina – Isotropic limit case, Orthotropic Stiffness matrix, Definition of stress and Moment Resultants. Strain Displacement relations. Basic Assumptions of Laminated anisotropic plates. Laminate Constitutive Equations – Coupling Interactions, Balanced Laminates, Symmetric Laminates, Angle Ply Laminates, Cross Ply Laminates. Laminate Structural Moduli. Evaluation of Lamina Properties from Laminate Tests. Quasi-Isotropic Laminates. Determination of Lamina stresses within Laminates.

UNIT - IV LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT 9 Periods PLATES

Introduction - Maximum Stress and Strain Criteria. Von-Misses Yield criterion for Isotropic Materials. Generalized Hill's Criterion for Anisotropic materials. Tsai-Hill's Failure Criterion for Composites. Tensor Polynomial (Tsai-Wu) Failure criterion. Prediction of laminate Failure Equilibrium Equations of Motion. Energy Formulations. Static Bending Analysis. Buckling Analysis. Free Vibrations – Natural Frequencies

UNIT - V THERMO-STRUCURAL ANALYSIS

9 Periods

Fabrication stresses/Residual stresses in FRP laminated composites- Co-efficient of Thermal Expansion (C.T.E.) - Modification of Hooke's Law. Modification of Laminate Constitutive Equations. Orthotropic Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-Calculations for thermo-mechanical stresses in FRP laminates

Case studies: Implementation of CLT for evaluating residual stresses in the components made with different isotropic layers such as electronic packages etc.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Agarwal BD and Broutman LJ, "Analysis and Performance of Fiber Composites", John Wiley and Sons,
	New York, 1990.
2	Gibson R F, Principles of Composite Material Mechanics , McGraw-Hill, 1994.CRC press, 4th Edition,
	<i>2016.</i>
3	Hyer MW and Scott R White, "Stress Analysis of Fiber - Reinforced Composite Materials", McGraw-
	Hill, 1998.
4	Issac M Daniel and OriIshai, "Engineering Mechanics of Composite Materials", Oxford University
	Press-2006, First Indian Edition - 2007
5	MadhujitMukhopadhyay, "Mechanics of Composite Materials and Structures", University Press (India)
	Pvt. Ltd., Hyderabad, 2004 (Reprinted 2008)
6	Mallick PK, Fiber - Reinforced Composites: Materials, Manufacturing and Design, CRC Press, 3rd
	Edition,2019.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Calculate for mechanical strength of the composite material	K4
CO2	Fabricate the FRP and other composites by different manufacturing methods	K4
CO3	Analyze fiber reinforced Laminates for different combinations of plies with	K4
	different orientations of the fiber.	
CO4	Evaluate the stresses in the lamina of the laminate using different failure	K4
	theories	
CO5	Analyze thermo-mechanical behavior and evaluate residual stresses in different	K4
	types of laminates using the Classical Laminate Theory.	

COs/POs	P01	PO2	P03	P04	P05
CO1	1	1	1	1	-
CO2	-	-	-	1	-
CO3	-	1	-	2	3
CO4	1	2	1	-	-
CO5	-	1	3	-	-
23EDPE02	1	1	2	1	3

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE03 DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS	I
--	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course Objectives

- 1. To provide an overview of the various components of hydraulic systems, as well as their design and selection techniques.
- 2. To develop a comprehensive grasp of the necessity for and use of different control and regulating components in hydraulic systems.
- 3. To allow them to construct hydraulic circuits for industrial applications on their own.
- 4. To familiarize them with the various components of pneumatic systems and to teach them how to construct basic pneumatic systems.
- 5. To persuade them of the need of integrating electronics, developing low-cost systems, and developing solutions for basic industrial applications.

UNIT - I

OIL HYDRAULIC SYSTEMS AND HYDRAULIC ACTUATORS

9 Periods

Hydraulic Power Generators – Selection and specification of pumps, pump characteristics. Linear and Rotary Actuators – selection, specification and characteristics, Hydrostatic drives, types, selection.

UNIT - II CONTROL AND REGULATION ELEMENTS

9 Periods

Pressure - direction and flow control valves - relief valves, non-return and safety valves - actuation systems, Proportional Electro hydraulic servo valves.

UNIT – III HYDRAULIC CIRCUITS

9 Periods

Reciprocation, quick return, sequencing, synchronizing circuits - accumulator circuits - industrial circuits - press circuits - hydraulic milling machine - grinding, planning, copying, - forklift, earth mover circuits design methodology- design and selection of components - safety and emergency mandrels - Cascade method.

UNIT – IV PNEUMATIC SYSTEMS AND CIRCUITS

9 Periods

Pneumatic fundamentals - control elements, position and pressure sensing, Pneumatic equipment's selection of components - design calculations - logic circuits - switching circuits - fringe conditions modules and these integration - sequential circuits - cascade methods - mapping methods - step counter method - compound circuit design - combination circuit design - Veitch map.

UNIT – V

ELECTROMAGNETIC & ELECTRONIC CONTROL OF HYDRAULICS & PNEUMATIC CIRCUIT

9 Periods

Electrical control of pneumatic circuits – use of relays, counters, timers, ladder diagrams, use of microprocessor in circuit design – use of PLC in hydraulic and pneumatic circuits – Fault finding–application -fault finding - hydro pneumatic circuits - use of microprocessors for sequencing - PLC, Lowcost automation - Robotic circuits.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total:45 Periods

1	Jagade	esha T,	"Pneum	atics (Concep	ots, Desigr	and	<i>Application</i>	ions "	, Universi	ities	Pres	s, 20	15
_				_		_					_		_	

- 2 | Majumdar, S.R., "Oil Hydraulics Systems Principles and Maintenance", Tata McGraw Hill, 2001.
- 3 ShanmugaSundaram.K, "Hydraulic and Pneumatic Controls", Chand& Co, 2006.
- 4 Anthony Esposito, "Fluid Power with Applications", Prentice Hall, 2009.

COUR	COURSE OUTCOMES:					
Upon	Upon completion of the course, the students will be able to:					
CO1	Design and select appropriate pumps in industries based on need.	K4				
CO2	Select correct sizing and rating of control elements in hydraulics.	K4				
CO3	Design basic circuits (hydraulic) for industrial applications.	K4				
CO4	Design basic pneumatic circuits for industrial applications.	K4				
CO5	Identify and provide solution for troubleshooting and design low cost	K4				
	automation for industrial application.					

COs/POs	P01	P02	P03	P04	P05
•					
CO1	-	1	1	-	-
CO2	-	1	2	1	-
CO3	-	-	1	-	-
CO4	1	-	2	1	1
CO5	-	-	1	-	1
23EDPE03	1	1	1	1	1

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE04	QUALITY CONCEPTS IN DESIGN	I
----------	----------------------------	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

	MIL	1 11	5	, 0	3			
Course	1. To teach diverse engineering design ideas, r	naterial choices,	and]	oroduc	ction			
Objectives	procedures.							
	2. To study the fundamentals of employing various tools to implement quality in a							
	product or service.							
	3. To employ failure mode effect analysis to improve product quality and apply ways to							
	maintain the six-sigma status							
	4. Using multiple design-of-experiment principles to create a solid product or services							
	5. Maintaining product quality through the use of statistical tools and enforcing measures							
	to increase product reliability.							
UNIT – I	DESIGN FUNDAMENTALS, METHODS AND MATERIA	AL SELECTION		9 Peri	ods			
Morphology of	Morphology of Design – The Design Process – Computer Aided Engineering – Concurrent							
Engineering -	Engineering - Competition Bench Marking - Creativity - Theory of Problem solving (TRIZ) - Value							
Analysis - Des	rign for Manufacture, Design for Assembly – Design fo	or casting, Forging	, Meta	l Forn	ning,			
Machining and	Machining and Welding							

UNIT - II DESIGN FOR QUALITY

9 Periods

Quality Function Deployment -House of Quality-Objectives and functions-Targets-Stakeholders-Measures and Matrices-Design of Experiments –design process-Identification of control factors, noise factors, and performance metrics - developing the experimental plan- experimental design – testing noise factors- Running the experiments –Conducting the analysis-Selecting and conforming factor-Set points-reflecting and repeating.

UNIT – III FAILURE MODE EFFECTS ANALYSIS AND DESIGN FOR SIX SIGMA

9 Periods

Basic methods: Refining geometry and layout, general process of product embodiment - Embodiment checklist- Advanced methods: systems modeling, mechanical embodiment principles-FMEA method-linking fault states to systems modeling - Basis of SIX SIGMA - Project selection for SIX SIGMA- SIX SIGMA problem solving- SIX SIGMA in service and small organizations - SIX SIGMA and lean production -Lean SIX SIGMA and services.

UNIT – IV DESIGN OF EXPERIMENTS

9 Periods

Importance of Experiments, Experimental Strategies, Basic principles of Design, Terminology, ANOVA, Steps in Experimentation, Sample size, Single Factor experiments – Completely Randomized design, Randomized Block design, Statistical Analysis, Multifactor experiments – Two and three factor full Factorial experiments, 2K factorial Experiments, Confounding and Blocking designs, Fractional factorial design, Taguchi's approach – Steps in experimentation, Design using Orthogonal Arrays, Data Analysis, Robust Design-Control and Noise factors, S/N ratios

UNIT - V STATISTICAL CONSIDERATION AND RELIABILITY

9 Periods

Frequency distributions and Histograms- Run charts –stem and leaf plots- Pareto Diagrams-Cause and Effect Diagrams-Box plots- Probability Distribution-Statistical Process control–Scatter diagrams – Multivariable charts –Matrix plots and 3-D plots. -Reliability-Survival and Failure-Series and parallel systems-Mean time between failure-Weibull distributions.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	AmitavaMitra, "Fundamentals of Quality control and improvement", John Wiley & Sons, 2016.
2	George E. Dieter, Linda C. Schmidt, "Engineering Design" , McGraw Hill Education Pvt. Ltd., 2013
3	Karl T. Ulrich, Steven D. Eppinger, "Product Design And Development", Tata Mcgraw-Hill Education,
	2015
4	Montgomery, D.C., "Design and Analysis of experiments", John Wiley and Sons, 2017.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply fundamentals of design process and material selection for developing a quality product	K4
CO2	Apply the quality concepts to develop a robust product	K4
CO3	Perform Failure Mode Effect Analysis on a product and use six sigma principles to enhance its quality	K4
CO4	Apply different experimental design methods in product development	K4
CO5	Implement various statistical tools to improve its quality and reliability	K4

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
CO1	1	3	3	2	2			
CO2	1	2	2	1	2			
CO3	2	1	1	-	1			
CO4	1	1	2	-	1			
CO5	2	2	3	1	2			
23EDPE04	1	2	2	1	2			
1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE05 SURFACE ENGINEERING	I
------------------------------	---

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	1. The goal of this course is to learn about the fundamentals of surface ch	aracteristics and				
Objectives	different forms of friction in metals and non-metals.					
	2. To investigate the various types of wear mechanisms and the worldwide standards for neasuring friction and wear.					
	3. To investigate the various forms of corrosion and the steps that may be taken to avoid					
	it.					
	4. To investigate the many forms of surface treatments and surface modification methods.					
	5. To investigate the various materials utilized in friction and wear applications.					
UNIT – I	FRICTION	9 Periods				

Topography of Surfaces – Surface features – Properties and measurement – Surface interaction – Adhesive Theory of Sliding Friction – Rolling Friction – Friction properties of metallic and nonmetallic materials – Friction in extreme conditions – Thermal considerations in sliding contact.

UNIT - II WEAR 9 Periods

Introduction – Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and Fretting Wear Laws of wear – Theoretical wear models – Wear of metals and non-metals – International standards in friction and wear measurement.

UNIT - III CORROSION 9 Periods

Introduction – Principle of corrosion – Classification of corrosion – Types of corrosion – Factors influencing corrosion – Testing of corrosion – In-service monitoring, Simulated service, Laboratory testing – Evaluation of corrosion – Prevention of Corrosion – Material selection, Alteration of environment, Design, Cathodic and Anodic Protection, Corrosion inhibitors.

UNIT – IV SURFACE TREATMENTS

9 Periods

Introduction – Surface properties, Superficial layer – Changing surface metallurgy – Wear resistant coatings and Surface treatments – Techniques – PVD – CVD – Physical CVD – Ion implantation – Surface welding – Thermal spraying – Laser surface hardening and alloying, laser re-melting, and laser cladding. Applications of coatings and surface treatments in wear and friction control – Characteristics of Wear resistant coatings – New trends in coating technology – DLC – CNC – Thick coatings – Nano-engineered coatings – Other coatings, Corrosion resistant coating.

UNIT - V ENGINEERING MATERIALS

9 Periods

Introduction – Advanced alloys – Super alloys, Titanium alloys, Magnesium alloys, Aluminium alloys, and Nickel based alloys – Ceramics – Polymers – Biomaterials – Applications – Bio Tribology Nano Tribology.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	G.W.Stachowiak& A.W .Batchelor , "Engineering Tribology", Butterworth-Heinemann, UK,2005
2	Rabinowicz.E, "Friction and Wear of materials", John Willey &Sons, UK, 1995
3	Halling, J. , "Principles of Tribology ", Macmillian – 1984
4	Williams J.A. "Engineering Tribology", Oxford Univ. Press, 1994
5	S.K.Basu, S.N.Sengupta&B.B.Ahuja, "Fundamentals of Tribology", Prentice –Hall of India Pvt. Ltd , New
	Delhi, 2005
6	Fontana G., "Corrosion Engineering", McGraw Hill, 1985.

	SE OUTCOMES:	Bloom's Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Understand the basics of surface features, laws of friction, and different types of friction.	K4
CO2	Develop the knowledge of various wear mechanism and its measurement.	K4
CO3	Understand the types of corrosion and its preventive measures.	K4
CO4	Familiarize the types of surface properties and various surface modification techniques.	K4
CO5	Ability to understand the different types of materials used in the friction and wear applications.	K4

COs/DOs DO1 DO2 DO2 DO4 DO5								
COs/POs	P01	PO2	PO3	PO4	P05			
CO1	1	1	2	1	2			
CO2	-	1	2	1	-			
CO3	1	2	3	-	1			
CO4	-	1	2	1	1			
CO5	-	-	1	-	-			
23EDPE05	1-20	""3R_1_a	2	1	1			

T

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE06	DESIGN FOR X			II			
PREREQUISIT	ES	CATEGORY	/ L	Т	P	С	
	NIL	PE	3	0	0	3	

Course	1. To study the concept of design for manufacturing, assembly and	environment.			
Objectives	2. To know about the value analysis in design.				
	3. To study the product development economics.				
	4. To study the concepts of reliability.				
	5. To acquire the knowledge about maintainability techniques.				
UNIT – I	DESIGN FOR MANUFACTURE & ASSEMBLY	9 Periods			

General design principles for manufacturability - strength and mechanical factors, mechanisms selection, evaluation method, Process capability - Feature tolerances - Geometric tolerances -Assembly limits - Datum features - Tolerance stacks. Assembly processes-Handling and insertion process-Manual, automatic and robotic assembly-Cost of Assembly-Number of Parts-DFA guidelines

UNIT – II **VALUE ENGINEERING**

Value -types -functional -operational -aesthetic -cost- -material - Design process - value and worthiness -procedure -brainstorming sessions -evaluation - case studies - value estimation-Value analysis - Design for value - Selection of alternatives - optimization – Implementation

PRODUCT DEVELOPMENT ECONOMICS

9 Periods

Elements of Economics Analysis-Quantitative and qualitative analysis-Economic Analysis Process-Estimating magnitude and time of future cash inflows and out flows- Sensitivity analysis-Project trade-offs-Trade-offs rules-Limitation of quantitative analysis- Influence of qualitative factors on project success

CONCEPT OF RELIABILITY UNIT - IV

9 Periods

Introduction: The study of Reliability and Maintainability, Concepts, Terms and Definitions, Applications, The Failure Distribution: The reliability Function, Mean Time to Failure, Hazard Rate Function, Bath-tub Curve, Conditional Reliability.

ENGINEERING MATERIALS

9 Periods

Analysis of down time, Report Time Distribution, Stochastic Point Processes, Reliability under Preventive Maintenance, State-Dependent System with Repair, Design for Maintainability.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods **Total:45 Periods**

1	Harry Peck, "Designing for Manufacture", Pitman Publications, 1983.
2	George E Dieter, "Engineering Design" , McGraw-Hill Int Editions, 2017.
3	S.S.Iyer, "Value Engineering", New Age International, 2019.
4	Charles E. Ebeling, "An Introduction to Reliability and Maintainability Engineering", TMH
	2017.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply design concepts for manufacturing, assembly and environment.	K4
CO2	Understand the basic principles and limitations of common	K4
	manufacturing processes and how they affect the manufacturability of a	
	design.	
CO3	Evaluate the influence of economics in product development.	K4
CO4	Understand the reliability aspects in design	K4
CO5	Gain the knowledge about maintainability analysis.	K4

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
C01	1	1	2	1	2			
CO2	-	1	2	1	-			
CO3	1	2	3	-	1			
CO4	-	1	2	1	1			
CO5	-	-	1	-	-			
23EDPE06	1	1	2	1	1			
1 – Slight, 2 – Moderate, 3 –	Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE07	DESIGN OF MACHINE TOOL	II
----------	------------------------	----

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

	4.0.1 1. 1.00					
Course	1. Selecting the different machine tool mechanisms.					
Objectives						
	3. Designing the machine tool structures.					
	4. Designing the guideways and power screws.					
	5. Designing the spindles and bearings.					
UNIT – I	INTRODUCTION TO MACHINE TOOL DESIGN	9 Periods				
Introduction	to Machine Tool Drives and Mechanisms, Auxiliary Motions in	Machine Tools,				
Kinematics of	Machine Tools, Motion Transmission.					
UNIT – II	REGULATION OF SPEEDS AND FEEDS	9 Periods				
Aim of Speed	and Feed Regulation, Stepped Regulation of Speeds, Multiple Spe	ed Motors, Ray				
	d Design Considerations, Design of Speed Gear Boxes, Feed Dr.					
Design.						
UNIT – III						
Functions of	Machine Tool Structures and their Requirements, Design for Stren	gth, Design for				
Rigidity, Mate	erials for Machine Tool Structures, Machine Tool Constructional Fea	tures, Beds and				
Housings, Col	umns and Tables, Saddles and Carriage.					
UNIT - IV	DESIGN OF GUIDEWAYS AND POWER SCREWS	9 Periods				
Functions an	d Types of Guideways, Design of Guideways, Design of Aerosta	tic Slide ways,				
Design of Ant	i-Friction Guideways, Combination Guideways, Design of Power Scr	ews.				
UNIT - V	DESIGN OF SPINDLES AND SPINDLE SUPPORT	9 Periods				
Functions of	Functions of Spindles and Requirements, Effect of Machine Tool Compliance on Machining					
Accuracy, Design of Spindles, Antifriction Bearings. Dynamics of Machine Tools: Machine Tool						
_	Elastic System, Static and Dynamic Stiffness					
Contact Periods:						
Lecture: 45 I	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods					

1	N.K. Mehta, "Machine Tool Design and Numerical Control" TMH, New Delhi, 2010.				
2	G.C. Sen and A. Bhattacharya, "Principles of Machine Tools" New Central Book Agency, 2009.				
3	D. K Pal, S. K. Basu, "Design of Machine Tools" 5th Edition. Oxford IBH, 2008.				
4	Acherkan.N., "Machine Tool Design" Vol. 3 & 4, MIR Publishers, Moscow, 1968.				
5	F. Koenigsberger, "Machine Tool Structures" Pergamon Press,1970.				

COUR	COURSE OUTCOMES:				
Upon	Upon completion of the course, the students will be able to:				
CO1	Select the different machine tool mechanisms.	K4			
CO2	Design the Multi speed Gear Box and feed drives.	K4			
CO3	Design the machine tool structures.	K4			
CO4	Design the guideways and power screws.	K4			
CO5	Design the spindles and bearings.	K4			

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	
CO1	2	3	3	2	1	
CO2	1	2	3	2	1	
CO3	1	3	-	1	1	
CO4	-	1	2	-	1	
CO5	-	-	3	1	-	
23EDPE07	1	3	3	2	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE08 PRODUCT LIFE CYCLE MANAGEMENT II	23EDPE08
---	----------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course Objectives 1. PLM's history, principles, and vocabulary will be studied. 2. To have a better understanding of PLM/functionality PDM's and 3. To comprehend the many modules available in commercial PLM/					
3. To comprehend the many modules available in commercial PLM					
	/PDM products				
1 /L To chow how VI M / VIIM may he used in industrial settings					
	4. To show how PLM/PDM may be used in industrial settings.				
	5. PLM/PDM may be used with legacy data bases, CAx, and ERP systems.				
UNIT – I HISTORY, CONCEPTS AND TERMINOLOGY OF PLM	9 Periods				
Introduction to PLM, Need for PLM, opportunities of PLM, Different views of PLM	0 0				
Data Management (EDM), Product Data Management (PDM), Collaborative Pro	oduct Definition				
Management (cPDm), Collaborative Product Commerce (CPC), Product Lifecyc					
(PLM). PLM/PDM Infrastructure - Network and Communications, Data	a Management,				
Heterogeneous data sources and applications					
UNIT - II PLM/PDM FUNCTIONS AND FEATURES	9 Periods				
User Functions - Data Vault and Document Management, Workflow and Proces	ess Management,				
Product Structure Management, Product Classification and Programme Mana	agement. Utility				
Functions - Communication and Notification, data transport, data translation,	image services,				
system administration and application integration					
UNIT – III DETAILS OF MODULES IN A PDM/PLM SOFTWARE	9 Periods				
Case studies based on top few commercial PLM/PDM tools - Teamcenter, Win	ndchill, ENOVIA,				
Aras PLM, SAP PLM, Arena, Oracle Agile PLM and Autodesk Vault.					
UNIT - IV ROLE OF PLM IN INDUSTRIES	9 Periods				
Case studies on PLM selection and implementation (like auto, aero, electronic)	- other possible				
sectors, PLM visioning, PLM strategy, PLM feasibility study, change manage	-				
financial justification of PLM, barriers to PLM implementation, ten step app					
benefits of PLM for-business, organisation, users, product or service, process per	OF AUGUSTAN II				
UNIT - V BASICS ON CUSTOMISATION/INTEGRATION OF PDM/PLM					
SOFTWARE	9 Periods				
PLM Customization, use of EAI technology (Middleware), Integration with lea	egacy data base,				
CAD, SLM and ERP.	_ ,				
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Max Giordano, Luc Mathieu, Francois Villeneuve, "Product Lifecycle Management", Wiley".				
2	John Stark, "Product Lifecycle Management, Vol.1", 2015.				
3	John Stark, "Product Lifecycle Management, Vol.2", 2015.				
4	Michael Grieves, "Product Lifecycle Management", McGraw Hill, 2005.				

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Summarize the history, concepts and terminology of PLM.	K4
CO2	Use the functions and features of PLM/PDM.	K4
CO3	Use different modules offered in commercial PLM/PDM tools.	K4
CO4	Implement PLM/PDM approaches for industrial applications.	K4
CO5	Integrate PLM/PDM with legacy data bases, CAx& ERP systems.	K4

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
C01	1	1	2	1	1		
CO2	-	1	1	-	-		
CO3	1	1	2	1	1		
CO4	-	-	1	2	1		
CO5	-	-	2	1	-		
23EDPE08	1	1	2	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE09 OPTIMIZATION TECHNIQUES IN DESIGN	II
--	----

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

	the section of the se	
UNIT – I	UNCONSTRAINED OPTIMIZATION TECHNIQUES	9 Periods
Course Objectives	 To understand the basic concepts of unconstrained optimization To understand the basic concepts of constrained optimization to To provide the mathematical foundation of artificial neural swarm intelligence for design problems. To implement optimization approaches and to select appropring design application. To demonstrate selected optimization algorithms commonly undynamic applications. 	echniques. l networks and iate solution for

Introduction to optimum design - General principles of optimization - Problem formulation & their classifications - Single variable and multivariable optimization, Techniques of unconstrained minimization - Golden section, Random, pattern and gradient search methods - Interpolation methods.

UNIT - II CONSTRAINED OPTIMIZATION TECHNIQUES 9 Periods
Optimization with equality and inequality constraints - Direct methods – Indirect methods using penalty functions, Lagrange multipliers - Geometric programming.

UNIT - III ARTIFICIAL NEURAL NETWORKS AND SWARM | 9 Periods

Introduction – Activation functions, types of activation functions, neural network architectures, Single layer feed forward network, multilayer feed forward network, Neural network applications.

Swarm intelligence - Various animal behaviors, Ant Colony optimization, Particle Swarm optimization.

UNIT - IVADVANCED OPTIMIZATION TECHNIQUES9 PeriodsMulti stage optimization - dynamic programming; stochastic programming; Multi objective optimization, Genetic algorithms and Simulated Annealing technique.

UNIT - V STATIC AND DYNAMIC APPLICATIONS

9 Periods

Structural applications – Design of simple truss members – Design of simple axial, transverse loaded members for minimum cost, weight – Design of shafts and torsional loaded members – Design of springs. Dynamic Applications – Optimum design of single, two degree of freedom systems, vibration absorbers. Application in Mechanisms – Optimum design of simple linkage mechanisms.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

- Goldberg, David.E, "Genetic Algorithms in Search, Optimization and Machine Learning", Pearson, 2009.
 Jang, J.S.R, Sun, C.T and Mizutani E., "Neuro-Fuzzy and Soft Computing", Pearson
- Education.2015.

 3 Johnson Ray, C., "Optimum design of mechanical elements", Wiley, 2nd Edition 1980.
- 4 Kalyanmoy Deb, "Optimization for Engineering Design: Algorithms and Examples", PHI Learning Private Limited, 2nd Edition, 2012.
- 5 RaoSingiresu S., "Engineering Optimization Theory and Practice", New Age International Limited, New Delhi, 3rd Edition, 2013.
- 6 Rajasekaran S and VijayalakshmiPai, G.A, "Neural Networks, Fuzzy Logic and Genetic Algorithms", PHI, 2011.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Formulate unconstrained optimization techniques in engineering	K4
	design application.	
CO2	Formulate constrained optimization techniques for various application.	K4
CO3	Implement neural network technique to real world design problems.	K4
CO4	Apply genetic algorithms to combinatorial optimization problems.	K4
CO5	Evaluate solutions by various optimization approaches for a design	K4
	problem.	

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	
CO1	1	1	3	1	1	
CO2	-	1	2	-	-	
CO3	1	1	1	2	1	
CO4	1	-	-	-	-	
CO5	1	1	2	1	-	
23EDPE09	1	1	2	1	1	
1 – Slight, 2 – Moderate, 3 –	Substantial					

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE10 BIO MATERIALS II

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	1.Learn characteristics and classification of Biomaterials	
Objectives	2.Understand different metals, ceramics and its nano materials charac	teristics as
	biomaterials	
	3.Learn polymeric materials and its combinations that could be used a	as a tissue
	replacement implants	
	4.Get familiarized with the concepts of Nano Science and Technology	
	5. Understand the concept of biocompatibility and the methods for bio	materials
	testing.	
UNIT – I	INTRODUCTION	8 Periods

Definition of biomaterials, requirements & classification of biomaterials, Comparison of properties of some common biomaterials. Effects of physiological fluid on the properties of biomaterials. Biological responses (extra and intra-vascular system). Surface properties of materials, physical properties of materials, mechanical properties.

UNIT - II METALLIC IMPLANT MATERIALS

7 Periods

Metallic implants – Stainless steels, co-based alloys, Ti-based alloys, shape memory alloy, nanostructured metallic implants, degradation and corrosion, ceramic implant – bio inert, biodegradable or bioresorbable, bioactive ceramics, nanostructured bio ceramics.

UNIT - III POLYMERIC IMPLANT MATERIALS

10 Periods

Polymerization, factors influencing the properties of polymers, polymers as biomaterials, biodegradable polymers, Bio polymers: Collagen, Elastin and chitin. Medical Textiles, Materials for ophthalmology: contact lens, intraocular lens. Membranes for plasma separation and Blood oxygenation, electro spinning: a new approach.

UNIT – IV CERAMIC IMPLANT MATERIALS

10 Periods

Definition of bio ceramics. Common types of bio ceramics: Aluminum oxides, Glass ceramics, Carbons. Bio resorbable and bioactive ceramics. Importance of wear resistance and low fracture toughness. Host tissue reactions: importance of interfacial tissue reaction. Composite implant materials: Mechanics of improvement of properties by incorporating different elements. Composite theory of fiber reinforcement (short and long fibers, fibers pull out). Polymers filled with osteogenic fillers (e.g., hydroxyapatite). Host tissue reactions.

UNIT - V TESTING OF BIOMATERIALS

10 Periods

Biocompatibility, blood compatibility and tissue compatibility tests, Toxicity tests, sensitization, carcinogenicity, mutagenicity and special tests, Invitro and In vivo testing; Sterilization of implants and devices: ETO, gamma radiation, autoclaving. Effects of sterilization.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

- 1 Biomaterials Science: **An Introduction to Materials in Medicine**, By Buddy D. Ratner, et. al. Academic Press, San Diego, 1996.
- 2 | Sujata V. Bhat, **Biomaterials**, Narosa Publishing House, 2002.
- 3 | J B Park, **Biomaterials Science and Engineering, Plenum** Press, 1984.
- 4 Sree ram Ramakrishna, MuruganRamalingam, T. S. Sampath Kumar, and Winston O. Soboyejo, **Biomaterials: A Nano Approach**, CRC Press, 2010
- 5 Myer Kutz, **Standard Handbookof Biomedical Engineering and Design**, McGraw Hill,2003.
- 6 Joseph J.Carr and John M Brown, Introduction To Biomedical Equipment Technology, 4/E, pearson education India, 2001.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Analyze different types of Biomaterials and its classification and apply the concept of nanotechnology towards biomaterials use.	K4
CO2	Identify significant gap required to overcome challenges and further development in metallic and ceramic materials.	K4
CO3	Create combinations of materials that could be used as a tissue replacement implant.	K4
CO4	apply the testing standards for biomaterials.	K4
CO5	Identify significant gap required to overcome challenges and further development in polymeric materials.	K4

COs/POs	P01	PO2	P03	P04	P05
C01	2	1	2	1	-
CO2	-	1	1	2	1
CO3	1 0223	1.1	-	2	1
CO4	2	TT1	1	1	-
CO5	2	1- 3	1	2	1
23EDPE10	2	1	1	2	1
– Slight, 2 – Moderate, 3 – 9	Substantial	(643)			•

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE11 MECHANICAL MEASUREMENTS AND ANALYSIS	III
---	-----

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

	NIL	PE	3 0 0 3	
	1. The student will understand the principle of for			
Course	2. The student will understand the vibration meas	surement and the	ir applications.	
Objectives	3. To impart knowledge on the principle behind a	coustics and wind	l flow	
Objectives	measurements.			
	4. To familiarize with the distress measurements.			
	5. To realize the non-destructive testing principle	and application.		
UNIT – I	FORCES AND STRAIN MEASUREMENT		9 Periods	
Strain gauge	e, principle, types, performance and uses. Ph	oto elasticity –	Principle and	
	- Moire Fringe - Hydraulic jacks and pressure g	gauges – Electron	ic load cells -	
Proving Ring	s – Calibration of Testing Machines.			
UNIT – II	VIBRATION MEASUREMENTS		9 Periods	
Characteristi	cs of Structural Vibrations – Linear Variable Dif	ferential Transfo	rmer (LVDT) -	
Transducers	for velocity and acceleration measurements. Vib	ration meter – S	eismographs -	
Vibration An	alyzer - Display and recording of signals - Cathode	e Ray Oscilloscope	e – XY Plotter –	
Chart Plotter	s – Digital data Acquisition systems.			
UNIT -III	ACOUSTICS AND WIND FLOW MEASUREMENTS	S	9 Periods	
	Pressure and flow measurements - pressure tra			
venturimeter	and flow meters - wind tunnel and its use in	structural analys	sis – structural	
modelling – o	lirect and indirect model analysis.			
UNIT -IV	DISTRESS MEASUREMENTS		9 Periods	
Diagnosis of	distress in structures - crack observation and	measurements	- corrosion of	
reinforcement in concrete - Half-cell, construction and use - damage assessment - controlled				
blasting for d	lemolition.			
UNIT - V	NON-DESTRUCTIVE TESTING METHODS		9 Periods	
Load testing on structures, buildings, bridges and towers - Rebound Hammer - acoustic				
	ultrasonic testing principles and application -	Holography – us	se of laser for	
structural tes	sting –Brittle coating.			
a b .	•			

Contact Periods:

1	Bray Don E and Stanley, R. K., "Non-destructive Evaluation", McGraw Hill Publishing
	Company,N.Y.1989
2	Garas, F.K., Clarke, J.L and Armer GST, "Structural assessment", Butterworths, London, 1987
3	James W. Dally and William Franklin Riley, "Experimental Stress Analysis", McGraw Hill , 3rd
	Edition, 1991
4	Sadhu Singh, "Experimental Stress Analysis", Khanna Publishers, New Delhi, 2009.
5	Srinath LS, Raghavan Mr, Lingaiah K, Gargesha G, Pant B and Ramachandra, K, "
	Experimental Stress Analysis", Tata McGraw Hill Company, New Delhi, 1984.

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:			
CO1	Measure physical quantities such as forces and strains.	K4		
CO2	CO2 Apply different vibration measurements techniques.			
CO3	CO3 Measure physical quantities such as pressure and flow.			
CO4	Apply techniques involved in crack measurement.	K4		
CO5				

COURSE ARTICULATION	MATRIX					
COs/POs	P01	P02	P03	P04	P05	
CO1	1	-	1	1	-	
CO2	1	1	2	-	-	
CO3	1	-	2	1	-	
CO4	1	1	1	-	1	
CO5	1	1	2	1	-	
23EDPE11	1	1	2	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE1 2	2

VIBRATION CONDITION MONITORING AND CONTROL

III

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To impart knowledge in vibration control and use condition	on monitoring				
Objectives	techniques for machineries.					
UNIT – I	INTRODUCTION	9 Periods				
Review of fundamentals of single degree freedom systems – Two-degree freedom systems, Multi						
Degree Freed	om systems, Continuous systems, Determination of Natural frequen	ncies and mode				
shapes, Nume	erical methods in vibration Analysis.					
UNIT – II	VIBRATION CONTROL	9 Periods				
Introduction	- Reduction of vibration at the source - control of vibration - by st	ructural design				
- Material se	lection - Localized additions - Artificial damping - Resilient isola	ition, Vibration				
isolation, Vib	ration absorbers.					
UNIT - III	ACTIVE VIBRATION CONTROL	9 Periods				
Introductions	s - Concepts and applications, Review of smart materials - Types and	d characteristic				
review of sma	art structures – Characteristic Active vibration control in smart struc	ctures.				
UNIT - IV	CONDITION BASED MAINTENANCE PRINCIPLES AND	9 Periods				
	APPLICATIONS					
Introduction	- condition monitoring methods - The design of Information sys	stem, Selecting				
method of mo	onitoring, Machine condition monitoring and diagnosis – Vibration s	everity criteria				
– Machine M	aintenance Techniques - Machine condition monitoring technique	ies – Vibration				
monitoring te	echniques – Instrumentation systems – choice of monitoring parame	ter.				
UNIT – V	DYNAMIC BALANCING AND ALLIGNMENT OF MACHINERY	9 Periods				
Introduction-	Introduction-Dynamic balancing of Rotors-Field Balancing in one plane-Two planes and in					
several planes-Machinery alignment-Rough alignment methods-The face peripheral dial						
indicator method- Reverse indicator method-shaft-to coupling spool method.						
Contact Peri	ods:					
Lecture: 45 I	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	S S. Rao. " MechanicalVibration " Sixth Edition, Pearson Education-2018	
2	Rao J.S. " Vibratory Condition Monitoring of Machines " CRC Press. 2000.	
3	A. Davies, "Hand book of Condition Monitoring" Springer - 2012	
4	Daniel J. Inman, "Vibration with Control" , Willey Publication - 2017	
5	Thomson W.T. Marie Dillon Dahleh, " Theory of Vibrations with Applications", Prentice Hall,	. \square

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Obtain vibration characteristics of mechanical systems	K4
CO2	Control vibration using active and passive control techniques	K4
C03	Design and develop dynamically balanced systems with condition monitoring setup.	K4
CO4	Evaluate the maintenance and applications of vibration control	K4
CO5	Obtain the techniques of dynamic balancing of vibration	K4

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	PO3	PO4	PO5				
C01	1	2	1	1	1				
CO2	1	1	2	-	-				
CO3	-	1	1	1	-				
CO4	1	-	-	2	1				
CO5	-	-	-	-	1				
23EDPE12	1	1	1	1	1				
1 – Slight, 2 – Moderate, 3 – S	1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE13	VEHICLE DYNAMICS	III
	V EIII GEE D I MININGS	111

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

	1. Apply and develop mathematical model of a system.							
	2. Applying vehicular vibrations and response of vehicle.							
Course	3. Applying a tire model based on required performance.							
Objectives	4. Applying the various vehicle performances, control methodologies to ensure							
	stability and ride comfort.							
	5.Applying the principles vertical, longitudinal and lateral dynamics vehicle							
	design							
UNIT – I	BASIS OF VIBRATION	9 Periods						

Definitions, Modeling and Simulation, Global and Vehicle Coordinate System, Free, Forced, Undamped and Damped Vibration, Response Analysis of Single DOF, Two DOF, Multi DOF, Magnification factor, Transmissibility, Vibration absorber, Vibration measuring instruments, Torsional vibration, Critical speed.

UNIT - II TYRES 9 Periods

Tyre forces and moments, Tyre structure, Longitudinal and Lateral force at various slip angles, rolling resistance, Tractive and cornering property of tyre. Performance of tyre on wet surface. Ride property of tyres. Magic formulae tyre model, Estimation of tyre road friction. Test On Various Road surfaces. Tyre vibration.

UNIT – III VERTICAL DYNAMICS

9 Periods

Human response to vibration, Sources of Vibration. Design, analysis and computer simulation of Passive, Semi-active and Active suspension using Quarter car, half car and full car model. Influence of suspension stiffness, suspension damping, and tyre stiffness. Control law for LQR, H Infinite, Skyhook damping. Air suspension system and their properties

UNIT - IV LONGITUDINAL DYNAMICS AND CONTROL

9 Periods

Aerodynamic forces and moments. Equation of motion. Tyre forces, rolling resistance, Load distribution for three-wheeler and four-wheeler. Calculation of Maximum acceleration, Reaction forces for Different drives. Braking and Driving torque. Prediction of Vehicle performance. ABS, stability control, Traction control. Case Studies

UNIT - V LATERAL DYNAMICS

9 Periods

Steady state handling characteristics. Steady state response to steering input. Testing of handling characteristics. Transient response characteristics, Direction control of vehicles. Roll center, Roll axis, Vehicle under side forces. Stability of vehicle on banked road and during turn. Effect of suspension on cornering.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 2 | G. NakhaieJazar, "Vehicle Dynamics: Theory and Application", Springer, 2008
- 3 Rajesh Rajamani, "Vehicle Dynamics and Control", Springer, 2005
- 4 J. Y. Wong, "Theory of Ground Vehicles", 4th Edition, Wiley-Interscience, 2008
- 5 Thomas D. Gillespie, "Fundamentals of Vehicle Dynamics", Society of Automotive Engineers Inc, 1992.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Formulate and develop mathematical model of a system.	K4
CO2	Apply vehicular vibrations and response of vehicle.	K4
CO3	Create a tire model based on required performance.	K4
CO4	Predict vehicle performance, control methodologies to ensure stability and ride comfort.	K4
CO5	Apply vertical, longitudinal and lateral dynamics vehicle design.	K4

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	P05				
C01	2	1	2	1	-				
CO2	-	1	1	2	1				
CO3	1	1	-	2	1				
CO4	2	1	1	1	-				
CO5	2	1	1	2	1				
23EDPE13	2	1	1	2	1				
1 – Slight, 2 – Moderate, 3 – Substantial									

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

	1.Formulation of governing equations for elastic problems				
Course Objectives	2.Stresses calculations/displacements around the crack tip for different modes of fracture 3.Estimation of K1c/SIF/critical flaws/failure stresses for different crack				
	geometries 4. Life assessment of the cracked components under different types of repeated/variable fatigue loads and design for its life extension.				
	5. Analysis of failed engineering components under different modes of	of fracture.			
UNIT – I	ELEMENTS OF SOLID MECHANICS	9 Periods			

Introduction to Failure and Fracture- Spectacular Failures-Basics Principles-Governing equations for the deformable body-Stress-Strain relations and general equations of elasticity in Cartesian and Polar Coordinates-vectors and tensors-differential equations of equilibrium-compatibility-boundary conditions-representation of three-dimensional stress system - generalized hook's law– plane stress and stain problems - Airy's stress function. Methods of formulation of Governing. Differential equations for plane elasticity-Naviers Equation-Biharmonic equation in Cartesian and polar coordinates.

UNIT - II STRESS AND DISPLACEMENT AROUND THE CRACK TIP FOR 9 Periods DIFFERENT MODES OF FRACTURE

Brittle and Ductile Fracture-Modes of Fracture-Weakness of the components due to Flaws-Need for Linear Elastic Fracture Mechanics (LEFM) – Evaluation of Structural Design-Stress and displacement around the crack tip in K-annulus for Mode-I and Mode-II plane crack problems – Stress and displacement around the crack tip in K-annulus for Mode III crack problems.

UNIT - III STATIONARY CRACK UNDER STATIC LOADING

9 Periods

Griffith analysis- Irwin's approximation-CTOD and stress ahead of the crack tip- Westergaard solutions: Analytical Calculations for SIF for different crack geometries-Critical crack length and fracture stress calculations. Two dimensional elastic fields – Analytical solutions for small scale yielding near a crack front -plastic zone size -Specimen size calculations: K1c Testing for Fracture toughness of the Material.

UNIT - IV FATIGUE FAILURE AND ENVIRONMENTAL-ASSISTED FRACTURE

9 Periods

Introduction To fatigue failure-S-N Curve-Crack Initiation-Crack propagation- Effect Of an Overload-Variable amplitude Fatigue load-Crack closure- Characteristics of fatigue crack-Paris Law- Fatigue Crack Growth Test to evaluate Paris constants- life calculations for a given load amplitude –effects of changing the load spectrum Environmental-assisted Fracture-Micro mechanisms-factors influencing Environmental-assisted fracture-Environment-assisted Fatigue Failure affecting fatigue performance, fatigue loading, constant and variable amplitude loading.

UNIT - V APPLICATIONS OF FRACTURE MECHANICS

9 Periods

J-integral, Mixed-mode fracture, Crack arrest methodologies- Case studies: Analysis on failed components and design for the extension of its life.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- Ted L. Anderson, "Fracture Mechanics: Fundamentals and Applications", CRC Taylor and Francis, 4th Edition, 2017.
 TribikramKundu, "Fundamentals of Fracture Mechanics", Ane Books Pvt. Ltd. New
 - Delhi/CRC Press, 1st Indian Reprint, 2012.
 - John M.Barson And StanelyT.Rolfe, **"Fatigue And fracture control in structures"**,Butterworth-Heinemann; 3rd edition. 1999.

- 4 Prashant Kumar, "Elements Of Fracture Mechanics", Tata McGraw-Hill Publishing Company Ltd, 2014.
- 5 KareHellan, "Introduction of Fracture Mechanics", McGraw-Hill Book Company, 1985.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Formulate governing equation for elastic problems	K4
CO2	Calculate stresses/displacements around the crack tip for different modes of fracture	K4
CO3	Estimate K1c/SIF/critical flaws/failure stresses for different crack geometries	K4
CO4	Assess the life of the cracked components under different types of repeated/variable fatigue loads and design for its life extension.	K4
CO5	Analyze failed engineering components under different modes of fracture.	K4

COURSE ARTICULATION MATRIX					
COs/POs	P01	PO2	PO3	P04	P05
CO1	-	1	-	1	1
CO2	2	2	1	-	-
CO3	- 9625	1	2	1	-
CO4	1	1200	1	-	-
CO5	1	7	2	1	1
23EDPE14	1	1	2	1	1
1 – Slight, 2 – Moderate, 3 –	Substantial	7699) V			

Test / Remembering **Understanding Applying Analyzing Evaluating** Creating Total % Bloom's (K1) % (K2) % (K3) % (K4) % (K5) % (K6) % Category* CAT1 25 25 25 25 100 CAT2 20 25 25 30 100 Assignment 25 30 25 20 100 Assignment 30 30 20 20 100 ESE 20 30 20 30 100

<u> </u>	· ·				
PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

WEARABLE DEVICES AND TECHNOLOGIES

Course Objectives Course Object	ertial sensors ces for use in standards for the wearable trumentation real life.
--	---

Ш

Motivation for development of Wearable Devices, The emergence of wearable computing and wearable electronics, Types of wearable sensors: Invasive, Non-invasive; Intelligent clothing, Industry sectors' overview - sports, healthcare, Fashion and entertainment, military, environment monitoring, mining industry, public sector and safety.

WEARABLE INERTIAL SENSORS

Wearable Inertial Sensors - Accelerometers, Gyroscopic sensors and Magnetic sensors; Modality of Measurement- Wearable Sensors, Invisible Sensors, In-Shoe Force and Pressure Measurement; Applications: Fall Risk Assessment, Fall Detection, Gait Analysis, Quantitative Evaluation of Hemiplegic and Parkinson's, Physical Activity monitoring: Human Kinetics, Cardiac Activity, Energy Expenditure measurement: Pedometers, Actigraphs.

UNIT - III | SCOPE OF WEARABLE DEVICES

9 Periods

Role of Wearables, Attributes of Wearables, The Meta Wearables – Textiles and clothing, Social Aspects: Interpretation of Aesthetics, Adoption of Innovation, On-Body Interaction; Case Study: Google Glass, health monitoring, Wearables: Challenges and Opportunities, Future and Research Roadmap.

INTRODUCTION TO MEASUREMENTS AND SENSORS UNIT - IV

9 Periods

Functional Elements of a Measurement System and Instruments, Applications and Classification of Instruments, Types of measured Quantities, Measures of Dispersion, Sample deviation and sample mean, Units and standards, Calibration and errors. General concepts and terminology of Sensor systems, Transducers classification-sensors and actuators, General input-output configurations, Static and dynamic characteristics of measurement system.

RESISTIVE AND REACTIVE SENSORS

9 Periods

Resistive sensors- Potentiometers, strain gages (piezo-resistive effect), resistive temperature detectors (RTD), thermistors, magneto resistors, light dependent resistor (LDR), resistive hygrometers, resistive gas sensors. Inductive sensors - variable reluctance sensors, Hall effect, Eddy current sensors, Linear variable differential transformers (LVDT), variable transformers, magneto-elastic, magneto-resistive, and magneto strictive sensors. Capacitive sensors- variable capacitor, differential capacitor.

Contact Periods:

23EDPE15

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

- M. Mardonova and Y. Choi, "Review of Wearable Device Technology and Its Applications to the Mining Industry," Energies, vol. 11, p. 547, 2018.
- "Wearable Sensors -Fundamentals, Implementation and Applications", by Edward Sazonov and Michael R. Neuman, Elsevier Inc., 2014.

- 3 B. C. Nakra, K.K. Choudhury, "Instrumentation, Measurement and Analysis", -3rd Edition, Tata McGraw, 2009.
- 4 Edward Sazonov, Michael R Neuman, "Wearable Sensors: Fundamentals, Implementation and Applications", Elsevier, 2014.

	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify and understand the need for development of wearable devices	K4
	and its influence on various sectors.	
CO2	Discus the applications of various wearable inertial sensors for	K4
	biomedical applications.	
CO3	Able to design and perform experiments on the sensors and develop the	K4
	projects based on the customer needs	
CO4	Gain the basic idea of measurements, characteristics and the errors	K4
	associated with measurements.	
CO5	Demonstrate the concept of resistive and reactive sensors which can be	K4
	employed for real life applications	

COs/POs	P01	P02	PO3	P04	P05
CO1	2	1	1	1	1
CO2	1	ZULTUWE TO THE PROPERTY OF THE	-	-	2
CO3	1	17	2	1	-
CO4	- 1/2	1/1	1	1	1
CO5	1	Jessett, A	-	2	1
23EDPE15	1	1	1	1	1

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

		ı
23EDPE16	MATERIAL HANDLING SYSTEM AND DESIGN	IV

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

	1. Fundamental concepts related to material handling.		
	2. Design of various hoisting gears for different material handling appl	ications	
Course	3. Development of conveyer systems for material flow in different industrial		
Objectives	production systems.		
	4. Design of elevators for various manufacturing and service applications.		
	5. Integrated mechanical system design for machine tools, power transmission		
	and engine parts.		
UNIT – I	INTRODUCTIONS AND DESIGN OF HOISTS	9 Periods	

Types, selection and applications, Design of hoisting elements: Welded and roller chains - Hemp and wire ropes - Design of ropes, pulleys, pulley systems, sprockets and drums, Load handling attachments. Design of forged hooks and eye hooks – crane grabs - lifting magnets - Grabbing attachments - Design of arresting gear - Brakes: shoe, band and cone types.

UNIT – II DRIVES OF HOISTING GEAR

9 Periods

Hand and power drives - Traveling gear - Rail traveling mechanism - cantilever and monorail cranes - slewing, jib and luffing gear - cogwheel drive - selecting the motor ratings.

UNIT - III | CONVEYORS

9 Periods

Types - description - design and applications of Belt conveyors, apron conveyors and escalators Pneumatic conveyors, Screw conveyors and vibratory conveyors.

UNIT – IV ELEVATORS

9 Periods

Bucket elevators: design - loading and bucket arrangements - Cage elevators - shaft way, guides, counter weights, hoisting machine, safety devices - Design of fork lift trucks.

UNIT - V INTEGRATED DESIGN

9 Periods

Integrated Design of systems - Valve Gear Mechanisms, Portable Air Compressor, Hay-Bale lifter, Cam Testing Machine, Power Screws, Gear Box Design more than six speed.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Alexandrov, M., "Materials Handling Equipments", MIR Publishers, 1981.
2	Boltzharol, A., "Materials Handling Handbook", The Ronald Press Company, 1958
3	Norton. L Robert. "Machine Design - An Integrated Approach", Pearson Education, 2nd
	Edition, 2005.
4	Rudenko, N., "Materials handling equipment", ELnvee Publishers, 1970.
5	Spivakovsy, A.O. and Dyachkov, V.K., "Conveying Machines", Volumes I and II, MIR Publishers,
	1985.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Design hoists and brakes used in any handling applications.	K4
CO2	Design drive mechanisms and hoisting gear for different handling	K4
	applications.	
CO3	Design different conveyor systems for material handling applications.	K4
CO4	Design of integrated mechanical system for machine tools, power	K4
	transmission and engine parts.	
CO5	Design bucket, cage and fork lift elevators for to and for transportation	K4
	of .materials in vertical direction	

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	
C01	1	1	1	1	1	
CO2	1	-	2	1	-	
CO3	-	1	1	-	-	
CO4	1	-	1	1	-	
CO5	-	1	-	-	-	
23EDPE16	1	1	1	1	1	
1 – Slight, 2 – Moderate, 3 –	Substantial					

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE17	BEARING DESIGN AND ROTOR DYNAMICS	IV
----------	-----------------------------------	----

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

	1.Understand the mathematical model of a system	
Course	2.Understand the design and suggest bearings for specific application	S
Objectives	3.Understand a fatigue life calculation for various types of bearings	
	4. Understand the bearing behavior.	
	5.Study the dynamics of rotors mounted on Hydrodynamic Bearings	
UNIT – I	CLASSIFICATION AND SELECTION OF BEARINGS	9 Periods

Selection criteria-Dry and Boundary Lubrication Bearings-Hydrodynamic And Hydrostatic bearings-Electro Magnetic bearings-Dry bearings-Rolling Element bearings- Bearings for Precision. Applications-Foil Bearings-Special bearings- Selection of plain Bearing materials – Metallic and Nonmetallic Bearings-Materials for rolling bearings.

UNIT - II DESIGN OF FLUID FILM BEARINGS

9 Periods

Design and performance analysis of Thrust and Journal bearings – Full, partial, fixed and pivoted journal bearings design procedure-Minimum film thickness – lubricant flow and delivery – power loss, Heat and temperature distribution calculations- Design based on Charts & Tables Design of Hydrostatic, Thrust and Journal bearings- Stiffness consideration - flow regulators and pump design in hydrostatic bearings- Foil Bearings-Air Bearings.

UNIT - III ROLLING CONTACTS SELECTION OF ROLLING BEARINGS

9 Periods

Contact Stresses in Rolling bearings- Centrifugal stresses-Elasto hydrodynamic lubrication-Fatigue life calculations- Bearing operating temperature- Lubrication- Selection of lubricants-Internal clearance – Shaft and housing fit- -Mounting arrangements. Manufacturing methods-Ceramic bearings-Rolling bearing cages-bearing seals selection

UNIT - IV ROTOR DYNAMICS

9 Periods

Motion of the shaft in the bearing- Rotor supported on rigid and flexible supports-Campbell diagram, Rotor Dynamic Analyses- Undamped critical speed - Unbalance response- Damped eigenvalue analysis- Bearing stiffness and damping coefficients- Mechanics of Hydro dynamic Instability-Half Frequency whirl and Resonance whip- bearing instability and Oil Whirl Technologies to Improve the Stability of Rotor-bearing Systems--Design configurations of stable journal bearings

UNIT - V DYNAMICS OF ROTORSMOUNTED ON HYDRODYNAMIC BEARINGS

9 Periods

Hydrodynamic Lubrication equation for dynamic loadings-Squeeze film effects in journal bearings and thrust bearings -Rotating loads, alternating and impulse loads in journal bearings – Journal centre Trajectory- Analysis of short bearings under dynamic conditions- Finite difference solution for dynamic conditions

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 S.K.Basu, S.N.Sengupta&B.B.Ahuja,"Fundamentals of Tribology", Prentice –Hall of India Pvt Ltd, New Delhi, 2005.
- 2 G.W.Stachowiak& A.W .Batchelor , "Engineering Tribology" , Butterworth-Heinemann, UK,2005.
- 3 Neale, M.J. "Tribology Hand Book", Butterworth Heinemann, United Kingdom 2001.
- 4 Williams J.A. "Engineering Tribology", Oxford Univ. Press, 1994.
- 5 | Halling, J. (Editor), "**Principles of Tribology**", Macmillian 1984.

COUR	COURSE OUTCOMES:		
Upon	completion of the course, the students will be able to:	Mapped	
CO1	applythe various types of bearings and their operating principles	K4	
CO2	Design and suggest bearings for specific applications	K4	
CO3	Perform fatigue life calculations for various types of bearings,	K4	
CO4	analyze the bearing behavior	K4	
CO5	Identify the dynamics of rotors mounted on Hydrodynamic Bearings	K4	

COURSE ARTICULATION I		T	1	1	
COs/POs	P01	P02	PO3	P04	P05
CO1	2	1	2	1	1
CO2	1	1	2	-	-
CO3	1	2	1	1	-
CO4	2	-	-	1	1
CO5	1	-	1	-	-
23EDPE17	1	1	1	1	1
1 – Slight, 2 – Moderate, 3 –	Substantial				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE18	DESIGN OF HYBRID AND ELECTRIC VEHICLES	IV

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

		1			
	1. Fundamental concepts of electric and hybrid vehicle operation	and			
Course	architectures. 2. Understand the properties of batteries and its types.				
Objectives					
, , , , , , , , , , , , , , , , , , , ,	3. Provide knowledge about design of series hybrid electric vehicl				
4. Provide knowledge about design of parallel hybrid electric vehicles.					
	5. Understand of electric vehicle drive train.				
UNIT – I	INTRODUCTION TO ELECTRIC VEHICLES	9 Periods			
	icles (EV) system- EV History – EV advantages – EV market – ve				
	idamentals- law of motion-vehicle kinetics- dynamics of vehicle mo	tion – propulsion			
power -velo	city and acceleration- propulsion system design.				
UNIT – II	ENERGY SOURCE	9 Periods			
Battery bas	ics- lead acid battery - alternative batteries - battery paran	neters- technical			
characterist	ics – battery power – alternative energy sources: Fuel co	ells - Fuel Cell			
characterist	ics- Fuel cell types.				
UNIT – III	SERIES HYBRID ELECTRIC DRIVE TRAIN DESIGN	9 Periods			
Operation F	Patterns- Control Strategies-Sizing of the Major Components -De	esign of peaking			
power sour	ce - Traction Motor Size - Design of the Gear Ratio-Verification	of Acceleration			
Performance	e. Verification of gradeability Design of Engine/Generator Size	- Design of the			
Power Capa	city - Design of the Energy Capacity -Fuel Consumption.				
UNIT – IV	PARALLEL HYBRID ELECTRIC DRIVE TRAIN DESIGN	9 Periods			
Control Stra	ategies of Parallel Hybrid Drive Train- Drive Train Parameters	s- Engine Power			
Capacity- Electric Motor Drive Power Capacity- Transmission Design- Energy Storage Design					
UNIT - V	ELECTRIC VEHICLE DRIVETRAIN	9 Periods			
EV Transmission configurations – Transmission components –Ideal gear box –Gear ratio- torque					
-speed characteristics - EV motor sizing -initial acceleration-rated vehicle velocity -maximum					
velocity – m	aximum gradability.				
Contact Per	riods:				

Lecture: 45 Periods

1 Ehsani, M, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", CRC Press, 3rd edition -2018

Tutorial: 0 Periods Practical: 0 Periods

Total:45 Periods

- 2 "Hybrid Electric Vehicle Technology Assessment: Methodology, Analytical Issues, and Interim Results," Center for Transportation Research Argonne National Laboratory, United States Department of Energy.
- 3 Iqbal Hussain, "Electric & Hybrid Vehicles Design Fundamentals", Third Edition, CRC Press, 2021.
- 4 James Larminie, "Electric Vehicle Technology Explained", John Wiley & Sons, 2012.
- 5 SandeepDhameja, "Electric Vehicle Battery Systems", Newnes, 2001

COUF	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the conceptof hybrid vehicle and their function.	K4
CO2	Choose proper energy storage systems for vehicle applications	K4
CO3	Design series hybrid electric vehicles.	K4
CO4	Design parallel hybrid electric vehicles.	K4
CO5	apply the transmission components and their configurations for electric	K4
	vehicles.	

COURSE ARTICULATION I	MATRIX				
COs/POs	P01	P02	P03	P04	P05
CO1	1	-	2	1	_
CO2	1	-	-	1	1
CO3	-	1	1	-	1
CO4	-	1	1	-	-
CO5	-	-	-	1	-
23EDPE18	1	1	1	1	1
1 – Slight, 2 – Moderate, 3 -	Substantial				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE19 CREATIVITY AND INNOVATION IV	r
---------------------------------------	---

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

	1. Understand the principles of essential theory of creativity in ne	w product					
	design and development.						
	2. Understand the principles of various methods and tools for creativity in new						
Course	product design and development.						
Objectives	3. Understand the design principles of creativity in new product d	esign and					
Objectives	development.						
	4. Understand the various innovation principles and practices in n	iew product					
	design and development.						
	5. Understand the principles of innovation management in new pr	oduct design					
	and development.						
UNIT – I	INTRODUCTION TO ESSENTIAL THEORY OF CREATIVITY	9 Periods					
	tivity: The Need for Creative Thinking in the Pursuit of Quality - E						
	Creativity: Definitions and the Theory of the Mechanics of Mind	Heuristics and					
	udes, Approaches, and Actions That Support Creative Thinking						
UNIT – II	METHODS AND TOOLS FOR CREATIVITY	9 Periods					
	principles behind the tools of directed creativity – Tools that prepa						
	ght - Tools that stimulate the imagination for new idea - Developm						
	the bridge between mere creativity and the rewards of innovation - ICEDIP: Inspiration,						
Clarification,	Clarification, Distillation, Perspiration, Evaluation and Incubation – Creativity and Motivation.						
UNIT – III							
	of emotional design: Visceral, Behavioral and Reflective -	0 .					
	g, and creativity – Creativity and customer needs analysis – Innovat	ive product and					
	n – Creative problem solving and incremental improvement						
UNIT – IV	INNOVATION PRINCIPLES & PRACTICES	9 Periods					
	Creativity Activation: Morphological Box - Requirements for Inv						
_	shuller's Engineering Parameters – Altshuller's Inventive Principle	es – Altshuller's					
Contradiction	Matrix Algorithm.						
UNIT – V	INNOVATION MANAGEMENT	9 Periods					
	novation Model - Two Types of Disruption - Three Approaches to						
	nesses – New Market Disruptions: Three Case Histories – Product A						
Integration - Process of commoditation and de-commoditation - Two Processes of Strategy							
Formulation -	- Role of senior executive in leading new growth: The Disruptive Gr	owth Engine.					
Contact Peri	ods:						
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0Periods To	otal:45 Periods					

1	Clayton M. Christensen and Michael E. Raynor, "The Innovator's Solution", Harvard Business
	School Press, Boston, USA, 2003.
2	Donald A. Norman, "Emotional Design", Perseus Books Group, New York, 2004.
3	Geoffrey Petty, "How to be better at Creativity", The Industrial Society, 1999.
4	Paul E. Plsek, "Creativity, Innovation and Quality", ASQ Quality Press, Milwaukee, Wisconsin,
	2000.
5	Semyon D. Savransky, "Engineering of Creativity - TRIZ", CRC Press, New York, USA, 2000.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the principles of essential theory of creativity in new product design and development.	K4
CO2	Apply the principles of various methods and tools for creativity in new product design and development.	K4
CO3	Apply the design principles of creativity in new product design and development.	K4
CO4	Apply the various innovation principles and practices in new product design and development.	K4
CO5	Apply the principles of innovation management in new product design and development.	K4

COs/POs	P01	P02	P03	P04	PO5
CO1	1	1	2	1	-
CO2	1	-	3	-	1
CO3	-	1	1	-	-
CO4	1	1	-	1	-
CO5	1	1	1	-	1
23EDPE19	1	Comment Co	1	1	1
- Slight, 2 – Moderate, 3 –	Substantial		6		

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPE20 DESIGN OF PRESSURE VESSELS AND PIPING	IV
--	----

PREREQUISITES	CATEGORY	L	T	P	C
Machine Design.	PE	3	0	0	3

Course	1.To give exposure to engineering problems involved in the des	sign of procesure
Objectives	vessel.	sign of pressure
Objectives		nts of proceuro
	2.To learn about the tests and analysis for various compone	iits of pressure
	vessels.	
	3.To know the procedure to design pressure vessels.	
	4. Ability to design and analyze supports and nozzle.	.•
**********	5.To acquire knowledge of piping, piping layout and designing of	_
UNIT – I	STRESSES IN PRESSURE VESSEL	9 Periods
	to stresses in pressure vessel and its application, stresses in circula	
_	Thermal stresses, bending of circular plates of uniform thickn	_
_	led circular plates. Dilation of pressure vessels, Membrane stress A	•
- Cylindrical	, spherical and, conical heads – Thermal Stresses – Discontin	uity stresses in
pressure vess	els.	
UNIT – II	PRESSURE VESSEL DESIGN CODE	9 Periods
Introduction	to ASME standard for pressure vessel design, Pressure vessel	sel and related
components of	design using ASME standard;	
UNIT - III	SUPPORT DESIGN FOR PRESSURE VESSEL	9 Periods
Design of noz	zzle. Design of base plate and support lugs, Types of anchor bolt,	its material and
stresses, Desi	gn of saddle supports.	
UNIT – IV	DESIGN CONSIDERATION IN PRESSURE VESSEL	10 Periods
Buckling of p	pressure vessels: Elastic Buckling of circular ring and cylinders	under external
	lure of thick-walled cylinders or tubes under external pressure,	
-	ernal pressure and axial loading, Fatigue failure, high strengt	_
	els resistant to external high pressures found in undersea explorat	
UNIT - V	PIPING DESIGN	8 Periods
Flow diagram	m, Piping layout and piping stress analysis, Flexibility fac	tor and stress
_	n factor, Design of piping as per B31.1 piping code, Piping component	
	valve. Types of piping supports and the behavior, Introduction to p	
	VF F F , to P	r 0

Contact Periods:

Standards.

Lecture:45 Periods Tutorial: 0 Periods Practical: 0Periods Total: 45 Periods

1	Browenell L.E and Young E.D. "Process equipment design", Willey Esstern Ltd. India							
2	John F. Harvey, "Theory and Design of Pressure Vessels", CBS Publishers and							
	Distributors,1987.							
3	Sam Kannapan, "Introduction to Pipe Stress Analysis", John Wiley and Sons, 1985.							
4	Henry H Bednar, " Pressure vessel Design Hand book ", CBS publishers and distributors.							

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped	
CO1	apply the design consideration of pressure vessel	K4	
CO2	Apply the mathematical fundamental for the design of pressure vessels.	K4	
CO3	Design the support of the pressure vessel	K4	
CO4	Design pressure vessel under loading condition	K4	
CO5	Design piping system for pressure vessel	K4	

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05			
CO1	2	-	-	2	-			
CO2	1	-	2	-	-			
CO3	2	2	2	1	2			
CO4	-	2	-	2	3			
CO5	2	2	-	-	2			
23EDPE20	2	2	2	2	2			
1 – Slight, 2 – Moderate, 3 – S	1 – Slight, 2 – Moderate, 3 – Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

BUILDING BYE-LAWS AND CODES OF PRACTICE

23SE0E01

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	Course To impart knowledge on the building bye –laws and to emphasize the significance of		
Objectives	codes of practice in construction sector.		
UNIT – I	INTRODUCTION TO BUILDING BYE-LAWS	9 Periods	
Introduction to Building Rye Laws and regulation, their need and relevance General definitions such			

Introduction to Building Bye Laws and regulation, their need and relevance, General definitions such as building height, building line, FAR, Ground Coverage, set back line. Introduction to Master Plan and understanding various land uses like institutional, residential etc. - Terminologies of Building bye-laws.

UNIT - II ROLE OF STATUTORY BODIES

9 Periods

Role of various statutory bodies governing building works like development authorities, municipal corporations etc. Local Planning Authority, Town and Country planning organisation, Ministry of urban development.

UNIT - III APPLICATION OF BUILDING BYE-LAWS

9 Periods

Interpretation of information given in bye laws including ongoing changes as shown in various annexure and appendices. Application of Bye-laws like structural safety, fire safety, earthquake safety, basement, electricity, water, and communication lines in various building types.

UNIT - IV INTRODUCTION TO CODES OF PRACTICE

9 Periods

Introduction to various building codes in professional practice - Codes, regulations to protect public health, safety and welfare - Codes , regulations to ensure compliance with the local authority.

UNIT - V APPLICATION OF CODES OF PRACTICE

9 Periods

Applications of various codes as per various building types. Bureau of Indian Standards, Eurocode – Introduction to other international codes.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

1	"National Building Code of India 2016 - SP 7", NBC 2016, Bureau of Indian Standards.
2	"Model Building Bye-Laws (MBBL) - 2016", Town and Country Planning Organization, Ministry
	of Housing and Urban Affairs, Government of India.
3	"Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
4	Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COUR	COURSE OUTCOMES:					
		Taxonomy				
Upon	Mapped					
CO1	Apply the building bye-laws in planning, design and construction works.	КЗ				
CO2	Familiarize with the role of various statutory bodies.	К2				
CO3	Execute safety related work practices in the construction sector.	К3				
CO4	Ensure compliance with the rules and regulations in design and construction	К3				
	practices.					
CO5	Perform design and construction practices based on national and	К3				
	international codal provisions.					

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05	P06	
CO1	1	3	1	1	2	3	
CO2	1	3	1	1	2	3	
CO3	1	3	1	1	2	3	
CO4	2	3	1	1	2	3	
CO5	2	3	1	1	2	3	
23SE0E01	2	3	1	1	2	3	
1 – Slight, 2 – Moderate	, 3 – Substantia	l	•	•	•	•	

ASSESSMENT PAT	TERN - THEORY	Y					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual	40	40	20	-	-	-	100
Assessment 1 /			Charles C				
Case Study 1/		PATTS					
Seminar 1 /		80.5	THE ALL				
Project1			77				
Individual	40	40	20	-	-	-	100
Assessment 2 /		4 2	(39), \				
Case Study 2/		1.6	1				
Seminar 2 /		(A)					
Project 2		93.3					
ESE	40	40	20	-	-	-	100

	PLANNING OF SMART CITIES
23SEOE02	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To have an exposure on planning of smart cities with consideration	of the recent					
Objectives	challenges and to address the importance of sustainable developm	nent of urban					
	area.						
UNIT - I	SMART CITIES DEVELOPMENT POTENTIALS AND CHALLENGES	9 Periods					
Perspectives of	Smart Cities: Introduction and Overview - Implementation	Challenges -					
Methodological	issues - Spatial distribution of startup cities - Re imagining postind	ustrial cities -					
Implementation	Challenges for Establishing Smart Urban Information and Knowledge	Management					
System.							
UNIT – II	SUSTAINABLE URBAN PLANNING	9 Periods					
Optimising Gree	n Spaces for Sustainable Urban Planning - 3D City Models for Ext	racting Urban					
Environmental Q	Quality Indicators - Assessing the Rainwater Harvesting Potential - The	Strategic Role					
of Green Spaces	- Monitoring Urban Expansion.						
UNIT - III	UNIT - III ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT 9 Periods						
Alternatives for	Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy						
Management - U	Irban Dynamics and Resource Consumption - Issues and Challenges	of Sustainable					
Tourism - Green	Buildings: Eco-friendly Technique for Modern Cities.						
UNIT – IV	MULTIFARIOUS MANAGEMENT FOR SMART CITIES	9 Periods					
Assessment of	Domestic Water Use Practices - Issue of Governance in Urban W	ater Supply -					
Assessment of	Water Consumption at Urban Household Level - Water Sustainal	oility - Socio-					
economic Deterr	ninants and Reproductive Healthcare System - Problems and Developm	nent of Slums.					
UNIT – V	INTELLIGENT TRANSPORT SYSTEM	9 Periods					
Introduction to	Intelligent Transport Systems (ITS) - The Range of ITS Applicati	ons -Network					
Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route							
information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The							
Smart Card -	Dynamic Assignment - Traffic Enforcement. Urban Mobility a	nd Economic					
Development.							
Contact Periods	Contact Periods:						
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods					

	KLI LKLIGES
1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva" , 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems
	And Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems" , PHI Learning, 2018.

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon	completion of the course, the students will be able to:	Mapped		
CO1	Indicate the potential challenges in smart city development.	K2		
CO2	Select the different tools for sustainable urban planning.	К3		
CO3	Choose appropriate energy conservation system for smart cities.	К3		
CO4	Identify the proper method of water management system.	К3		
CO5	Apply Intelligent Transport System concepts in planning of smart city.	К3		

COs/POs	PO1	P02	P03	P04	P05	P06
CO1	1	-	2	3	1	1
CO2	1	1	1	3	2	1
CO3	1	1		2	2	1
CO4	1	-	1	2	1	1
CO5	1	-	1	3	1	-
23SEOE02	1	1	2	3	2	1
1 – Slight, 2 – Moderate	e, 3 – Substan	itial	2-ma	•	•	

ASSESSMENT PAT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	25	45	30	-	-	-	100		
CAT2	25	45	30	-	-	-	100		
Individual	15	40	45	-	-	-	100		
Assessment 1 /									
Case Study 1/									
Seminar 1 /									
Project1									
Individual	10	45	45	-	-	-	100		
Assessment 2 /									
Case Study 2/									
Seminar 2 /									
Project 2									
ESE	20	40	40	-	-		100		

	GREEN BUILDING
23SEOE03	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To introduce the different concepts of energy efficient b	uildings, indoor					
Objectives	environmental quality management, green buildings and its design.						
UNIT – I	INTRODUCTION	9 Periods					
Life cycle impacts	of materials and products - sustainable design concepts - strategies	of design for the					
Environment -The sun-earth relationship and the energy balance on the earth's surface, climate, wind –							
Solar radiation an	d solar temperature – Sun shading and solar radiation on surfaces – l	Energy impact on					
the shape and orie	entation of buildings – Thermal properties of building materials.						
UNIT – II	ENERGY EFFICIENT BUILDINGS	9 Periods					
Passive cooling a	nd day lighting – Active solar and photovoltaic- Building energy a	nalysis methods-					
Building energy	simulation- Building energy efficiency standards-Lighting system	design- Lighting					
economics and a	esthetics- Impacts of lighting efficiency – Energy audit and e	nergy targeting-					
Technological opt	ions for energy management.						
UNIT – III	INDOOR ENVIRONMENTAL QUALITY MANAGEMENT	9 Periods					
Psychrometry- Co	omfort conditions- Thermal comfort- Ventilation and air quality-	Air conditioning					
requirement- Visu	ial perception- Illumination requirement- Auditory requirement- Ene	rgy management					
options- Air cond	litioning systems- Energy conservation in pumps- Fans and blowe	rs- Refrigerating					
machines- Heat re	jection equipment- Energy efficient motors- Insulation.						
UNIT – IV	GREEN BUILDING CONCEPTS	9 Periods					
Green building c	oncept- Green building rating tools- Leeds and IGBC codes. – M	faterial selection					
	y- Operating energy- Façade systems- Ventilation systems-Transp	ortation- Water					
treatment systems	s- Water efficiency- Building economics						
UNIT – V	GREEN BUILDING DESIGN - CASE STUDY	9 Periods					
	uilding form, orientation and site considerations; conservation n	••					
modeling; heating	system and fuel choices; renewable energy systems; material choic	es - construction					

Contact Periods:

budget

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", , Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Apply the concepts of sustainable design in building construction.	КЗ
CO2	Execute green building techniques including energy efficiency management in	К3
	the building design.	
CO3	Establish indoor environmental quality in green building.	КЗ
CO4	Perform the green building rating using various tools.	К3
CO5	Create drawings and models of green buildings.	К3

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	P05	P06		
CO1	3	3	2	3	3	3		
CO2	3	3	2	3	3	3		
CO3	2	2	2	2	3	3		
CO4	2	3	1	3	3	3		
CO5	3	3	1	3	3	3		
23SE0E03	3	3	2	3	3	3		
1 – Slight, 2 – Moderate,	, 3 – Substanti	al	7750	•	•	•		
		7	-7					
			N.O.					

ASSESSME	NT PATTERN – T	HEORY	(99)				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 /	40	40	20	-	-	-	100
Project1 Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	40	40	20	-	-	-	100
ESE	40	40	20	-	-	-	100

	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT
23EE0E04	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

	NIL	OE	3	0	0	3
Course	To impart knowledge on occupational health h	-				
Objectives	place, accident prevention, safety management a	ınd safety measu	res	in ir	ıdus	stries.
UNIT – I	OCCUPATIONAL HEALTH HAZARDS					ods
-	lealth and Hazards - Safety Health and Managem	-				
_	- Importance of Industrial Safety - Radiation an					
	ation - Industrial Hygiene - Different air pollutant	ts in industries a	nd	thei	r eff	ects -
Electrical, fire	and Other Hazards.					
UNIT – II	SAFETY AT WORKPLACE					ods
_	rkplace - Safe use of Machines and Tools: Safety					
_	Ergonomics of Machine guarding - working in d	=			per	ation,
Inspection an	d maintenance - Housekeeping, Industrial lighting	g, Vibration and I	Vois	se.		
UNIT – III	ACCIDENT PREVENTION			9 F	eri	ods
Accident Prev	vention Techniques - Principles of accident preve	ntion - Hazard i	den	tific	atio	n and
analysis, Eve	nt tree analysis, Hazop studies, Job safety analy	sis - Theories a	and	Pri	ıcip	les of
Accident caus	eation - First Aid: Body structure and functions - I	Fracture and Dis	loca	atior	ı, In	juries
to various boo	dy parts.					
UNIT – IV	SAFETY MANAGEMENT			9 F	Peri	ods
	ement System and Law - Legislative measures ir		-		-	
safety, Health	and Environment Management, Bureau of Indian	n Standards on H	leal	th ai	nd S	afety,
IS 14489 sta	indards - OSHA, Process safety management ((PSM) and its $_{ m I}$	orin	cipl	es -	EPA
standards						
UNIT – V	GENERAL SAFETY MEASURES			9 F	eri	ods
Plant Layout	for Safety - design and location, distance between	ı hazardous unit	s, li	ghtir	ng, c	olour
coding, pilot	plant studies, Housekeeping - Accidents Related	with Maintenan	ce (of M	ach	ines -
Work Permit	System - Significance of Documentation - Case stu	ıdies involving ir	nple	eme	ntat	ion of
health and sa	fety measures in Industries.					
Contact Perio	ods:					
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0	Periods To	otal	: 45	Per	riods

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications,2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao
	PharmaMed Press, 1st edition, 2021.

COURS	COURSE OUTCOMES:	
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Identify the occupational health hazards.	К3
CO2	Execute various safety measures at workplace.	К3
CO3	Analyze and execute accident prevention techniques.	К3
CO4	Implement safety management as per various standards.	К3
CO5	Develop awareness on safety measures in Industries.	К3

COs/POs	P01	P02	P03	P04	P05	P06
CO1	1	2	2	2	3	2
CO2	2	2	2	1	2	2
CO3	2	3	2	1	2	2
CO4	1	1	1	2	2	2
CO5	1	1	1	1	1	2
23EE0E04	1	2	2	1	2	2
1 – Slight, 2 – Moderate, 3 –	Substantial	-05-14		•	•	•
	9	Contract of	2500			

ASSESSMENT PA	TTERN - THEOF	RY	- 1 /				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

23EE0E05

CLIMATE CHANGE AND ADAPTATION

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

	L				
Carrea	To understand the Fouth's climate quetons should and their offer	to on the couth			
Course	To understand the Earth's climate system, changes and their effect				
Objectives	identifying the impacts, adaptation, mitigation of climate change	0 0			
TINITO T	knowledge on clean technology, carbon trading and alternate energy				
UNIT – I	EARTH'S CLIMATE SYSTEM	9 Periods			
	Climate in the spotlight - The Earth's Climate Machine - Climate Class				
•	- Trade Winds and the Hadley Cell - The Westerlies - Cloud Formation				
	s and Hurricanes - The Hydrological Cycle – Global Ocean Circulation -				
Effect - Solar	Radiation – The Earth's Natural Green House Effect – Green House G	ases and Global			
Warming – Carbon Cycle.					
UNIT – II	OBSERVED CHANGES AND ITS CAUSES	9 Periods			
Observation o	f Climate Change – Changes in patterns of temperature, precipitation a	nd sea level rise			
- Observed e	ffects of Climate Changes – Patterns of Large-Scale Variability –Dri	vers of Climate			
Change – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences of					
Changes in Cli	mate and Environment – on a Global Scale and in India – climate chang	e modeling.			
UNIT – III	IMPACTS OF CLIMATE CHANGE	9 Periods			
Impacts of Cl	imate Change on various sectors - Agriculture, Forestry and Ecos	ystem – Water			
Resources - H	luman Health – Industry, Settlement and Society – Methods and Scena	arios –Projected			
Impacts for D	ifferent Regions – Uncertainties in the Projected Impacts of Climate C	hange – Risk of			
Irreversible Cl	nanges.				
UNIT – IV	CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES	9 Periods			
-	trategy/Options in various sectors – Water – Agriculture – Infi				
	cluding coastal zones – Human Health – Tourism – Transport – Energy				
Technologies	and Practices - Energy Supply - Transport - Buildings - Industry	-Agriculture -			
Forestry - Car	bon sequestration – Carbon capture and storage (CCS) – Waste (MS	W & Bio waste,			
Biomedical, In	dustrial waste – International and Regional cooperation.				
UNIT – V	CLEAN TECHNOLOGY AND ENERGY	9 Periods			
Clean Develop	ment Mechanism – Carbon Trading - examples of future Clean Technol	ogy –Biodiesel –			
Natural Comp	ost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Biofuels-	Solar Energy –			
Wind – Hydro	electric Power – Mitigation Efforts in India and Adaptation funding.				
Contact Perio	ods:				

REFERENCES

Lecture: 45 Periods

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007

Practical: 0 Periods

Total:45 Periods

Tutorial: 0Periods

3	IPCC fourth assessment report –Working Group I Report, "The physical sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability",
	2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	impletion of the course, the students will be able to:	Mapped
CO1	Classify the Earths climatic system and factors causing climate change and	K2
	global warming.	
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise	K2
	and Observed effects of Climate Changes	
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible	К3
	changes.	
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	К3
CO5	Discover clean technologies and alternate energy source for sustainable growth.	КЗ

COURSE ARTICULATION MATRIX							
COs/POs	P01	PO2	P03	P04	P05	P06	
C01	2	2	3	2	3	1	
CO2	3	2	2	2	3	2	
CO3	2	2	2	2	3	2	
CO4	3	2	2	2	2	2	
CO5	3	3	2	3	3	3	
23EE0E05	3	3	3	3	3	3	
1 – Slight, 2 – Moderate	e, 3 – Substant	ial	•	•	•	•	

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	25	30	35	10	-	-	100
CAT2	25	30	35	10	-	-	100
Individual Assessment							
1/ Case	20	30	40	10	_	_	100
Study 1/	20	30	70	10	_	_	100
Seminar 1 /							
Project 1							
Individual Assessment	20	30	40	10	-	-	100

2/ Case Study 2/ Seminar 2/ Project 2							
ESE	25	30	35	10	-	-	100

22550506	WASTE TO ENERGY
23EEOE06	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To classify waste as fuel, introduce conversion devices, gain knowledg	e about Biomass				
Objectives	Pyrolysis, demonstrate methods, factors for biomass gasification, and acquire					
	knowledge about biogas and its development in India.					
UNIT – I	UNIT - I INTRODUCTION 9 Periods					
Introduction t	Introduction to Energy from Waste: Classification of waste as fuel - Agro based, Forest residue,					
Industrial wast	Industrial waste - MSW – Conversion devices – Incinerators, Gasifiers, Digestors.					
UNIT - II BIOMASS PYROLYSIS 9 Periods						
Biomass Pyrolysis: Pyrolysis - Types, Slow Pyrolysis, Fast Pyrolysis - Manufacture of charcoal - Methods						

Biomass Pyrolysis: Pyrolysis - Types, Slow Pyrolysis, Fast Pyrolysis - Manufacture of charcoal - Methods - Yields and Applications - Manufacture of Pyrolytic oils and gases, Yields and Applications.

UNIT – III BIOMASS GASIFICATION

9 Periods

Gasifiers – Fixed bed system – Downdraft and updraft gasifiers – Fluidized bed gasifiers – Design, Construction and Operation – Gasifier burner arrangement for thermal heating – Gasifier Engine arrangement and electrical power – Equilibrium and Kinetic Considerations in gasifier operation.

UNIT – IV BIOMASS COMBUSTION

9 Periods

Biomass Combustion – Biomass Stoves – Improved Chullahs, types, some exotic designs, Fixed bed combustors, types – Inclined grate combustors – Fluidized bed combustors, design, construction and operation of all the above biomass combustors.

UNIT - V BIOENERGY SYSTEM

9 Periods

Biogas: Properties of biogas (Calorific value and composition) – Biogas plant technology and status – Bio energy system – Design and constructional features – Biomass resources and their classification - Biomass conversion processes – Thermo chemical conversion – Direct combustion – biomass gasification – pyrolysis and liquefaction – biochemical conversion – anaerobic digestion – Types of biogas plants – Applications – Alcohol production from biomass – Bio diesel production – Urban waste to energy conversion – Biomass energy programme in India.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES:

1 **"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies",** P Jayaram Reddy, Taylor and Francis Publications, 2016.

2	"Waste - to - Energy: Technologies and project Implementations", Marc J Rogoff, Francois
	Screve,ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications, Illustrated
	Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", PrabirELSEVIER Publications,
	2010.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	КЗ
CO3	Demonstrate methods and factors considered for biomass gasification.	КЗ
CO4	Identify the features of different facilities available for biomass combustion.	K4
CO5	Analyze the potential of different Bioenergy systems with respect to Indian	K2
	condition.	

2675-1-2752										
COURSE ARTICULATION MATRIX										
COs/POs PO1 PO2 PO3 PO4 PO5 PO6										
CO1	2	3	3	2	3	1				
CO2	3	2	2	2	3	1				
CO3	3	3	2	3	2	1				
CO4	3	2	2	3	3	1				
CO5	2	3	3	3	2	1				
23EE0E06	3	3	3	3	3	1				
1 – Slight, 2 – Moderate, 3 – 3	Substantial					1				

ASSESSMEN'	T PATTERN - TH	EORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	10	20	20	25	15	10	100
CAT2	10	25	20	10	25	10	100
Individual							
Assessment							
1/ Case		15	35	50			100
Study 1/	-	15	33	30	-	-	100
Seminar 1 /							
Project 1							
Individual	_	10	40	50	-	_	100
Assessment	_	10	40	30	-	-	100

2/ Case							
Study 2/							
Seminar 2/							
2/ Case Study 2/ Seminar 2/ Project 2							
ESE	10	25	25	20	10	10	100

22650507	ENERGY IN BUILT ENVIRONMENT
23GEOE07	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

	02	/ 0 0 0								
Course	To understand constructional energy requirements of buildings, en	nergy audit								
Objective	methods and conservation of energy.									
UNIT-I	INTRODUCTION	9 Periods								
Indoor activitie	s and environmental control - Internal and external factors on	energy use -								
Characteristics of	of energy use and its management -Macro aspect of energy use in dv	vellings and its								
implications -T	implications -Thermal comfort-Ventilation and air quality-Air-conditioning requirement-Visual									
perception-Illun	nination requirement-Auditory requirement.									
UNIT-II	UNIT-II LIGHTING REQUIREMENTS IN BUILDING 9 Periods									
The sun-earth r	relationship - Climate, wind, solar radiation and temperature - Su	n shading and								
solar radiation of	on surfaces-Energy impact on the shape and orientation of building	s–Lighting and								
day lighting :Ch	aracteristics and estimation, methods of day-lighting-Architectural	considerations								
for day-lighting.										
UNIT-III ENERGY REQUIREMENTS IN BUILDING										
Steady and un	steady heat transfer through wall and glazed window-Standard	ls for thermal								
performance of	building envelope- Evaluation of the overall thermal transfer- The	ermal gain and								
net heat gain-En	nd-Use energy requirements-Status of energy use in buildings-Estima	ation of energy								
use in a building	3.									
UNIT-IV	ENERGY AUDIT	9 Periods								
Energy audit	and energy targeting-Technological options for energy manageme	ent-Natural and								
forced ventilation	on–Indoor environment and air quality-Air flow and air pressure on	buildings-Flow								
due to Stack effe	ect.									
UNIT-V	COOLING IN BUILT ENVIRONMENT	9 Periods								
Passive building	ng architecture–Radiative cooling-Solar cooling techniques-S	olar desiccant								
dehumidificatio	n for ventilation-Natural and active cooling with adaptive comfo	ort–Evaporative								
cooling –Zero er	nergy building concept.									
Contact Period	S:									
Lecture: 45 Per	riods Tutorial: 0 Period Practical: 0 Period Total: 45 P	eriods								

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill, 2000.
2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinois ,USA.

COUR	SE OUTCOMES:	Bloom's			
		Taxonomy			
Upon	Upon completion of the course, the students will be able to:				
CO1	Understand energy and its usage	K2			
CO2	Know lighting to be given to a building	K1			
CO3	Analyse the energy requirements in a building	К3			
CO4	Apply the energy audit concepts.	К3			
CO5	Study architectural specifications of a building	K1			

COURSE ARTICULATION MATRIX										
COs/POs	P01	P02	P03	P04	P05	P06				
CO1	2	-	3	1	2	1				
CO2	2	-	3	1	2	1				
CO3	2	-	3	1	2	1				
CO4	2	-	3	1	2	1				
CO5	2	-	3	1	2	1				
23GEOE07	2		3	1	2	1				
1–Slight, 2–Modera	te, 3–Substant	tial		•	•	•				

ASSESSMENT P	ATTERN - THI	EORY		l.			
Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100
ESE	40	40	20	-	-	-	100

23GEOE08	EARTH AND ITS ENVIRONMENT
ZSGLOLOG	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

INI	IL .	UE	3 0 0 3				
Course	To know about the planet earth, the geosystems	and the resour	ces like ground				
Objective	water and air and to learn about the Environmental	Assessment and	d sustainability.				
UNIT-I	EVOLUTION OF EARTH		9 Periods				
Evolution of ear	th as habitable planet-Evolution of continents-oceans	and landforms	evolution of life				
through geologi	cal times - Exploring the earth's interior - thermal an	d chemical stru	cture - origin of				
gravitational an	d magnetic fields.						
UNIT-II	GEOSYSTEMS		9 Periods				
Plate tectonics -	- working and shaping the earth - Internal geosyster	ns – earthquak	es – volcanoes -				
climatic excurs	sions through time - Basic Geological processes	- igneous, s	edimentation -				
metamorphic pr	rocesses.						
UNIT-III	GROUND WATER GEOLOGY		9 Periods				
Geology of grou	und water occurrence –recharge process-Ground w	ater movemen	t-Ground water				
discharge and c	catchment hydrology – Ground water as a resource	- Natural grour	nd water quality				
and contaminati	ion-Modelling and managing ground water systems.						
UNIT-IV	ENVIRONMENTAL ASSESMENT AND SUSTAIN	NABILITY	9 Periods				
Engineering and	d sustainable development - population and urbaniza	ition - toxic che	micals and finite				
resources - wat	er scarcity and conflict - Environmental risk - risk ass	sessment and c	haracterization –				
hazard assessm	hazard assessment-exposure assessment.						
UNIT-V	AIR AND SOLIDWASTE		9 Periods				
Air resources engineering-introduction to atmospheric composition-behaviour-atmospheric photo							
chemistry-Solid waste management-characterization-management concepts.							
Contact Period	s:						
Lecture: 45 Per	Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods						

1	John Grotzinger and Thomas H.Jordan, " Understanding Earth", Sixth Edition, W.H.Freeman, 2010.						
2	Younger,P.L., "Ground water in the Environment: An introduction", Blackwell Publishing,2007.						
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,						
	Sustainability and Design", Wiley, NJ, 2010.						

COURS	E OUTCOMES:	Bloom's				
		Taxonomy				
Upon co	Upon completion of the course, the students will be able to:					
CO1	To know about evolution of earth and the structure of the earth.	K2				
CO2	To understand the internal geosystems like earthquakes and volcanoes and	K2				
	the Various geological processes.					
CO3	To able to find the geological process of occurrence and movement of Ground	К3				
	water and the modeling systems.					
CO4	To assess the Environmental risks and the sustainability developments.	К3				
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1				
	Management concepts.					

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	PO5	P06	
CO1	1	-	-	2	2	-	
CO2	3	-	3	3	-	3	
CO3	2	0.000	AC & Dame	-	-	-	
CO4	-	2		-	1	-	
CO5	2	2		1	-	-	
23GEOE08	2	2	3	3	2	3	
1–Slight, 2–Moderate,	3–Substant	ial	7660		•		

ASSESSMENT	ASSESSMENT PATTERN - THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100

ESE	40	40	20	-	-	-	100

22050500	NATURAL HAZARDS AND MITIGATION
23GEOE09	(Common to all Branches)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To get idea on the causes, effects and mitigation measures of dif	ferent types of hazards		
Objective	with case studies.			
UNIT-I	EARTH QUAKES	9 Periods		
Definitions and basic concepts-different kinds of hazards-causes-Geologic Hazards-Earthquakes-				
causes of earthquakes-effects-plate tectonics-seismic waves-measures of size of earthquakes-				

causes of earthquakes-effects-plate tectonics-seismic waves-measures of size of earthquakes-earthquake resistant design concepts.

UNIT-II SLOPE STABILITY 9 Periods

Slope stability and landslides-causes of landslides-principles of stability analysis-remedial and corrective measures for slope stabilization.

UNIT-III FLOODS 9 Periods

Climatic Hazards–Floods-causes of flooding-regional flood frequency analysis–flood control measures-flood routing-flood forecasting-warning systems.

UNIT-IV DROUGHTS 9 Periods

Droughts –causes - types of droughts –effects of drought -hazard assessment – decision making-Use of GIS in natural hazard assessment–mitigation-management.

UNIT-V TSUNAMI 9 Periods

Tsunami-causes-effects-under sea earthquakes-landslides-volcanic eruptions-impact of sea meteorite-remedial measures-precautions-case studies.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Period Total: 45 Periods

1	onald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage				
	Learning, 2008.				
2	Edward Bryant, "Natural Hazards", Cambridge University Press,2005.				
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", Joh	n Wiley & Sons,			
COUR	SE ₁ O,DOQOMES:	Bloom's			
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering	", JakonWiley &			
Upon	completio2009 the course, the students will be able to:	Mapped			
CO1	Learn the basic concepts of earthquakes and the design concepts of earthquake	K2			
	Resistant buildings.				
CO2	Acquire knowledge on the causes and remedial measures of slope stabilization.	К3			
CO3	As certain the causes and control measures of flood.	К3			
CO4	Know the types, causes and mitigation of droughts.	K2			
CO5	Study the causes, effects and precautionary measures of Tsunami.	K2			

COURSE ART	FICULATION	MATRIX				
COs/POs	P01	PO2	PO3	PO4	PO5	P06
CO1	3	1	-	3	2	3
CO2	3	1	2	3	3	3
CO3	3	2	3	-	-	3
CO4	3	-	-	3	2	3
CO5	3	-	2	2	-	3
23GEOE09	3	1	2	3	2	3

ASSESSMENT F	PATTERN - THE	ORY		0			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	3	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	-	-	-	100

22ED0E10	BUSINESS ANALYTICS
23ED0E10	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

UNIT - I	5. To acquire insight on other analytical frameworks. BUSINESS ANALYTICS AND PROCESS	9 Periods
	4. To apprehend analytics the usage of Hadoop and Map Reduce fram	neworks.
	3. To study modeling for uncertainty and statistical inference.	
Objectives	2. To gain knowledge about fundamental business analytics.	
Course	1. To apprehend the fundamentals of business analytics and its life of	cycle.

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

UNIT – II REGRESSION ANALYSIS

9 Periods

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

UNIT - III STRUCTURE OF BUSINESS ANALYTICS

9 Periods

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

UNIT – IV FORECASTING TECHNIQUES

9 Periods

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

UNIT - V DECISION ANALYSIS AND RECENT TRENDS IN BUSINESS 9 Periods ANALYTICS

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making. Recent Trends: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

_	
1	VigneshPrajapati, "Big Data Analytics with R and Hadoop",Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak , "Business Analytics Using R - A Practical
	Approach",Apress, 2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge
	University Press, 2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R.
	Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition, 2016.
5	U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making",
	Wiley, 2017.
6	Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the real world business problems and model with analytical	K4
	solutions.	
CO2	Solve analytical problem with relevant mathematics background	K4
	knowledge.	
CO3	Convert any real world decision making problem to hypothesis and apply	K4
	suitable statistical testing.	
CO4	Write and Demonstrate simple applications involving analytics using	K4
	Hadoop and Map Reduce	
CO5	Use open source frameworks for modeling and storing data.	K4

COURSE ARTICULATION	ON MATRIX				
COs/POs	P01	P02	P03	P04	P05
CO1	1	2	1	2	1
CO2	1	1	1	2	1
CO3	2	2	1	1	-
CO4	2	2	1	-	-
CO5	1	2	-	-	-
23ED0E10	1	2	1	2	1
– Slight, 2 – Moderate	, 3 – Substantia				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23ED0E11	INTRODUCTION TO INDUSTRIAL SAFETY
ZSEDUEII	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

UNIT – I	INTRODUCTION	9 Periods
	5. Identify preventive and periodic maintenance.	
	4. Illustrate fault tracing.	
	3. Explain wear and corrosion.	
Objectives	2. Describe fundamentals of maintenance engineering.	
Course	1. Summarize basics of industrial safety.	

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc., Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT - II FUNDAMENTALS OF MAINTENANCE ENGINEERING 9 Periods

Definition and aim of maintenance engineering, Primary and secondary functions andresponsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT - III WEAR AND CORROSION AND THEIR PREVENTION 9 Periods

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications,

Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT - IV FAULT TRACING 9 Periods

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault-finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT - V PERIODIC AND PREVENTIVE MAINTENANCE 9 Periods

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Hans F. Winterkorn, "Foundation Engineering Handbook" , Chapman & Hall London,2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers,
	2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing; Third edition
	,2018
5	"Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COUR	COURSE OUTCOMES:				
Upon	Upon completion of the course, the students will be able to:				
C01	Ability to summarize basics of industrial safety	Mapped K4			
CO2	Ability to describe fundamentals of maintenance engineering	K4			
CO3	Ability to explain wear and corrosion	K4			
CO4	Ability to illustrate fault tracing	K4			
CO5	Ability to identify preventive and periodic maintenance	K4			

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	PO3	PO4	P05	
CO1	2	1, 1	1	-	-	
CO2	2	2	1	-	1	
CO3	1	2	1	1	1	
CO4	2	1	1	1	1	
CO5	2	1	2	1	1	
23ED0E11	2	SEE TOWN	1	1	1	
1 – Slight, 2 – Moderate, 3 – 3	Substantial					

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23ED0E12	OPERATIONS RESEARCH
ZSEDUEIZ	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

-	4.0.1.12						
Course	1. Solve linear programming problem and solve using graphical method.						
Objectives	2. Solve LPP using simplex method.						
	3. Solve transportation, assignment problems.						
	4. Solve project management problems.						
	5. Solve scheduling problems.						
UNIT – I	INTRODUCTION	9 Periods					
Optimization	Techniques, Model Formulation, models, General L.R Formulation, Sim	plex Techniques,					
Sensitivity An	alysis, Inventory Control Models						
UNIT – II	LINEAR PROGRAMMING PROBLEM	9 Periods					
Formulation of	f a LPP - Graphical solution revised simplex method - duality theory - dual	simplex method -					
sensitivity analysis - parametric programming							
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM 9 Periods						
Nonlinear pro	gramming problem - Kuhn-Tucker conditions min cost flow problem - ma	x flow problem -					
CPM/PERT	a = 4.2 = a						
UNIT – IV	SEQUENCING AND INVENTORY MODEL	9 Periods					
Scheduling an	d sequencing - single server and multiple server models - deterministic in	ventory models -					
Probabilistic inventory control models - Geometric Programming.							
Probabilistic i	iventory control models - Geometric Programming.						
Probabilistic i UNIT - V	nventory control models - Geometric Programming. GAME THEORY	9 Periods					
UNIT – V							
UNIT - V Competitive M	GAME THEORY						
UNIT - V Competitive M	GAME THEORY Todels, Single and Multi-channel Problems, Sequencing Models, Dynamic Problementary Graph Theory, Game Theory Simulation						

1	H.A. Taha"Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy	
		Mapped	
Upon	completion of the course, the students will be able to:		
CO1	Formulate linear programming problem and solve using graphical	K4	
	method.		
CO2	Solve LPP using simplex method.	K4	
CO3	Formulate and solve transportation, assignment problems.	K4	
CO4	Solve project management problems.	K4	
CO5	Solve scheduling problems	K4	

COURSE ARTICULATION MATRIX						
COs/POs	P01	PO2	P03	P04	PO5	
CO1	2	1	1	-	-	
CO2	2	2	1	-	-	
CO3	1	1	2	1	1	
CO4	1	1	-	-	-	
CO5	2	1	-	-	-	
23ED0E12	2	1	1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PATTERN - THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

22ME0E12	OCCUPATIONAL HEALTH AND SAFETY
23MF0E13	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	1. To gain knowledge about occupational health hazard and safe	ety measures at				
Objectives	work place.					
	2. To learn about accident prevention and safety management.					
	3. To learn about general safety measures in industries.					
UNIT – I	OCCUPATIONAL HEALTH AND HAZARDS	9 Periods				
Safety- Histor	y and development, National Safety Policy- Occupational Health Hazar	ds - Ergonomics				
- Importance	of Industrial Safety Radiation and Industrial Hazards- Machine Guard	ds and its types,				
Automation.						
UNIT – II	II SAFETY AT WORKPLACE 9 Periods					
Safety at Wo	rkplace - Safe use of Machines and Tools: Safety in use of differen	nt types of unit				
operations -						
Ergonomics of	of Machine guarding - working in different workplaces - Operation,	Inspection and				
maintenance,	Plant Design and Housekeeping, Industrial lighting, Vibration and Nois	se Case studies.				
UNIT – III	ACCIDENT PREVENTION	9 Periods				
Accident Pre	Accident Prevention Techniques - Principles of accident prevention - Definitions, Theories,					
Principles - Hazard identification and analysis, Event tree analysis, Hazop studies, Job safety						
analysis - Theories and Principles of Accident causation - First Aid : Body structure and functions -						
Fracture and	Dislocation, Injuries to various body parts.					
UNIT – IV	SAFETY MANAGEMENT	9 Periods				
		•				

Safety Management System and Law - Legislative measures in Industrial Safety: Various acts involved in Detail- Occupational safety, Health and Environment Management: Bureau of Indian Standards on Health and Safety, 14489, 15001 - OSHA, Process safety management (PSM) and its principles - EPA standards- Safety Management: Organisational & Safety Committee - its structure

and functions.

UNIT - V GENERAL SAFETY MEASURES

9 Periods

Plant Layout for Safety -design and location, distance between hazardous units, lighting, colour coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work Permit System: Significance of Documentation Directing Safety, Leadership -Case studies involving implementation of health and safety measures in Industries.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

11	LI LIKLIGES.
1	Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
2	Danuta Koradecka, Handbook of Occupational Health and Safety , CRC, 2010.
3	Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
4	Deshmukh. L.M., Industrial Safety Management , 3 rd Edition, Tata McGraw Hill, New Delhi, 2008.
5	https://nptel.ac.in/courses/110105094

6 https://archive.nptel.ac.in/courses/110/105/110105094/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Gain the knowledge about occupational health hazard and safety measures	К3
	at work place.	
CO2	Learn about accident prevention and safety management.	К2
CO3	Understand occupational health hazards and general safety measures in	К3
	industries.	
CO4	Know various laws, standards and legislations.	К2
CO5	Implement safety and proper management of industries.	K4

COURSE ARTICULATION MATRIX:						
Cos/Pos	P01	PO2	PO3	P04	P05	
CO1	2	1	1	1	1	
CO2	2	2	1	1	1	
CO3	1	2	1	1	1	
CO4	2	1	1	1	1	
CO5	2	150	2	1	1	
23MF0E13	2	17	1	1	1	
1 – Slight, 2 – Moderate, 3 – 9	Substantial			•		

ASSESSMENT F	PATTERN - THE	ORY	324				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		50	50				100
CAT2		50	30	20			100
Individual		50	50				100
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual		50	30	20			100
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE		40	40	20			100

23MF0E14

COST MANAGEMENT OF ENGINEERING PROJECTS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objectives

- 1. To understand the costing concepts and their role in decision making.
- 2. To acquire the project management concepts and their various aspects in selection.
- 3. To gain the knowledge in costing concepts with project execution.
- 4. To develop knowledge of costing techniques in service sector and various budgetary control techniques.
- 5. To familiarize with quantitative techniques in cost management.

UNIT – I

INTRODUCTION TO COSTING CONCEPTS

9 Periods

Introduction and Overview of the Strategic Cost Management Process, Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision - Making.

UNIT - II PROJECT PLANNING ACTIVITIES

9 Periods

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

UNIT – III COST ANALYSIS

9 Periods

Cost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.

UNIT - IV PRICING STRATEGIES AND BUDGETORY CONTROL

9 Periods

Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Justin -time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

UNIT - V TQM AND OPERATIONS REASEARCH TOOLS

9 Periods

Total Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor
	&Francis, 2016
3	Nigel J, Engineering Project Management , John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall
	of India, New Delhi, 2011.
5	https://archive.nptel.ac.in/courses/110/104/110104073/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply the costing concepts and their role in decision making.	К3
CO2	Apply the project management concepts and analyze their various aspects	K4
	in selection.	
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various	K2
	budgetary control techniques.	
CO5	Become familiar with quantitative techniques in cost management.	К3

COs/Pos	P01	PO2	PO3	PO4	PO:
CO1	1	. 1	2	1	1
CO2	2	1	1	1	-
CO3	2	2	2	-	-
CO4	1 %	1	1	1	1
CO5	1	2	1	1	-
23MF0E14	1	1	1	1	1

ASSESSMENT PA	TTERN - THEOR	Y					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1			40	60			100
CAT2		30	30	40			100
Individual			40	60			100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual		30	30	40			100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE		20	40	40			100

23MF0E15	COMPOSITE MATERIALS
23MFUE15	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	1. To summarize the characteristics of composite materials	and effect of					
Objectives	reinforcement in composite materials.						
	2. To identify the various reinforcements used in composite materia	aterials.					
	3. To compare the manufacturing process of metal matrix composite	ites.					
	4. To understand the manufacturing processes of polymer matrix co	rix composites.					
	5. To analyze the strength of composite materials.						
UNIT – I	INTRODUCTION	9 Periods					
Definition - Cl	Definition – Classification and characteristics of Composite materials. Advantages and application of						
composites. Functional requirements of reinforcement and matrix. Effect of reinforcement on							
overall compo	overall composite performance.						
UNIT – II	REINFORCEMENT	9 Periods					
Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers							
and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical							
Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and							
Isosteresconditions.							
UNIT – III	MANUFACTURING OF METAL MATRIX COMPOSITES	9 Periods					
Casting – Sol	d State diffusion technique, Cladding - Hot isostatic pressing- Ma	nufacturing of					
Ceramic Matr	ix Composites: Liquid Metal Infiltration – Liquid phase sintering–Ma	nufacturing of					
Carbon – Carb	on composites: Knitting, Braiding, Weaving- Properties and application	IS.					
UNIT – IV	MANUFACTURING OF POLYMER MATRIX COMPOSITE	9 Periods					
	Preparation of Moulding compounds and prepregs - hand layup method - Autoclave method -						
Preparation o	f Moulding compounds and prepregs - hand layup method - Autoc						
_	f Moulding compounds and prepregs – hand layup method – Autoc ling method – Compression moulding – Reaction injection moulding.	lave method –					
_		lave method –					
Filament wind		lave method –					
Filament wind applications. UNIT - V	ling method - Compression moulding - Reaction injection moulding.	lave method – Properties and 9 Periods					
Filament wind applications. UNIT - V Laminar Fail	ling method – Compression moulding – Reaction injection moulding. STRENGTH ANALYSIS OF COMPOSITES	Properties and Preriods Strain criteria,					
Filament wind applications. UNIT - V Laminar Fail interacting fa	STRENGTH ANALYSIS OF COMPOSITES ure Criteria-strength ratio, maximum stress criteria, maximum s	Properties and 9 Periods strain criteria, sight strength;					
Filament wind applications. UNIT - V Laminar Fail interacting fa	STRENGTH ANALYSIS OF COMPOSITES ure Criteria-strength ratio, maximum stress criteria, maximum silure criteria, hygrothermal failure. Laminate first play failure-insngth-ply discount truncated maximum strain criterion; strength design	Properties and 9 Periods strain criteria, sight strength;					

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials , Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods

Total: 45 Periods

- 4 *uLektz,* **Composite Materials and Mechanics**, *uLektz Learning Solutions Private Limited, Lektz,* 2013.
- 5 https://nptel.ac.in/courses/112104168

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Know the characteristics of composite materials and effect of reinforcement in	K2
	composite materials.	
CO2	Know the various reinforcements used in composite materials.	K2
CO3	Understand and apply the manufacturing processes of metal matrix	К3
	composites	
CO4	Understand and apply the manufacturing processes of polymer matrix	К3
	composites.	
CO5	Analyze the strength of composite materials.	K4

COs/Pos	P01	PO2	PO3	P04	P05
CO1	1 8	2	1	1	1
CO2	2	2	1	1	2
CO3	2	1	2	1	1
CO4	1	2	2	2	1
CO5	1	2	1	1	1
23MF0E15	1	2	2	1	1

ASSESSMENT	PATTERN - TH	EORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1		60	40				100
CAT2			60	40			100
Individual		60	40				100
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual			60	40			100
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							

23TEOE1	6		OBAL WAR				
		(Common to all Branches)					
Project 2							
ESE		40	40	20			100

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To make the students learn about the material consequences of cli	mate change, sea			
Objectives	level change due to increase in the emission of greenhouse gases ar	nd to examine the			
	science behind mitigation and adaptation proposals.				
UNIT – I	INTRODUCTION	9 Periods			
Terminology	relating to atmospheric particles – Aerosols - Types, characteristics,	measurements -			
Particle mass	spectrometry - Anthropogenic-sources, effects on humans.				
UNIT – II	CLIMATE MODELS	9 Periods			
General clima	te modeling- Atmospheric general circulation model - Oceanic ge	eneral circulation			
model, sea ice	model, land model concept, paleo-climate - Weather prediction by n	umerical process.			
Impacts of clir	nate change - Climate Sensitivity - Forcing and feedback.				
UNIT – III	EARTH CARBON CYCLE AND FORECAST	9 Periods			
Carbon cycle-	process, importance, advantages - Carbon on earth - Global car	bon reservoirs -			
Interactions b	between human activities and carbon cycle - Geologic time scales -	Fossil fuels and			
energy - Pertu	rbed carbon cycle.				
UNIT – IV	GREENHOUSE GASES	9 Periods			
Blackbody rac	liation - Layer model - Earth's atmospheric composition and Green h	ouse gases effects			
on weather an	d climate - Radioactive equilibrium - Earth's energy balance.				
UNIT - V GEO ENGINEERING 9 Periods					
Solar mitigati	on - Strategies - Carbon dioxide removal - Solar radiation mana	gement - Recent			
observed tren	ds in global warming for sea level rise, drought, glacier extent.				
Contact Perio	ods:				
Lecture: 45 P	eriods Tutorial: OPeriods Practical: O Periods Total:	45 Periods			

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and					
	Its Consequences", Princeton University Press, 1st Edition, 2022.					
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5th					
	Edition, 2015.					
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.					
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions					
	for Global Warming", Elsevier, 1st Edition, 2021.					
5	Frances Drake, "Global Warming: The Science of Climate Change" ,Routledge, 1st edition, 2000.					
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global					
	energybalance", Springer, 1996.					
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.					

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand the global warming in relation to climate changes throughout	К2
COI	the earth.	KZ
CO2	Assess the best predictions of current climate models.	K4
CO3	Understand the importance of carbon cycle and its implication on fossil	К2
603	fuels.	KΖ
CO4	Know about current issues, including impact from society, environment,	К4
604	economy as well as ecology related to greenhouse gases.	IV T
CO5	Know the safety measures and precautions regarding global warming.	K5

COURSE ART	COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	PO3	P04	P05	P06			
CO1	2	1	2	1	1	2			
CO2	1	1	2	1	1	1			
CO3	1	2	1	1	1	2			
CO4	1	1	-9°T"38-	1	1	2			
CO5	2	1	2	1	1	2			
23TEOE16	1	1	1	1	1	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT P	ATTERN - THEO	RY	11				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	35	35	10	-	-	100
CAT2	15	25	25	20	15	-	100
Individual							
Assessment 1							
/ Case Study 1	25	20	20	35	-	-	100
/ Seminar 1 /							
Project 1							
Individual							
Assessment 2							
/ Case Study 2	20	20	35	15	10	-	100
/ Seminar 2 /							
Project 2							
ESE	25	20	25	20	10	-	100

23TEOE17

INTRODUCTION TO NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To make the students provide strong, essential, important methods					
Objectives	of quantum mechanics and apply quantum mechanics on engineering	g fields.				
UNIT – I	INTRODUCTION	9 Periods				
Particles and	Waves - Operators in quantum mechanics - The Postulates of quantum	n mechanics - The				
Schrodinger e	quation values and wave packet Solutions - Ehrenfest's Theorem.					
UNIT – II	ELECTRONIC STRUCTURE AND MOTION	9 Periods				
Atoms- The H	ydrogen Atom - Many-Electron Atoms – Pseudopotentials, Nuclear Stru	ucture, Molecules,				
Crystals - Tra	nslational motion - Penetration through barriers - Particle in a bo	x - Two terminal				
quantum dot o	levices - Two terminal quantum wire devices.					
UNIT – III	SCATTERING THEORY	9 Periods				
The formulati	on of scattering events - Scattering cross section - Stationary scatter	ing state - Partial				
wave stationa	ry scattering events - multi-channel scattering - Solution for Schro	dinger equation-				
Radial and wa	ve equation - Greens' function.					
UNIT – IV	CLASSICAL STATISTICS	9 Periods				
Probabilities a	nd microscopic behaviours - Kinetic theory and transport processes ir	n gases - Magnetic				
properties of i	naterials - The partition function.					
UNIT - V	QUANTUM STATISTICS	9 Periods				
Statistical mechanics - Basic Concepts - Statistical models applied to metals and semiconductors - The						
thermal properties of solids- The electrical properties of materials - Black body radiation - Low						
temperatures and degenerate systems.						
Contact Periods:						
Lecture:45 Po	Lecture:45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods					

1	Vladimi	V.Mitin,	Viatcheslav	A.	Kochelap	and	Michael	A.Stroscio,	"Introduction	to
	Nanoele	ctronics:	Science, Na	note	chnology,	Engii	neering,	and Applica	ations" , Cambr	idge
	Universit	y Press, 1st	Edition, 2007	.						
2	Vinod Ku	mar Khan	na, "Introdu c	ctory	Nanoelec Nanoelec	tronic	s: Physic	al Theory an	d Device Analy	sis",
	Routledg	e, 1 st Editio	on, 2020.							

- 3 George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States Edition, 2007.
- 4 Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.

- 5 Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian Edition, 2009.
- 6 Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum Statistical Mechanics", Wiley, 2004.
- 7 A. F. J. Levi, "Applied Quantum Mechanics", 2nd Edition, Cambridge, 2012.

COUR	COURSE OUTCOMES:					
		Taxonomy				
Upon	Upon completion of the course, the students will be able to:					
CO1	Understand the postulates of quantum mechanics.	K2				
CO2	Know about nano electronic systems and building blocks.	K2				
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4				
CO4	Learn the concepts involved in kinetic theory of gases.	K2				
CO5	Know about statistical models applies to metals and semiconductor.	КЗ				

COURSE ARTICULATION MATRIX								
COs/POs	P01	P02	P03	P04	PO5	P06		
CO1	1	1	1	1	1	1		
CO2	2	2	7	1	1	1		
CO3	2	2	2	1	1	1		
CO4	1	1	1	1	1	1		
CO5	1	1	1	1	1	1		
23TEOE17	1	1	8.1	1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT	ASSESSMENT PATTERN - THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	30	30	20	20	-	-	100			
CAT2	30	30	20	20	-	-	100			
Individual										
Assessment 1										
/ Case Study	35	25	20	20	-	-	100			
1 / Seminar 1										
/ Project 1										
Individual										
Assessment 2										
/ Case Study	30	25	20	25	-	-	100			
2 / Seminar 2										
/ Project 2										
ESE	20	30	30	20	-	-	100			

GREEN SUPPLY CHAIN MANAGEMENT (Common to all Branches)

PREREQUISIT	TES	CATEGORY I	T	P	С			
	NIL	OE 3	3 0	0	3			
Course	Course To make the students learn and focus on the fundamental strategies, tools and							
Objectives	techniques required to analyze and design envir	onmentally sustain	able s	supp	ly chain			
	systems.							
UNIT – I	INTRODUCTION		9	Per	iods			
Intro to SCM -	- complexity in SCM, Facility location - Logistics -	Aim, activities, imp	ortan	ce, p	rogress,			
current trends	s - Integrating logistics with an organization.							
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAGEMENT		9	Per	iods			
Basic concept	s of supply chain management - Supply chain o	perations – Plannii	ng an	d so	urcing -			
Making and d	elivering - Supply chain coordination and use of t	echnology - Develo	ping s	supp	ly chain			
systems.	T/							
UNIT – III	PLANNING THE SUPPLY CHAIN		9	Per	iods			
Types of decis	sions – strategic, tactical, operational - Logistics st	rategies, implemen	ting tl	ne st	rategy -			
Planning reso	urces – types, capacity, schedule, controlling mate	erial flow, measuri	ng an	d im	proving			
performance.								
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN		9	Per	iods			
	– cycle, types of purchase – Framework of e-proc		-	_				
-	n demand and safety stock, stock control - Materi							
	p, layout, packaging - Transport - mode, owners	=	ig and	l scł	neduling			
models- Trave	elling salesman problems - Exact and heuristic meth	nods.						
UNIT – V	SUPPLY CHAIN MANAGEMENT STRATEGIES		9	Per	riods			
_	guration components - Four criteria of good supp	•		_				
_	ew roles for end-to-end supply chain manage		of s	uppl	y chain			
	International issues in SCM – Regional differences	in logistics.						
Contact Perio	Contact Periods:							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								

REFERENCES:

22TEOE18

- 1 Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply Chain Management", Routledge, 1st Edition, 2019.
- 2 Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle Approach", McGraw-Hill Education, 1st Edition, 2011.

3	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management" , Routledge, 1st Edition, 2017.					
4	Arunachalam Rajagopal, "Green Supply Chain Management: A Practical Approach", Replica, 2021.					
5	Mehmood Khan, Matloub Hussain and Mian M. Ajmal, "Green Supply Chain Management for Sustainable Business Practice", IGI Global, 1st Edition, 2016.					
6	S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.					
7	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction", Routledge, 1st Edition, 2017.					

COURSE	OUTCOMES:	Bloom's					
		Taxonomy					
Upon con	Upon completion of the course, the students will be able to:						
CO1	Integrate logistics with an organization.	К2					
CO2	Evaluate complex qualitative and quantitative data to support strategic and	K5					
	operational decisions.	No					
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	К3					
CO4	Analyze inventory management models and dynamics of supply chain.						
CO5	Identify issues in international supply chain management and outsources strategies.	КЗ					

COURSE THE TICOL	ATION MATR	IX				
COs/POs	P01	P02	P03	P04	P05	P06
CO1	1	1	01	1	1	3
CO2	2	2	1	1	1	1
CO3	2	1	2	1	1	1
CO4	2	2	1	1	2	2
CO5	1	1	2	1	1	3
23TE0E18	2	1	1	1	1	2

ASSESSMENT P	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
Category*									
CAT1	25	25	30	10	10	-	100		
CAT2	30	40	20	10	-	-	100		
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	30	20	25	15	10	-	100		
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	35	30	25	10	-	-	100		
ESE	30	30	20	10	10	-	100		

23PSOE19 DISTRIBUTION AUTOMATION SYSTEM (Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To study about the distributed automation and economic evaluation schemes	of power					
Objectives	network						
UNIT – I	INTRODUCTION	9 Periods					
Introduction to	Distribution Automation (DA) - Control system interfaces- Control and data re	quirements-					
Centralized (vs) decentralized control- DA system-DA hardware-DAS software.						
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS	9 Periods					
DA capabilitie	es - Automation system computer facilities- Management processes-	Information					
management- S	System reliability management- System efficiency management- Voltage manag	ement- Load					
management.							
UNIT – III	COMMUNICATION SYSTEMS	9 Periods					
Communication	Communication requirements - reliability- Cost effectiveness- Data requirements- Two way capability-						
Communication	n during outages and faults - Ease of operation and maintenance- Confor	ming to the					
architecture of	flow. Distribution line carrier- Ripple control-Zero crossing technique- Telepho	one, cableTV,					
radio, AM broa	dcast, FM SCA,VHF radio, microwave satellite, fiber optics-Hybrid communica	tion systems					
used in field te	sts.						
UNIT – IV	ECONOMIC EVALUATION METHODS	9 Periods					
Development a	and evaluation of alternate plans- select study area - Select study period-	Project load					
growth-Develo	p alternatives- Calculate operating and maintenance costs-Evaluate alternative	S.					
UNIT – V	ECONOMIC COMPARISON	9 Periods					
Economic comparison of alternate plans-Classification of expenses - capital expenditures-Comparison of							
revenue requirements of alternative plans-Book life and continuing plant analysis- Year by year revenue							
requirement analysis, Short term analysis- End of study adjustment-Break even analysis, sensitivity							
analysis - Computational aids.							
Contact Periods:							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

- 1 M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications, Ltd., 2010.
- 2 Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design", Springer Science & Business Media, 21-Mar-2013
- 3 IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society. Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
- 4 | Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COURS	COURSE OUTCOMES:					
		Taxonomy				
Upon c	Mapped					
CO1	Analyse the requirements of distributed automation	K1				
CO2	Know the functions of distributed automation	K2				
CO3	Perform detailed analysis of communication systems for distributed	К3				
	automation.					
CO4	Study the economic evaluation method	K4				
CO5	Understand the comparison of alternate plans	K5				

COs/Pos	P01	PO2	PO3	PO4
CO1	2	-	1	3
CO2	3	-	3	2
CO3	3	**************************************	3	2
CO4	3		3	1
CO5	2		1	2
23PS0E19	3	- X /-	3	2
– Slight, 2 – Moderate, 3 – Sub	stantial		l	

ASSESSMENT	PATTERN - THI	EORY	The Day	9			
Test /	Rememberin	Understandin	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	g (K1) %	g (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	30%	20%	10%	20%	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	10%	30%	20%	20%	-	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	20%	30%	10%	20%	20%	-	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	20%	20%	20%	10%	-	100%

23PS0E20	ELECTRICITY TRADING AND ELECTRICITY ACTS
23PSUE2U	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To acquire expertise on Electric supply and demand of Indian Grid, gain e	exposure on		
Objectives	energy trading in the Indian market and infer the electricity acts and	regulatory		
	authorities.			
UNIT – I	ENERGY DEMAND	9 Periods		
Basic concepts	in Economics - Descriptive Analysis of Energy Demand - Decomposition A	nalysis and		
Parametric Approach - Demand Side Management - Load Management - Demand Side Management -				
Energy Efficier	icy - Rebound Effect			
UNIT – II	ENERGY SUPPLY	9 Periods		
Supply Behavi	or of a Producer - Energy Investment - Economics of Non-renewable Resources	- Economics		
of Renewable	Energy Supply Setting the context - Economics of Renewable Energy Supply - E	conomics of		
Electricity Sup	ply			
UNIT – III	ENERGY MARKET	9 Periods		
Perfect Compe	tition as a Market Form - Why is the Energy Market not Perfectly Competitiv	e? - Market		
Failure and Mo	nopoly - Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC Era II - Oil Market: O	PEC		
UNIT – IV	LAW ON ELECTRICITY	9 Periods		
Introduction of	of the Electricity Law; Constitutional Design - Evolution of Laws on Electri	icity Salient		
Features of Ele	ectricity Act, 2003 - Evolution of Laws on Electricity - Salient Features of the Ele	ectricity Act		
2003				
2003 UNIT - V	REGULATORY COMMISSIONS FOR ELECTRICITY ACT	9 Periods		
UNIT - V	REGULATORY COMMISSIONS FOR ELECTRICITY ACT nmissions - Appellate Tribunal - Other Institutions under the Act - Electricity (A			
UNIT - V Regulatory Con		mendment)		
UNIT - V Regulatory Con	nmissions - Appellate Tribunal - Other Institutions under the Act - Electricity (A 1. A Critical Comment - Renewable Energy - Role of Civil Society; Commen	mendment)		
UNIT - V Regulatory Cor Bill 2020/202	nmissions - Appellate Tribunal - Other Institutions under the Act - Electricity (A 1. A Critical Comment - Renewable Energy - Role of Civil Society; Commen ergy Act, 2015	mendment)		

REFERENCES

Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance". Springer.London, UK
 Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of Energy", Vol.1, Edward Elgar, Cheltenham, UK.
 Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
 Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands, 2017.

- 5 Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
- 6 Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and Practices", Cambridge University Press, 2014.

COURS	COURSE OUTCOMES:		
Upon c	ompletion of the course, the students will be able to:	Taxonomy Mapped	
CO1	Describe electric supply and demand of power grid	K1	
CO2	Summarize various energy trading strategies	K2	
CO3	Relate the electricity acts practically	К3	
CO4	Cite the electricity regulatory authorities	K2	
CO5	Analyze/check the existing power grid for its technical and economical	K4	
	sustainability		

COs/Pos	P01	P02	PO3	P04
CO1	3	-	3	3
CO2	3	"NA	1	1
CO3	3		2	2
CO4	3	-	1	2
CO5	3	- A /-	3	3
23PSOE20	3	100	2	2

ASSESSMENT	PATTERN - THE	ORY		7			
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	30%	30%	20%	-	-	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	20%	30%	-	20%	-	40%	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	30%	-	20%	20%	-	100%

22DC0E21	MODERN AUTOMOTIVE SYSTEMS
23PSOE21	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

	IVIL	OL		U	·	
				•		
Course	To expose the students with theory and application	s of Automotive Ele	ctrical	and	ı	
Objectives	Electronic Systems.					
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIVE ELE	CTRONICS		9	Per	iods
Introduction to	modern automotive systems and need for electron	nics in automobiles	- Role (of el	ectro	nics
and microcon	and microcontrollers- Sensors and actuators- Possibilities and challenges in automotive industry-					stry-
Enabling technologies and industry trends.						
UNIT – II	SENSORS AND ACTUATORS			9	Per	iods
Introduction-	Introduction- basic sensor arrangement- Types of sensors- Oxygen sensor, engine crankshaft angular				gular	
position senso	r – Engine cooling water temperature sensor- Engi	ne oil pressure sen	sor- Fu	ıel r	netei	ring-
vehicle speed	sensor and detonation sensor- Pressure Sensor- Li	near and angle ser	isors-	Flov	v sen	ısor-
Temperature a	and humidity sensors- Gas sensor- Speed and Accele	eration sensors- Kn	ock se	nsor	- To	rque
sensor- Yaw ra	te sensor- Tyre Pressure sensor- Actuators - Stepper	motors – Relays.				
UNIT – III	POWERTRAIN CONTROL SYSTEMS IN AUTOMOB	BILE		9	Per	iods
Electronic Tra	Electronic Transmission Control - Digital engine control system: Open loop and close loop control					ntrol
systems- Engir	systems- Engine cooling and warm up control- Acceleration- Detonation and idle speed control - Exhaust					
emission contr	ol engineering- Onboard diagnostics- Future automo	tive powertrain sys	tems.			
UNIT - IV	SAFETY, COMFORT AND CONVENIENCE SYSTEM	S		9	Per	iods

Cruise Control- Anti-lock Braking Control- Traction and Stability control- Airbag control system-Suspension control- Steering control- HVAC Control.

ELECTRONIC CONTROL UNITS (ECU)

9 Periods

Introduction to Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotives - Design complexities of ECUs- V-Model for Automotive ECU's- Architecture of an advanced microcontroller (XC166 Family, 32-bit Tricore) used in the design of automobile ECUs- On chip peripherals, protocol interfaces, analog and digital interfaces.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John Wiley and Sons, 2001.
- 2 M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press, series on Power Engineering, 2000.
- Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering	K4
	applications	
CO4	Develop modern automotive control system for electrical and electronics	К6
	systems	
CO5	Understand the function of sensors and actuators	K2

COs/Pos	P01	PO2	P03	P04
CO1	3	7677	1	3
CO2	3	Section .	3	2
CO3	3	7/	3	2
CO4	2	20/1-	3	1
CO5	2		1	2
23PS0E21	3	100	2	2

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	30%	-	20%	-	30%	100%
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							

Individual	20%	30%	-	20%	-	40%	100%
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							
ESE	30%	30%	20%	20%	-	-	100%

23PEOE22	VIRTUAL INSTRUMENTATION
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	To comprehend the Virtual instrumentation programming concepts towards measurements		
Objectives	nd control and to instill knowledge on DAQ, signal conditioning and its associated software		
	tools		
UNIT – I	INTRODUCTION 7 Periods		
Introduction -	advantages - Block diagram and architecture of a virtual instrument - Conventiona		

Introduction - advantages - Block diagram and architecture of a virtual instrument - Conventional Instruments versus Traditional Instruments - Data-flow techniques, graphical programming in data flow, comparison with conventional programming.

UNIT - II GRAPHICAL PROGRAMMING AND LabVIEW

9 Periods

Concepts of graphical programming - LabVIEW software - Concept of VIs and sub VI - Display types - Digital - Analog - Chart and Graphs. Loops - structures - Arrays - Clusters- Local and global variables - String - Timers and dialog controls.

UNIT - III MANAGING FILES & DESIGN PATTERNS

11 Periods

High-level and low-level file I/O functions available in LabVIEW – Implementing File I/O functions to read and write data to files – Binary Files – TDMS – sequential programming – State machine programming – Communication between parallel loops –Race conditions – Notifiers & Queues – Producer Consumer design patterns

UNIT – IV PC BASED DATA ACQUISITION

9 Periods

Introduction to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, Resolution, - analog inputs and outputs - Single-ended and differential inputs - Digital I/O, counters and timers, DMA, Data acquisition interface requirements - Issues involved in selection of Data acquisition cards - Use of timer-counter and analog outputs on the universal DAQ card.

UNIT - V DATA ACQUISITION AND SIGNAL CONDITIONING

9 Periods

Components of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ hardware – Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation – Signal conditioning systems – Synchronizing measurements in single & multiple devices – Power quality analysis using Electrical Power Measurement tool kit.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	1 Jeffrey Travis, Jim Kring, "LabVIEW for Everyo	ne: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.	

- 2 Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
- 3 Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional Publishing, 2019
- 4 Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.

5 Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control", Newness, 2000

	COURSE OUTCOMES:					
Upon	Upon completion of the course, the students will be able to:					
CO1	Describe the graphical programming techniques using LabVIEW software.	K2				
CO2	Explore the basics of programming and interfacing using related hardware.	K4				
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4				
CO4	Create programs and Select proper instrument interface for a specific application.	К6				
CO5	Familiarize and experiment with DAQ and Signal Conditioning	К3				

COs/POs	PO1	P02	PO3	PO4	PO5
CO1	3	GE-VN-0	3	2	1
CO2	3		3	2	1
CO3	3	No.	2	2	2
CO4	3	1	3	3	1
CO5	3	1	3	3	2
23PE0E22	3	. 1	3	2	1

ASSESSMENT	ASSESSMENT PATTERN - THEORY						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	40	15	15	-	-	100
CAT2	15	10	25	30	20	-	100
Individual	10	10	20	30	20	10	100
Assessment1							
/ Case							
study1/							
Seminar							
1/Project1							
Individual	25	40	20	15	-	-	100
Assessment2							
/ Case							
study2/							
Seminar 2							
/Project2							

ESE	30	25	15	20	5	5	100

22050522	ENERGY MANAGEMENT SYSTEMS
23PEOE23	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Objectives	economic analysis and load management in electrical systems.	
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND MANAGEMENT	9 Periods
Energy Conser	vation Act 2001 and policies – Eight National Missions - Basics of Energy ar	nd its forms

To Comprehend energy management schemes, perform energy audit and execute

Energy Conservation Act 2001 and policies – Eight National Missions - Basics of Energy and its forms (Thermal and Electrical) - Energy Management and Audit - Energy Managers and Auditors - Types and Methodology Audit Report - Material and energy balance diagrams - Energy Monitoring and Targeting.

UNIT - II STUDY OF BOILERS, FURNACES AND COGENERATION 9 Periods

Boiler Systems - Types - Performance Evaluation of boilers - Energy Conservation Opportunity - Steam Distribution - Efficient Steam Utilisation - Furnaces:types and classification - Performance evaluation of a typical fuel fired furnace. Cogeneration: Need - Principle - Technical options - classification - Technical parameters and factors influencing cogeneration choice - Prime Movers - Trigeneration.

UNIT – III ENERGY STUDY OF ELECTRICAL SYSTEMS

Electricity Billing – Electricity load management - Maximum Demand Control - Power Factor improvement and its benefits - pf controllers - capacitors - Energy efficient transformers and Induction motors - rewinding and other factors influencing energy efficiency - Standards and labeling programme of distribution transformers and IM - Analysis of distribution losses - demand side management - harmonics - filters - VFD and its selection.

UNIT - IV STUDY OF ELECTRICAL UTILITIES

9 Periods

9 Periods

Compressor types - Performance - Air system components - Efficient operation of compressed air systems-Compressor capacity assessment - HVAC: psychrometrics and air-conditioning processes - Types of refrigeration system - Compressor types and applications - Performance assessment of refrigeration plants - Lighting Systems: Energy efficient lighting controls - design of interior lighting - Case study.

UNIT - V PERFORMANCE ASSESSMENT FOR EQUIPMENT

9 Periods

Performing Financial analysis: Fixed and variable costs – Payback period – ROI - methods – factors affecting analysis. Energy Performance Assessment: Heat exchangers - Fans and Blowers - Pumps. Energy Conservation in buildings and ECBC.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 | Murphy W.R. and G.Mckay Butter worth, "Energy Management", Heinemann Publications, 2007
- 2 Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River Publishers, 2012.

- 3 Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second edition, Technical Publications, 2019.
- 4 S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali Prakashan Publications, 2021.
- 5 www.em-ea.org/gbook1.asp

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Analyze the feature of energy audit methodology and documentation of report.	К3
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
CO4	Familiarize with electrical utilities.	K4
CO5	Perform assessment of different systems.	K5

COs/POs	P01	PO2	PO3	PO4	P05
CO1	3	2	2	1	1
CO2	3	2	2	1	1
CO3	3	2	2	1	1
CO4	3	2	2	1	1
CO5	3	2	2	1	1
23PE0E23	3	2	2	1	1

ASSESSMENT	PATTERN - THE	ORY		1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1 / Case study1/ Seminar 1/Project1	-	30	30	20	20	1	100

Individual Assessment2 / Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100	Ī
ESE	10	30	30	20	10	-	100	

23PE0E24	ADVANCED ENERGY STORAGE TECHNOLOGY	SEMESTER III
ZSPEUEZ4	(Common to all Branches)	SEMES I EK III

PREREQUISITES	CATEGORY	L	T	P	C	
NIL	OE	3	0	0	3	

Course	To explore the fundamentals, technologies and applications of energy storage	
Objectives		
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION AND	9 Periods
	CHANGES	

Storage Needs- Variations in Energy Demand- Variations in Energy Supply- Interruptions in Energy Supply- Transmission Congestion - Demand for Portable Energy-Demand and scale requirements - Environmental and sustainability issues-conventional energy storage methods: battery-types.

UNIT - II TECHNICAL METHODS OF STORAGE

9 Periods

Introduction: Energy and Energy Transformations, Potential energy (pumped hydro, compressed air, springs)- Kinetic energy (mechanical flywheels)- Thermal energy without phase change passive (adobe) and active (water)-Thermal energy with phase change (ice, molten salts, steam)- Chemical energy (hydrogen, methane, gasoline, coal, oil)- Electrochemical energy (batteries, fuel cells)- Electrostatic energy (capacitors), Electromagnetic energy (superconducting magnets)- Different Types of Energy Storage Systems.

UNIT - III PERFORMANCE FACTORS OF ENERGY STORAGE SYSTEMS

9 Periods

Energy capture rate and efficiency- Discharge rate and efficiency- Dispatch ability and load flowing characteristics, scale flexibility, durability – Cycle lifetime, mass and safety – Risks of fire, explosion, toxicity- Ease of materials, recycling and recovery- Environmental consideration and recycling, Merits and demerits of different types of Storage.

UNIT - IV APPLICATION CONSIDERATION

9 Periods

Comparing Storage Technologies- Technology options- Performance factors and metrics- Efficiency of Energy Systems- Energy Recovery - Battery Storage System: Introduction with focus on Lead Acid and Lithium- Chemistry of Battery Operation, Power storage calculations, Reversible reactions, Charging patterns, Battery Management systems, System Performance, Areas of Application of Energy Storage: Waste heat recovery, Solar energy storage, Green house heating, Power plant applications, Drying and heating for process industries, energy storage in automotive applications in hybrid and electric vehicles.

UNIT - V HYDROGEN FUEL CELLS AND FLOW BATTERIES

9 Periods

Hydrogen Economy and Generation Techniques, Storage of Hydrogen, Energy generation - Super capacitors: properties, power calculations - Operation and Design methods - Hybrid Energy Storage: Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor "Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation) Bacitor + Fuel Cell or Flow Battery operation-Applications: Storage for Hybrid Electric Vehicles, Regenerative Power, capturing methods.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	DetlefStolten,	"Hydrogen	and Fuel	Cells:	Fundamentals,	Technologies	and	Applications",	Wiley,
	2010.								

- 2 Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy Storage and Conversion", John Wiley and Sons, 2012.
- 3 Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.
- 4 Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical Society, New Jersy, 2010.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
CO4	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	P03	P04	PO5				
C01	3	1	3	3	3				
CO2	3	1	3	3	3				
CO3	3	1	3	3	3				
CO4	3	1	3	3	3				
CO5	3	1	3	3	3				
23PE0E24	3	1	3	3	3				
1 – Slight, 2 – Moderate, 3 –	- Substantial			•	•				

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	10	30	30	20	10	-	100	
CAT2	10	30	30	20	10	-	100	

Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23AE0E25	DESIGN OF DIGITAL SYSTEMS
ZSAEUEZS	(Common to all Branches)

PREREQUISITES		Title and the	CATEGORY	L	Т	P	С
	NIL	1673	OE	3	0	0	3

Course Objectives

• To gain knowledge in the design and VHDL programming of synchronous and asynchronous sequential circuits, PLD's and the basic concepts of testing in VLSI circuits

UNIT-I SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9 Periods

Analysis of Clocked Synchronous Sequential Circuits - Modeling, state table reduction, state assignment, Design of Synchronous Sequential circuits, Design of iterative circuits- ASM chart -ASM realization.

UNIT-II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9 Periods

Analysis of Asynchronous Sequential Circuits - Races in ASC - Primitive Flow Table - Flow Table Reduction Techniques, State Assignment Problem and the Transition Table - Design of ASC - Static and Dynamic Hazards - Essential Hazards - Data Synchronizers.

UNIT-III SYSTEM DESIGN USING PLDS

9 Periods

Basic concepts – Programming Technologies - Programmable Logic Element (PLE) – Programmable Array Logic (PLA)-Programmable Array Logic (PAL) –Design of combinational and sequential circuits using PLDs–Complex PLDs (CPLDs).

UNIT- IV INTRODUCTION TO VHDL

9 Periods

Design flow -Software tools - VHDL: Data Objects-Data types - Operators -Entities and Architectures

Components and Configurations – Signal Assignment – Concurrent and Sequential statements – Behavioral,
 Dataflow and Structural modeling – Transport and Inertial delays – Delta delays-Attributes - Generics –
 Packages and Libraries.

UNIT-V LOGIC CIRCUIT TESTING AND TESTABLE DESIGN

9 Periods

Digital logic circuit testing - Fault models - Combinational logic circuit testing - Sequential logic circuit testing-Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study: Traffic Light Controller.

Contact Periods:

Lecture:45Periods Tutorial:0Periods Practical: 0Periods Total: 45Periods

1	Donald G.Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni, "Circuit Design withVHDL", PHILearning, 2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", Academic Press, 1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage 2nd Edition 2012.
6	NripendraN.Biswas,"Logic Design Theory"PrenticeHallofIndia,2001.

COUR	SEOUTCOMES:	Bloom's Taxonomy
Upon	completion of the course ,students will be able to/have:	Mapped
CO1	To design synchronous sequential circuits based on specifications.	К3
CO2	To design asynchronous sequential circuits based on specifications	К3
CO3	Ability to illustrate digital design implementation using PLDs.	K2
CO4	To develop algorithm and VHDL code for design of digital circuits.	К3
CO5	Understand the different testing methods for combinational and sequential	K2
	circuits.	

COs/POs	P01	P02	P03	P04	P05	P06
CO1	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3	-	2	-	-	1
23AE0E25	3	-	2 ~~	iii a	-	1
– Slight, 2 – Mode	rate, 3 – Subs	tantial		233		
			No	7		

ASSESSMENT PA	ATTERN - THEOR	Y A §					
Test / Bloom's Category*	Remembering (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	20%	45%	35%				100%

	BASICS OF NANO ELECTRONICS
23AE0E26	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective

 The students will be able to acquire knowledge about nano device fabrication technology, nano structures, nano technology for memory devices and applications of nano electronics in data transmission.

UNIT - I TECHNOLOGY AND ANALYSIS

9 Periods

Fundamentals: Dielectric, Ferroelectric and Optical properties - Film Deposition Methods – Lithography Material removing techniques - Etching and Chemical Mechanical Polishing - Scanning Probe Techniques.

UNIT - II CARBON NANO STRUCTURES

9 Periods

Principles and concepts of Carbon Nano tubes - Fabrication - Electrical, Mechanical and Vibration Properties - Applications of Carbon Nano tubes.

UNIT - III LOGIC DEVICES

9 Periods

Silicon MOSFET's: Novel materials and alternative concepts - Single electron devices for logic applications - Super conductor digital electronics - Carbon Nano tubes for data processing.

UNIT - IV MEMORY DEVICES AND MASS STORAGE DEVICES

9 Periods

Flash memories - Capacitor based Random Access Memories - Magnetic Random Access Memories - Information storage based on phase change materials - Resistive Random Access Memories - Holographic Data storage.

UNIT - V DATA TRANSMISSION AND INTERFACING DISPLAYS

9 Periods

Photonic Networks - RF and Microwave Communication System - Liquid Crystal Displays - Organic Light emitting diodes.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronic and
	novel devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics
	Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C.Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer,
	2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher,
	California", 2003.

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, students will be able to/have:	Mapped
CO1	Explain principles of nano device fabrication technology.	K2
CO2	Describe the concept of Nano tube and Nano structure.	K2
CO3	Explain the function and application of various nano devices	К3
CO4	Reproduce the concepts of advanced memory technologies.	К2
CO5	Emphasize the need for data transmission and display systems.	K2

COs/POs	P01	P02	P03	P04	P05	P06	PSO1	PSO2	PSO3
CO1	3	-	2	-	-	1	3	-	1
CO2	3	-	2	-	-	1	3	-	1
CO3	3	-	2	-	-	1	3	-	1
CO4	3	-	2	A STATE OF THE PARTY OF THE PAR	-	1	3	-	1
CO5	3	-	2		366	1	3	-	1
23AE0E26	3	-	2	Verland	- The	1	3	-	1
– Slight, 2 – Mod	lerate, 3 –	Substanti	ial	1 3	7				
			- 1	VOID					

ASSESSMENT P	ATTERN - THEOR	Y	8 11	W			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50%	25%	25%				100%
CAT2	50%	25%	25%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50%	25%	25%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50%	25%	25%				100%
ESE	50%	25%	25%				100%

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course Objective

• The students will be able to acquire knowledge about the high performance RISC, CISC and special purpose processors.

UNIT - I MICROPROCESSOR ARCHITECTURE

9 Periods

Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile – Cache – Virtual memory and paging – Segmentation – Pipelining – The instruction pipeline – pipeline hazards – Instruction level parallelism – reduced instruction set – Computer principles – RISC versus CISC – RISC properties – RISC evaluation.

UNIT - II HIGH PERFORMANCE CISC ARCHITECTURE -PENTIUM

9 Periods

23AE0E27	ADVANCED PROCESSOR
	(Common to all Branches)

The software model – functional description – CPU pin descriptions – Addressing modes – Processor flags – Instruction set – Bus operations – Super scalar architecture – Pipe lining – Branch prediction – The instruction and caches – Floating point unit– Programming the Pentium processor.

UNIT - III HIGH PERFORMANCE CISC ARCHITECTURE - PENTIUM INTERFACE

9 Periods

Protected mode operation – Segmentation – paging – Protection – multitasking – Exception and interrupts - Input /Output – Virtual 8086 model – Interrupt processing.

UNIT - IV HIGH PERFORMANCE RISC ARCHITECTURE: ARM

9 Periods

ARM architecture – ARM assembly language program – ARM organization and implementation – ARM instruction set - Thumb instruction set.

UNIT - V SPECIAL PURPOSE PROCESSORS

9 Periods

Altera Cyclone Processor – Audio codec – Video codec design – Platforms – General purpose processor – Digital signal processor – Embedded processor – Media Processor – Video signal Processor – Custom Hardware – Co-Processor.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System -On -Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, " The Intel Microprocessors Architecture, Programming and Interfacing ", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COUR	SE OUTCOMES:	Bloom's
Upon	completion of the course, students will be able to	Taxonomy
		Mapped
C01	Describe the fundamentals of various processor architecture.	K2
CO2	Interpret and understand the high performance features in CISC	K2
	architecture.	
CO3	Describe the concepts of Exception and interrupt processing.	K2
CO4	Develop programming skill for ARM processor.	К3
CO5	Explain various special purpose processor	K2

COs/POs	P01	P02	P03	P04	P05	P06
CO1	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3		2	-	-	1
CO5	3	-7673	2	-	-	1
23AE0E27	3	- 7/2	2	-	-	1
– Slight, 2 – Moderat	e, 3 – Substant	tial	7			

Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6)	Total %
						%	
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		50%	50%				100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		50%	50%				100%
ESE	30%	40%	30%				100%

22VI 0E20	HDLPROGRAMMINGLANGUAGES
23VLOE28	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	• To code and simulate any digital function in Verilog HDL and	understand the			
Objective	difference between synthesizable and non-synthesizable codes	s.			
UNIT - I VEI	RILOG INTRODUCTION AND MODELING	9 Periods			
Introduction to Ve	lerilog HDL, Language Constructs and Conventions, Gate Level Mod	eling, Modeling			
	l, Behavioral Modeling, Switch Level Modeling, System Tasks,				
Compiler Directive					
UNIT - II SEC	QUENTIAL MODELING AND TESTING	9 Periods			
Sequential Models	- Feedback Model, Capacitive Model, Implicit Model, Basic Memor	ry Components,			
Functional Registe	er, Static Machine Coding, Sequential Synthesis. Test Bench -	Combinational			
Circuits Testing, So	equential Circuit Testing, Test Bench Techniques, Design Verifica	ition, Assertion			
Verification.					
UNIT - III SYS	STEM VERILOG	9 Periods			
Introduction Creat	ana Wanilag daglanatian angga Cratan Wanilag Litanal Walnag an	d Duilt in Data			
=	em Verilog declaration spaces, System Verilog Literal Values and				
• •	rilog User-Defined and Enumerated Types, system Verilog Arrays,	Structures and			
	rilog Procedural Blocks, Tasks and Functions.				
UNIT – IV SYS	STEMVERILOGMODELING	9 Periods			
System Verilog Pr	rocedural Statements, Modeling Finite State Machines with Sys	stem Verilog,			
System Verilog Des	Company of the Compan	O,			
	ΓERFACES AND DESIGN MODEL	9 Periods			
System Verilog Ir	System Verilog Interfaces, A Complete Design Modeled with System Verilog, Behavioral and				
Transaction Level 1	Modeling.				
Contact Periods:					
Lecture: 45 Perio	ds Tutorial:0 Periods Practical:0 Periods Total: 45 Perio	ods			

1	T.R.Padmanabhan, B Bala Tripura Sundari, " Design through Verilog HDL" ,Wiley 2009.
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog
	For Design Second Edition A Guide to Using System Verilog for Hardware Design and
	Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi," Verilog Digital System Design" ,TMH,2ndEdition,2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of
	Projects on FPGAs and ASICs Using Verilog" , Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language
	Features", Springer 2006.

6 Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using System Verilog for Hardware Design and Modeling" 1st Edition, 2003

COUR	Bloom's			
Upon	completion of the course, the students will be able to:	Mapped		
CO1	Explain the verilog coding and simulate any digital function using	K2		
	Verilog HDL			
CO2	Develop sequential modeling based Verilog HDL code and develop	К3		
	the test bench for the modeling			
CO3	Explain the system verilog modeling	K2		
CO4	Differentiate the synthesizable and non-synthesizable code	К3		
CO5	Apply good coding techniques on system verilog interfaces and	К3		
	complete design model			

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
CO1	3	3		2		2
CO2	3	3	Till-	2		2
CO3	3	3		2		2
CO4	3	3		2		2
CO5	3	3		2		2
23VLOE28	3	3	1000)	2		2
1 – Slight, 2 – Mod	erate, 3 – Subs	tantial				

ASSESSMEN'	ASSESSMENT PATTERN - THEORY						
Test /	Remembering	Understandin	Applyin	Analyzin	Evaluating	Creating	Total
Bloom's	(K1) %	g (K2) %	g (K3) %	g (K4) %	(K5) %	(K6) %	%
Category*							
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

23VL0E29	CMOS VLSI DESIGN
	(Common to all Branches)

Course	To gain knowledge on CMOS Circuits with its characterization and to design			
Objective	CMOS logic and sub-system with low power			
UNIT – I	INTRODUCTION TO MOS CIRCUITS	9 Periods		
MOS Transisto	r Theory -Introduction MOS Device Design Equations -MOS Transistor a	s a Switches -		
Pass Transisto	or - CMOS Transmission Gate -Complementary CMOS Inverter - Stat	ic Load MOS		
Inverters - Inve	erters with NMOS loads - Differential Inverter - Tri State Inverter - BiCM	OS Inverter.		
UNIT – II	CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION	9 Periods		
Delay Estimat	ion, Logical Effort and Transistor Sizing, Power Dissipation, Sizin	g Routing		
Conductors, Ch	arge Sharing, Design Margin and Reliability.			
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN	9 Periods		
CMOS Logic Gate Design, Physical Design of CMOS Gate, Designing with Transmission Gates,				
CMOS Logic Str	ructures, Clocking Strategies, I/O Structures.			
UNIT – IV	CMOS SUBSYSTEM DESIGN	9 Periods		
DataPath Oper	ations-Addition/Subtraction, Parity Generators, Comparators, Zero/One	Detectors,		
Binary Counte	Binary Counters, ALUs, Multipliers, Shifters, Memory Elements, Control-FSM, Control Logic			
Implementatio	Implementation.			
UNIT – V	LOW POWER CMOS VLSI DESIGN	9 Periods		
Introduction to Low Power Design, Power Dissipation in FET Devices, Power Dissipation in				
CMOS, Low-Power Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits,				
Architectural Level Approach – Pipelining and Parallel Processing Approaches, Low Power Basics				
CMOS Gate and	CMOS Gate and Adder Design.			
Contact Perio	ds:			

REFERENCES:

Lecture: 45 Periods

1 Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata Mc-Graw Hill, 2011.

Tutorial:0 Periods Practical:0 Periods Total: 45 Periods

2 N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley,1998.

3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems
	Perspective", Pearson Education 2013.
4	Kiat-Seng Yeo,Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill
	Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Jan M.Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.

COUF	COURSE OUTCOMES:	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Explain the MOS circuits and Transmission gates	K2
CO2	Illustrate the CMOS Circuits with its characterization	K2
CO3	Design CMOS logic circuits	КЗ
CO4	Design CMOS sub-system	КЗ
CO5	Discuss low power CMOS VLSI Design	K2

COURSE ARTICULATION MATRIX								
COs/POs	P01	PO2	P03	P04	P05	P06		
CO1	2	1	-	2	-	3		
CO2	2	1	-	2	-	3		
CO3	2	1	-	2	-	3		
CO4	3	1	-	2	-	3		
CO5	3	1	-	2	-	3		
23VLOE29	3	1	and a Real	2	-	3		
1 – Slight, 2 – Mod	lerate, 3 – Sub	stantial		2)				
	•	7		5				

F

ASSESSMENT	PATTERN - TH	EORY	Year				
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		(20		ă.			
CAT1	40%	40%	20%	· -	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment							
1 /Case							
Study 1/							
Seminar 1 /							
Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment							
2 /Case							
Study 2/							
Seminar 2 /							
Project 2							
ESE	40%	40%	20%	-	-	-	100%

	HIGH LEVEL SYNTHESIS
23VLOE30	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	 To provide students with foundations in High level synthes 	sis, verification				
Objective	and CAD Tools					
UNIT - I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS	9 Periods				
Overview HLS flow, Scheduling Techniques, Resource sharing and Binding Techniques, Data-path						
and Controller	Generation Techniques.					
UNIT – II	HIGH LEVEL SYNTHESIS	9 Periods				
Introduction t	o HDL, HDL to DFG, operation scheduling: constrained and unconstrair	ned scheduling,				
ASAP, ALAP, I	ist scheduling, Force directed Scheduling, operator binding, Static Ti	ming Analysis:				
Delay models,	setup time, hold time, cycle time, critical paths, Topological mvs.	Logical timing				
analysis, False	paths, Arrival time (AT), Required arrival Time (RAT), Slacks.					
UNIT - III	HIGH-LEVEL SYNTHESIS VERIFICATION	9 Periods				
Simulation ba	ased verification - Formal Verification of digital systems- BDD base	ed approaches,				
functional equ	ivalence, finite state automata, ω-automata, FSM verification.					
UNIT – IV	CAD TOOLS FOR SYNTHESIS	9 Periods				
CAD tools for	synthesis, optimization, simulation and verification of design at variou	s levels as well				
as for specia	l realizations and structures such as microprogrammes, PLAs, ga	te arrays etc.				
Technology m	apping for FPGAs. Low power issues in high level synthesis and logic sy	nthesis.				
UNIT – V	ADVANCED TOPICS	9 Periods				
Relative Scheo	luling, IO scheduling modes - cycle fixed scheduling modes, super-fix	xed scheduling				
modes, free-floating scheduling mode, Pipelining, Handshaking, System Design, High-Level						
Synthesis for FPGA.						
Contact Perio	ods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

1	Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit",
	Springer, 2008.
2	Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
3	D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.

- 4 Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.
- 5 Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
- 6 David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and Synchronization Constraints", Kluwer Academic Publishers, 1992.
- K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999, Wiley.

8 Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System Design and Analysis", Springer, 2006.

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand the fundamentals of High level synthesis	K2
CO2	Synthesis the HDL for operation scheduling	К2
CO3	Simulate and verify any digital systems	К2
CO4	Apply CAD tools for synthesis	К2
CO5	Have knowledge on various scheduling modes	K2

COURSE ARTICULATION MATRIX:

COs/POs	P01	P02	P03	P04	PO5	P06
C01	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	WW.	2	2	-
CO4	2	2		2	2	-
CO5	2	2	mile.	2	2	-
23VL0E30	2	2	7.1	2	2	-

ASSESSMENT	PATTERN - THE	ORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*		7.0		8			
CAT1	50%	50%	7.2.0	-	-	-	100%
CAT2	50%	50%		-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment 1							
/Case Study							
1/ Seminar 1							
/ Project1							
Individual	-	50%	50%	-	-	-	100%
Assessment 2							
/Case Study							
2/ Seminar 2							
/ Project 2							
ESE	50%	50%		-	-	-	100%

23CS0E31	ARTIFICIAL INTELLIGENCE
23C3UE31	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	Identify and apply AI techniques in the design of systems that act intelligently, making						
Objectives	automatic decisions and learn from experience.						
UNIT – I	SEARCH STRATEGIES	9 Periods					
Uninformed Strategies - BFS, DFS, Djisktra, Informed Strategies - A* search, Heuristic functions, Hill							
Climbing, Adv	rersarial Search – Min-max algorithm, Alpha-beta Pruning						
UNIT – II	PLANNING AND REASONING	9 Periods					
State Space se	earch, Planning Graphs, Partial order planning, Uncertain Reasoning	– Probabilistic Reasoning,					
Bayesian Net	Bayesian Networks, Dempster Shafer Theory, Fuzzy logic						
UNIT – III	PROBABILISTIC REASONING	9 Periods					
Probabilistic	Reasoning over Time - Hidden Markov Models, Kalman Filters, Dyn	namic Bayesian Networks.					
Knowledge Re	epresentations – Ontological Engineering, Semantic Networks and d	escription logics.					
UNIT – IV	UNIT - IV DECISION MAKING 9 Periods						
Utility Theory	Utility Theory, Utility Functions, Decision Networks – Sequential Decision Problems – Partially Observable						
MDPs – Game	Theory.						
UNIT – V	REINFORCEMENT LEARNING	9 Periods					
Reinforcement Learning - Passive and active reinforcement learning - Generations in Reinforcement							
Learning - Policy Search – Deep Reinforcement Learning.							
Contact Periods:							
Lecture: 45 F	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

1	Deepak Khemani, "A First Course in Artificial Intelligence" , Tata Mc Graw Hill Education 2013					
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006					
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice					
	Hall,2010.					
4	Elaine Rich,Kevin Knight,Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill,					
	2009.					

COURSE OUTCOMES:	Bloom's
	Taxonomy
Upon completion of the course, the students will be able to:	Mapped
CO1 Use search techniques to solve AI problems	K2

CO2	Reason facts by constructing plans and understand uncertainty efficiently.	КЗ
CO3	Examine data using statistical codes and solve complex AI problems	К6
CO4	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	К6

COs/		PO 1	P02	PO	3	PO 4	•	P05)		P06	
CC)1	3		2				3		3		
ASSESSMENT	PATTER	N – THE	EORY	2				3			3	
CC	-	3		3				3			3	
Test / CO			Underst			lying	A	nalyzinĝ	Evalu		Greating	Total
Bloom's Co	` '	% 3	(K2)	% 3	(K3	8) %		(K4) %3	(K5) %	₿ K6) %	%
Catego23CS	DE31	3		3				3			3	
1 – Sligh CAT1	t , 2 – Mod	erate, 3	Substant	ial		0		20	2	0		100
CATI			20		4	·U		20	Z	U		100
CAT2			10	0.77	2	0	n,	40	1	0	20	100
Individual				120			8					
Assessment						7	7					
1/ Case)]	Van	W 1			_	0	. 0	400
study 1/				8		人!			5	0	50	100
Seminar 1/				A	ğ —	11	k.					
Project 1							3					
Individual				-0	990	e.Co.						
Assessment												
2/ Case									5	Λ	50	100
study 2/									3	U	30	100
Seminar 2/												
Project 2												
ESE	30)	30	1	1	0						100

23CSOE32

COMPUTER NETWORK MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

Course	After the completion of the course, the students will be able to	understand the concept				
Objectives	of layering in networks, functions of protocols of each layer of	, <u>-</u>				
	concepts related to network addressing and routing and build simple LANs, perform					
	basic configurations for routers and switches, and implement IPv4 and IPv6 addressing					
	schemes using Cisco Packet Tracer.					
UNIT – I	INTRODUCTION AND APPLICATION LAYER	9 Periods				
Building networ	k – Network Edge and Core – Layered Architecture – OSI Model	- Internet Architecture				
(TCP/IP) Netwo	rking Devices: Hubs, Bridges, Switches, Routers, and Gateways –	Performance Metrics -				
Ethernet Netwo	rking – Introduction to Sockets – Application Layer protocols	- HTTP - FTP Email				
Protocols - DNS.	Protocols – DNS.					
1						
UNIT – II	TRANSPORT LAYER AND ROUTING	9 Periods				
	TRANSPORT LAYER AND ROUTING functions –User Datagram Protocol – Transmission Control Pro					
Transport Layer	WAS CONTRACTOR OF THE PROPERTY	otocol – Flow Control –				
Transport Layer Retransmission	functions –User Datagram Protocol – Transmission Control Pro	otocol – Flow Control – Vector Routing – Link				
Transport Layer Retransmission	functions –User Datagram Protocol – Transmission Control Pro Strategies – Congestion Control - Routing Principles – Distance RIP – OSPF – BGP – Introduction to Quality of Service (QoS).Case	otocol – Flow Control – Vector Routing – Link				
Transport Layer Retransmission State Routing – I	functions –User Datagram Protocol – Transmission Control Pro Strategies – Congestion Control - Routing Principles – Distance RIP – OSPF – BGP – Introduction to Quality of Service (QoS).Case	otocol – Flow Control – Vector Routing – Link				
Transport Layer Retransmission State Routing – I OSPF BGP using UNIT – III	functions –User Datagram Protocol – Transmission Control Pro Strategies – Congestion Control - Routing Principles – Distance RIP – OSPF – BGP – Introduction to Quality of Service (QoS).Case Packet tracer	otocol – Flow Control – Vector Routing – Link Study: Configuring RIP, 9 Periods				
Transport Layer Retransmission State Routing – I OSPF BGP using UNIT – III Network Layer: S	functions –User Datagram Protocol – Transmission Control Pro Strategies – Congestion Control - Routing Principles – Distance RIP – OSPF – BGP – Introduction to Quality of Service (QoS).Case Packet tracer NETWORK LAYER	otocol – Flow Control – Vector Routing – Link Study: Configuring RIP, 9 Periods Addressing – Subnetting				
Transport Layer Retransmission State Routing – I OSPF BGP using UNIT – III Network Layer: S – Classless Inter	functions –User Datagram Protocol – Transmission Control Pro Strategies – Congestion Control - Routing Principles – Distance RIP – OSPF – BGP – Introduction to Quality of Service (QoS).Case Packet tracer NETWORK LAYER Switching concepts – Internet Protocol – IPV4 Packet Format – IP	otocol – Flow Control – Vector Routing – Link Study: Configuring RIP, 9 Periods Addressing – Subnetting DHCP – ARP – Network				

UNIT – IV INTERNETWORK MANAGEMENT

9 Periods

Introduction to the Cisco IOS - Router User Interface – CLI - Router and Switch Administrative Functions - Router Interfaces - Viewing, Saving, and Erasing Configurations - Switching Services - Configuring Switches - Managing Configuration Registers - Backing Up and Restoring IOS - Backing Up and Restoring the Configuration - Using Discovery Protocol (CDP) - Checking Network Connectivity

UNIT - V TRAFFIC MANAGEMENT AND WAN PROTOCOLS

9 Periods

Managing Traffic with Access Lists: Introduction to Access Lists - Standard Access Lists - Extended Access Lists - Named Access Lists - Monitoring Access Lists - Wide Area Networking Protocols: Introduction to Wide Area Networks - Cabling the Wide Area Network - High-Level Data-Link Control (HDLC) Protocol - Point-to-Point Protocol (PPP) - Frame Relay: Frame Relay Implementation and Monitoring - Integrated Services Digital Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring DDR

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh
	Edition, Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education,
	2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNA™: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COURSE	COURSE OUTCOMES:				
Upon con	npletion of the course, the students will be able to:	Mapped			
C01	Highlight the significance of the functions of each layer in the network.	K1			
CO2	Identify the devices and protocols to design a network and implement it.	K4			
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	К3			
CO4	Build simple LANs, perform basic configurations for routers and switches	К6			
CO5	Illustrate various WAN protocols	K2			

COURSE ART	COURSE ARTICULATION MATRIX						
COs/POs	P01	PO2	P03	P04	P05	P06	
CO1	3		3	200	2	1	
CO2	3		3		2	2	
CO3	3		3		3	2	
CO4	3		3		3	3	
CO5	3		3		3	3	
23CSOE32	3		3		3	2	
1 – Slight, 2 –	Moderate, 3 -	Substantia	Ì				

ASSESSMEN'	T PATTERN - TH	EORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	30	20	20			100
CAT2		30	20	30	10	10	100
Individual	10	30	20	20	20		100
Assessment							
1 /Case							
Study 1 /							
Seminar 1 /							
Project 1							
Individual		20	20	20	20	20	100
Assessment							
2 / Case							
Study 2/							
Seminar 2/							
Project 2							
ESE	20	40	40				100

	BLOCKCHAIN TECHNOLOGIES
23CSOE33	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

chain tec	hnology and its					
V	9 Periods					
ckchain	- benefits and					
chain im	plementations-					
	9 Periods					
Introduction to Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining Developments,						
ine (EVM	I), Merkle Tree,					
onal Blo	cks, Impact of					
	9 Periods					
Ethere	ım Accounts, ,					
	9 Periods					
allenges,	Hyperledger &					
Compo	ser. Solidity –					
	9 Periods					
f Things,	Medical Record					
Coins						
Total:	45 Periods					
1 ()	Nockchain im schain sch					

1	Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and
	Smart Contracts Explained", Second Edition, Packt Publishing, 2018.
2	Legan I Dambara Davi D. Allen "Dischair A Practical Cuide to Developing Presinger Law

- 2 Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and Technology Solutions", McGraw Hill Education ,2018.
- 3 Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016.
- 4 Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.
- 5 Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018
- 6 NPTEL Course: Blockchain and its applications
 https://archive.nptel.ac.in/courses/106/105/106105235/

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Comprehend the working of Blockchain technology	K2
	Narrate working principle of smart contracts and create them using solidity for given scenario.	К3
CO3	Comprehend the working of Hyperledger in an real time application	К2
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum	К3
CO5	Develop applications on Blockchain	К3

URSE ARTIC	ULATION I	MATRIX				
COs/POs	P01	PO2	P03	P04	PO5	P06
CO1	2		3	2		3
CO2	2	3	3	3	2	3
CO3	3		3	2		3
CO4	3	3	3	3	2	3
CO5	3	3	3	3	2	3
23CSOE33	3	3	3	3	2	3
23CSOE33	3		9	erate, 3 – Substa	–	

		7.3	3637							
ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	40	40				100			
CAT2	20	30	50				100			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1		30	70				100			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		40	60				100			
ESE	10	60	30				100			

22ED A C71	ENGLISH FOR RESEARCH PAPER WRITING
23EDACZ1	(Common to All Branches)

PREREQUISITES		CATEGORY	L	T	P	С				
	NIL	AC	2	0	0	0				
Course	The objective of the course is to make the	e learners under	stand	the f	orma	t and				
Objectives	intricacies involved in writing a research pap	ricacies involved in writing a research paper.								
UNIT – I	PLANNING AND PREPARATION			6	Peri	ods				
Need for publishin	g articles, Choosing the journal, Identifying a	model journal pap	er, Cr	eation	of fil	es for				
each section, Expe	ctations of Referees, Online Resources.									
UNIT – II	SENTENCES AND PARAGRAPHS									
Basic word in En	glish, Word order in English and Vernacula	r, placing nouns,	Verbs	Adje	ctives	s, and				
Adverb suitably in	a sentence, Using Short Sentences, Discourse	Markers and Punc	tuatio	ns- Str	uctui	e of a				
Paragraph, Breakii	ng up lengthy Paragraphs.									
UNIT - III	ACCURACY, BREVITY AND CLARITY (ABC)	OF WRITING		6	Peri	ods				
Accuracy, Brevity	and Clarity in Writing, Reducing the linking w	ords, Avoiding re	dunda	ncy, A	ppro	priate				
use of Relative and	l Reflexive Pronouns, Monologophobia, verifyi	ng the journal sty	le, Log	gical C	onne	ctions				
between others au	thor's findings and yours.									
UNIT - IV	HIGHLIGHTING FINDINGS, HEDGING AND I	PARAPHRASING		6	Peri	ods				
Making your finding	ngs stand out, Using bullet points headings, Ta	ables and Graphs-	Availi	ng n	on-ex	perts				
opinions, Hedging,	Toning Down Verbs, Adjectives, Not over hedg	ging, Limitations of	f your	resear	ch.					
UNIT - V	SECTIONS OF A PAPER			6	Peri	ods				
Titles, Abstracts,	Introduction, Review of Literature, Meth	ods, Results, Di	scussi	on, Co	onclu	sions,				
References.										
Contact Periods:										
Lecture: 30 Perio	ods Tutorial: 0 Periods Practical: 0 Per	iods Total: 30	Perio	ls						

1	Goldbort R , "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.
4	Adrian Wallwork," English for Writing Research Papers" , Springer New York Dordrecht Heidelberg
	London, 2011.

COURSE OUT	TCOMES:	Bloom's Taxonomy
Upon comple	tion of this course the learners will be able to	Mapped
CO1	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph writing.	К4
CO3	Practice unambiguous writing.	КЗ
CO4	Avoid wordiness in writing.	K2
CO5	Exercise the elements involved in writing journal paper.	КЗ

COURSE ARTICULATION MATRIX :								
COs/POs	P01	P02	P03	P04	P05	P06		
C01	3	3	1	1	1	1		
CO2	3	3	1	1	1	1		
CO3	3	3	1	1	1	1		
CO4	3	3	1	1	1	1		
CO5	3	3	1	1	1	1		
23EDACZ1	3	3	1	1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	40	40	20	-	-	-	100				
CAT2	40	40	20	-	-	-	100				
Individual											
Assessment 1/											
Case Study 1/	-	50	50	-	-	-	100				
Seminar 1/											
Project 1											
Individual											
Assessment 2/											
Case Study 2/	-	50	50	-	-	-	100				
Seminar 2/											
Project 2											
ESE	30	30	40	-	-	-	100				

23EDACZ2	DISASTER MANAGEMENT
ZSEDACZZ	(Common to all branches)

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	AC	2	0	0	0

Course	1. To become familiar in key concepts and consequences about hazard	s, disaster and			
Objectives	area of occurrence.				
•	2. To know the various steps in disaster planning.				
	3. To create awareness on disaster preparedness and management.				
UNIT – I	INTRODUCTION	6 Periods			
Disaster: Defini	tion, Factors and Significance; Difference between Hazard and Disas	ter; Natural and			
Manmade Disas	ters: Difference, Nature, Types and Magnitude. Areas proneto ,Ear	thquakesFloods,			
Droughts, Lands	lides ,Avalanches ,Cyclone and Coastal Hazards with Special Reference t	o Tsunami.			
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods			
Economic Dama	age, Loss of Human and Animal Life, Destruction of Ecosystem. N	atural Disasters:			
Earthquakes, V	olcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines,	Landslides and			
Avalanches, Mai	n-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil	Slicks and Spills,			
Outbreaks of Dis	sease and Epidemics, War and Conflicts.				
UNIT – III	DISASTER PLANNING	6 Periods			
Disaster Planni	ng-Disaster Response Personnel roles and duties, Community Mitig	ationGoals, Pre-			
Disaster Mitigat	ion Plan, Personnel Training, Comprehensive Emergency Managemen	t, Early Warning			
Systems.	T				
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT	6 Periods			
Preparedness: M	Ionitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of	Risk: Application			
of Remote Sens	ing, Data from Meteorological and other Agencies, Media Reports: Go	overnmental and			
Community Preparedness.					
UNIT – V	RISK ASSESSMENT	6 Periods			
Disaster Risk: (Concept and Elements, Disaster Risk Reduction, Global and Nation	al Disaster Risk			
Situation. Techn	niques of Risk Assessment, Global Co-Operation in Risk Assessmer	nt and Warning,			
People's Particip	oation in Risk Assessment, Strategies for Survival.				
Contact Period	S:				
Lecture: 30 Per	riods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Period	s			

1	R. Nishith, Singh AK, " Disaster Management In India: Perspectives, Issues And Strategies ", New Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International Publishing House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUR	SE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

COURSE ARTICULATION MATRIX							
COs/POs	P01	P02	P03	P04	P05		
CO1	2	1	1	2	2		
CO2	1	2	1	1	1		
CO3	1	1	1	2	2		
CO4	1	1	1	2	2		
CO5	2	1,,,,,,,	1	2	2		
23EDACZ2	1	(1754 L. S	550 I	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial							
TO THE RESERVE TO THE							

ASSESSMENT	Γ PATTERN – THI	EORY		1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	7-2-0				100
CAT2			100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course	Value of education and self- development				
	-				
Objectives					
	3. Importance of character				
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods			
Social values and	individual attitudes. Work ethics, Indian vision of humanism. Moral an	nd non-moral			
valuation. Standar	ds and principles. Value judgements.				
UNIT – II	PERSONALITY AND BEHAVIOR DEVELOPMENT	6 Periods			
Soul and Scientifi	ic attitude. Positive Thinking. Integrity and discipline. Punctuality, I	Love and Kindness			
Avoid fault Thinki	ng. Free from anger, Dignity of labour. Universal brotherhood and relig	ious tolerance.			
UNIT – III	VALUES IN HUMAN LIFE	6 Periods			
Importance of cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence, Concentration.					
Truthfulness, Cle	anliness. Honesty, Humanity. Power of faith, National Unity. Pat	riotism. Love for			
nature,Discipline.					
UNIT - IV	VALUES IN SOCIETY	6 Periods			
True friendship. l	Happiness Vs suffering, love for truth. Aware of self-destructive hab	its. Association			
andCooperation. I	Doing best for saving nature.				
UNIT – V	POSITIVE VALUES	6 Periods			
Character and Competence -Holy books vs Blind faith. Self-management and Good health. Science of					
reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your					
Mind, Self-control. Honesty, Studying effectively.					
Contact Periods:					
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods					

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press,
	New Delhi,1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi,2004
4	https://nptel.ac.in/courses/109104068/36

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Know the values and work ethics.	К3
CO2	Enhance personality and 159ehavior development.	К3
CO3	Apply the values in human life.	К3
CO4	Gain Knowledge of values in society.	К3
CO5	Learn the importance of positive values in human life.	К3

Cos/Pos	P01	P02	P03	P04	P05	P06
C01	-	-	3	-	-	1
CO2	-	-	3	-	-	1
CO3	-		3	-	-	1
CO4	-	155.23	3	-	-	1
CO5	-	-	3	-	-	1
23EDACZ3	-		3	-	-	1
– Slight, 2 – Moderate, 3 – S	ubstantial	1 18				

ASSESSMENT PAT	TTERN – THEOR	Y					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

22504674	CONSTITUTION OF INDIA
23EDACZ4	(Common to all branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	AC	2	0	0	0

NIL		AC	Z	UU	U
Course Objectives	 To address the importance of constitutional 	ıl rights and dutie	es		
	 To familiarize about Indian governance and 	d local administra	ation.		
	To know about the functions of election cor	mmission.			
UNIT – I	INDIAN CONSTITUTION			6 Per	iods
History of Making o	of the Indian Constitution: History Drafting Comr	nittee, (Compos	ition	& Work	cing) -
Philosophy of the Ind	ian Constitution: Preamble Salient Features.				
UNIT – II	CONSTITUTIONAL RIGHTS & DUTIES			6 Per	iods
Contours of Constitu	tional Rights & Duties: Fundamental Rights , Right	to Equality, Righ	it to F	reedom	, Right
against Exploitation,	Right to Freedom of Religion, Cultural and Educat	ional Rights, Rig	ght to	Constitu	utional
Remedies, Directive I	Principles of State Policy, Fundamental Duties.				
UNIT - III ORGANS OF GOVERNANCE 6 Periods					riode
	68 0 47 79 40 - 3, - 0 487 90 68	1:C: .: D			
Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges,					
Qualifications, Power	W T V T	omunent and	11 a115	iei oi j	uuges,
	1 1000.000				
UNIT – IV	LOCAL ADMINISTRATION			6 Per	
	n: District's Administration head: Role and Impor	•			
	ected Representative, CEO of Municipal Corporation	,	•		•
	tted officials and their roles, CEO Zila Panchay				
•	rchy (Different departments), Village level: Role	of Elected and	Appo	inted of	ficials,
Importance of grass root democracy.					
UNIT – V	ELECTION COMMISSION			6 Per	riods
Election Commission	: Election Commission: Role and Functioning. Chief	Election Commis	ssione	er and El	lection
Commissioners. State	e Election Commission: Role and Functioning. Inst	itute and Bodies	s for	the welf	fare of
SC/ST/OBC and wom	en.				
Contact Periods:					

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain,"Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu,"Introduction to the Constitution of India", Lexis Nexis, 2015.

Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	K2
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX						
COs/POs	P01	P02	P03	P04	P05	P06
CO1	-	-	1	1	1	1
CO2	-	-	1	1	1	2
CO3	-	-	1	1	2	1
CO4	-	-	1	1	1	1
CO5	-	-	1	1	1	1
23EDACZ4	-	-	1	1	1	1
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMEN'	Γ PATTERN – TI	HEORY	TI	,			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23EDACZ5	PEDAGOGY STUDIES
ZSEDACZS	(Common to all branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course Objectives	 To Understand of various theories of learning, prevailing pedago and design of curriculum in engineering studies. Application of knowledge in modification of curriculum, its as introduction of innovation in teaching methodology. 	
UNIT – I	INTRODUCTION	6 Periods

Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.

UNIT - II PEDAGOGICAL PRACTICES

6 Periods

Thematic overview: Pedagogical practices are being used by teachers in formal and informal classrooms in developing countries. Curriculum, Teacher education. Evidence on the effectiveness of pedagogical practices Methodology for the in depth stage: quality assessment of included attudion.

UNIT - III PEDAGOGICAL APPROACHES

6 Periods

How can teacher education (curriculum and practicum) and the school curriculum and guidance materials best support effective pedagogy? Theory of change. Strength and nature of the body of evidence for effective pedagogical practices. Pedagogic theory and pedagogical approaches. Teacher's attitudes and beliefs and Pedagogic strategies.

UNIT - IV PROFESSIONAL DEVELOPMENT

6 Periods

Professional development: alignment with classroom practices and follow-up support. Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes.

UNIT - V CURRICULUM AND ASSESSMENT

6 Periods

Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.

Contact Periods:

Lecture: 30 Periods Tutorial: Nil Practical: Nil Total: 30 Periods

- 1 Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261, 2001.
- 2 Alexander RJ ,Culture and pedagogy: International comparisons in primary education.
 Oxford and Boston: Blackwell, 2001
- 3 Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282, 2013.
- 4 Agrawal M ,Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379, 2004

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Explain the concept of curriculum, formal and informal education systems and teacher education.	К3
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	К3
CO3	Understand the relation between teacher and community, support from various levels of teachers to students and limitation in resources and size of the class.	К3
CO4	Perform research in design a problem in pedagogy and curriculum development.	К3

COs/POs	P01	P02	P03	P04	PO5	P06
CO1	-	-	1	1	2	1
CO2	-	-	1	1	1	2
CO3	-	-	1	1	2	1
CO4	-	8000	1	1	2	1
23EDACZ5	-	202	1	1	2	1
– Slight, 2 – Mode	rate, 3 – Subst	antial	-			

ASSESSME	NT PATTERN – 1	ГНЕОRY		. 1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23EDACZ6	STRESS MANAGEMENT BY YOGA (Common to all branches)
	(Common to all branches)

PREREQUISI'	ΓES	CATEGORY	L	T	P	С
	NIL	AC	2	0	0	0
Course	1. To create awareness on the benefits of yoga and	d meditation.	1			
Objectives	2. To understand the significance of Asana and Pr	anayama.				
UNIT – I	PHYSICAL STRUCTURE AND ITS FUNCTIONS				6 Pe	eriods
Yoga - Physica	al structure, Importance of physical exercise, Rules	and regulation o	of sin	nplif	ied ph	iysical
exercises, han	d exercise, leg exercise, breathing exercise, eye exe	rcise, kapalapath	ıy, ma	ahar	asana	, body
massage, acup	pressure, body relaxation.					
UNIT – II	YOGA TERMINOLOGIES				6 Pe	eriods
Yamas - Ahim	sa, satya, astheya, bramhacharya, aparigraha					
Niyamas- Sau	cha, santosha, tapas, svadhyaya, Ishvara pranidhana	1.				
UNIT – III	ASANA				6 Pe	eriods
Asana - Rules	& Regulations – Types & Benefits					
UNIT - IV	PRANAYAMA				6 Pe	eriods
Regularizatio	n of breathing techniques and its effects-Types of pr	anayama				
UNIT - V	MIND				6 Pe	eriods
Bio magnetis:	m& mind - imprinting & magnifying - eight essei	ntial factors of l	iving	bei	ngs, N	Mental
frequency an	d ten stages of mind, benefits of meditation,	such as perspic	cacity	, m	agnan	imity,
receptivity, ac	laptability, creativity.					
Contact Perio	ods:					

1	Janardan Swami Yogabhyasi Mandal , "Yogic Asanas for Group Training-Part-I" , Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", Advaita Ashrama
	(Publication Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New
	Dawn Press, New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi,
	2007.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Practice physical exercises and maintain good health.	К3
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	К3
CO4	Practice breathing techniques in a precise manner.	К3
CO5	Attain emotional stability and higher level of consciousness.	K2

COs/POs	P01	PO2	PO3	P04	P05
CO1	-	-	-	-	2
CO2	-	-	-	-	3
CO3	-	-	-	-	2
CO4	-	-	-	-	1
CO5	-	-	-	-	1
23EDACZ6	-	-	-	-	2

ASSESSMENT I	PATTERN - THEC	RY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	30%	30%	-	-	-	100%
CAT2	30%	40%	30%	-	-	-	100%
Individual Assessment1/ Case study1/ Seminar 1/Project1	40%	40%	20%	-	•	-	100%
Individual Assessment2/ Case study2/ Seminar 2 /Project2	30%	30%	40%	<u>-</u>	-	_	100%
ESE	30%	30%	40%	-	-	-	100%

22EDAC77	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS
23EDACZ7	(Common to all branches)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course	1. To familiar with Techniques to achieve the highest goal in life.	
Objectives	2. To become a person with stable mind, pleasing personality and deter	mination.
UNIT – I		6 Periods
Neetisatakam-	Holistic development of personality-Verses- 19,20,21,22 (wisdom)-Vers	es29,31,32 (pride &
heroism)-Verse	es- 26,28,6.	
UNIT – II		6 Periods
Verses- 52,53,	59 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day work a	and duties Shrimad
BhagwadGeeta	- Chapter 2-Verses 41, 47,48,	
UNIT – III	a provide Name	6 Periods
Shrimad Bhagy	vadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 2	23, 35,- Chapter 18-
Verses 45, 46,	ł8.	
UNIT - IV	X	6 Periods
Statements of	pasic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62, 68	-Chapter 12 -Verses
12 14 15 16 1	7, 18-Personality of Role model.	
13, 14, 13, 10,1		
UNIT – V	A X	6 Periods
UNIT - V	wadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter	
UNIT - V	\(CC \(\text{if}\) \(\text{if}	
UNIT - V Shrimad Bhag	rses 37,38,63.	

1	Swami SwarupanandaAdvaita Ashram " Srimad Bhagavad Gita ",AdvaitaAshrama, Kolkata,2016										
2	P.Gopinath, Rashtriya Sanskrit Sansthanam " Bhartrihari's Three Satakam " (Niti-sringar-vairagya), New Delhi, 1986.										
3	Swami Mukundananda, JagadguruKripalujiYog " Bhagavad Gita: The Song Of God ", USA,2019										
4	A.C. Bhaktivedanta Swami Prabhupada " Bhagavad-Gita As It Is ",Bhaktivedanta Book Trust Publications,2001										

COUR	SE OUTCOMES:	Bloom's			
		Taxonomy			
Upon	Upon completion of the course, the students will be able to:				
CO1	Apply the Holistic development in life	K4			
CO2	Effective Planning of day to day work and duties	K4			
CO3	Identify mankind to peace and prosperity	K4			
CO4	Develop versatile personality.	K4			
CO5	Awakening wisdom in life	K4			

COURSE ARTICULATION MATRIX									
COs/POs	P01	P02	PO3	P04	P05	P06			
CO1	-	-	1	-	-	-			
CO2	-	-	1	-	-	-			
CO3	-	-	1	-	-	-			
CO4	-	-	1	-	-	-			
CO5	-	-	_00*********	-	-	-			
23EDACZ7	-	- 73	1	- 729	-	-			
1 – Slight, 2 – Mo	oderate, 3 – Si	ubstantial							

ASSESSMEN	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	50%	30%	-	-	-	100%		
CAT2	20%	50%	30%	-	-	-	100%		
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%		
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%		
ESE	20%	50%	30%	-	-	-	100%		

23EDACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE (Common to all Branches)

PREREQUISITES:	CATEGORY	L	T	P	С
NIL	AC	2	0	0	0

Course	1. To get a working knowledge in illustrious Sanskrit, the	e scientific language in						
Objectives	the world.							
•	2. Learning of Sanskrit to improve brain functioning.							
	3. Enhancing the memory power.							
	4. Learning of Sanskrit to develop the logic in mathemat	ics, science & other						
	subjects.							
UNIT – I	BASICS OF SANSKRIT	6 Periods						
Alphabets in	Sanskrit, Past/Present/Future Tense.							
UNIT – II	SENTENCES AND ROOTS	6 Periods						
Simple Sente	ences - Order, Introduction of roots	·						
UNIT – III	SANSKRIT LITERATURE	6 Periods						
Technical in	formation about Sanskrit Literature	1						
UNIT - IV	TECHNICAL CONCEPTS -1	6 Periods						
Technical co	ncepts of Engineering-Electrical, Mechanical							
UNIT – V	TECHNICAL CONCEPTS -2	6 Periods						
Technical co	ncepts of Engineering-Architecture, Mathematics							
Contact Per	iods:							

1	Dr.Vishwas, " Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.								
2	Prathama Deeksha Vempati Kutumbshastri, " Teach Yourself Sanskrit ", Rashtriya Sanskrit								
	Sansthanam, New Delhi, Publication, 2009.								
3	Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi,2006.								

COURS	Bloom's Taxonomy							
Upon co	Upon completion of the course, the students will be able to:							
CO1	Recognize ancient literature and their basics	К3						
CO2	Formulate the sentences with order and understand the roots of	К2						
	Sanskrit							
CO3	Acquire familiarity of the major traditions of literatures written in	К3						
	Sanskrit							
CO4	Distinguish the Technical concepts of Electrical & Mechanical	K2						
	Engineering							
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2						

COs/POs	P01	P02	P03	P04	P05	P06
CO1	-	-	-	1	2	1
CO2	-	-	-	1	2	-
CO3	-	-	pondo)	1	1	1
CO4	-	9:000	"SAFETTER"	2	1	1
CO5	-	9000	Miles Con	1	2	1
23EDACZ8	-	3	77	1	2	1
l – Slight, 2 – Modera	ate, 3 – Substar	ntial		•		

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20%	50%	30%	-	-	-	100%			
CAT2	20%	50%	30%	-	-	-	100%			
Individual Assessmen t 1 /Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%			
Individual Assessmen t 2 /Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%			
ESE	20%	50%	30%	-	-	-	100%			