

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

Curriculum For M. E. ENGINEERING DESIGN

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

VISION

To create outstanding Mechanical Engineers with strong domain knowledge and skills capable of working in an Interdisciplinary environment with exemplary ethical values contributing to society through Innovation, Entrepreneurship and Leadership.

MISSION

- To develop in each student, a strong theoretical and practical knowledge, a global outlook for a sustainable future and problem solving skills.
- To make productive members of interdisciplinary teams, capable of adapting to changing environments of Engineering, technology and society.
- To inculcate critical thinking abilities among students to enhance innovative ideas and entrepreneurial skills, leadership qualities.
- To imbibe moral and ethical values along with leadership qualities in students.

FIRST SEMESTER

S. Course	Course					The second	l	Hours/	Week	
S. No	Code	Course Title	Category	CA Marks	End Sem Marks	Marks	L	Т	Р	С
		Т	HEORY CO	DURSES						
1.	23EDFCZ1	RESEARCH METHODOLOGY AND IPR	100	3	0	0	3			
2.	23EDFC02	APPLIED MATHEMATICS FOR ENGINEERING DESIGN	FC	40	60	100	3	1	0	4
3.	23EDPC01	APPLIED MECHANICS OF MATERIAL	PC	40	60	100	3	1	0	4
4.	23EDPC02	VIBRATION ANALYSIS AND CONTROL	РС	40	60	100	3	1	0	4
5.	23EDPC03	GEOMETRIC DIMENSIONING AND TOLERANCING	РС	40	60	100	3	0	0	3
6.	23EDPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3
7.	23EDACXX	AUDIT COURSE – I	AC	40	60	100	2*	0	0	0
		PR	ACTICAL (COURSES						
8.	23EDPC04	VIBRATION LAB	PC	60	40	100	0	0	4	2
	TOTAL				460	800	20	3	4	23

SECOND SEMESTER

S.	Course	Course Title		CA	End Sem	Total	J	Hours/	Week	
No	Code	course ritie	Category	Marks	Marks	Marks	L	Т	Р	C
			THEORY CO	URSES						
1.	23EDPC05	FINITE ELEMENT METHODS IN MECHANICAL DESIGN	РС	40	60	100	3	1	0	4
2	23EDPC06	COMPUTER APPLICATIONS IN DESIGN	РС	40	60	100	3	0	0	3
3.	23EDPC07	TRIBOLOGY IN DESIGN	РС	40	60	100	3	1	0	4
4.	23EDPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3
5.	23EDPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3
6.	23EDACXX	AUDIT COURSE – II	AC	40	60	100	2	0	0	0
		P	RACTICAL C	OURSES						
7.	23EDPC08	SIMULATION LAB	РС	60	40	100	0	0	4	2
8.	8. 23EDEE01 MINI PROJECT EEC			40	60	100	0	0	4	2
	TOTAL			340	460	800	17	2	8	21

THIRD SEMESTER

S.	Course	Course Title	Catagory	CA Marka	End Sem	Total		Hou	rs/Week	
No	Code	course ritie	Category	CA Marks	Marks	Marks	L	Т	Р	C
THE	ORY COUR	SES								
1	23EDPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3
2	23EDOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3
PRA	CTICAL CO	URSES								
3	23EDEE02	INTERNSHIP / INDUSTRIAL TRAINING	EEC	100	-	100	-	-	*	2
4	23EDEE03	PROJECT PHASE I	EEC	100	100	200	0	0	12	6
		TOTAL		280	220	500	6	0	12	14

* - FOUR WEEKS OF INTERNSHIP / INDUSTRIAL TRAINING

FOURTH SEMESTER

S.	Course	Course Title	Category	tegory CA Marks		End Sem Total Marks Marks		Hou	Hours/Week		
No	Code	Code		CA Mai KS	Marks	Marks	L	Т	Р	C	
PRA	CTICAL CO	DURSES									
1	23EDEE04	PROJECT PHASE II	EEC	200	200	400	0	0	24	12	
		TOTAL		200	200	400	0	0	24	12	

Note:* No Credit Courses

TOTAL CREDITS : 70

	LIST OF PROFESSIONAL ELECTIVES									
S.	Course	Course Title	Category	CA Marks	End Sem	Total Marks	L	Т	Р	С
NU	Coue	PRO	FESSIONAL F	CLECTIVE I	Marks	Marks	l			
1.	23EDPE01	DESIGN FOR SUSTAINABILITY	PE	40	60	100	3	0	0	3
2.	23EDPE02	COMPOSITE MATERIALS AND MECHANICS	PE	40	60	100	3	0	0	3
3.	23EDPE03	DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS	PE	40	60	100	3	0	0	3
4.	23EDPE04	QUALITY CONCEPTS IN DESIGN	PE	40	60	100	3	0	0	3
5.	23EDPE05	SURFACE ENGINEERING	PE	40	60	100	3	0	0	3
		PRO	FESSIONAL E	LECTIVE II						
6.	23EDPE06	DESIGN FOR X	PE	40	60	100	3	0	0	3
7.	23EDPE07	DESIGN OF MACHINE TOOL	PE	40	60	100	3	0	0	3
8.	23EDPE08	PRODUCT LIFE CYCLE MANAGEMENT	PE	40	60	100	3	0	0	3
9	23EDPE09	OPTIMIZATION TECHNIQUES IN DESIGN	PE	40	60	100	3	0	0	3
10	23EDPE10	BIO MATERIALS	PE	40	60	100	3	0	0	3
		PRO	FESSIONAL E	LECTIVE III	[
11	23EDPE11	MECHANICAL MEASUREMENTS AND ANALYSIS	PE	40	60	100	3	0	0	3
12	23EDPE12	VIBRATION CONDITION MONITORING AND CONTROL	PE	40	60	100	3	0	0	3
13	23EDPE13	VEHICLE DYNAMICS	PE	40	60	100	3	0	0	3
14	23EDPE14	ENGINEERING FRACTURE MECHANICS FOR DESIGN	PE	40	60	100	3	0	0	3
15	23EDPE15	WEARABLE DEVICES AND TECHNOLOGIES	PE	40	60	100	3	0	0	3
		PRO	FESSIONAL E	LECTIVE IV	,					
16	23EDPE16	MATERIAL HANDLING SYSTEMS AND DESIGN	PE	40	60	100	3	0	0	3
17	23EDPE17	BEARING DESIGN AND ROTOR DYNAMICS	PE	40	60	100	3	0	0	3
18	23EDPE18	DESIGN OF HYBRID AND ELECTRIC VEHICLES	PE	40	60	100	3	0	0	3
19	23EDPE19	CREATIVITY AND INNOVATION	PE	40	60	100	3	0	0	3
20	23EDPE20	DESIGN OF PRESSURE VESSELS AND PIPING	PE	40	60	100	3	0	0	3

LIST OF OPEN ELECTIVE COURSES

				CA	End	Total	Н	ours/	Weel	ĸ
SI. No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С
1	23SEOE01	BUILDING BYE-LAW AND CODES OF PRACTICE	OE	40	60	100	3	0	0	3
2	23SEOE02	PLANNING OF SMART CITIES	OE	40	60	100	3	0	0	3
3	23SEOE03	GREEN BUILDING	OE	40	60	100	3	0	0	3
4	23EEOE04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT	OE	40	60	100	3	0	0	3
5	23EEOE05	CLIMATE CHANGE AND ADAPTATION	OE	40	60	100	3	0	0	3
6	23EEOE06	WASTE TO ENERGY	OE	40	60	100	3	0	0	3
7	23GEOE07	ENERGY IN BUILT ENVIRONMENT	OE	40	60	100	3	0	0	3
8	23GEOE08	EARTH AND ITS ENVIRONMENT	OE	40	60	100	3	0	0	3
9	23GEOE09	NATURAL HAZARD AND MITIGATION	OE	40	60	100	3	0	0	3
10	23EDOE10	BUSINESS ANALYTICS	OE	40	60	100	3	0	0	3
11	23EDOE11	INTRODUCTION TO INDUSTRIAL SAFETY	OE	40	60	100	3	0	0	3
12	23EDOE12	OPERATIONS RESEARCH	OE	40	60	100	3	0	0	3
13	23MF0E13	OCCUPATIONAL HEALTH AND SAFETY	OE	40	60	100	3	0	0	3
14	23MF0E14	COST MANAGEMENT OF ENGINEERING PROJECTS	OE	40	60	100	3	0	0	3
15	23MFOE15	COMPOSITE MATERIALS	OE	40	60	100	3	0	0	3
16	23TEOE16	GLOBAL WARMING SCIENCE	OE	40	60	100	3	0	0	3
17	23TEOE17	INTRODUCTION TO NANO ELECTRONICS	OE	40	60	100	3	0	0	3
18	23TEOE18	GREEN SUPPLY CHAIN MANAGEMENT	OE	40	60	100	3	0	0	3
19	23PSOE19	DISTRIBUTION AUTOMATION SYSTEM	OE	40	60	100	3	0	0	3
20	23PSOE20	ELECTRICITY TRADING & ELECTRICITY ACTS	OE	40	60	100	3	0	0	3
21	23PSOE21	MODERN AUTOMOTIVE SYSTEMS	OE	40	60	100	3	0	0	3
22	23PEOE22	VIRTUAL INSTRUMENTATION	OE	40	60	100	3	0	0	3
23	23PEOE23	ENERGY MANAGEMENT SYSTEMS	OE	40	60	100	3	0	0	3
24	23PEOE24	ADVANCED ENERGY STORAGE TECHNOLOGY	OE	40	60	100	3	0	0	3
25	23AE0E25	DESIGN OF DIGITAL SYSTEMS	OE	40	60	100	3	0	0	3
26	23AE0E26	BASICS OF NANO ELECTRONICS	OE	40	60	100	3	0	0	3
27	23AE0E27	ADVANCED PROCESSOR	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL PROGRAMMING LANGUAGES	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI DESIGN	OE	40	60	100	3	0	0	3
30	23VLOE30	HIGH LEVEL SYNTHESIS	OE	40	60	100	3	0	0	3
31	23CSOE31	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	OE	40	60	100	3	0	0	3
32	23CSOE32	COMPUTER NETWORK ENGINEERING	OE	40	60	100	3	0	0	3
33	23CSOE33	BIG DATA ANALYTICS	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSES

(Common to all branches)

S.	Course	Course Title	Category	CA	End Sem	Total		HOU	RS	
No	Code		Carogery	Marks	Marks	Marks	L	Т	Р	C
1	23EDACZ1	ENGLISH FOR RESEARCH PAPER WRITING	AC	40	60	100	2	0	0	0
2	23EDACZ2	DISASTER MANAGEMENT	AC	40	60	100	2	0	0	0
3	23EDACZ3	VALUE EDUCATION	AC	40	60	100	2	0	0	0
4	23EDACZ4	CONSTITUTION OF INDIA	AC	40	60	100	2	0	0	0
5	23EDACZ5	PEDAGOGY STUDIES	AC	40	60	100	2	0	0	0
6	23EDACZ6	STRESS MANAGEMENT BY YOGA	AC	40	60	100	2	0	0	0
7	23EDACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS	AC	40	60	100	2	0	0	0
8	23EDACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE	AC	40	60	100	2	0	0	0

SUMMARY OF CREDIT DISTRIBUTION

S No	Course /			Credits			Dorcontogo
2.INO	Subject Area	I SEM	IISEM	IIISEM	IVSEM	Total	Percentage
1.	FC	7	0	0	0	07	10 %
2.	РС	13	13	0	0	26	37.14%
3.	PE	3	6	3	0	12	17.14 %
4.	OE	0	0	3	0	03	4.29 %
5.	AC	0	0	0	0	(Non Credit)	0%
6.	EEC	0	2	8	12	22	31.42 %
	Total Credits	23	21	14	12	70	100.00%

CATEGORY-WISE CREDIT DISTRIBUTION

FUNDAMENTAL COURSE (FC)

S.	Course	Course Title	Category	CA End Sem Marks Marks		Total	I	Hours/	Week	
NU	Coue			Marks	Marks	Marks	L	Т	Р	С
1.	23EDFCZ1	RESEARCH METHODOLOGY AND IPR	FC	40	60	100	3	0	0	3
2.	23EDFC02	APPLIED MATHEMATICS FOR ENGINEERING DESIGN	FC	40	60	100	3	1	0	4
		Total		80	120	200	6	1	0	7

PROFESSIONAL CORE (PC)

S.	Course	Course Title	Category	CA Morks	End Sem	Total	ł	lours/	Week	
NO	Code			Maiks	Marks	Marks	L	Т	Р	C
1.	23EDPC01	APPLIED MECHANICS OF MATERIAL	РС	40	60	100	3	1	0	4
2.	23EDPC02	VIBRATION ANALYSIS AND CONTROL	РС	40	60	100	3	1	0	4
3.	23EDPC03	GEOMETRIC DIMENSIONING AND TOLERANCING	РС	40	60	100	3	0	0	3
4.	23EDPC04	VIBRATION LAB	РС	60	40	100	0	0	4	2
5.	23EDPC05	FINITE ELEMENT METHODS IN MECHANICAL DESIGN	РС	40	60	100	3	1	0	4
6.	23EDPC06	COMPUTER APPLICATIONS IN DESIGN	РС	40	60	100	3	0	0	3
7.	23EDPC07	TRIBOLOGY IN DESIGN	РС	40	60	100	3	1	0	4
8.	23EDPC08	SIMULATION LAB	PC	60	40	100	0	0	4	2
		Total		360	440	800	18	4	8	26

PROFESSIONAL ELECTIVE (PE)

S.	Course	Course Title	Category	CA	End Sem	Total	ŀ	lours/	Week	
NO	Code			Marks	Marks	Marks	L	Т	Р	C
1.	23EDPEXX	PROFESSIONAL ELECTIVE I	PE	40	60	100	3	0	0	3
2.	23EDPEXX	PROFESSIONAL ELECTIVE II	PE	40	60	100	3	0	0	3
3.	23EDPEXX	PROFESSIONAL ELECTIVE III	PE	40	60	100	3	0	0	3
4.	23EDPEXX	PROFESSIONAL ELECTIVE IV	PE	40	60	100	3	0	0	3
		Total		160	240	400	12	0	0	12

OPEN ELECTIVE (OE)

S. No	Course	Course Title	Category CA End Marks Ma	End Sem Marks	Total	H	lours/	Week		
NO	Loue			магкѕ	Marks	Marks	L	Т	Р	С
1.	23EDOEXX	OPEN ELECTIVE	OE	40	60	100	3	0	0	3
	1	Total		40	60	100	3	0	0	3

AUDIT COURSE (AC)

S.	Course	Course Title	Category	CA	End Sem	Total	I	Hours/	Week	
No	Code	course mile	category	Marks	Marks	Marks	L	Т	Р	С
1.	23EDACXX	AUDIT COURSE - I	AC	40	60	100	2	0	0	0
2.	23EDACXX	AUDIT COURSE - II	AC	40	60	100	2	0	0	0
	Total				120	200	4	0	0	0

EMPLOYABILITY ENHANCEMENT COURSE (EEC)

S.	Subject	0 mul		СА	End Sem	Total		Hour	s/We	ek
No	Code	Course Title	Category	Marks	Marks	Marks	L	Т	Р	С
1	23EDEE01	MINI PROJECT	EEC	40	60	100	0	0	4	2
2	23EDEE02	INDUSTRIAL TRAINING	EEC	100	0	100	0	0	**	2
3	23EDEE03	PROJECT PHASE - I	EEC	100	100	200	0	0	12	6
4	23EDEE04	PROJECT PHASE - II	EEC	200	200	400	0	0	24	12
				440	360	800	0	0	40	22

**4 WEEKS OF INTERNSHIP / INDUSTRIAL TRAINING

23EDFCZ1

RESEARCH METHODOLOGY AND IPR (Common to all branches)

PREREQUISIT	ſES	CATEGORY	L	Т	Р	С			
	3	0	0	3					
Course	1.To impart knowledge on research methodolog	gy ,Quantitative	meth	ods	for				
Objectives problem solving, data interpretation and report writing									
2. To know the importance of IPR and patent rights.									
UNIT – I	INTRODUCTION		9	Per	riods	5			
Definition and	objectives of Research - Types of research, Va	rious Steps in	Resea	arch	pro	cess,			
Mathematical t	ools for analysis, Developing a research question-Cho	oice of a problem	Liter	atur	e rev	riew,			
Surveying, syn	thesizing, critical analysis, reading materials, review	ving, rethinking,	critica	al ev	valua	tion,			
interpretation,	Research Purposes, Ethics in research – APA Ethics co	ode.							
UNIT – II	QUANTITATIVE METHODS FOR PROBLEM SOLVIN	NG	9	Per	iods	5			
Statistical Mod	lelling and Analysis, Time Series Analysis Probabil	ity Distributions	, Fun	dam	enta	s of			
Statistical Ana	lysis and Inference, Multivariate methods, Concep	ts of Correlation	n and	l Re	gres	sion,			
Fundamentals	of Time Series Analysis and Spectral Analysis, Erro	r Analysis, Appli	catior	ns of	Spe	ctral			
Analysis.									
UNIT – III	DATA DESCRIPTION AND REPORT WRITING		9	Per	iods	5			
Tabular and gr	aphical description of data: Tables and graphs of fre	quency data of o	ne va	riabl	e, Ta	bles			
and graphs tha	t show the relationship between two variables , Relati	on between frequ	iency	dist	ribut	ions			
and other grap	hs, preparing data for analysis. Structure and Compo	onents of Researc	h Rep	oort,	Тур	es of			
Report, Layout	of Research Report, Mechanism of writing a resear	ch report, refere	ncing	g in a	acad	emic			
writing.									
UNIT – IV	INTELLECTUAL PROPERTY		9	Per	iods	5			
Nature of Inte	ellectual Property: Patents, Designs, Trade and Co	pyright. Process	of P	aten	ting	and			
Development: t	echnological research, innovation, patenting, develop.	ment.							
International S	Scenario: International cooperation on Intellectual	Property. Procee	lure	for g	grant	s of			
patents, Patent	patents, Patenting under PCT.								
UNIT – V	PATENT RIGHTS		9	Per	riods	5			
Patent Rights:	Scope of Patent Rights. Licensing and transfer of t	echnology. Pater	t info	orma	tion	and			
databases. Geog	graphical Indications.								
Lecture: 45 P	eriods Tutorial:0 Periods Practical: 0 Per	riods Total	:45 P	erio	ods				
REFERENCES									

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science &
	engineering students", Juta Academic, 1996.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, engageLearning, 2013.
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2014.
4	Dr. C. R. Kotharia and GauravGarg, "Research Methodology: Methods and Trends", New age
	international publishers, Fourth Edition, 2018.

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Formulate research question for conducting research.	K4
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K4
C04	Develop a structured content to write technical report.	K4
C05	Summarize the importance of IPR and protect their research work through intellectual property.	K4

Course Articulation Matrix											
COs/POs	P01	P02	P03	P04	P05						
CO1	1	2	1	1	2						
CO2	2	-	-	-	-						
CO3	3	3	3	2	2						
CO4	2	2	2	2	2						
CO5	1	1	1	1	1						
23EDFCZ1	2	2	1	2	2						
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	40	40	20	-	-	-	100					
CAT2	40	40	20	-	-	-	100					
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100					
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100					
ESE	30	30	20	20	-	-	100					

23EDFC02

APPLIED MATHEMATICS FOR ENGINEERING DESIGN

PREREQUISIT	ES	CATEGORY	L	Т	P	С			
	NIL	FC	3	1	0	4			
1. To gain the concepts of Correlation and Regression.									
2. To gain the knowledge of test of hypothesis applicable to small and large samples.									
Course 3. To be familiar with numerical solutions of algebraic, transcendental equation									
Objectives	and system of linear equations.								
	4. To acquire knowledge of numerical solution	to first order ordin	nar	y di	ffere	ntial			
	equations using single and multi-step technic	ques.	_						
	5.To gain the knowledge of numerical solution	to second order pa	arti	al					
	differential equations using explicit and impli	cit methods.							
UNIT – I	CORRELATION AND REGRESSION			<u>9 P</u>	Peric	ids			
Correlation coe	efficients- Equation of the lines of regression, Re	egression coefficie	ent	s, Ro	egre	ssion			
curves-Multiple	e and Partial correlation, Partial regression.			0.5		_			
	TESTING OF HYPOTHESIS			<u>9 F</u>	eric	ids			
Large samples:	lests for Mean and proportions, Small sample	es: lests for Mea	n, v	vari	ance	and			
Attributes usin	g t, F, UNI-Square distribution.	OVOTEM AND							
UNIT – III	INVERSE OF MATRIX	SISTEM AND		9 F	Perio	ods			
Newton-Raphson	n method for single variable and simultaneous equa	tions with two vari	abl	es- S	Solut	on of			
linear system by	Gauss elimination, Gauss-Jordan, Crout's and Gauss	s Seidal Methods –	Ma	trix	inve	rsion:			
Gauss eliminatio	n and Gauss-Jordan methods.								
UNIT – IV	NUMERICAL SOLUTION OF ORDINARY DIFFE	RENTIAL		9 F	Perio	ods			
Single step meth	ods: Taylor's series method – Euler's method – Mod	ified Euler's metho	d –	Run	ige -	Kutta			
method of fourth	1 order - Multi step methods: Miline's Predictor and	Corrector methods	: Ac	lam	Basł	lforth			
predictor and co method.	prrector method. Numerical solution of ordinary diff	erential equation b	y fii	nite	diffe	rence			
UNIT – V	NUMERICAL SOLUTION OF PARTIAL DIFFER EQUATIONS	ENTIAL		9 F	Perio	ods			
Finite difference	solution for two-dimensional Laplace equation: Gau	ss Jacobi and Gauss	Sei	dal : lic e	meth	ods –			
Hyperbolic Equa	tion.	icat equation. Tart	100		quut	1011			
Lecture: 45 Pe	riods Tutorial: 15 Periods Practical: 0 Per	riods Total: 60 I	Per	iod	S				
REFERENCES									
1 Veerarajan edition), G	T., Probability and Statistics, Random Process raw Hill Education(India) Pvt Ltd., New Delhi, Fou	e s and Queuing T rth Edition,2018.	hea	ory	(Firs	t			

- 2 P. Kandasamy, K. Thilagavathy, K. Gunavathi, **Numerical Methods**, S. Chand & Company, 3nd Edition, Reprint 2013.
- 3 Trivedi K.S, **Probability and Statistics with Reliability, Queuing and Computer Science Applications**, Prentice Hall of India, New Delhi.
- 4. P. Kandasamy, K. Thilagavathy, K. Gunavathi, Numerical Methods, S. Chand & Company, 3nd Edition, Reprint 2013.

5.	S.S. Sastry, Introductory methods of numerical analysis, PHI, New Delhi, 5 th Edition, 2015.
	Ward Cheney.
6.	S. Larsson, V. Thomee, Partial Differential Equations with Numerical Methods, Springer,
	2003.
7.	B.S.Grewal, Higher Engineering Mathematics, Khanna Publishers, New Delhi, 44 th Edition,
	2018.
8.	Gupta S.C and Kapoor V.K., Fundamentals of Mathematical Statistics, Sultan Chand & Sons,
	New Delhi, 2015.

COUR	SE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
C01	Describe how correlation is used to identify relationships between variables and how regression analysis is used to predict outcomes.	К5
CO2	Test for significance of hypothesis connected to small and large samples using different parameters.	K5
CO3	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations, the solution of system linear equations.	К5
CO4	Construct one-step and multistep methods for the numerical solution of initial-value problems for ordinary differential equations and systems of such equations.	К5
C05	To acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes, interpret solutions in a physical context of wave and heat equation in specified techniques.	К5

Course Articulation Matrix	ζ.				
COs/POs	P01	P02	PO3	P04	P05
C01	3	2	1		
CO2	3	2	1		
CO3	3	2	1		
CO4	3	2	1		
CO5	3	2	1		
23EDFC02	3	2	1		
1 – Slight, 2 – Moderate, 3 – 3	Substantial				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	20	15	15		100
CAT2	20	30	15	15	20		100
Assignment 1		30	25	20	25		100
Assignment 2		30	20	30	20		100
ESE	10	30	20	10	30		100

23EDPC01

APPLIED MECHANICS OF MATERIALS

PREREQUISI	ГЕS	CATEGORY	L	Т	Р	С		
	NIL	РС	3	1	0	4		
Course	1 To learn the concents of theory of electicity in	three dimension	alet	rocc	cuct	om		
Objectives	bioctives 2. To study the shear center of various cross-sections and deflections in hears							
Objectives	2. To study the shear center of various cross-s	and deno		115 1	II DO	anis		
	3 To learn the stresses in flat plates and curved members							
	4. To study torsional stress of non-circular section	To study torsional stross of non-sircular sections						
	5. To learn the stresses in rotating members	nns. Contact strassas i	n n	aint	and	lino		
	5. To learn the stresses in Totating members, o	contact stresses i	in p	JIIIt	anu	me		
IINIT – I				Q	Pori	ode		
Stroce-Strain	relations and general equations of electicity in	Cartosian Dolar	- <u>-</u>	1 CU	rvili	noor		
coordinatos	differential equations of equilibrium-com	Cartesian, Folar	ano		ndit	ions-		
coorunates,	n of three dimensional stress of a tension goes	ralized book's la	ar y	CU. C+	Von	ont'c		
nrinciplo - pla	in of three-unitensional stress of a tension gene	alizeu nook s la	-	51.	ven	ant S		
	CHEAD CENTED AND UNCOMMETDICAL DEND	INC		0	Doni	odc		
Location of ch	SHEAR CENTER AND UNSTIMMETRICAL BEND	no sos and dofloctio	ncir	bor	me	JUUS		
cubioctod to u	leaf center for various sections - shear hows, sites	sses and denectio	115 11	I Dea	anns			
		IN ELAT DI ATEC		0	Doni	odc		
Circumforono	conved Flexible Members AND STRESSES	ith restrained and			l rin	ous		
subjected to c	e and radial stresses - denections-curved beam wh	d crano hooks St	15-CI	os in		g Jular		
and roctangul	ar plates due to various types of loading and end	conditions buckli	ng 0	f nl		Julai		
IINIT - IV	TOPSION OF NON-CIPCIILAP SECTIONS	Jonuruons, Duckn	ing o		Dori	ode		
Torsion of rec	tangular cross section - St Venants theory - elastic	membrane anal	רעת ^ו	Dran	dtl'a	s		
stress function	strong function							
UNIT – V	INIT - V STRESSES DUE TO ROTARY SECTIONS AND CONTACT STRESSES Q Pariade							
Radial and tangential stresses in solid disc and ring of uniform thickness and varying thickness.								
Methods of computing contact stress-deflection of bodies in point and line contact applications.								
Lecture: 45 P	eriods Tutorial: 15 Periods Practical: 0 Pe	eriods Total:	60 I	Peri	ods			
DEEEDENCES								

1	Seely and Smith, "Advanced Mechanics of Materials", John Wiley International Edn.
2	Sadhusingh, "Theory of Elasticity",Khanna Publishers, 2003.
3	Timoshenko and Goodier, "Theory of Elasticity", McGraw Hill, 2010
4	Wang, " Applied Elasticity ", McGraw Hill, 2007
5	J.Case,L.Chilver and Carl T.F "Strength of Materials and structures", Arnold publisher 1999.
	Robert D. Cook, Warren C. Young, "Advanced Mechanics of Materials", Mc-millan pub. Co.,
	1985.

COUR Upon	Bloom's Taxonomy				
<u> </u>	CO1 Apply the concents of theory of electicity in three dimensional stress system				
	Apply the concepts of theory of elasticity in three-unitensional stress system.	<u>K4</u>			
CO2	Determine the shear centre of various cross-sections and deflections in	K4			
	beams subjected to unsymmetrical bending.				
CO3	Evaluate the stresses in flat plates and curved members.	K4			
CO4	Calculate torsional stress of non-circular sections.	K4			
C05	Determine the stresses in rotating members, contact stresses in point	K4			
	and line contact applications.				

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05		
C01	1	2	2	-	-		
C02	-	2	2	-	-		
C03	1	2	2	1	1		
CO4	1	2	2	-	-		
C05	-	2	2	1	1		
23EDPC01	1	2	2	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISITES CATEGORY						С		
	NIL	РС	3	1	0	4		
Course	1.To appreciate the basic concepts of vibrat	ion in damped	and	un	dan	nped		
Objectives	systems.							
	2.To calculate the natural frequencies and n	node shapes of	the	two	o-de	gree		
	freedom systems.							
	3. To determine the natural frequencies and m	ode shapes of the	ne n	nult	i de	gree		
	freedom and continuous systems.	C 11	1		1			
	4.10 learn the fundamentals of control technique	es of vibration and	1 no:	ise l	evel	S.		
	5.10 use the instruments for the measuring and a	analyzing the vib	ratio	n le	veis	in a		
DOUY.					nio	da		
	FUNDAMENTALS OF VIDRATION	D'a da ana at		9 PE		us		
Introduction	-Sources of vibration-Mathematical Models	- Displacement,	V(vibw/		lty	and		
Acceleration-	Review of Single Degree Freedom Systems -viol	citations Trans	iont	une Wib	rati	anu		
Impulse leade	Critical Speed of Shaft Poter systems		iem		lau	- 110		
	TWO DECREE OF EDEEDOM SYSTEMS.		0 Poriodo			de		
Simple harm	nic motion definition of terminologica Neutro	n'a Laura D'Alam	hort	/a n	nina	us inlo		
Enorgy moth	ade Free vibrations free damped vibrations	and forced wibre	Deri	s p	i iith	and		
without dam	ing base excitation		luoi	15 1	/1111	anu		
UNIT – III	MULTI-DEGREES OF FREEDOM SYSTEMS			9 Pe	erio	ds		
Two degrees	of freedom systems. Static and dynamic coupling	s, eigen values, ei	gen	vec	tors	and		
orthogonality	conditions of eigen vectors. Vibration absorber	. Principal coord	inat	es. F	rino	cipal		
modes. Hamil	ton's Principle, Lagrangian equation and their app	lications.		, -		P		
UNIT – IV	VIBRATION CONTROL			9 Pe	erio	ds		
Specification	of Vibration Limits -Vibration severity star	dards- Vibratio	n a	s c	ondi	ition		
Monitoring to	ool - Vibration Isolation methods - Dynamic Vi	bration Absorber	', To	orsic	nal	and		
Pendulum Ty	pe Absorber, Damped Vibration absorbers -	Static and Dyna	amic	: Ba	land	cing-		
Balancing ma	chines - Field balancing – Vibration Control b	y Design Modifi	cati	on-	- Ao	ctive		
Vibration Con	trol		-					
UNIT – V	EXPERIMENTAL METHODS IN VIBRATION AN	ALYSIS		9 Pe	erio	ds		
Vibration An	alysis Overview - Experimental Methods in	Vibration Analy	sis	- V	'ibra	tion		
Measuring Instruments - Selection of Sensors - Accelerometer Mountings. Vibration Exciters -								
Mechanical, Hydraulic, Electromagnetic and Electrodynamics – Frequency Measuring								
Instruments -	System Identification from Frequency Response	 Testing for resort 	nano	ce ai	nd n	node		
shapes.					-			
Lecture: 45 P	Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total:60 Periods							

- 1 Timoshenko, S. **"Vibration Problems in Engineering**", John Wiley & Sons, Inc., 1987.
- 2 Meirovitch, L. "Elements of Vibration Analysis", McGraw-Hill Inc., 1986.
- 3 Thomson W.T, Marie Dillon Dahleh, "**Theory of Vibrations with Applications**", Prentice Hall, 1997.
- 4 F.S. Tse., I.F. Morse and R.T. Hinkle, "Mechanical Vibrations", Prentice-Hall of India, 1985.
- 5 Rao.J.S. and Gupta.K. "Theory and Practice of Mechanical Vibrations", Wiley Eastern Ltd., New Delhi, 1999.

COUR	Bloom's Taxonomy			
Upon	Mapped			
C01	CO1 Understand the basics of vibration and its importance in engineering field.			
CO2	Apply the basic concepts of vibration in damped and undamped systems.	K4		
CO3	Identify the reasons for vibrations in engineering systems.	K4		
C04	Design and analyze two and multi-degree vibratory systems.	K4		
CO5	Apply vibration measuring instruments, vibration control and analysis techniques in the engineering field.	K4		

Course Articulation Matrix						
COs/POs	P01	P02	P03	P04	P05	
C01	1	2	2	-	-	
C02	1	2	2	-	-	
C03	2	2	-	-	-	
CO4	1	2	2	2	-	
C05	1	2	2	1	-	
23EDPC02	1	2	2	2	-	
1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDPC03

GEOMETRIC DIMENSIONING AND TOLERANCING

PREREQUISI	ΓES	CATEGORY	L	Τ	Р	С		
	Machine Drawing	РС	3	0	0	3		
Γ								
Course	1. GD&T, as well as selecting the appropriate syn	nbols and applyin	ig ger	nera	al			
Objectives	design principles for manufacturability.							
	2. Datum concept in the field of GD&T.							
3.Determining the material conditions and material boundary.								
	4.Knowledge of the various tolerance types.							
	5.Knowledge of profile and run out tolerances.							
UNIT – I	DIMENSIONING, TOLERANCING AND INTROD SYMBOLS TERMS	UCTION TO		9 P	erio	ods		
Dimen	sioning Units Fundamental Dimensioning	Rules Definitio	ns I	Rela	ted	to		
Tolerancing.	Single Limits, Maximum Material Condition (N	MMC). Least Mat	terial		ndi	tion		
(LMC). Extrem	ne Form Variation, Basic Fits of Mating Parts, Cle	arance Fit. Allow	ance	. Cle	ara	nce.		
Force Fit. C	hain Dimensioning. Baseline Dimensioning.	Direct Dimensio	ning.	A	lterr	iate		
Dimensioning	Practices. Geometric Dimensioning and	Tolerancing fo	or C	AD	D/C	AM.		
Dimensioning	Symbols-Dimensioning and Tolerancing Tem	olates. Datum Fe	eatur	e S	, ymb	ools,		
Datum Target	Symbols, Geometric Characteristic Symbols, Mat	erial Boundary S	ymbo	ols.	Feat	ure		
Control Fram	e Basic Dimensions Additional Symbols.	-	-					
UNIT – II	DATUMS			9 P	erio	ods		
Datum	Feature Symbol, Reference Frame Concept, Datu	m Target Symbol	s, Pa	rtia	l Dat	tum		
Surface, Copl	anar Surface Datums, Datum Axis, Movable Dat	tum Target Syml	ools a	and	Dat	tum		
Target Points	, Movable Datum Target Symbols and Datum Targ	get Spheres, Datu	m Ce	ente	r Pla	ane,		
The Center o	f a Pattern of Features as the Datum Axis, appl	ying a Translatic	on Mo	odif	ier 1	to a		
Datum Refere	nce Using a Contoured Surface as a Datum Featur	e.						
UNIT – III	MATERIAL CONDITION AND MATERIAL BOUN	NDARY		9 P	erio	ods		
Featur	es of Size, Conventional Tolerance. Limits of	Size, Perfect F	orm	Bo	und	ary.		
Regardless of	Feature Size (RFS) and Regardless of Mater	ial Boundary (R	MB).	Ma	axim	ium		
Material Cond	lition (MMC). Least Material Condition (LMC). Pr	imary Datum Fea	iture,	, Sec	conc	lary		
and Tertiary	Jatum Feature. Datum Precedence and Material (Londition. Placing	g the		B Va	alue		
Colculation E	control Frame Material Condition Analysis and	Applications Ma	teria	IBC	Junc	lary		
	EODM ODIENTATION AND LOCATION TOLED	ANCES	1	ΛΡ	orio	de		
Straigh	TORM, ORIENTATION AND LOCATION TOLER	an Culindricity	Annl	U F		us orm		
Control to a	Datum Feature Orientation Tolerances -Parallel	ism Pernendicul	arity	To	g ru Ierai	nce		
Combination	of Parallelism and Perpendicularity Tolerances	Angularity Tolera	nce .	Ann	licat	tion		
of Orientation	1 Tolerances at RFS, MMC, and Zero Tolerance	e at MMC. Locat	ion [role	ran	ces-		
Positional Tolerance, Locating Multiple Features, Positional Tolerancing of Coaxial Features								
Positional Tolerancing of Nonparallel Holes, Locating Slotted Features, Positional Tolerancing of								
Spherical Features. Location Tolerances and Virtual Condition. Fasteners. Projected Tolerance								
Zone, Virtual Condition, Concentricity Tolerance, Positional Tolerancing for Coaxially.								
UNIT – V	PROFILE TOLERANCES AND RUNOUT TOLERA	ANCES		8 P	erio	ods		
Profile Tolera	nces -Non-Uniform Profile Tolerance Zone, Speci	fying Basic Dimer	nsion	s in	a N	ote,		
Combination	of Geometric Tolerances. Runout Toleran	ces-Combination	of	Ge	ome	tric		
Tolerances, S	pecifying Independency.							
Lecture:45 P	eriods Tutorial: 0 Periods Practical: 0Peri	ods Total: 45	Peri	ods				

1	Alex Krulikowski, "Fundamentals of Geometric Dimensioning and Tolerancing", Delmar
	Cengage Learning, 2012.
2	P.S.Gill, "Geometric Dimensioning and Tolerancing",S.K.Kataria& sons, 2013
3	Bruce A.Wilson, "GD&T- Application and Interpretation", Goodeheart-Willcox, 2019
4	James D Meadows,"Geometric Dimensioning and Tolerancing Handbook", JamesD.
	Meadows & Associates, 2009.

COUR Upon	Bloom's Taxonomy Mapped	
C01	Select relevant process; apply the general design principles for manufacturability; GD&T	К4
CO2	Applying the concept of datums in GD&T	K4
CO3	Understanding about the material condition and material boundary	K4
C04	Know the various types of tolerances	K4
C05	Know about the profile and runout tolerances	K4

Course Articulation Matrix								
COs/POs	P01	PO2	PO3	P04	PO5			
C01	2	-	-	2	-			
CO2	2	-	2	-	-			
C03	2	2	2	1	2			
CO4	-	2	-	2	2			
C05	2	2	-	-	2			
23EDPC03	2	2	2	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

2	3	E	D	Р	С	0	4
-	J	-	ν		ັ	υ	Т

VIBRATION LAB

PREREQUIS	SITES	CATEGORY	L	L T P 0 0 4 machinery a				
	NIL	PC	0	0	4	2		
Course Objectives	To supplement the principles learnt in vibration and dynamics of machinery and expose to various measuring devices for vibration analysis.							
1	1 Modal analysis of Simply Supported beam							
2	Modal analysis of Cantilever beam							
3	Natural frequency and modal analysis of Disc.							
4	Amplitude and frequency of simple harmonic motion.							
5	Verify the laws of gyroscopic and determination of gy	roscopic couple.						
6	Find the Whirling speed of given shaft.							
7	Governors – determination of sensitivity, effort for W	att, Porter, Proell, g	govei	nors	5			
8	Determination of Cam jump and generation of Cam pr	ofile.						
9	Vibrating system – spring mass system analysis.							
10	Determination of damping co-efficient of rotary syste	m.						
Lecture: 0 I	Periods Tutorial: 0 Periods Practical: 45 P	eriods Total:	45 F	Perio	ods			

Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 45 Periods	Total:45 Periods

COUR	Bloom's Taxonomy							
Upon	completion of the cours	e, the student	s will be able	to:		марреа		
C01	Use signal analyzers for	vibrating syste	ms.			K6		
CO2	Demonstrate the use o	f gyroscope a	nd governors.			K6		
CO3	Use the knowledge for	balancing of	machine com	oonents.		K6		
CO4	Depict the results of exp	eriments in wr	itten and graph	ical format.		K6		
C05	Respond as instructed w	hile working ir	n groups.			К6		
Cours	Course Articulation Matrix							
	COs/POs	P01	P02	P03	P04	P05		
C01		1	2	2	-	1		
CO2		1	2	2	1	-		
CO3		1	2	2	-	1		
CO4		1	2	2	1	-		
CO5		1	2	2	-	1		
23ED	PC04	1	2	2	1	1		
1 – Sli	ght, 2 – Moderate, 3 – Sı	ıbstantial						

DESIGN FOR SUSTAINABLITY

SEMESTER

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PE	3	0	0	3

Course	1. GD&T, as well as selecting the appropriate process and applying	g general design						
Objectives	rinciples for manufacturability.							
	. Designing cast and welded components with design concerns in mind.							
	3. Designing formed and machined components with design concerns in a	mind.						
	4. Consider design factors when putting together a system.							
	5. Consider environmental factors when designing.							
UNIT – I	INTRODUCTION	9 Periods						
Introduction -	Economics of process selection - General design principles for m	anufacturability;						
Geometric Din	nensioning &Tolerance (GD&T) - Form tolerancing: straightness, flat	ness, circularity,						
cylindricity – l	Profile tolerancing: profile of a line, and surface – Orientation toleran	cing: angularity,						
perpendiculari	ty, parallelism – Location tolerancing: position, concentricity, symm	etry – run out						
tolerancing: cir	cular and total – Supplementary symbols.							
UNIT – II	CAST & WELDED COMPONENTS DESIGN	9 Periods						
Design conside	erations for: Sand cast – Die cast – Permanent mold parts. Arc w	elding – Design						
considerations	for: Cost reduction - Minimizing distortion - Weld strength - Weldr	nent. Resistance						
welding – Desig	gn considerations for: Spot – Seam – Projection – Flash &Upset weldment.							
UNIT – III	FORMED & MACHINED COMPONENTS DESIGN	9 Periods						
Design conside	rations for: Metal extruded parts – Impact/Cold extruded parts – Stampe	ed parts –Forged						
narts Design considerations for: Turned narts – Drilled narts – Milled nlanned shaped and slotted narts –								
parts. Design co	onsiderations for: Turned parts – Drilled parts – Milled, planned, shaped a	nd slotted parts-						
parts. Design co Ground parts.	onsiderations for: Turned parts – Drilled parts – Milled, planned, shaped a	nd slotted parts-						
parts. Design co Ground parts. UNIT – IV	onsiderations for: Turned parts – Drilled parts – Milled, planned, shaped a DESIGN FOR ASSEMBLY	nd slotted parts- 9 Periods						
parts. Design co Ground parts. UNIT – IV Design for ass	Design For Assembly embly – General assembly recommendations – Minimizing the no. of	nd slotted parts– 9 Periods 5 parts – Design						
parts. Design co Ground parts. UNIT – IV Design for ass considerations	Desiderations for: Turned parts – Drilled parts – Milled, planned, shaped a DESIGN FOR ASSEMBLY embly – General assembly recommendations – Minimizing the no. of for: Rivets – Screw fasteners – Gasket & Seals – Press fits – Snap fits – Aut	nd slotted parts– 9 Periods 5 parts – Design omatic assembly						
parts. Design co Ground parts. UNIT – IV Design for ass considerations – Computer Ap	Design For Sections for: Turned parts – Drilled parts – Milled, planned, shaped a DESIGN FOR ASSEMBLY embly – General assembly recommendations – Minimizing the no. of for: Rivets – Screw fasteners – Gasket & Seals – Press fits – Snap fits – Aut plication for DFMA	nd slotted parts– 9 Periods 5 parts – Design comatic assembly						
parts. Design co Ground parts. UNIT – IV Design for ass considerations – Computer Ap UNIT – V	Design For Assembly embly – General assembly recommendations – Minimizing the no. of for: Rivets – Screw fasteners – Gasket & Seals – Press fits – Snap fits – Aut plication for DFMA DESIGN FOR ENVIRONMENT	nd slotted parts– 9 Periods 5 parts – Design comatic assembly 9 Periods						
parts. Design co Ground parts. UNIT – IV Design for ass considerations – Computer Ap UNIT – V Introduction –	Design For Assembly embly – General assembly recommendations – Minimizing the no. of for: Rivets – Screw fasteners – Gasket & Seals – Press fits – Snap fits – Aut plication for DFMA DESIGN FOR ENVIRONMENT Environmental objectives – Global issues – Regional and local issues – Ba	nd slotted parts- 9 Periods 5 parts – Design omatic assembly 9 Periods sic DFE methods						
parts. Design co Ground parts. UNIT – IV Design for ass considerations – Computer Ap UNIT – V Introduction – – Design guid	DESIGN FOR ASSEMBLY embly – General assembly recommendations – Minimizing the no. of for: Rivets – Screw fasteners – Gasket & Seals – Press fits – Snap fits – Aut plication for DFMA DESIGN FOR ENVIRONMENT Environmental objectives – Global issues – Regional and local issues – Ba le lines – Example application – Lifecycle assessment – Basic me	nd slotted parts– 9 Periods 5 parts – Design comatic assembly 9 Periods sic DFE methods ethod – AT&T's						
parts. Design co Ground parts. UNIT – IV Design for ass considerations – Computer Ap UNIT – V Introduction – – Design guid environmental	Design For Assembly embly – General assembly recommendations – Minimizing the no. of for: Rivets – Screw fasteners – Gasket & Seals – Press fits – Snap fits – Aut plication for DFMA DESIGN FOR ENVIRONMENT Environmental objectives – Global issues – Regional and local issues – Ba le lines – Example application – Lifecycle assessment – Basic me y responsible product assessment - Weighted sum assessment met	9 Periods 5 parts – Design 5 omatic assembly 9 Periods sic DFE methods ethod – AT&T's chod – Lifecycle						
parts. Design co Ground parts. UNIT – IV Design for ass considerations – Computer Ap UNIT – V Introduction – – Design guid environmentall assessment me	Design For Assembly embly – General assembly recommendations – Minimizing the no. of for: Rivets – Screw fasteners – Gasket & Seals – Press fits – Snap fits – Aut plication for DFMA DESIGN FOR ENVIRONMENT Environmental objectives – Global issues – Regional and local issues – Ba le lines – Example application – Lifecycle assessment – Basic me y responsible product assessment - Weighted sum assessment met thod – Techniques to reduce environmental impact – Design to minimize	nd slotted parts– 9 Periods 5 parts – Design comatic assembly 9 Periods sic DFE methods ethod – AT&T's chod – Lifecycle material usage –						
parts. Design co Ground parts. UNIT – IV Design for ass considerations – Computer Ap UNIT – V Introduction – – Design guid assessment me Design for disa	Design FOR ASSEMBLY embly – General assembly recommendations – Minimizing the no. of for: Rivets – Screw fasteners – Gasket & Seals – Press fits – Snap fits – Aut plication for DFMA DESIGN FOR ENVIRONMENT Environmental objectives – Global issues – Regional and local issues – Ba le lines – Example application – Lifecycle assessment – Basic me y responsible product assessment - Weighted sum assessment met thod – Techniques to reduce environmental impact – Design to minimize ssembly – Design for recyclability – Design for manufacture – Design for	nd slotted parts- 9 Periods 5 parts – Design omatic assembly 9 Periods sic DFE methods ethod – AT&T's chod – Lifecycle material usage – energy efficiency						
parts. Design co Ground parts. UNIT – IV Design for ass considerations – Computer Ap UNIT – V Introduction – – Design guid assessment me Design for disa – Design to reg	DESIGN FOR ASSEMBLY embly – General assembly recommendations – Minimizing the no. of for: Rivets – Screw fasteners – Gasket & Seals – Press fits – Snap fits – Aut plication for DFMA DESIGN FOR ENVIRONMENT Environmental objectives – Global issues – Regional and local issues – Ba le lines – Example application – Lifecycle assessment – Basic me ly responsible product assessment - Weighted sum assessment met thod – Techniques to reduce environmental impact – Design to minimize ssembly – Design for recyclability – Design for manufacture – Design for ulations and standards	nd slotted parts- 9 Periods 5 parts – Design comatic assembly 9 Periods sic DFE methods ethod – AT&T's chod – Lifecycle material usage – energy efficiency						
parts. Design co Ground parts. UNIT – IV Design for ass considerations – Computer Ap UNIT – V Introduction – – Design guid environmentall assessment me Design for disa – Design to reg Lecture: 45 P	DESIGN FOR ASSEMBLY embly – General assembly recommendations – Minimizing the no. of for: Rivets – Screw fasteners – Gasket & Seals – Press fits – Snap fits – Aut plication for DFMA DESIGN FOR ENVIRONMENT Environmental objectives – Global issues – Regional and local issues – Ba le lines – Example application – Lifecycle assessment – Basic me ly responsible product assessment - Weighted sum assessment met thod – Techniques to reduce environmental impact – Design to minimize ssembly – Design for recyclability – Design for manufacture – Design for ulations and standards	9 Periods 9 Periods 9 Periods 9 Periods 9 Periods 9 Periods 9 Construction 9 Periods 9 Construction 9						

1	Boothroyd, G, Heartz and Nike, "Product Design for Manufacture", Marcel Dekker, 1994					
2	Bralla, "Design for Manufacture handbook", McGraw hill, 1999					
3	Dickson, John. R, and Corroda Poly, "Engineering Design and Design for Manufacture and					
	Structural Approach", Field Stone Publisher, USA, 1995					
4	Fixel, "J. Design for the Environment", McGraw Hill., 1996					
5	Kevin Otto and Kristin Wood. "Product Desian. Pearson Publication". 2009.					

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
C01	Select relevant process; apply the general design principles for manufacturability; GD&T	K4
CO2	Apply design considerations while designing the cast and welded components	K4
CO3	Apply design considerations while designing the formed and machined components	K4
CO4	Apply design considerations for assembled systems.	K4
C05	Apply design considerations for environmental issues	K4

Course Articulation Matrix					
COs/POs	P01	P02	P03	P04	P05
C01	1	1	2	2	1
CO2	1	2	2	2	1
CO3	1	2	2	1	1
CO4	2	1	3	2	1
CO5	1	1	1	2	3
23EDPE01	1	1	2	2	1
1 – Slight, 2 – Moderate, 3 – Subs	stantial				

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

COMPOSITE MATERIALS AND MECHANICS

SEMESTER

PREREQUISI	TES	CATEGORY	L	Т	Р	С	
	NIL	PE	3	0	0	3	
Course Objectives	Durse ectives1. The study of various composite materials and the determination of their mechanical strength. 2. Different manufacturing technologies are used to fabricate FRP and other composites. 						
UNIT – I	INTRODUCTION TO COMPOSITE MATERIALS		9	Per	riods	S	
Definition-Mat	rix materials-polymers-metals-ceramics - Reinforcen	nents: Particles, v	vhisk	ers, i	inorg	ganic	
fibers, metal fi	laments- ceramic fibers- fiber fabrication- natural co	mposite wood, Ju	te -Ac	lvant	ages	and	
drawbacks of	composites over monolithic materials. Mechanic	al properties ar	nd ap	plica	ation	s of	
composites, P	articulate-Reinforced composite Materials, Dispers	ion-Strengthened	com	posit	e, Fi	iber-	
reinforced cor	nposites Rule of mixtures-Characteristics of fiber-Re	inforced composi	tes, N	/lanu	factu	ıring	
fiber and comp	oosites,						
UNIT – II	MANUFACTURING OF COMPOSITES		9	Per	riods	5	
Manufacturing	of Polymer Matrix Composites (PMCs)-handlay-up,	spray technique,	filan	nent	win	ding,	
Pultrusion, Re	esin Transfer Moulding (RTM)-, bag moulding, in	jection moulding,	San	dwic	h M	ould	
Composites (S	MC) - Manufacturing of Metal Matrix Composites (MM	ICs) - Solid state, l	liquid	stat	e, va	pour	
state processi	ng, Manufacturing of Ceramic Matrix Composites (CM	ACs) –hot pressin	g-rea	ction	bon	ding	
process-infiltra	ation technique, direct oxidation- interfaces						
UNIT – III	LAMINA CONSTITUTIVE EQUATIONS		9	Per	riods	5	
Lamina Consti	tutive Equations: Lamina Assumptions – Macroscopic	Viewpoint. Genera	alized	Ноо	ke's	Law.	
Reduction to	Homogeneous Orthotropic Lamina – Isotropic limit	case, Orthotropi	c Stil	fnes	s ma	itrix,	
Definition of	stress and Moment Resultants. Strain Displaceme	nt relations. Bas	ic As	sumj	otion	s of	
Laminated an	isotropic plates. Laminate Constitutive Equations	– Coupling Inte	ractic	ns,	Bala	nced	
Laminates, Syr	nmetric Laminates, Angle Ply Laminates, Cross Ply La	minates. Laminate	e Stru	ctura	il Mo	duli.	
Evaluation of	Lamina Properties from Laminate Tests. Quasi-Iso	tropic Laminates	. Dete	ermii	natio	n of	
Lamina stresse	es within Laminates.						
UNII – IV	LAMINA STRENGTH ANALYSIS AND ANALYSIS C	JF LAMINATED	y	Per	100	5	
Introduction -	Maximum Stress and Strain Criteria. Von-Misses Yi	eld criterion for I	sotro	pic N	Mate	rials.	
Generalized Hi	ll's Criterion for Anisotropic materials. Tsai-Hill's Fail	ure Criterion for (Comp	osite	s. Te	nsor	
Polynomial (T	sai-Wu) Failure criterion. Prediction of laminate Failu	ıre Equilibrium Ed	quatic	ons o	f Mo	tion.	
Energy Formu	lations. Static Bending Analysis. Buckling Analysis. Free	e Vibrations – Nat	ural F	requ	enci	es	
UNIT – V	THERMO-STRUCURAL ANALYSIS		9	Per	iod	5	
Fabrication st	esses/Residual stresses in FRP laminated composite	s- Co-efficient of '	Гhern	nal E	xpan	ision	
(C.T.E.) - Modification of Hooke's Law. Modification of Laminate Constitutive Equations. Orthotropic							
Lamina C.T.E's -Stress and Moment Resultants due cooling of the laminates during fabrication-							
Calculations for thermo-mechanical stresses in FRP laminates							
Case studies:	Implementation of CLT for evaluating residual stre	sses in the comp	onen	ts m	ade	with	
different isotro	ppic layers such as electronic packages etc.	Г					
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0 Per	riods Total:4	45 Pe	eriod	ls		

1	Agarwal BD and Broutman LJ, "Analysis and Performance of Fiber Composites" , John Wiley and Sons, New York, 1990.
0	

- 2 Gibson R F, **Principles of Composite Material Mechanics**, McGraw-Hill, 1994.CRC press, 4th Edition, 2016.
- 3 Hyer MW and Scott R White, **"Stress Analysis of Fiber Reinforced Composite Materials"**, McGraw-Hill, 1998.
- 4 Issac M Daniel and OriIshai, **"Engineering Mechanics of Composite Materials"**, Oxford University Press-2006, First Indian Edition - 2007
- 5 MadhujitMukhopadhyay, **"Mechanics of Composite Materials and Structures",** University Press (India) Pvt. Ltd., Hyderabad, 2004 (Reprinted 2008)
- 6 Mallick PK, Fiber Reinforced Composites: Materials, Manufacturing and Design, CRC Press, 3rd Edition,2019.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Calculate for mechanical strength of the composite material	K4
CO2	Fabricate the FRP and other composites by different manufacturing methods	K4
CO3	Analyze fiber reinforced Laminates for different combinations of plies with different orientations of the fiber.	K4
CO4	Evaluate the stresses in the lamina of the laminate using different failure theories	K4
C05	Analyze thermo-mechanical behavior and evaluate residual stresses in different types of laminates using the Classical Laminate Theory.	K4

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05		
C01	1	1	1	1	-		
CO2	-	-	-	1	-		
CO3	-	1	-	2	3		
CO4	1	2	1	-	-		
CO5	-	1	3	-	-		
23EDPE02	1	1	2	1	3		
1 – Slight, 2 – Moderate, 3 – Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

DESIGN OF HYDRAULIC AND PNEUMATIC SYSTEMS

PREREQUISIT	ES	CATEGORY	L	Т	Р	С			
	NIL	PE	3	0	0	3			
	1								
Course	1. To provide an overview of the various compone	1. To provide an overview of the various components of hydraulic systems, as well as							
Objectives	their design and selection techniques.								
	2. To develop a comprehensive grasp of the necessity	y for and use of di	ffere	nt co	ontro	ol and			
	regulating components in hydraulic systems.								
	3. To allow them to construct hydraulic circuits for in	3. To allow them to construct hydraulic circuits for industrial applications on their own.							
	4. To familiarize them with the various components	s of pneumatic sys	stem	s an	d to	teach			
	them how to construct basic pneumatic systems.								
	5. To persuade them of the need of integrating elect	ronics, developing	g low	-cos	t sys	stems,			
	and developing solutions for basic industrial applicat	ions.							
UNIT – I	OIL HYDRAULIC SYSTEMS AND HYDRAULIC ACTU	ATORS		9	Pei	riods			
Hydraulic Pow	ver Generators – Selection and specification of pump	s, pump characte	eristi	cs. L	inea	r and			
Rotary Actuato	ors – selection, specification and characteristics, Hydros	static drives, types	s, sel	ectio	n.				
UNIT – II	CONTROL AND REGULATION ELEMENTS			9	Pei	riods			
Pressure - dir	ection and flow control valves - relief valves, non-r	eturn and safety	valv	es -	actı	lation			
systems, Propo	ortional Electro hydraulic servo valves.								
UNIT – III	HYDRAULIC CIRCUITS			9	Pei	riods			
Reciprocation,	quick return, sequencing, synchronizing circuits - accu	umulator circuits	- ind	ustri	ial ci	rcuits			
- press circuits	s - hydraulic milling machine - grinding, planning, cop	oying, - forklift, ea	arth	mov	er ci	rcuits			
design method	lology- design and selection of components - safety a	and emergency m	nand	rels	– Ca	scade			
method.									
UNIT – IV	PNEUMATIC SYSTEMS AND CIRCUITS			9	Pei	riods			
Pneumatic fur	damentals - control elements, position and pressur	e sensing, Pneur	natic	equ	Jipm	ent's-			
selection of co	omponents - design calculations - logic circuits - sv	vitching circuits ·	- frir	ige (cond	itions			
modules and t	hese integration - sequential circuits - cascade method	ls - mapping metl	nods	- ste	ep co	unter			
method - comp	oound circuit design - combination circuit design- Karn	augh - Veitch map							
UNIT – V	ELECTROMAGNETIC & ELECTRONIC CONTROL	OF HYDRAULI	CS 8	2 9	Pei	riods			
	PNEUMATIC CIRCUIT								
Electrical control of pneumatic circuits - use of relays, counters, timers, ladder diagrams, use of									
microprocessor in circuit design - use of PLC in hydraulic and pneumatic circuits - Fault finding-									
application -fault finding - hydro pneumatic circuits - use of microprocessors for sequencing - PLC,									
Lowcost automation - Robotic circuits.									
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods									
DEEEDENCES									
1 Jagadeesha	T. "Pneumatics Concepts, Desian and Applications "	. Universities Press	5. 201	5					
<u>j=j=j=i=i=i=i</u>	,		,	-					

2 Majumdar, S.R., "Oil Hydraulics Systems – Principles and Maintenance", Tata McGraw Hill, 2001.

3 ShanmugaSundaram.K, **"Hydraulic and Pneumatic Controls",**Chand& Co, 2006.

4 Anthony Esposito, "Fluid Power with Applications", Prentice Hall, 2009.

COUR	SE OUTCOMES:	Bloom's
Unon	completion of the course the students will be able to	Taxonomy
Upon	completion of the course, the students will be able to:	маррец
C01	Design and select appropriate pumps in industries based on need.	K4
CO2	Select correct sizing and rating of control elements in hydraulics.	K4
CO3	Design basic circuits (hydraulic) for industrial applications.	K4
CO4	Design basic pneumatic circuits for industrial applications.	K4
CO5	Identify and provide solution for troubleshooting and design low cost	K4
	automation for industrial application.	

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	PO5		
		1	1				
01	-	1	1	-	-		
C02	-	1	2	1	-		
C03	-	-	1	-	-		
C04	1	-	2	1	1		
C05	-	-	1	-	1		
23EDPE03	1	1	1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

SEMESTER

PREREQUISI	TES	CATEGORY	LT	Ρ	C			
	NIL	PE	3 0	0	3			
	-							
Course	Course 1. To teach diverse engineering design ideas, material choices, and production							
Objectives	procedures.							
	2. To study the fundamentals of employing variou	s tools to implem	ient qu	ality	in a			
	product or service.							
	3. To employ failure mode effect analysis to improve	product quality a	nd appl	y way	ys to			
	maintain the six-sigma status							
	5 Maintaining product quality through the use of stati	stical tools and en	forcing	TVICE	S			
	to increase product reliability		lorenig	meas	ures			
IINIT – I	DESIGN FUNDAMENTALS METHODS AND MATERI	AL SELECTION	0.0	orio	de			
Morphology of	Design The Design Process Computer Aided Engine	aring Congurgent	<u>9</u>	erio	us			
Findingering -	Competition Bench Marking - Creativity - Theory of	of Problem solving	7 (TRI7) _ V	/alua			
Analysis - Des	ign for Manufacture Design for Assembly – Design for	or casting Forging	Motal	J – V Forn	ning			
Machining and	Welding	f casting, 101 ging	, Mictai	rorn	iiiig,			
UNIT – II	DESIGN FOR OUALITY		9 P	erio	de			
Quality Funct	tion Deployment -House of Quality-Objectives an	d functions-Targe	ets-Stak	eholo	lers-			
Measures and	Matrices-Design of Experiments -design process-Ide	ntification of cont	rol fact	ors, r	noise			
factors, and pe	rformance metrics - developing the experimental plan-	experimental desig	gn – tes	ting r	noise			
factors- Runni	ng the experiments –Conducting the analysis-Selecting	and conforming f	actor-S	et po	ints-			
reflecting and	repeating.	,		- r				
UNIT – III	FAILURE MODE EFFECTS ANALYSIS AND DESIGN F	OR SIX SIGMA	9 P	erio	ds			
checklist- Adv linking fault st problem solvin	ranced methods: systems modeling, mechanical embo ates to systems modeling - Basis of SIX SIGMA – Project ng- SIX SIGMA in service and small organizations - SIX	odiment principles selection for SIX SI SIGMA and lean p	s-FMEA IGMA- S product	met IX SI on –	hod- GMA Lean			
INIT – IV	DESIGN OF EXPERIMENTS		Q P	erio	de			
Importance of	Experiments Experimental Strategies Basic principle	es of Design Term	inology		OVA			
Steps in Expe	rimentation. Sample size, Single Factor experiments	– Completely Ran	domize	d de	sign.			
Randomized H	Block design, Statistical Analysis, Multifactor experim	nents - Two and	three f	actor	full			
Factorial expe	riments, 2K factorial Experiments, Confounding and Bl	ocking designs, Fr	actiona	l fact	orial			
design, Tagucł	ni's approach - Steps in experimentation, Design using	Orthogonal Array	vs, Data	Anal	ysis,			
Robust Design	- Control and Noise factors, S/N ratios							
UNIT – V	STATISTICAL CONSIDERATION AND RELIABILITY		9 P	erio	ds			
Frequency dis	tributions and Histograms- Run charts –stem and leaf	plots- Pareto Diag	grams-(lause	and			
Effect Diagram	ns-Box plots- Probability Distribution-Statistical Pro	ocess control–Sca	tter di	agran	ns –			
Multivariable charts –Matrix plots and 3-D plotsReliability-Survival and Failure-Series and parallel								
systems-mean time between failure-weibull distributions.								
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods								
DEFEDENCEC.								
AmitavaMitra. "Fundamentals of Quality control and improvement". John Wiley & Sons. 2016.								
2 George E. Dieter Linda C. Schmidt "Engineering Design" McGraw Hill Education Pvt 1 td. 2013								
	Letter, Entra 6. Schmad, Engineering Design , Medraw		<i>Lu., L</i> u	10				
3 Karl T. Ulr	ich, Steven D. Eppinger, "Product Design And Develop	ment", Tata Mcgra	w-Hill	Educa	ition,			

4 Montgomery, D.C., **"Design and Analysis of experiments",** John Wiley and Sons, 2017.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply fundamentals of design process and material selection for developing a	K4
	quality product	
CO2	Apply the quality concepts to develop a robust product	K4
CO3	Perform Failure Mode Effect Analysis on a product and use six sigma principles	K4
	to enhance its quality	
C04	Apply different experimental design methods in product development	K4
C05	Implement various statistical tools to improve its quality and reliability	K4

Course Articulation Matrix								
COs/POs	P01	P02	P03	P04	P05			
C01	1	3	3	2	2			
CO2	1	2	2	1	2			
CO3	2	1	1	-	1			
CO4	1	1	2	-	1			
CO5	2	2	3	1	2			
23EDPE04	1	2	2	1	2			
1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Lategory*							
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	PE	3	0	0	3

Course	1. The goal of this course is to learn about the fundamentals of surface ch	aracteristics and						
Objectives	different forms of friction in metals and non-metals.							
	2. To investigate the various types of wear mechanisms and the worldwi	de standards for						
	measuring friction and wear.							
	3. To investigate the various forms of corrosion and the steps that may b	3. To investigate the various forms of corrosion and the steps that may be taken to avoid						
	it.							
	4. To investigate the many forms of surface treatments and surface modifi	ication methods.						
	5. To investigate the various materials utilized in friction and wear application	ations.						
UNIT – I	FRICTION	9 Periods						
Topography o	f Surfaces – Surface features – Properties and measurement – Surfa	ce interaction –						
Adhesive The	ory of Sliding Friction – Rolling Friction – Friction properties of	of metallic and						
nonmetallic r	naterials – Friction in extreme conditions – Thermal considerat	ions in sliding						
contact.								
UNIT – II	WEAR	9 Periods						
Introduction	– Abrasive wear, Erosive, Cavitation, Adhesion, Fatigue wear and	Fretting Wear						
Laws of wear	r – Theoretical wear models – Wear of metals and non-metals	– International						
standards in f	riction and wear measurement.							
UNIT – III	CORROSION	9 Periods						
Introduction -	- Principle of corrosion – Classification of corrosion – Types of corr	osion – Factors						
influencing c	orrosion – Testing of corrosion – In-service monitoring, Sim	ulated service,						
Laboratory te	esting – Evaluation of corrosion – Prevention of Corrosion – Mat	terial selection,						
Alteration of e	environment, Design, Cathodic and Anodic Protection, Corrosion inhi	bitors.						
UNIT – IV	SURFACE TREATMENTS	9 Periods						
Introduction	– Surface properties, Superficial layer – Changing surface meta	llurgy – Wear						
resistant coat	tings and Surface treatments – Techniques – PVD – CVD – Phys	ical CVD – Ion						
implantation -	- Surface welding – Thermal spraying – Laser surface hardening and	d alloying, laser						
re-melting, ar	nd laser cladding. Applications of coatings and surface treatment	s in wear and						
friction contro	ol – Characteristics of Wear resistant coatings – New trends in coatin	ng technology –						
DLC – CNC –	Thick coatings – Nano-engineered coatings – Other coatings, Corr	osion resistant						
coating.								
UNIT – V	ENGINEERING MATERIALS	9 Periods						
Introduction -	- Advanced alloys – Super alloys, Titanium alloys, Magnesium allo	oys, Aluminium						
alloys, and Nickel based alloys – Ceramics – Polymers – Biomaterials – Applications – Bio								
Tribology Nan	io Tribology.							
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods							

1 G.W.Stachowiak& A.W .Batchelor , **"Engineering Tribology",** Butterworth-Heinemann, UK,2005

2 Rabinowicz.E, **"Friction and Wear of materials"**, John Willey & Sons, UK, 1995

3 Halling, J. , "Principles of Tribology ",Macmillian – 1984

4 Williams J.A. "Engineering Tribology", Oxford Univ. Press, 1994

5 S.K.Basu, S.N.Sengupta&B.B.Ahuja, **"Fundamentals of Tribology",** Prentice –Hall of India Pvt. Ltd , New Delhi, 2005

6 Fontana G., "Corrosion Engineering", McGraw Hill, 1985.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the basics of surface features, laws of friction, and different	K4
	types of friction.	
CO2	Develop the knowledge of various wear mechanism and its	K4
	measurement.	
CO3	Understand the types of corrosion and its preventive measures.	K4
C04	Familiarize the types of surface properties and various surface	K4
	modification techniques.	
C05	Ability to understand the different types of materials used in the	K4
	friction and wear applications.	

Course Articulation Matrix	Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	PO5			
C01	1	1	2	1	2			
C02	-	1	2	1	-			
C03	1	2	3	-	1			
CO4	-	1	2	1	1			
C05	-	-	1	-	-			
23EDPE05	1	1	2	1	1			
1 – Slight, 2 – Moderate, 3 – Sub	stantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

SEMESTER

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course The objective of the course is to make the learners understand the format and						
Objectives	intricacies involved in writing a research paper.					
UNIT – I	PLANNING AND PREPARATION	6 Periods				
Need for m	ublishing articles. Choosing the journal Identifying a model is	ournal naner				
Creation of f	iles for each section Expectations of Referees Online Resources	Surnar paper,				
	SENTENCES AND PARAGRAPHS	6 Periods				
	SENTENCES AND TANAGRATIIS	01 chibus				
Basic word	in English, Word order in English and Vernacular, placing	nouns, Verbs,				
Adjectives, a	nd Adverb suitably in a sentence, Using Short Sentences, Discourse	e Markers and				
Punctuation	s- Structure of a Paragraph, Breaking up lengthy Paragraphs					
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC) OF WRITING	6 Periods				
Accuracy, Br	evity and Clarity in Writing, Reducing the linking words, Avoiding	g redundancy,				
Appropriate	use of Relative and Reflexive Pronouns, Monologophobia, verifying	ng the journal				
style, Logica	l Connections between others author's findings and yours					
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING	6 Periods				
Making your	findings stand out, Using bullet points headings, Tables and Gra	aphs- Availing				
non-experts	opinions, Hedging, Toning Down Verbs, Adjectives, Not o	ver hedging,				
Limitations of	of your research.					
UNIT – V	SECTIONS OF A PAPER	6 Periods				
Titles. Abst	racts. Introduction. Review of Literature. Methods. Results	. Discussion.				
Conclusions,	Conclusions, References					
Contact Periods:						
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30Periods						

1	Goldbort R, "Writing for Science", Yale University Press (available on GoogleBooks), 2006.
2	Day R, "How to Write and Publish a Scientific Paper" , Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.
4	Adrian Wallwork, "English for Writing Research Papers", Springer New York Dordrecht
	Heidelberg London, 2011.

COUR Upon	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the need for writing good research paper.	К2
CO2	Practice the appropriate word order, sentence structure and paragraph writing	К4
CO3	Practice unambiguous writing	К3
CO4	Avoid wordiness in writing	К2
CO5	Exercise the elements involved in writing journal paper.	К3

Course Articulation Matrix					
COs/POs	P01	P02	P03	P04	PO5
C01	3	3	1	1	1
CO2	3	3	1	1	1
CO3	3	3	1	1	1
CO4	3	3	1	1	1
CO5	3	3	1	1	1
23EDACZ1	3	3	1	1	1
1 – Slight, 2 – Moderate, 3 – Si	ubstantial			•	÷

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	40	40	20	-	-	-	100			
CAT2	40	40	20	-	-	-	100			
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	50	50	-	-	-	100			
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	50	50	-	-	-	100			
ESE	30	30	40	-	-	-	100			

DISASTER MANAGEMENT (Common to all branches)

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	AC	2	0	0	0

Course 1. To become familiar in key concepts and consequences about hazar	ds, disaster				
Objectives and area of occurrence.					
2. To know the various steps in disaster planning.					
3. To create awareness on disaster preparedness and management.					
UNIT – I INTRODUCTION	6 Periods				
Disaster: Definition, Factors and Significance; Difference between Hazard and Disaste	r; Natural and				
Manmade Disasters: Difference, Nature, Types and Magnitude. Areas prone to Earthque	uakes, Floods ,				
Droughts, Landslides , Avalanches , Cyclone and Coastal Hazards with Special Reference to T	sunami.				
UNIT – II REPERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods				
Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Nat	ural Disasters:				
Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches,					
Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of					
Disease and Epidemics, War and Conflicts.					
UNIT – III DISASTER PLANNING	6 Periods				
Disaster Planning-Disaster Response Personnel roles and duties, Community Mitigat	tionGoals, Pre-				
Disaster Mitigation Plan, Personnel Training, Comprehensive Emergency Management,	Early Warning				
Systems.					
UNIT – IV DISASTER PREPAREDNESS AND MANAGEMENT	6 Periods				
Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Ri	sk: Application				
of Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Gov	ernmental and				
Community Preparedness.					
UNIT – V RISK ASSESSMENT	6 Periods				
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster	Risk Situation.				
Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and War	ning, People's				
Participation in Risk Assessment, Strategies for Survival.					
Lecture 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 P	eriods				

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies",
	New Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India,
	New Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep
	Publication Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International
	Publishing House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann,
	2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUF	RSE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
C01	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
C05	Prepare risk assessment strategy for national and global disaster.	K4

Course Articulation Matri	Х				
COs/POs	P01	PO2	P03	P04	PO5
C01	2	1	1	2	2
C02	1	2	1	1	1
CO3	1	1	1	2	2
CO4	1	1	1	2	2
CO5	2	1	1	2	2
23EDACZ2	1	1	1	2	2
1 – Slight, 2 – Moderate, 3 –	Substantial				

ASSESSMEN	Г PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2			100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE	25	25	50				100

VALUE EDUCATION (Common to all branches)

SEMESTER

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

	1					
Course	1. Value of education and self- development.					
Objectives	2. Requirements of good values in students.					
-	3. Importance of character.					
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods				
Social values	and individual attitudes. Work ethics, Indian vision of humanism. Moral a	nd non-moral				
valuation. Standards and principles. Value judgements.						
UNIT – II	PERSONALITY AND BEHAVIOR DEVELOPMENT	6 Periods				
Soul and Scie	entific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love	and Kindness.				
Avoid fault T	hinking. Free from anger, Dignity of labour. Universal brotherhood and religio	ous tolerance.				
UNIT – III	VALUES IN HUMAN LIFE	6 Periods				
Importance	of cultivation of values, Sense of duty. Devotion, Self-reliance. Confidence,	Concentration.				
Truthfulness	, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriot	ism. Love for				
nature,Discip	line.					
UNIT – IV	VALUES IN SOCIETY	6 Periods				
True friends	nip. Happiness Vs suffering, love for truth. Aware of self-destructive habits. A	ssociation and				
Cooperation.	Doing best for saving nature.					
UNIT – V	POSITIVE VALUES	6 Periods				
Character an	d Competence -Holy books vs Blind faith. Self-management and Good hea	lth. Science of				
reincarnation	reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind					
your Mind, S	elf-control. Honesty, Studying effectively.					
Lecture:30	Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 P	eriods				

- 1 Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi,1998
- 2 Dr.Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
- 3 R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi,2004
- 4 https://nptel.ac.in/courses/109104068/36

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Know the values and work ethics.	КЗ
CO2	Enhance personality and behaviour development.	К3
CO3	Apply the values in human life.	K3
CO4	Gain Knowledge of values in society.	КЗ
C05	Know the importance of positive values in human life.	К3

Course Articulation Matrix	-				
COs/POs	P01	P02	P03	P04	PO5
C01	1	1	1	2	2
CO2	1	2	1	1	2
CO3	1	2	1	2	2
CO4	1	1	1	2	2
C05	1	1	2	2	2
23EDACZ3	1	1	1	2	2
1 – Slight, 2 – Moderate, 3 – S	ubstantial				

ASSESSMEN	T PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1			100				100
CAT2			100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1			100				100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE			100				100

CONSTITUTION OF INDIA (Common to all branches.)

SEMESTER

PREREOUISITES CATEGORY L T P C										
<u> </u>	NIL	AC	2	0	0	0				
						I				
Course	1. To address the importance of constitutional r	ights and duties								
Objectives	Objectives 2. To familiarize about Indian governance and local administration.									
3. To know about the functions of election commission.										
UNIT – I INDIAN CONSTITUTION										
History of Mak	ing of the Indian Constitution: History Drafting Co	mmittee, (Compos	ition	& \	Nork	ing) ·				
Philosophy of t	he Indian Constitution: Preamble Salient Features.									
UNIT – II CONSTITUTIONAL RIGHTS & DUTIES										
Contours of Co	onstitutional Rights & Duties: Fundamental Rights,	Right to Equality,	Rigl	ht to	Fre	edom				
Right against	Exploitation, Right to Freedom of Religion, Cultur	ral and Education	al R	ights	, Rig	ght to				
Constitutional I	Remedies, Directive Principles of State Policy, Fundan	nental Duties.								
UNIT – III ORGANS OF GOVERNANCE 6 Pe						riods				
Organs of Gov	vernance: Parliament, Composition, Qualifications	and Disqualifica	tions	;, Pc	wer	s and				
Functions, Exe	cutive, President, Governor, Council of Ministers, Ju	diciary, Appointme	ent a	nd 'l	rans	ster of				
Judges, Qualific	ations, Powers and Functions.									
UNIT – IV	LOCAL ADMINISTRATION				<u>5 Per</u>	iods				
Local Administ	ration: District's Administration head: Role and Imp	portance, Municipa	lities	s: Int	rodu	iction				
Mayor and role	of Elected Representative, CEO of Municipal Corpora	ation. Panchayat ra	j: Int	rodu	ictio	1, PRI				
Zila Panchayat	. Elected officials and their roles, CEO Zila Panch	ayat: Position and	i rol	е. В	lock	level				
Organizational	Hierarchy (Different departments), Village level: Ro	ole of Elected and	Арро	ointe	d of	icials				
Importance of g	grass root democracy.			-	<u> </u>					
UNIT – V	ELECTION COMMISSION		2		5 Pei	iods				
Election Comm	ission: Election Commission: Role and Functionin	ig. Chief Election	Com	miss	sione	r and				
Election Comm	issioners. State Election Commission: Role and Fun	ictioning. Institute	and	Bod	ies f	or the				
welfare of SC/ST/OBC and women.										
Lecture:30 P	eriods Tutorial: 0 Periods Practical: 0Peri	iods Total: 3	0 Pe	rioc	ls					

REFERENCES:

"The Constitution of India", 1950 (Bare Act), Government Publication. 1

2 Dr. S. N. Busi, Dr. B. R. Ambedkar"Framing of Indian Constitution", 1st Edition, 2015.

3 M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.

4 D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the	K2
	conceptualization of social reforms leading to revolution in India.	
CO3	Know the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
C05	Gain knowledge on election commission of India.	K2

Course Articulation Matrix	-				-
COs/POs	P01	P02	P03	P04	P05
C01	1	1	1	2	2
CO2	1	1	2	1	2
CO3	1	2	1	1	2
CO4	1	1	1	2	2
CO5	1	1	1	2	2
23EDACZ4	1	1	1	2	2
1 – Slight, 2 – Moderate, 3 – Su	ibstantial				

ASSESSMEN	T PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		100					100
CAT2		100					100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1		100					100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2		100					100
ESE		100					100

PEDAGOGY STUDIES (Common to all branches)

SEMESTER

PREREOUIS	DDEDEOLIISITES CATECODY I T D C							
I KEKEQUIS	NII		<u>ь</u> 2	1	1			
NIL AC						U		
Course	Course1. To Understand of various theories of learning, prevailing pedagogical practices and design of curriculum in engineering studies.							
2. Application of knowledge in modification of curriculum, its a introduction of innovation in teaching methodology.					ent	and		
UNIT – I	INTRODUCTION			6 Pe	riod	S		
Introduction	and Methodology: Aims and rationale, Policy backg	round, Conceptual	fra	mew	ork	and		
terminology questions. Ov	Theories of learning, Curriculum, Teacher educatior erview of methodology and Searching.	n. Conceptual fram	ewo	rk, I	≀ese a	arch		
UNIT – II	PEDAGOGICAL PRACTICES			6 Pe	riod	S		
Thematic ove	rview: Pedagogical practices are being used by teacher	rs in formal and info	orma	ıl cla	ssro	oms		
in developing	g countries. Curriculum, Teacher education. Evidence	on the effectivenes	ss of	ped	lagog	gical		
practices Met	hodology for the in depth stage: quality assessment of ir	cluded studies.						
UNIT – III	PEDAGOGICAL APPROACHES			6 Pe	riod	S		
How can teac	her education (curriculum and practicum) and the schoo	ol curriculum and gu	uidai	nce n	natei	rials		
best support	effective pedagogy? Theory of change. Strength and	nature of the body	/ of	evid	ence	for		
effective peda	agogical practices. Pedagogic theory and pedagogical	approaches. Teache	er's a	attitu	ides	and		
beliefs and Pe	dagogic strategies.		1					
UNIT – IV	PROFESSIONAL DEVELOPMENT			<u>6 Pe</u>	riod	S		
Professional development: alignment with classroom practices and follow-up support. Peer support Support from the head teacher and the community. Curriculum and assessment Barriers to learning:				port ing:				
INIT - V CUDDICULUM AND ASSESSMENT 6 Deriode					c			
Decearch gape and future directions Decearch design Contexts Decearch resulting Curriculum				. 5 n				
and assassment Dissemination and research impact					11			
Lecture 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods								
Lecture.30		Jus I Juan Ju	10	100	3			
REFERENCES	i:							

1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261,
	2001.
2	Alexander RJ , Culture and pedagogy: International comparisons in primary education. Oxford and
	Boston: Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and
	reading in Africa: Does teacher preparation count? International Journal Educational Development,
	33 (3): 272–282, 2013.
4	Agrawal M , Curricular reform in schools: The importance of evaluation, Journal of Curriculum
	Studies, 36 (3): 361-379, 2004

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Explain the concept of curriculum, formal and informal education systems and	КЗ
	teacher education.	
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical	КЗ
	approaches	
CO3	Know the relation between teacher and community, support from various levels of	КЗ
	teachers to students and limitation in resources and size of the class.	
CO4	Perform research in design a problem in pedagogy and curriculum development.	К3

Course Articulation Matrix					
COs/POs	P01	P02	P03	P04	P05
C01	1	2	1	2	2
C02	1	1	2	1	1
C03	1	2	1	1	1
CO4	1	2	1	1	1
23EDACZ5	1	2	1	1	1
1 – Slight, 2 – Moderate, 3 – Si	ubstantial				

ASSESSMEN	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1			100				100
CAT2			100				100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1			100				100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100
ESE			100				100

22504076	STRESS MANAGEMENT BY YOGA	CEMECTED
Z3EDACZ6	(Common to all branches)	SEMESTER

PREREQUISITES	CATEGORY	L	Τ	P	С
NIL	AC	2	0	0	0

Course	1. To create awareness on the benefits of yoga and meditation.				
Objectives	2. To understand the significance of Asana and Pranayama.				
-					
UNIT – I	PHYSICAL STRUCTURE AND ITS FUNCTIONS	6 Periods			
Yoga - Physica	l structure, Importance of physical exercise, Rules and regulation of sim	plified physical			
exercises, hand	l exercise, leg exercise, breathing exercise, eye exercise, kapalapathy, ma	harasana, body			
massage, acupr	essure, body relaxation.				
UNIT – II	YOGA TERMINOLGIES	6 Periods			
Yamas - Ahimsa, satya, astheya, bramhacharya, aparigrahaNiyamas- Saucha, santosha, tapas, svadhyaya,					
Ishvarapranidh	ana.				
UNIT – III	ASANA	6 Periods			
Asana - Rules &	Regulations – Types & Benefits				
UNIT – IV	PRANAYAMA	6 Periods			
Regularization	of breathing techniques and its effects-Types of pranayama				
UNIT – V	MIND	6 Periods			
Bio magnetism	& mind - imprinting & magnifying – eight essential factors of living beings, M	Iental			
frequency and ten stages of mind, benefits of meditation, such as perspicacity, magnanimity, receptivity,					
adaptability, cr	adaptability, creativity.				
Lecture:30 P	eriods Tutorial: 0 Periods Practical: 0Periods Total: 30 Periods	riods			

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Tarining-Part-I" , Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", AdvaitaAshrama (Publication
	Department), Kolkata.
3	PanditShambuNath, "Speaking of Stress Management Through Yoga and Meditation", New Dawn
	Press, New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", MotilalBanarsidassPublishers,New Delhi, 2007.
4	K. N. Ouupu, Scress and its management by Yogu, MothalbanarshaassPublishers,New Denn, 2007.

COUR	Bloom's	
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Practice physical exercises and maintain good health.	КЗ
CO2	Attain knowledge on the various concepts of Yoga.	КЗ
CO3	Perform various Asanas with an understanding on their benefits.	КЗ
CO4	Practice breathing techniques in a precise manner.	КЗ
CO5	Attain emotional stability and higher level of consciousness.	КЗ

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05		
C01	-	-	-	2	2		
CO2	-	-	-	2	1		
CO3	-	-	-	1	2		
CO4	-	-	-	2	1		
CO5	-	-	-	1	2		
23EDACZ6	-	-	-	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1		50	50				100		
CAT2			100				100		
Individual Assessment 1/Case Study 1/Seminar 1/Project 1		50	50				100		
Individual Assessment 2/Case Study 2/Seminar 2/Project 2			100				100		
ESE		50	50				100		

23FDAC77	
ZJEDACL/	

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS (Common to all branches)

SEMESTER

PREREQUISITES	CATEGORY	L	Т	Р	С	
NIL	AC	2	0	0	0	

Course	1. To familiar with Techniques to achieve the highest goal in life.				
Objectives	2. To become a person with stable mind, pleasing personality and d	etermination.			
•					
UNIT – I		6 Periods			
Neetisatakam-l	Holistic development of personality-Verses- 19,20,21,22 (wisdom)-Verses	s29,31,32 (pride			
& heroism)-Ver	rses- 26,28,6.				
UNIT – II		6 Periods			
Verses- 52,53,5	9 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day work and	duties Shrimad			
BhagwadGeeta	- Chapter 2-Verses 41, 47,48,				
UNIT – III		6 Periods			
Shrimad Bhagy	vadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23,	35,- Chapter 18-			
Verses 45, 46, 4	48.				
UNIT – IV		6 Periods			
Statements of b	oasic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62, 68 -Ch	apter 12 -Verses			
13, 14, 15, 16,1	7, 18-Personality of Role model.				
UNIT – V		6 Periods			
Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39-					
Chapter18 – Verses 37,38,63.					
Lecture:30 P	eriods Tutorial: 0 Periods Practical: 0Periods Total: 30	Periods			

1	Swami SwarupanandaAdvaita Ashram "Srimad Bhagavad Gita" , AdvaitaAshrama , Kolkata,2016				
2	P.Gopinath, Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Satakam" (Niti-sringar-vairagya),				
3	Swami Mukundananda, JagadguruKripalujiYog "Bhagavad Gita: The Song Of God" , USA,2019				
4	A.C. Bhaktivedanta Swami Prabhupada" Bhagavad-Gita As It Is" ,Bhaktivedanta Book Trust Publications,2001.				

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the Holistic development in life.	K4
CO2	Effective Planning of day to day work and duties.	K4
CO3	Identify mankind to peace and prosperity.	K4
C04	Develop versatile personality.	K4

Course Articulation Matrix							
COs/POs	P01	P02	P03	P04	P05		
C01	-	-	-	1	1		
CO2	-	-	-	2	1		
CO3	-	-	-	1	1		
CO4	-	-	-	2	1		
23EDACZ7	-	-	-	2	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1				100			100		
CAT2				100			100		
Individual Assessment 1/Case Study 1/Seminar 1/Project 1				100			100		
Individual Assessment 2/Case Study 2/Seminar 2/Project 2				100			100		
ESE				100			100		

23EDACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE (Common to all branches)		SEMESTER					
PREREQUIS	TES	САТ	EGORY	L	Т	Р	С	
	NIL	AC					0	
Course 1. To get a working knowledge in illustrious Sanskrit, the scientific language in the								
Objectives	world.	world.						
	2. Learning of Sanskrit to improve brain functioning.							
	3. Enhancing the memory power.							
	4. Learning of Sanskrit to develop the logic in mathe	matics,	science &	other	subj	ects.		
UNIT – I	BASICS OF SANSKRIT				6 Pe	riod	s	
Alphabets in S	anskrit, Past/Present/Future Tense.							
UNIT – II	SENTENCES AND ROOTS				6 Pe	eriod	s	
Simple Senten	ces - Order, Introduction of roots.							
UNIT – III	SANSKRIT LITERATURE				6 Pe	riod	S	
Technical information about Sanskrit Literature								
UNIT – IV	TECHNICAL CONCEPTS -16 Periods							
Technical cond	Technical concepts of Engineering-Electrical, Mechanical							
UNIT – V	NIT - V TECHNICAL CONCEPTS -2 6 Periods						s	
Technical cond	cepts of Engineering-Architecture, Mathematics			•				

Lecture:30 Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 Periods

REFERENCES:

1 Dr.Vishwas, "**Abhyaspustakam**", Samskrita-Bharti Publication, New Delhi, 2020.

2 Prathama DeekshaVempatiKutumbshastri, "**Teach Yourself Sanskrit**", Rashtriya Sanskrit Sansthanam, New Delhi, Publication, 2009.

3 Suresh Soni, **"India's Glorious Scientific Tradition**", Ocean books (P) Ltd., New Delhi,2006.

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Recognize ancient literature and their basics	КЗ
CO2	Formulate the sentences with order and understand the roots of Sanskrit	КЗ
CO3	Acquire familiarity of the major traditions of literatures written in Sanskrit	КЗ
CO4	Distinguish the Technical concepts of Electrical & Mechanical Engineering	КЗ
C05	Categorize the Technical concepts of Architecture & Mathematics	КЗ

Course Articulation Matrix									
COs/POs	P01	PO2	P03	P04	P05				
C01	1	2	1	2	2				
CO2	1	2	-	1	2				
CO3	1	1	1	1	2				
CO4	2	1	1	1	1				
CO5	1	2	1	1	1				
23EDACZ8	1	2	1	1	2				
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1		50	50				100			
CAT2		50	50				100			
Individual Assessment 1/Case Study 1/Seminar 1/Project 1		50	50				100			
Individual Assessment 2/Case Study 2/Seminar 2/Project 2		50	50				100			
ESE		50	50				100			