

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum For

Post Graduate

M. E. Computer Science and Engineering

(Full Time)

2023

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY

THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0422 - 2433355 FAX: +91 0422 - 2433355

E.mail: coegct@gmail.com

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- To achieve academic excellence through innovative teaching and learning practices.
- To enhance employability and entrepreneurship.
- To improve the research competence to address societal needs.
- To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

VISION AND MISSION OF THE DEPARTMENT

VISION

To be in the frontier of Computer Science and Engineering and to produce globally competent graduates with moral values committed to build a vibrant nation.

MISSION

- To strengthen the core competence in Computer Science and Engineering through analytical learning.
- To produce successful graduates with personal and professional responsibilities and commitment to lifelong learning.
- To uplift innovative research in Computer Science and Engineering to serve the needs of Industry, Government and Society.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The Programme Educational Objectives of M.E. Computer Science and Engineering programme are:

- **PEO 1:** Graduates will be employed in computing profession as experts in providing solutions to complex design problems by their depth of knowledge in advanced computing.
- **PEO 2:** Graduates with an aptitude in lifelong research will be either pursuing or completed doctoral programme and engaged in advanced research and development.
- **PEO 3:** Graduates will be able to apply critical, lateral thinking and use reflective learning to analyze, conceptualize and evaluate the potential solutions for conducting theoretical and practical research by following ethical practices.

PROGRAMME OUTCOMES

Students of M.E. Computer Science and Engineering Programme at the time of graduation will be able to:

PO1: Independently carry out research / investigation and development work to solve practical problems.

PO2: Write and present a substantial technical report/document.

PO3: Demonstrate a higher degree of mastery over Computer Science and Engineering curriculum.

PO4: Practice code of ethics in professional accomplishments and research for sustainable societal development.

PO5: Identify feasible solutions by applying technical knowledge and ethical principles with engineering practices.

PO6: Engage in lifelong learning to improve knowledge and competence.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 M.E.COMPUTER SCIENCE AND ENGINEERING

FIRST SEMESTER

SI.	Course	Course Title	Category	CA	End Sem	Total		Hou	rs/Wee	k
No	Code	Course True	Category	Marks	Marks	Marks	L	T	P	C
			THEORY	Y						
1	23CSFCZ1	Research Methodology and IPR (Common to All Branches)	FC	40	60	100	3	0	0	3
2	23CSFC02	Mathematical Foundations of Computer Science	FC	40	60	100	3	1	0	4
3	23CSPC01	Formal Languages, Machines and Computations	PC	40	60	100	3	1	0	4
4	23CSPC02	High Performance Computer Architecture	PC	40	60	100	3	0	0	3
5	23CSPC03	Algorithms and Complexity Analysis	PC	40	60	100	3	0	0	3
6	23CSPEXX	Professional Elective I	PE	40	60	100	3	0	0	3
7	23CSACXX	Audit Course I	AC	40	60	100	2	0	0	0
	PRACTICAL									
8	8 23CSPC04 Advanced Algorithms and Elective Laboratory			60	40	100	0	0	3	1.5
			340	460	800	20	2	3	21.5	

SECOND SEMESTER

SI.	Carrer Cada	Course Title		CA	End	Total		Hour	s/Week	ζ.
No	Course Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	C
		240	THEORY	57	מטיטונ		•			
1	23CSPC05	Advanced Database Systems	PC	40	60	100	3	0	0	3
2	23CSPC06	Advanced Computer Networks	PC	40	60	100	3	0	0	3
3	23CSPC07	Advanced Operating System	PC	40	60	100	3	0	0	3
4	23CSPEXX	Professional Elective II	PE	40	60	100	3	0	0	3
5	23CSPEXX	Professional Elective III	PE	40	60	100	3	0	0	3
6	23CSACXX	Audit Course II	AC	40	60	100	2	0	0	0
			PRACTICA	L						
7	23CSPC08	Advanced Computer Networks and Electives Laboratory	PC	60	40	100	0	0	3	1.5
8	23CSEE01	Mini Project	EEC	60	40	100	0	0	4	2
	•	360	440	800	17	0	7	18.5		

THIRD SEMESTER

SI.	Course Code	e Course Title C	Category	CA	End Sem	Total	Hours/Week			
No	Course Coue	Course The	Category	Marks	Marks	Marks	L	Т	P	C
			THEOR	Y						
1	23CSPC09	Data Science	PC	40	60	100	3	0	0	3
2	23CSPEXX	Professional Elective IV	PE	40	60	100	3	0	0	3
3	23\$OEXX	Open Elective	OE	40	60	100	3	0	0	3
			PRACTIC	AL						
4	23CSEE02	Project - I	EEC	60	40	100	0	0	24	12
		Total		180	220	400	9	0	24	21

FOURTH SEMESTER

SI.	('ourse ('ode	Course Title	Category CA Marks		End Sem	Total		Hours	s/Week			
No	Course Coue	Course Title	Category	Marks	Marks	Marks	L	T	P	C		
	PRACTICAL											
1	23CSEE03	Project - II	EEC	60	40	100	-	-	*	24		
	Total			60	40	100	-	-	*	24		

Note: * Maximum number of periods 720 to earn 24 credits shall be scheduled during the maximum period of 6 months.

Total Credits: 85

PROFESSIONAL ELECTIVES (PE)

PROFESSIONAL ELECTIVES - I

SI.No	Course Code	Course Title Ca	Category	CA	End Sem	Total]	Hour	s/We	ek
51.110	Course Coue	Course Title	Category Ma		Marks	Marks	L	T	P	C
1	23CSPE01	Digital Image Processing	PE	40	60	100	3	0	0	3
2	23CSPE02	Embedded Systems	PE	40	60	100	3	0	0	3
3	23CSPE03	Fuzzy Logic and Neural Networks	PE	40	60	100	3	0	0	3
4	23CSPE04	Cloud Computing	PE	40	60	100	3	0	0	3
5	23CSPE05	Advanced Software Engineering	PE	40	60	100	3	0	0	3
6	23CSPE06	Pattern Recognition	PE	40	60	100	3	0	0	3
		V 52	NI DIEN	35/	9)	•	•			

PROFESSIONAL ELECTIVES - II

CLN	Course	Course Title Car		CA	End	Total	Hours/Week					
SI.No	Code	Course little	Category	Marks	Sem Marks	Marks	L	Т	P	C		
1	23CSPE07	Computer Vision Engineering	PE	40	60	100	3	0	0	3		
2	23CSPE08	Internet of Things	PE	40	60	100	3	0	0	3		
3	23CSPE09	Network Science	PE	40	60	100	3	0	0	3		
4	23CSPE10	Machine Learning	PE	40	60	100	3	0	0	3		
5	23CSPE11	Multidimensional Data Structures	PE	40	60	100	3	0	0	3		
6	23CSPE12	Cryptography and Network Security	PE	40	60	100	3	0	0	3		

PROFESSIONAL ELECTIVES - III

GI N	Course	Course Title (G .	CA	End	Total	Hours/Week					
SI.No	Code	Course Title	Marks		Sem Marks	Marks	L	T	P	C		
1	23CSPE13	Social Networks	PE	40	60	100	3	0	0	3		
2	23CSPE14	Information Retrieval	PE	40	60	100	3	0	0	3		
3	23CSPE15	Natural Language Processing	PE	40	60	100	3	0	0	3		
4	23CSPE16	Virtual Reality	PE	40	60	100	3	0	0	3		
5	23CSPE17	Theory of Modern Compilers	PE	40	60	100	3	0	0	3		

PROFESSIONAL ELECTIVES - IV

SI.No	Course	Course Title Ca	Category	CA	End Sem	Total	Hours/Week					
51.10	Code	Course Title	Marks		Marks	Marks	L	T	P	С		
1	23CSPE18	Deep Learning	PE	40	60	100	3	0	0	3		
2	23CSPE19	Ethical Hacking	PE	40	60	100	3	0	0	3		
3	23CSPE20	Mining Massive Datasets	PE	40	60	100	3	0	0	3		
4	23CSPE21	Data Center Networks	PE	40	60	100	3	0	0	3		
5	23CSPE22	Data Visualization	PE	40	60	100	3	0	0	3		
6	23CSPE23	Parallel Algorithms	PE	40	60	100	3	0	0	3		

LIST OF OPEN ELECTIVES

SI.	Course Code	Course Title	Category	CA	End Sem	Total]	Hour	s/We	ek
No	Course Coue	Course Title	Category	Marks	Marks	Marks	L	T	P	C
1	23SEOE01	Building Bye-Laws and Codes of Practice	OE	40	60	100	3	0	0	3
2	23SEOE02	Planning of Smart Cities	OE	40	60	100	3	0	0	3
3	23SEOE03	Green Building	OE	40	60	100	3	0	0	3
4	23EEOE04	Environment Health and Safety Management	OE	40	60	100	3	0	0	3
5	23EEOE05	Climate Change and Adaptation	OE.	40	60	100	3	0	0	3
6	23EEOE06	Waste to Energy	OE	40	60	100	3	0	0	3
7	23GEOE07	Energy in Built Environment	OE	40	60	100	3	0	0	3
8	23GEOE08	Earth and Its Environment	OE	40	60	100	3	0	0	3
9	23GEOE09	Natural Hazard and Mitigation	OE	40	60	100	3	0	0	3
10	23EDOE10	Business Analytics	OE	40	60	100	3	0	0	3
11	23EDOE11	Introduction to Industrial safety	OE CO	40	60	100	3	0	0	3
12	23EDOE12	Operations Research	OE	40	60	100	3	0	0	3
13	23MFOE13	Occupational Health and Safety	OE	40	60	100	3	0	0	3
14	23MFOE14	Cost Management of Engineering Projects	OE	40	60	100	3	0	0	3
15	23MFOE15	Composite Materials	OE	40	60	100	3	0	0	3
16	23TEOE16	Global Warming Science	OE	40	60	100	3	0	0	3
17	23TEOE17	Introduction to Nano Electronics	OE	40	60	100	3	0	0	3

18	23TEOE18	Green Supply Chain Management	OE	40	60	100	3	0	0	3
19	23PSOE19	Distribution Automation System	OE	40	60	100	3	0	0	3
20	23PSOE20	Electricity Trading and Electricity Acts	OE	40	60	100	3	0	0	3
21	23PSOE21	Modern Automotive Systems	OE	40	60	100	3	0	0	3
22	23PEOE22	Virtual Instrumentation	OE	40	60	100	3	0	0	3
23	23PEOE23	Energy Management Systems	OE	40	60	100	3	0	0	3
24	23PEOE24	Advanced Energy Storage Technology	OE	40	60	100	3	0	0	3
25	23AEOE25	Design of Digital Systems	OE	40	60	100	3	0	0	3
26	23AEOE26	Basics of Nano Electronics	OE	40	60	100	3	0	0	3
27	23AEOE27	Advanced Processor	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL Programming Languages	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI Design	OE	40	60	100	3	0	0	3
30	23VLOE30	High Level Synthesis	OE	40	60	100	3	0	0	3
31	23CSOE31	Artificial Intelligence	OE	40	60	100	3	0	0	3
32	23CSOE32	Computer Network Management	OE	40	60	100	3	0	0	3
33	23CSOE33	Blockchain Technologies	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSES

(Common to All Branches)

SI.	Course Code	Course Title	Category	CA	End Sem	Total		Hour	s/We	ek
No	Course Code	Course Title	Category	Marks	Marks	Marks	L	T	P	C
1	23CSACZ1	English for Research Paper Writing	AC	40	60	100	2	0	0	0
2	23CSACZ2	Disaster Management	AC	40	60	100	2	0	0	0
3	23CSACZ3	Value Education	AC	40	60	100	2	0	0	0
4	23CSACZ4	Constitution of India	AC	40	60	100	2	0	0	0
5	23CSACZ5	Pedagogy Studies	AC	40	60	100	2	0	0	0
6	23CSACZ6	Stress Management by Yoga	AC\\\/	40	60	100	2	0	0	0
7	23CSACZ7	Personality Development Through Life Enlightenment Skills	AC	40	60	100	2	0	0	0
8	23CSACZ8	Sanskrit for Technical Knowledge	AC O	40	60	100	2	0	0	0

SUMMARY OF CREDIT DISTRIBUTION

	Course Work Subject			No Cred			
S.No	Area	I	II	III	IV	Total	Percentage
1.	Foundation Course	7	0	0	0	07	8.24 %
2.	Professional Cores	11.5	10.5	3	0	25	29.41 %
3.	Professional Electives	3	6	3	0	12	14.11 %
4.	Employability Enhancement Courses	0	2	12)	24	38	44.71 %
5.	Open Elective Courses	0	0 9	3	0	03	3.53 %
6.	Audit Courses	0	0	-	-	-	-
	Total Credits	21.5	18.5	21	24	85	100%

22CCEC71	RESEARCH METHODOLOGY AND IPR	CEMECTED I
23CSFCZ1	(Common to all Branches)	SEMESTER I

PREREQUISI	ΓES	CATEGORY	L	T	P	C				
	NIL FC									
Course	Course 1. To impart knowledge on research methodology, Quantitative m									
Objectives	writing									
2. To know the importance of IPR and patent rights.										
UNIT – I INTRODUCTION L(9)										
	objectives of Research - Types of research, Var									
Mathematical to	ools for analysis, Developing a research question	-Choice of a pro	bler	n Li	itera	ture				
review, Surveyi	ng, synthesizing, critical analysis, reading materia	ls, reviewing, ret	hink	ing,	crit	tical				
evaluation, inter	pretation, Research Purposes, Ethics in research – A	APA Ethics code.								
UNIT – II	QUANTITATIVE METHODS FOR PROBLE					L (9)				
	eling and Analysis, Time Series Analysis Probabilit									
-	sis and Inference, Multivariate methods, Concept			_		-				
	of Time Series Analysis and Spectral Analysis,	Error Analysis,	App	licat	tions	s of				
Spectral Analysi										
UNIT – III	DATA DESCRIPTION AND REPORT WRITI					L (9)				
	aphical description of data: Tables and graphs of									
	hs that show the relationship between two variab	les, Relation bet	wee	n fre	eque	ency				
	d other graphs, preparing data for analysis.									
	Components of Research Report, Types of Report		esea	rch	Rep	ort,				
	vriting a research report, referencing in academic w	riting.								
UNIT – IV	INTELLECTUAL PROPERTY	1				L (9)				
	ectual Property: Patents, Designs, Trade and Cop		of Pa	itent	ing	and				
	echnological research, innovation, patenting, develo		-							
	enario: International cooperation on Intellectual I	Property. Procedu	re f	or g	rant	s of				
patents, Patentir		242								
UNIT – V	PATENT RIGHTS	=>				L(9)				
	cope of Patent Rights. Licensing and transfer of te	chnology. Patent	ınfo	rma	tion	and				
	raphical Indications.									
Contact Period										
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Peri	iods Total: 45 I	Perio	ods						

REFERENCES

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction", Juta
	Academic, 2nd edition, 2014.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, CengageLearning,
	2013
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition,
	2019
4	Dr. C. R. Kothari and GauravGarg, "Research Methodology: Methods and Trends", New age
	international publishers, 4th Edition, 2018

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Formulate research question for conducting research.	K3
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K2
CO4	Develop a structured content to write technical report.	K3
CO5	Summarize the importance of IPR and protect their research work through	K2
	intellectual property.	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	3	3	1	3
CO2	2	3	-Morrow	3	3	3
CO3	2	3	3	3	3	3
CO4	2	3	BANGO DICHE	3	3	3
CO5	-		2		1	3
23CSFCZ1	2	3	3	3	3	3

ASSESSMENT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	40	40	20	-	-	1	100		
CAT2	40	40	20		-	-	100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100		
ESE	30	30	20	20	-	-	100		

COMI OTER SCIENCE	23CSFC02	MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE	SEMESTER I
-------------------	----------	--	------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	FC	3	1	0	4

Course	To enhance the fundamental knowledge in probability concepts and its applications					
Objectives	relevant to various streams of Engineering and Technology. This is a foundation cour					
	which mainly deals with topic such as probability, standard statistical distribution					
	correlation and regression analysis, testing of hypothesis, linear programming problem					
	transportation and assignment problems and plays an important role in the understanding					
	of Science, Engineering and Computer Science					
	among other disciplines.					
UNIT – I	RANDOM VARIABLES& DISTRIBUTIONS L(9)+T(3					

Random variables: Discrete and continuous random variables- Moments, Moment generating functions-Binomial, Geometric, Poisson, Uniform, Exponential and Normal distributions.

UNIT – II CORRELATION AND REGRESSION ANALYSIS

L(9)+T(3)

Correlation coefficients- Equation of the lines of regression, Regression coefficients, Regression plane-Multiple and Partial correlation, Partial regression.

UNIT -III TESTING OF HYPOTHESIS

L(9)+T(3)

Large samples: Tests for Mean and proportions, Small samples: Tests for Mean, Variance and Attributes using t, F, Chi-Square distributions.

UNIT – IV LINEARPROGRAMMING PROBLEMS

L(9)+T(3)

Formulation of Linear Programming problem: Graphical Method - Simplex Method - Big M method - dual method..

UNIT – V MARKOVIAN QUEUEING MODELS

L(9)+T(3)

Markovian models- Birth and Death Queuing models- steady state results: Single and multiple server queuing models-queues with finite waiting rooms- Finite source models-Little's formula.

Contact Periods:

Lecture: 45 Periods

Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

REFERENCES

1	Veerarajan T, "Probability, Statistics and Random Processes (with Queueing Theory and Queueing Networks)", McGraw Hill Education(India)Pvt Ltd., New Delhi, Fourth Edition 2016.
2	Taha H.A., "Operations Research: An introduction", Ninth Edition, Pearson Education, Asia, New Delhi, 2012.
3	Gupta S.C and Kapoor V.K, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 2015.
4	Gupta S.P, "Statistical Methods", Sultan Chand & Sons, New Delhi, 2015.

5 Veerarajan T, "Higher Engineering Mathematics", Yes Dee Publishing Pvt Ltd, Chennai, 2016.

6 Kandasamy P, Thilagavathy K and Gunavathy K, "Probability and Queueing Theory", S. Chand & Co, Ramnagar, New Delhi, Reprint 2013.

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Solve the engineering problems associated with random variables, moments and moment generating functions.	K4
CO2	Calculate the coefficient of correlation, regression coefficients, multiple and partial correlation.	K4
CO3	Test the significance of hypothesis connected to small and large samples using different parameters.	K4
CO4	Form the linear programming problems for a real time phenomena and find the solution for the same by using simplex, big M and dual methods.	K4
CO5	Analyse problems involving single and multi-server markovian models.	K4

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO 2	PO3	PO 4	PO 5	PO 6
CO1	3	- 4	2		2	1
CO2	3	- //	2	78 - //	2	1
CO3	3	- \	2	M- //	2	1
CO4	3	-]]	2	7 - 11	2	1
CO5	3	- //	A 2	- \	2	1
23CSFC02	3	- //	8 2		2	1
1 - Slight, 2 - N	Moderate, 3 -	- Substantial	W.	3		•

ASSESSMEN'	T PATTERN –	THEORY			3		
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	40	20	10	-	-	100
CAT2	30	40	20	10	-	-	100
	30	40	20	10	-	-	
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	30	40	20	10	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	30	40	20	10	-	-	100
ESE	30	40	20	10	-	-	100

23CSPC01	FORMAL LANGUAGES, MACHINES AND	SEMESTER I
	COMPUTATIONS	

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	1	0	4

Course	The aims of this course are to understand basic theory of computation conc	*
Objectives	that lies at the backbone of all state-of-the-art applications and program des	_
-	Students should understand the capabilities and limits of computation, parti	icular
	applications and capabilities of deterministic and non-deterministic finite	
	automata, context-free grammars, and finally Turing machines, as well as N	NP-
	completeness and complexity classes.	
UNIT – I	REGULAR LANGUAGES AND APPLICATIONS	L(9)+T(3)
Regular Express	sions and applications – Regular languages, properties and applications –	- Finite Automata,
variants and app	lications – Pumping lemma for RL.	
UNIT – II	CONTEXT FREE LANGUAGES	L(9)+T(3)
Grammars – Co	ntext Free Languages, properties and applications – Stack machines – Con	text free frontier -
	applications – Pumping lemma for CFL.	
UNIT – III	TURING MACHINES	L(9)+T(3)
Turing machine	basics – Simple TMs – Language define by TM – Variants of TMs and t	heir equivalence –
Universal TM –	Recursive, Recursively Enumerable languages and properties	•
UNIT – IV	COMPUTABILITY AND UNCOMPUTABILITY	L(9)+T(3)
Turing computal	ble functions – Functions and languages – TM random access – Church-Turi	ng thesis – Infinite
models, finite m	achines - Halting problem - Reducibility - Rice's theorem - Grammars an	nd Computability –
	ctions - Mathematical uncomputabilities	
UNIT – V	COST MODELS AND ALTERNATE ALGORITHMS	L(9)+T(3)
Asymptotic not	ations, properties and functions – TM cost model – Time complexity	classes – Space
	ses – Higher complexity classes – Verification methods – NP, NP hard	and NP Complete
complexity class		•
	roximation algorithms, probabilistic and parallel algorithms – Interactive pro-	of system
	roximation algorithms, probabilistic and parallel algorithms – Interactive production	of system

REFERENCES:

1	John E Hopcroft, Rajeev Motwani, Jeffrey D Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson, 2013
2	John C. Martin, "Introduction to languages and the theory of computation", Third edition, McGrawHil, 2015

3	Michael Sipser, "Introduction to Theory of Computation", Third Edition, Cengage learning, 2013.
4	H.R.Lewis and C.H.Papadimitriou, "Elements of the theory of Computation", Second Edition, Pearson, 2015

COURSE OF Upon Comple	UTCOMES: etion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Identify, use and apply Formal Languages	К3
CO2	Solve given problem by constructing appropriate Automata/Machines	K4
CO3	Provide solution model for computable functions	K5
CO4	Classify the problems based on the cost analysis	K6
CO5	Use alternate models of computation such as Approximation algorithms, probabilistic and parallel algorithms and Interactive proof system	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2		3	3	3	-
CO2	3	// 8	2	3	3	-
CO3	3	1 8	3	3	3	-
CO4	2		3	3	2	1
CO5	1	- C-	Colore	acus 1	1	2
23CSPC01	3	- TEE	3100	3	3	1

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	30	20	-	-	-	100
CAT2	20	30	30	20	-	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	-	-	40	40	20	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-		sdeni vançio	40 NE 11 th ann 1977	40	20	100
ESE	40	30	30		-	-	100

23CSPC02

HIGH PERFORMANCE COMPUTER ARCHITECTURE

SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

Course	After the completion of the course, the students will be able to understand fundam	
Objectives	Computer Organization, performance laws and memory organization. Concepts and instruction level parallelism with different types of data Level Parallelism and different	
	thread level parallelism. extract the performance from software that is oblivious to arch	J 1
UNIT – I	FUNDAMENTALS OF QUANTITATIVE DESIGN AND ANALYSIS AND	L(9)
	MEMORY HIERARCHY DESIGN	ļ

RISC processors - Characteristics of RISC processors, RISC vs CISC, Classification of Instruction Set Architectures - Review of performance measurements - Trends in Technology, Power and Energy in Integrated Circuits and Cost - Dependability - Measuring, Reporting, and Summarizing Performance - Quantitative Principles of Computer Design - Memory Hierarchy Design - Introduction - Memory Technology and Optimizations - Ten Advanced Optimizations of Cache Performance - Virtual Memory and Virtual Machines - Cross-Cutting Issues: The Design of Memory Hierarchies.

UNIT – II INSTRUCTION-LEVEL PARALLELISM AND ITS EXPLOITATION L(9)

Instruction-Level Parallelism: Concepts and Challenges - Basic Compiler Techniques for Exposing ILP - Reducing Branch Costs With Advanced Branch Prediction - Overcoming Data Hazards With Dynamic Scheduling - Dynamic Scheduling: Examples and the Algorithm - Hardware-Based Speculation - Exploiting ILP Using Multiple Issue and Static Scheduling - Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation - Advanced Techniques for Instruction Delivery and Speculation.

UNIT – III DATA-LEVEL PARALLELISM IN VECTOR, SIMD, GPU L(9) ARCHITECTURES ANDWAREHOUSE-SCALE COMPUTERS

Introduction - Vector Architecture - SIMD Instruction Set Extensions for Multimedia - Graphics Processing Units - Detecting and Enhancing Loop-Level Parallelism - Programming Models and Workloads for Warehouse-Scale Computers - Computers - Computers - Computers - Computers - Computers - Cloud Computing: The Return of Utility Computing.

UNIT – IV THREAD-LEVEL PARALLELISM

L(9)

Introduction - Centralized Shared-Memory Architectures - Performance of Symmetric Shared-Memory Multiprocessors - Distributed Shared-Memory and Directory-Based Coherence - Synchronization: The Basics - Models of Memory Consistency: An Introduction - Cross-Cutting Issues - Multicore Processors and Their Performance - The Future of Multicore Scaling.

UNIT - V DOMAIN-SPECIFIC ARCHITECTURES

L(9)

Introduction- Guidelines for DSAs - Example Domain: Deep Neural Networks - Google's Tensor Processing Unit, an Inference Data Center Accelerator - Microsoft Catapult, a Flexible Data Center Accelerator - Intel Crest, a Data Center Accelerator for Training - Pixel Visual Core, a Personal Mobile Device Image Processing Unit -A Vision of Computer Architecture Research over the Next 15 Years.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES:

- John L. Hennessey and David A. Patterson, "Computer Architecture A Quantitative Approach", Morgan Kaufmann / Elsevier, Six edition, 2019.
 William Stallings, "Computer Organization and Architecture Designing for Performance", Pearson Education, Tenth Edition, 2016.
- 3 D. A. Patterson and J. L. Hennessy, "Computer Organization and Design RISC-V Edition: The Hardware Software Interface," 1st Edition, Morgan Kaufmann Publishing Co., Menlo Park, CA., April 2017.
- 4 Luis Ceze, Mark D. Hill, Thomas F. Wenisch , "Arch2030: A Vision of Computer Architecture Research over the Next 15 Years", The Arch2030 Workshop at ISCA 2016.

COURSE OF Upon Comple	UTCOMES: etion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the components and operation of a memory hierarchy and the range of performance issues influencing its design.	K2
CO2	Analyze and exploit instruction level parallelism.	K4
CO3	Evaluate performance of different architectures with respect to Data level Parallelism.	K5
CO4	Understand the organisation and operation of current generation multiprocessor and multicore systems.	K2
CO5	Describe and explain current and future trends in computer architecture	K4

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	3	3
CO2	3	2	3	2	3	3
CO3	3	2	3	2	3	3
CO4	3	2	3	2	3	3
CO5	3	2	3	2	3	3
23CSPC02	3	2	3	2	3	3
1 – Slight, 2 –	- Moderate, 3 – Su	bstantial				•

ASSESSMENT	Γ PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	40	30	20	-	-	100
CAT2	-	40	30	30	-	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	50	30	20	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	50 80 d min	30	20	-	-	100
ESE	40	30	30		-	-	100

23CSPC03	ALGORITHMS AND COMPLEXITY ANALYSIS	SEMESTER I
----------	------------------------------------	------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

_		
Course	The objective of the course is to enable students with the ability to a	
Objectives	performance of algorithms along the capability to understand and de	sign algorithms using
	advanced design and analysis techniques.	
UNIT – I	INTRODUCTION	L(9)
Role of Algor	ithms in Computing - Characterizing Running Times - Divide and Co	onquer – Probabilistic
analysis – Rand	domized algorithms – Sorting and Order Statistics	
UNIT – II	ADVANCED DESIGN AND ANALYSIS TECHNIQUES	L(9)
Dynamic progr	amming: Rod cutting- Matrix-chain multiplication Elements of dynamic	programming, Optimal
binary search	trees-Greedy Algorithms: An activity-selection problem, Elements of	f the greedy strategy,
	-offline caching – Amortized Analysis.	
UNIT – III	GRAPH ALGORITHMS	L(9)
Single source	shortest paths – All pairs shortest paths: Floyd-Warshall algorithm - Jo	hnson's algorithms for
sparse graphs -	- Maximum Flow: Flow networks - The Ford-Fulkerson method-Maximum	m bipartite matching –
	ipartite Graphs: The stable-marriage problem - The Hungarian algorith	
problem		C
UNIT – IV	ADVANCED ALGORITHMS I	L(9)
Parallel Algori	thms: Basics of fork-join parallelism - Parallel Matrix multiplication -	Parallel merge sort –
Online Algorit	hms – Waiting for a elevator – Maintaining a search List –Online Cachi	ing- Matrix Operation:
Solving system	& Linear equation -Matrix Inversion - Symmetric Positive definite Mat	trices and least Square
	- Linear Programming	*
UNIT – V	ADVANCED ALGORITHMS II	L(9)
Polynomials an	nd FFT - Number theoretic Algorithms-String matching - machine lear	ning algorithms - NP
	- Approximation Algorithms	- •
Contact Perio	ds:	
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total	: 45 Periods

REFERENCES

1	Thomas H. Cormen, Charles E. Leiseron, Ronald L.Rivest, Clifford Stein, "Introduction to Algorithms",
	Fourth Edition, PH1 learning Pvt. Ltd., 2022.
2	Anany Levitin, "The Design and analysis & algorithms", III Edition, Pearson, 2011.
3	Jeff Erickson, "Algorithms", 1 st edition, 2019.
1	Abo AV Hangvoft IE and Illinga ID "The Design and Anglysis of Algorithms" Addison Wesley

4 Aho. A.V., Hopcroft. J.E. and Ullman .J.D., "The Design and Analysis of Algorithms", Addison-Wesley, 1974.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Design and analyze algorithms using divide and conquer, dynamic programming, greedy approaches.	K6
CO2	Perform probabilistic analysis and amortized analysis of algorithms.	K1
CO3	Use appropriate graph and matrix manipulation algorithms	К3
CO4	Solve problems using parallel algorithms and linear programming approach.	K2
CO5	Use algorithms on polynomials	K2
CO6	Identify problems that are NP Complete and generate near optimal solution	K4

COs/POs	PO1	BV PO2	PO3	PO4	PO5	PO6
CO1	3	V 32 70	20	9 -	-	2
CO2	3		2	-	-	2
CO3	2		2	77 -	3	2
CO4	2	-	2	-	3	2
CO5	2		2	-	1	2
CO6	2		2	-	-	2
23CSPC03	2		2	· -	1	2

ASSESSMEN	T PATTERN – TI	HEORY	100				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	30	-	20	-	100
CAT2	30	40	30	-	-	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	30	30	30	-	10	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	30	40	30	-	-	-	100
ESE	30	30	20	-	20	-	100

22CCDC04	ADVANCED ALGORITHMS AND
23CSPC04	ELECTIVE LABORATORY

SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	0	0	3	1.5

8	Implement an algorithm to construct Minimum Spanning Trees. Implement Shortest path and Maximum flow algorithms			
7	Implement an algorithm to construct Minimum Spanning Trees.			
6	Implement Graph Traversal algorithms.			
5	Implement stack operations and calculate the amortized cost.			
4	Implement Merge sort algorithm using Divide and Conquer approach.			
3	Implement an algorithm based on greedy approach to solve knapsack problem and Activity selection problem.			
3	contiguous subsequence using dynamic programming approach.			
2	Implement an algorithm to solve Matrix multiplication problem and Maximum value			
1	Implement an algorithm that combines k sorted lists in time O(n log k)where n is the total number of elements.			
	EXERCISESILLUSTRATINGTHEFOLLOWINGCONCEPTS:			
Objectives	algorithms in common engineering design solutions. PRACTICALS			
Course	Explain important algorithmic design paradigms and methods of analysisto design efficient			

COUF Upon (Bloom's Taxonomy Mapped	
CO1	Design and analyze algorithms using divide and conquer, dynamic programming, greedy algorithms	K6
CO2	Perform probabilistic analysis and amortized analysis of algorithms	K4
CO3	Implement Minimum spanning trees, shortest path and Maximum flow algorithms in graphs to solve problems	К6
CO4	Solve problems using String matching algorithms	K6
CO5	Solve problems using Computational geometry algorithms	K6

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	3	1	3	3	
CO2	3	3	3	1	3	3	
CO3	3	3	3	1	3	3	
CO4	3	3	3	1	3	3	
CO5	3	3	3	1	3	3	
23CSPC04	3	3	3	1	3	3	
1 – Slight, 2 – Moderate, 3 – Substantial							

23CSPC05	ADVANCED DATABASE SYSTEMS	SEMESTER II
----------	---------------------------	-------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

Course Objectives	The objective of the course is to explore emerging database technologies.	
UNIT – I	DATABASE DESIGN THEORY, SQL, NOSQL	L(9)

Database environment – Relational model and languages – Normal forms - Basic SQL- Complex Queries, Triggers, Views, and Schema Modification

NOSQL Databases and Big Data Storage Systems :Introduction to NOSQL Systems - The CAP Theorem -Document-Based NOSQL Systems and MongoDB - NOSQL Key-Value Stores - Column-Based or Wide Column NOSQL Systems - NOSQL Graph Databases and Neo4j

Case Study(not for Evaluation): PostgreSQL, MongoDB

UNIT – II INDEXING, QUERY PROCESSING AND OPTIMIZATION

Indexing :Basic Concepts - Ordered Indices - B+ Tree Index File - B+ Tree Extensions - Hash Indices - Multiple-Key Access - Creation of Indices - Write-Optimized Index Structures - Bitmap Indices - Indexing of Spatial and Temporal Data

L(9)

Query Processing : Overview - Measures of Query Cost - Selection Operation - Sorting - Join Operation - Other Operations - Evaluation of Expressions - Query Processing in Memory

Query Optimization: Overview - Transformation of Relational Expressions - Estimating Statistics of Expression Results - Choice of Evaluation Plans - Materialized Views - Advanced Topics in Query Optimization

UNIT – III TRANSACTION PROCESSING, CONCURRENCY CONTROL, AND RECOVERY

Introduction to Transaction Processing -Transaction and System Concepts -Desirable Properties of Transactions - Characterizing Schedules Based on Recoverability- Characterizing Schedules Based on Serializability -Transaction Support in SQL

Two-Phase Locking Techniques for Concurrency Control- Concurrency Control Based on Timestamp Ordering -Multiversion Concurrency Control Techniques - Validation (Optimistic) Techniques and Snapshot Isolation Concurrency Control - Granularity of Data Items and Multiple Granularity Locking - Using Locks for Concurrency Control in Indexes -Other Concurrency Control Issues

Recovery Concepts-NO-UNDO/REDO Recovery Based on Deferred Update- Recovery Techniques Based on Immediate Update- Shadow Paging -The ARIES Recovery Algorithm - Recovery in Multidatabase Systems - Database Backup and Recovery from Catastrophic Failures

UNIT – IV PARALLEL AND DISTRIBUTED DATABASES L(9)

Database system Architecture- Parallel Systems – Distributed Systems – Transaction processing in parallel and distributed system –cloud based services – Parallel and Distributed Storage : Data Partitioning –Dealing with Skew in Partitioning - Replication - Parallel Indexing -Distributed File Systems - Parallel Key-Value Stores.

Parallel and Distributed Query Processing: Parallel sort -parallel Join - Parallel Evaluation of Query Plans - Query Processing on Shared-Memory Architectures - Query Optimization for Parallel Execution - Parallel Processing of Streaming Data -Distributed Query Processing - Parallel and Distributed Transaction Processing.

UNIT - V DATABASE SECURITY AND ENHANCED DATA MODELS L(9)

Database Security: Issues, Access Control Mechanisms, SQL injection, Statistical Database security – Advanced Data models: Active Database, Temporal Database, Spatial Database Multimedia Database, Deductive Databases, Blockchain Databases

Case Study(not for Evaluation): Support of spatial, temporal and Multimedia in PostgreSQL and MongoDB, Hyperledger Fabric,corda

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES:

1	Elmasri, Ramez. "Fundamentals of database systems" seventh edition, Pearson, 2021.
2	Silberschatz, Abraham, Henry F. Korth, and Shashank Sudarshan. "Database system concepts."
	Sixth edition , McGraw Hill ,2011.
3	Coronel, Carlos, and Steven Morris "Database systems: design, implementation and management"
	Cengage learning, sixth edition, Pearson 2019.
4	Diaz, Christopher. Database Security: Problems and Solutions. Stylus Publishing, LLC, 2022.
5	https://www.postgresql.org/
6	https://www.mongodb.com/

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:		
CO1	Demonstrate SQL and NoSQL databases	K3	
CO2	Explain different techniques used for indexing ,query processing and Query optimization	K2	
CO3	Explore the principle and techniques behind Transaction Processing, Concurrency Control, and database recovery	K2	
CO4	Apply Concurrency control and Query Optimization algorithms in Parallel and Distributed data model	К3	
CO5	Elaborate on Database Security and Advanced Data Model	K2	

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	3	2	3	3			
CO2	3	2	3	2	3	3			
CO3	3	2	3	2	3	3			
CO4	3	2	3	2	3	3			
CO5	3	2	3	2	3	3			
23CSPC05	3	2	3	2	3	3			
1 – Slight, 2 –	- Slight, 2 - Moderate, 3 - Substantial								

ASSESSMEN	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	40	50	-	-	-	100
CAT2	20	40	40	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	8 50.5 S	50.		-	-	100
ESE	40	30	30	//-	-	-	100

23CSPC06 ADVANCED COMPUTER NETWORKS SEMESTER II

PREREQUISIT	TES:	CATEGORY	L	T	P	C	
	NIL	PC	3	0	0	3	
Course	This course explores advanced topics in comp	outer networks,	focus	sing	on	both	
Objectives	theoretical concepts and practical applications in			_			
3	switching, network security, emerging technologic reliable data communication.					_	
UNIT – I	NETWORKING CONCEPTS]	L(9)	
	Vs Client-Server Networks, Network Devices, O	SI Model. Pack	ets.	Frar			
	ion and Broadcast Domains, LAN Vs WAN, N						
	I, IP, Wireless networking, IP addressing, TCP/IP.					-	
and QoE.		•					
UNIT – II	MOBILE NETWORKS]	L(9)	
4G Networks ar	d Composite Radio Environment, Protocol Booste	rs, Hybrid 4G W	irele	ss N	etwo	orks	
,	n Wireless Networks, Physical Layer and Multiple				_	•	
	5G, channel access, air interface, Cognitive Radio	, Spectrum mana	gem	ent,	C-R	AN	
architecture, Inti		2)					
UNIT – III	SOFTWARE DEFINED NETWORKS					L(9)	
	are and Characteristics, SDN- and NFV-Related S						
Plane Function				_		J - T	
	vlight, SDN Application Plane Architecture,					10n	
	ngineering, Measurement and Monitoring, Data cen	ter networking, I	ntori	matı	on		
centric networki UNIT – IV	ng NETWORK FUNCTIONS VIRTUALIZATIO!	V			1	L(9)	
	rtual Machines, NFV benefits and requirement		ahita	otur		` ′	
	Virtualized Network Functions, NFV Manageme						
	nd SDN, Network virtualization – VLAN and						
tenant Network	ilu SDN, Network virtualization – vlan aliu	VIN, Open Day	/ L18	3111 8	V 11	tuai	
UNIT – V	EMERGING NETWORKS AND SECURITY	SH			1	L(9)	
Cloud Computing – Basic concepts, Cloud services, Deployment models, Architecture. Internet of							
Things – Scope and Components, Sensors, RFID, NFC, HIP, Architecture and Implementation, Fog							
and Edge Computing, Block chain in networking, Network Security – Threats and							
	Security polices, Security Requirements in SDN, N		11110	ais	una	•	
Contact Period		.,101, 01044.					
Lecture: 45 Per		iods Total: 45	Peri	ods			

REFERENCES:

1	James Bernstein, "Networking Made Easy: Get Yourself Connected", Computers Made Easy,
	2018(Unit I)
2	Erik Dahlman, Stefan Parkvall, Johan Skold, "4G: LTE/LTE-Advanced for Mobile
	Broadband", Academic Press, 2013 (Unit II)
3	Saad Z. Asif, "5G Mobile Communications Concepts and Technologies", CRC press –
	2019 (Unit II)
4	William Stallings, "Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud",
	1st Edition, Pearson Education, 2016 (Units III, IV, V)

	E OUTCOMES: mpletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the components of modern network architectures considering scalability, performance, and various design constraints.	K2
CO2	Apply SDN principles in implementing virtualized network solutions	K3
CO3	Analyze and compare various mobile network architecture and protocols	K4
CO4	Evaluate virtualized network solutions, adapting to dynamic demands and optimizing resource utilization.	K5
CO5	Compare the network architectures of Cloud, Fog, Edge, IoT and analyze their security issues	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	3	-	2	-
CO2	1	1	3	-	2	-
CO3	1	1	3	-	2	-
CO4	1	19	0 359		2	-
CO5	1		முல் நட்318 கா		2	-
23CSPC06	1		97.63		2	-
1 - Slight, 2 - Mo	oderate, 3 – Sub	stantial				

ASSESSMEN	T PATTERN – T	THEORY		1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	20	20	20	20	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	20	20	20	20	20	100
Individual Assessmen t 2 /Case Study 2/ Seminar 2 / Project 2	-	10	30	30	20	10	100
ESE	20	40	40	-	-	-	100

23CSPC07	ADVANCED OPERATING SYSTEM	SEMESTER II
----------	---------------------------	-------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

Objectives	Gain knowledge on fundamentals of distributed systems and get an insight issues and solutions in distributed operating systems, distributed mutual ex deadlock detection and distributed resource management. Learn about real-time operating systems, concepts of mobile and cloud op	clusion,			
UNIT – I	INTRODUCTION	L(9)			
Distributed Oper	rating Systems – Issues – Communication Primitives – Limitations of a	Distributed			
System – Lampo	ort's Logical Clocks – Vector Clocks – Causal Ordering of Messages				
UNIT – II	DISTRIBUTED OPERATING SYSTEMS	L(9)			
Algorithm — Rice Based Algorithm Algorithms — Di Algorithm — Hice Solutions to the E UNIT — III Distributed File Distributed Share — Load Distribution	al Exclusion Algorithms – Classification – Preliminaries – Simple Soluticart-Agrawala Algorithm – Suzuki-Kasami's Broadcast Algorithm – Range – Distributed Deadlock Detection – Preliminaries – Centralized Deadstributed Deadlock Detection Algorithms – Path Pushing Algorithm – Pararchical Deadlock Detection Algorithms – Agreement Protocols – Byzantine Agreement Problem – Lamport-Shostak- Pease Algorithm. DISTRIBUTED RESOURCE MANAGEMENT Systems – Design Issues – Google File System – Hadoop Distributed Memory – Algorithms for Implementing Distributed Shared Memory and Algorithms – Synchronous and Asynchronous Check Pointing and Reco – Two-Phase Commit Protocol – Nonblocking Commit Protocol.	aymond's Tree-dlock Detection Edge Chasing Classification – L(9) I File System–			
UNIT – IV	REAL TIME OPERATING SYSTEMS	L(9)			
Basic Model of Real - Time Systems - Characteristics - Application of Real - Time Systems - Real - Time Task Scheduling - Handling Resource Sharing.					
UNIT – V	MOBILE AND CLOUD OPERATING SYSTEMS	L(9)			
and Android's Ja	Android – Overall Architecture – Linux Kernel – Hardware Support – Native User-Space – Dalvik and Android's Java – System Services – Introduction to Cloud Operating Systems.				
Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

REFERENCES:

- 1 Mukesh Singhal and Niranjan G. Shivaratri, "Advanced Concepts in Operating Systems Distributed, Database and Multiprocessor Operating Systems", Tata MC Graw-Hill, 2001.
- 2 Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson Education India, 2006.
- 3 Karim Yaghmour, "Embedded Android", O'Reilly, First Edition, 2013.
- 4 Nikolay Elenkov, "Android Security Internals: An In-Depth Guide to Android's Security Architecture", No Starch Press, 2014.

	OUTCOMES: eletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the fundamental concepts in distributed OS.	K1
CO2	Demonstrate the Mutual exclusion, Deadlock detection and agreement protocols of Distributed operating systems.	K2
CO3	Identify the requirements of Distributed File System and Distributed Shared Memory.	K2
CO4	Identify the different features of real time operating systems.	К3
CO5	Discuss the role of operating systems in cloud and mobile environment.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1		3		2	2
CO2	3	2	் சாந்வ வு3 பக	2	3	3
CO3	2				3	3
CO4	2	/1	3		2	3
CO5	1	2	2	//	1	3
23CSPC07	2	1	3	//1	3	3
1 - Slight, 2 - M	oderate, 3 – Substa	ntial				

ASSESSMENT	PATTERN - TH	IEORY 💮					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3)	Analyzing (K4) %	Evaluating (K5) %	Creating (K6)	Total %
CAT1	40	40	20	207	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100
ESE	30	30	40	-	-	-	100

23CSPC08	ADVANCED COMPUTER NETWORKS AND ELECTIVES	SEMESTER II
	LABORATORY	SENIESTEKTI

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	0	0	3	1.5

Course			e students gain practical, hands-oputer networks, preparing them for	1 11 2 0			
Objectives	challenges in		iputer networks, preparing them for	icai-world section to and			
	EXERCISE						
1	Implement b	Implement basic routing and congestion control algorithms.					
2		ion Point to Point network fer by varying the queue size	using duplex links between the rand bandwidth (NS3).	nodes. Analyze the			
3		Implement the dynamic routing protocol by varying the CBR traffic for each node and use a flow monitor to monitor losses at nodes (NS3).					
4		Create a wireless mobile ad-hoc network environment and implement the OLSR routing Protocol (NS3).					
5		install hypervisor such as Virt ual machines using hyperviso	ualBox, VMware, or Hyper-V on y r interface.	our host machine. Create			
6		ifferent network settings for ing to access services running	your virtual machine (NAT, Bridg g inside the virtual machine.	ged, Host-Only) and Setup			
7	Create topo		gure OpenFlow switches with	POX			
8	Install and co	onfigure an SDN controller (C	OpenDaylight or ONOS).				
9	Network Packet Analysis- Select a TCP packet and follow the TCP stream to see the entire conversation between two hosts (Wireshark).						
10	DNS analysis - Capture DNS traffic and analyze the DNS queries and responses (Wireshark).						
Contact Peri	ods:	88 M	1				
Lecture: 0 P	eriods	Tutorial: 0 Periods	Practical: : 45 Periods	Total: 45 Periods			

	E OUTCOMES: mpletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Analyze and optimize routing protocol parameters for enhanced network performance.	K4
CO2	Design and simulate voice and data traffic within mobile network	K5
CO3	Understand the concept of virtual routing and forwarding for network isolation	K2
CO4	Test and observe the impact of SDN on network behavior	K3
CO5	Capture and analyze real-time data on a network	K4

COURSE AR	TICULATION MAT	TRIX				
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	3	-	3	-
CO2	2	1	3	-	3	-
CO3	2	1	3	-	3	-
CO4	2	1	3	-	3	-
CO5	2	1	3	-	3	-
23CSPC08	2	1	3	-	3	-
1-Slight, 2-M	Ioderate, 3–Substantia	.1		•		

23CSEE01	MINI PROJECT	SEMESTER II
----------	--------------	-------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	0	0	4	2

Contact Periods Lecture: 0 Perio	:	Practical: 60 Periods	Total: 60 Periods
Course Objectives		me through detailed review	of the society and collecting of literature and develop the ect reports.

	OUTCOMES: pletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature to get clear idea about the project work.	K2
CO2	Develop the methodology to solve the identified problem.	K3
CO3	Confidence to work on projects independently.	K2
CO4	Improve presentation and communication skills.	K3
CO5	Identify one's need for further knowledge and continuously develop one's own competencies, write clear, concise and accurate technical document for publication.	K2

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	2	3	3	3				
CO2	2	2	2	3	3	3				
CO3	2	2	2	2	2	2				
CO4	1	1	2	1	1	3				
CO5	1	3	1	2	3	3				
23CSEE01	2	3	2	2	3	3				
1 – Slight, 2 – Mod	erate, 3 – Substa	ntial	•	•						

23CSPC09 DATA SCIENCE						SEMESTER III			
PREREQUISI	PREREQUISITES CATEG					P	C		
	NIL			3	0	0	3		

Course Objectives	This course introduces he techniques and processes of data science, Descript Visualize data for various applications, Understand inferential data analytics build predictive models from data	•
UNIT – I	INTRODUCTION TO DATA SCIENCE	L(8)

Need for data science – benefits and uses – facets of data – data science process – setting the research goal – retrieving data – cleansing, integrating, and transforming data – exploratory data analysis – build the models – presenting and building applications.

UNIT – II DESCRIPTIVE ANALYTICS

L(10)

Frequency distributions – Outliers –interpreting distributions – graphs – averages - describing variability – interquartile range – variability for qualitative and ranked data - Normal distributions – z scores –correlation – scatter plots – regression – regression line – least squares regression line – standard error of estimate – interpretation of r2 – multiple regression equations – regression toward the mean

UNIT – III INFERENTIAL STATISTICS

L(9)

Populations – samples – random sampling – Sampling distribution- standard error of the mean - Hypothesis testing – z-test – z-test procedure –decision rule – calculations – decisions – interpretations - one-tailed and two-tailed tests – Estimation – point estimate – confidence interval – level of confidence – effect of sample size.

UNIT – IV ANALYSIS OF VARIANCE

L(9)

t-test for one sample – sampling distribution of t – t-test procedure – t-test for two independent samples – p-value – statistical significance – t-test for two related samples. F-test – t-test procedure – t-test for two related samples. t-test – t-test procedure – t-test for two related samples. t-test – t-test procedure – t-test for two related samples. t-test – t-test procedure – t-test for two related samples. t-test – t-test procedure – t-test for two related samples. t-test procedure – t-test for two independent samples – t-test procedure – t-test for two related samples. t-test procedure – t-test for two independent samples – t-test procedure – t-test for two related samples – t-test procedure – t-test for two related samples – t-test procedure – t-test for two related samples – t-test procedure – t-test for two related samples – t-test procedure – t-test for two related samples – t-test procedure – t-test for two related samples – t-test procedure – t-test for two related samples – t-test procedure – t-test for two related samples – t-test procedure – t-test for two related samples – t-test procedure – t-test procedure – t-test procedure – t-test for two related samples – t-test procedure – t-test proc

UNIT - V PREDICTIVE ANALYTICS

1.(9)

Linear least squares – implementation – goodness of fit – testing a linear model – weighted resampling. Regression using StatsModels – multiple regression – nonlinear relationships – logistic regression – estimating parameters – Time series analysis – moving averages – missing values – serial correlation – autocorrelation. Introduction to survival analysis

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES:

- 1 Robert S. Witte and John S. Witte, "Statistics", Eleventh Edition, Wiley Publications, 2017.
- 2 David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, 2016
- 3 Sanjeev J. Wagh, Manisha S. Bhende, Anuradha D. Thakare, "Fundamentals of Data Science", CRC Press, 2022
- 4 Chirag Shah, "A Hands-On Introduction to Data Science", Cambridge University Press, 2020.
- 5 Vineet Raina, Srinath Krishnamurthy, "Building an Effective Data Science Practice: A Framework to Bootstrap and Manage a Successful Data Science Practice", Apress, 2021.
- 6 Tony Ojeda, Sean Patrick Murphy, Benjamin Bengfort, Abhijit Dasgupta, "Practical Data Science Cookbook", Packt Publishing Ltd., 2014

COURSE O Upon Comp			se, the students	will able to:			Bloom's Taxonomy Mapped
CO1	Ex	plain the pr	ocess of data	science			K2
CO2	De	scribe and	visualize data	l			K1
CO3	Pe	rform statis	tical inferenc	es from data			К3
CO4	An	alyze the v	ariance in the	data			K3
CO5	Bu	ild models	for predictive	e analytics			K4
COURSE A	RTI	CULATION	MATRIX				
COs/POs	8	PO1	PO2	PO3	PO4	PO5	PO6
CO1		3	1	-	2	-	-
CO2		3	1	2	3	1	-
CO3		3	-	2	3	2	-
CO4		2	1	2	3	3	1
CO5		3	3	3	3	3	3
23CSPC09		3	1	2 ~~~	my 3	3	1
1 – Slight, 2	- M	loderate, 3 –	Substantial	Big Bern Da	118 B 518 100		•

ASSESSMENT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	50	30	20		-	-	100		
CAT2	20	30	30	20	-	-	100		
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	-		GG T	40	40	20	100		
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	-		40	40	20	100		
ESE	40	30	30	-	-	-	100		

Winds To a V

23CSEE02	PROJECT - I	SEMESTER III
----------	-------------	--------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	0	0	24	12

Objectives To identify a specific problem for the current need of the society and collecting informat related to the same through detailed review of literature and develop the methodology solve the identified problem, prepare project reports.			
Contact Periods: Lecture: 0 Period		Practical: 360 Periods	Total: 360 Periods

	A OUTCOMES: appletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature to get clear idea about the project work.	K4
CO2	Develop clear outline and methodology to solve the identified problem.	K4
CO3	Confidence to work on projects independently.	K2
CO4	Improve presentation and communication skills.	К3
CO5	Identify one's need for further knowledge and continuously develop one's own competencies, write clear, concise and accurate technical document for publication.	К3

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	200	20	2	2	3
CO2	3	- 6	2	3	3	3
CO3	2	-	3	2	2	3
CO4	1	1	2	1	1	3
CO5	1	3	1	2	3	3
23CSEE02	3	2	2	3	3	3

23CSEE03	PROJECT - II	SEMESTER IV
----------	--------------	-------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	ı	1	*	24

Course Objectives	To identify a specific problem for the current need of the society and collecting information related to the same through detailed review of literature and develop the methodology to solve the identified problem, prepare project reports.
Contact Periods: Lecture: 0 Period	

	COUTCOMES: upletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Identify a specific problem for the current need of the society and collecting	K4
	information related to the same through detailed review of literature to get clear	
	idea about the project work.	
CO2	Develop a clear outline and methodology to solve the identified problem.	K4
CO3	Confidence to work on projects independently.	K2
CO4	Improve presentation and communication skills.	K5
CO5	Identify one's need for further knowledge and continuously develop one's own	К3
	competencies, write clear, concise and accurate technical document for	
	publication and publish the findings in the peer reviewed National/International	
	journals	

Journals		00 ~		-11				
	A	R	7.7	3.				
COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3		2	2	2	3		
CO2	3	200	2	3	3	3		
CO3	2	-	3	2	2	3		
CO4	1	1	2	1	1	3		
CO5	1	3	1	2	3	3		
23CSEE03	3	2	2	3	3	3		
1 – Slight, 2 – Mode	erate, 3 – Substan	tial	•	•				

23CSPEUI DIGITAL IMAGE PROCESSING SEMESTER I		23CSPE01	DIGITAL IMAGE PROCESSING	SEMESTER I
--	--	----------	--------------------------	------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	1. Understand the basic concepts of image processing like pixel relations, transforms and				
Objectives	1 , 1				
	Recognition.				
	2. Apply image processing concepts in real time applications				
UNIT – I	FUNDAMENTALS	L(9)			
	Processing – Fundamental steps, Components – Elements of Visual Perception – Image Sen	sing and			
	impling and Quantization – Relationship between Pixels – Color Image Fundamentals				
UNIT – II	IMAGE TRANSFORMS AND ENHANCEMENT	L(9)			
	ms and its properties: Unitary transform, Discrete Fourier Transform, Discrete Cosine Transform,				
	sh transform, Haar Transform, Hoteling Transform - Image Enhancement in spatial Doma				
	ations, Histogram processing, Spatial Filtering - Image Enhancement in spatial Domain: Sha	arpening			
and smoothing	filters, Homomorphic filtering				
UNIT – III	IMAGE RESTORATION AND COMPRESSION	L(9)			
Image Restorat	Image Restoration: Degradation model - Noise models - Estimating Degradation - Algebraic approach to				
restoration - In	verse Filtering - Wiener Filtering - Blind deconvolution -Image reconstruction from pro	jections.			
	ssion: redundancy and compression models - Loss less compression: variable-length, F				
Arithmetic cod	ing, bit-plane coding, Lossless predictive coding. Lossy compression: Transform based	d coding			
(DCT), JPEG st	andard				
UNIT – IV	IMAGE SEGMENTATION, UNDERSTANDING AND RECOGNITION	L(9)			
Image Segment	ation: Line, Edge Detection - Edge Linking and Boundary detection - Region based segment	ntation –			
Boundary repre	Boundary representation – Region Descriptors. Image understanding and recognition: Pattern classes - Matching by				
templates, classifiers-statistical and neural network based model					
UNIT – V	APPLICATIONS	L(9)			
Applications: A	automatic fruit grading system in Precision agriculture - Automatic visual system - fore	nsic and			
	- Medical Investigation - Entertainment: Multimedia				
Contact Period	ls:				
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

1	Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Fourth Edition, Pearson Education, 2018
2	Anil K. Jain, "Fundamental of Digital Image Processing", Prentice Hall, 2015
3	Annadurai S, Shanmugalakshmi R, "Fundamentals of Digital Image Processing", Pearson Education Pvt. Ltd., 2007
4	S. Jayaraman, S.Esakkirajan, T.Veerakumar, "Digital Image Processing", Second Edition, Tata McGraw Hill Education Pvt. Ltd., 2020.
5	S. Sridhar, "Digital Image Processing", Second Edition, OXFORD University press, 2016

COUR Upon C	Bloom's Taxonomy Mapped	
CO1	Describe the image processing steps and relationship between the pixels.	K2
CO2	Apply the image transforms and enhancement techniques on images.	K3
CO3	Analyze the different kinds of restoration and compression techniques of image processing.	K4
CO4	Perform edge detection and segmentation and Recognize image using matching by templates, statistical and neuralnetwork models.	K5
CO5	Apply suitable image processing techniques for various real time applications like medical and network security applications	K3

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
			The B			
CO1	2	8156	China 3	E16104	1	1
CO2	3	- V	3	200	2	2
CO3	3		3		2	2
CO4	3		3		3	3
CO5	3	-1	3	2 -//	3	3
23CSPE01	3	- 11	3/	-//	2	2
1 - Slight, 2 - N	Moderate, 3 – Subs	stantial	AUD.	1		

ASSESSMENT	PATTERN – T	HEORY					
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	3	-	100
CAT2	20	30	20	30	K -	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	30	20	20	30	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	30	20	-	20	30	100
ESE	10	30	20	20	10	10	100

23CSPE02	EMBEDDED SYSTEMS	SEMESTER I
----------	------------------	------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Object		proper Microcontroller for an application. The usage of the development an Memory systems and Peripherals.	ıd debug	gging tools.
UNIT	I - I	INTRODUCTION TO EMBEDDED CONCEPTS		L(9)

Introduction to embedded systems, Application Areas, Categories of embedded systems, Overview of embedded system architecture, Specialties of embedded systems, recent trends in embedded systems, Architecture of embedded systems, Hardware architecture, Software architecture, Application Software, Communication Software.

UNIT – II OVERVIEW OF ARM AND CORTEX-M3

L(9)

Background of ARM Architecture, Architecture Versions, Processor Naming, Instruction Set Development, Thumb-2 and Instruction Set Architecture. Cortex-M3 Basics: Registers, General Purpose Registers, Stack Pointer, Link Register, Program Counter, Special Registers, Operation Mode, Exceptions and Interrupts, Vector Tables, Stack Memory Operations, Reset Sequence. CortexM3Instruction Sets: Assembly Basics, Instruction List, Instruction Descriptions.Cortex-M3 Implementation Overview: Pipeline, Block Diagram, Bus. Interfaces on Cortex-M3, I-Code Bus, D Code Bus, System Bus, External PPB and DAP Bus

UNIT – III CORTEX EXCEPTION HANDLING AND INTERRUPTS

L(9)

Exceptions: Exception Types, Priority, Vector Tables, Interrupt Inputs and Pending Behavior, Fault Exceptions, Supervisor Call and Pendable Service Call. NVIC: Nested Vectored Interrupt Controller Overview, Basic Interrupt Configuration, Software Interrupts and SYSTICK Timer. Interrupt Behavior: Interrupt/Exception Sequences, Exception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Interrupt Latency

UNIT – IV | CORTEX-M3/M4 PROGRAMMING

L(9

Cortex-M3/M4 Programming: Overview, Typical Development Flow, Using C, CMSIS (Cortex Microcontroller Software Interface Standard), Using Assembly. Exception Programming: Using Interrupts, Exception/Interrupt Handlers, Software Interrupts, Vector Table Relocation. Memory Protection Unit and other Cortex-M3 features: MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication.

UNIT – V CORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLS

Ι (0

STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC, Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Joseph Yiu," The Definitive Guide to the ARM Cortex-M3", Second Edition, Elsevier Inc. 2010.							
2	Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide Designing and							
	Optimizing System Software", Elsevier Publications, 2006							
3	Steve Furber, "ARM System-on-Chip Architecture", 2nd Edition, Pearson Education, India ISBN:							
	9788131708408, 8131708403 , 2015							
4	STM32L152xx ARM Cortex M3 Microcontroller Reference Manual 5/97							
5	ARM Company Ltd. "ARM Architecture Reference Manual ARM DDI 0100E"							

COURSE OUTCOMES: Upon Completion of the course, the students will able to:				
CO1	Understand the Embedded Concepts and Architecture of Embedded Systems.	K2		
CO2	Describe the architectural features and instructions of ARM Cortex M3 Microcontroller.	K2		
CO3	Use Interrupts, Exception/Interrupt Handlers, Software Interrupts, Vector Table Relocation.	K2		
CO4	Use ARM Cortex M3/M4 with Embedded C Programming for Application Development.	K5		
CO5	Design and implement software systems to provide an interface to ARM Cortex M3 based hardware systems.	K6		

COURSE ARTICULATION MATRIX:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	-	3	2	2	3	
CO2	2	70	Banday 3yi (18	2	2	3	
CO3	2	ور	3 2	2	2	3	
CO4	3	-//	3	3	2	3	
CO5	3	6	3	3	2	3	
23CSPE02	2	-11	3	2	2	3	
1 - Slight, 2 - N	1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMEN	T PATTERN –	THEORY	BOW				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	30	10	10) -	-	100
CAT2	40	25	20	10	-	5	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	30	10	10	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	5	5	20	20	15	35	100
ESE	50	25	15	10	-	-	100

MESTER I
V

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	1. Explain the basics of Fuzzy set, Fuzzy relations, and methods for Fuzzy	zzification and Fuzzy		
Objectives	Logic Systems.			
	2. Understand the architecture and learning rules of simple neural netw	orks, BPN, BAM and		
	competitive resonance neural networks	1		
UNIT – I	FUNDAMENTALS OF FUZZY LOGIC	L(9)		
	Fuzzy Sets: Operations and Properties - Classical Relations and Fuzzy Re			
	mposition, Tolerance and Equivalence Relations - Membership Functions:	Features and Standard		
Forms – Fuzzifi	cation– Λ Cuts For Fuzzy Sets and Relations - Defuzzification			
UNIT – II	FUZZY LOGIC SYSTEMS AND APPLICATIONS	L(9)		
	zy Systems - Membership Value Assignments - Automated Methods for			
Squares Algorit	hm, Gradient and Clustering Method - Decision Making with Fuzzy Infor	rmation – Applications:		
Fuzzy Classific	ation, Fuzzy Pattern Recognition - Fuzzy Control Systems: Design Problem	ns, Examples, Industrial		
Applications– F	uzzy Information Retrieval			
UNIT – III	ARCHITECTURE OF NEURAL NETWORKS	L(9)		
Artificial Neura	al Networks - Biological Neural Networks - Typical Architecture - Setting	ng Weights - Common		
Activations Fu	nctions- Basic Learning Rules - Mcculloch-Pitts Neuron - Simple Ne	eural Nets For Pattern		
Classification: A	Architecture, Biases and Thresholds, Linear Separability, Hebb Net-Perceptron	-Adaline.		
UNIT – IV	BASIC NEURAL NETWORK TECHNIQUES	L(9)		
Back Propagation	on Neural Net: Standard Back Propagation – Architecture, Algorithm- Trainin	ng Algorithm for Pattern		
Association-Hel	ob Rule and Delta Rule - Associative and other Neural Networks: Hetro Associative	ociative Memory Neural		
Net, Auto Assoc	ciative Net-Bidirectional Associative Memory-Applications-Hopfield Nets-Bo	oltzman Machine		
UNIT – V	COMPETITIVE NEURAL NETWORKS	L(9)		
Neural Networ	k Based on Competition: Fixed Weight Competitive Nets- Kohonensel	fOrganizing Maps and		
Applications-Learning Vector Quantization-Counter Propagation Nets and Applications - Adaptive Resonance				
Theory: Basic Architecture and Operation-Architecture, Algorithm, Application and Analysis of ART1 & ART2 -				
Cognitron and N	Veocognitron - Architecture, Training Algorithm and application			
Contact Period	s:			
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods			

1	LaureneFausett, "Fundamentals of Neural Networks", Pearson Education India, 2008.
2	Timothy J.Ross, "Fuzzy Logic with Engineering Applications", John Wiley and sons Pvt.Ltd, Fourth Edition, 2016
3	J.A.Freeman and B.M.Skapura, "Neural Networks, Algorithms applications and Programming Techniques",
	Pearson, 2002
4	Zimmermann.H.J, "Fuzzy Set Theory and its Applications", Kluwer Academic Publishers, Dordrecht, Germany,
	Fourth Edition, 2013.
5	Zurada J.M. "Introduction to Artificial Neural Systems", Jaico Publishing House, 1994

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Perform simple arithmetic, logical and geometric operations on classical and fuzzy sets.	K3
CO2	Apply Fuzzy Logic techniques for real time applications.	K3
CO3	Apply activation functions suitable for different neural networks and Solve linearly separable problems	К3
CO4	Choose and apply the suitable BPN algorithm for pattern classification, character recognization	K4
CO5	Describe the features, operations and applications of Competitive Networks and Adaptive resonance neural networks, and Neocognitron.	K2

COURSE ARTICULATION MATRIX:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	3	2	2	2
CO2	3		3	3	2	2
CO3	2	81 Sept 60 /2	0 3 3 1 1 b	***** 2	2	2
CO4	3	1/59	3	3	2	2
CO5	2		3	2	1	2
23CSPE03	2	1	3	2	2	2
1 – Slight, 2 – Mode	erate 3 – Substar	ntial		F //	I L	

ASSESSME	ENT PATTERN -	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	9 -	-	100
CAT2	20	30	20	30 00	_	-	100
Individual Assessmen t 1/Case Study 1/Seminar 1/Project 1	-	30	20	20	30	-	100
Individual Assessmen t 2/Case Study 2/Seminar 2/Project 2	-	30	20	-	20	30	100
ESE	10	20	30	20	10	10	100

23CSPE04	CLOUD COMPUTING	SEMESTER I
----------	-----------------	------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives	 The objective of the course is to enable students to understand the basic underlying conc Characteristics, issues and challenges of cloud computing, architecture and virtualization Students will be familiar with Cloud application program and the ANEKA latform, secur issues of cloud computing. 	1.
UNIT – I	INTRODUCTION TO CLOUD COMPUTING	L(9)

Overview of Computing Paradigm: Recent trends in Computing - Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing - Introduction to Cloud Computing - Cloud issues and challenges-Cloud Computing (NIST Model) - History of Cloud Computing, - Cloud service providers Properties, Characteristics & Disadvantages - Pros and Cons of Cloud Computing, Benefits of Cloud Computing - Role of Open Standards.

UNIT - II CLOUD COMPUTING ARCHITECTURE AND VIRTUALIZATION L(9)

Cloud computing stack - Comparison with traditional computing architecture (client/server), Services provided at various levels - Role of Networks in Cloud computing, protocols used, Role of Web services- Service Models (XaaS)-Infrastructure as a Service(IaaS) - Platform as a Service(PaaS) - Cloud Platform and Management - Software as a Service(SaaS)- Web services - Web 2.0 - Deployment Models - Public cloud - Private cloud - Hybrid cloud - Community cloud - Virtualization concepts - Introduction to virtualization - Types of Virtualization- Introduction to Various Hypervisors - High Availability (HA)/Disaster Recovery (DR) using Virtualization, Moving VMs

UNIT – III CLOUD APPLICATION PROGRAMMING AND THE ANEKA PLATFORM L(9)

Aneka - Framework overview - anatomy of the Aneka container - Building Aneka clouds - Cloud programming and management - Programming applications with threads - Multithreading with Aneka - Programming applications with Aneka threads - Task computing - Task-based application models - Aneka task-based programming - Data-Intensive Computing - Aneka MapReduce programming.

UNIT - IV CLOUD SECURITY L(9)

Infrastructure Security - Network level security, Host level security, Application level security - Data security and Storage - Data privacy and security Issues, Jurisdictional issues raised by Data location - Identity & Access Management -Access Control -Trust, Reputation, Risk , Authentication in cloud computing, Client access in cloud, Cloud contracting Model, Commercial and business considerations.- Cloud Reliability and fault-tolerance -privacy - policy and compliance -Cloud federation, interoperability and standards.

UNIT - V CLOUD APPLICATIONS AND CASE STUDY L(9)

Scientific applications: Healthcare – Biology – Geoscience - Business and consumer applications: CRM and ERP – Productivity - Social networking - Media applications - Multiplayer online gaming - Case Study on Open Source & Commercial Clouds – Eucalyptus - Microsoft Azure - Amazon EC2 - Google AppEngine.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Sosinsky, Barrie. "Cloud computing bible", Vol. 762. John Wiley & Sons, 2010.
- 2 Kai Hwang, Geoffrey C. Fox, Jack, J. Dongarra "Distributed and Cloud Computing from Parallel Processing to the Internet of Things", Elsevier 2012.
- 3 RajkumarBuyya, Christian Vecchiola, S. ThamaraiSelvi "Mastering Cloud Computing Foundations and Applications Programming", 2013.
- 4 RajkumarBuyya, James Broberg, Andrzej M. Goscinski, "Cloud Computing: Principles and Paradigms", Wiley, 2011
- 5 Nikos Antonopoulos, Lee Gillam, "Cloud Computing: Principles, Systems and Applications" Springer, 2012.
- 6 Ronald L. Krutz, Russell Dean Vines, "Cloud Security: A Comprehensive Guide to Secure Cloud Computing", Wiley-India, 2010.
- 7 John Ritting house & James Ransome, "Cloud Computing, Implementation, Management and Strategy", CRC Press, 2016.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Explain and discuss basic concepts, fundamental issues and challenges of Cloud	K1
	Computing and paradigms of computing.	
CO2	Explain the basic architecture of cloud computing and virtualization techniques.	K2
CO3	Design and implement basic cloud application using Aneka framework.	K3
CO4	Explain the core issues of cloud computing such as security, privacy, and interoperability.	K4
CO5	Provide cloud computing solutions and recommendations and for applications.	K5

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	95 V5 150		-	-
CO2	3	2	-	-	-	-
CO3	3	3	2	-	3	2
CO4	3	2	2	2	-	-
CO5	3	3	2	2	3	-
23CSPE04	3	2	2	2	3	2

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	-	30	30	20	20	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	40	40	20	-	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	30	30	20	20	-	100
ESE	40	20	10	10	10	10	100

23CSPE05	ADVANCED SOFTWARE ENGINEERING	SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	C	
NIL	PE	3	0	0	3	

Course	The objective of the course is to familiarize students with software Design an	d estimation techniques,
Objectives	software quality, testing and maintenance strategies along with scrum develop	oment process
		,
UNIT – I	INTRODUCTION AND REQUIREMENTS MODELING	L(9)
Software Engin	neering- Process models-Agile development- Software engineering Known	wledge-core Principles-
Principles that	guide each framework Activity - Requirements Engineering- Developing	use cases-Building the
requirements me	odel-Negotiating, validating Requirements-Requirements Analysis-Requirement	nts Modeling.
UNIT – II	SOFTWARE DESIGN AND ESTIMATION	L(9)
Design Process	- Design Concepts - Design Model - Architectural Design - Component leve	el design –User interface
design - pattern	based design – Web App design – Case Study	
Software Project	et Estimation - Process and Project Metrics- Empirical Estimation model -	Specialized Estimation
Technique for A	gile Development - Project Scheduling - Risk Management	
UNIT – III	SOFTWARE QUALITY AND TESTING	L(9)
Software Qualit	y- Software - Quality Dilemma- Achieving Software Quality- Testing: Strateg	gic Approach to software
Testing- Strateg	ic IssuesTesting: Strategies for Conventional Software, Object oriented softwa	re, Web Apps-Validating
Testing- System	Testing- Art of Debugging	
UNIT – IV	SOFTWARE MAINTENANCE AND IMPROVEMENT	L(9)
Software Mai	ntenance-Software Supportability- Reengineering- Business Process	Reengineering-Software
Reengineering-	Reverse Engineering-Restructuring- Forward Engineering.Software Process	improvement: Process –
CMMI – The pe	eople CMM – SPI return on investment – SPI Trends.	
UNIT – V	INTRODUCTION TO SCRUM DEVELOPMENT PROCESS	L(9)
Basics of Scrum	n – Running a Scum project – Steps for transition to scrum – Metrics for scrum	-CaseStudy.
Contact Period	s:	•
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

	1 2	Roger Pressman.S "Software Engineering: A Practitioner's Approach" Eighth Edition, McGraw Hill, 2014 Ian Sommerville "Software Engineering" Tenth Edition, Pearson Education Asia, 2017.
_		Shari Lawrence Pfleeger, Joanne M. Atlee, "Software Engineering: Theory and Practice", Fourth Edition,
_	4	Pearson Education, 2011. Alistair Cockburn, "Agile Software Development", First Edition, Pearson Education, 2002.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Apply different process models for different projects and Perform requirement gathering and model the requirements.	К3
CO2	Design the project and identify risks, construct RMMM plan and develop estimation models.	K4
CO3	Verify and validate the software applications using different types of testing and maintain the quality of software.	K4
CO4	Perform reverse and forward engineering process for maintenance and improvement required in the project	K5
CO5	Apply Scrum Development Process to develop software.	K6

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	1	2	3
CO2	3	3	3	1	2	3
CO3	3	3	3	1	2	3
CO4	3	3	3	1	2	3
CO5	3	3	3	1	2	3
23CSPE05	3	3	3	1	2	3
1 - Slight, 2 - M	oderate, 3 – Su	bstantial	_			

ASSESSMEN	NT PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	40		-	-	100
CAT2	-	20	30	30	-	20	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-		50	50	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-		50	50	-	-	100
ESE	20	20	20	20	-	20	100

23CSPE06 PATTERN RECOGNITION SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives	Explain and compare a variety of pattern classification, structural pattern classifier combination techniques	recognition and pattern			
UNIT – I	INTRODUCTION TO PATTERN RECOGNITION	L(9)			
Introduction to	Pattern Recognition- Data structures for pattern recognition -Review of Rando	\ /			
Correlation, Co	ovariance - Review of Linear Algebra- Linear Transformations -Feature Ex	xtraction- Training and			
Learning-Disc	riminant Functions.				
UNIT – II	LINEAR CLASSIFIERS	L(9)			
Bayes Decision	Theory - The Gaussian Probability Density Function - Minimum Distance	classifiers - Mixture			
Models - Perce	ptron Algorithm – The Sum of Error Squares Classifier - Support Vector Machin	nes: K-Nearest-Neighbor			
Classification					
UNIT – III	UNSUPERVISED LEARNING AND CLUSTERING	L(9)			
Terminologies-	Maximum likelihood estimation - Applications - Clustering - Sequential algorithms	hms –Data descriptions -			
Criterion functi	ons -Spectral Clustering - Hierarchical Clustering				
UNIT – IV	SYNTACTICAL PATTERN RECOGNITION	L(9)			
Elements of fo	rmal grammars - String generation as pattern description - Case Studies - F	Recognition of syntactic			
description – Pa	arsing - Stochastic grammars and applications - Graph based structural represen	tation			
UNIT – V	FEATURE SELECTION TECHNIQUES	L(9)			
Outlier Removal - Normalization - ROC Curve - Fishers Discriminant Ratio - Class Separability - Feature Subset					
Selection - Uns	upervised learning in neural Pattern Recognition – Self-organizing networks				
Contact Period	ls:				
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45Periods				
	00				

- 1 M. Narasimha Murthy and V. Susheela Devi, "Pattern Recognition. An Algorithmic approach", Springer, 2011.
- 2 Robert J.Schalkoff, "Pattern Recognition Statistical, Structural and Neural Approaches", Wiley, India, 2009.
- 3 SergiosTheodoridis, Konstantinos Koutroumbas, "Introduction to Pattern Recognition: A Matlab Approach", Elsevier Academic Press, 2010.
- 4 Andrew R. Webb, Keith D. Copsey, "Statistical Pattern Recognition", Third Edition, Wiley, 2011.
- 5 Duda R.O., HarP.E., and David G Stork, "Pattern Classification", Second edition, John Wiley & Sons, NewYork, 2012

COURS Upon C	Bloom's Taxonomy Mapped	
CO1	Describe the significance of pattern recognition	K2
CO2	Analyze the given patterns and apply suitable pattern classifiers for pattern classification	K4
CO3	Apply appropriate clustering techniques for high dimensional datasets.	К3
CO4	Summarize various syntactical pattern recognition models.	K4
CO5	Identify appropriate feature selection techniques.	K4

COURSE ARTICULATION MATRIX

COs/POs	PO 1	PO2	PO 3	PO 4	PO5	PO6		
CO1	1	2	3	1	2	2		
CO2	1	2	3	1	2	2		
CO3	1	2		1	2	2		
CO4	1	2	3 3		2	2		
CO5	1	2	TOBRES DE NO		2	2		
23CSPE06	1	2 5	3		2	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	-	20	40	40	-	-	100	
CAT2	-	20	40	40	-	-	100	
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	1	13 5 5 S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100	-	-	100	
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	-	-	100	-	-	100	
ESE	-	30	40	30	-	-	100	

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives	To enable correct identification of an object and take appropriate actions towards s making apt sense of images.	olving problems by					
UNIT – I	IMAGE FORMATION AND PROCESSING	L(9)					
	Geometric primitives and transformations, Photometric image formation, The digital camera, Point operators, Linear filtering, More neighborhood operators, Fourier transforms, Pyramids and wavelets, Geometric transformations, Global optimization						
UNIT – II	SEGMENTATION	L(9)					
shift and mode t	and matching - Points and patches, Edges, Lines. Segmentation- Active contours, Spl finding, Normalized cuts, Graph cuts and energy-based methods. Feature-based alignment, Pose estimation, Geometric intrinsic calibration.	· · ·					
UNIT – III	MOTION ESTIMATION	L(9)					
Structure from motion- Triangulation, Two-frame structure from motion, Factorization, Bundle adjustment, Constrained structure and motion. Dense motion estimation- Translational alignment, Parametric motion, Spline-based motion, Optical flow, Layered motion. Image stitching - Motion models.							
UNIT – IV	COMPUTATIONAL PHOTOGRAPHY	L(9)					
Photometric calib	Photometric calibration, High dynamic range imaging, Super-resolution and blur removal, Image matting and compositing,						

Texture analysis and synthesis. Stereo correspondence - Epipolar geometry, Sparse correspondence, Dense correspondence, Local methods, Global optimization, Multi-view stereo.

UNIT – V IMAGE-BASED RENDERING L(9)

View interpolation, Layered depth images, Light fields and Lumigraphs, Environment mattes, Video-based rendering. Recognition - Object detection, Face recognition, Instance recognition, Category recognition, Context and scene understanding, Recognition databases and test sets

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer, New York, 2010
2	David Forsyth and Jean Ponce, "Computer Vision: A Modern Approach (Second Edition)", Prentice Hall, 2011
3	Richard Hartley and Andrew Zisserman, "Multiple View Geometry in Computer Vision (Second Edition)", Cambridge University Press, March 2004
1	S. Khan, H. Rahmani, S. Shah and M. Bennamoun, "A Guide to Convolutional Neural Networks for Computer
+	Vision", Morgan & Claypool Publishers, 2018
5	E.R.Davies, "Computer Vision: Principles, Algorithms, Applications, Learning,", Elsevier Academic Press, 2017.

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:				
CO1	Describe image formation and processing techniques.	K2			
CO2	Apply feature detection and segmentation algorithms on image datasets	К3			
CO3	Analyze various motion estimation techniques	K4			
CO4	Interpret computational photographical approaches to transform images.	K2			
CO5	Apply image rendering and recognition techniques on real time images	К3			

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	2	-	2	2
CO2	2	-	3	-	2	2
CO3	2	-01	3	3	2	2
CO4	2	845 dening	3	3	2	3
CO5	2	W.500	3	3	2	3
23CSPE07	2	200	3	3	2	2
1 – Slight, 2 – Moderate	, 3 – Substantial			The same of the sa		

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	-	40	40	20	-	-	100		
CAT2	-	30	30	40	-	-	100		
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1	-	Sec.	ALUB MON	100	-	-	100		
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2	-	-	-	100	-	-	100		
ESE	40	30	30	-	-	-	100		

INTERNET OF THINGS	SEMESTER II
	INTERNET OF THINGS

PREREQUISITES		CATEGORY	L	T	P	C		
	NIL			0	0	3		
Course Objectives								
UNIT – I FUNDAMENTALS OF IoT						L(9)		
	Definition and Characteristics – Physical Design of IoT – Things in IoT – Logical Design of IoT- IoT Functional blocks,							

Definition and Characteristics – Physical Design of IoT – Things in IoT – Logical Design of IoT- IoT Functional blocks, communication model and enabling technologies. Applications of domain specific IoT systems such as smart environment, smart energy, smart agriculture and smart health, IoT levels. IoT Vs M2M, SDN and NVF for IoT.

UNIT – II IoT STANDARDIZATION AND INTEROPERABILITY

L(9)

Defining a common architecture, i-Core functional architecture, M2M service level standardizations, OGC sensor web for IoT, Data Interoperability, Semantics Interoperability, Organizational Interoperability and Eternal Interoperability, IoT testing methodologies, Semantics as an interoperability enabler.

UNIT – III COMMUNICATION PROTOCOLS AND SYSTEM

L(9)

Protocols – HTTP, UPnP, CoAP, MQTT, XMPP. IoT systems logical design using python - python data types & data structures, control flow, functions or modules. Modules & package of python, python packages of interest for IoT-JSON, XML, HTTP & URL Lib, SMTP Lib. Exemplary Device: Raspberry Pi - Linux on Raspberry Pi - Programming Raspberry Pi with Python.

UNIT - IV IoT CLOUD AND DATA ANALYTICS

L(9)

Introduction to Cloud storage Models – WAMP – Xively Cloud for IoT – Python Web Application Framework-Django – Designing a RESTful based Web API. Data Analytics for IoT – Apache Hadoop, Apache Oozie.

UNIT – V SECURITY AND FUTURE RESEARCH

L(9)

IoT attacks - Phase attacks, Attacks as per architecture, Attacks based on components. Security Protocols - Time-Based Secure Key Generation and Renewal - Security access algorithms for unidirectional data transmissions, Security access algorithms for bidirectional data transmissions.platforms for Big data in IoT - issues of incorporating cloud in IoT - Fog computing. Case study - Smarter Classrooms.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 ArshdeepBahga, Vijay Madisetti, **"Internet of Things A hand on approach"**, Universities Press (India) Private Limited, 2014
- OvidivVermesan, Peter Friess, "Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems", River publications, 2013.
- 3 Charalamposdoucas, "Building the Internet of Things with Arduino", CreateSpace,2002
- 4 Pethuru Raj, Anupama C. Raman, "The Internet of Things Enabling Technologies, Platforms and Use cases", CRC Press, Taylor & Francis Group, 2017.
- 5 Fei Hu, "Security and Privacy in Internet of Things (IoTs): Models, Algorithms, and Implementations," CRC Press, 2016.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Interpret the vision of IoT from a global context.	K2
CO2	Analyze the need for standardization and organizational interoperability to resolve heterogeneity Issues.	K4
CO3	Design a portable IoT using any Single Board Computer and relevant protocols	K3
CO4	Design applications of IoT in real time scenario and deploy an IoT application to the cloud.	К3
CO5	Analyze the security principles for IoT and future research	K4

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	2	-	2
CO2	3	-	3	2	-	2
CO3	3	-	3 9	2	-	2
CO4	3	768	Ballon DEN	2	-	2
CO5	3		9 3 3 19 (17)	2	-	2
23CSPE08	3	- //	3	2	-	2

ASSESSMEN'	T PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	-	30	20	30	10	10	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	10	30	20	20	20	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	20	20	20	20	20	100
ESE	20	40	40	-	-	-	100

23CSPE09	NETWORK SCIENCE	SEMESTER II

PREREQUISIT	TES	CATEGORY	L	T	P	C	
	NIL	PE	3	0	0	3	
Course Objectives This course introduces the principles and concepts of network sciencecovering network dynamics, models, analysis of complex systems and networks, applications in various domain social science, biology, and technology.							
UNIT – I INTRODUCTION]	L(9)	
Characteristics o	Overview of Network Science - Definition and scope, Historical development, Applications in different fields, Characteristics of Network Science, Societal and Scientific impact, Basic Concepts in Graph Theory - Graphs, nodes, and edges, Networks and graphs, Measures of centrality and connectivity, Prestige						
UNIT – II	NETWORK STRUCTURE AND MODELS					L(9)	
	works –Six degrees of separation, Watts-Strogatz model, Scale- ver-law degree distribution, Hubs and their role in network, I model						
UNIT – III	NETWORK DYNAMICS]	L(9)	
networks, Casca	Diffusion and Cascading Phenomena - Epidemic modeling and prediction, Information diffusion, Correlations in real networks, Cascading and modeling failures in networks, Percolation Theory - Building robustness, Percolation models, Molly Reed Criteria, Attack and Error Tolerance of Real Networks						
UNIT – IV	COMMUNITY DETECTION AND CLUSTERING]	L(9)	
clans and n-club	Social Group and Subgroup- Subgroups Based on Complete Mutuality: Clique, Reachability and Diameter: n-cliques, n-clans and n-clubs, Subgroups Based on Nodal Degree: k-plexes, k-cores, Measures of Subgroup Cohesion, Community detection using Subgroups and Betweenness, Fast algorithms						
UNIT – V	APPLICATIONS]	L(9)	

Social Network Analysis - Centrality measures in social networks, Structural holes and brokerage, Online social networks, Biological and Technological Networks - Protein-protein interaction networks, Network science in technological systems, Smart cities and infrastructure

Contact Periods:

Lecture: 45 Periods

John Scott, "Social Network Analysis", Sage Publications Ltd., Fourth Edition, 2017.

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Albert-László Barabási, "Network Science" , Cambridge University Press, 1st edition, 2016. Online edition available
	at http://networksciencebook.com/
2	Kayhan Erciyes, "Complex Networks – An algorithmic perspective", CRC Press, Taylor and Francis Group, 2015
3	Wasserman Stanley, and Katherine Faust, "Social Network Analysis: Methods and Applications, Structural Analysis
	in the Social Sciences", Cambridge University Press, 2012

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the fundamental principles of network science, including graph theory, connectivity, and centrality measures.	K2
CO2	Apply various network models, such as random graphs, Watts-Strogatz, and Barabási-Albert models, to represent and simulate different types of networks.	К3
CO3	Evaluate dynamic processes on networks, including random walks, diffusion, and percolation, and their implications in real-world scenarios.	K5
CO4	Apply algorithms for community detection and understand the impact of community structure on network dynamics.	К3
CO5	Identify and analyze applications of network science in various domains, including social networks, biological networks, and technological networks.	K4

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3 32		2	-
CO2	3	10	Dento 3 CHE		2	-
CO3	3		327		2	-
CO4	3	1/	3	1	2	-
CO5	3	1	3 🐷	1//	2	-
23CSPE09	3	1	3	//-	2	-
1 - Slight, 2 - Mo	oderate, 3 – Substa	antial			1	
		- //		- 11		

ASSESSMENT	PATTERN – T	HEORY	R		3.		
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluati ng (K5) %	Creating (K6) %	Total %
CAT1	20	20	20	20	20	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	20	20	20	20	20	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	10	30	30	20	10	100
ESE	20	40	40	-	-	-	100

23CSPE10 MACHINE LEARNING SEMESTER II

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	PE	3	0	0	3

Course Objectives	This course explores the various concepts, algorithms and applications of machine	leaning
UNIT – I	INTRODUCTION	L(9)

Learning – Types of Machine Learning –Design a Learning System – Perspectives and Issues in Machine Learning – Concept Learning Task – Concept Learning as Search – Finding a Maximally Specific Hypothesis – Version Spaces and the Candidate Elimination Algorithm –Introduction to Machine learning tools

Case Study: Familiarity with R tool and Python programming language & libraries for Machine Learning algorithms

UNIT – II SUPERVISED LEARNING

L(9)

Statistical decision theory: Regression and classification - Linear Separability - Linear Regression and Locally weighted regression - K Nearest Neighbour learning - Perceptron - Multi-layer Perceptron -Back-Propagation - Support Vector Machines - Decision Trees - Classification and Regression Trees - Random Forests - Different ways to Combine Classifiers - Ensemble Learning - Boosting - Bagging - Evaluation Measures - Multiclass classification

Case Study: Implementation of decision tree algorithm for problems in Retail Domain and Back propagation algorithm for problems in financial domain

UNIT – III DIMENSIONALITY REDUCTION AND UNSUPERVISED LEARNING

I (0)

Dimensionality Reduction: Linear Discriminant Analysis – Principal Component Analysis – Factor Analysis – Independent Component Analysis – Locally Linear Embedding – Isomap – Least Squares Optimization – Unsupervised learning problems-Hierarchical Agglomerative Clustering (HAC)-Single-link, complete-link, group-average similarity- k-Means and Mixtures of Gaussians-Flat clustering, k-Means algorithms-Mixture of Gaussian model.

Case Study: Implementation of clustering algorithm for problems in financial/health care domain

UNIT – IV GRAPHICAL MODELS

L(9)

Probability and Learning – Data into Probabilities –Bayes Theorem – Concept Learning – Maximum Likelihood – Minimum Description Length Principle – Bayes Optimal Classifier – Gibbs Algorithm – Naïve Bayes Classifier – Bayesian Belief Network – EM-algorithm - Markov Random Fields – Hidden Markov Models – Tracking Methods

Case Study: Naïve Bayes Classifier for problems in insurance domain

UNIT - V REINFORCEMENT LEARNING

L(9)

Reinforcement Learning – Introduction -Elements of Reinforcement Learning – Learning Task – Q-learning – k-armed Bandit Elements – Model-Based learning – Value Iteration – Policy iteration – Temporal Difference Learning - Exploration Strategies – non-deterministic rewards and actions

Case Study: Implementation of Q learning algorithm/reinforcement learning for problems in automotive domain/games

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Ethem Alpaydin, "Introduction to Machine Learning 3e (Adaptive Computation and Machine Learning Series)", Fourth Edition, MIT Press, 2020
- 2 | Jason Bell, "Machine learning Hands on for Developers and Technical Professionals", First Edition, Wiley, 2014
- 3 Peter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", First Edition, Cambridge University Press, 2012.
- 4 Stephen Marsland, "Machine Learning An Algorithmic Perspective", Second Edition, Chapman and Hall/CRC Machine Learning and Pattern Recognition Series, 2014.
- 5 Tom M Mitchell, "Machine Learning", First Edition, McGraw Hill Education, 2017
- 6 Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Second Edition ,Springer, 2017
- 7 Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Differentiate between supervised, unsupervised, semi-supervised machine learning approaches	K2
CO2	Apply specific supervised or unsupervised machine learning algorithm for a particular problem	К3
CO3	Analyse and suggest the appropriate machine learning approach for the various types of problem	K4
CO4	Design and make modifications to existing machine learning algorithms to suit an individual application	K5
CO5	Provide useful case studies on the machine learning algorithms	K6

Course Articulation	Course Articulation Matrix						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	200		_2	-	-	
CO2	3	Q	2-	0cus 3/	1	-	
CO3	3	150	200	3	2	-	
CO4	2	1	2	3	3	1	
CO5	3	3	3	3	3	3	
23CSPE10	3	1	2	3	3	1	
1 – Slight, 2 – Moder	rate, 3 – Substant	ial			<u> </u>	I.	

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	30	20		-	-	100
CAT2	20	30	30	20	-	-	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	-	-	-	40	40	20	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	-	-	40	40	20	100
ESE	40	30	30	-	-	-	100

23CSPE11	23CSPE11 MULTIDIMENSIONAL DATA STRUCTURES				SEMESTER II		
PREREQUISIT	ES	CATEGORY	L	Т	P	C	
	NIL	PE	3	0	0	3	
Course Objectives This course explores the design and implementation of spatial data structures, indexing techn and algorithms for optimizing multidimensional queriestailored for efficient storage and retrie multidimensional data.							
UNIT – I	DATA STRUCTURES – I					L(9)	
Quadtree, Compa	arison of Point and Trie-based Quadtrees, K-d Tree, One-dimensional Orderings						
UNIT – II	DATA STRUCTURES – II					L(9)	
with bucket method UNIT – III Hierarchical Intercell Tree, Bulk	Hierarchical Interior-based Representations - Pyramid, R-tree, Hilbert R-tree, R*-tree, R+-tree, Packed R-tree, R-tree, Cell Tree, Bulk Loading, Image-based Boundary Representations - PM Quadtree and Octree, Adaptively Sampled Distance Field, Object-based Boundary Representation -LOD, Strip Tree, Simplification Methods, Surface-based						
UNIT – IV	INTERVALS AND SMALL RECTANGLES	37				L(9)	
based methods, A Nearest Neighbor	Plane-sweep Methods and the Rectangle Intersection Problem - Segment Tree, Interval Tree, Priority Search Tree, Point-based methods, Area based methods – MX-CIF Quadtree, HV/VH tree, High-Dimensional Data - Best-first Incremental Nearest Neighbor Finding, Depth-first K-nearest Neighbor Algorithm						
UNIT – V	INDEXING METHODS					L(9)	
Multi-dimensional indexing methods – X-tree, bounding sphere methods, Increasing the Fanout, Pyramid Technique, Sequential Scan Methods, Distance-based Indexing Methods - Ball Partitioning Methods, Generalized Hyperplane Partitioning Methods, M-tree, Sa-tree, kNN graph, Searching in the dimension-reduced space – Range queries, nearest neighbor queries Contact Periods:							
Lecture: 45 Peri		Total: 45 Periods					

1	Hanan Samet, "Foundations of Multidimensional and Metric Data Structures", 1st Edition, Morgan Kaufmann
	Publishers, 2006
2	Dinesh P. Mehta, Sartaj Sahni, "Handbook of Data Structures and Applications", 2 nd Edition, CRC Press, 2018
3	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", 4th
	Edition, MIT Press, 2022
4	Mark Berg, Otfried Cheong, Marc Kreveld, Mark Overmars, "Computational Geometry Algorithms and
	Applications" 3 rd Edition Springer 2008

COUR	SE OUTCOMES:	Bloom's
Upon C	Completion of the course, the students will able to:	Taxonomy
		Mapped
CO1	Understand the principles and applications of spatial data structures, such asRange Trees,	K2
	Priority Search Trees, Quadtrees, K-d trees, bucket methods, PK trees	
CO2	Evaluate the strengths and weaknesses of different multidimensional data structures in terms	K5
	of efficiency, scalability, and suitability for real world applications.	
CO3	Understand object representations by their interiors and boundaries and apply them in	K3
	computer vision applications	
CO4	Understand the representations of intervals and small rectangles and its applications in	K2
	spatiotemporal data	
CO5	Analyze the performance and suitability of various multidimensional indexing techniques and	K4
	nearest neighbor search algorithms	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	3	-	2	-
CO2	3	1	3 3	-	2	-
CO3	3	1 (815	en no 3	60.50 W.	2	-
CO4	3	1	23000	S.C. (V.)	2	-
CO5	3	1	3		2	-
23CSPE11	3	1	3	77	2	-
1 - Slight, 2 - Mo	oderate, 3 – Subs	tantial		R //		l

ASSESSMENT	PATTERN - TH	EORY		1. 11			
Test / Bloom's Category*	Remembering (K1) %	Understand ing (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluati ng (K5) %	Creating (K6) %	Total %
CAT1	20	20	20	20	20	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	20	20	20	20	20	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	10	30	30	20	10	100
ESE	20	40	40	-	-	-	100

23CSPE12	CRYPTOGRAPHY AND NETWORK SI	SEMESTER II				
PREREQUISIT	REQUISITES CATEGORY		L	T	P	C
	NIL	PE	3	0	0	3

Course	After the completion of the course, the students will be able to	understand the
Objectives	concepts of classical and symmetric key encryption scheme	s, Public Key
	Cryptographic Algorithms, types of data integrity and authentic network layer and Web security protocols, Software attacks, wireless threats and practice systems.	-
UNIT – I	INTRODUCTION TO SECURITY	L(9)

Mathematics of Cryptography: Algebraic structures - Groups, Rings, Fields - Number Theory: Primality Testing - Euclidean Algorithm - Chinese Remainder Theorem - Fermat's and Euler's Theorem - Shannon's Theory

Classical Cryptography -Types of attack: Chosen Message Attack (CMA) – Chosen Plaintext Attack (CPA) – Chosen Cipher text Attack (CCA)- One Time Passwords (OTP) - Pseudo random Bit Generators - Stream ciphers and Block Ciphers: Block ciphers - Modes of operation - DES and its variants – AES - Linear and differential cryptanalysis - RC4.

UNIT – II PUBLIC-KEY CRYPTOGRAPHY

L(10)

Introduction to Public-key Cryptography - RSA Cryptosystem -Implementing RSA- Attacks On RSA Rabin Cryptosystem - Factoring Algorithms - ElGamal Cryptosystem - Discrete Logarithm Problem - Elliptic Curve Systems - Key Distribution and Key Agreement: Blom's Scheme - Diffie Hellman Key Predistribution – Kerberos - Diffie-Hellman Key Agreement scheme.

UNIT - III INTEGRITY AND AUTHENTICATION ALGORITHMS

L(9)

Authentication requirement – Authentication function – MAC – Hash function – Security of hash function: HMAC, CMAC – MD5 message Digest algorithm - Secure Hash Algorithm – Digital Signature Schemes - Digital Signature Standard – X.509 Certificate

UNIT – IV NETWORK SECURITY AND WEB SECURITY PROTOCOLS

Network Security, Security services, attacks, Security Issues in TCP/IP suite- Sniffing, spoofing, buffer overflow, ARP poisoning, ICMP Exploits, IP address spoofing, IP Fragment attack, routing exploits, UDP exploits, TCP exploits - Network Security Protocols:IP Security - AH and ESP - SSL/TLS - SSH. Web Security Protocols: HTTPS - DNS Security - Electronic Mail Security (PGP, S/MIME).

UNIT - V SOFTWARE ATTACKS AND PRACTICES

L(8

Intruders - Viruses - Worms - Trojan horses - Distributed Denial-Of-Service (DDoS) - Honey nets and Honey pots. Security Systems: Firewalls – IDS - Password Management - Wireless Security:Issues and threats in Wireless networks. Wireless LAN Security: WEP – WPA - Blockchains, Cloud Security and IoT security.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Douglas R. Stinson. "Cryptography: Theory and Practice", Fourth edition, Chapman & Hall/CRC, 2017.
- William Stallings, "Cryptography and Network Security Principles and Practice", Seventh Edition, Pearson Education, 2017

- Behrouz A. Ferouzan, DebdeepMukhopadhyay, "Cryptography and Network Security", 3rd Edition, Tata Mc Graw Hill, 2015
- J. Michael Stewart, "Network Security, Firewalls And VPNs", Jones & Bartlett Learning, 2013.
 AtulKahate, "Cryptography and Network Security", Fourth Edition, Tata McGraw-Hill, 2019.

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Demonstrate the various classical and symmetric encryption techniques and the adversary capabilities.	K3
CO2	, i	К3
CO3	Apply the various integrity and authentication schemes to simulate different applications.	K3
CO4	Understand the fundamentals and architecture used in Network security web security and Email Security protocols.	K1
CO5	Analyze a security solution for a given system or real-world applications.	K4

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	2	1	1
CO2	3		3	2	1	2
CO3	3	1	3	3	2	2
CO4	3	11	3	3	3	3
CO5	3	- 11	3	3	3	3
23CSPE12	3	11	9 3	3	2	2

ASSESSMENT	PATTERN – TH	EORY		199			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total
CAT1	30	30	20	20	-	-	100
CAT2	-	30	20	30	10	10	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	10	30	20	20	20	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	20	20	20	20	20	100
ESE	20	40	40	-	-	-	100

00 CCDE40	COCIAI NEETINODICO	CENTEGEED II
23CSPE13	SOCIAL NETWORKS	SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives	Demonstrate the analytical framework for understanding interactions among social	communities.
UNIT – I	INTRODUCTION	L(9)
	ial networks - Static and Dynamic properties - Random walks on graphs - Algorithms - Algorithms for Computing Personalized Pagerank and Simrank - Algorithm	

Commute Times - Algorithms for Computing Personalized Pagerank and Simrank - Algorithms for Computing Harmonic Functions- Applications in computer vision, text analysis, combating web spam.

UNIT – II DISCOVERING COMMUNITIES

L(9)

Communities in Context - Core methods - KL Algorithm-Agglomerative Algorithm - Spectral Algorithm - Multi-level Graph Partitioning – Markov Clustering - Community discovery in dynamic, heterogeneous and directed networks - Classification of nodes- Local classifiers - Classifiers for large scale networks.

UNIT – III PRIVACY AND LINK PREDICTION

World", Cambridge University Press, 2010.

L(9)

Privacy breaches in social networks - k-anonymity - l-diversity and *t*-closeness - Privacy preserving mechanisms - social networks and affiliation networks. Link Prediction - Feature Set Construction - Classification Models - Bayesian Probabilistic Models - Link Prediction by Local Probabilistic Models, Network Evolution based Probabilistic Model and Hierarchical Probabilistic Model.

UNIT – IV SOCIAL NETWORK INFRASTRUCTURES

L(9)

Decentralized Online Social Networks - Multi-Relational Characterization of Dynamic Social Network Communities - Accessibility Testing of Social Websites - Understanding and Predicting Human Behavior for Social Communities - Associating Human-Centered Concepts with Social Networks Using Fuzzy Sets.

UNIT – V VISUALIZATION AND APPLICATIONS OF SOCIAL NETWORKS

L(9)

Visualization of Social Networks - Novel Visualizations and Interactions for Social Networks Exploration - Applications of Social Network Analysis - Online Advertising in social networks - Social Bookmarking on a Company's Intranet: A Study of Technology Adoption and Diffusion.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Charu c. Aggarwal, "Social Network Data Analytics", Springer 2011
2	Borkofurht, "Handbook of Social Network Technologies and Applications", 2010
3	David Easley and Jon Kleinberg ,"Networks ,Crowds, and Markets: Reasoning About a Highly Connected

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Compare Static and Dynamic properties of Social Networks and develop algorithms to perform	K4
	random walks.	
CO2	Develop methods to discover communities in large scale online Social Networks.	K2
CO3	Use k-anonymity, l-diversity and other techniques to detect privacy threats and link selection,	K3
	Bayesian Probabilistic Models to estimate efficiency of the links in graphs	
CO4	Explain decentralized large scale online Social Networks and Use fuzzy sets to understand	K3
	human behavior in Social Network communities	
CO5	Visualize Social Networks using social network analysis tools and study	K2
	Applications of Social Networks.	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	- 6	PATA 3 7/2 C	B 519100	3	3
CO2	3	- (2	355	3	2
CO3	3	-	3		1	3
CO4	3	- 0	2	3	3	2
CO5	3	-	2	2	2	3
23CSPE13	3	-	3	2	2	3
1-Slight 2-Mod	derate 3-Substa	ntial			1	

ASSESSMEN	NT PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	-	40	40	20	-	-	100
CAT2	-	30	30	40	-	-	100
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1	-	-	-	100	-	-	100
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2	-	-	-	100	-	-	100
ESE	40	30	30	-	-	-	100

23CSPE14	INFORMATION RETRIEVAL		SEMESTER II			
PREREQUISIT	ΓES	CATEGORY	L	Т	P	С
	NIL	PE	3	0	0	3

Course	Understand the various aspects of an Information retrieval system and it	s evaluation and
Objectives	analyze the performance of information retrieval models.	
UNIT – I	DICTIONARY AND POSTINGS	L(9)
Information Ret	rieval process - indexing - Information Retrieval model - Boolean Re	trieval model –
Tokenization – S	Stemming – Inverted Index construction and compression – Skip Pointers	
 Phrase Queries 	- Wild card queries – Bigram Index – Jaccard Coefficient	
UNIT – II	EVALUATION AND QUERY EXPANSION	L(9)
Scoring – Term	weighting - Vector Space model - Computing Scores in complete search	systems
– Relevance Fee	dback – Rocchio algorithm – Query expansion – types - Query drift	
UNIT – III	XML, PROBABILISTIC AND CBIR	L(9)
XML IR, Proba	abilistic IR, Probabilistic relevance feedback - Probability ranking probabilistic relevance feedback - Probability ranking pr	rinciple-
Language IR Cra	awling – Link Analysis, Content based Image Retrieval	_
UNIT – IV	PARALLEL INFORMATION RETRIEVAL	L(9)
Effectiveness m	easures - Minimizing Adjudication effect - measuring efficiency - ef	ficiency
criteria- Query	scheduling - Parallel information retrieval - Parallel query process	sing –
MapReduce		
UNIT – V	IR MODELS AND SCALABILITY	L(9)
Support Vector	Machines and Machine Learning on documents - Flat and hierarchical Cl	ustering
– IR as systems -	- Information Retrieval on graphs and audios.	
Contact Periods		
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Period	S
	(A) (A) (A) (A)	

1	Christopher D Manning, Prabhakar Raghavan, Hinrich Schutze, "An Introduction to
	Information Retrieval", Online Edition © 2009 Cambridge UP, April 2019
2	Carol Peters, Martin Braschler, Paul Clough, "Multilingual Information Retrieval: From
	Research to Practice" Springer 2012
3	Andrew G Psaltis, "Streaming Data Understanding The Real Time Pipeline", OReillyMedia
	Inc, May 2017
4	Stefan Butcher, "Implementing and Evaluating Search Engines", The MIT Press, 2016.

	OUTCOMES: pletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Describe retrieval models and index constructions.	K2
CO2	Evaluate a simple retrieval model.	K5
CO3	Analyze XML, Probabilistic and Content based image retrieval techniques.	K4
CO4	Summarize parallel retrieval techniques.	K2
CO5	Handle scalable Information Retrieval models.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	2	-	3	3
CO2	2	-	2	-	3	3
CO3	2	-	3	-	3	3
CO4	2		3	-	3	3
CO5	2	(S) TENO	சுத்தை மு 3 புக் கா	5 DY	3	3
23CSPE14	2	() () () () () () () ()	10 13 E		3	3
1 – Slight, 2 – Mod	derate, 3 – Substa	ntial				

ASSESSMENT	PATTERN – TH	IEORY	W.				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2)%	Applying (K3)%	Analyzing (K4) %	Evaluating (K5)%	Creating (K6)%	Total %
CAT1	-	40	40	20	-	-	100
CAT2	-	30	30	40	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-		119 (3 m (4)		100	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	-	-	-	100	-	100
ESE	20	40	40	-	-	-	100

23CSPE15	NATURAL LANGUAGE PROCESSING SEMESTER					
PREREQUISITES CATEGO				Т	P	С
	PE	3	0	0	3	

Carres	The chiestine of the course is to get familian with the foundational	مام مسافات مسافات ا				
Course	The objective of the course is to get familiar with the foundational	algorithms used in				
Objectives	Natural Language Processing (NLP) and their practical applications					
UNIT – I	INTRODUCTION	L(9)				
Classical App	proaches to Natural Language Processing - Text Preprocessing - 1	Lexical Analysis -				
Syntactic Parsing- Semantic Analysis- Natural Language Generation						
UNIT – II	STATISTICAL NLP AND SEQUENCE LABELING	L(9)				
N-grams Lang	guage models Naive Bayes, Text Classification, and Sentiment - Ve	ctor Semantics and				
Embeddings -	Neural Networks and Neural Language Models - Sequence Labeling	for Parts of Speech				
and Named I	Entities - Transformers and Pretrained Language Models - Fine-Tu	uning and Masked				
Language Mo	dels					
UNIT – III	ANNOTATING LINGUISTIC STRUCTURE	L(9)				
Constituency -	-Context Free Grammar – Treebanks - CKY Parsing: A Dynamic Prog	ramming Approach				
 Span-Based 	Neural Constituency Parsing - Evaluating Parsers - Dependency Rela	ations- Dependency				
Parsing -Trans	sition Based - Graph Based - Logical Representations of Sentence Mean	ing				
UNIT – IV	COMPUTATIONAL SEMANTICS AND SEMANTIC PARSING	L(9)				
Relation and I	Event Extraction - Time and Temporal Reasoning - Word Senses and W	VordNet – Semantic				
Role Labeling	- Lexicons for Sentiment, Affect, and Connotation .					
UNIT – V	NLP APLLICATIONS	L(9)				
Machine Tran	slation - Question Answering and Information Retrieval - Chatbots &	Dialogue Systems -				
Automatic Spe	eech Recognition and Text-to-Speech					
Contact Perio	ods:					
Lecture: 45 P	reriods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods				

1	Daniel Jurafsky and James H.Martin, "Speech and Language Processing: An Introduction to
	Natural Language Processing, Computational Linguistics and Speech Recognition" Third edition,
	Prentice Hall Series, 2023
2	Nitin Indurkhya, Fred J. Damerau, "Handbook of Natural Language Processing", Second edition,
	CRC,2010
3	Jacob Eisenstein. "Natural Language Processing", MIT Press, 2019
4	NPTEL course: Natural Language Processing
	https://archive.nptel.ac.in/noc/courses/noc19/SEM2/noc19-cs56/

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Comprehend text preprocessing techniques, including lexical analysis, syntactic parsing and semantic analysis to enhance the quality of textual data.	K2
CO2	Summarize key algorithms for statistical NLP and sequence labeling	K2
CO3	Apply annotation skills to real-world linguistic data, contributing to the broader field of linguistics and language technology	К3
CO4	Utilize word senses and WordNet for disambiguation and lexicons for Sentiment, Affect, and Connotation	К3
CO5	Design and implement practical NLP applications, such as machine translation, question answering system ,chatbots, automatic speech and text to speech recognition systems.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	ALC A	2	03.00/00	-	3
CO2	1	(4/)	2		1	3
CO3	2	2	3	2	2	3
CO4	2	2	3	2	2	3
CO5	3	3	3	2	2	3
23CSPE15	2	2	2	2	2	3
1 - Slight, 2 - Mod	lerate, 3 – Sul	ostantial		1	•	

ASSESSMENT I	PATTERN – TH	EORY	77	la la			
Test / Bloom's Category*	Remembering (K1)%	Understanding (K2) %	Applying (K3)%	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	50	20	-	-	-	100
CAT2	-	30	70	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	-	1	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	-	100	-	-	-	100
ESE	10	50	40	_	-	-	100

PREREQUIS	SITES	CATEGORY	L	T	P	C
	NIL	PE	3	0	0	3
Course The objective of the course is to provide fundamentals of sensation, perception, technical and engineering aspects of virtual reality systems						
UNIT – I	INTRODUCTION TO VIRTUAL REALITY				L(9)
Virtual Reality - History of VR - The Basics: Design Guidelines - Benefits of VR -VR hardware -VR software - Two Pillars of VR: Presence and 3D Multimodal Interaction -Building a Virtual Reality System - Object Modeling - Scene Construction- Object Placement -Multiple Frames of Reference -Re-Expressing Coordinates -Function and Behavior Modeling -Performance Estimation and System Tuning						-
UNIT – II	REPRESENTING THE VIRTUAL WORLD				L(9)
Representation of the Virtual World, Visual Representation in VR, Aural Representation in VR and Haptic Representation in VR - Geometric Models - Changing Position and Orientation - Axis-Angle Representations of Rotation- Viewing Transformations - Chaining the Transformations						
UNIT – III	3D MULTIMODAL DESIGN				L(9)
Design – Mult	timodal - Structured Approach to the Interaction / Int timodality. Handling Collision	erface Design – M	1etapho	ors - l	nterfac	ce

VIRTUAL REALITY

UNIT - IV INTERACTION AND ITERATIVE DESIGN

L(9)

SEMESTER II

Human-Centered Interaction - Norman's Principles of Interaction Design - VR Interaction Concepts - Interaction Patterns and Techniques - Interaction: Design Guidelines

Philosophy of Iterative Design - Define Stage - Make Stage - Learn Stage - iterative Design: Design Guidelines - The Present and Future State of VR

UNIT - V EVALUATING VR SYSTEMS AND APLLICATIONS

L(9)

Perceptual Training - Recommendations for Developers -Comfort and VR Sickness -Experiments on Human Subjects

VR in Education – Medical - Entertainment - Military - Manufacturing - Robotics

Contact Periods:

23CSPE16

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Steven M. LaValle. "VIRTUAL REALITY" Cambridge University Press, 2023. http://www.lavalle.pl/vr/
2	Gerard Jounghyun Kim "Designing Virtual Reality Systems The Structured Approach", Springer 2005
3	Vince, John "Introduction to virtual reality", Springer, 2004.
4	Jason Jerald , "The VR Book: Human-Centered Design for Virtual Reality", ACM books , 2016
5	Grigore C. Burdea, Philippe Coiffet ," Virtual Reality Technology"2 edition ,wiley, 2003
6	NPTEL Course: Virtual Reality https://archive.nptel.ac.in/courses/106/106/106106138/

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:			
CO1	Comprehend the basics of virtual reality	K2		
CO2	Demonstrate their ability to represent the real world scenarios in virtual reality	К3		
CO3	Comprehend the techniques behind 3D Multimodal design	K2		
CO4	Narrate Norman's principles of interaction design and the philosophy of iterative design in VR	K2		
CO5	Demonstrate their understanding related to the assessment of VR systems and use them for empowering the enhancement of VR applications.	К3		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	- Other	2	20,013,0	b -	1
CO2	1	G VIE	2 0	3	2	1
CO3	1		2	2	_	1
CO4	1	4	2	2	-	1
CO5	1	11-	2	3 //	2	1
23CSPE16	1	1	2	2	2	1
1 – Slight, 2 – Mode	erate, 3 – Substa	intial		1, 1		

ASSESSMENT	PATTERN – T	HEORY	WILL STREET				
Test / Bloom's Category*	Remembe ring (K1)%	Understandi ng (K2) %	Applyin g (K3)%	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	40	30	SICULO	-	-	100
CAT2	20	50	30	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	40	60	-	-	-	100
ESE	10	50	40	-	-	-	100

23CSPE17	THEORY OF MODERN COMPILERS	SEMESTER II
----------	----------------------------	-------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

			L		
Course Objectives	This course introduces the theory of modern co	ompilers			
UNIT – I	INTERMEDIATE REPRESENTATIONS			I	L (9)
Introduction	to compiler technologies - Review of com	piler Structure	e -Into	ermedi	iate
	ons - Run Time Support: Data representations and				
	ck frame, Run time Stack, Parameter Passing, Pr		-		
	rns, Code sharing and position independent cod	le-Producing C	ode G	ienerat	tors
Automatically	/				
UNIT – II	FLOW ANALYSIS				L (9)
	Analysis -Data Flow Analysis: Iterative data f				
	ontrol tree based data flow analysis, Structural		erval a	analysi	is -
	Analysis and Dependence Graph-Alias Analysis.				
UNIT – III		ND LO	OP	I	L (9)
	OPTIMIZATIONS				
	to optimization, Importance of Individual optim				
	ons - Early Optimization: Constant folding, Sca				
_	mplifications and Reassociation, Value Num	ibering, Copy	and	Const	tant
	Redundancy Elimination-Loop Optimizations				
UNIT – IV	PROCEDURE OPTIMIZATION AND SCH				L (9)
	otimizations-Register Allocation - Code Schedu				
	nizations: Unreachable code elimination, S				
	n, Loop inversion, Unswitching, Branch O		Tail	mergi	ing,
	noves, dead code elimination, Branch prediction				
UNIT – V	INTERPROCEDURAL ANALYSIS AN	ND MEMOI	RY	I	L (9)
	HIERARCHY OPTIMIZATION				
Inter procedural Analysis and Optimizations: Control flow, Dataflow and Alias analysis,					
	pagation, Optimization and Register allocation –		tor the	Mem	ory
Hierarchy: In	Hierarchy: Impact of data and Instruction caches and Optimizations				

Contact Periods: Lecture: 45 Periods

1 A V Aho, Monical Lam, R Sethi, J D Ullman, "Compilers: Principles, Techniques, and Tools", Second Edition, 2013

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 2 Steven Muchnick., "Advanced Compiler Design and Implementation", Morgan Kaufmann Publishers, Elsevier, 2008.
- 3 Keith Cooper, Linda Torczon, "Engineering a Compiler", Morgan Kaufmann, Second Edition, 2011.
- 4 Andrew W. Appel, Jens Palsberg, "Modern Compiler Implementation in Java", Second Edition, Cambridge University Press, 2002

- Randy Allen and Ken Kennedy, "Optimizing Compilers for Modern Architectures: A Dependence based Approach!", Morgan Kaufman, 2001
 Robert Morgan, "Building an Optimizing Compiler", Digital Press, 1998

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Generate Intermediate representations	K3
CO2	Perform control and data flow analysis	K4
CO3	Eliminate redundancy from IR and Target Code	K3
CO4	Optimize loops, Procedures and Memory Hierarchy	K4
CO5	Generate target code	K5

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	C Brown or C	3	3	2	-
CO2	2		2	1	1	-
CO3	2		2		1	-
CO4	2	110-10	3	3	2	-
CO5	2		_3 /	3	2	-
23CSPE17	2	-	3	3	2	-

ASSESSMEN	NT PATTERN –	THEORY			3.		
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	30	20		-	-	100
CAT2	20	30	30	20	-	-	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	-	-	-	40	40	20	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	-	-	40	40	20	100
ESE	40	30	30	-	-	-	100

23CSPE18 DEEP LEARNING	SEMESTER III
------------------------	--------------

PREREQUISITE	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	The students will be introduced with Perceptron Learnin	g Algorithms,			
Objectives	Feedforward Neural Networks, Deep Neural Networks, Conv	olution Neural			
	Networks and Recurrent Neural Networks				
	THE THE TANK				
UNIT – I	INTRODUCTON TO DEEP LEARNING	L(9)			
_	gical Neuron, Biological Neuron, Idea of computational units, McCulloc				
_	logic, Linear Perceptron, Perceptron Learning Algorithm, Line	ar separability.			
	heorem for Perceptron Learning Algorithm.				
UNIT – II	FEEDFORWARD NETWORKS	L(9)			
Representation	Power of Feedforward Neural Networks, Backpropagation,	Empirical Risk			
Minimization,	Regularization, Autoencoders.				
UNIT – III	DEEP NEURAL NETWORKS	L(9)			
Difficulty of	training deep neural networks, Greedy layerwise training. Gradient	Descent (GD),			
	idient Descent (GD), Better Training of Neural Networks: Newer optim				
	works (Adagrad, adadelta, rmsprop, adam, NAG), Regularization method	ls (dropout, drop			
	normalization).				
	CONVOLUTIONAL NEURAL NETWORKS	L(9)			
	Networks: The Convolution Operation - Variants of the Basic Convol				
	tputs - Data Types - Efficient Convolution Algorithms - Random of	or Unsupervised			
Features- LeN					
UNIT – V	RECURRENT NEURAL NETWORKS	L(9)			
	Recurrent Neural Networks: Bidirectional RNNs - Deep Recurrent Networks Recursive Neural				
	e Long Short-Term Memory and Other Gated RNNs				
Contact Perio					
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Per	riods			
i					

1	Ian Goodfellow and Yoshua Be	gio and Aaron Courville.,	" Deep Learning ",MIT Press, 20.	16

- 2 Raúl Rojas, "Neural Networks: A Systematic Introduction", Springer-Verlag, Berlin, 1996.
 3 Yegnanarayana, B., "Artificial Neural Networks", PHI Learning Pvt. Ltd, 2009
 4 Christopher Bishop., "Pattern Recognition and Machine Learning", Springer, 2016
 5 Nikhil Buduma, "Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms", O'Reilly publications, 2017

	DUTCOMES: letion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Summarize the basics of neural network and deep learning	K2
CO2	Implement basic neural network model with hidden layers	К3
CO3	Analyze optimization and generalization in deep learning	K4
CO4	Criticize convolutional neural network and how it is applied to analyzing visual imagery	K5
CO5	Appraise Recurrent Neural Network (RNN) and its temporal dynamic behavior which helps us to remembers some information about a sequence to predict the next information	K5

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1		2		-
CO2	3	1	2 0	5 m ω (3 lb ·	()	-
CO3	3	-	2	3	2	-
CO4	2	1	/ 2	3	3	1
CO5	3	3	3	3	3	3
23CSPE18	3	1	2	3	/3	1
1 – Slight, 2 –	- Moderate,	3 – Substant	ial	$ \Lambda$	11	•

ASSESSMEN	NT PATTERN –	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	30	20		3	-	100
CAT2	20	30	30	20	-	-	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	-	-		40	40	20	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	-	-	40	40	20	100
ESE	40	30	30	-	-	-	100

23CSPE19	ETHICAL HACKING		,	SEM	IES.	ΓER	III
PREREQUISITI	ES	CATEGOI	RY	L	T	P	C
	NIL	PE		3	0	0	3

Course The objective of the course is to get familiar with techniques of eth	ical had			
Objectives	iour nav	cking	,	
UNIT – I PRINCIPLE OF HACKING				L(9)
Hacking - Types - ethical Hacking Terminology-different phases involved in Ethical	Hackii	ng - I	Hack	tivism
- Categories of Penetration Test - Penetration Testing Methodologies-Cracking	the Ha	cker	Min	dset -
Hacking Methodology - Ethical Hacking Tools				
UNIT – II INFORMATION GATHERING AND SCANNING				L(9)
Information Gathering Techniques - Target Enumeration and Port Scanning Techniques - Network Sniffing - Remote Exploitation.	chniqu	es –	Adv	anced
UNIT – III SYSTEM HACKING AND MALWARE ANALYSIS				L(9)
Understanding Password-Cracking Techniques - Understanding Different Ty Understanding Keyloggers and Other Spyware Technologies - Understanding Understanding How to Cover Your Tracks and Erase Evidence - Collecting Malware Static Analysis - Live Analysis - Norman SandBox Technology - Hacking Malware De-obfuscating Malware - Reverse-Engineering Malware	How to e and I	o Hi nitial	de F Ana	Files - llysis -
UNIT – IV VULNERABILITY ANALYSIS				L(9)
Passive Analysis -Client-Side browser exploits - Exploiting the Windows Access Con Fuzzing with Sulley -From Vulnerability to Exploit -Mitigation alternatives - Patching	itrol M	odel	- Int	
UNIT - V WIRELESS AND WEB HACKING				L(9)
Wireless Hacking – Introducing Aircrack –ng – Cracking the WEP – Cracking a Network Using Aircrack-ng – Evil Twin Attack – Causing Denial of Service on the Hacking – Attacking the Authentication – Brute Force and Dictionary Attacks Mechanisms – Handling Captcha – Manipulating User-Agents to bypass Captcha Authentication Bypass Attacks – Session Attacks – SQL Injection Attacks.	ne Orig - Lo	ginal g-In	AP - Prot	- Web
Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Pei	riods	5	

1	Kimberly Graves, "Certified Ethical Hacker STUDY GUIDE", Wiley publication, 2010
	Allen Harper, Shon Harris, Jonathan Ness, Chris Eagle, Gideon Lenkey, and Terron Williams ,"Gray Hat Hacking The Ethical Hacker's Handbook" Third Edition, Mc Graw Hill,2011
3	RafayBaloch, "Ethical Hacking and Penetration Testing Guide", CRC Press, 2014
4	Kevin Beaver, "Ethical Hacking for Dummies", Sixth Edition, Wiley, 2018
	Daniel G. Graham, "ETHICAL HACKING A Hands-on Introduction to Breaking In" no starch press, 2021
6	NPTEL Course : Ethical Hacking https://archive.nptel.ac.in/courses/106/105/106105217/

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Comprehend the distinct phases in ethical hacking ,its methodology and tools	K2
CO2	Enumerate information gathering, scanning and sniffing techniques for ethical hacking	K2
CO3	Comprehend defend against various cyber security threats, particularly related to password security, spyware, file hiding, digital forensics, and malware.	K2
CO4	Analyze and exploit vulnerability and implement effective mitigation strategies.	K3
CO5	Demonstrate the ability to crack WEP and WPA/WPA2 wireless networks using Aircrack-ng and an understanding of encryption weaknesses and vulnerabilities	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	- 1	m2m	2	3	2
CO2	2	ALC BOTO	2	3	3	2
CO3	2	CV FG	2	2	3	2
CO4	2	2	2	3	3	2
CO5	2		2	3	3	2
23CSPE19	2	2	2	3//	3	2
1 - Slight, 2 - Mo	derate, 3 – Sub	stantial				1

ASSESSMENT	Γ PATTERN – T	THEORY		. \			
Test / Bloom's Category*	Remembe ring (K1)%	Understanding (K2) %	Applying (K3)%	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70		5	-	-	100
CAT2	20	50	30	237	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	100		-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	40	60	-	-	-	100
ESE	10	60	30	-	-	-	100

23CSPE20	MINING MASSIVE DATASE	ETS		SEMES	STER II	П
PREREQUISI	TES	CATEGORY	L	Т	P	С
	NIL	PE	3	0	0	3
Course Objectives	This course explores advanced methods for massive datasets and its applications in various social media analytics.					
UNIT – I	INTRODUCTION					L(9)
	Massive Data Mining, Challenges in scalable d	ata mining method	s and	Traditio	nal algo	
Applications in	n retail industry. Distributed Computing Fram ng MapReduce programming model, Apache Sp	neworks - Introduc				
UNIT – II	FINDING SIMILAR ITEMS AND MINING		S			L(9)
Measures, App	f Near-Neighbor Search, Locality-Sensitive Has lications of LSH. Mining Data Streams - Sam lating moments, Counting ones in a window.					
UNIT – III	MINING SOCIAL-NETWORK GRAPHS					L(9)
	s as graphs, Clustering of social-network graphing overlapping communities, Simrank, Countin					
UNIT – IV	CLUSTERING	.g v.10.11g105, 1 (01g110	0111000	Propert	100 01 8	L(9)
Introduction to	Clustering Techniques – Curse of dimensionalities, K-means Algorithms, CURE algorithm, Company of the Company o					nd Non-
UNIT – V	APPLICATIONS					L(9)
Problem and it Filtering, Dime Contact Period	/	Content-Based Rec Implementation of	ommei Percep	ndations trons an	, Collab	orative
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0	Periods Total: 4	5 Peri	ods		

1	Jure Leskovec, Anand Rajaraman, Jeff Ullman, "Mining of Massive datasets", 3 rd Edition, Cambridge
	University Press, 2020. <u>http://www.mmds.org</u> (Video lectures, Slides)
2	https://www.edx.org/learn/mining/stanford-university-mining-massive-datasets
3	Tomasz Wiktorski, "Data-intensive Systems: Principles and Fundamentals using Hadoop and Spark",
3	Tomasz Wiktorski, "Data-intensive Systems: Principles and Fundamentals using Hadoop and Spark", Springer, 2019

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Explain the fundamental concepts and challenges of mining massive datasets and	K2
	demonstrate proficiency in Hadoop MapReduce and Apache Spark	
CO2	Apply LSH algorithm for finding similarities among documents and mining	K3
	algorithms for streams	
CO3	Analyze and mine graph structures in massive datasets using various algorithms	K4
	and apply them in the area of social network analysis.	
CO4	Understand several methods for discovering clusters in high-dimensional data in	K2
	both Euclidean and Non-Euclidean spaces	
CO5	Apply mining massive datasets algorithms to solve real-world problems in diverse	K3
	domains	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	(3,,,,,,)	- C	2	-
CO2	3	AUG A	3	A 18 53 40 /0 m	2	-
CO3	3	4/	3 10 0		2	-
CO4	3		3		2	-
CO5	3	1	3		2	-
23CSPE20	3	1	3	- W	2	-
1 - Slight, 2 - M	1 Solution of $3 - S$	ubstantial		示 //		1

ASSESSME	NT PATTERN	-THEORY			//		
Test / Bloom's Category*	Rememberi ng (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluati ng (K5) %	Creatin g (K6) %	Total %
CAT1	20	20	20	20	20	-	100
CAT2	10	30	30	20	0 10	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	20	20	20	20	20	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	10	30	30	20	10	100
ESE	20	40	40	-	-	-	100

23CSPE21	DATA CENTER NETWOR	EKS	SEMESTER III			
PREREQUISITES		CATEGORY	L	T	P	C
	NIL	PE	3	0	0	3

Course Objectives

After the completion of the course, the students will be able to understand the architecture of data center, Server Management and troubleshooting, network maintenance and system Resource Management, data center security and administration.

UNIT – I DATA CENTER ARCHITECTURE

L(9)

Data center Architecture, Data center prerequisites Data center Requirements Physical Area for Equipment and Unoccupied Space - power to run all the devices - cooling and HVAC - Network bandwidth - Budget Constraints-Power Distribution in a Data Center: Estimating Your Power Needs - UPS - Generators - Power Distribution Units (PDUs) - Electrostatic Discharge (ESD) - Data Center HVAC: Strict Environmental Requirements - Air-Conditioning Systems - Placement of Hardware Racks

UNIT – II DATA CENTER DESIGN

L(9)

Characteristics of an Outstanding Design, Guidelines for Planning a Data Center Data Center structures, Raised Floor Design and Deployment, Design and Plan against Vandalism, Data center design case study, Modular Cabling Design, Points of Distribution, Data center servers, Server Performance Metrics - Sever Capacity Planning

UNIT – III DATA CENTER NETWORK MAINTENANCE

[(9)

Data Center Maintenance, Network Operations Center, Network Monitoring, Datacenter physical security, Data center Logical security, Cleaning, Data center Consolidation, Reasons for data center Consolidation, Consolidation opportunity, Server consolidation, Storage Consolidation, Network Consolidation, Service Consolidation, Process Consolidation, Staff Consolidation, Data Consolidation phases - Best Practices in IT: System Management Best Practices - Server Cluster Best Practices - Data Storage Best Practices - Network Management Best Practices - Documentation Best Practices

UNIT – IV DATA CENTER CLUSTER AND DISASTER RECOVERY

L(9)

Cluster Architecture: Asymmetric Two-Node Clusters - Symmetric Two-Node Clusters - Complex Cluster Configurations - Failover Policies - Cluster Requirements: Required Hardware Cluster Components - Cluster Software Requirements - What Happens During Service Failover - Designing Cluster-Friendly Applications - Disaster Recovery - High Availability (HA) and Disaster Recovery (DR) - Five Phases of DR - Designing a Disaster-Tolerant Architecture - Online Replication Techniques - DR Architectures

UNIT – V DATA CENTER SECURITY AND ADMINISTRATION

L(9)

Security Guidelines Internet security, Source Security Issues, Best Practices for System Administration, System Administration Work Automation, Device Naming, Naming Practices, NIS, DNS, LDAP, Load balancing, Terminology, Advantages, Types of load balancing, Implementing a Network with Load-Balancing Switches – Fault Tolerance - Designing Fault-Tolerant Networks - Network Security

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Kailash Jayaswal, "Administering Data Centers: Servers, Storage and Voice over IP", John Wiley
	& Sons, 2005
2	Mauricio Arregoces, Maurizio Portol, "Data center fundamentals", Cisco Press, 2003
3	Dinesh G Dutt, "Cloud Native Data Center Networking: Architecture, Protocols, and Tools",
	O'Reilly Media, 2019
4	<u>Luiz André Barroso, UrsHölzle, ParthasarathyRanganathan</u> , "The Datacenter as a Computer:
	Designing Warehouse-Scale Machines", Third Edition, Morgan & Claypool Publishers, 2018

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Manage Server Systems and Data Centers Infrastructure Management	K2
CO2	Analyze the Storage, Bandwidth, Efficiency of systems and other resources for build Data center.	K4
CO3	Monitor the data center networks and resources	К3
CO4	Illustrate configuration of data center cluster and significance of disaster recovery	K1
CO5	Describe various security threats and fault tolerance of data center architecture.	K4

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	-	3	1100	2	3	
CO2	3	-	3	C	2	3	
CO3	3	-	3		2	3	
CO4	3	-	3	0	3	3	
CO5	3	-	3	-	3	3	
23CSPE21	3	-	3	-	2	3	
1 – Slight, 2 –	Moderate	, 3 – Subs	tantial				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total
CAT1	30	30	20	20	-	-	100
CAT2	10	30	20	40	-	-	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	10	30	20	20	20	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	20 50	20 (20)	20	20	20	100
ESE	20	40	40	R- //	-	-	100
ESE	20	40	40			-	100

23CSPE22	DATA VISUALIZATION	SEMESTER III
----------	--------------------	--------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	Explore, monitor and curate data into a form easier to understand, highli	ghting the
Objectives	trends and outliers.	
UNIT – I	INTRODUCTION TO DATA VISUALIZATION	L(9)
Basic principle	s for data visualization - Seven stages of visualizing data -Static Graphics -	Complete

Basic principles for data visualization - Seven stages of visualizing data – Static Graphics – Complete plots, customization, extensibility, Data Visualization through Graph Representations, Graph Layout Techniques - Graph-theoretic Graphics - Graph Drawing, Geometric Graphs, Graph-theoretic Analytics.

UNIT – II HIGH-DIMENSIONAL DATA VISUALIZATION L(9)

Mosaic Plots - Trellis Displays- Parallel Coordinate Plots- Projection Pursuit and the Grand Tour - Geometric Approach to the Statistical Analysis- Factorial Analysis- Distance Visualization- Principal Axis Methods and Classification: a Unified View- Computational Issues

UNIT - III SMOOTHING TECHNIQUES

L(9)

Nonparametric Regression- Structural Adaptation- Smoothing in One Dimension - Smoothing in Two Dimensions - Additive Models - Data Visualization via Kernel Machines - Hierarchical Cluster Analysis- Partitioning Cluster Analysis- Model-Based Clustering. Visualizing Contingency Tables.

UNIT – IV EXPLORATION AND ANALYSIS OF HIGH-DIMENSIONAL L(9) DATA

Exploratory Data Analysis - Visual and Computational Models- Matrix Visualization- Generalization and Flexibility, Matrix Visualization of Binary Data - Visualization in Bayesian Data Analysis - Web-Based Statistical Graphics

UNIT - V APPLICATIONS

L(9)

Reconstruction, Visualization and Analysis of Medical Images - Exploratory Graphics of a Financial Dataset - Graphical Data Representation in Bankruptcy Analysis - Visualizing Functional Data with an Application to eBay's Online Auctions - Visualization Tools for Insurance Risk Processes

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Kristen Sosulski, "Data Visualization Made Simple", Taylor and Francis, 2019.
- 2 Evan Stubbs, "The value of business analytics: Identifying the path to profitability", Wiley, 2011
- 3 Stephen Few, "Information dashboard design: Displaying data for at-a-glance monitoring", second edition, Analytics Press, 2013.
- 4 Tamara Munzner, "Visualization Analysis and Design", CRC Press, Nov. 2014

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Discuss basic principles of data visualization using graphs	K2
CO2	Illustrate visualization techniques for huge dimensional datasets	К3
CO3	Summarize trends, pattern in data using smoothing techniques.	K2
CO4	Categorize visual cues effectively and explore the metadata	K4
CO5	Choose appropriate visualization techniques based on the application environment.	K5

COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	Thurst	3	3
CO2	3	-	. 2.0 cm		10 10 13 17/1	3
CO3	3	-	3/55	National P	23 V	3
CO4	3	-	3		3	3
CO5	3	-	3		3	3
23CSPE22	3	-	3	- 1	3 /	3
1 – Slight, 2 -	- Moderate,	3 – Substa	intial		A 1	
					X1, H	1

ASSESSME	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	-	40	40	20	<u> </u>	-	100					
CAT2	-	30	30	40	-	-	100					
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1	-	-	-	-	100	-	100					
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2	-	-	-	-	100	-	100					
ESE	40	30	30	-	-	-	100					

23CSPE23	PARALLEL ALGORITHMS	SEMESTER III				
PREREQUISIT	PREREQUISITES					C
	NIL	PE	3	0	0	3

Course Objectives	After the completion of the course, the students will be able to und different types of multiprocessors, techniques for implementing parallel model the programming using message passing and shared memory, an parallelization techniques for sorting, graph, Fast Fourier Transform.	algorithms,
UNIT – I	PARALLEL COMPUTING ARCHITECTURE	L(9)

Introduction to parallel computers: Parallel Computing, Shared memory multiprocessors, Distributed Memory Multiprocessors, SIMD, Systolic processor, Cluster, Grid Computing, Multicore systems, SM, Communication between parallel processors — Shared memory multi processors: Cache coherence and Memory Consistency — Interconnection Networks: Classification and Interconnection.

UNIT – II FUNDAMENTALS OF PARALLEL ALGORITHMS

Concurrency platforms: Cilk++, OpenMP, CUDA – Adhoc techniques for parallel algorithms: Independent loop scheduling, dependent loops, loop spreading, loop unrolling, problem partitioning, Divide and Conquer strategies, pipelining – Non serial Parallel algorithms.

UNIT – III ALGORITHM ANALYSIS L(9)

Z-Transform analysis: Definition, DFA, Software and Hardware implementations of zTransform and various designs – Dependence Graph analysis: DFA, Deriving dependence graph of an algorithm, Scheduling function, Node projection operation, Nonlinear projection operation, Software and hardware implementations – Computational Geometry analysis.

UNIT – IV PROGRAMMING USING MESSAGE PASSING AND SHARED L(9) MEMORY PARADIGM

Programming Using Message Passing:Principles of Message-Passing Programming, The Building Blocks: Send and Receive Operations, MPI: the Message Passing Interface, Topologies and Embedding, Overlapping Communication with Computation, Collective Communication and Computation Operations, Groups and Communicators. Programming Shared Address Space Platforms: Thread Basics - The POSIX Thread API - Thread Basics: Creation and Termination - Synchronization Primitives in Pthreads - Controlling Thread and Synchronization Attributes - Composite Synchronization Constructs

UNIT - V PARALLEL ALGORITHMS AND APPLICATIONS L(9)

Dense Matrix Algorithms: Matrix Multiplication, Solving Linear Equations – Sorting: Issues in sorting, Sorting Networks, Quick sort, Bucket sort- Graph Algorithms- Discrete Optimization Problems: Sequential Search Algorithms, Search overhead Factor, Parallel DFS and BFS -Dynamic Programming - Fast Fourier Transform

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Fayez Gebali, "Algorithms and Parallel Computing", Wiley publications, 2011
2	A.Grama, A.Gupta, G.Karypis and V.Kumar, "Introduction to Parallel Computing", Second Edition,
	Addison-Wesley, 2003
3	Joseph JaJa, "An introduction to Parallel Algorithms", Addison-wesley publications, 1992
4	Michael J Quinn, "Parallel Programming in C with MPI and OpenMP", first edition, McGraw Hill,
	2004
5	Barry Wilkinson and Michael Allen, "Parallel programming: techniques and applications using
	networked workstations and parallel computers", Second Edition, Pearson Education, 2005.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Describe the architecture of different multiprocessors	K2
CO2	Implement the techniques using OpenMP, CUDA	К3
CO3	Analyze the implementation techniques for parallel algorithms	K4
CO4	Implement the MPI and Posix Threads for Message passing and Shared memory	К3
CO5	apply the parallelization techniques for sorting, graph, Fast Fourier Transform	K5

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	188	///3		1	1		
CO2	2	3	3		2	2		
CO3	3	200	3			2		
CO4	2	-	3	33	2	2		
CO5	2	- //	3		2	2		
23CSPE23	2	-	3	-	2	2		
1 - Slight, 2 - M	oderate, 3 – S	Substantial	•	•				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	-	30	20	30	10	10	100
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1	10	30	20	20	20	-	100
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2	-	20 Block on 15	20	20	20	20	100
ESE	20	40	40	- W	7 -	-	100

BUILDING BYE-LAWS AND CODES OF PRACTICE (Common to all Branches)										
PREREQUISI	ΓES	S	CATEGORY	L	T	P	C			
		NIL	OE	3	0	0	3			
Course Objectives		To impart knowledge on the building bye –laws and to emphasize the significance of codes of ractice in construction sector.								
UNIT – I	IN	TRODUCTION TO BUILDING BYE-LAWS					L(9)			
height, building	line	lding Bye Laws and regulation, their need and re e, FAR, Ground Coverage, set back line. Introduct utional, residential etc Terminologies of Building	ion to Master Plan							
UNIT – II	RO	OLE OF STATUTORY BODIES					L(9)			
		tutory bodies governing building works like dev Authority, Town and Country planning organisation					porations			
UNIT – III	AF	PPLICATION OF BUILDING BYE-LAWS	(10 m)				L(9)			
appendices. App	plic	formation given in bye laws including ongoing ation of Bye-laws like structural safety, fire safication lines in various building types.								
UNIT – IV	IN	TRODUCTION TO CODES OF PRACTICE					L(9)			
		ous building codes in professional practice - Codes, regulations to ensure compliance with the local a		rotec	t publ	ic heal	th, safety			
UNIT – V	Αŀ	PPLICATION OF CODES OF PRACTICE					L(9)			
Applications of to other internat		ious codes as per various building types. Bureau al codes.	of Indian Standard	s, Eu	rocode	e – Intr	oduction			

Lecture: 45 Periods

Contact Periods:

"National Building Code of India 2016 – SP 7", NBC 2016, Bureau of Indian Standards.
 "Model Building Bye-Laws (MBBL) – 2016", Town and Country Planning Organization, Ministry of Housing and Urban Affairs, Government of India.
 "Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
 Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Apply the building bye-laws in planning, design and construction works.	K3
CO2	Familiarize with the role of various statutory bodies.	K2
CO3	Execute safety related work practices in the construction sector.	K3
CO4	Ensure compliance with the rules and regulations in design and construction practices.	K3
CO5	Perform design and construction practices based on national and international codal provisions.	К3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	3	1	1	2	3			
CO2	1	3	1	1	2	3			
CO3	1	3	1	1	2	3			
CO4	2	3	1	1	2	3			
CO5	2	3	1	1	2	3			
23SEOE01	2	3	1	1	2	3			
1 – Slight, 2 – Moder	ate, 3 – Substar	ntial	_	<u>'</u>		1			

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	40	40	20	200	-	-	100				
CAT2	40	40	20	ᇦ-	7 -	-	100				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	40	40	20		-	-	100				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	40	40	20	SE CONT		-	100				
ESE	40	40	20	-	-	-	100				

23SEOE02	PLANNING OF SMART CITIES (Common to all Branches)							
PREREQUISIT	ES	CATEGORY	L	T	P	C		
	NIL	OE	3	0	0	3		
Course Objectives To have an exposure on planning of smart cities with consideration of the recent challenge and to address the importance of sustainable development of urban area.						enges		
UNIT – I	SMART CITIES DEVELOPMENT POTENTIA	ALS AND CHAL	LENG	EES]	L(9)		
Spatial distributio	Perspectives of Smart Cities: Introduction and Overview - Implementation Challenges - Methodological issues - Spatial distribution of startup cities - Re imagining postindustrial cities - Implementation Challenges for Establishing Smart Urban Information and Knowledge Management System.							
UNIT – II	SUSTAINABLE URBAN PLANNING]	L(9)		
Environmental Qu	Optimising Green Spaces for Sustainable Urban Planning - 3D City Models for Extracting Urban Environmental Quality Indicators - Assessing the Rainwater Harvesting Potential - The Strategic Role of Green Spaces - Monitoring Urban Expansion.							
UNIT – III	UNIT – III ENERGY MANAGEMENT AND SUSTAINABLE DEVELOPMENT L(9)					L(9)		
Management - Ur	Alternatives for Energy Stressed Cities - Social Acceptability of Energy - Efficient Lighting - Energy Management - Urban Dynamics and Resource Consumption - Issues and Challenges of Sustainable Tourism - Green Buildings: Eco-friendly Technique for Modern Cities.							

L(9)

Assessment of Domestic Water Use Practices - Issue of Governance in Urban Water Supply - Assessment of Water Consumption at Urban Household Level - Water Sustainability - Socio-economic Determinants and Reproductive Healthcare System - Problems and Development of Slums.

MULTIFARIOUS MANAGEMENT FOR SMART CITIES

UNIT – V INTELLIGENT TRANSPORT SYSTEM

L(9)

Introduction to Intelligent Transport Systems (ITS) - The Range of ITS Applications -Network Optimization - Sensing Traffic using Virtual Detectors - Vehicle Routing and Personal route information - The Smart Car - Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment - Traffic Enforcement. Urban Mobility and Economic Development.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future Perspectives",
	Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva", 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems And
	Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Indicate the potential challenges in smart city development.	K2
CO2	Select the different tools for sustainable urban planning.	К3
CO3	Choose appropriate energy conservation system for smart cities.	К3
CO4	Identify the proper method of water management system.	К3
CO5	Apply Intelligent Transport System concepts in planning of smart city.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	2	3	1	1
CO2	1	1	1	3	2	1
CO3	1	1		2	2	1
CO4	1	-6	and a	2	1	1
CO5	1 7/	BASE OF TO	100	0.00 3	1	-
23SEOE02	1 (0		2	3	2	1
1 - Slight, 2 - Mo	oderate, 3 – Su	bstantial	Klove le			

ASSESSMEN	T PATTERN -	- THEORY	. 8			_	
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	45	30	1-	-	-	100
CAT2	25	45	30	1	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	15	40	45	ALUE DE LA	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	10	45	45	-	-	-	100
ESE	20	40	40	-	-	-	100

23SEOE03		GREEN BUI (Common to all					
PREREQUISI	ITES		CATEGORY	L	T	P	C
		NIL	OE	3	0	0	3
Course	To	introduce the different concepts of energy efficie	ent buildings, indo	or enviro	nmen	tal qua	ılity
Objectives	mai	nagement, green buildings and its design.					
UNIT – I		TRODUCTION				L(9)	
		of materials and products - sustainable design					
		un-earth relationship and the energy balance on					
		emperature – Sun shading and solar radiation on	surfaces-Energy	impact of	n the	shape	and
		ngs – Thermal properties of building materials.					
UNIT – II		ERGY EFFICIENT BUILDINGS				L(9)	
		day lighting - Active solar and photovoltaic- B					
		Building energy efficiency standards-Lighting					
-	acts o	of lighting efficiency – Energy audit and energy t	targeting- Technolo	ogical opt	ions 1	for ene	ergy
management.		- ammo			ı		
UNIT – III		OOOR ENVIRONMENTAL QUALITY MANA				L(9)	
		fort conditions- Thermal comfort- Ventilation and					
		Illumination requirement- Auditory requirement-					
		s- Energy conservation in pumps- Fans and blow	ers- Refrigerating i	machines	- Hea	t rejec	tion
		efficient motors- Insulation.	77				
UNIT – IV		EEN BUILDING CONCEPTS				L(9)	
Green building	con	cept- Green building rating tools- Leeds and IG	BC codes. – Mate	rial selec	tion	Embo	died
•••	_	nergy- Façade systems- Ventilation systems-Trans	sportation- Water t	reatment	syste	ms- W	ater
efficiency- Building economics							
UNIT – V		EEN BUILDING DESIGN - CASE STUDY				L(9)	
		ding form, orientation and site considerations;				model	ing;
_ ,		fuel choices; renewable energy systems; material	choices - construct	tion budg	et		
Contact Period		AL IA	V.3.				
Lecture: 45 Pe	eriods	Tutorial: 0 Periods Practical: 0 Pe	riods Total:	45 Perio	ds		

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

COURSE OUTCOMES: Upon Completion of the course, the students will able to:		Bloom's Taxonomy Mapped
CO1	Apply the concepts of sustainable design in building construction.	K3
CO2	Execute green building techniques including energy efficiency management in the building design.	К3
CO3	Establish indoor environmental quality in green building.	K3
CO4	Perform the green building rating using various tools.	K3
CO5	Create drawings and models of green buildings.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	m_ 2	3	3	3
CO2	3	. de 3	2	3	3	3
CO3	2	2 // 0 // 0	2	2	3	3
CO4	2	3		3	3	3
CO5	3	3		3	3	3
23SEOE03	3	3	-2	3	3	3
1 – Slight, 2 – Mode	erate, 3 – Substar	ntial	不 //		l	1

ASSESSMENT	Γ PATTERN –	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20		- 2	-	100
CAT2	40	40	20	010 VID	/ -	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	40	40	20		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	40	40	20	-	-	-	100
ESE	40	40	20	-	-	-	100

23EEOE04 ENVIRONMENT HEALTH AND SAFETY MANAGEMENT (Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To impart knowledge on occupational health hazards, safety measures at work	nlace
Objectives	accident prevention, safety management and safety measures in industries.	piace,
o bjectives	movinom pro vermon, ourory management and ourory moustains in management.	
UNIT – I	OCCUPATIONAL HEALTH HAZARDS	L(9)
Occupation, H	ealth and Hazards - Safety Health and Management: Occupational Health Haz	zards -
Ergonomics -	Importance of Industrial Safety - Radiation and Industrial Hazards: Types and ex	ffects -
Vibration - Ind	ustrial Hygiene - Different air pollutants in industries and their effects - Electrical, f	ire and
Other Hazards.		
UNIT – II	SAFETY AT WORKPLACE	L(9)
Safety at Work	place - Safe use of Machines and Tools: Safety in use of different types of unit operation	ations -
	f Machine guarding - working in different workplaces - Operation, Inspection	
maintenance - l	Housekeeping, Industrial lighting, Vibration and Noise.	
UNIT – III	ACCIDENT PREVENTION	L(9)
Accident Preve	ention Techniques - Principles of accident prevention - Hazard identification and an	nalysis,
Event tree anal	ysis, Hazop studies, Job safety analysis - Theories and Principles of Accident caus	sation -
First Aid: Body	structure and functions - Fracture and Dislocation, Injuries to various body parts.	
UNIT – IV	SAFETY MANAGEMENT	L(9)
Safety Manage	ment System and Law - Legislative measures in Industrial Safety - Occupational	safety,
Health and Er	vironment Management, Bureau of Indian Standards on Health and Safety, IS	14489
standards - OSI	HA, Process safety management (PSM) and its principles - EPA standards	
UNIT – V	GENERAL SAFETY MEASURES	L(9)
Plant Layout fo	or Safety - design and location, distance between hazardous units, lighting, colour	coding,
pilot plant stud	dies, Housekeeping - Accidents Related with Maintenance of Machines - Work	Permit
System - Signi	ficance of Documentation - Case studies involving implementation of health and	safety
measures in Inc	lustries.	
Contact Period	ds:	
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ds

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications, 2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rad
	PharmaMed Press, 1st edition, 2021.

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Identify the occupational health hazards.	K3
CO2	Execute various safety measures at workplace.	K3
CO3	Analyze and execute accident prevention techniques.	K3
CO4	Implement safety management as per various standards.	K3
CO5	Develop awareness on safety measures in Industries.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	2	2	2	3	2
CO2	2	2	2	1	2	2
CO3	2	3	2	1	2	2
CO4	1	40000	1	2	2	2
CO5	1	T .	"N	1	1	2
23EEOE04	1 / (8	250,500	2 12 2	7.)1	2	2
1 – Slight, 2 – Moder	ate, 3 – Substant	tial	TER SEL			
			-	77		

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	25	35	20	10	5	5	100	
CAT2	25	35	20	10	5	5	100	
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100	
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100	
ESE	25	35	20	10	5	5	100	

23EEOE05	CLIMATE CHANGE AND ADAPTATION (Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objectives	To understand the Earth's climate system, changes and their effects on the earth, is impacts, adaptation, mitigation of climate change and for gaining knowled technology, carbon trading and alternate energy sources.	
UNIT – I	EARTH'S CLIMATE SYSTEM	L(9)
Systems – Trac and Hurricanes	limate in the spotlight - The Earth's Climate Machine - Climate Classification-le Winds and the Hadley Cell - The Westerlies - Cloud Formation and Monsoon R - The Hydrological Cycle - Global Ocean Circulation - El Nino and its Effect - Solatural Green House Effect - Green House Gases and Global Warming - Carbon Cyc	ains – Storms olar Radiation
UNIT – II	OBSERVED CHANGES AND ITS CAUSES	L(9)
effects of Clir Sensitivity and	Climate Change – Changes in patterns of temperature, precipitation and sea level rismate Changes – Patterns of Large-Scale Variability –Drivers of Climate Change Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences of Changes in on a Global Scale and in India – climate change modeling.	ge – Climate
UNIT – III	IMPACTS OF CLIMATE CHANGE	L(9)
Human Health	mate Change on various sectors – Agriculture, Forestry and Ecosystem – Water – Industry, Settlement and Society – Methods and Scenarios –Projected Impacts ertainties in the Projected Impacts of Climate Change – Risk of Irreversible Changes	for Different
UNIT – IV	CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES	L(9)
coastal zones - Energy Supply	ategy/Options in various sectors — Water — Agriculture — Infrastructure and Settlem — Human Health — Tourism — Transport — Energy — Key Mitigation Technologies at — Transport — Buildings — Industry — Agriculture — Forestry - Carbon sequestratorage (CCS) — Waste (MSW & Bio waste, Biomedical, Industrial waste — Integration.	nd Practices – ion – Carbon
UNIT – V	CLEAN TECHNOLOGY AND ENERGY	L(9)
Compost – E		gy – Wind –

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam, Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report – Working Group I Report, "The physical sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability", 2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate Change, Bates,
	B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:				
CO1	Classify the Earths climatic system and factors causing climate change and global	K2			
	warming.				
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise and	K2			
	Observed effects of Climate Changes				
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible	K3			
	changes.				
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	К3			
CO5	Discover clean technologies and alternate energy source for sustainable growth.	К3			

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	MODE 20	3 0 040	2	3	1
CO2	3	2	2	2	3	2
CO3	2	2	2	2	3	2
CO4	3	2	2	2	2	2
CO5	3	3	2	3	3	3
23EEOE05	3	3	3	/// 3	3	3

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	25	30	35	10	-	-	100	
CAT2	25	30	35	10	-	-	100	
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	-	-	100	
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100	
ESE	25	30	35	10	-	-	100	

23EEOE06 WASTE TO ENERGY (Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To classify waste as fuel, introduce conversion devices, gain knowledge about	Diamagg
Objectives	Pyrolysis, demonstrate methods, factors for biomass gasification, and acquire ki	
Objectives	about biogas and its development in India.	nowicuge
UNIT – I	INTRODUCTION	L(9)
	Energy from Waste: Classification of waste as fuel – Agro based, Forest residue,	industriai
	- Conversion devices – Incinerators, Gasifiers, Digestors.	- (a)
UNIT – II	BIOMASS PYROLYSIS	L(9)
	ysis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis - Manufacture of charcoal -	Methods
 Yields and A₁ 	oplications – Manufacture of Pyrolytic oils and gases, Yields and Applications.	
UNIT – III	BIOMASS GASIFICATION	L(9)
Gasifiers – Fi	xed bed system - Downdraft and updraft gasifiers - Fluidized bed gasifiers -	- Design,
Construction a	and Operation - Gasifier burner arrangement for thermal heating - Gasifie	r Engine
arrangement ar	d electrical power – Equilibrium and Kinetic Considerations in gasifier operation.	_
UNIT – IV	BIOMASS COMBUSTION	L(9)
Biomass Comb	bustion - Biomass Stoves - Improved Chullahs, types, some exotic designs, F	ixed bed
combustors, ty	rpes – Inclined grate combustors – Fluidized bed combustors, design, construc	ction and
operation of all	the above biomass combustors.	
UNIT – V	BIOENERGY SYSTEM	L(9)
Biogas: Proper	ties of biogas (Calorific value and composition) – Biogas plant technology and sta	tus – Bio
	– Design and constructional features – Biomass resources and their classification -	
	ocesses - Thermo chemical conversion - Direct combustion - biomass gasif	
	liquefaction – biochemical conversion – anaerobic digestion – Types of biogas	
	Alcohol production from biomass – Bio diesel production – Urban waste t	
	iomass energy programme in India.	33
Contact Perio		
Lecture: 45 Pe		ods

1	"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P Jayaram Reddy, Taylor and Francis Publications, 2016.
2	"Waste – to – Energy: Technologies and project Implementations", Marc J Rogoff, Francois Screve, ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications, Illustrated Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory". PrabirELSEVIER Publications, 2010

COURSE OUTCOMES: Upon Completion of the course, the students will able to:		Bloom's Taxonomy Mapped
CO1	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	K3
CO3	Demonstrate methods and factors considered for biomass gasification.	K3
CO4	Identify the features of different facilities available for biomass combustion.	K4
CO5	Analyze the potential of different Bioenergy systems with respect to Indian condition.	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	3	2	3	1
CO2	3	2	2	2	3	1
CO3	3	3	2	3	2	1
CO4	3	2	2_	3	3	1
CO5	2, 819	3	101 UB 43 1917	3	2	1
23EEOE06	3	993	23c V	3	3	1
1 - Slight, 2 - Mo	derate, 3 – Substa	antial			•	

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	10	20	20	25	15	10	100				
CAT2	10	25	20	10	25	10	100				
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	_	Δω (β 15 ₁₀ 10)	35 000	50	-	-	100				
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	10	40	50	-	-	100				
ESE	10	25	25	20	10	10	100				

23GEOE07		ENERGY IN BUILT ENVIRONMENT (Common to all Branches)									
PREREQUISIT	ES		CATE	GORY	L	T	P	C			
		NIL	Ol	E	3	0	0	3			
Course	To ι	inderstand constructional energy requi	rements of bu	ildings,	ene	rgy	auc	lit			
Objective	meth	ods and conservation of energy.									
UNIT-I	INTRODUCTION							L(9)			
Indoor activities and environmental control - Internal and external factors on energy use -Character								ristics			
of energy use an	nd its	management -Macro aspect of energy	use in dwellin	gs and i	its i	mpl	icati	ons –			
Thermal comfo	rt-Ver	ntilation and air quality-Air-condition	oning require	ment-Vi	sual	p	erce	ption-			
Illumination requ	iremer	nt-Auditory requirement.									
UNIT-II		LIGHTING REQUIREMENTS IN BU	JILDING					L(9)			
The sun-earth re	lations	ship - Climate, wind, solar radiation ar	nd temperature	- Sun s	had	ing	and	solar			
		nergy impact on the shape and orientatio					_	_			
Characteristics as	nd esti	mation, methods of day-lighting-Archite	ectural consider	ations fo	r da	y-li	ghtir	ıg.			
UNIT-III		ENERGY REQUIREMENTS IN BU	ILDING					L(9)			
Steady and unste	ady he	eat transfer through wall and glazed wind	low-Standards	for thern	nal p	erfo	orma	ınce			
of building envel	ope- E	valuation of the overall thermal transfer-	- Thermal gain	and net l	neat	gair	ı-En	d-			
Use energy requi	remen	ts-Status of energy use in buildings-Estir	nation of energ	y use in	a bu	ıildi	ng.				
UNIT-IV		ENERGY AUDIT						L(9)			
		gy targeting-Technological options for e	110.								
	or envi	ronment and air quality-Air flow and air	pressure on bu	ildings-F	Flow	du du	e to	Stack			
effect.		8									
UNIT-V		COOLING IN BUILT ENVIRONMI	- A-A-A]	L(9)			
_		ecture-Radiative cooling-Solar cooling to									
		ntilation-Natural and active cooling with	adaptive comf	ort–Evap	ora	tive	coo	ling –			
Zero energy build		oncept.	ر قان								
Contact Periods	:	Con week									
Lecture: 45 Peri	iods	Tutorial: 0 Periods Practical: 0	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-
	Hill, 2000.
2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley,
	1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.
5	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001. Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of

	E OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand energy and its usage	K2
CO2	Know lighting to be given to a building	K1
CO3	Analyse the energy requirements in a building	K3
CO4	Apply the energy audit concepts.	K3
CO5	Study architectural specifications of a building	K1

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-1444	3	1	2	1
CO2	2		3	1	2	1
CO3	2 (6	1 Ban 50	3	1	2	1
CO4	2	(0.2.0)	350	1	2	1
CO5	2	-	3	1	2	1
23GEOE07	2		3	// 1	2	1
1-Slight, 2-Modera	ate, 3–Substantia	al	不	//		

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT 1	40	40	20		-	-	100		
CAT 2	40	40	20		-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50	103 80 E	37	-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100		
ESE	40	40	20	-	-	-	100		

23GEOE08	EARTH AND ITS ENVIRONMENT (Common to all Branches)								
PREREQUISIT	,	CATEGORY	L	Т	P	C			
	NIL	OE	3	0	0	3			
Course	To know about the planet earth, the geosystems and t		_	Ŭ	v	_			
Objective Course	air and to learn about the Environmental Assessment		_	una	wa	iei aiiu			
Objective	an and to rearn about the Environmental Assessment and sustamability.								
UNIT-I	EVOLUTION OF EARTH	EVOLUTION OF EARTH L(9)							
	th as habitable planet-Evolution of continents-ocean	s and landforms	s-ev	oluti					
	eal times - Exploring the earth's interior - thermal a								
gravitational and						0			
UNIT-II	GEOSYSTEMS				L(9)				
Plate tectonics -	working and shaping the earth - Internal geosystems –	earthquakes – v	olca	inoe	s -c	limatic			
	gh time - Basic Geological processes - igneous, sedimer	•							
	BACHERIA DOMESSA DALLAS DE CARACA		1	1					
UNIT-III	GROUND WATER GEOLOGY					L(9)			
Geology of groun	nd water occurrence -recharge process-Ground water i	novement-Groui	nd w	ater	dis	charge			
and catchment hy	drology – Ground water as a resource - Natural groun	d water quality a	nd (cont	ami	nation-			
Modelling and m	anaging ground water systems.								
UNIT-IV	ENVIRONMENTAL ASSESMENT AND SU	STAINABILITY	7			L(9)			
Engineering and	sustainable development - population and urbaniza	ation - toxic ch	emi	cals	and	d finite			
resources - water	r scarcity and conflict - Environmental risk - risk asses	sment and chara	cter	izati	on -	-hazard			
assessment-expo	assessment-exposure assessment.								
UNIT-V	AIR AND SOLIDWASTE					L(9)			
	engineering-introduction to atmospheric composit		mos	sphe	ric	photo			
	waste management-characterization-management conce	epts.							
Contact Periods	De Brus								
Lecture: 45 Peri	ods Tutorial: 0 Period Practical: 0 Period	Total: 45 Per	iod	S					

1	John Grotzinger and Thomas H.Jordan, "Understanding Earth", Sixth Edition, W.H.Freeman,
	2010.
2	Younger, P.L., "Ground water in the Environment: An introduction", Blackwell Publishing, 2007.
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,
	Sustainability and Design", Wiley, NJ, 2010.

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and the	K2
	Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground	К3
	water and the modeling systems.	
CO4	To assess the Environmental risks and the sustainability developments.	К3
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	9	a D	2	2	-
CO2	3	(Supplemon Da	no o a 3 ma a l	3	-	3
CO3	2	V55	SHERE		-	-
CO4	-	2			1	-
CO5	2	2	- Inc.	- 7/	-	-
23GEOE08	2	2	3 🕺	3	2	3
1-Slight, 2-Mode	rate, 3–Substar	itial			L	l .

ASSESSME	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	STA BICU	- ارو	-	100
CAT 2	40	40	20	GU	-	-	100
Individual Assessmen t 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessmen t 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	1	100
ESE	40	40	20	-	-	-	100

23GEOE09		NATURAL HAZARDS AND MITIGATION (Common to all Branches)					
PREREQUISITE	ES		CATEGORY	L	T	P	C
		NIL	OE	3	0	0	3
Course Objective	•	get idea on the causes, effects and mitigation case studies.	et idea on the causes, effects and mitigation measures of different types o case studies.				
UNIT-I	EARTH QUAKES						(9)
causes of eartho	Definitions and basic concepts-different kinds of hazards-causes-Geologic Hazards-Earthquakes-causes of earthquakes-effects-plate tectonics-seismic waves-measures of size of earthquakes-earthquake resistant design concepts.						
UNIT-II	SLO	OPE STABILITY				I	<u>(9)</u>
corrective measur	es fo	landslides-causes of landslides-principle r slope stabilization.	es of stability	analy	sis-re	medial	and
UNIT-III		OODS	<u> </u>			L(9)	
		ods-causes of flooding-regional flood frequeecasting-warning systems.	uency analysis–f	lood	contro	ol meas	sures-
UNIT-IV	DR	OUGHTS				I	(9)
_		oes of droughts –effects of drought -hazardassessment–mitigation-management.	d assessment – d	ecisio	on ma	king-U	Jse of
UNIT-V TSUNAMI						I	(9)
		ets-under sea earthquakes-landslides-volc easures-precautions-case studies.	anic eruptions-ir	npact	of se	a	
Contact Periods: Lecture: 45 Periods		Tutorial: 0 Period Practical: 0 Per	riod Total	: 45 I	Period	ls	

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole
	Cengage Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press, 2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley
	& Sons, Inc, 2005.
4	AmrS.Elnashai and Luigi Di Sarno, "Fundamentals of Earthquake Engineering", John
	Wiley & Sons,Inc,2008

	OUTCOMES: pletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Learn the basic concepts of earthquakes and the design concepts of earthquake Resistant buildings.	K2
CO2	Acquire knowledge on the causes and remedial measures of slope stabilization.	К3
CO3	As certain the causes and control measures of flood.	К3
CO4	Know the types, causes and mitigation of droughts.	K2
CO5	Study the causes, effects and precautionary measures of Tsunami.	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	em	my -	3	2	3
CO2	3	By Sel 7 De	2	3	3	3
CO3	3	2	30.	٠) -	-	3
CO4	3			3	2	3
CO5	3		2	2	-	3
23GEOE09	3	1	2	3	2	3

ASSESSMEN	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20		-	-	100
CAT 2	40	40	20	SCULO /	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	-	-	-	100

23EDOE10	BUSINESS ANALYTICS (Common to all Branches)
----------	---

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	1. To apprehend the fundamentals of business analytics and its li	ife cycle.				
Objectives	2. To gain knowledge about fundamental business analytics.	J				
Ū	3. To study modeling for uncertainty and statistical inference.					
	4. To apprehend analytics the usage of Hadoop and Map Reduce	frameworks.				
	5. To acquire insight on other analytical frameworks.					
UNIT – I	BUSINESS ANALYTICS AND PROCESS	L(9)				
	lytics: Overview of Business analytics, Scope of Business analytics					
	ocess, Relationship of Business Analytics Process and organization					
advantages	of Business Analytics. Statistical Tools: Statistical Notation,	Descriptive				
Statistical m	ethods, Review of probability distribution and data modelling	ıg, sampling				
	n methods overview.	Т				
UNIT – II	REGRESSION ANALYSIS	L(9)				
	nd Regression Analysis: Modelling Relationships and Trends in Day					
	ssion. Important Resources, Business Analytics Personnel, Data and					
	lytics, problem solving, Visualizing and Exploring Data, Business A	Analytics				
Technology.		Γ				
UNIT – III	STRUCTURE OF BUSINESS ANALYTICS	L(9)				
Organization	Structures of Business analytics, Team management, Manage	ment Issues,				
	formation Policy, Outsourcing, Ensuring Data Quality, Measuring					
	analytics, Managing Changes. Descriptive Analytics, predictive					
	Modelling, Predictive analytics analysis, Data Mining, D					
	es, Prescriptive analytics and its step in the business analytics	ics Process,				
	Modelling, nonlinear Optimization.					
UNIT – IV		L(9)				
	Techniques: Qualitative and Judgmental Forecasting, Statistical					
	Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series					
with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with						
	oles, Selecting Appropriate Forecasting Models. Monte Carlo Simu					
	s: Monte Carle Simulation Using Analytic Solver Platform, New-Pr					
	Model, Newsvendor Model, Overbooking Model, Cash Budget M					
UNIT – V	DECISION ANALYSIS AND RECENT TRENDS IN BUSINESS ANALYTICS	L(9)				
Decision Ana	llysis: Formulating Decision Problems, Decision Strategies with the	without				
	babilities, Decision Trees, The Value of Information, Utility and Do					
NA 1 ' P	The state of information, Curity and Do	77 1 1 1 ·				

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making.Recent Trends: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R – A Practical Approach", Apress, 2017.
AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press, 2012.
Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition, 2016.
U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making", Wiley, 2017.
Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Identify the real world business problems and model with	K4
	analytical solutions.	
CO2	Solve analytical problem with relevant mathematics background	K4
	knowledge.	
CO3	Convert any real world decision making problem to hypothesis and	K4
	apply suitable statistical testing.	
CO4	Write and Demonstrate simple applications involving analytics	K4
	using Hadoop and Map Reduce	
CO5	Use open source frameworks for modeling and storing data.	K4

COURSE ARTICULA	TION MATRIX	K			
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	1	2	1	2	1
CO2	1	1	1	2	1
CO3	2	2	1	1	-
CO4	2	2	1	-	-
CO5	1	2	-	-	-
23EDOE10	1	2	1	2	1
1 – Slight, 2 – Moder	ate, 3 – Substan	tial			

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	25	25	25	25	-	-	100
CAT 2	20	25	25	30	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	25	30	25	20	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	30	20 5100	30	20	-	-	100
ESE	20	30	20	30	-	-	100

23EDOE11	INTRODUCTION TO INDUSTRIAL SAFETY
ZSEDUEII	(Common to all Branches)

	(Common i	o all Branches)					
PREREQUIS	ITES	CATEGORY	L	Т	P	C	
	NIL	OE	3	0	0	3	
Course	Summarize basics of industri		U	· ·	•		
Objectives	2. Describe fundamentals of mai	2	ing.				
J	3. Explain wear and corrosion.		8				
	4. Illustrate fault tracing.						
	, i	5. Identify preventive and periodic maintenance.					
UNIT – I	INTRODUCTION					L(9)	
	ses, types, results and control, m						
	eventive steps/procedure, describe						
	ety, wash rooms, drinking water l						
	ls, etc., Safety color codes. Fire pro	evention and firef	ightin	ig, eq	uıpn	nent and	
methods. UNIT – II	FUNDAMENTALS O	F MAIN	TEN	ANI	T	L(9)	
	ENGINEERING	FEE VIAII	(IEIV	ANC	·E	L(9)	
	d aim of maintenance engineeri						
	ity of maintenance department,						
	of tools used for maintenance,	Maintenance cost	t &	its r	elatio	on with	
	conomy, Service life of equipment.	W GIVEID DDE		ELON	,	7 (0)	
UNIT – III	WEAR AND CORROSION A	C30 1				L(9)	
Lubrication me ii. Pressure gr lubrication vi.	auses, effects, wear reduction methods, general sketch, working and rease gun, iii. Splash lubrication. Side feed lubrication, vii. Ring lub perrosion. Types of corrosion, corros	l applications, i. S iv. Gravity lubrication, Definitio	crew rication, pri	down on, v ncipl	n gre . Wi	ase cup ck feec	
UNIT – IV	FAULT TRACING	sion prevention in	otiloa			L(9)	
Fault tracing-osequence of far in machine too like, I. Any one v. Boiler, vi. E.	concept and importance, decisional ult-finding activities, show as decisions, hydraulic, pneumatic, automose machine tool, ii. Pump iii. Air confectrical motors, Types of faults in	ion tree, draw dec tive, thermal and mpressor, iv. Inter- machine tools and	eision elect nal co their	tree rical mbu gene	for p equi stion	cations, roblems pment's engine auses.	
UNIT – V	PERIODIC AND PREVENTI	VE MAINTENAL	NCE			L(9)	
Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance							
Contact Period Lecture: 45 Per		actical: 0 Periods	Tota	al: 45	Perio	ods	

1	Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall
	London, 2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P)
	Ltd., Publishers, 2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July
	2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing;
	Third edition ,2018
5	"Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:	
CO1	Ability to summarize basics of industrial safety	K4
CO2	Ability to describe fundamentals of maintenance engineering	K4
CO3	Ability to explain wear and corrosion	K4
CO4	Ability to illustrate fault tracing	K4
CO5	Ability to identify preventive and periodic maintenance	K4

COURSE ARTICULATI	ON MATRI	X	* /	/	
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	1	-	-
CO2	2	♠ 2	7/1	-	1
CO3	1	8 2	1	1	1
CO4	2	¥ 1	1	1	1
CO5	2	130-1	2	998 1	1
23EDOE11	2	1		1	1
1 – Slight, 2 – Moderate, 3 – Substantial					

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	25	25	25	25	-	-	100
CAT 2	20	25	25	30	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	25	30	25	20	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	30	20 5000	30	20	-	-	100
ESE	20	30	20	30	-	-	100

.

110

22EDOE12	OPERATIONS RESEARCH
23EDOE12	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objectives	 Solve linear programming problem and solve using graph Solve LPP using simplex method. Solve transportation, assignment problems. Solve project management problems. Solve scheduling problems. 	nical method.			
UNIT – I	INTRODUCTION	9 Periods			
	Techniques, Model Formulation, models, General L.R niques, Sensitivity Analysis, Inventory Control Models	Formulation,			
UNIT – II	LINEAR PROGRAMMING PROBLEM	9 Periods			
	of a LPP - Graphical solution revised simplex method - duality od - sensitivity analysis - parametric programming	theory - dual			
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM	9 Periods			
	gramming problem - Kuhn-Tucker conditions min cost flow properties - CPM/PERT	oroblem - max			
UNIT – IV	SEQUENCING AND INVENTORY MODEL	9 Periods			
	Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.				
UNIT – V	GAME THEORY	9 Periods			
	Models, Single and Multi-channel Problems, Sequencing Mod, Flow in Networks, Elementary Graph Theory, Game Theory				
Contact Perio	ds:				
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0Periods Total: 45	5 Periods			

1	H.A. Taha "Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan
	2021.

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Formulate linear programming problem and solve using	K4
	graphical method.	
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
CO4	Solve project management problems.	K4
CO5	Solve scheduling problems	K4

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	2	1	1	-	-
CO2	2	2	mmy		-
CO3	1	ON SA BOTTO	2	218100	1
CO4	1	W E	THE CO PAR LINE		-
CO5	2				-
23EDOE12	2	1	1		1
1 - Slight, 2 - M	oderate, 3 – S	ubstantial	- 4		

ASSESSMEN	T PATTER	N – THEORY	3				
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	25	25	25	25 110	/ -	-	100
CAT 2	20	25	25	30	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	25	30	25	20	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	30	20	30	20	-	-	100
ESE	20	30	20	30	_	-	100

23MFOE13

OCCUPATIONAL HEALTH AND SAFETY

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	1. To gain knowledge about occupational health hazard and safe	ty measures at
Objectives	work place.	
	2. To learn about accident prevention and safety management.	
	3. To learn about general safety measures in industries.	
UNIT – I	OCCUPATIONAL HEALTH AND HAZARDS	9 Periods

Safety- History and development, National Safety Policy- Occupational Health Hazards - Ergonomics - Importance of Industrial Safety Radiation and Industrial Hazards- Machine Guards and its types, Automation.

UNIT – II SAFETY AT WORKPLACE

9 Periods

Safety at Workplace - Safe use of Machines and Tools: Safety in use of different types of unit operations -

Ergonomics of Machine guarding - working in different workplaces - Operation, Inspection and maintenance, Plant Design and Housekeeping, Industrial lighting, Vibration and Noise Case studies.

UNIT – III | ACCIDENT PREVENTION

9 Periods

Accident Prevention Techniques - Principles of accident prevention - Definitions, Theories, Principles - Hazard identification and analysis, Event tree analysis, Hazop studies, Job safety analysis - Theories and Principles of Accident causation - First Aid: Body structure and functions - Fracture and Dislocation, Injuries to various body parts.

UNIT – IV SAFETY MANAGEMENT

9 Periods

Safety Management System and Law - Legislative measures in Industrial Safety: Various acts involved in

Detail- Occupational safety, Health and Environment Management: Bureau of Indian Standards on Health and Safety, 14489, 15001 - OSHA, Process safety management (PSM) and its principles - EPA standards- Safety Management: Organisational & Safety Committee - its structure and functions.

UNIT - V GENERAL SAFETY MEASURES

9 Periods

Plant Layout for Safety -design and location, distance between hazardous units, lighting, colour coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work Permit System: Significance of Documentation Directing Safety, Leadership -Case studies involving implementation of health and safety measures in Industries.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
2	Danuta Koradecka, Handbook of Occupational Health and Safety , CRC, 2010.
3	Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
4	Deshmukh. L.M., Industrial Safety Management, 3 rd Edition, Tata McGraw Hill, New Delhi,
	2008.
5	https://nptel.ac.in/courses/110105094
6	https://archive.nptel.ac.in/courses/110/105/110105094/

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Gain the knowledge about occupational health hazard and safety	К3
	measures at work place.	
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety	К3
	measures in industries.	
CO4	Know various laws, standards and legislations.	K2
CO5	Implement safety and proper management of industries.	K4

COURSE ARTI	COURSE ARTICULATION MATRIX:				
Cos/Pos	PO1	PO2	PO3	PO4	PO5
CO1	2	10	1	1	1
CO2	2	2	1	(2.1	1
CO3	1 (2	1	1 110	1
CO4	2		100	1	1
CO5	2	and the	2	1	1
23MFOE13	2	1	1	1	1
1 – Slight, 2 – M	loderate, 3 –	Substantial			

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total
CAT1	-	50	50	-	-	-	100
CAT2	-	50	30	20	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	8154 00 is 10 to 50 50 50 50 50 50 50 50 50 50 50 50 50	716 to 1912 11th	20	-	-	100
ESE	-	40	40	20	-	-	100
ESE	-	40	40	20	-	-	10

23MFOE14

COST MANAGEMENT OF ENGINEERING PROJECTS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objectives To understand the costing concepts and their role in decision making. To acquire the project management concepts and their various aspects in selection. To gain the knowledge in costing concepts with project execution. To develop knowledge of costing techniques in service sector and various budgetary control techniques. To familiarize with quantitative techniques in cost management.

UNIT – I INTRODUCTION TO COSTING CONCEPTS

9 Periods

Introduction and Overview of the Strategic Cost Management Process, Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision - Making.

UNIT - II PROJECT PLANNING ACTIVITIES

9 Periods

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

UNIT – III COST ANALYSIS

9 Periods

Cost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.

UNIT – IV PRICING STRATEGIES AND BUDGETORY CONTROL

9 Periods

Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

UNIT – V TQM AND OPERATIONS REASEARCH TOOLS

9 Periods

Total Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor
	&Francis, 2016
3	Nigel J, Engineering Project Management, John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice
	Hall of India, New Delhi, 2011.
5	https://archive.nptel.ac.in/courses/110/104/110104073/

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:		
CO1	Apply the costing concepts and their role in decision making.	K3	
CO2	Apply the project management concepts and analyze their various aspects in selection.	K4	
CO3	Interpret costing concepts with project execution.	K4	
CO4	Gain knowledge of costing techniques in service sector and various budgetary control techniques.	K2	
CO5	Become familiar with quantitative techniques in cost management.	K3	

PO2	PO3	PO4	PO5
1 1 8	2	1	1
1 0	1	1	-
2	2	7.000	-
	1	4	1
0.2		OC VIE	-
120	L LUX CROSES	23/1	1
	1 1 2 1 2 1 2 1 3 - Substantial	1 2 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1	1 2 1 1 1 1 2 2 2 - 1 1 1 1 1 2 1 1 1

ASSESSMEN	NT PATTERN -	- THEORY					
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Total %
CAT1	-	-	40	60	-	-	100
CAT2	-	30	30	40	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	-	40	60	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2		30 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30	40	-	-	100
ESE	-	20	40	40	-	-	100

23MFOE15

COMPOSITE MATERIALS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	1. To summarize the characteristics of composite materials	and effect of					
Objectives	reinforcement in composite materials.						
	2. To identify the various reinforcements used in composite materials.						
	3. To compare the manufacturing process of metal matrix composites						
	4. To understand the manufacturing processes of polymer matrix con	nposites.					
	5. To analyze the strength of composite materials.						
UNIT – I	INTRODUCTION	9 Periods					
	Classification and characteristics of Composite materials. Advantages and unctional requirements of reinforcement and matrix. Effect of reinforcement commance.						
UNIT – II	REINFORCEMENT	9 Periods					
Boron fibers. I	rup, curing, properties and applications of glass fibers, carbon fibers, K. Properties and applications of whiskers, particle reinforcements. Mechaniale of mixtures, Inverse rule of mixtures. Isostrain and Isosteresconditions.						
UNIT – III	MANUFACTURING OF METAL MATRIX COMPOSITES	9 Periods					
Matrix Compo	Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing- Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering–Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving- Properties and applications.						
UNIT – IV	MANUFACTURING OF POLYMER MATRIX COMPOSITE	9 Periods					
Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.							
UNIT – V	STRENGTH ANALYSIS OF COMPOSITES	9 Periods					
Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.							

REFERENCES:

Contact Periods:

Lecture: 45 Periods

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials , Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz,
	2013.
5	https://nntel.gc.in/courses/112104168

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

COURSE OUTCOMES: Upon Completion of the course, the students will able to:				
CO1	CO1 Know the characteristics of composite materials and effect of reinforcement in			
	composite materials.			
CO2	2 Know the various reinforcements used in composite materials.			
CO3	Understand and apply the manufacturing processes of metal matrix composites	K3		
CO4	Understand and apply the manufacturing processes of polymer matrix	K3		
	composites.			
CO5	Analyze the strength of composite materials.	K4		

COURSE ARTICUL	ATION MAT	RIX			
COs/Pos	PO1	PO2	PO3	PO4	PO5
CO1	1	2	1	1	1
CO2	2	2	1	1	2
CO3	2	1	2	1	1
CO4	1	2	2	2	1
CO5	1	2	TUS OF PALLIE	K 21	1
23MFOE15	1	2	0022		1
1 – Slight, 2 – Modera	ite, 3 – Substar	ntial			l

- Slight, 2 - W	Toderate, 5 – Subs	tantiar	- 4	7			
ASSESSMEN	NT PATTERN –	ГНЕОКУ		1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	-	60	40	3	-	-	100
CAT2	-		60	40	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	60	40	25	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	-	60	40	-	-	100
ESE	-	40	40	20	-	-	100

23TEOE16 GLOBAL WARMING SCIENCE (Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objectives	To make the students learn about the material consequences of clin level change due to increase in the emission of greenhouse gases an science behind mitigation and adaptation proposals.	· ·			
UNIT – I	INTRODUCTION	9 Periods			
Terminology	relating to atmospheric particles - Aerosols - Types, characteristics,	measurements -			
Particle mass	spectrometry - Anthropogenic-sources, effects on humans.				
UNIT – II	CLIMATE MODELS	9 Periods			
General clima	ate modeling- Atmospheric general circulation model - Oceanic ge	eneral circulation			
model, sea ice	model, land model concept, paleo-climate - Weather prediction by no	umerical process.			
Impacts of cli	mate change - Climate Sensitivity - Forcing and feedback.				
UNIT – III	EARTH CARBON CYCLE AND FORECAST	9 Periods			
Interactions b	 -process, importance, advantages - Carbon on earth - Global car etween human activities and carbon cycle - Geologic time scales - rbed carbon cycle. 				
UNIT – IV	GREENHOUSE GASES	9 Periods			
	diation - Layer model - Earth's atmospheric composition and Grather and climate - Radioactive equilibrium - Earth's energy balance.	een house gases			
UNIT – V	GEO ENGINEERING	9 Periods			
Solar mitigation - Strategies - Carbon dioxide removal - Solar radiation management - Recent					
observed tren	observed trends in global warming for sea level rise, drought, glacier extent.				
Contact Peri	ods:				
Lecture: 45 I	Periods Tutorial: 0Periods Practical: 0 Periods T	otal: 45 Periods			

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change
	and Its Consequences", Princeton University Press, 1 st Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press,
	5 th Edition, 2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and
	Solutions for Global Warming" , Elsevier, 1 st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1 st edition,
	2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global
	energybalance", Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the global warming in relation to climate changes throughout the earth.	K2
CO2	Assess the best predictions of current climate models.	K4
CO3	Understand the importance of carbon cycle and its implication on fossil fuels.	K2
CO4	Know about current issues, including impact from society, environment, economy as well as ecology related to greenhouse gases.	K4
CO5	Know the safety measures and precautions regarding global warming.	K5

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	819800	2	100 T	1	2
CO2	1	400	2	\mathcal{N}_{i}	1	1
CO3	1	2			1	2
CO4	1	1	1		1	2
CO5	2	\\1\	2	//1	1	2
23TEOE16	1	l		///1	1	2
1 – Slight, 2 – 1	Moderate, 3 -	- Substantial	ALL	11		•

ASSESSMEN	NT PATTERN –	THEORY		1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	35	35	10	-	-	100
CAT2	15	25	25	20	15	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	25	20	20	35	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	20	20	35	15	10	-	100
ESE	25	20	25	20	10	-	100

23TEOE17

INTRODUCTION TO NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objectives	To make the students provide strong, essential, imp quantum mechanics and apply quantum mechanics of	
UNIT – I	INTRODUCTION	9 Periods
	Waves - Operators in quantum mechanics - The Postu	
Schrodinger e	quation values and wave packet Solutions - Ehrenfest	's Theorem.
UNIT – II	ELECTRONIC STRUCTURE AND MOTION	9 Periods
Atoms- The	Hydrogen Atom - Many-Electron Atoms - Pse	udopotentials, Nuclear Structure,
	rystals - Translational motion - Penetration through	
terminal quant	tum dot devices - Two terminal quantum wire devices.	
UNIT – III	SCATTERING THEORY	9 Periods
The formulati	on of scattering events - Scattering cross section - S	Stationary scattering state - Partial
wave stationa	ry scattering events - multi-channel scattering - Se	olution for Schrodinger equation-
Radial and wa	ve equation - Greens' function.	5
UNIT – IV	CLASSICAL STATISTICS	9 Periods
Probabilities a	and microscopic behaviours - Kinetic theory and trans	port processes in gases - Magnetic
properties of r	naterials - The partition function.	
UNIT – V	QUANTUM STATISTICS	9 Periods
Statistical med	chanics - Basic Concepts - Statistical models applied t	o metals and semiconductors - The
thermal prope	erties of solids- The electrical properties of materia	ds - Black body radiation - Low
temperatures a	and degenerate systems.	
Contact Perio	ods:	h
Lecture: 45 Po	eriods Tutorial: 0 Periods Practical: 0	Periods Total:45 Periods

1	Vladimi V.Mitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "Introduction to
	Nanoelectronics: Science, Nanotechnology, Engineering, and Applications", Cambridge
	University Press, 1 st Edition, 2007.
2	Vinod Kumar Khanna, "Introductory Nanoelectronics: Physical Theory and Device
	Analysis", Routledge, 1 st Edition, 2020.
3	George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States
	Edition, 2007.
4	Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.
5	Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South
	Asian Edition, 2009.
6	Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied
	Quantum Statistical Mechanics", Wiley, 2004.
7	A. F. J. Levi, "Applied Quantum Mechanics", 2 nd Edition, Cambridge, 2012.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the postulates of quantum mechanics.	K2
CO2	Know about nano electronic systems and building blocks.	K2
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4
CO4	Learn the concepts involved in kinetic theory of gases.	K2
CO5	Know about statistical models applies to metals and semiconductor.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	1
CO2	2	2	1	1	1	1
CO3	2	2	2	1	1	1
CO4	1		2 a 32		1	1
CO5	1	18 Ships and	BARBON BULLION	15 July 1	1	1
23TEOE17	1	1/39	Strange Core		1	1
1 – Slight, 2 – 1	Moderate, 3 –	Substantial			•	I.
				- 77		

ASSESSMENT	PATTERN – T	HEORY	AUD.				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	30	30	20	20	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	35	25	20	20	-	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	30	25	20	25	-	-	100
ESE	20	30	30	20	-	-	100

23TEOE18	GREEN SUPPLY CHAIN MANAGEMENT
231EUE16	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To make the students learn and focus on the fundamental strategies, tool	s and techniques
Objectives	required to analyze and design environmentally sustainable supply chain	systems.
UNIT – I	INTRODUCTION	9 Periods
	- complexity in SCM, Facility location - Logistics - Aim, activities, impo	rtance, progress,
current trends	- Integrating logistics with an organization.	
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAGEMENT	9 Periods
Basic concepts	of supply chain management - Supply chain operations - Planning and so	ourcing - Making
and delivering	- Supply chain coordination and use of technology - Developing supply chain	ain systems.
UNIT – III	PLANNING THE SUPPLY CHAIN	9 Periods
Types of decis	sions - strategic, tactical, operational - Logistics strategies, implementing	ng the strategy -
Planning reso	arces - types, capacity, schedule, controlling material flow, measuring	and improving
performance.		
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN	9 Periods
Procurement -	cycle, types of purchase - Framework of e-procurement - Inventory man	agement – EOQ,
uncertain dem	and and safety stock, stock control - Material handling - Purpose of	. 1 1
	and and safety stock, stock control manding larpose of	warehouse and
	out, packaging - Transport – mode, ownership, vehicle routing and sch	
ownership, lay		
ownership, lay Travelling sale UNIT – V	rout, packaging - Transport - mode, ownership, vehicle routing and scheman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES	9 Periods
ownership, lay Travelling sale UNIT – V	out, packaging - Transport - mode, ownership, vehicle routing and scheman problems - Exact and heuristic methods.	9 Periods
ownership, lay Travelling sale UNIT - V Five key conf	rout, packaging - Transport - mode, ownership, vehicle routing and scheman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES	9 Periods Next generation
ownership, lay Travelling sale UNIT - V Five key conf strategies- Nev	rout, packaging - Transport - mode, ownership, vehicle routing and scheman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES iguration components - Four criteria of good supply chain strategies -	9 Periods Next generation
ownership, lay Travelling sale UNIT - V Five key conf strategies- Nev	rout, packaging - Transport - mode, ownership, vehicle routing and scheman problems - Exact and heuristic methods. SUPPLY CHAIN MANAGEMENT STRATEGIES iguration components - Four criteria of good supply chain strategies - veroles for end-to-end supply chain management - Evolution of supply chains used in SCM - Regional differences in logistics.	9 Periods Next generation

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply Chain Management", Routledge, 1 st Edition, 2019.					
2	Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle Approach", McGraw-Hill Education, 1 st Edition, 2011.					
1	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management", Routledge, 1 st Edition, 2017.					
2	Arunachalam Rajagopal, "Green Supply Chain Management: A Practical Approach", Replica, 2021.					
3	Mehmood Khan, Matloub Hussain and Mian M. Ajmal, "Green Supply Chain Management for Sustainable Business Practice", IGI Global, 1 st Edition, 2016.					
4	S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.					
5	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction", Routledge, 1 st Edition, 2017.					

COURS Upon C	Bloom's Taxonomy Mapped	
CO1	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and operational decisions.	K5
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	К3
CO4	Analyze inventory management models and dynamics of supply chain.	K4
CO5	Identify issues in international supply chain management and outsources strategies.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-10m	TO _	1	1	3
CO2	2	81500 2 7 00	18 C. P. C.	y 1	1	1
CO3	2		2) 1	1	1
CO4	2	2	TO TO	1	2	2
CO5	1 0	1	2	1	1	3
23TEOE18	2	1	15	// 1	1	2
1 – Slight, 2 – Mode	rate, 3 – Substan	tial	_ /	11		

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	30	10	10	-	100
CAT2	30	40	20	10	-	-	100
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	30	20	25	15	10	-	100
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	35	30	25	10	-	-	100
ESE	30	30	20	10	10	-	100

22DCOE10	DISTRIBUTION AUTOMATION SYSTEM
23PSOE19	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To study about the distributed automation and economic evaluation schemes of po	wer network
Objectives		
UNIT – I	INTRODUCTION	9 Periods
	Distribution Automation (DA) - Control system interfaces- Control and data r	equirements-
Centralized (vs)	decentralized control- DA system-DA hardware-DAS software.	
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS	9 Periods
	s - Automation system computer facilities- Management processes- Information r	
	ty management- System efficiency management- Voltage management- Load management-	ī
UNIT – III		9 Periods
	requirements - reliability- Cost effectiveness- Data requirements- Two way	
	during outages and faults - Ease of operation and maintenance- Conforming to the	
	oution line carrier- Ripple control-Zero crossing technique- Telephone, cableTV	
broadcast, FM	SCA,VHF radio, microwave satellite, fiber optics-Hybrid communication systems	used in field
tests.		•
UNIT – IV	ECONOMIC EVALUATION METHODS	9 Periods
	nd evaluation of alternate plans- select study area - Select study period- Project	load growth-
Develop alterna	tives- Calculate operating and maintenance costs-Evaluate alternatives.	•
UNIT – V	ECONOMIC COMPARISON	9 Periods
	parison of alternate plans-Classification of expenses - capital expenditures-Co	
	ements of alternative plans-Book life and continuing plant analysis- Year by y	
	alysis, Short term analysis- End of study adjustment-Break even analysis, sensitive	ity analysis -
Computational		
Contact Period	PLIP	
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications, Ltd., 2010.
2	Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design", Springer Science & Business Media, 21-Mar-2013
3	IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society. Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
4	Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COUR Upon (Bloom's Taxonomy Mapped	
CO1	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed automation.	К3
CO4	Study the economic evaluation method	K4
CO5	Understand the comparison of alternate plans	K5

COs/Pos	PO1	PO2	PO3	PO4
CO1	2	-	1	3
CO2	3	-	3	2
CO3	3	-	3	2
CO4	3	Elman B	3	1
CO5	2 815 8 67 7	PARISON BILLION OF PRINT	1	2
23PSOE19	3 / 5 9	135 FE 150	3	2
1 – Slight, 2 – Moderate	e, 3 – Substantial			

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	20	10	20	-	100
CAT2	20	20	20	20	20	-	100
Individual Assessment1/ Case study1/ Seminar 1/Project1	20	10	30 % 30	20	20	-	100
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20	30	10	20	20	-	100
ESE	30	20	20	20	10	-	100

23PSOE20	ELECTRICITY TRADING AND ELECTRICITY ACTS
23F8UE2U	(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	P	C
NIL	OE	3	0	0	3

Course Objectives	To acquire expertise on Electric supply and demand of Indian Grid, gain exposur trading in the Indian market and infer the electricity acts and regulatory authorities.	re on energy			
UNIT – I	ENERGY DEMAND	9 Periods			
Basic concepts i	in Economics - Descriptive Analysis of Energy Demand - Decomposition Analysis an	d Parametric			
Approach - Demand Side Management - Load Management - Demand Side Management - Energy Efficiency -					
Rebound Effect					
UNIT – II	ENERGY SUPPLY	9 Periods			
Supply Behavior	r of a Producer - Energy Investment - Economics of Non-renewable Resources - E	Economics of			
Renewable Ener	gy Supply Setting the context - Economics of Renewable Energy Supply - Economics	of Electricity			
Supply	0.000				
UNIT – III	ENERGY MARKET	9 Periods			
	tion as a Market Form - Why is the Energy Market not Perfectly Competitive? - Market	et Failure and			
Monopoly - Oil	Market: Pre OPEC Era I - Oil Market: Pre OPEC Era II - Oil Market: OPEC				
UNIT – IV	LAW ON ELECTRICITY	9 Periods			
Introduction of	the Electricity Law; Constitutional Design - Evolution of Laws on Electricity Salien	t Features of			
Electricity Act, 2	2003 - Evolution of Laws on Electricity - Salient Features of the Electricity Act 2003				
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRICITY ACT	9 Periods			
Regulatory Com	nmissions - Appellate Tribunal - Other Institutions under the Act - Electricity (Ame	ndment) Bill			
2020/2021. A Critical Comment - Renewable Energy - Role of Civil Society; Comments on Draft Renewable Energy					
Act, 2015					
Contact Periods	s:				
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance". Springer.London, UK
 Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of Energy", Vol.1, Edward Elgar, Cheltenham, UK.
 Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
 Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands, 2017.
 Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
 Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and Practices", Cambridge Univesity Press, 2014.

	SE OUTCOMES: completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Describe electric supply and demand of power grid	K1
CO2	Summarize various energy trading strategies	K2
CO3	Relate the electricity acts practically	К3
CO4	Cite the electricity regulatory authorities	K2
CO5	Analyze/check the existing power grid for its technical and economical sustainability	K4

COs/Pos	PO1	PO2	PO3	PO4
CO1	3	-	3	3
CO2	3	-	1	1
CO3	3	Manny	2	2
CO4	3		1	2
CO5	3	ARON BILLIO	3	3
23PSOE20	3.9	BEGGE CO	2	2

Tip Tip

ASSESSMENT	PATTERN – THE	EORY	W.				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	20	30	-	-	100
CAT2	20	20	20	20	20	-	100
Individual Assessment1/ Case study1/ Seminar 1/Project1	20	30	30	20	-	-	100
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20	30	-	20	-	40	100
ESE	30	30	-	20	20	-	100

23PSOE21	MODERN AUTOMOTIVE SYSTEMS
23PSUE21	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objectives	To expose the students with theory and applications of Automotive Electrical ar Systems.	nd Electronic
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIVE ELECTRONICS	9 Periods
	modern automotive systems and need for electronics in automobiles- Role of electronics and actuators- Possibilities and challenges in automotive industry- Enabling ds.	
UNIT – II	SENSORS AND ACTUATORS	9 Periods
Engine cooling detonation sensor sensor Speed a	sic sensor arrangement- Types of sensors- Oxygen sensor, engine crankshaft angular post water temperature sensor- Engine oil pressure sensor- Fuel metering- vehicle speed or- Pressure Sensor- Linear and angle sensors- Flow sensor- Temperature and humidity and Acceleration sensors- Knock sensor- Torque sensor- Yaw rate sensor- Tyre Preser motors – Relays.	d sensor and sensors- Gas
UNIT – III	POWERTRAIN CONTROL SYSTEMS IN AUTOMOBILE	9 Periods
cooling and war	mission Control - Digital engine control system: Open loop and close loop control system up control- Acceleration- Detonation and idle speed control - Exhaust emission control stics- Future automotive powertrain systems.	
UNIT – IV	SAFETY, COMFORT AND CONVENIENCE SYSTEMS	9 Periods
Cruise Control- Steering control-	Anti-lock Braking Control- Traction and Stability control- Airbag control system- Susper HVAC Control.	nsion control-
UNIT – V	ELECTRONIC CONTROL UNITS (ECU)	9 Periods
of ECUs- V-Mo	Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotives - Design del for Automotive ECU's- Architecture of an advanced microcontroller (XC166 For the design of automobile ECUs- On chip peripherals, protocol interfaces, analog	amily, 32-bit

Contact Periods: Lecture: 45 Periods

1 Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John Wiley and Sons, 2001.

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press, series on Power Engineering, 2000.
- Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
- 4 G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering applications	K4
CO4	Develop modern automotive control system for electrical and electronics systems	K6
CO5	Understand the function of sensors and actuators	K2

COs/Pos	PO1	PO2	PO3	PO4
CO1	3	-	1	3
CO2	3	-	3	2
CO3	3.0	mm D	3	2
CO4	81542711 800	BEST BEST OF	3	1
CO5	2	- CEV	1	2
23PSOE21	3	The same of the sa	2	2
1 – Slight, 2 – Moderate, 3	– Substantial	_		

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	30	20	30	1	-	100
CAT2	20	20	20	20	20	-	100
Individual Assessment1/ Case study1/ Seminar 1/Project1	20	30	2 63 m	20	-	30	100
Individual Assessment2/ Case study2/ Seminar 2 /Project2	20	30	-	20	-	40	100
ESE	30	30	20	20	-	-	100

23PEOE22		VIRTUAL INSTRUMENTATION (Common to all Branches)							
PREREQUISI	TES	CATEGORY	L	T	P	C			
	NIL	OE	3	0	0	3			
Course Objectives To comprehend the Virtual instrumentation programming concepts towards measured control and to instill knowledge on DAQ, signal conditioning and its associated softwards.									
UNIT – I	INTRODUCTION 7 Periods								
	advantages - Block diagram and architecture of a vir nal Instruments - Data-flow techniques, graphical pr ogramming.								
UNIT – II	GRAPHICAL PROGRAMMING AND LabVIEW	7			9 P	eriods			
Analog - Chart and dialog cont UNIT - III High-level and write data to	High-level and low-level file I/O functions available in LabVIEW – Implementing File I/O functions to read and write data to files – Binary Files – TDMS – sequential programming – State machine programming – Communication between parallel loops –Race conditions – Notifiers & Queues – Producer Consumer design								
UNIT – IV	PC BASED DATA ACQUISITION					eriods			
	data acquisition on PC, Sampling fundamentals, ADG								
interface requir	inputs and outputs - Single-ended and differential inputs - Digital I/O, counters and timers, DMA, Data acquisition interface requirements - Issues involved in selection of Data acquisition cards - Use of timer-counter and analog outputs on the universal DAQ card.								
UNIT – V	DATA ACQUISITION AND SIGNAL CONDITION	ONING			9 P	eriods			
	f a DAQ system, Bus, Signal and accuracy consid								
conditioning sy Electrical Powe	Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation – Signal conditioning systems – Synchronizing measurements in single & multiple devices – Power quality analysis using Electrical Power Measurement tool kit.								
Contact Period		10							
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Periods							

1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.
2	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
3	Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional
	Publishing, 2019
4	Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
5	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and
	Control", Newness, 2000

	E OUTCOMES: mpletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	K6
CO5	Familiarize and experiment with DAQ and Signal Conditioning	К3

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	3	2 . B	3	2	1
CO2	3(, 8, 4	TO BOTO BULLIO	3	2	1
CO3	3	Party Corte	E 2	2	2
CO4	3	1	3	3	1
CO5	3	1 -	3	3	2
23PEOE22	3	1	3	2	1
1 – Slight, 2 – Moderate, 3	- Substantial	ATT .		•	

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	30	40	15	15	-	-	100	
CAT2	15	10	25	30	20	-	100	
Individual Assessment1/ Case study1/ Seminar 1/Project1	10	10	20	30	20	10	100	
Individual Assessment2/ Case study2/ Seminar 2 /Project2	25	40	20	15	-	-	100	
ESE	30	25	15	20	5	5	100	

23PEOE23	23PEOE23 ENERGY MANAGEMENT SYSTEMS (Common to all Branches)					
PREREQUISIT	TES	CATEGORY	L	T	P	C
	NIL	OE	3	0	0	3
Course Objectives	To Comprehend energy management schemes, performanalysis and load management in electrical systems.		nd ex	kecut	e ec	onomic
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND M					Periods
	ation Act 2001 and policies – Eight National Missions - B				,	
· · · · · · · · · · · · · · · · · · ·	Energy Management and Audit - Energy Managers ar	• •	es a	nd N	1etho	odology
	Material and energy balance diagramsEnergy Monitorin					
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENE					Periods
_	- Types - Performance Evaluation of boilers - Energ	-			-	
	afficient Steam Utilisation - Furnaces:types and classification					
- 1	d furnace. Cogeneration: Need - Principle - Technica	- •	ificat	ion	- Te	chnical
parameters and f	actors influencing cogeneration choice - Prime Movers -	Γrigeneration.				
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS					Periods
	g - Electricity load management - Maximum Demand Co					
^	controllers - capacitors - Energy efficient transformers					_
	luencing energy efficiency - Standards and labeling progr					
	distribution losses - demand side management - harmoni	cs - filters - VFD	and	its so		
UNIT – IV	STUDY OF ELECTRICAL UTILITIES					Periods
	es - Performance - Air system components - Efficient	*	•			•
•	pacity assessment - HVAC: psychrometrics and air	~ .			•	•
	tem - Compressor types and applications - Performan			gerat	ion j	plants -
	s: Energy efficient lighting controls - design of interior light		7.	,		
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMEN					Periods
_	ncial analysis: Fixed and variable costs - Payback period					_
	Performance Assessment: Heat exchangers - Fans and I	Blowers - Pumps.	Ener	gy C	Conse	ervation
in buildings and						
Contact Period	S:					
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods				

1	Murphy W.R. and G.Mckay Butter worth , "Energy Management", Heinemann Publications, 2007
2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
	Publishers, 2012.
3	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
	edition, Technical Publications, 2019.
4	S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition,
	Nirali Prakashan Publications, 2021.
5	www.em-ea.org/gbook1.asp

	E OUTCOMES: mpletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Analyze the feature of energy audit methodology and documentation of report.	K3
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
CO4	Familiarize with electrical utilities.	K4
CO5	Perform assessment of different systems.	K5

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	1	1
CO2	3	_m2mm_	2	1	1
CO3	3	2	2	1	1
CO4	3	Bang2 OF HE	2	1	1
CO5	3	2 (2	2	1	1
23PEOE23	3	2	2	1	1

||

ASSESSMENT	PATTERN – T	HEORY		//			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/Project1	-	30	30	20	20	-	100
Individual Assessment2/ Case study2/ Seminar 2 /Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23PEOE24	PEOE24 ADVANCED ENERGY STORAGE TECHNOLOGY (Common to all Branches)					
PREREQUISIT	ΓES	CATEGORY	L	T	P	C
	NIL	OE	3	0	0	3
Course Objectives	To explore the fundamentals, technologies and application				•	
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTI AND CHANGES	VE, INTRODUC	CTIC	N	9 Pei	riods
Storage Needs-	Variations in Energy Demand- Variations in Energy Su	ipply- Interruption	ns in	Ener	gy Sui	oply-
_	ongestion - Demand for Portable Energy-Demand and so					
	sues-conventional energy storage methods: battery-types.	•				
UNIT – II	TECHNICAL METHODS OF STORAGE				9 Per	riods
Introduction: Er	nergy and Energy Transformations, Potential energy (pur	mped hydro, com	press	sed ai	r, spri	ngs)-
Kinetic energy	(mechanical flywheels)- Thermal energy without phase	se change passive	e (ad	obe)	and a	ctive
(water)-Therma	l energy with phase change (ice, molten salts, steam)-	Chemical energy	(hyd	lrogen	i, metl	nane,
gasoline, coal,	oil)- Electrochemical energy (batteries, fuel cells)- Electrostatic	ener	gy (d	capaci	tors),
Electromagnetic	e energy (superconducting magnets)- Different Types of E	nergy Storage Sys	tems			
UNIT – III	PERFORMANCE FACTORS OF ENERGY STORA				9 Per	
	rate and efficiency- Discharge rate and efficiency-		-			_
	scale flexibility, durability - Cycle lifetime, mass and saf	•	_			-
	ls, recycling and recovery- Environmental consideration	and recycling, M	lerits	and o	demeri	its of
different types of						
UNIT – IV	APPLICATION CONSIDERATION		- oa		9 Per	
	rage Technologies- Technology options- Performance fac					
,	y Recovery - Battery Storage System: Introduction wi					
	attery Operation, Power storage calculations, Reversible					
-	stems, System Performance, Areas of Application of Ener	7.			-	
energy storage, Green house heating, Power plant applications, Drying and heating for process industries, energy						

UNIT – V HYDROGEN FUEL CELLS AND FLOW BATTERIES

storage in automotive applications in hybrid and electric vehicles.

9 Periods

Hydrogen Economy and Generation Techniques, Storage of Hydrogen, Energy generation - Super capacitors: properties, power calculations – Operation and Design methods - Hybrid Energy Storage: Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor "Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation) Bacitor + Fuel Cell or Flow Battery operation-Applications: Storage for Hybrid Electric Vehicles, Regenerative Power, capturing methods.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES:

	1	DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.
Ī	2	Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy

3 Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.

Storage and Conversion", John Wiley and Sons, 2012.

4 Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical Society, New Jersy, 2010.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
CO4	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2

COURSE ARTICULATION MATRIX					
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	3	PRATON BULLIE	3	3	3
CO2	3 5	PUPLE	3	3	3
CO3	3	1	3	3	3
CO4	3	1 ~	3/	3	3
CO5	3	1	3	3	3
23PEOE24	3	10	3	3	3
1 – Slight, 2 – Moderate, 3	3 – Substantial		. //	1	•

ASSESSMENT	PATTERN – TH	IEORY		3			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23AEOE25

DESIGN OF DIGITAL SYSTEMS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To gain knowledge in the design and VHDL programming of synchronous and
Objectives	asynchronous sequential circuits, PLD's and the basic concepts of testing in VLSI
	circuits

UNIT-I SYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9 Periods

Analysis of Clocked Synchronous Sequential Circuits - Modeling, state table reduction, state assignment, Design of Synchronous Sequential circuits, Design of iterative circuits- ASM chart –ASM realization.

UNIT-II ASYNCHRONOUS SEQUENTIAL CIRCUIT DESIGN

9 Period

Analysis of Asynchronous Sequential Circuits - Races in ASC - Primitive Flow Table - Flow Table Reduction Techniques, State Assignment Problem and the Transition Table - Design of ASC - Static and Dynamic Hazards - Essential Hazards - Data Synchronizers.

UNIT-III SYSTEM DESIGN USING PLDS

9 Periods

Basic concepts – Programming Technologies - Programmable Logic Element (PLE) – Programmable Array Logic (PLA)-Programmable Array Logic (PAL) –Design of combinational and sequential circuits using PLDs– Complex PLDs (CPLDs).

UNIT- IV INTRODUCTION TO VHDL

9 Periods

Design flow -Software tools – VHDL: Data Objects-Data types – Operators –Entities and Architectures – Components and Configurations – Signal Assignment – Concurrent and Sequential statements — Behavioral, Dataflow and Structural modeling – Transport and Inertial delays –Delta delays-Attributes - Generics–Packages and Libraries.

UNIT-V LOGIC CIRCUIT TESTING AND TESTABLE DESIGN

9 Periods

Digital logic circuit testing - Fault models - Combinational logic circuit testing - Sequential logic circuit testing-Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study: Traffic Light Controller.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods

Practical: 0 Periods Total: 45 Periods

1	Donald G. Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and
	Design", Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni, "Circuit Design withVHDL",PHILearning,2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", Academic Press, 1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage 2nd Edition 2012.
6	NripendraN.Biswas, "Logic Design Theory" PrenticeHallofIndia, 2001.

COURSEOUTCOMES:				
Upon completion of the course ,students will be able to/have:		Taxonomy Mapped		
CO1	To design synchronous sequential circuits based on specifications.	K3		
CO2	To design asynchronous sequential circuits based on specifications	K3		
CO3	Ability to illustrate digital design implementation using PLDs.	K2		
CO4	To develop algorithm and VHDL code for design of digital circuits.	K3		
CO5	Understand the different testing methods for combinational and sequential circuits.	K2		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	_	-	1
CO2	3	- 0	······2	-	-	1
CO3	3		2		-	1
CO4	3	10	750 W2 18		-	1
CO5	3	(V.92)	2		-	1
23AEOE25	3	/-	2	-	-	1
1 – Slight, 2 – Mod	derate, 3 – Sub	stantial	-	77		ı
-		100	1			
				- ((

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20		-	-	100
CAT2	40	40	20	BICUID	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	9)	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	20	45	35	-	-	-	100

23AEOE26

BASICS OF NANO ELECTRONICS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	P	C
NIL	OE	3	0	0	3

Course	The students will be able to acquire knowledge about nano	device fabrication				
Objective	technology, nano structures, nano technology for memory devices and applications of					
3	nano electronics in data transmission.	11				
UNIT – I TECH	NOLOGY AND ANALYSIS	9 Periods				
Fundamentals : D	ielectric, Ferroelectric and Optical properties - Film Deposition Metho	ds – Lithography				
Material removing	g techniques - Etching and Chemical Mechanical Polishing - Scann	ning Probe				
Techniques.						
UNIT - II CARE	SON NANO STRUCTURES	9 Periods				
Principles and co	ncepts of Carbon Nano tubes - Fabrication - Electrical, Mechanica	al and Vibration				
Properties - Applie	eations of Carbon Nano tubes.					
UNIT – III LO	UNIT – III LOGIC DEVICES 9 Period					
Silicon MOSFET'	s: Novel materials and alternative concepts - Single electron devices	for logic				
applications - Supe	er conductor digital electronics - Carbon Nano tubes for data processing	g.				
UNIT - IV MEM	IORY DEVICES AND MASS STORAGE DEVICES	9 Periods				
Flash memories -	Capacitor based Random Access Memories - Magnetic Random A	ccess Memories -				
Information storag	ge based on phase change materials - Resistive Random Access Memo	ories - Holographic				
Data storage.						
UNIT – V DATA	TRANSMISSION AND INTERFACING DISPLAYS	9 Periods				
Photonic Network	s - RF and Microwave Communication System - Liquid Crystal Di	isplays - Organic				
Light emitting dio	des.					
Contact Periods:	Quality Branch					
Lecture: 45 Perio	ods Tutorial: 0 Periods Practical: 0 Periods Total: 45	Periods				

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronic materials and novel devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics
4	Science, Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
_	C. Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics",
3	Springer, 2001.
	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher,
6	California", 2003.

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Explain principles of nano device fabrication technology.	K2
CO2	Describe the concept of Nano tube and Nano structure.	K2
CO3	Explain the function and application of various nano devices	К3
CO4	Reproduce the concepts of advanced memory technologies.	K2
CO5	Emphasize the need for data transmission and display systems.	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	100	2	0.01010	-	1
CO2	3	19VI	2 m2 m 2 m		_	1
CO3	3		2		-	1
CO4	3	4	2		-	1
CO5	3	1	2	G - //	-	1
3AEOE26	3	11	2	不 - //	-	1

ASSESSMEN	NT PATTERN –	THEORY		N .			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	25	25	S	-	-	100
CAT2	50	25	25	SIC UID	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	25	25	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50	25	2	-	-	-	100
ESE	50	25	25	-	-	-	100

23AEOE27	ADVANCED PROCESSOR
	(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	P	C
NIL	OE	3	0	0	3

Course	The students will be able to acquire knowledge about the high performance RI	SC_CISC and						
Objective	special purpose processors.	e, eise una						
J 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	ar a rank							
UNIT – I MICRO	PROCESSOR ARCHITECTURE	9 Periods						
	Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile –							
	mory and paging – Segmentation – Pipelining – The instruction pipeline – pipel							
 Instruction level 	parallelism - reduced instruction set - Computer principles - RISC versus CIS	SC – RISC						
properties – RISC e	evaluation.							
UNIT – II HIGH I	PERFORMANCE CISC ARCHITECTURE -PENTIUM	9 Periods						
The software mode	el - functional description - CPU pin descriptions - Addressing modes - Pro	cessor flags -						
Instruction set – B	us operations – Super scalar architecture – Pipe lining – Branch prediction – T	The instruction						
and caches - Floati	ng point unit—Programming the Pentium processor.							
UNIT – III HIGH	PERFORMANCE CISC ARCHITECTURE – PENTIUM INTERFACE	9 Periods						
Protected mode ope	eration – Segmentation – paging – Protection – multitasking – Exception and inte	errupts						
- Input /Output – V	irtual 8086 model – Interrupt processing.							
UNIT – IV HIGH	PERFORMANCE RISC ARCHITECTURE: ARM	9 Periods						
ARM architecture	- ARM assembly language program - ARM organization and implementation	tion – ARM						
instruction set - The	umb instruction set.							
UNIT - V SPE	CIAL PURPOSE PROCESSORS	9 Periods						
Altera Cyclone Pro	cessor – Audio codec – Video codec design – Platforms – General purpose proc	essor –Digital						
signal processor –	Embedded processor - Media Processor - Video signal Processor - Custom Ha	ardware – Co-						
Processor.								
Contact Periods :								
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System -On -Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

	OUTCOMES: upletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Describe the fundamentals of various processor architecture.	K2
CO2	Interpret and understand the high performance features in CISC architecture.	K2
CO3	Describe the concepts of Exception and interrupt processing.	K2
CO4	Develop programming skill for ARM processor.	K3
CO5	Explain various special purpose processor	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	-	-	1
CO2	3	- Www.W	2	-	-	1
CO3	3		2	9 -	-	1
CO4	3 (6)	BALLON BULL	2	-	-	1
CO5	3	DE LOS CONTRACTOR	S 2	-	-	1
23AEOE27	3		2	-	-	1
1 – Slight, 2 – Mod	derate, 3 – Substai	ntial	W //		l .	

ASSESSMEN Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	200 0	-	-	100
CAT2	40	40	20		-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	30	40	30	-	-	-	100

23VLOE28	HDL PROGRAMMING LANGUAGES (Common to all Branches)
----------	--

PREREQUISITES	CATEGORY	L	Т	P	C
NIL	OE	3	0	0	3

Course	 To code and simulate any digital function in Veril 	og HDL and					
Objective	understand the difference between synthesizable and non	-synthesizable					
	codes.						
UNIT – I	VERILOGINTRODUCTIONANDMODELING	9 Periods					
Introduction to Verilog HDL, Language Constructs and Conventions, Gate Level Modeling,							
Modeling at	Dataflow Level, Behavioral Modeling, Switch Level Modeling,	System Tasks,					
Functions and	Compiler Directives.						
UNIT – II	SEQUENTIALMODELINGANDTESTING	9 Periods					
Sequential M	lodels - Feedback Model, Capacitive Model, Implicit Model, I	Basic Memory					
Components,	Functional Register, Static Machine Coding, Sequential Synthesis.	Test Bench -					
	1 Circuits Testing, Sequential Circuit Testing, Test Bench Techr						
Verification, A	Assertion Verification.						
UNIT – III	SYSTEMVERILOG	9 Periods					
Introduction,	SYSTEMVERILOG	d Built-in Data					
Introduction, S Types, System	SYSTEMVERILOG System Verilog declaration spaces, System Verilog Literal Values and	d Built-in Data					
Introduction, S Types, System	SYSTEMVERILOG System Verilog declaration spaces, System Verilog Literal Values and Verilog User-Defined and Enumerated Types, system Verilog Arrays,	d Built-in Data					
Introduction, S Types, System Unions, system UNIT – IV	SYSTEMVERILOG System Verilog declaration spaces, System Verilog Literal Values and Verilog User-Defined and Enumerated Types, system Verilog Arrays, in verilog Procedural Blocks, Tasks and Functions. SYSTEMVERILOGMODELING	d Built-in Data Structures and 9 Periods					
Introduction, S Types, System Unions, system UNIT – IV System Ver	SYSTEMVERILOG System Verilog declaration spaces, System Verilog Literal Values and Verilog User-Defined and Enumerated Types, system Verilog Arrays, in verilog Procedural Blocks, Tasks and Functions.	d Built-in Data Structures and 9 Periods					
Introduction, S Types, System Unions, system UNIT – IV System Ver	SYSTEMVERILOG System Verilog declaration spaces, System Verilog Literal Values and Verilog User-Defined and Enumerated Types, system Verilog Arrays, in verilog Procedural Blocks, Tasks and Functions. SYSTEMVERILOGMODELING rilog Procedural Statements, Modeling Finite State Machines v	d Built-in Data Structures and 9 Periods					
Introduction, S Types, System Unions, system UNIT – IV System Ver Verilog, Sys UNIT – V	System Verilog declaration spaces, System Verilog Literal Values and Verilog User-Defined and Enumerated Types, system Verilog Arrays, in verilog Procedural Blocks, Tasks and Functions. SYSTEMVERILOGMODELING rilog Procedural Statements, Modeling Finite State Machines was term Verilog Design Hierarchy.	d Built-in Data Structures and 9 Periods vith System 9 Periods					
Introduction, S Types, System Unions, system UNIT – IV System Ver Verilog, System UNIT – V System Verilog	SYSTEMVERILOG System Verilog declaration spaces, System Verilog Literal Values and Verilog User-Defined and Enumerated Types, system Verilog Arrays, in verilog Procedural Blocks, Tasks and Functions. SYSTEMVERILOGMODELING rilog Procedural Statements, Modeling Finite State Machines was stem Verilog Design Hierarchy. INTERFACES AND DESIGN MODEL	d Built-in Data Structures and 9 Periods vith System 9 Periods					
Introduction, S Types, System Unions, system UNIT – IV System Ver Verilog, System UNIT – V System Verilog	System Verilog declaration spaces, System Verilog Literal Values and Verilog User-Defined and Enumerated Types, system Verilog Arrays, in verilog Procedural Blocks, Tasks and Functions. SYSTEMVERILOGMODELING rilog Procedural Statements, Modeling Finite State Machines wastem Verilog Design Hierarchy. INTERFACES AND DESIGN MODEL og Interfaces, A Complete Design Modeled with System Verilog, Interfaces, Interfaces, Interfaces, Interfaces, Interfaces	d Built-in Data Structures and 9 Periods vith System 9 Periods					

1	T.R.Padmanabhan, B Bala Tripura Sundari, " Design through Verilog HDL" , Wiley 2009.
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog
	For Design Second Edition A Guide to Using System Verilog for Hardware Design and
	Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation
	of Projects on FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language
	Features", Springer 2006.
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using
	System Verilog for Hardware Design and Modeling" 1st Edition, 2003

	SE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Explain the verilog coding and simulate any digital function using Verilog HDL	K2
CO2	Develop sequential modeling based Verilog HDL code and develop the test bench for the modeling	К3
CO3	Explain the system verilog modeling	K2
CO4	Differentiate the synthesizable and non-synthesizable code	K3
CO5	Apply good coding techniques on system verilog interfaces and complete design model	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	-	2	-	2
CO2	3	3	Cohum	2	-	2
CO3	3	3	de la	2		2
CO4	3	3	any in	2	(5)-	2
CO5	3	3	9	2	V)-	2
23VLOE28	3	3	_	2	-	2
1 - Slight, 2 - M	oderate, $3 - S$	ubstantial		-	77	

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	40	40	20		-	-	100			
CAT2	40	40	20	OCUP /	-	-	100			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	_	-	-	100			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	40	40	20	-	-	-	100			

227/1 (0E20	CMOS VLSI DESIGN
23VLOE29	(Common to all Branches)

PREREQUISITES	CATEGORY	L	Т	P	C
NIL	OE	3	0	0	3

Course	To gain knowledge on CMOS Circuits with its cl	naracterization and to
Objective	design CMOS logic and sub-system with low power	idiaeterization and to
3	design civios logic and sub-system with low power	
	INTRODUCTION TO MOS CIRCUITS	9 Periods
	tor Theory -Introduction MOS Device Design Equations -MOS Tr	
	or - CMOS Transmission Gate -Complementary CMOS Inverte	
	verters with NMOS loads - Differential Inverter - Tri State Inverter	
UNIT – II	CIRCUIT CHARACTERIZATION AND	9 Periods
	PERFORMANCE ESTIMATION	
	nation, Logical Effort and Transistor Sizing, Power Dissipati	ion, Sizing Routing
Conductors	, Charge Sharing, Design Margin and Reliability.	
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN	9 Periods
CMOS Log	cic Gate Design, Physical Design of CMOS Gate, Designing	with Transmission
Gates, CMC	OS Logic Structures, Clocking Strategies, I/O Structures.	
UNIT – IV	CMOS SUBSYSTEM DESIGN	9 Periods
DataPath	Operations-Addition/Subtraction, Parity Generators, Comp	parators, Zero/One
Detectors, 1	Binary Counters, ALUs, Multipliers, Shifters, Memory Elem	ents, Control-FSM,
Control Log	gic Implementation.	
UNIT – V	LOWPOWERCMOS VLSIDESIGN	9 Periods
Introduction	n to Low Power Design, Power Dissipation in FET Devices, P	ower Dissipation in
CMOS, Lo	ow-Power Design through Voltage Scaling - VTCMOS C	Circuits, MTCMOS
·	chitectural Level Approach – Pipelining and Parallel Processin	The state of the s
	cs CMOS Gate and Adder Design.	· 11
Contact Peri		
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0 Periods Total	: 45 Periods

1	Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata
	Mc-Graw Hill, 2011.
2	N. Weste and K. Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley, 1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems
	Perspective", Pearson Education 2013.
4	Kiat-Seng Yeo, Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill
	Professional, 2004.
5	Gary K. Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Jan M .Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:	
CO1	Explain the MOS circuits and Transmission gates	K2
CO2	Illustrate the CMOS Circuits with its characterization	K2
CO3	Design CMOS logic circuits	K3
CO4	Design CMOS sub-system	K3
CO5	Discuss low power CMOS VLSI Design	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	-	2	-	3
CO2	2	1	-	2	-	3
CO3	2	1	-	2	-	3
CO4	3	- N	MANA	2	-	3
CO5	3		0 32	2	-	3
23VLOE29	3 76	and an	O DUID	2	-	3
1 - Slight, 2 - M	Ioderate, 3 – Su	bstantial	BUCK			II.

ASSESSMEN	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	40	40	20	- 1	-	-	100				
CAT2	40	40	20	3	-	-	100				
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50 (1) (3) (4) (4)	acus (A)	-	-	100				
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100				
ESE	40	40	20	-	-	-	100				

23VLOE30	_	LEVEL SYNT					
PREREQUISI	TES	CAT	ΓEGORY	L	T	P	C
	NIL		OE	3	0	0	3

Course Objective	To provide students with foundations in High verification and CAD Tools	level synthesis,					
UNIT – I		O Daviada					
	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS	9 Periods					
	S flow, Scheduling Techniques, Resource sharing and Binding Tech er Generation Techniques.	iniques, Data-path					
UNIT – II	HIGH LEVEL SYNTHESIS	9 Periods					
Introduction	to HDL, HDL to DFG, operation scheduling: constrained a	and unconstrained					
Timing Analy	ASAP, ALAP, List scheduling, Force directed Scheduling, operativesis: Delay models, setup time, hold time, cycle time, critical paths, g analysis, False paths, Arrival time (AT), Required arrival Time (R.	Topological mvs.					
UNIT – III	HIGH-LEVEL SYNTHESIS VERIFICATION	9 Periods					
	based verification - Formal Verification of digital systems- BDD luivalence, finite state automata, ω-automata, FSM verification.	based approaches,					
UNIT – IV	CAD TOOLS FOR SYNTHESIS	9 Periods					
well as for s	CAD tools for synthesis, optimization, simulation and verification of design at various levels as well as for special realizations and structures such as microprogrammes, PLAs, gate arrays etc. Technology mapping for FPGAs. Low power issues in high level synthesis and logic synthesis.						
UNIT – V	ADVANCED TOPICS	9 Periods					
Relative Scheduling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling modes, free-floating scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for FPGA.							
Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to
	Digital Circuit",
2	Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed.,
	2005.
3	D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
4	Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.
5	Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
6	David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and
	Synchronization Constraints", Kluwer Academic Publishers, 1992.
7	K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation",
	Jan 1999, Wiley.
8	Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level
	System Design and Analysis", Springer, 2006.

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:			
CO1	Understand the fundamentals of High level synthesis	K2		
CO2	Synthesis the HDL for operation scheduling	K2		
CO3	Simulate and verify any digital systems	K2		
CO4	Apply CAD tools for synthesis	K2		
CO5	Have knowledge on various scheduling modes	K2		

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	-	2	2	-		
CO2	2	2	-	2	2	-		
CO3	2	2	-	2	2	-		
CO4	2	2	-	2	2	-		
CO5	2	2	-	2	2	-		
23VL0E30	2	2,,,,,,,	W1 -	2	2	-		
1 – Slight, 2 – Moo	1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMEN	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	50	50		//	-	-	100	
CAT2	50	50		- 1	-	-	100	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	507	-	-	100	
ESE	50	50		-	-	-	100	

22CCOE21	ARTIFICIAL INTELLIGENCE
23CSOE31	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objectives	Identify and apply AI techniques in the design of systems that act intellig automatic decisions and learn from experience.	gently, making
UNIT – I	SEARCH STRATEGIES	L(9)
Uninformed St	rategies - BFS, DFS, Djisktra, Informed Strategies - A* search, Heuristic	functions, Hill
Climbing, Adve	ersarial Search – Min-max algorithm, Alpha-beta Pruning	
UNIT – II	PLANNING AND REASONING	L(9)
	earch, Planning Graphs, Partial order planning, Uncertain Reasoning -	Probabilistic
Reasoning, Bay	vesian Networks, Dempster Shafer Theory, Fuzzy logic	
UNIT – III	PROBABILISTIC REASONING	L(9)
	Reasoning over Time - Hidden Markov Models, Kalman Filters, Dyna owledge Representations - Ontological Engineering, Semantic Networks and	
UNIT – IV	DECISION MAKING	L(9)
	, Utility Functions, Decision Networks – Sequential Decision Problem OPs – Game Theory.	s – Partially
UNIT – V	REINFORCEMENT LEARNING	L(9)
	Learning - Passive and active reinforcement learning - Generations in I cy Search – Deep Reinforcement Learning.	Reinforcement
Contact Period	ds:	
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer,
3	2006 Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson
L	Prentice Hall, 2010.
4	Elaine Rich, Kevin Knight, Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill, 2009.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	К3
CO3	Examine data using statistical codes and solve complex AI problems	K6
CO4	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	K6

COURSE ARTICULATION MATRIX							
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	-	2	10-	3	3	
CO2	3	BIGGE	2	115 B F H 200	3	3	
CO3	3	(4/)	3	- 22 V	3	3	
CO4	3		3		3	3	
CO5	3		3		3	3	
23CSOE31	3	11-	3	W- //	3	3	
1 - Slight, 2 - N	Moderate, 3	– Substant	ial	A //			

1,

ASSESSME	NT PATTERN -	THEORY		- 11			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	-	20	40	20	20	-	100
CAT2	-	10	20	40	10	20	100
Individual Assessment 1/ Case study 1/ Seminar 1/ Project 1	-	-	_	-	50	50	100
Individual Assessment 2/ Case study 2/ Seminar 2/ Project 2	-	-	-	-	50	50	100
ESE	30	30	40	-	-	-	100

23CSOE32

COMPUTER NETWORK MANAGEMENT

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	С
NIL	OE	3	0	0	3

After the completion of the course, the students will be able to understand the concept of
layering in networks, functions of protocols of each layer of TCP/IP protocol suite,
concepts related to network addressing and routing and build simple LANs, perform basic
configurations for routers and switches, and implement IPv4 and IPv6 addressing
schemes using Cisco Packet Tracer.

UNIT – I INTRODUCTION AND APPLICATION LAYER

L(9)

Building network – Network Edge and Core – Layered Architecture – OSI Model – Internet Architecture (TCP/IP) Networking Devices: Hubs, Bridges, Switches, Routers, and Gateways – Performance Metrics – Ethernet Networking – Introduction to Sockets – Application Layer protocols – HTTP – FTP Email Protocols – DNS.

UNIT – II TRANSPORT LAYER AND ROUTING

L(9)

Transport Layer functions –User Datagram Protocol – Transmission Control Protocol – Flow Control – Retransmission Strategies – Congestion Control - Routing Principles – Distance Vector Routing – Link State Routing – RIP – OSPF – BGP – Introduction to Quality of Service (QoS).Case Study: Configuring RIP, OSPF BGP using Packet tracer

UNIT – III NETWORK LAYER

L(9)

Network Layer: Switching concepts – Internet Protocol – IPV4 Packet Format – IP Addressing – Subnetting – Classless Inter Domain Routing (CIDR) – Variable Length Subnet Mask (VLSM) – DHCP – ARP – Network Address Translation (NAT) – ICMP – Concept of SDN.Case Study: Configuring VLAN, DHCP, NAT using Packet tracer

UNIT – IV INTERNETWORK MANAGEMENT

L(9)

Introduction to the Cisco IOS - Router User Interface - CLI - Router and Switch Administrative Functions - Router Interfaces - Viewing, Saving, and Erasing Configurations - Switching Services - Configuring Switches - Managing Configuration Registers - Backing Up and Restoring IOS - Backing Up and Restoring the Configuration - Using Discovery Protocol (CDP) - Checking Network Connectivity

UNIT - V TRAFFIC MANAGEMENT AND WAN PROTOCOLS

L(9)

Managing Traffic with Access Lists: Introduction to Access Lists - Standard Access Lists - Extended Access Lists - Named Access Lists - Monitoring Access Lists - Wide Area Networking Protocols: Introduction to Wide Area Networks - Cabling the Wide Area Network - High-Level Data-Link Control (HDLC) Protocol - Point-to-Point Protocol (PPP) - Frame Relay: Frame Relay Implementation and Monitoring - Integrated Services Digital Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring DDR

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh Edition, Pearson Education, 2017.
- 2 William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education, 2014
- 3 Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan Kaufmann Publishers Inc., 2011.
- 4 Todd Lammle, "CCNATM: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex, 2003

- 5 Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw Hill, 2012.
- 6 Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:			
CO1	Highlight the significance of the functions of each layer in the network.	K1		
CO2	Identify the devices and protocols to design a network and implement it.	K4		
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	К3		
CO4	Build simple LANs, perform basic configurations for routers and switches	K6		
CO5	Illustrate various WAN protocols	K2		

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	- 6	3 3 3 3		2	1				
CO2	3	- /	3		2	2				
CO3	3	-	3	7	3	2				
CO4	3	- //	3	5 //	3	3				
CO5	3	- 11	3	A 1	3	3				
23CSOE32	3	- 11	3	11, 1	3	2				
1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMEN	NT PATTERN –	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	20	20	-	-	100
CAT2	-	30	20	30	10	10	100
Individual Assessment 1 /Case Study 1 / Seminar 1 / Project 1	10	30	20	20	20	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	-	20	20	20	20	20	100
ESE	20	40	40	-	-	-	100

23CSOE33	BLOCKCHAIN TECHNOLOGIES (Common to all Branches)					
PREREQUISIT	ΓES	CATEGORY	L	T	P	C
	NIL	OE	3	0	0	3

Course	The objective of the course is to explore basics of block chain tec	hnology and its								
Objectives	application in various domaiin	miorogy und its								
	**	T (0)								
	INTRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN	L(9)								
History of B	History of Blockchain - Types of blockchain- CAP theorem and blockchain - benefits and									
Limitations of	Blockchain – Decentalization using blockchain – Blockchain implement	entations- Block								
chain in practi	cal use - Legal and Governance Use Cases									
UNIT – II	L(9)									
Introduction to	Bitcoin, The Bitcoin Network, The Bitcoin Mining Process, Mining	Developments,								
Bitcoin Walle	ts, Decentralization and Hard Forks, Ethereum Virtual Machine (EVM	I), Merkle Tree,								
Double-Spend	Problem, Blockchain and Digital Currency, Transactional Block	cks, Impact of								
Blockchain Te	chnology on Cryptocurrency									
UNIT – III	ETHEREUM	L(9)								
Introduction	to Ethereum, Consensus Mechanisms, Metamask Setup, Ethereu	m Accounts, ,								
Transactions,	Receiving Ethers, Smart Contracts									
UNIT – IV	HYPERLEDGER AND SOLIDITY PROGRAMMING	L(9)								
Introduction to	Hyperledger, Distributed Ledger Technology & its Challenges, Hyperled	ger & Distributed								
Ledger Technolo	ogy, Hyperledger Fabric, Hyperledger Composer. Solidity – Programming w	vith solidity								
UNIT – V	BLOCKCHAIN APPLICATIONS	L(9)								
Ten Steps to b	Ten Steps to build your Blockchain application – Application: Internet of Things, Medical Record									
	Management System, Domain Name Service and Future of Blockchain, Alt Coins									
Contact Perio	ods:									
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods								

1	Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and
	Smart Contracts Explained", Second Edition, Packt Publishing, 2018.
2	Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and
	Technology Solutions", McGraw Hill Education ,2018.
3	Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A
	Comprehensive Introduction" Princeton University Press, 2016.
4	Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.
5	Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018
6	NPTEL Course: Blockchain and its applications https://archive.nptel.ac.in/courses/106/105/106105235/

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:	
CO1	Comprehend the working of Blockchain technology	K2
CO2	Narrate working principle of smart contracts and create them using solidity for given scenario.	К3
CO3	Comprehend the working of Hyperledger in an real time application	K2
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum	K3
CO5	Develop applications on Blockchain	K3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2		يرن 33وا	252	-	3			
CO2	2	3	3	3	2	3			
CO3	3		3	/	-	3			
CO4	3	3	3	3	2	3			
CO5	3	3	3	3	2	3			
23CSOE33	3	3	3	3	2	3			
1 - Slight, 2 - 1	Moderate, 3 -	- Substantial	自						
		B	8		3				

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1)%	Understanding (K2) %	Applying (K3)%	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	20	40	40	7	-	-	100			
CAT2	20	30	50	-	-	-	100			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	30	70	-	-	-	100			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	40	60	-	-	-	100			
ESE	10	60	30	-	-	-	100			

23CSACZ1

ENGLISH FOR RESEARCH PAPER WRITING (Common to all Branches)

PREREQUISITES	S	CATEGORY L T P					
	NIL	AC	2	0	0	0	
Course	The objective of the course is to make the lear	rners understand	the for	mat a	nd		
Objectives	intricacies involved in writing a research pap	er.					
UNIT – I	PLANNING AND PREPARATION			6	Peri	ods	
Need for publishin	ng articles, Choosing the journal, Identifying a	model journal par	er, Cro	eation	of fil	es for	
each section, Expe	ctations of Referees, Online Resources.						
UNIT – II	SENTENCES AND PARAGRAPHS			6	Peri	ods	
Basic word in Engl	lish, Word order in English and Vernacular, plac	cing nouns, Verbs,	Adject	ives, a	ınd A	dverb	
suitably in a sent	tence, Using Short Sentences, Discourse Ma	rkers and Punct	ıations	- Stru	cture	of a	
Paragraph, Breakir	ng up lengthy Paragraphs.						
UNIT - III	ACCURACY, BREVITY AND CLARITY (ABC)	OF WRITING		6	Peri	ods	
Accuracy, Brevity a	nd Clarity in Writing, Reducing the linking wor	ds, Avoiding redur	dancy,	Appr	opria	te use	
of Relative and R	eflexive Pronouns, Monologophobia, verifying	g the journal styl	e, Log	ical C	onne	ctions	
between others au	thor's findings and yours.	7					
UNIT - IV	NIT - IV HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING 6 Per					ods	
Making your findi	ngs stand out, Using bullet points headings, Ta	ables and Graphs-	Availi	ng r	ion-e	xperts	
opinions, Hedging,	Toning Down Verbs, Adjectives, Not over hedgi	ng, Limitations of	your re	esearc	h.		
UNIT - V	SECTIONS OF A PAPER	1		6	Peri	ods	
Titles, Abstracts, In	troduction, Review of Literature, Methods, Resu	lts, Discussion, Co	nclusio	ns, Re	feren	ices.	
Contact Periods:	al R	V3					
Lecture: 30 Perio	ds Tutorial: 0 Periods Practical: 0 Periods	ods Total: 30 Po	eriods			ļ	

1	Goldbort R , "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book,
	1998.
4	Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht
	Heidelberg London, 2011.

	E OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph writing.	K4
CO3	Practice unambiguous writing.	К3
CO4	Avoid wordiness in writing.	K2
CO5	Exercise the elements involved in writing journal paper.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	0 132		1	1
CO2	3	3 000	500 BU (18) B)	*(D)	1	1
CO3	3	3	JONE PAR		1	1
CO4	3	3			1	1
CO5	3	3	1	- 17	1	1
23CSACZ1	3	3	1 9	/1	1	1
1 – Slight, 2 – Mode	rate, 3 – Substan	rtial				

ASSESSMENT P	ATTERN – THE	CORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	/AR	-	-	100
CAT2	40	40	20		-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	-	50	50	37	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100
ESE	30	30	40	-	-	-	100

23CSACZ2 DISASTER MANAGEMENT (Common to all Branches)	

PREREQUISIT	TES	CATEGORY	L	T	P	C
	NIL	AC	2	0	0	0
Course	1. To become familiar in key concepts an	nd consequences ab	out l	nazar	ds, d	isaste
Objectives	and area of occurrence.					
-	2. To know the various steps in disaster pl	lanning.				
	3. To create awareness on disaster prepar	edness and manage	ment			
UNIT - I INTRODUCTION 6 Period						eriods
Disasters: Diffe	tion, Factors and Significance; Difference between rence, Nature, Types and Magnitude. Areas pro- lone and Coastal Hazards with Special Reference t	neto ,EarthquakesFlood				
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZAR	DS			6 Pe	eriods
Volcanisms, Cyc	age, Loss of Human and Animal Life, Destruction lones, Tsunamis, Floods, Droughts and Famines, Meltdown, Industrial Accidents, Oil Slicks and S	Landslides and Avaland	ches, N	Ian-n	nade d	lisaster
UNIT – III	DISASTER PLANNING				6 Pe	eriods
Disaster Planning-Disaster Response Personnel roles and duties, Community MitigationGoals, Pre-Disaster				Disaste		
Mitigation Plan,	Personnel Training, Comprehensive Emergency I	Management, Early Wa	rning	Syste	ms.	
UNIT - IV DISASTER PREPAREDNESS AND MANAGEMENT 6 Period						eriods
	Monitoring of Phenomena Triggering a Disaster g, Data from Meteorological and other Agencies,					
UNIT – V	RISK ASSESSMENT				6 Pe	eriods
Techniques of R Risk Assessmen	Concept and Elements, Disaster Risk Reduction tisk Assessment, Global Co-Operation in Risk Ass tt, Strategies for Survival.					
Contact Period		loviada Total 20 D	ال مادم	_		
Lecture: 30 Po	eriods Tutorial: 0 Periods Practical: 0 F	Periods Total: 30 P	eriod	S		

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies", New
	Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New
	Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt.
	Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International Publishing
	House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

COS/POS	PO1	PO2	PO3	PO4	PO5
CO1	2	1	1	2	2
CO2	1	2~~~	h 1	1	1
CO3	1			2	2
CO4	1 (6")	100 M		2	2
CO5	2			2	2
23CSACZ2	1 //			2	2
1 – Slight, 2 – Moder	ate, 3 – Substantial	,	77	·	

ASSESSME	NT PATTERN	- THEORY					
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	r -		-	-	100
CAT2	-		100		-	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	50			-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	-	100	-	-	-	100
ESE	25	25	50	-	-	-	100

23CSACZ3 VALUE EDUCATION (Common to all Branches)
--

PREREQUISITES	CATEGORY	L	T	P	C
NIL	AC	2	0	0	0

Course	Value of education and self- development	
Objectives	2. Requirements of good values in students	
	3. Importance of character	
UNIT – I	ETHICS AND SELF-DEVELOPMENT	6 Periods
Social values and in	ndividual attitudes. Work ethics, Indian vision of humanism. Moral	and non-moral
valuation. Standards	s and principles. Value judgements.	
UNIT – II	PERSONALITY AND BEHAVIOR DEVELOPMENT	6 Periods
Soul and Scientific	attitude. Positive Thinking. Integrity and discipline. Punctuality	, Love and
Kindness.Avoid fau	lt Thinking. Free from anger, Dignity of labour. Universal brotherho	ood and religious
tolerance.		
HINTER THE		
UNIT – III	VALUES IN HUMAN LIFE	6 Periods
	vation of values, Sense of duty. Devotion, Self-reliance. Confiden	
Importance of cultiv		ce, Concentration.
Importance of cultiv	vation of values, Sense of duty. Devotion, Self-reliance. Confiden	ce, Concentration.
Importance of cultivariates Truthfulness, Clean	vation of values, Sense of duty. Devotion, Self-reliance. Confiden	ce, Concentration.
Importance of cultivaries, Clean nature, Discipline. UNIT – IV	vation of values, Sense of duty. Devotion, Self-reliance. Confiden lliness. Honesty, Humanity. Power of faith, National Unity. Pat	ce, Concentration. triotism. Love for
Importance of cultivaries, Clean nature, Discipline. UNIT – IV True friendship. Ha	vation of values, Sense of duty. Devotion, Self-reliance. Confidentiliness. Honesty, Humanity. Power of faith, National Unity. Pater VALUES IN SOCIETY	ce, Concentration. triotism. Love for
Importance of cultivaries, Clean nature, Discipline. UNIT – IV True friendship. Ha	vation of values, Sense of duty. Devotion, Self-reliance. Confidentiliness. Honesty, Humanity. Power of faith, National Unity. Pate VALUES IN SOCIETY appiness Vs suffering, love for truth. Aware of self-destructive h	ce, Concentration. triotism. Love for
Importance of cultivaries Truthfulness, Clean nature, Discipline. UNIT – IV True friendship. Ha and Cooperation. Do UNIT – V	vation of values, Sense of duty. Devotion, Self-reliance. Confidentiliness. Honesty, Humanity. Power of faith, National Unity. Pate VALUES IN SOCIETY appiness Vs suffering, love for truth. Aware of self-destructive hing best for saving nature.	ce, Concentration. triotism. Love for 6 Periods tabits. Association 6 Periods
Importance of cultivariant Truthfulness, Clean nature, Discipline. UNIT – IV True friendship. Ha and Cooperation. Do UNIT – V Character and Com	vation of values, Sense of duty. Devotion, Self-reliance. Confidentiliness. Honesty, Humanity. Power of faith, National Unity. Pate VALUES IN SOCIETY appiness Vs suffering, love for truth. Aware of self-destructive hing best for saving nature. POSITIVE VALUES	ce, Concentration. triotism. Love for 6 Periods abits. Association 6 Periods health. Science of

Contact Periods:

Lecture: 30 Periods

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice" , Oxford University Press,New Delhi,1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi, 2004
4	https://nptel.ac.in/courses/109104068/36

Practical: 0 Periods Total: 30 Periods

Tutorial: 0 Periods

COUR	SE OUTCOMES:					В	loom's		
Upon C	ompletion of the co	ourse, the student	s will able to:			Ta	xonomy		
							[apped		
CO1	Know the values	and work ethics	S.				K3		
CO2	Enhance personality and 164ehavior development.						K3		
CO3	Apply the values	s in human life.					K3		
CO4	Gain Knowledge	e of values in soc	ciety.				K3		
CO5	Learn the impor	tance of positive	values in humar	n life.			K3		
COUI	RSE ARTICULA	TION MATRIX	X			<u> </u>			
	Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6		
CO1		-	-	3	-	-	1		
CO2		-	-	3	-	-	1		
CO3		-	-	3	-	-	1		
CO4		-	Thurst	3	-	-	1		
CO5		- 90	den o	3,000,3	-	-	1		
23CSA	CZ3	- (97	Survey Br	3	-	-	1		
1 – Sli	ight, 2 – Moderate	, 3 – Substantial		200		•			
	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20	50	30	1	-	-	100				
CAT2	20	50	30	3	-	-	100				
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	50	30	S S S S S S S S S S S S S S S S S S S	-	-	100				
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30		-	-	100				
ESE	20	50	30	-	-	-	100				

23CSACZ4	CONSTITUTION OF INDIA
23CSACZ4	(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	AC	2	0	0	0

Course Objectives	 To address the importance of constitutional rights and duties To familiarize about Indian governance and local administration. To know about the functions of election commission. 					
UNIT – I	INDIAN CONSTITUTION	6 Periods				
History of Making of the Indian Constitution: History Drafting Committee, (Composition & Work Philosophy of the Indian Constitution: Preamble Salient Features.						

UNIT - II CONSTITUTIONAL RIGHTS & DUTIES 6 Periods

Contours of Constitutional Rights & Duties: Fundamental Rights , Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

UNIT - III ORGANS OF GOVERNANCE

6 Periods

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

UNIT - IV LOCAL ADMINISTRATION

6 Periods

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT - V ELECTION COMMISSION

6 Periods

Election Commission: Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Contact Periods:

Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain,"Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu,"Introduction to the Constitution of India", Lexis Nexis, 2015.

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the conceptualization of social reforms leading to revolution in India.	K2
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	-	-	1	1	1	1				
CO2	-	-	ANTON A	1	1	2				
CO3	-		£10	32	2	1				
CO4	-	9 (B) (B)	OBA SOU OUL	(In the parties of the) 1	1				
CO5	-	(-V)3	2 Jugge	23E(V	/ 1	1				
23CSACZ4	-	-//			1	1				
1 – Slight, 2 – Mod	derate, 3 – Su	bstantial			77					

ASSESSMEN	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	20	50	30	-	-	-	100					
CAT2	20	50	30		3 -	-	100					
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	50	30	S BICUIO	-	-	100					
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30	-	-	-	100					
ESE	20	50	30	-	-	-	100					

22004075	PEDAGOGY STUDIES
23CSACZ5	(Common to all Branches)

PREREQUIS	SITES	CATEGORY	L	T	P	(
	NIL	AC	2	0	0	(
Course Objectives	 To Understand of various theories of learning, predesign of curriculum in engineering studies. Application of knowledge in modification of or introduction of innovation in teaching methodology. 		•			
UNIT – I	INTRODUCTION		(6 Pe	riod	S
terminology T	and Methodology: Aims and rationale, Policy backgrous Theories of learning, Curriculum, Teacher education. Corview of methodology and Searching.					
UNIT - II PEDAGOGICAL PRACTICES						s
		achers in forma	land	linf	orm	al
classrooms in pedagogical pi	erview: Pedagogical practices are being used by te developing countries. Curriculum, Teacher education. ractices Methodology for the in depth stage: quality asse	Evidence on the	effected stu	tiven dies.	ess	of
classrooms in pedagogical pr UNIT – III	developing countries. Curriculum, Teacher education. ractices Methodology for the in depth stage: quality asse	Evidence on the essment of include	effected stu	tiven dies. 6 Pe i	ess riod	of s
classrooms in pedagogical produced by the control of the control of the control of the classical control of the classical of	developing countries. Curriculum, Teacher education. ractices Methodology for the in depth stage: quality asse	Evidence on the essment of include school curriculuringth and nature	effected stu definition and of the	tiven dies. 6 Pe i d gui ne bo	riods idano	of s ce of
classrooms in pedagogical produced by the control of the control of the control of the classical control of the classical of	developing countries. Curriculum, Teacher education. ractices Methodology for the in depth stage: quality asserted PEDAGOGICAL APPROACHES. There education (curriculum and practicum) and the stage support effective pedagogy? Theory of change. Streeffective pedagogical practices. Pedagogic theory and pedagogical practices.	Evidence on the essment of include school curriculuringth and nature	effected stured of the aches	tiven dies. 6 Pe i d gui ne bo	riod idand ody cher	s ce of
classrooms in pedagogical properties of the pedagogical properties	developing countries. Curriculum, Teacher education. ractices Methodology for the in depth stage: quality asserbed PEDAGOGICAL APPROACHES There education (curriculum and practicum) and the stapport effective pedagogy? Theory of change. Streeffective pedagogical practices. Pedagogic theory and pedeliefs and Pedagogic strategies.	Evidence on the essment of include school curriculuringth and nature edagogical approach	effected stured of the aches	tiven dies. 6 Per d gui ne bo . Tea 6 Per	rioda idano ody cher	of s ce of 's rt
classrooms in pedagogical properties of the pedagogical properties	developing countries. Curriculum, Teacher education. ractices Methodology for the in depth stage: quality assess PEDAGOGICAL APPROACHES There education (curriculum and practicum) and the state support effective pedagogy? Theory of change. Streeffective pedagogical practices. Pedagogic theory and pedeliefs and Pedagogic strategies. PROFESSIONAL DEVELOPMENT Revelopment: alignment with classroom practices and the head teacher and the community. Curriculum and	Evidence on the essment of include school curriculuringth and nature edagogical approach	effected stured stured of the aches	tiven dies. 6 Per d gui ne bo . Tea 6 Per	riod idand ody cher riod ippo rnin	s ce of r's rt g:

Lecture: 30 Periods

	1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-
L		261, 2001.

Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

- 2 Alexander RJ , Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell, 2001
- Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282, 2013.
- 4 Agrawal M , Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36 (3): 361-379, 2004

	RSE OUTCOMES: Completion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Explain the concept of curriculum, formal and informal education systems and teacher education.	К3
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches	К3
CO3	Understand the relation between teacher and community, support from various levels of teachers to students and limitation in resources and size of the class.	К3
CO4	Perform research in design a problem in pedagogy and curriculum development.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	B Nyd to	் வகாடில் நூ	THE BUTTON	2	1
CO2	-	9	- Approx	TE CO	1	2
CO3	-	4	1		2	1
CO4	-		1	'무기 //	2	1
23CSACZ5	_	11	1	承1 //	2	1

ASSESSMI	ENT PATTERN	-THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	50	30		-	-	100
CAT2	20	50	30	SICULA /	-	-	100
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	20	50	30	-	-	-	100
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30	-	-	-	100
ESE	20	50	30	-	-	-	100

23CSACZ6 STRESS MANAGEMENT BY YOGA (Common to all Branches)								
PREREQUISI	TES	CATEGORY	L	T	P	C		
	NIL	AC	2	0	0	0		
Course Objectives	1. To create awareness on the benefits of yoga ar 2. To understand the significance of Asana and P		1					
UNIT – I	PHYSICAL STRUCTURE AND ITS FUNCT	TIONS			6 P	eriods		
hand exercise, acupressure, boo	leg exercise, breathing exercise, eye exercisely relaxation. YOGA TERMINOLOGIES	se, kapalapathy, mahara	asana	, bo		assage, Periods		
	, satya, astheya, bramhacharya, aparigraha a, santosha, tapas, svadhyaya, Ishvara pranidhana							
UNIT – III	ASANA	210 00			6 P	eriods		
Asana - Rules &	Regulations – Types & Benefits							
UNIT – IV	PRANAYAMA				6 P	eriods		
Regularization of	f breathing techniques and its effects-Types of pra	nayama						
UNIT – V	MIND				6 P	eriods		
	t mind - imprinting & magnifying - eight essentiand, benefits of meditation, such as perspicacity, magnifying - eight essentiand, benefits of meditation, such as perspicacity, magnifying - eight essentiand.							
Contact Period Lecture: 30 Per		0 Periods Total:	30 P	erio	ds			

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Training-Part-I", Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", Advaita Ashrama
	(Publication Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation",
	New Dawn Press, New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New
	Delhi, 2007.

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:	
CO1	Practice physical exercises and maintain good health.	K3
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	K3
CO4	Practice breathing techniques in a precise manner.	K3
CO5	Attain emotional stability and higher level of consciousness.	K2

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	-	-	-	-	2
CO2		Truess	h -	-	3
CO3	0		NO COLUMN	-	2
CO4	-(0)	Bry or Br		_	1
CO5		and the		-	1
23CSACZ6	-//			-	2
1 – Slight, 2 – Modera	ate, 3 – Substantia	al	W /		•

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	40	30	30	B	-	-	100	
CAT2	30	40	30		-	-	100	
Individual Assessment1/ Case study1/ Seminar 1/Project1	40	40	20	(CVI)	-	-	100	
Individual Assessment2/ Case study2/ Seminar 2 /Project2	30	30	40	-	-	-	100	
ESE	30	30	40	-	-	-	100	

23CSACZ7

PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS

(Common to all Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	AC	2	0	0	0

Course Objectives	 To familiar with Techniques to achieve the highest goal in life. To become a person with stable mind, pleasing personality and determination. 							
UNIT – I		6 Periods						
Neetisatakam-Holistic development of personality-Verses- 19,20,21,22 (wisdom)-Verses29,31,32 (pride & heroism)-Verses- 26,28,6.								
UNIT – II		6 Periods						
	9 (dont's)-Verses- 71,73,75,78 (do's) Approach to day to day work and du - Chapter 2-Verses 41, 47,48,	ties Shrimad						
UNIT - III	Bigger De William Bris D.	6 Periods						
Shrimad Bhagw Verses 45, 46, 4	vadGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Verses 5,13,17, 23, 35 8.	,- Chapter 18-						
UNIT – IV		6 Periods						
	asic knowledgeShrimad BhagwadGeeta: -Chapter2-Verses 56, 62, 68 -Chap 7, 18-Personality of Role model.	ter 12 -Verses						
UNIT - V		6 Periods						
Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39-Chapter18 – Verses 37,38,63.								
Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods								

1	Swami SwarupanandaAdvaita Ashram "Srimad Bhagavad Gita",AdvaitaAshrama, Kolkata,2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Satakam" (Niti-sringar-vairagya), New Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog " Bhagavad Gita: The Song Of God ", USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada " Bhagavad-Gita As It Is ",Bhaktivedanta Book Trust Publications,2001

	COURSE OUTCOMES: Upon Completion of the course, the students will able to:					
CO1	Apply the Holistic development in life	K4				
CO2	Effective Planning of day to day work and duties	K4				
CO3	Identify mankind to peace and prosperity	K4				
CO4	Develop versatile personality.	K4				
CO5	Awakening wisdom in life	K4				
COUI	COURSE ARTICULATION MATRIX					

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	1	-	-	-
CO2	-	-	1	-	-	-
CO3	-	-	1	-	-	-
CO4	-	-	10	min	-	-
CO5	-	- 7	BASELTITOR		P 67 67 1/2 1/2 4	-
23CSACZ7	-	- (6	V)1000	Coloresto.		-
1 Clight 2	Moderate	2 Cubatant	iol			

1 - Slight,	2 – Moderate,	3 – Substantial
-------------	---------------	-----------------

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	50	30	- 1	-	-	100		
CAT2	20	50	30	3	-	-	100		
Individual Assessmen t 1 /Case Study 1/ Seminar 1 / Project1	20	50	30 AST	1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-	-	100		
Individual Assessmen t 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30	-	-	-	100		
ESE	20	50	30	-	-	-	100		

23CSACZ8	SANSKRIT FOR TECHNICAL KNOWLEDGE (Common to all Branches)								
PREREQUISITES CATEGORY L T P						C			
	NIL	AC	2	0	0	0			

Course Objectives	 To get a working knowledge in illustrious Sanskrit, the scientific language in the world. Learning of Sanskrit to improve brain functioning. Enhancing the memory power. Learning of Sanskrit to develop the logic in mathematics, science & other subjects. 					
UNIT – I	BASICS OF SANSKRIT	6 Periods				
Alphabets in S	anskrit, Past/Present/Future Tense.	1				
UNIT – II	SENTENCES AND ROOTS	6 Periods				
Simple Senten	ces - Order, Introduction of roots					
UNIT – III	SANSKRIT LITERATURE	6 Periods				
Technical info	rmation about Sanskrit Literature	-				
UNIT – IV	TECHNICAL CONCEPTS -1	6 Periods				
Technical con	cepts of Engineering-Electrical, Mechanical	'				
UNIT – V	TECHNICAL CONCEPTS -2	6 Periods				
Technical con	cepts of Engineering-Architecture, Mathematics	•				
Contact Perio Lecture: 30 P	A M	Periods				

- 1 Dr.Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.
- 2 Prathama Deeksha Vempati Kutumbshastri, "**Teach Yourself Sanskrit**", Rashtriya Sanskrit Sansthanam, New Delhi, Publication, 2009.
- 3 Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi,2006.

	SE OUTCOMES: ompletion of the course, the students will able to:	Bloom's Taxonomy Mapped
CO1	Recognize ancient literature and their basics	K3
CO2	Formulate the sentences with order and understand the roots of Sanskrit	K2
CO3	Acquire familiarity of the major traditions of literatures written in Sanskrit	K3
CO4	Distinguish the Technical concepts of Electrical & Mechanical Engineering	K2
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	-	1	2	1
CO2	-	-	-	1	2	-
CO3	-	-	-2m	a B	1	1
CO4	-		y serio o o o o	2		1
CO5	-	- (%	132 3	OU ZOO	2	1
23CSACZ8	-	- 7			2	1
1 - Slight, 2 - M	loderate, 3 –	- Substantia	1	Sanger of the last	777	L

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	50	30		- 5	-	100		
CAT2	20	50	30	(S)(U)(S)	_	-	100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	50	30		-	-	100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	50	30	-	-	-	100		
ESE	20	50	30	-	-	-	100		