DEPARTMENT OF CIVIL ENGINEERING GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE.

(An Autonomous Institution Affiliated to Anna University, Chennai)

M.E GEOTECHNICAL ENGINEERING 2023 REGULATIONS CURRICULUM & SYLLABI

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

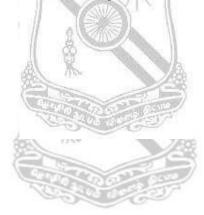
MISSION

- To achieve academic excellence through innovative teaching and learning practices.
- To enhance employability and entrepreneurship.
- To improve the research competence to address societal needs.

• To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous

society.

(An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore–641013 DEPARTMENT OF CIVIL ENGINEERING (Geotechnical Engineering)


VISION AND MISSION

VISION

To provide quality education in Civil Engineering to the societal growth in sustainable manner on par with global standards.

MISSION

- * To establish the process of teaching and learning to meet the global standards for sustainable built environment.
- * To make Civil Engineering department are now Ned high-tech consultancy centre.
- * To carry out socially relevant and forward looking research for societal needs.
- * Integrated with opportunities for team work, leadership, values, ethics and social activities.

(An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore–641 013 DEPARTMENT OF CIVIL ENGINEERING

(Geotechnical Engineering)

PROGRAMME OUTCOMES (POs)

Students in the Geotechnical Engineering Programme should beat the time of their graduation be in possession of the following:

- **PO1:** An ability to independently carry out research/investigate on and development work to solve practical problems.
- PO2: An ability to write and present a substantial technical report/document.
- **PO3:** Students should inculcate the capacity to develop and demonstrate Innovative ideas/techniques in the area of Geotechnical Engineering.
- **PO4:** To prepare graduates to excel in their academic and Professional careers, tackle challenging geotechnical problems giving sustainable solutions.
- **PO5:** To create a centre of excellence for doing advanced research and providing solutions to complex geotechnical problems.
- **PO6:** To nurture the students in understanding the importance of Geotechnical Engineering by continual life-long learning process.

(An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore – 641 013 DEPARTMENT OF CIVIL ENGINEERING (Geotechnical Engineering)

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The following Programme Educational Objectives are designed based on the department mission:

- **PEO1:** Graduates will have an advanced conceptual understanding, in depth knowledge, smart skills and awareness of their responsibilities to the society so that, they emerge themselves as globally competent Geotechnical Engineers.
- **PEO2:** Graduates will emerge as specialist in handling investigations and testing devices to evaluate and analyses ground conditions for evolving solutions in challenging situations.
- **PEO3:** Graduates will have an extensive knowledge of analytical and design softwares that enable them to cope with the rapid development of the construction industry.
- **PEO4:** Graduates will be able to recognize social needs and ethical responsibilities and become a successful entrepreneur and to apply the ideas and concepts to evaluate the problems more effectively through advanced testing and measurements in order to design Geotechnical Structures.

(An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore–641 013 M.E. GEOTECHNICAL ENGINEERING

FIRST SEMESTER

Sl.		G THE	G .	CA	End	Total	Н	ours	/We	ek
No	Course Code	Course Title	Category	Marks	Sem. Marks	Marks	L	T	P	C
		TH	EORY							
1	23GEFCZ1	Research Methodology and IPR (Common to all Branches)	FC	40	60	100	3	0	0	3
2	23GEFC02	Analytical and Numerical Methods (Common to	FC	40	60	100	3	0	0	3
		Structural & Geotechnical Engineering)								
3	23GEPC01	Strength and Deformation Characteristics of Soils	PC	40	60	100	3	0	0	3
4	23GEPC02	Advanced Foundation Engineering	PC	40	60	100	3	0	0	3
5	23GEPC03	Structural Design of Foundations and Substructures	PC	40	60	100	3	0	0	3
6	23GEPEXX	Professional Elective I	PE	40	60	100	3	0	0	3
7	23GEACXX	Audit Course-I	AC	40	60	100	2	0	0	0
	1	PRA	CTICAL	- 11	ı	ı				
8	23GEPC04	Advanced Soil Mechanics Laboratory	PC	60	40	100	0	0	4	2
		TOTAL		340	460	800	20	0	4	20

SECOND SEMESTER

Sl.	Course			CA	End	Total	Н	lours	s/We	ek	
No	Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	P	C	
		T	HEORY								
1	23GEPC05 Foundations										
2	23GEPC06	Site Exploration and soil Investigation	PC	40	60	100	3	0	0	3	
3	23GEPEXX	Professional Elective II	PE	40	60	100	3	0	0	3	
4	23GEPEXX	Professional Elective III	PE	40	60	100	3	0	0	3	
5	23GEACXX	Audit Course - II	AC	40	60	100	2	0	0	0	
		PR.	ACTICAL								
6	23GEPC07	Subsoil Exploration Laboratory	PC	60	40	100	0	0	4	2	
7	23GEPC08	Finite Element Analysis Laboratory	PC	60	40	100	0	0	4	2	
8	23GEEE01	Mini Project	EEC	60	40	100	0	0	4	2	
	TOTAL				420	800	14	1	12	19	

THIRD SEMESTER

SI.	Course			CA	End	Total	Hours/Week			
No	Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	P	C
		T	HEORY							
1	23GEPEXX	Professional Elective IV	PE	40	60	100	3	0	0	3
2	23GEOEXX	Open Elective – I	OE	40	60	100	3	0	0	3
		PRA	ACTICAL							
3	23GEEE02	Internship/ Industrial Training	EEC	100		100			**	2
4	23GEEE03	Project - I	EEC	60	40	100	0	0	24	12
		TOTAL		240	160	400	6	0	24	20

 $^{**}Industrial\ Training/Internship-4 Weeks$

FOURTH SEMESTER

Sl.	Course	Code Course Title	Category	CA Marks	Sem		Total	Hours/Week				
No						Marks	L	Т	P	C		
		PR	ACTICAL									
1	23GEEE04	Project - II	EEC	60	40	100	-	-	*	24		
		TOTAL		60	40	100	-	-	*	24		

Note: * Maximum number of periods 720 to earn 24 credits shall be scheduled during the maximum period of 6 months.

Total Credits - 83

SUMMARY OF CREDIT DISTRIBUTION

			1	No of C	redits		_
S.No	Course Work Subject Area	I	II	III	IV	Total	Percentage
1.	Foundation Course	6	-	-	-	6	7.23 %
2.	Professional Cores	11	11	-	-	22	26.51 %
3.	Professional Electives	3	6	3	-	12	14.46 %
4.	Employability Enhancement Courses	-	2	14	24	40	48.19 %
5.	Open Elective Courses	-	-	3	-	3	3.61 %
	Total Credits		19	20	24	83	100

FOUNDATION COURSES (FC)

Sl.	Course	G TIV		CA	End	Total	F	Iou	rs/W	eek
No	Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	P	C
1	23GEFCZ1	Research Methodology and IPR (Common to all Branches)	FC	40	60	100	3	0	0	3
2	23GEFC02	Analytical and Numerical Methods	FC	40	60	100	3	0	0	3
		(Common to Structural & Geotechnical Engineering)								
	TOTAL		80	120	200	6	0	0	6	

PROFESSIONAL COURSES (PC)

Sl.	Course			CA	End	Total		Hour	s/Week	
No	Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	P	C
1	23GEPC01	Strength and Deformation Characteristics of Soils	PC	40	60	100	3	0	0	3
2	23GEPC02	Advanced Foundation Engineering	PC	40	60	100	3	0	0	3
3	23GEPC03	Structural Design of Foundations and Substructures	PC	40	60	100	3	0	0	3
4	23GEPC04	Advanced Soil Mechanics Laboratory	PC	60	40	100	0	0	4	2
5	23GEPC05	Soil Dynamics and Machine Foundations	PC	40	60	100	3	1	0	4
6	23GEPC06	Site Exploration and soil Investigation	PC	40	60	100	3	0	0	3
7	23GEPC07	Subsoil Exploration Laboratory	PC	60	40	100	0	0	4	2
8	23GEPC08	Finite Element Analysis Laboratory	PC	60	40	100	0	0	4	2
		TOTAL		380	420	800	15	1	12	22

PROFESSIONAL ELECTIVES (PE)

Sl.	Course	C T'U	G .	CA	End	Total	Н	ours	/W	eek
No	Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	P	C
1	23GEPE01	Remote Sensing and its applications in Geotechnical Engineering	PE	40	60	100	3	0	0	3
2	23GEPE02	Soil Properties and Behaviour	PE	40	60	100	3	0	0	3
3	23GEPE03	Sustainable Geotechnics	PE	40	60	100	3	0	0	3
4	23GEPE04	Reinforced Soil Structures	PE	40	60	100	3	0	0	3
5	23GEPE05	Finite Element Analysis for Geotechnical Engineering	PE	40	60	100	3	0	0	3
6	23GEPE06	Foundation in Expansive Soils	PE	40	60	100	3	0	0	3
7	23GEPE07	Soil Structure Interaction (Common to Structural & Geotechnical Engineering)	PE	40	60	100	3	0	0	3
8	23GEPE08	Forensic Geotechnical Engineering	PE	40	60	100	3	0	0	3
9	23GEPE09	Rock Mechanics in Engineering Practice	PE	40	60	100	3	0	0	3
10	23GEPE10	Geotechnical Earthquake Engineering	PE	40	60	100	3	0	0	3
11	23GEPE11	Design of Underground Excavations	PE	40	60	100	3	0	0	3
12	23GEPE12	Computational Geomechanics	PE	40	60	100	3	0	0	3
13	23GEPE13	Slope Stability and Landslides	PE	40	60	100	3	0	0	3
14	23GEPE14	Geology in Geotechnical Engineering	PE	40	60	100	3	0	0	3
15	23GEPE15	Land Reclamation	PE	40	60	100	3	0	0	3
16	23GEPE16	Environmental Geotechnology	PE	40	60	100	3	0	0	3
17	23GEPE17	Pavement Engineering	PE	40	60	100	3	0	0	3
18	23GEPE18	Theoretical Soil Mechanics	PE	40	60	100	3	0	0	3
19	23GEPE19	Earth Retaining Structures	PE	40	60	100	3	0	0	3
20	23GEPE20	Professional Practices in Design Of Geotechnical Structures	PE	40	60	100	3	0	0	3
21	23GEPE21	Ground Improvement Technique	PE	40	60	100	3	0	0	3
22	23GEPE22	Marine Geotechnical Engineering	PE	40	60	100	3	0	0	3
23	23GEPE23	Unsaturated Soil Mechanics	PE	40	60	100	3	0	0	3
24	23GEPE24	Tunnel Engineering	PE	40	60	100	3	0	0	3

OPEN ELECTIVES (OE)

Sl.	Course	<u> </u>		CA	End	Total	Н	ours	/We	ek
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	C
1	23SEOE01	Building Bye-Laws and Codes of Practice	OE	40	60	100	3	0	0	3
2	23SEOE02	Planning of Smart Cities	OE	40	60	100	3	0	0	3
3	23SEOE03	Green Building	OE	40	60	100	3	0	0	3
4	23EEOE04	Environment Health and Safety Management	OE	40	60	100	3	0	0	3
5	23EEOE05	Climate Change and Adaptation	OE	40	60	100	3	0	0	3
6	23EEOE06	Waste to Energy	OE	40	60	100	3	0	0	3
7	23GEOE07	Energy in Built Environment	OE	40	60	100	3	0	0	3
8	23GEOE08	Earth and Its Environment	OE	40	60	100	3	0	0	3
9	23GEOE09	Natural Hazards and Mitigation	OE	40	60	100	3	0	0	3
10	23EDOE10	Business Analytics	OE	40	60	100	3	0	0	3
11	23EDOE11	Introduction to Industrial safety	OE	40	60	100	3	0	0	3
12	23EDOE12	Operations Research	OE	40	60	100	3	0	0	3
13	23MFOE13	Occupational Health and Safety	OE	40	60	100	3	0	0	3
14	23MFOE14	Cost Management of Engineering Projects	OE	40	60	100	3	0	0	3
15	23MFOE15	Composite Materials	OE	40	60	100	3	0	0	3
16	23TEOE16	Global Warming Science	OE	40	60	100	3	0	0	3
17	23TEOE17	Introduction to Nano Electronics	OE	40	60	100	3	0	0	3
18	23TEOE18	Green Supply Chain Management	OE	40	60	100	3	0	0	3
19	23PSOE19	Distribution Automation System	OE	40	60	100	3	0	0	3
20	23PSOE20	Electricity Trading & Electricity Acts	OE	40	60	100	3	0	0	3
21	23PSOE21	Modern Automotive Systems	OE	40	60	100	3	0	0	3
22	23PEOE22	Virtual Instrumentation	OE	40	60	100	3	0	0	3
23	23PEOE23	Energy Management Systems	OE	40	60	100	3	0	0	3
24	23PEOE24	Advanced Energy Storage Technology	OE	40	60	100	3	0	0	3
25	23AEOE25	Design of Digital Systems	OE	40	60	100	3	0	0	3
26	23AEOE26	Basics of Nano Electronics	OE	40	60	100	3	0	0	3
27	23AEOE27	Advanced Processor	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL Programming Languages	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI Design	OE	40	60	100	3	0	0	3
30	23VLOE30	High Level Synthesis	OE	40	60	100	3	0	0	3
31	23CSOE31	Artificial Intelligence	OE	40	60	100	3	0	0	3
32	23CSOE32	Computer Network Management	OE	40	60	100	3	0	0	3
33	23CSOE33	Block Chain Technologies	OE	40	60	100	3	0	0	3

AUDIT COURSES (AC)

(Common to all Branches)

GI				CA	End	T. 4.1	Н	ours	/Wee	ek
Sl. No	Course Code	Course Title	Category	CA Marks	Sem. Marks	Total Marks	L	Т	P	С
1	23GEACZ1	English for Research Paper writing	AC	40	60	100	2	0	0	0
2	23GEACZ2	Disaster Management	AC	40	60	100	2	0	0	0
3	23GEACZ3	Value Education	AC	40	60	100	2	0	0	0
4	23GEACZ4	Constitution of India	AC	40	60	100	2	0	0	0
5	23GEACZ5	Pedagogy Studies	AC	40	60	100	2	0	0	0
6	23GEACZ6	Stress Management by Yoga	AC	40	60	100	2	0	0	0
7	23GEACZ7	Personality Development Through life enlightenment skills	AC	40	60	100	2	0	0	0
8	23GEACZ8	Sanskrit for Technical Knowledge	AC	40	60	100	2	0	0	0

EMPLOYABILTY ENHANCEMENT COURSES (EEC)

Sl.	Caumaa		X		End	Total	Hours/Week					
No	Course Code	Course Title	Category	CA Marks	Sem. Marks	Marks	L	Т	P	C		
1	23GEEE01	Mini Project	EEC	60	40	100	0	0	4	2		
2	23GEEE02	Internship/Industrial Training	EEC	100	-	100	-	-	**	2		
3	23GEEE03	Project - I	EEC	60	40	100	0	0	24	12		
4	23GEEE04	Project - II	EEC	60	40	100	-	-	*	24		

^{**}Industrial Training/Internship – 4Weeks

L: Credits for Lecture Hours

P: Credits for Practical Hours

T: Credits for Tutorial Hours

C: Total Number of Credits

23GEFCZ1	(Common to all Branches)					
PREREQUISI	ΓES	CATEGORY	L	T	P	C
	NIL	FC	3	0	0	3
Course Objective	 To impart knowledge on research methodology solving, data interpretation and report writing. To know the importance of IPR and patent rights. 	y, Quantitative m	ethod	s fo	pro	blem
UNIT-I	INTRODUCTION			9 F	Perio	ds

Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question- Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation,

Research Purposes, Ethics in research—APA Ethics code.

UNIT-II QUANTITATIVE METHODS FOR PROBLEM SOLVING 9 Periods

Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis.

UNIT-III DATA DESCRIPTION AND REPORT WRITING 9 Periods

Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables, Relation between frequency distributions and other graphs, preparing data for analysis.

Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of Writing a research report, referencing in academic writing.

UNIT-IV INTELLECTUAL PROPERTY

9 Periods

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development.

International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT-V PATENT RIGHTS

9 Periods

Patent Rights: Scope of Patent Rights, Licensing and transfer of technology. Patent information and databases. Geographical Indications.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Stuart Melville and Wayne Goddard, "Research methodology: an introduction", Juta Academic, 2nd edition, 2014.
- 2 Donald H.Mc Burney and Theresa White, "Research Methods", 9thEdition, Cengage Learning, 2013.
- 3 Ranjit Kumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2019.
- 4 Dr.C. R. Kothari and Gaurav Garg, "Research Methodology: Methods and Trends", New Age International Publishers, 4th Edition, 2018.

COU	RSE OUTCOMES:	Bloom's
Upon c	ompletion of the course, the students will be able to:	Taxonomy Mapped
CO1	Formulate research question for conducting research.	K3
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K2
CO4	Develop a structured content to write technical report.	K3
CO5	Summarize the importance of IPR and protect their research work through	K2
	Intellectual property.	

COURSEARTICULATIONMATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	-	2	3	2	1	1	
CO2	2	-	3	2	1	-	
CO3	2	2	3	2	1	-	
CO4	-	3	2	1	1	-	
CO5	-	2	3	1	-	1	
23GEFCZ1	2	2	3	2	1	1	
1-Slight, 2-Modera	1–Slight, 2–Moderate, 3–Substantial						

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	40	40	20	-	-	-	100	
CAT2	40	40	20	-	-	-	100	
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100	
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100	
ESE	30	30	20	20	-	-	100	

Color of Color

23GEFC)2	ANALYTICAL AND NUMERICAL METHODS (Common to Structural & Geotechnical Engineering)				[
PREREQU	PREREQUISITES CATEGORY				P	C
	NIL FC			0	0	3
	ourse To familiarize the foundations of numerical methods and analysis techniques mostly used in various					ious
Objective	jective applications in engineering and technology.					
UNIT-I	SOLUTIONS OF EQUATIONS AND EIGEN VA	ALUE PROBLEM	S		9 Peri	ods

Error Analysis: Sources of Error in Numerical Computations, Absolute and Relative Errors, Round off and Truncation Errors. Solutions of nonlinear algebraic and transcendental equations by fixed point iteration method and Newton Raphson method. Solutions of linear system of equations by Gauss Elimination, Gauss Jordan and Gauss Seidel method. Eigen value of Matrix by Power method and Jacobi method.

UNIT-II CURVE FITTING AND INTERPOLATION 9 Periods

Curve fitting: Fitting a straight line and parabola by method of least squares. Curves reducible to linear form. Newton's divided difference formula, Lagrange's interpolation-Newton's Forward and backward difference formula.

UNIT-III NUMERICAL DIFFERENTIATION AND NUMERICAL 9 Periods INTEGRATION

Numerical approximation of derivatives using interpolation polynomials - Numerical integration by Trapezoidal, Simpson's one third rule and Simpson's three eight rule- Two point and three point Gaussian quadrature formula - Double integration using Trapezoidal and Simpson one third rule.

UNIT-IV	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL	9 Periods
	EQUATIONS	

Taylor series method - Euler method - Modified Euler method - Fourth order Runge - Kutta method for solving first order equations – Predictor and corrector methods: Milne's and Adam Bashforth methods.

UNIT-V NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 9 Periods

Finite difference solutions for the second order ordinary differential equations – Finite difference solutions for one dimensional Heat Equation (Both Explicit and Implicit Methods) One dimensional wave equation - Laplace and Poisson equation.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Periods Total: 45 Periods

- 1 Steven C. Chapra, Raymond P., Canale, "Numerical Methods for Engineers", McGraw Hill Education Pvt Ltd 8th Edition 2021.
- 2 Srimanthapal "Numerical Methods, Principles, Analyses and Algorithm", Oxford University Press, New Delhi, 1st Edition, 2009.
- 3 Veerarajan T and Ramachandran T "Numerical Methods with Programming in C" McGraw Hill Education Pvt Ltd, New Delhi, 1st Edition, Reprint, 2016.
- 4 S.S.Sastry, "Introduction to Methods of Numerical Analysis", Prentice Hall of India, Delhi, 5th Edition, 2015.
- 5 Dr. J.S Chitode "Numerical Methods" Technical Publications, Pune, 2010.

	E OUTCOMES:	Bloom's Taxonomy
Upon cor	mpletion of the course, the students will be able to:	Mapped
CO1	Understand the numerical solutions to algebraic, exponential, logarithmic, transcendental and linear system of simultaneous equations.	К3
CO2	Appreciate the numerical techniques of interpolation and error approximations in various intervals in real life situations.	К3
CO3	Apply the numerical techniques of finite differences to numerical differentiation and numerical integration in engineering problems.	К3
CO4	Understand the numerical solution to first order ordinary differential equations by different methods like single step and multistep.	К3
CO5	Solve second order partial differential equations with initial and boundary conditions by using certain techniques with engineering applications.	К3

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	- 100 m	2	2
CO2	3	2	3	V)-	2	3
CO3	3	2	3	-	2	2
CO4	3	2	2	//-	2	2
CO5	3	2	3	6 10 -	2	2
23GEFC02	3	2	3	1 -	2	3
1–Slight,2–Modera	ate,3–Substan	itial	The same			

ASSESSMENT I	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	40	40	-	-	-	100		
CAT2	20	40	40	-	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100		
ESE	20	40	40	-	-	-	100		

23GEPC01	STRENGTH AND DEFO CHARACTERISTICS		SE	MESTI	ER I			
PREREQUIS	SITES	CATEGORY	L	L T P				
	NIL	PC	3	3 0 0				
Course To impart knowledge on stress-strain characteristics of soils and its behaviour in the form of stress path and concepts of yield and failure criteria.								
UNIT-I	SHEAR STRENGTH OF COHESIONLES	SS SOILS		9 Pe	riods			
Shear strength	n of granular soils- Direct shear- Triaxial Te	esting – Drained a	and und	draine	d–Stress	s-strain		
behaviour –	Dilatation - Contraction and critical states	- Liquefaction	and Li	quefac	ction po	otential		
.Factors influe	encing-Stress-strain-Volume change behavio	r of soils.						
UNIT-II	SHEAR STRENGTH OF COHESIVE SO	ILS		9 Pe	riods			
Shear strengt	h of clays -Stress-strain behavior -Vane s	hear-UCC-Triax	ial test	ting a	nd stres	s path		
plotting- Pore	e pressure parameter of Skempton and Henk	el-Total stress ar	nd effec	ctive s	tress ap	proach		
-Shearstrengt	hofpartiallysaturatedclayintermsofstressstatev	ariables–Drained	landund	drainec	l–Facto	rs		
influencing st	ress-strain and shear strength.							
UNIT-III	YIELD CRITERION			9Per	iods			
Concepts of yield and failure in soils-Yield criteria of Von Mises, Tresca,-their applicability to soils – Detailed discussion of Mohr-Coulomb failure criterion.								
UNIT-IV	STRESS-STRAIN LAWS	- >		9Per	riods			
Stress-strain la	aws for soils-Hyperbolic law-Linear visco - l	Elastic and Elasto	–Plasti	c laws	-Yield			
functions, hardening law, flow rules and plastic strain computation- Cam-clay model.								
UNIT-V	CRITICAL STATE SOIL MECHANICS 9Periods							
Introduction to	o critical state soil mechanics -critical state li	ne–Roscoe and H	Ivorslev	v's bou	ındary S	Surface		
Contact Perio	ods:	J/A						
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0	Periods Tota	al: 45 F	Period	S			

1	RobertD.Holtz., William D. Kovacs. Thomas C. Sheahan., "An introduction to geotechnical
	Engineering" Dorling Kindersley India pvt. Ltd., Second edition, 2013.
2	Braja,M.Das., "Advanced Soil Mechanics", C R C Press, Fifth edition, 2019.
3	Wood, D.M., "Soil behavior and Critical State Soil Mechanics", Cambridge University Press,
	NewYork, 1990
4	Lambe, T.W. and Whitman R.V., Soil Mechanics in S.I. Units John Wiley, India, PvtLtd., 2008.
5	AtkinsonJ.H. and BrandsbyP.L. "Introduction to Critical State Soil Mechanics", Indo American
	Books; Reprinted Edition, 2013.

COURS	SE OUTCOMES:	Bloom's
Upon co	Taxonomy	
		Mapped
CO1	To evaluate the shear strength parameters of cohesionless soil and to gain knowledge	К3
	about liquefaction.	
CO2	To obtain shear strength parameters of cohesive soil under different drainage	К3
	conditions.	
CO3	To understand failure criteria of soils and apply models to study the time-deformation	K2

	behavior of soils.	
CO4	To understand stress strain laws of soils.	K1
CO5	To get an exposure towards critical state soil mechanics.	K1

COURSEARTICULATIONMATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	1	-	2	-	-				
CO2	3	1	-	2	2	-				
CO3	-	-	-	2	3	-				
CO4	3	1	-	2	-	-				
CO5	-	-	1	-	3	-				
23GEPC01	3	1	1	2	3	-				
1-Slight,2-Modera	ate,3–Substant	ial		1	1	•				

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	40	20	<u> </u>	-	_	100			
CAT 2	40	40	20		-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100			
ESE	40	40	20	-	-	-	100			

23GEPC02	ADVANCED FOUNDATION ENGINE	ERING		SEMESTER :					
PREREQUIS	SITES	CATEGORY	L	T P C					
	0	3							
Course	To learn different soil exploration techniques	s and to estimate	load	carryin	g capac	ity of			
Objective	different types of foundations including se	lection of suitabl	e typ	e of f	oundatio	on on			
	problematic soils.								
UNIT-I	PLANNING OF SOIL EXPLORATION				9 Pe	riods			
Exploration n	nethods for different projects - methods of boring	gs - penetration tes	sts - p	ressure	meter t	est, field			
vane shear tes	t - field permeability test-rock boring - offshore	exploration- prese	rvatio	n, shipi	nent and	d storage			
of samples.									
UNIT-II	SHALLOW FOUNDATIONS				9 Pe	riods			
Requirements	for satisfactory performance of foundations	, methods of es	timati	ng bea	aring ca	apacity,			
settlement of	footing sand rafts - Proportioning of footings - I	Isolated, Combine	d and	Raft fo	undatio	ns.			
UNIT-III	PILE FOUNDATIONS				9 Pe	riods			
Methods of	load carrying capacity of piles, settlements o	f pile foundation	s, pil	e grou	р сарас	eity and			
settlement, ne	egative skin friction of piles, laterally loaded pil	les, pile load test	ts, an	alytical	l estim	ation of			
load-settlemen	load-settlement behavior of piles, construction of Pile and Pile cap, lateral and uplift capacity of piles.								

UNIT-IV WELL FOUNDATION

9 Periods

Introduction - applications, different shapes, grip length, scour depth, forces acting on well foundation - Terzaghi and IRC methods of stability analysis – design of individual components of wells - Measures for rectification of tilts and shifts.

UNIT-V FOUNDATIONS ON PROBLEMATIC SOILS AND COFFERDAMS

9 Periods

Problematic soils - Collapsible, soft deposits, Residual Soils, Organic soils, Dispersive and Varved Clays and expansive soil - Characterization and Engineering behavior Cofferdams -various types, analysis and design - Foundations under uplifting loads.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

1	Narayan V.Nayak, "Foundation Design Manual for Practising Engineers and Civil Engineering									
	Students", Dhanpat Rai Publications Pvt. Ltd., Fourth edition(Reprint2001).									
2	· · · · · · · · · · · · · · · · · · ·									
	5 th edition2001.									
3	Das B.M., "Shallow Foundations: Bearing capacity and Settlement", CRC Press, 1999.									
4	Tomlinson M.J., "Pile design and Construction Practice", Chapman and Hall Publication, 1994.									
5	Braja. M.Das, "Principles of Geotechnical Engineering" Cengage India Private Limited,									
	9 th Edition,2017									
6	V.N.S.Murthy, "Advanced Foundation Engineering", CBS Publishers & Distributors 1 st Edition, 2017.									

COUF	RSE OUTCOMES:	Bloom's				
Upon	Upon completion of the course, the students will be able to:					
CO1	Identify and select suitable exploration techniques for different projects.	K2				
CO2	Evaluate the bearing capacity and settlement of shallow foundations.	К3				
CO3	Estimate the pile capacity and settlement of piles.	К3				
CO4	Analyse the various components and forces acting on well foundation.	К3				
CO5	Gain knowledge about different types of foundations in problematic soils.	К3				

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	2	-	3	3			
CO2	3	3	2	-	3	3			
CO3	-	3	2	-	3	3			
CO4	-	-	1	3	2	-			
CO5	3	-	1	3	2	3			
23GEPC02	3	3	2	3	3	3			
1–Slight, 2–Mod	lerate, 3–Subs	tantial		· '					

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT 1	25	25	50	-	-	-	100	
CAT 2	20	20	60	-	-	-	100	
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	25	25	50		-	-	100	
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20	20	60	-	-	-	100	
ESE	20	20	60	D. L.	-	-	100	

To

23GEPC03	STRUCTURAL DESIGN OF FOUNDATI SUBSTRUCTURES	ONS AND	SEMESTER			R I			
PREREQUIS	SITES	CATEGORY	L	T	P	С			
	NIL	PC	3	0	0	3			
Course To impart knowledge on the structural design of shallow, deep and special type of foundations.									
UNIT-I	Y-I DESIGN OF FOOTINGS 9 Periods								
footings - re	esign, Conventional structural design of ctangular and circular, combined footings – r		foot		ndivi trap.	idual			
UNIT-II	DESIGN OF RAFTS			9 Pe					
method of ana software.	ons– Structural Design of rectangular and circul lysis, Analysis and design of rafts incorporating so			using	any F	EM			
UNIT-III	DESIGN OF PILES			9 Pe	rioas	<u> </u>			
UNIT-IV	ign of piles including pile caps, under - reamed pile DESIGN OF FOUNDATION AND COFFER I			9 Pe	riode	2			
	foundation – components – structural design of we		905.0						
• •	l pressure stability.	in foundation – ty	pes o	i corre	r uan	n —			
UNIT-V	DESIGN OF RETAINING WALLS			9 Pe	riods	5			
	sign of retaining walls-Reinforced Concrete C Flexible retaining Structures – Sheet Pile Wall, An		_	all, C	ounte	erfort			
Contact Perio	// ^/8-200-1/4								
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Po	eriods Tot	tal: 4	5 Peri	ods				

1	Nainan P.Kurian "Design of Foundation Systems: Principles and Practices" , Narosa publish House, NewDelhi, 2005.
2	SwamiSaran, "Analysis and Design of Substructures", Oxford & IBH PublishingCo,2005.
3	TomlinsonM.J., "Foundation Design and Construction", PrenticeHal, 2003l.
4	NainanP.Kurian "Shell foundations: Geometry, Analysis, Design and Construction" , Alpha Science International Ltd, 2006.
5	TomlinsonM.J., JohnWoodward "Pile Design and Construction Practice", Routledge, 2008.
6	SomN.N., and DasS.C., "Theory and Practice of Foundation Design", Prentice Hall of India, 2003.
7	Sharat Chandra Gupta, "Raft Foundations – Design and Analysis with Practical Approach", New Age International Pvt. Ltd, New Delhi, 2006.

COUF	COURSE OUTCOMES:					
Upon	Upon completion of the course, the students will be able to:					
CO1	Design the isolated and combined footing.	K2				
CO2	Carryout analysis and design of rafts	К3				
CO3	Get familiarized with design of piles and pier.	К3				
CO4	Carryout structural design of well foundation and cofferdam.	K3				
CO5	Carryout design of retaining wall.	К3				

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	2	3	-	1			
CO2	1	-	2	3	1	1			
CO3	1	-	2	3	1	1			
CO4	1	-	2	3	1	1			
CO5	1	-	2	3	1	1			
23GEPC03	1	-	2	3	1	1			
1–Slight, 2–Mod	derate, 3–Sub	stantial			•				

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	30	40	30	<u> </u>	-	-	100			
CAT 2	30	40	30	THE STATE OF	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	3,000	-	-	100			
ESE	30	40	30		-	-	100			

23GEPC04		ADVANCED SOIL MECHANICS LABO	DRATORY	SEMESTER I			
PREREQUIS	ITE	S	CATEGORY	L	T	P	С
	ľ	NIL	PC	0	0	4	2
Course Objective						riments	
MODILLES							

MODULES

TESTS ON SOIL

- 1. Determination of Moisture Content and Specific gravity of soil
- 2. Mechanical Sieve Analysis and Hydrometer Analysis
- 3. Atterberg's Limits (Liquid Limit, Plastic limit, Shrinkage limit)
- 4. Differential Free Swell Test
- 5. Vibration test for relative density of sand
- 6. Standard and modified Proctor compaction test
- 7. Constant head permeability test and Falling head permeability test
- 8. Consolidation test
- 9. Unconfined Compression test
- 10. Direct shear test
- 11. Tri-axial compression test UU, CU, CD tests
- 12. Laboratory vane shear test
- 13. Swell Pressure Test

GEOTECHNICAL INSTRUMENTATION

- 1. Total Pressure using Earth pressure cell
- 2. Strain measurement using vibrating wire strain gauge
- 3. Depth and pressure of ground water using Piezometer
- 4. Water level in bore hole using Electronic water level indicator.

Contact Periods:

Lecture: 0 Period Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

	I LILLI (CLS
1	Shashi K Gulhati and Manoj Datta., "Geotechnical Engineering" Tata McGraw Hill Company Limited, NewDelhi, 2009
2	C.Venkatramaiah, "Geotechnical Engineering", New Age International Publishers, 2009
3	Gopal Ranjan, ASR Rao, "Basic and Applied Soil Mechanics", New Age International Publishers, 2004.
4	Igbal H Khan, "Textbook of Geotechnical Engineering", PHI Learning Private limited, 2012.

COU	COURSE OUTCOMES:				
Upon	Upon completion of the course, the students will be able to:				
CO1	Determine the physical characteristics of soils.	K3			
CO2	Classify the given soils as per IS classification system.	K3			
CO3	Determine the shear strength of the soil.	K3			
CO4	Evaluate the compressibility and swelling characteristics of soils.	K3			
CO5	Familiarize with handling of lab equipments and geotechnical instrumentation	K3			

COURSE ART	ICULATION	MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	3	3	3	3
CO2	-	1	-	2	-	1
CO3	-	3	3	3	2	3

CO4	3	2	3	3	2	3
CO5	3	-	3	3	1	3
23GEPC04	3	1	3	3	2	3
1–Slight ,2–Mod	derate ,3–Subst	antial				

23GEPC05 SOIL DYNAMICS AND MACHINE FOUNDATIONS				SEMESTER II			
PREREQUIS	TES	CATEGORY	L	T	P	C	
	NIL	PC	3	1	0	4	
Course	To inculcate the fundamentals of soil dynamics a	and design differ	ent ty	pes	of m	achine	
Objective	foundations based on the dynamic properties	of soils and to	get a	n e	xposi	ire on	
	vibration isolation techniques.						
UNIT-I	THEORY OF VIBRATION 9+3 Periods						
Introduction –	Nature of dynamic loads - Basic definitions - Simp	ole harmonic moti	on –]	Fund	amen	tals of	
vibration - Sin	gle degree and multi degree of freedom systems - F	ree vibrations of s	spring	- M	ass s	ystems	
 Forced vibra 	tions - Resonance - Viscous damping - Principles	of vibrations mea	suring	sys	tems-	-Effect	
of transient and	l pulsating loads.						
UNIT-II	DYNAMIC SOIL PROPERTIES			9+3	Peri	ods	
Dynamic stress	strain characteristics - Principles of measuring dyna	mic properties-L	abora	tory	techn	iques –	
Field tests – B	lock vibration test - Factors affecting dynamic proj	perties – Typical	value	s. M	echar	nism of	
liquefaction -	Influencing factors – Evaluation of liquefaction	potential - Anal	ysis f	rom	SPT	test -	
Dynamic bearing	ng capacity – Dynamic earth pressure.						
UNIT-III	MACHINE FOUNDATIONS	9		9+3	Peri	ods	
Introduction – Types of machine foundations – General requirements for design of machine foundations. Design approach for machine foundation – Vibration analysis – Elastic Half Space theory – Mass – spring – dashpot model – Permissible amplitudes – Permissible bearing pressures.							
UNIT-IV	DESIGN OF MACHINE FOUNDATION				Peri		
	design parameters - Types of Machines and found						
	Analysis and design of block type and framed ty						
	igid foundation - Foundations for reciprocating mac				-		
	ressor, Double acting steam hammer - Codal rec	SUPS /		ical	appro	oach –	
Barken's meth	od – Bulb of pressure concept – Pauw's analogy – Vi	bration table stud	ies.				
UNIT-V	VIBRATION ISOLATION				Peri	ods	

Contact Periods:

existing machine foundation.

Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

Vibration isolation – Types of isolation – Transmissibility – Passive and active isolation – Methods of isolation – Use of springs and damping materials – Properties of isolating materials – Vibration control of

1	KameswaraRao,N.S.V., "Dynamics soil tests and applications", WheelerPublishing, NewDelhi 2000.
2	Moore, P.J., "Analysis and Design of Foundations for Vibrations", Oxford and IBH, 2006
3	KrammerS.L., "Geotechnical Earthquake Engineering", Prentice Hall, International series, Pearson Education (Singapore) Pvt Ltd, 2004.
4	SwamiSaran, "Soil Dynamics and Machine Foundation" , Galgotia publications Pvt. Ltd. New Delhi, 1999.
5	Prakash, S. and Puri, V.K. "Foundations for Machines: Analysis and Design", John Wiley & Sons, New York, U.S.A, 1988.
6	KameswaraRao, "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, NewDelhi, 1998.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
CO1	To solve dynamic soil problems using the knowledge acquired about theories of vibration	K2
CO2	To evaluate the dynamic properties of soil using laboratory and field tests.	K2
CO3	To acquire basic knowledge about types of machine foundations and design approach.	K2
CO4	To know and be capable of analyzing and designing machine foundations.	K3
CO5	To apply vibration isolation techniques for various field problems.	K1

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	1	-	2	-
CO2	-	-	3	2	-	-
CO3	3	- ~	mmng_	2	1	-
CO4	1	Water State	2	- 63	-	-
CO5	1	(V)	TUDIES CELV	3) -	2	-
23GEPC05	3	7	3	2	2	-
-Slight, 2-Moderate, 3-	-Substantial	10	-	77		

ASSESSMENT	PATTERN - T	HEORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT 1	40	40	20	- A	-	-	100
CAT 2	40	40	20		-	-	100
Individual							
Assessment 1 /		210	1000	0100			
Case Study 1/	-	50	50	9	-	-	100
Seminar 1 /							
Project1							
Individual							
Assessment 2 /							
Case Study 2/	-	50	50	-	-	-	100
Seminar 2 /							
Project 2							
ESE	40	40	20	-	-	-	100

23GEPC06	SITE EXPLORATION AND SOIL INVESTIGATION				SEMESTER II		
PREREQUIS	SITES:	CATEGORY	L	Т	P	С	
	NIL	PC	3	0	0	3	
Course Objective To impart knowledge on the different exploration techniques, the samplers used for the Collection of samples and the various geotechnical instrumentation used for field monitoring							
UNIT-I	SCOPE AND OBJECTIVES OF SITE INVESTIGATION AND 9 Period SUB SURFACE EXPLORATION					eriods	
Spacing – Dep	Scope and objective – Preliminary desk studies – Planning an exploration Programme – Location – Spacing – Depth of borings – Stabilization of boreholes – Soil Profile – Borelog – Data Presentation – Marine exploration and exploration reports.						
UNIT-II	EXPLORATION TECHNIQUES			9 Periods			
difficult sub-s	oring and drilling – Non – displacement and displacement and displacement and displacement and conditions – Advantages and limitations of valid interpretation Seismic refraction and electrical refraction.	rious drilling tech	niqu			ling in ohysical	
UNIT-III	SAMPLES AND SAMPLERS			9 Periods			
disturbance – samples – Sh	Type of samples – Disturbed and undisturbed – Sample disturbance – Design features affecting sample disturbance – Area and recovery ratio – RQD – Types of samplers – Methods for preventing loss of samples – Shallow penetration samplers – Advanced sampling techniques – Offshore sampling – Preservation and handling of samples.						
UNIT-IV	FIELD TESTING	//			9 P	eriods	
Test – Dynam	Field tests – Importance – Penetration testing – Standard Penetration Test – Static Cone Penetration Test – Dynamic cone penetration test – Plate load test – Field Vane shear test – Pressure meter test – Dilatometer test – Data interpretation – Field Permeability test.						
UNIT-V	INSTRUMENTATION	763			9 P	eriods	
and induction	on in soil Engineering – Pore pressure – Ground water type – Load cells – Earth pressure cells – Settle licators – Inclinometer – Case studies.		-	-			
Contact Perio							
Lecture: 45 P	Periods Tutorial: 0 Periods Practical: 0 P	eriods Total: 45	5 Per	riod	S		

1	Buert.G., Taylor & Francis, "Hand book of Geotechnical Investigation and Design Tables" 2 nd Edition, 2019.
2	M. Jund H vorslev "Surface exploration and sampling of soils for Civil Engineering Purposes" — Waterways Experiment Station, MISSISSIPPI,1978.
3	E. Hunt "Geotechnical Engineering Investigation Handbook", McGraw Hill, 2 nd edition, 2019.
4	Winterkorn, H.F and Fang, H.Y., "Foundation Engineering Handbook", Nostrand Reinhold 1994.
5	Hanna T.H., "Field Instrumentation in Geotechnical Engineering", Trans Tech., 1985.
6	Cudoto and Donald "Geotechnical Engineering Principles and Practices", New jersey: Pearson Higher Education, 2011.

COUR	SE OUTCOMES:	Bloom's		
Upon co	Upon completion of the course ,the students will be able to:			
CO1	Plan for soil investigation and exploration in soil and rock.	K2		
CO2	Select appropriate equipment for the exploration work for different subsoil condition.	К3		
CO3	Gain the practice of recovering samples using advanced sampling techniques.	K3		
CO4	Assess the importance of field testing and handling of field equipment.	K3		
CO5	Implement geotechnical instrumentation in the field and evolve solutions for different soil conditions	K3		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	2	2	3
CO2	-	3	3	-	3	3
CO3	3	3	3	-	2	3
CO4	3	2	10 32		2	3
CO5	3	2	52300000	1	2	3
23GEPC06	3	3	3	1	2	3
1–Slight, 2–Mode	erate, 3–Subs	tantial	- 2	- //		

ASSESSMENT	PATTERN - T	THEORY	SING	. 1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	20	30	50	7.6%	-	-	100
CAT 2	20	30	50		-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	40	60	37	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	40	60	-	-	-	100
ESE	20	30	50	-	-	-	100

23GEPC07	SUBSOIL EXPLORATION LABORAT	SUBSOIL EXPLORATION LABORATORY				
PREREQUISITES CATEGORY				T	P	C
	NIL			0	4	2
Course	Course To impart practical exposure to subsurface exploration through different field and					
Objective	laboratory testing.					

List of Practicals:

- 1. Auger boring
- 2. One dimensional Consolidation Test
- 3. Triaxial test
- 4. Standard Penetration test
- 5. Dynamic Cone Penetration test
- 6. Static cone penetration test
- 7. Light Weight Deflectometer test
- 8. Ring shear Apparatus
- 9. Electrical Resistivity meter test
- 10. Plate load test (Demo only)
- 11. Dynamic pile load test (Demo only)

Contact Periods:

Lecture: 0 Period Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

	1 m m m m m m m m m m m m m m m m m m m
1	J.E.Bowles, "Physical and Geotechnical Properties of Soils", 2 nd Edition, Mc.GrawHill, New York, 1984.
2	Das, B.M., "Soil Mechanics Laboratory Manual", Engineering Press, Austin, 1997.
3	Al-Khataji, A.W. and Anderstand, O.B., "Geotechnical Engineering & Soil Testing", Sounders College Publishing, FortWorth, 1992.
4	Alam Singh and Chowdary, G.R., "Soil Engineering in Theory and Practice (Vol.2) Geotechnical Testing and Instrumentation, CBS Publishers and Distributors, NewDelhi, 2006.

COUR	OURSE OUTCOMES:			
Upon o	Taxonomy Mapped			
CO1	To attain adequate knowledge in assessing compressibility and shear strength Characteristics of soils	K5		
CO2	To gain knowledge in assessing the safe bearing capacity of soil through field tests.	K5		
CO3	To assess the subgrade modulus of soil or design of pavement thickness.	K5		
CO4	To perform geophysical exploration test and interpret the results.	K5		
CO5	To attain ability for solving geotechnical problems in field.	K5		

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	2	-	1	-			
CO2	-	1	-	2	-	-			
CO3	3	1	-	1	-	-			
CO4	-	2	2	-	2	-			
CO5	2	-	-	2	1	-			
23GEPC07	3	1	2	2	1	-			

23GEPC08 FINITE ELEMENT ANALYSIS LABORATORY					ESTI	ER I	I
PREREQUIS	CATEGO	ΓEGORY			P	C	
	NIL			0	0	4	2
Course	To acquire knowledge of software applications	for various	field	pro	blem	s an	d for
Objective	Objective various conditions and to demonstrate the ability to use computer-based techniques for						
	analysis.						

MODULEI

- 1. Shallow and deep foundations, slope stability analysis
- 2. Retaining walls, reinforced earth structures using geotechnical software packages.
- 3. Seismic hazard analysis and ground response analysis
- 4. Mathematical and statistical packages (MATLAB and SPSS)
- 5. Data processing and graphical presentation using MS EXCEL and ORIGIN.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

1	Rajasekaran.S, Finite Element Analysis in Engineering Design, wheeler publishing, 1993
2	Krishnamurthy, Finite Element Analysis – Theory and Programming, second Edition, Tata Mcgraw Hill
	Publishing.Co, 1994

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Attain sample knowledge in analyzing the settlement of the substructure	К3
CO2	Trained to gain data in assessing the various geotechnical problems	K3
CO3	Analyzing capability for various the slope stability problems	K3
CO4	Gain knowledge in various dynamic analysis problems and analyzing various structures like raft, pile draft, embankment etc.,	К3
CO5	Gain knowledge about mathematical and statistical packages	К3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	2	2	-	1		
CO2	1	-	3	2	-	1		
CO3	2	-	3	3	1	2		
CO4	1	-	2	3	1	2		
CO5	2	-	3	3	-	1		
23GEPC08	1	-	3	3	1	1		
1–Slight, 2–Moderate, 3–Substantial								

23GEEE01 MINI PROJECT					SEMESTER II				
PREREQUIS	SITES	CATEGORY	L	T	P	C			
	NIL	EEC	0	0	4	2			
Course Objective	To evaluate various methods, methodologies and to arrive solutions for various								

- 1. Design Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.
- 2. End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution.
- 3. Continuous assessment of Mini Project at Mid Semester and End Semester will be monitored by the departmental committee.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COUR	COURSE OUTCOMES:				
Upon	Upon completion of the course, the students will be able to:				
CO1	Identify geotechnical engineering problems reviewing available literature.	K3			
CO2	Study different techniques used to analyze complex Geotechnical systems.	K4			
CO3	Work on the solutions given and present solution by using his/her technique	K4			
	Applying engineering principles				
CO4	Identify the methodology to analyze Geotechnical problems	K3			
CO5	Preparation of reports on the project designed.	K4			

URSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	2	3	-	1				
CO2	1	-	3	2	-	1				
CO3	2	-	2	3	1	2				
CO4	1	-	2	3	1	2				
CO5	2	-	2	3	-	1				
23GEEE01	1	-	2	3	1	1				

23GEEE02	23GEEE02 INTERNSHIP / INDUSTRIAL TRAINING					R III
PREREQUI	CATEGORY	L	T	P	C	
	NIL	EEC	-	-	-	-
Course	To train the students to apply theoretical knowled	ge to practical problen	ns ai	nd to	make	them
Objective	thorough with the use various geotechnical equipn structures.	nents and software's to	des	ign (Geotec	hnical

MODULE

- 1. Students can undertake training in any reputed organization dealing Geotechnical Engineering related projects for a period of Four weeks.
- 2. On completion of the training programme, students have to submit detailed report on the works undertaken.
- 3. Evaluation will be done by the internal committee based on the report submission and on the Presentation made.

COUI	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Know the field problems and relate theoretical knowledge and practical experience.	K1
CO2	Work in multi-disciplinary projects either individually or as a team.	К3
CO3	Handle real-time problems and providing solutions to complex situations.	K3
CO4	Undertake collaborative research projects meeting society demands.	К3
CO5	Submit documentation of works in the form of reports.	К3

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
		Carrie	Se 1								
CO1	3	2	2	337	1	3					
CO2	3	-	3	2	3	2					
CO3	3	-	3	3	3	2					
CO4	3	-	3	2	3	2					
CO5	-	3	-	-	-	1					
23GEEE02	3	3	3	2	3	2					

23GEEE03 PROJECT - I						TER	III	
PREREQUISI'	ΓES	CATEGORY	Y 1		T	P	С	
	NIL					24	12	

MODULE

- 1. Project works are undertaken by the students in the different areas of Geotechnical Engineering like Ground Improvement, Slope stability analysis, Environmental Geotechnology, Earthquake Engineering, Soil Dynamics, Earth Reinforcement, Pavement Engineering, Bearing capacity settlement studies by conducting model load test etc. in the departments of that the students are capable of giving solutions to various Geotechnical problems.
- 2. Collection of literatures from indexed journals, thorough and detailed study of the collected literatures will help the students to identify and choose the right problem for the Phase I project.
- 3. In addition to problem identification, review of literatures helps the students to form alternative wide ideas, techniques, and methodologies to evolve solutions for the selected topic of research work.
- 4. Preliminary studies and few laboratory investigations are to be carried out in the Phase I project which will help the students to undertake a detailed study in Phase II.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 360 Periods Total: 360 Periods

	completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Know the state of art in the area and will be in a position to carry the phase I Project in a systematic way.	K3
CO2	Enhance the ability to work independently on the topic using different Experimental and analytical approaches.	K3
CO3	Acquire a formulated methodology in solving any problem and to present the Solutions in a proper way.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	1	1	1
CO2	3	2	2	1	1	1
CO3	3	1	2	2	2	2
23GEEE03	3	3	2	1	1	1

23GEEE04 PROJECT - II					EST	ER I	[V
PREREQUISI	TES	CATEGOR	RY	L	T	P	C
	NIL			C			24
Course	To carry out extensive research on current topics and	l problems of	socie	etal 1	needs	, givi	ing
Objective	relevant solutions to the identified problems, and also t	o publish pap	ers in	refe	rred j	ourna	ıls.

MODULE

- 1. The primary objective of this course is to find the research potential in various themes of Geotechnical Engineering.
- 2. The students are trained to do extensive literature survey in order to get in depth knowledge and finding research gaps on the selected topics.
- 3. To carry out detailed experimental analysis/numerical modeling/field studies on specific research topics to give solutions to various Geotechnical Engineering related problems.
- 4. During the course, the students develop skills in the documentation of work, preparation of technical papers and to make technical presentations.

Contact Periods:

Lecture: 0 Period Tutorial: 0 Period Practical: 720 Periods Total: 720 Periods

COUI	COURSE OUTCOMES:			
Upon	Upon completion of the course, the students will be able to:			
CO1	Familiarize with the laboratory and field equipments related to the research topic.	K1		
CO2	Conduct numerical analysis of various Geotechnical structures	K2		
CO ₃	Prepare detailed documentation of the research work	К3		
CO4	Make presentation and publication of the research outcomes	К3		
CO5	Give solutions to challenging problems in the area of Geotechnical Engineering	К3		

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	-	2	3	-				
CO2	3	-	-	3	3	-				
CO3	1	3	3	1	-	1				
CO4	1	3	3	1	2	1				
CO5	3	-	-	3	3	3				
23GEEE04	3	3	3	3	3	1				
1–Slight, 2–Moderate, 3–S	ubstantial									

23GEPE01 REMOTE SENSING AND ITS APPLICATIONS IN GEOTECHNICAL ENGINEERING											
PREREQUISITES CATEGORY L											
		NIL		PE	3	0	0	3			
Course Objective		introduce the elements of GIS applied to Geotechnical Engineering and to be familiar the use of GIS and GPS.									
UNIT-I	IN	TRODUCTION				9]	Perio	ds			
Remote sensing	Fun	damentals: Definition-Scope-T	ypes and historica	l development–I	deal a	nd rea	al rer	note			
sensing system.	Coı	nparison of conventional surve	y, aerial remote s	ensing and satel	lite re	mote	sens	ing–			
Advantages and	limi	tation of satellite remote sensing	3 .								
EMR and Re	mote	Sensing: Energy sources-E	lectro Magnetic	Radiation-Spect	ral r	egions	s–En	ergy			
Interaction in th	e atn	nosphere–Atmospheric windows	s-Energy Interaction	on with earth surf	ace fe	atures	<u>—</u>				
Spectral reflecta	ince	patterns for different region of E	EMR								
UNIT- II	SE	NSORS AND PLATFORMS				9]	Perio	ds			
		ellites and sensors LANDSAT-0					-				
		nsors-scanning and orbiting me		ion: spatial, spec	etral, 1	adior	netrio	and			
		of the satellites–Classification of	A STATE OF THE STA								
UNIT-III		AGES INTERPRETATION AN					Perio				
		lure-Elements of Photo Interpre	AND THE RESERVE OF THE PARTY OF	•		•		_			
		equipments for Image Interpreta		0 0		•		ıge			
		storation-Geometric correction-			nsform						
UNIT-IV		OGRAPHICAL INFORMATION	,	,			Perio				
	•	and output: Topology, Digital e	PETTY IN THE STATE OF THE STATE	•				odel			
		 Raster and Vector data Models 		•	ay ope						
UNIT-V		11 AL 10	IOTE SENSING A	AND GIS IN		9	Perio	ds			
		OTECHNICAL ENGINEERIN	4000 4000 11								
		sing and GIS in terrain investiga	3000 / ARCH	- '	-	_					
	,	IN)-Land use and Land cover n	napping–Land slid	e studies and seis	mic ha	azard	mapp	oing.			
Contact Period	s:	ORING TO	2) (2) (85.90								
Lecture: 45 Per	riods	Tutorial: 0 Periods	Practical: 0 Perio	ds Total:	45 Pe	riods					

1	A M Chandra, S K Ghosh, "Remote Sensing and Geographic information system", Narosa Publishing
	house.2016.
2	LillesandT.M. and Kiefer R.W., "Remote Sensing and image interpretation", John Wiley and Sons,
	New York. 2015.
3	J.B. Campbell, Taylor&Francis, "Introduction to remote sensing", London. 1985.
4	J.R.Jensen, "Introductory digital image processing", Prentice Hall International Ltd., London. 2009.

COU	Bloom's	
Upon	Taxonomy Mapped	
CO1	Study about the remote sensing system, analysis of data and the interpretation of	K1
	data.	
CO2	Obtain knowledge about remote sensing sensors and platforms.	K2
CO3	Gain the knowledge about image interpretation and processing techniques.	K2
CO4	Gain the knowledge about data collection and management of GIS.	K1
CO5	Know the application of GIS in various fields.	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	-	-	-	-
CO2	-	-	-	-	-	1
CO3	-	-	-	-	-	-
CO4	-	2	-	-	-	1
CO5	-	-	2	-	1	2
23GEPE01	1	2	2	-	1	2

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	40	30	30		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	30	40	30	-	-	-	100
ESE	35	35	30	b. 11-	-	-	100

23GEPE02	SOIL PROPERTIES AND BEHAVIOUR						
PREREQUIS	ITES:	CATEGORY	L	T	P	C	
	PE	3	0	0	3		
Course Objective	To study the different clay minerals and to understand the properties of soils and also to predict soil behavior using conduction phenomenon.						
UNIT-I	NIT-I FORMATION OF SOILS AND CLAY MINERALS 9 Periods			ods			
Introduction Soil Formation Types of soils Goological and nodegical healtground Verious soil					,,,, ,,, <u>i</u> 1		

Introduction – Soil Formation – Types of soils – Geological and pedogical background –Various soil deposits and their engineering suitability – Composition and structure of clay minerals – Structure of Allophane, Kaolinite, Hallosite, Montmorillonite, Illite, Chlorite and Vermiculite minerals, mixed layer minerals-Classification and identification of clay minerals– X- ray diffraction data – electron microscopic analysis–Differential thermal analysis–Anion and cation exchange capacity of clays– Specific surface area–Bonding in clays.

UNIT-II PHYSICAL AND PHYSIO-CHEMICAL BEHAVIOUR OF SOIL 9 Periods

Physical and Physio-Chemical behavior of Soils-Diffused double layer theory-Computation of double layer distance-Dielectric constant-Temperature on double layer-Ion Exchange-Cation exchange capacity-Causes of cation exchange effect-Fixation of cations-Determination of cation

Exchange capacity-Exchangeable cations.

UNIT-III EXPANSIVE AND SHRINKING SOIL

9 Periods

Introduction—Swelling and shrinking behaviour of soils—Problems associated—Characteristics affecting shrinkage — Crack formation during shrinkage — Measurements of shrinkage for samples —Identification of expansive clays.—Factors influencing swell—Shrink characteristics—Swelling pressure of soils—Swell pressure determination—Mechanism of swelling—Volume changes and Engineering problem in the field—Osmotics well pressure—Soil fabric and measurement-Pore characterization-voids distribution—Methods of fabric characterization—

UNIT-IV COMPRESSIBILITY AND COLLAPSIBLE SOIL

9 Periods

Introduction—Compressibility—Permeability behaviour of soils and clays—Mechanism involved —Factors governing compressibility—Soil water—Consumption of soilwater —Capillary tube, capillary potential—Soil moisture—Methods of determination of soil moisture—Physical behavior of soil water systems—Liquefaction—Liquefaction potential—Soil suction—Determination of suction potential—Collapsible soil— identification—Effects on foundation.

UNIT-V CONDUCTION PHENOMENON AND PREDICTION OF 9 Periods SOIL BEHAVIOUR

Conduction in soils—Coupled flows—Electrical, Chemical, Hydraulic and Thermal flows in soils—Consolidation by Electro-osmosis—Clay mineralogy in relation to physical and engineering properties of clay minerals—Prediction of engineering behavior of soils—Empirical correlations and their applicability—Granular soil structure—Clay structure models.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Bowles J.E., "Engineering properties of soils and their measurement", McGraw Hill. 4 th Edition, 2012.
2	Mitchell J.K., "Fundamentals of Soil Behaviour", John Wiley, NewYork, 1993.
3	Knappett J.A and R.F.Craig., "Craig's Soil Mechanics" Span Press, 2012.
4	Braja.M.Das, "Principles of Foundation Engineering", C L Engineering, 2013.
5	Mc Carthy D.F., "Essentials of Soil Mechanics and Foundations", Prentice Hall, 2002.

COU! Upon	Bloom's Taxonomy Mapped	
CO1	Get knowledge about the structure and identification of clay minerals.	K1
CO2	Use the concept of diffuse double layer theory and the cation exchange capacity to determine the chemical behavior of soils.	К3
CO3	Analyse the mechanism and effects of swelling, shrinkage in clay soils.	К3
CO4	Assess the behavior of collapsible soil and the compressibility characteristics.	К3
CO5	Use the clay models and conduction phenomenon to predict the Engineering behavior of soils.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	1	3	3
CO2	2		1	1	2	2
CO3	2	1	3	2	3	2
CO4	3	3	3	1	3	3
CO5	2	2	P	2	3	2
23GEPE02	2	2	3	2 1	3	2
1–Slight, 2–Moderat	e, 3–Substant	ial		2	1	

	A CONTROL WILLIAM A PERIODAL AND ONLY										
ASSESSMENT	PATTERN – TH	IEORY		R //							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT 1	30	30	40	N 1 1	-	-	100				
CAT 2	20	20	60	1	-	-	100				
Individual		Al	X.	B							
Assessment 1 /		1258	1144	168							
Case Study 1/	25	25	50		-	-	100				
Seminar 1 /				0.00							
Project1		100									
Individual											
Assessment 2 /											
Case Study 2/	20	20	60	_	-	-	100				
Seminar 2 /											
Project 2											
ESE	20	20	60	-	_	-	100				

23GEPE03	SUSTAINABLE GEOT	SUSTAINABLE GEOTECHNICS							
PREREQUIS	PREREQUISITES CATEGORY								
	NIL	PE	3	0	0	3			
Course	To learn the characterization of geomaterials, under	rstand the interaction m	echa	nism	and	to			
Objective	adopt suitable remediation technologies.								
UNIT-I	INTRODUCTION			9 Pe	riod	S			
Scope - Geotechnical Engineering for sustainability - efficient and environment friendly materials in									
geotechnical v	vorks - Recent trends - Natural and manmade enviro	onments - Sources and	type	s of	grou	nd			
1 , . ,.	11 2 11 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1	1 C '1'				. 1			

contamination - pollution problem sand waste minimization - role of soiling geo- environmental applications.

UNIT-II CHARACTERIZATION OF GEOMATERIAL

9 Periods

Need for material characterization and its types-physical, chemical, geotechnical, mineralogical, waste and recycled material - modeling and design methods of Waste Mechanics - lifecycle assessment in Geotechnical applications.

ENVIRONMENTAL INTERACTION

Soil - Water - Environmental interaction, Soil - Contaminant Interaction, Contaminant Transport and the fate of contaminants. Monitoring of contaminated land – case studies (related to soil contamination)

REMEDIATION TECHNIQUES

Method of remediation – isolation and containment - on site, ex-situ soil cleaning, soil washing-Thermal desorption - soil vapour extraction - air stripping - ground freezing - soil heating - Traditional and innovative barrier technologies - Eco-friendly ground improvement techniques - monitoring of remediation (during treatment and post treatment)-case studies

SUSTAINABLE DEVELOPMENT UNIT-V

9 Periods

Total: 45 Periods

Definition - components of sustainable development - climatic change and energy depletion - Bio-Geotechnology - energy Geotechnology - sustainable geotechnical design - sustainable use of underground space - utilization of geo-material for sustainable development - industrial by-products and applications – land reclamation - Case Studies

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods **Practical: 0 Periods**

- Slobodan B.Mickovski, "Sustainable Geotechnics (Theory, Practice, and Applications)" MDPI, UK.ISBN978-3-0365-1480-2(PDF)
- 2 Sanjay Kumar Shukla, Sudhir kumar V. Barai, "Advances in Sustainable Construction Materials And Geotechnical Engineering", Proceedings of TRACE2018.
- 3 | Environmental Geotechnics, Edited by (ISSMGE) Second Edition 2006
- 4 Reddy, K.R., and Adams, J.A., "Sustainable Remediation of Contaminated Sites", Momentum Press, NewYork, 2015, 160p.(ISBN:9781606505205).
- 5 | HariD.Sharma ,KrishnaR.Reddy "GeoEnvironmental Engineering", John Wiley&Sons, Inc. 2004
- 6 Reddy, K.R., Cameselle, C., and Adams, J.A., "Sustainable Engineering : Drivers, Metrics, Tools, and Applications", John Wiley & Sons, Inc., Hoboken, NewJersey, 2019, 544p(ISBN:978-1-119-49393-8).

COU	COURSE OUTCOMES:				
Upon completion of the course, the students will be able to:					
CO1	Gained equate knowledge on the scope and the use of environment friendly materials	K2			
CO2	Characterize the geo-materials and to carryout life cycle assessment studies	К3			
CO3	Study the mechanism and interaction between soil, water, air and the geo-material	K3			
CO4	Assess and select appropriate remediation techniques	K3			

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	2	3	2	-	2				
CO2	1	-	3	-	-	2				
CO3	2	1	1	1	3	3				
CO4	3	1	1	-	-	3				
CO5	3	2	3	3	3	2				
23GEPE03	3	2	3	3	3	2				
1-Slight, 2-Mode	erate, 3–Substan	ntial			•	-				

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT 1	30	30	40		-	-	100				
CAT 2	30	30	40		-	-	100				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20	20	60		-	-	100				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20	20	60		-	-	100				
ESE	30	30	40	2372	-	-	100				

23GEPE04										
PREREQUIS	ITES					CATEGORY	L	T	P	С
		NIL				PE	3	0	0	3
Course Objective										
UNIT-I		CIPLES AND M							Perio	ds
Historical back	groun	d – Initial and rec	ent develo	opments – l	Principle	s, Concepts and 1	necha	nism	s of	
reinforced soil	- Fact	ors affecting beha	avior and 1	performanc	ce of soil	- Reinforcemen	t intera	action	ns.	
UNIT-II	MAT	ERIALS AND M	ATERIAI	L PROPER	RTIES			9	Perio	ds
Materials used	in rei	nforced soil struc	tures – Fi	ll materials	s, reinfor	cing materials, r	netal s	trips	, Geo	textile,
Geogrids, Geo	memb	ranes, Geocompo	sites, Geo	ojutes, Geo	foam, na	tural fibres, coir	Geote	xtile	s - B	amboo
– Timber – I	Facing	elements - Proj	perties –	Methods	of testin	ıg – Advantages	and	disa	dvanta	ages –
Preservation m	ethods	5.								
UNIT-III	DESI	GN PRINCIPLE	S AND AI	PPLICATI	ONS			9	Perio	ods
Design aspects	of re	inforced soil – So	oil reinfor	rcement fur	nction –	Separator, Filtra	tion, I	Orain	age, l	Barrier
function – Des	sign an	d applications of	reinforce	d soil of va	rious str	uctures – Retain	ing wa	lls –	Found	lations
– Embankmen	ts and	slopes.	0		O THE PARTY	n				
UNIT-IV	GEO	SYNTHETICS A	ND APPL	ICATION	S)		9	Perio	ds
Introduction –	Histor	ical background -	 Application 	tions – Des	sign crite	eria – Geosynthe	tics in	road	ls –De	esign –
Giroud and No	oiray a	pproach – Geosy	nthetics in	n landfills -	- Geosyı	nthetic clay liner	– Des	ign c	of land	lfills –
Barrier walls.	Barrier walls.									
UNIT-V	SOIL	NAILING AND	CASE H	IISTORIE	S			9	Perio	ds
_		ction – Overview			10.	_	_			
in seismic co	nditior	s. Performance	studies of	f reinforce	d dams,	embankments,	Paven	nents	, Rai	lroads,
Foundations –	Case s	tudies.	al S		1	3.				
Contact Perio	ds:		1200	150	The state of the s	9				
	Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									

1	Jewell, R.A., "Soil Reinforcement with Geotextile", CIRIA, London, 1996.
2	John, N.W.M., "Geotextiles", John Blackie and Sons Ltd., London, 1987.
3	Jones, C.J.F.P., "Earth Reinforcement and Soil Structures", Earthworks, London, 1982.
4	Koerner, R.M., "Designing with Geosynthetics", (Third Edition), Prentice Hall, 1997.
5	Proc. Conference on polymer and Reinforcement, Thomas Telford Co., London, 1984.
6	Gray, D.H., and Sotir, R.B., "Biotechnical and Soil Engineering Slope Stabilization. A Practical Guide for Erosion Control", John Wiley & SonInc., NewYork, 1996.

COU	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able:	Taxonomy Mapped
CO1	To understand the soil-reinforcement interaction mechanism.	K2
CO2	To enrich their knowledge on properties, testing methods of geosynthetics in Earth reinforcement.	K1
CO3	To get detailed knowledge on soil reinforcement functions and the ability to Select suitable reinforcing material to suit the functional requirement.	K3

CO4	To understand the design criteria for use of geosynthetics in landfills, pavement, liners.	K2
CO5	To design various soil reinforcements, soil nailing major projects.	K2

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	-	-	2	-			
CO2	-	-	3	3	2	2			
CO3	2	-	1	-	-	-			
CO4	-	-	-	-	3	-			
CO5	2	-	-	-	2	1			
23GEPE04	2	-	3	3	2	2			
1-Slight, 2-Moderate	, 3–Substantial	•	•	•					

ASSESSMENT	PATTERN - TH	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	THE STATE OF	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	A A	-	-	100
ESE	40	40	20		-	-	100

23GEPE05	FINITE ELEMENT ANALYSIS FOR GEOTECHNICAL ENGINEERING									
PREREQUISI	CATEGORY	L	T	P	C					
	NIL PE 3					3				
Course	To impart knowledge on elasticity concepts, finit	e element processe	s and s	oil ap	plication	ons.				
Objective		-		-	-					
UNIT-I	INTRODUCTION TO ELASTICITY	9 Periods								
Principles of Elasticity – Elasticity Equations - Stress-strain equations – Strain-Displacement relationships										
in Matrix form – Equilibrium equations - Compatibility equations – Plane stress and Plane strain equations										

axisymmetric formulation.

FINITE ELEMENT PROCESS **UNIT-II**

9 Periods

Historical background - Matrix approach - Principles of discretization, Classical techniques in FEM -Weighed residual method - Galerkin method - Variational approach - The Rayleigh Ritz method -Numerical integration - Gaussian Quadrature technique - Formulation of Stiffness matrix - Element stiffness matrix – Global stiffness matrix

ELEMENT PROPERTIES AND ISOPARAMETRIC UNIT-III **FORMULATIONS**

9 Periods

Concept of an element - Various element shapes - Displacement models - Generalized coordinates -Shape Functions – Formulation of 4-noded and 8-noded isoparametric quadrilateral elements – Lagrangian elements –Serendipity elements

HIGHER ORDER ELEMENTS

9 Periods

Finite Element Analysis on Two-dimensional problem – CST and LST elements – formulation – Element matrices Assembly - Boundary conditions and solutions - Axisymmetric elements - Applications of the axisymmetric element – Stress distribution in thick cylinder - Boussineq's problem.

UNIT-V SOIL APPLICATIONS

9 Periods

Geotechnical considerations - Choice of Soil Properties for Finite Element Analysis - Total stress analysis pore pressure calculation - Real soil behaviour - behaviour of clay, sand and both clay and sand - Simple elasto plastic constitutive models - Tresca, Von-mises and Mohr-coulomb models - Non-linear models-Modified Newton Raphson method - Seepage and consolidation: steady state seepage - Hydraulic boundary conditions -- Permeability model sun confined seepage flow- Consolidation Analysis: settlement analysis -Terzaghi's consolidation problem -Finite Element Analysis on embankments, shallow foundations, Earth retaining structures and pile group behaviour.

Contact periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods **Total: 45 Periods**

REFERENCES

Krishnamurthy C.S, "Finite Element Analysis – Theory and programming", Second edition, Tata McGraw Hill Publishing Co.2004 2 Desai C.S., "Elementary Finite Element Method", Prentice Hall, INC1979 Rajasekaran S., "Finite Element Analysis in Engineering Design", Wheeler publishing, 2008 Chandrapatla Tirupathi.Rand Belegundu, Ashok. D., "Introduction to Finite Elements in Engineering, Second edition, Prentice Hall of India, 2014 David M Potts. And Lidija, Zdravkovic, Finite Element Analysis in Geotechnical Engineering, Vol 1&2. Thomas Telford, London.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Understand the various stress-strain-displacement relations.	K1
CO2	Know the concept of stiffness matrix and understand choosing boundary conditions and various classical techniques of FEA.	K2

	Know the elements and its discretization to solve the problems of various element types.	K2
CO4	Learn higher order elements in finite element analysis.	K3
CO5	Attain exposure towards various concepts in geotechnical finite element analysis.	K3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	2	2	-	1			
CO2	1	-	3	2	-	1			
CO3	2	-	3	3	1	2			
CO4	1	-	2	3	1	2			
CO5	2	-	3	3	-	1			
23GEPE05									
1-Slight, 2-Moo	derate, 3–Sub	stantial	•		•	•			

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT 1	30	40	30		-	-	100				
CAT 2	30	40	30	- C - C	-	-	100				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100				
ESE	30	40	30	(1000)	-	-	100				

23GEPE06	FOUNDATION IN EXPANSIVE SOILS						
PREREQUISI	TES:	CATEGORY	L	T	P	C	
	NIL	PE	3	0	0	3	
Course	To study the properties, the controlling technique	s of swelling and	l to	sel	ect s	suitable	
Objective	foundations in expansive soils.						
UNIT-I	GENERAL PRINCIPLES			9	Peri	ods	
Identification conditions that	ansive soils – Physical properties of expansive sof expansive soils – simple laboratory tests – Clas favour swelling – Consequences of swelling.			e so	ils -	- Field	
UNIT-II	SWELLING CHARACTERISTICS				9 Periods		
	anism, Swelling measurements – factors affecting – cteristics – Evaluation of heave.	Laboratory metho	ods	– Pı	edic	tion of	
UNIT-III	TECHNIQUES FOR CONTROLLING SWELLIN				-	iods	
	sture barriers – Vertical moisture barriers – Surfa eplacement – Sand cushion techniques – CNS layer te		ce (drair	nage	– Pre-	
UNIT-IV	FOUNDATIONS ON EXPANSIVE SOILS			9	Peri	ods	
	Bearing capacity and skin friction – Advantages and of different places of the	lisadvantages – De	sign	of l	oelle	d Piers	
UNIT-V	MODIFICATION OF SWELLING CHARACTER	ISTICS		9	Peri	ods	
	ration – Mechainsms – Limitations – Lime inject ization – Construction.	ion – Lime col	umn	s –	Mix	ing –	
Contact Period	ls:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	Fu Hua Chen, "Foundations on Expansive Soils", Elsevier Scientific Publishing Company, NewYork, 2012.
2	Gopal Ranjan and A.S.RRao, "Basic and Applied Soil Mechanics", New Age International Publishers—NewDelhi, 2018.
3	Hand Book on "Under reamed and Bored Compaction Pile Foundation", CBRI, Roorkee. 2001.
4	IS:2720 (PartXLI) –1977–Measurement of Swelling Pressure of Soils.
5	R.K.Katti, D.R KAtti, A.R.Katti, "Behaviour of Saturated Expansive Soil & Control Methods", CRC Press, 2002.
6	Alam Singh, "Modern Geotechnical Engineering", Geo-Environ Academia, Jodhapur.3 rd Edition, 2006.

COURSE	COURSE OUTCOMES:			
Upon con	Upon completion of the course, the students will be able to:			
CO1	Assess the occurrence and distribution of expansive soils.	K2		
CO2	Study the properties of expansive soils and the controlling techniques.	K2		
CO3	Get exposure on various methods of stabilization of expansive soils.	К3		
CO4	Design different types of foundations on expansive soil.	K3		
CO5	Select suitable techniques and learn the mechanism of treatment of swelling soils.	К3		

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	2	1	1	-			
CO2	3	2	3	1	2	3			
CO3	3	2	3	2	2	2			
CO4	-	3	3	1	3	3			
CO5	2	1	2	2	3	2			
23GEPE06	3	2	3	1	3	3			
1-Slight, 2-Moderate	1–Slight, 2–Moderate, 3–Substantial								

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT 1	30	40	30	-	-	-	100				
CAT 2	30	40	30	-	-	-	100				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20	30	50		-	-	100				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20	30	50		-	-	100				
ESE	30	40	30	- II	-	-	100				

23GEPE07	SOIL STRUCTURE INTERACTION (Common to Structural & Geotechnical Engineering)							
PREREQUIS	ITES	CATEGORY	L	T	P	C		
	NIL	PE	3	0	0	3		
Course Objective								
UNIT-I	SOIL – FOUNDATION INTERACTION			9 Pe	riods			
1	o soil - Foundation interaction problems - Soil							
Interface beha	viour - Scope of soil - foundation interaction analy	ysis – Soil respon	se mo	dels –	Win	kler,		
Elastic continu	um, Two parameter elastic models, Elastic – Plastic	behaviour-Time	depe	ndent b	oehavi	iour.		
UNIT-II	BEAM SON ELASTIC FOUNDATION – SOIL	MODELS		9 Pe	riods			
Infinite beam	- Two parameters - Isotropic elastic half space	- Analysis of bea	ıms o	f finite	eleng	gth –		
Classification	of finite beams in relation to their stiffness - Analysi	is through applicat	ion pa	ickage	S			
UNIT-III	PLATE ON ELASTIC MEDIUM		9 Periods					
Infinite plate -	Winkler, Two parameters, Isotropic elastic mediu	ım, Thin and thick	plate	es – A	nalys	is of		
finite plates –	Rectangular and circular plates - Numerical analysis	sis of finite plates	– Sin	nple s	olutio	ns –		
Analysis of bra	aced cuts- Application packages.							
UNIT-IV	ELASTIC ANALYSIS OF PILE	_		9 Pe	riods			
Elastic analysi	s of single pile – Theoretical solutions for settlemen	t and load distribut	tion –	Analy	sis of	pile		
group – Interac	ction analysis – Load distribution in groups with rigi	d cap – Pile raft–A	pplic	ation p	ackag	ges.		
UNIT-V	LATERALLY LOADED PILE	3)		9 Pe	riods			
Load deflectio	n prediction for laterally loaded piles – Subgrade re	eaction and elastic	analy	sis – I	nterac	ction		
analysis – Pile	$raft\ system-Solutions\ through\ influence\ charts-A$	Application package	es					
Contact Perio	ds:							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								

1	Saran, S., "Analysis and design of substructures", Taylor & Francis Publishers, 2006.
2	Hemsley, J.A., "Elastic Analysis of Raft Foundations", Thomas Telford, 1998.
3	Poulos, H.G., and Davis, E.H., "Pile Foundation Analysis and Design", John Wiley, 2008.
4	Murthy, V.N.S., "Advanced Foundation Engineering", CBS Publishers, NewDelhi, 2007.
5	McCarthy, R.N., "Essentials of Soil Mechanics and Foundations: Basic Geotechnics", Sixth Edition,
	Prentice Hall, 2002.
6	Selvadurai, A.P.S., "Elastic Analysis of Soil Foundation Interaction", Elsevier, 1979.
7	Scott, R.F., "Foundation Analysis", Prentice Hall, 1981.
8	Structure Soil Interaction—State of Art Report, Institution of structural Engineers, 1978.ACI336,
	Suggested Analysis and Design Procedures for Combined Footings and Mats, American Concrete
	Institute, Delhi, 1988.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Understand various soil response models applicable to soil-foundation interaction analysis.	K2
CO2	Come up with elastic solutions for problems of pile, pile-raft system.	K3
CO3	Use software packages to analyze soil – foundation system including laterally loaded piles.	К3
CO4	Acquire knowledge on elastic analysis of pile and pile group.	K3

COURSE ARTIC	ULATION	MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	1	2	1
CO2	3	-	2	1	2	1
CO3	3	-	2	1	2	1
CO4	3	-	2	1	2	1
CO5	3	-	2	1	2	1
23GEPE07	3	-	2	1	2	1
1-Slight, 2-Modera	ite, 3–Subst	antial	•		•	•

ASSESSMENT	PATTERN - TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT 1	30	40	30	-	-	-	100
CAT 2	30	40	30	-	-	-	100
Individual		0	0 32				
Assessment 1 /		760000	ase probat	30/			
Case Study 1/	-	50	50	_	_	-	100
Seminar 1 /							
Project1		10 0		- //			
Individual			T.	11			
Assessment 2 /			AUD .	S 11.			
Case Study 2/	-	50	50	\\\ -	-	-	100
Seminar 2 /		// 8					
Project 2		1 9		b. 1			
ESE	30	40	30	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	-	100

23GEPE08	FORENSIC GEOTECHNIC	CAL ENGINEER	ING			
PREREQUISI	TES	CATEGORY	L	T	P	С
	NIL	PE	3	0	0	3
Course Objective To understand the roles and responsibilities of a forensic geotechnical engineer and to develop skill in site investigation and report preparation with gain of knowledge on settlement of structures on problematic soil conditions. Further to develop knowledge on different geotechnical problems and recommend suitable repair and rehabilitation techniques.						lge on lge on tation
UNIT-I	INTRODUCTION				Peri	ods
Definition of Fo	orensic Engineer-Types of Damage-Typical clients-	-Legal Process-Ex	amp	les.		
UNIT-II	ASSIGNMENT AND INVESTIGATION			9	Peri	ods
Preliminary in Report preparat	formation—Planning-Site Investigation—Documents tion.	s Search–Analysi	s ar	nd c	oncl	usion-
UNIT-III	FORENSIC GEOTECHNICAL AND FOUNDAINVESTIGATIONS	TION		9	Peri	ods
	structures—Allowable Settlement—Collapsible soil—Expansive soil movement—Pavements—Case Study.	Other causes of s	ettle	men	t–Ex _j	pansive
UNIT-IV	OTHER GEOTECHNICAL AND FOUNDATION	N PROBLEMS		9	Peri	ods
Earthquakes, erosion, deterioration, tree roots, bearing capacity Failures, Retaining walls and Historic structures with case study.						
UNIT-V	REPAIR AND CRACK DIAGNOSIS	7		9	Peri	ods
Development of repair recommendations-Repair of Surficial Slope failures-Cracks-Pavement cracks-Cracks in walls-Foundation cracks-Cracking to repaired structures.						
Contact Period Lecture: 45 Pe	11 11 2/11/2	riods Tota	al: 4	5 Pe	riods	S

1	Robert W. Day, "Forensic Geotechnical and Foundation Engineering" McGraw Hill, Second Edition, 2011.
2	Malcolm D. Bolton, "A Guide to Soil Mechanics" Universities Press, 2003.
3	Saxena, D. S., "Technical, Ethical and Legal Issues with Forensic Geotechnical Engineering-A
	Case History", Proceedings, 13th Asian Regional Conference on Soil Mechanics and Geotechnical
	Engineering, Kolkata, India, 11 December 2007.

COUR	SE OUTCOMES:	Bloom's
		TaxonomyM
Upon	apped	
CO1	To comprehend a forensic geotechnical engineer's roles and responsibilities.	K1
CO2	To collect preliminary information, plan, adopt suitable investigating	K2
	techniques available and prepare a report.	
CO3	To recognize settlement failures on problematic soils and identify factors	K3
	causing the settlement.	
CO4	To identify various other geotechnical problems and understand them.	K3
CO5	To recommend repair and rehabilitation options.	K2

COURSE ART	ICULATI	ON MATRIX	X			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	-	-	2	-
CO2	-	3	3	3	2	1
CO3	2	-	-	-	2	-
CO4	-	-	-	-	3	2
CO5	2	-	-	-	2	-
23GEPE08	2	3	3	3	2	2
1–Slight, 2–Mod	derate, 3–S	ubstantial				

ASSESSMENT	PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100
ESE	40	40	20	V/B	-	-	100

23GEPE09	ROCK MECHANICS IN ENGIN	NEERING PRAC	TICE			
PREREQUIS	ITES	CATEGORY	L	T	P	C
	NIL	PE	3	0	0	3
Course Objective	To make the students understand the properties of stresses and stability considerations of rock masses.		failure	e, eva	luatio	on of
UNIT-I	CLASSIFICATION OF ROCKS			9	9 Peri	iods
	insular India and the Himalayas—Index properties incompetent rock—Value of RMR and ratings in field		on of	roc	k ma	sses,
UNIT-II	STRENGTH CRITERIA OF ROCKS			9	9 Peri	iods
Behaviour of rock under hydrostatic compression and deviatoric loading-Modes of rock failure-Planes of						
weakness and	joint characteristics - Joint testing, Mohr - Coulon	nb failure criterion	and	tensi	on cu	t-off,
weakness and Hoek and Broestimations.	joint characteristics – Joint testing, Mohr – Coulon own Strength criteria for rocks with discontinuity	nb failure criterion	and	tensi ratin	on cu g in	t-off, field
weakness and Hoek and Broestimations. UNIT-III	joint characteristics – Joint testing, Mohr – Coulomown Strength criteria for rocks with discontinuity DESIGN ASPECTS IN ROCKS	nb failure criterion y set. Value of l	and RQD	tensi ratin	on cu g in 9 Peri	it-off, field
weakness and Hoek and Broestimations. UNIT-III Insitu stresses	joint characteristics – Joint testing, Mohr – Coulon own Strength criteria for rocks with discontinuity	nb failure criterion y set. Value of l	and RQD	tensi ratin	on cu g in 9 Peri	t-off, field iods
weakness and Hoek and Broestimations. UNIT-III Insitu stresses	joint characteristics – Joint testing, Mohr – Coulon own Strength criteria for rocks with discontinuity DESIGN ASPECTS IN ROCKS and their measurements, flat jack–Over and under continuity	nb failure criterion y set. Value of l	and RQD	ratin	on cu g in 9 Peri	it-off, field iods ground
weakness and Hoek and Broestimations. UNIT-III Insitu stresses a excavations-Double UNIT-IV Rock slopes-F	joint characteristics – Joint testing, Mohr – Coulomown Strength criteria for rocks with discontinuity DESIGN ASPECTS IN ROCKS and their measurements, flat jack–Over and under conesign aspects of openings in rocks–Case studies.	nb failure criterion y set. Value of l ring methods—stres	n and RQD ss aro	ratin	on cu g in Peri	it-off, field iods ground iods
weakness and Hoek and Broestimations. UNIT-III Insitu stresses a excavations-Double UNIT-IV Rock slopes-F	joint characteristics – Joint testing, Mohr – Coulomown Strength criteria for rocks with discontinuity DESIGN ASPECTS IN ROCKS and their measurements, flat jack–Over and under concesign aspects of openings in rocks–Case studies. SLOPE STABILITY OF ROCKS Role of discontinuities in slope failure, slope and	nb failure criterion y set. Value of l ring methods—stres	n and RQD ss aro	ratin und u	on cu g in Peri	it-off, field iods groun iods edial
weakness and Hoek and Bro estimations. UNIT-III Insitu stresses a excavations-Do UNIT-IV Rock slopes-F measures for co UNIT-V	joint characteristics – Joint testing, Mohr – Coulomown Strength criteria for rocks with discontinuity DESIGN ASPECTS IN ROCKS and their measurements, flat jack–Over and under consign aspects of openings in rocks–Case studies. SLOPE STABILITY OF ROCKS Role of discontinuities in slope failure, slope anaritical slopes–Case studies.	nb failure criterion y set. Value of l ring methods—stres alysis and factor PERTIES	n and RQD ss arou	ratin ratin gund u grafety-	on cu g in Peri nderg Peri -Remo	iods groundiods edial
weakness and Hoek and Bro estimations. UNIT-III Insitu stresses a excavations—Do UNIT-IV Rock slopes—Imeasures for country UNIT-V Rock Reinford	joint characteristics – Joint testing, Mohr – Coulomown Strength criteria for rocks with discontinuity DESIGN ASPECTS IN ROCKS and their measurements, flat jack–Over and under consign aspects of openings in rocks–Case studies. SLOPE STABILITY OF ROCKS Role of discontinuities in slope failure, slope anaritical slopes–Case studies. METHODS OF IMPROVING ROCK MASS PRO	ring methods—stres alysis and factor PERTIES and its types—Pr	n and RQD sss around of sa	ratin und u ufety-	on cu g in Peri Inderg Peri Remo	iods groun iods edial
weakness and Hoek and Bro estimations. UNIT-III Insitu stresses a excavations—Do UNIT-IV Rock slopes—Imeasures for country UNIT-V Rock Reinford	joint characteristics – Joint testing, Mohr – Coulomown Strength criteria for rocks with discontinuity DESIGN ASPECTS IN ROCKS and their measurements, flat jack–Over and under consesign aspects of openings in rocks–Case studies. SLOPE STABILITY OF ROCKS Role of discontinuities in slope failure, slope anaritical slopes–Case studies. METHODS OF IMPROVING ROCK MASS PROCEEDED.	ring methods—stres alysis and factor PERTIES and its types—Pr	n and RQD sss around of sa	ratin und u ufety-	on cu g in Peri Inderg Peri Remo	iods groun iods edial
weakness and Hoek and Broestimations. UNIT-III Insitu stresses a excavations—Do UNIT-IV Rock slopes—Femeasures for co UNIT-V Rock Reinford Pressure grouti	joint characteristics – Joint testing, Mohr – Coulomown Strength criteria for rocks with discontinuity DESIGN ASPECTS IN ROCKS and their measurements, flat jack–Over and under consesign aspects of openings in rocks–Case studies. SLOPE STABILITY OF ROCKS Role of discontinuities in slope failure, slope anaritical slopes–Case studies. METHODS OF IMPROVING ROCK MASS PROCEEDED. METHODS OF IMPROVING ROCK MASS PROCEDULE.	ring methods—stres alysis and factor PERTIES and its types—Pr	n and RQD sss around of sa	ratin und u ufety-	on cu g in Peri Inderg Peri Remo	iods groun iods edial

1	Goodman, R. E., "Introduction to Rock Mechanics", John Wiley and Sons, 1989.
2	Hool, E and Bray, J., "Rock Slope Engineering, Institute of Mining and Metallurgy", U.K. 1981.
3	Hoek, E and Brown, E. T., "Underground Excavations in Rock", Institute of Mining and Metallurgy, U.K. 1981.
4	Obvert, L. and Duvall, W., "Rock Mechanics and the Design of Structures in Rock", John Wiley, 1967.
5	Bazant, Z. P., "Mechanics of Geomaterials Rocks, Concrete and Soil", John Wiley and Sons, Chichester, 1985.
6	Wittke, W., "Rock Mechanics: Theory and Applications with Case Histories", Springerverlag, Berlin, 1990.

COUR	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Know the formation and classification of rocks in India.	K1
CO2	Understand the strength of the rocks in field assessment.	K3
CO3	Understand the in-situ stresses developed and methods of measurement.	K2
CO4	Evaluate the strength parameters of rocks and adopt appropriate remedial	K3
	Measures for stability of critical slopes of rocks.	
CO5	Give suitable remedial measures in fractured rocks	K2

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	-	-	-	-				
CO2	-	2	-	2	2	-				
CO3	2	-	-	-	-	-				
CO4	3	-	-	-	-	3				
CO5	3	-	-	-	-	3				
23GEPE09	3	2	-	2	2	3				
1-Slight, 2-Modera	1–Slight, 2–Moderate, 3–Substantial									

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	40	40	20	-	-	_	100				
CAT2	40	40	20	-	-	-	100				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	30	40	30	<u> </u>	-	-	100				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	35	35	30	-	-	-	100				
ESE	35	35	30	-	-	-	100				

23GEPE10												
PREREQUISI	PREREQUISITES CATEGORY L 7											
	NIL PE 3											
Course	To understand the mechanism of earthquake, earthquake hazards											
Objective	ve Phenomena of Liquefaction and the seismic analysis.											
UNIT-I	EARTHQUAKE SEISMOLOGY				9 Per							
Elastic Rebound	quake–Plate tectonics–Earthquake Fault sources–Elad theory–Locating an earthquake–Quantification of eathquake–Case studies.											
UNIT-II	GROUND MOTION AND GROUND RESPONSE) Per							
	of ground motion-Factors influencing ground motio for Ground Response Analysis-Methods of Ground l		near	wav	e vel	ocity–						
UNIT-III	LIQUEFACTION AND LATERAL SPREADING			Ş) Per	riods						
and Cyclic Stra	elated phenomena—Liquefaction susceptibility—Evaluation approaches—Lateral deformation and spreading Cretion computation from Lab and Field tests.											
UNIT-IV	SEISMIC DESIGN OF FOUNDATIONS, RETAIN SLOPES	INING WALLS A	ND	9) Per	iods						
Retaining walls	Seismic design requirements of foundation–Seismic design of pile foundations–Seismic design of Retaining walls–Behaviour of reinforced slope under seismic condition Recommendations of seismic codes related to geotechnical engineering.											
UNIT-V	SEISMIC HAZARD ANALYSIS			9) Per	iods						
Seismic hazard analysis–DSHA–PSHA–Seismic microzonation –Soil Improvement for remediation of seismic hazards.												
Contact Period	ls:											
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Po	eriods Total:	45 P	erio	ds							

	O103 (15V 300 TO10)
1	Kameswara Rao, N. S. V., "Dynamics soil tests and applications", Wheller Publishing–New Delhi, 2000.
2	Krammer S. L., "Geotechnical Earthquake Engineering", Prentice Hall, International series Pearson
	Education (Singapore) Pvt. Ltd., 2004. Kameswara Rao, Vibration Analysis and Foundation Dynamics,
	Wheeler Publishing, New Delhi, 1998.
3	McGuire, R. K., "Seismic Hazard and Risk Analysis, Earthquake Engineering Research Institute".
	MNo –10,ISB N0-943198-01-1, 2004.
4	Mahanti, N. C., Samal, S. K., Datta, P., Nag N. K., "Disaster Management, Narosa Publishing House,
	New Delhi, India ISB No:81-7319-727X-2006.
5	Bharat Bhushan Prasad, "Fundamentals of Soil Dynamics and Earthquake Engineering", PHI
	Learning Pvt. Ltd., New Delhi, 2009.
6	Bharat Bhushan Prasad, "Advanced Soil Dynamics and Earthquake Engineering", PHI Learning
	Pvt. Ltd., New Delhi, 2011.

COU	RSE OUTCOMES:	Bloom's					
Upon	Upon completion of the course, the students will be able to:						
CO1	Acquire knowledge about the earthquake ground motion, making familiar with code And software packages to study the ground motion.	K2					
CO2	Analyze the liquefaction susceptibility of the site using laboratory and field tests.	K2					
CO3	Design earthquake resistant geotechnical structures and the methods to improve the Ground for hazard resistance.	К3					
CO4	Acquire knowledge about Seismic related codes in geotechnical engineering.	К3					

CO5	Acquire	knowledge	about	soil	improvement	for	remediation	of	seismic	K3
	hazards.									

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	-	-	_	2	1	1				
CO2	-	-	-	2	1	1				
CO3	-	-	-	2	1	1				
CO4	-	1	-	2	1	1				
CO5	-	1	-	2	1	1				
23GEPE10	-	1	-	2	1	1				
-Slight, 2-Moderate,	3–Substantia	al	1		1	,				

ASSESSMENT	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT 1	40	40	20	-	-	-	100					
CAT 2	40	40	20	- A	-	-	100					
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	7	-	-	100					
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	A	-	-	100					
ESE	40	40	20	100	_	-	100					

23GEPE11	DESIGN OF UNDERGROUND EXCAVATIONS								
PREREQUIS	TTES	CATEGORY	L	T	P	С			
	NIL	PE	3	0	0	3			
Objective	Course Objective To get exposure to planning, analysis and design of underground suppor learn about the various field tests conducted during and after construction structures								
UNIT-I	PLANNING AND EXPLORATION			9	Peri	ods			
	Introduction- planning and exploration for various underground construction projects- Projection method- principle and its application in underground excavation design.								
UNIT-II	UNIT-II ANALYSIS AND DESIGN OF UNDERGROUND STRUCTURES								
Elastic stress d	istribution around tunnels- stress distribution for diffe	erent shapes and un	der	diffe	rent	in-situ			

elasto-plastic analysis of tunnels- Daemen's theory.

UNIT-III TUNNELING METHODS

Application of rock mass classification systems- ground conditions in tunneling- analysis of underground openings in squeezing and swelling ground- empirical methods- estimation of elastic modulus and modulus of deformation of rocks- uniaxial jacking / plate jacking tests0- radial jacking and Goodman jacking testslong term behaviour of tunnels and caverns- New Austrian Tunneling Method (NATM)- Norwegian Tunneling Method (NTM)- construction dewatering.

stress conditions- Green span method- design principles- multiple openings-openings in laminated rocks-

9 Periods

UNIT-IV ROCK MASS 9 Periods

Rock mass-tunnel support interaction analysis- ground response and support reaction curves- Ladanyi's elasto-plastic analysis of tunnels- design of various support systems including concrete and shotcrete linings- steel sets- rock bolting and rock anchoring- combined support systems- estimation of load carrying capacity of rock bolts.

UNIT-V INSTRUMENTATION 9 Periods

In-situ stress, flat jack- hydraulic fracturing and over coring techniques and USBM type drill hole deformation gauge- single and multi-point bore hole extensometers- load cells, pressure cells-Instrumentation and monitoring of underground excavations during and after construction- various case studies.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

111	I EREITCES
1	Hoek, E and Brown, E. T., "Underground Excavations in Rocks, Institute of Mining Engineering",
	1981
2	Obert, L and Duvall, W. I., "Rock Mechanics and Design of Structures in Rocks", John Wiley, 1967.
3	Singh, B and Goel, R. K., "Rock Mass Classification-A Practical Engineering Approach", Elsevier,
	1999.
4	Singh, B and Goel, R. K., "Tunneling in Weak Rocks", Elsevier, 2006.

COU	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able:	Taxonomy Mapped
CO1	To understand the use of elastic and plastic analysis in the design of Underground support system.	K1
CO2	To get idea about the field tests generally conducted during and after Construction of underground structures	K1
CO3	To critically analyse the behaviour of underground structures.	К3
CO4	To understand the different methods of tunneling suited to different ground conditions.	K2

CO5	То	gain	knowledge	about	instrumentation	during	and	after	construction	of	K1
	Und	lergrou	ınd constructi	ion.							

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	3	2	-	-			
CO2	-	-	3	2	2	-			
CO3	2	-	2	2	1	-			
CO4	-	-	-	3	2	-			
CO5	-	-	1	-	3	-			
23GEPE11	3	-	3	2	2	-			
1-Slight,2-Moderate	1–Slight,2–Moderate,3–Substantial								

ASSESSMENT	PATTERN – TI	HEORY					
Test / Bloom's	U		Applying	Analyzing	Evaluating	_	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual							
Assessment 1 /							
Case Study 1/	-	50	50	-	-	-	100
Seminar 1 /			Frank D				
Project1		1 8316	Danies method				
Individual		V /5/4	STATISTICAL CO.				
Assessment 2 /							
Case Study 2/	-	50	50	- >>	-	-	100
Seminar 2 /		1100	N X	//			
Project 2				/ II			
ESE	40	40	20	11 -	-	-	100

23GEPE12	2 COMPUTATIONAL GEOMECHANICS							
PREREQUISI	TES	CATEGORY	L	T	P	С		
	NIL	PE	3	0	0	3		
Course Objective To get exposure on finite difference and finite element method and to learn about the various mathematical applications on geotechnical aspects.								
UNIT-I	SOLUTION OF LINEAR AND NON – LINEAR	EQUATIONS		9	Perio	ods		
	e position- Newton- Raphson - successive approximation by Jacobi's method – Gauss Seidal method – Suc					ution		
UNIT-II	FINITE DIFFERENCE METHOD AND FINITI METHOD	E ELEMENT		9	Perio	ods		
Two point Bou	ndary value problems - Disichlet conditions - Neu	ımann conditions; o	rdin	ary a	and p	artial		
differential equa	ation							
UNIT-III	FINITE ELEMENT METHOD			9	Perio	ods		
Fundamentals -	constitutive finite element models for soils. Correlate	tion – Scatter diagram	m –	Karl	Pear	son –		
	orrelation – Limits of correlation coefficient; Regress			on – I	Regre	ssion		
	sion coefficient – Differences between correlation and							
UNIT-IV	ONE DIMENSIONAL CONSOLIDATION THROUGH POROUS MEDIA				Perio			
Theory of cons	olidation - Analytical procedures - Finite difference	e solution procedure	for	mult	i –la	yered		
systems- Finite	element formulation. Geotechnical aspects - Numeri	cal methods - Appli	cati	ons a	nd D	esign		
analysis – Flow	in jointed media							
UNIT-V								
Probabilistic site	e characterization and design of foundation							
Contact Period								
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 P	eriods Total: 45	Per	iods				

1	S. Chandrakant Desai and John T. Christian, "Numerical Methods in Geotechnical
	Engineering", Mc.Graw Hill Book Company, 1977.
2	M. K. Jain, S. R. K. Iyengar and R.K. Jain, "Numerical Methods for Scientific and Engineering
	Computation", Third edition, New Age International(P) Ltd. Publishers, NewDelhi-1996.
3	D. J. Naylorand, G. N. Pande, "Finite Elements in Geotechnical Engineering", Pine ridge press Ltd.,
	<i>UK- 1981</i> .
4	Sam Helwany," Applied Soil mechanics", John Wiley & sons, Inc-2007.

COU	RSE OUTCOMES:	Bloom's			
Upon	Upon completion of the course, the students will be able to:				
CO1	CO1 Understand different numerical and statistical tools for analyzing various geotechnical engineering problems.				
CO2	Apply probabilistic approach for selection of design parameters and compute their impact on risk assessment.	К3			
CO3	Understand the fundamentals constitutive models for soil.	K2			
CO4	Evaluate finite element solutions to consolidation and flow through porous media.	К3			
CO5	Compute risk assessment both in characterization of soil and in the design.	K2			

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	-	2	1	2	1		
CO2	3	-	2	1	2	1		
CO3	3	-	2	1	2	1		
CO4	3	-	2	1	2	1		
CO5	3	-	2	1	2	1		
23GEPE12		-						
-Slight, 2-Moderate, 3-Substantial								

ASSESSMENT Test / Bloom's	PATTERN – T Remembering		Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT 1	40	30	30	-	-	-	100
CAT 2	40	30	30	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	10	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	30	30	7.69	-	-	100

23GEPE13	SLOPE STABILITY AN	ND LANDSLIDES	•				
PREREQUISI	TES	CATEGORY	L	T	P	C	
	NIL	PE	3	0	0	3	
Course	To analyze stability of finite and irregular slopes and						
Objective	landslides and understand the importance of field instr	rumentation and re	med	ial m	easu	res.	
UNIT-I	STABILITY OF SLOPES			9	Peri	ods	
	Importance – General characteristics – Types of failutation – Investigation of failures – Procedure – Case s		ailur	es –	Purp	ose of	
UNIT-II	STABILITY ANALYSIS			9	Peri	ods	
Stability analys	is – Method of slices – Friction circle method – Soils	with cohesion Soil	s wi	th co	hesio	n and	
angle of interna	al friction. Critical states for design for embankments	- Stability compu	tatio	ns –	Eval	uation	
of pore water p	ressure.						
UNIT-III	IRREGULAR SLOPES			9 Periods			
	soils – Janbu's analysis – Taylor's analysis – Bishop es – Composite surfaces of sliding – Block sliding.	's analysis – Total	stre	ss an	d eff	ective	
UNIT-IV	LANDSLIDES				Peri		
General Chara	cteristics - Sources-Stability of Hill side slopes -	Open cuts – En	gine	ering	gpro	blems	
involving the s	stability of slopes - Cuts in sand - Cuts in loess -	Homogeneous and	l soi	t cla	y slo	pes –	
Sudden spreadi	ng of clay slopes - Clay flows - Clays containing po	ckets and sand ma	sses	– Sli	des i	n stiff	
clay slopes on	shale - Slopes on weathered rock; talus slopes, slope	es on over consolie	date	d cla	ys –	Slides	
along coastal as	reas and tropically weathered residual soils – Long ter	m stability of clay	slop	es.			
UNIT-V	FIELD OBSERVATIONS AND SLOPE STABILIZ	ZATION		9	Peri	ods	
Field instrume	ntation - Observation studies during construction	- Post construct	ion,	piez	zome	ters –	
Settlement plat	Settlement plates - Inclinometer - Case histories. Compaction of new embankments - Compaction of						
natural masses	of soil and existing fills - Compaction of deep	deposits of sand	- V	ibro	flotat	ion –	
Compaction of	Compaction of compressible soils–Drainage as a means of stabilization–Use of Geotextiles–Soil nailing.						
Contact Period	ds:						
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical:	0 Periods Tot	al: 4	5 Pe	riod	s	

1	Duncan J. M., Wright S. G., and Brandon. T. L, "Soil Strength and Slope Stability" (2 nd Edition), Wiley,
	2014.
2	Chowdhury R, Flentje P and Bhattacharya G, "Geotechnical Slope Analysis", CRC Press, 2019.
3	McCarthy, D.F., "Essentials of Soil Mechanics and Foundations: Basic Geotechnics", Sixth Edition,
	Prentice Hall, 2002.
4	Winterkorn, H.F. and Fang, H. Y., "Foundation Engineering Handbook", Van No strand Reinhold,
	1994.
5	Bramhead, E.N., "The Stability of Slopes", Blacky Academic and Professionals Publications,
	Glasgow1986.
6	Anderson, M.G., and Richards, K.S., "Slope Stability", JohnWiley, 1987.

COU	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	To gain knowledge about the purpose of computing slope stability.	K2
CO2	To analyse stability of slopes in cohesive and cohesionless soils.	K3
CO3	To familiarize on the analysis of irregular slopes with different approaches.	K3
CO4	To identify and report the causes of landslides in different soil conditions.	K1

CO5	To understand the use of instrumentation in the slope stability and execute	K2
	suitable ground improvement techniques in the field.	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
				_					
CO1	3	-	1	2	-	-			
CO2	-		3	2	-	-			
CO3	-	-	-	-	-	-			
CO4	2	-	-	2	-	-			
CO5	-	-	-	1	-	-			
23GEPE13	3	=	3	2	-	-			
1-Slight, 2-Modera	ite, 3–Substa	antial							

ASSESSMENT	PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20		-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	33	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	100-	-	-	100

23GEPE1	4 GEOLOGY IN GEOTECH	NICAL ENGINEER	RING	ŗ		
PREREQUISITES		CATEGORY	L	T	P	C
	NIL	PE	3	0	0	3
Course Objective	To impute knowledge and skins in assessing the quarty locks in localitation to assess the					
UNIT-I	ENGINEERING PROPERTIES OF ROC FORMATION	KS AND SOIL			91	Periods

Geology for foundation engineering – Types of rocks, rock description-texture, structure, composition and its relation to quality and strength of rocks, engineering classification of rocks – weathering grade and its significance in engineering site – Engineering properties of rocks – Soil formation – Soil types of India.

UNIT-II | SUBSURFACE GEOLOGICAL INVESTIGATION

9 Periods

Geotechnical Investigation – Geophysical methods of subsurface investigations– Electrical, Magnetic, gravitational, seismic, radioactive and geochemical methods – Influence of structure and texture of rocks, Engineering properties, foundation problems in igneous, sedimentary and metamorphic rocks including recent sediments – Case studies. Investigations for foundation of dams and reservoirs – Problem encountered and treatment, case studies – Investigation of canals and deep cuts – Case studies.

UNIT-III LANDSLIDES AND EARTHQUAKE SEISMOLOGY

9 Periods

Land Slides – Causes – Preventive and control measures – Engineering problems related to earthquakes, case studies – seismic zones in India, earthquake mechanism and causes – Elastic Rebound theory.

UNIT-IV GEOTECHNICAL INVESTIGATIONS FOR GROUNDWATER

9 Periods

Ground Water problems – Location of water tables, composition of groundwater – Groundwater Surveys – Conservation of groundwater – Scope of groundwater investigation in Civil Engineering

UNIT-V STRUCTURAL GEOLOGY INVESTIGATION FOR FOUNDATION

9 Periods

Altitude of beds, Dip and Strike, Characteristics, Types, Causes and mechanism of folding, Classification, Causes and mechanism of faults—Field evidences and Recognition of faults. Joint systems — Classification and its types, Difference between faults and joints. Definition, importance and field Recognition of unconformity.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	RoyE.Hunt, "Geotechnical Engineering Investigation Handbook", CRC Press, 2005.
2	Varghese P.C., "Engineering Geology for Civil Engineers", PHI learning Pvt.Ltd.NewDelhi,2012.
3	Krynine and Judd, "Principles of Engineering Geology and Geotechnics", CBS Publishers and
	Distributors Pvt ltd.,ebook edition,2008.
4	Parbin Singh, Engineering and General Geology ", 8 th revised edition S.K. Kataria & Sons Publishers,
	2015.
5	Blyth, "Geology for Engineering", ELBS 1995.
6	Legget "Geology and Engineering", McGraw Hill Book Company, 1998.
7	Krynine and Judd, "Principles of Engineering Geology and Geotechniques", 1998.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the soil types and its historical background of formation.	K2
CO2	Identify mineral content, texture and structural behaviour of rocks using	K1
	microscopic study.	
CO ₃	Carryout investigation for foundations of massive structures, handle situations	K2

	of earthquake and landslide.	
CO4	Do groundwater survey and understand groundwater investigation studies.	K2
CO5	Gain knowledge about structural problems and recognition of field and give	K3
	the suitable remedial measures.	

COURSEARTICULATIONMATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	1	-	-	-	-		
CO2	-	-	-	2	-	-		
CO3	-	-	-	-	-	3		
CO4	2	-	-	-	1	-		
CO5	-	-	-	2	-	-		
23GEPE14	2	1	-	2	-	3		
1-Slight,2-Moderate	,3–Substant	ial		•		•		

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	9	-	-	100
CAT2	40	40	20		-	-	100
Individual							
Assessment 1 /		100	A -	7 //			
Case Study 1/	40	40	20	K //-	-	-	100
Seminar 1 /				10 11			
Project1		//					
Individual			H (NUM				
Assessment 2 /			89				
Case Study 2/	40	40	20	// (S	-	-	100
Seminar 2 /							
Project 2		Out	30				
ESE	40	40	20	3377	-	-	100
ESE	40	40	20	337	-	-	100

23GEPE15	LAND RECLAMA	TION				
PREREQUIS	ITES	CATEGORY	L	T	P	C
	NIL	PE	3	0	0	3
Course Objective	To get an idea of characteristic of waste, processe impart knowledge on the needs, techniques, class landfills.					
UNIT-I	INTRODUCTION				erioc	
	, Soil Water Characteristics, Soil Erosion, Soil and			-	•	gatior
and Wetlands,	Soil Pollution Management, Nuclear Waste Managem	ent, Solid Waste M	anag	eme	nt.	
UNIT-II	TRANSPORTATION OF WASTES				eriod	
_	segregation of wastes at source-storage and collection	_				
of collection s	ystems- Need for transfer and transport- Transfer s	tations Optimizing	Was	te al	loca	tion-
compactability	, storage, labeling and handling of hazardous wa	stes-hazardous was	ste n	nanif	ests	and
transport.						
UNIT-III						
01111 111	TREATMENTOFWASTES			9 Pe	eriod	ls
	TREATMENTOFWASTES waste processing- material separation and processing	technologies-biolog	ical			
Objectives of v			•	and	chen	nical
Objectives of v	waste processing- material separation and processing	nermal conversion	tech	and nolo	chen gies	nical and
Objectives of v	waste processing- material separation and processing chnologies- method and controls of composting-th	nermal conversion	tech	and nolo	chen gies	nical and
Objectives of v conversion tec	waste processing- material separation and processing chnologies- method and controls of composting-th	nermal conversion	tech	and nolo of Bi	chen gies	nical and dical
Objectives of v conversion tec energy recover wastes. UNIT-IV	vaste processing- material separation and processing chnologies- method and controls of composting-thy-incineration-solidification and stabilization of hazar	nermal conversion rdous wastes-treatm	tech ent o	and nolo of Bi	chengies ome	nical and dical
Objectives of v conversion tec energy recover wastes. UNIT-IV Waste disposa	vaste processing- material separation and processing chnologies- method and controls of composting-thy-incineration-solidification and stabilization of haza: LANDFILLS	nermal conversion rdous wastes-treatm on, types and method	tech ent c	and nolo of Bi	chengies ome	nical and dical
Objectives of vectors	vaste processing- material separation and processing chnologies- method and controls of composting-thy-incineration-solidification and stabilization of haza: LANDFILLS options- Disposal in landfills- Landfill Classification	nermal conversion rdous wastes-treatmon, types and method fill bioreactors- lead	tech ent c	and nolo of Bi	chengies ome	nical and dical
Objectives of vectors	vaste processing- material separation and processing chnologies- method and controls of composting-thy-incineration-solidification and stabilization of hazar LANDFILLS I options- Disposal in landfills- Landfill Classification cration of sanitary landfills, secure landfills and landfills	nermal conversion rdous wastes-treatmon, types and methodillill bioreactors- leadsure of landfills-land	tech ent c	and nolo of Bi	chengies ome	and dical ls ion- dfill ion.
Objectives of vectors	vaste processing- material separation and processing chnologies- method and controls of composting-they-incineration-solidification and stabilization of hazar LANDFILLS I options- Disposal in landfills- Landfill Classification and stabilization of sanitary landfills, secure landfills and land ant-landfill closure and environmental monitoring-closure	nermal conversion rdous wastes-treatmon, types and methodifill bioreactors- leadsure of landfills-land	ds- s	and nolo of Bi	chengies ome	nical and dical ls ion-dfill ion.
Objectives of vectors	vaste processing- material separation and processing chnologies- method and controls of composting-thy-incineration-solidification and stabilization of hazar LANDFILLS I options- Disposal in landfills- Landfill Classification eration of sanitary landfills, secure landfills and landfill-landfill closure and environmental monitoring-closure-landfill closure and environmental monitoring-closure-landfill closure and environmental monitoring-closure-landfill closure-landfill closure-landfill-	nermal conversion rdous wastes-treatment, types and method fill bioreactors- leads sure of landfills-land N l and hazardous wastes-treatment.	ds- s chate	and nolo of Bi	chengies ome eriocelect landiati	and dical Is ion- dfill ion. Is

Contact Periods:

Bioremediation-techniques-field applications.

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

1	George Tchobanoglous, Hilary Theisen and Samuel A, Vigil "Integrated Solid Waste
	Management", McGraw-Hill International edition, New York, 1993.
2	CPHEEO "Manual on Municipal Solid waste management, Central Public Health and
	Environmental Engineering Organization", Government of India, NewDelhi, 2000.
3	MicheaelD.Lagrega, Philip L Buckingham, Jeffrey C.Evans "Environmental Resources"
	Management, Hazardous waste Management", McGraw-Hill International edition, Newyork, 2001.
4	VesilindP.A., Worrell Wand Reinhart, "Solid Waste Engineering", Thomson Learning
	Inc.,Singapore, 2002.

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	To understand the fundamentals of solid and hazardous wastes and also the types,	K2
	need and sources of solid and hazardous wastes.	
CO2	To understand the methods of waste characterization and source reduction and to	K3
	study the various methods of generation of wastes.	
CO3	To understand in detail about the storage, collection handling, segregation and	K3
	transport of wastes.	
CO4	To gain the knowledge on the waste processing techniques which includes	K2

	incineration, solidification and stabilization of hazardous wastes.	
CO ₅	To know the basics of various waste disposal methods.	K2

COURSE ARTICU	LATION M	ATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	-	3	3	-
CO2	3	-	-	-	3	-
CO3	3	-	3	2	-	2
CO4	1	-	-	-	2	-
CO5	1	-	-	-	2	-
23GEPE15	1	-	3	3	3	2
1–Slight,2–Moderate	,3–Substanti	al		•		•

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT 1	40	40	20	-	-	-	100			
CAT 2	40	40	20		-	-	100			
Individual		J (85 lb)	And Countill St							
Assessment 1 /		(V)59	San Line	(V)						
Case Study 1/	-	50	50	-	_	-	100			
Seminar 1 /			N	77						
Project1		1100	X.	//.						
Individual				(II)						
Assessment 2 /		//		11						
Case Study 2/	-	50	50	- 11	_	-	100			
Seminar 2 /		11 8		h 11						
Project 2		A / 9		VB.						
ESE	40	40	20	ZEE:	_	-	100			

23GEPE16 ENVIRONMENTAL GEOTECHNOLOGY									
PREREQUISI	TES CATEGORY	L	T	P	С				
	NIL PE	3	0	0	3				
Course	To acquire knowledge on the interaction mechanism of pollutants, conta	min	ant	tran	sport				
Objective and remediation of contaminated sites.									
UNIT-I	UNIT-I SOIL POLLUTION AND INTERACTION 9 Periods								
Introduction	to Geo-environmental engineering-Environmental cycle-Sources,	p	rodu	ction	n and				
classification o	f waste - Causes of soil pollution - Classification, identification and	cha	aract	eriza	tion of				
contaminated s	oils-Factors governing soil-Pollutant interaction-Failures of foundations	s du	e to	Poll	utants–				
Environmental	Geotechnical problems-Case studies.								
UNIT-II	SITE SELECTION AND SAFE DISPOSAL OF WASTE		9	Peri	ods				
Safe disposal o	f waste-Site selection for landfills- Characterization of landfill sites-	R	isk a	sses	sment–				
Stability of land	dfills-Current practice of waste disposal-Design of landfill -Monitorin	g fa	acilit	ies–I	Passive				
containment sy	stem-Leachate contamination-Hydrological consideration in landfill des	sign	–Ap	plica	tion of				
geosynthetics in	n solid waste management–Rigid and Flexible liners–Design.								
UNIT-III	TRANSPORT OF CONTAMINANTS		-	Peri					
	ransport in sub surface – Advection – Diffusion – Dispersion – Gov		_	_					
	ansformation – Sorption – Biodegradation – Ion exchange – Precipitati								
-		pollution - Bearing capacity of compacted fills - Foundation for waste fill ground - Pollution of Aquifers							
by mixing of liquid waste – Protection of aquifers.									
•		- T							
UNIT-IV	WASTE STABILIZATION AND DISPOSAL		9	Peri	ods				
UNIT-IV Hazardous was	WASTE STABILIZATION AND DISPOSAL ste control and storage system–Stabilization/Solidification of wastes-	-Mi	9 cro	Peri	ods Macro				
UNIT-IV Hazardous was encapsulation-	WASTE STABILIZATION AND DISPOSAL ste control and storage system—Stabilization/Solidification of wastes-Absorption, adsorption, precipitation—Detoxification—Mechanism of stabilization.	-Mi	9 cro	Peri	ods Macro				
UNIT-IV Hazardous was encapsulation-	WASTE STABILIZATION AND DISPOSAL ste control and storage system–Stabilization/Solidification of wastes-	-Mi	9 cro	Peri	ods Macro				
UNIT-IV Hazardous was encapsulation-	WASTE STABILIZATION AND DISPOSAL ste control and storage system—Stabilization/Solidification of wastes-Absorption, adsorption, precipitation—Detoxification—Mechanism of stabilization.	-Mi	9 cro izati	Peri	ods Macro Organic				
UNIT-IV Hazardous was encapsulation—and inorganic s UNIT-V	WASTE STABILIZATION AND DISPOSAL ste control and storage system—Stabilization/Solidification of wastes- Absorption, adsorption, precipitation—Detoxification—Mechanism of stabilization—Utilization of solid waste for soil improvement—Case studies	-Mi abil	9 cro izatio	Peri and on–C	ods Macro Organic				
UNIT-IV Hazardous was encapsulation—and inorganic s UNIT-V Rational approx	WASTE STABILIZATION AND DISPOSAL ste control and storage system—Stabilization/Solidification of wastes-Absorption, adsorption, precipitation—Detoxification—Mechanism of stabilization—Utilization of solid waste for soil improvement—Case studies REMEDIATION OF CONTAMINATED SOILS	-Mi abil	9 cro ization	Peri and on—C	ods Macro Organic ods Ex-situ				
UNIT-IV Hazardous was encapsulation—and inorganic s UNIT-V Rational approaand in-situ rem	WASTE STABILIZATION AND DISPOSAL ste control and storage system—Stabilization/Solidification of wastes- Absorption, adsorption, precipitation—Detoxification—Mechanism of stabilization—Utilization of solid waste for soil improvement—Case studies REMEDIATION OF CONTAMINATED SOILS ach to evaluate and remediate contaminated sites—Monitored natural	-Mi abilis.	9 cro izatio	Peri and on—C	ods Macro Organic ods Ex-situ es, soil				
UNIT-IV Hazardous was encapsulation—and inorganic s UNIT-V Rational approaand in-situ rem	WASTE STABILIZATION AND DISPOSAL ste control and storage system—Stabilization/Solidification of wastes- Absorption, adsorption, precipitation—Detoxification—Mechanism of stabilization—Utilization of solid waste for soil improvement—Case studies REMEDIATION OF CONTAMINATED SOILS ach to evaluate and remediate contaminated sites—Monitored natural aediation—Solidification, Bio-remediation, incineration, soil washing, experimental enteriors.	-Mi abilis.	9 cro izatio	Peri and on—C	ods Macro Organic ods Ex-situ es, soil				
UNIT-IV Hazardous was encapsulation—and inorganic s UNIT-V Rational approand in-situ rem heating, vitrific	WASTE STABILIZATION AND DISPOSAL ste control and storage system—Stabilization/Solidification of wastes- Absorption, adsorption, precipitation—Detoxification—Mechanism of stabilization—Utilization of solid waste for soil improvement—Case studies REMEDIATION OF CONTAMINATED SOILS ach to evaluate and remediate contaminated sites—Monitored natural aediation—Solidification, Bio-remediation, incineration, soil washing, exation, bio-venting—Groundwater remediation—Pump and treat, air span	-Mi abilis.	9 cro izatio	Peri and on—C	ods Macro Organic ods Ex-situ es, soil				

1	D.::1 D.E. (C1.1.:1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
1	Daniel, D.E., "Geotechnical Practice for waste disposal", Chapman and Hall, London, 1993.
2	Westlake, K., "Landfill Waste pollution and Control", Albion Publishing Ltd., England, 1995.
3	Lagrega ,M.D., Buckingham, P.L., and Evans, J.C., "Hazardous Waste Management", McGraw
	Hill,Inc. Singapore, 1994.
4	Jo Strange and Nick Langdon, "Contaminated Land: Investigation, Assessment and Remediation –
	Design and Practice Guides", ICE, 2008.
5	Yue Rong, "Fundamentals of Environmental Site Assessment and Remediation", CRC Press, 2018.

COURS	COURSE OUTCOMES:				
	Taxonomy Mapped				
Upon co	Upon completion of the course, the students will be able to:				
CO1	Learn about soil contamination and soil pollutant interaction	K2			
CO2	Select suitable sites for safe disposal of wastes	К3			
CO3	Assess different mechanisms of transport of contaminants	К3			

CO4	Adopt appropriate waste stabilization techniques	K3
CO5	Remediate contaminated soils using different methods	К3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	-	3	1	3	3		
CO2	3	-	2	2	-	-		
CO3	2	-	3	-	3	3		
CO4	3	-	-	3	2	-		
CO5	3	-	2	3	2	-		
23GEPE16	3	-	3	3	3	3		
1–Slight,2–Moderate,3–Substantial								

ASSESSMENT	PATTERN - TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analysing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	20	40	40	-	-	-	100
CAT 2	20	40	40	-	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	10	50	40	7	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2 / Project 2	10	50	40	-	-	-	100
ESE	20	40	40	/48g	_	-	100

23GEPE17	PAVEMENT ENGINEERING							
PREREQUISI	PREREQUISITES: CATEGORY L							
	NIL	PE	3	0	0	3		
Course Objective To design flexible and rigid pavements as per IRC codes, evaluate pavements for distress and to adopt suitable rehabilitation techniques.								
UNIT-I	BASIC CONCEPTS				9 P	Periods		
	s–Historical developments–Approaches to pave Behaviour of road materials under repeated loading	•				traffic ayered		
UNIT-II	FLEXIBLE PAVEMENT				9 P	Periods		
Factors affecting flexible pavements—Types of stresses and causes—Material characterization for Analytical pavement design—CBR and stabilometer tests—Resilient modulus—Fatigue subsystem—Failure criteria for bituminous pavements—IRC design guidelines								
UNIT-III RIGID PAVEMENT 9 Periods								
Factors affecting rigid pavements-Types of stresses and causes-Design procedures for rigid pavement-								
IRC guideline	IRC guidelines-Design of joints, reinforcements, tie bars, dowel bars-Airfield pavements-CRC							

UNIT-IV PAVEMENT EVALUATION AND REHABILITATION

9 Periods

Pavement evaluation and rehabilitation, condition and evaluation surveys—Evaluation by Non-destructive tests- FWD- Benkelman Beam Deflection Test- Wave Propagation Test-PSI models—Serviceability index of rural roads—Overlays and design-pavements maintenance management and Construction.

UNIT-V STABILIZATION OF SOILS FOR ROAD CONSTRUCTIONS 9 Periods Need for a stabilized soil-Design criteria and choice of stabilizers—Testing and field control

Stabilization for rural roads—Pavement recycling—Use of recycled materials—geosynthetics in road construction— Case studies.

Contact Periods:

pavements.

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Wright, P.H., "Highway Engineers", John wiley & Sons, Inc. NewYork, 2009.
2	Yoder, R.J and Witchak, M.W., "Principles of Pavment Design", John wiley, 2000.
3	Khanna, S.Kand Justo C.E.G., "Highway Engineering", New Chand and Brothers, Roorkee, 1998.
4	"Design and specification of Rural Roads (Manual") , Ministry of rural roads, Government of India, NewDelhi, 2001.
5	"Guidelines for the Design of Flexible Pavements", IRC:37–2012, The Indian Roads Congress, NewDelhi.
6	"Guidelines for the Design of Rigid Pavements", IRC:58–2012, The Indian Roads Congress, NewDelhi.

COURSE OUTCOMES:						
Upon co	Upon completion of the course, the students will be able to:					
CO1	Learn loading conditions and corresponding stresses and deformation developed.	K2				
CO2	Carryout material characterization and the design of flexible pavement.	K3				
CO3	Design of rigid pavement as per IRC guidelines.	K3				
CO4	Evaluate pavement and to select appropriate rehabilitation technique.	K3				
CO5	Select suitable stabilizers and their applicability in pavements.	K2				

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	-	3	1	3	3		
CO2	3	-	2	2	-	-		
CO3	2	-	3	-	3	3		
CO4	3	-	-	3	2	-		
CO5	3	-	2	3	2	-		
23GEPE17	3	-	3	3	3	3		
1–Slight,2–Moderate,3–Substantial								

ASSESSMENT	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analysing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	10	40	50	-	-	-	100					
CAT2	10	40	50	-	-	-	100					
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20	40	40		-	-	100					
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20	40	40		-	-	100					
ESE	10	40	50		-	-	100					

23GEPE18	THEORETICAL SOIL MECHANICS								
PREREQUISIT	TES	CATEGORY	L	T	P	С			
	NIL	PE	PE 3 0 0 3						
Course	To learn the material behaviour and basics of stress	fields in soil based	on theory of						
Objective	elasticity and plasticity.								
UNIT-I	THEORY OF ELASTICITY				9 Pe	eriods			
Introduction – I	Material behaviour – Idealistic behaviour – Elastic,	viscous and plas	tic –	Ela	sticit	y and			
stability probler	ns, concept of stress and strain-Plane stress, plane	strain and axisy	mme	tric	prob	lems–			
Equation of equi	librium and compatibility- Stress functions								
UNIT-II	STRESSES AND DISPLACEMENTS (ELASTIC SO	OLUTIONS)			9 Pe	eriods			
Stresses in elas	tic half-space medium by external loads-Fundame	ental solutions–Bo	oussi	nesq	, Fla	ımant,			
Kelvin and Min	dlin solution- Applications of fundamental solution	s–Anisotropic and	l nor	n-hor	noge	neous			
linear continuun	n-Influence charts-Elastic displacement.								
UNIT-III	UNIT-III LIMIT EQUILIBRIUM ANALYSIS 9 Perio								
Limit equilibriu	m analysis- Perfectly plastic material-Stress-strain	relationship–Stres	s an	d dis	splac	ement			
field calculation	s – Slip line solutions for undrained and drained loading	ng – Dimensional	simi	litud	e.				
UNIT-IV	LIMIT ANALYSIS				9 Pe	eriods			
Limit analysis -	Principles of virtual work - Theorems of plastic co	llapse – Mechanis	sm f	or pl	ane p	olastic			
collapse - Simp	ole solutions for drained and undrained loading - S	tability of slopes	, cut	s and	d reta	aining			
structures. Centr	structures. Centrifuge model– Principles and scale effects, practical considerations.								

UNIT-V FLOW THROUGH POROUS MEDIA Flow through porous media Daray's law. General agu

9 Periods

Flow through porous media – Darcy's law – General equation of flow – Steady state condition – Solution by flow net – Fully saturated conditions – Flow net in anisotropic soils – construction of flow net for different cases.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Aysen, A., "Soil Mechanics: Basic concepts and Engineering Application", A.A. Balkema Publishers,
	2002.
2	Ulrich Smoltc, Y.K, "Geotechnical Engineering Handbook(Vol.1)", Ernot & Sohn, 2002.
3	Aysen, A., "Problem Solving in Soil Mechanics", A.A. Balkema Publisher, 2003.
4	Davis,R.O., and Selvadurai, A.P.S., "Elasticity and Geomechanics", Cambridge University Press,
	1996.
5	Taylor,R.N., "Geotechnical Centrifuge Technology", Blackie Academic and Professional 1995.
6	Wai-FahChen, and Liu, X.L., Limit Analysis in Soil Mechanics", Elsevier Science Ltd., 1991.
7	MuniBudhu, "Soil Mechanics and Foundations", John Wiley and Sons, Inc, Network, 2000.
8	Atkinson, J.H., "Foundations and Slopes", McGrawHill, 1981.
9	Harr, M.E., "Foundations of Theoretical Soil Mechanics", McGrawHill, 1966.
10	Cedergren, H.R., "Seepage Drainage and Flownets", JohnWiley, 1997.
11	Winterkorn, H.F., and Fang, H.Y., "Foundation Engineering Handbook", Galgottia, Book source, 2000.
12	Karl Terzaghi, "Theoritical Soil Mechanics", John Wiley & Sons Publications.

COURS	SE OUTCOMES:	Bloom's
Upon co	ompletion of the course, the students will be able to:	Taxonomy
_		Mapped
CO1	Apply theories of elasticity and plasticity to characterize the stress-strain behaviour of soil.	K3
CO2	Imparting knowledge required for calculating stress and settlement at any depth in semi-infinite elastics oil medium, anisotropic and layered medium due to external loads.	K2
CO3	Acquiring knowledge on slip line solutions on drained and undrained condition.	К3
CO4	Arrive at solutions for drained and undrained loading conditions for analysis of slopes, cuts and retaining structures for their stability using theorem of plastic collapse.	К3
CO5	Understand the concept of flow through soil media and to construct flow nets for different cases.	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1 96	BILL COL	2	2	-	1
CO2	1	1923000		2	-	1
CO3	3	-	3	3	1	1
CO4	3	0.70	3 /	3	1	1
CO5	2		3	2	1	1
23GEPE18	3		3	2	1	1
-Slight,2-Moderate,	3–Substantia	自人《冷》	7/4		1	

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	30	30	-	-	-	100			
CAT 2	40	30	30	-	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	40	30	30				100			

23GEPE19	EARTH RETAINING STRUCTURES									
PREREQUISIT	TES	CATEGORY	L	T	P	C				
	NIL	PE	3	0	0	3				
Course	To impart knowledge on earth pressure theories, design of retaining walls, sheet pile									
Objective	Objective walls, concepts of braced excavation and understand the concepts and mechanisms of reinforced earth retaining wall.									
UNIT-I	EARTH PRESSURE THEORIES			9]	Perio	ods				
Introduction – S	tate of stress in retained soil mass - Classical earth p	oressure theories –	Act	ive a	nd P	assive				
earth pressures -	- Earth pressure at rest - Earth pressure due to exte	rnal loads – Empi	rical	met	hods	-Wall				
movements and	l complex geometry-Graphical method of complex	uting earth pressi	ure–]	Rehb	ann'	s and				
Culmann's appro	oach.									
UNIT-II	RETAINING WALLS			9]	Perio	ods				
Retaining walls	- Uses and types - Forces on retaining walls - De	esign of retaining	wall	s by	limi	t state				
method – Gener	ral principles - Design and construction details - I	Design of solid gra	avity	wal	ls, S	Semi –				
gravity walls, ca	ntilever walls, counterfort walls-Stability of retaining	g walls–Drainage a	rran	geme	ents a	and its				
influence.										
UNIT-III	SHEET PILE WALLS			9]	Perio	ods				
Earth retaining s	tructures- Selection of soil parameters-Analysis and	design of cantileve	er an	d and	chore	ed sheet				
pile walls- Dead	l man and continuous anchor–Diaphragm and bored p	ile walls–Design r	equi	reme	ents.					
UNIT-IV	BRACED EXCAVATION			9]	Perio	ods				
Braced cuts in s	and and clay-Lateral pressure on sheeting in Braced	d excavation— Stat	oility	aga	inst	Piping				

UNIT-V REINFORCED EARTH RETAINING WALL

heads-Soil anchors-Soil nailing-Soil pinning-Methods of design.

9 Periods

Reinforced earth retaining wall—General principles, Concepts and Mechanism of reinforced earth—Design consideration of reinforced earth— Geotextile, geogrids, metal strips and facing elements—Construction—Selection of type of retaining structures— Construction practice—Field observations.

and bottom heaving-Procedure for computation of lateral earth pressure for braced cuts and Flexible Bulk

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1/	TERENCES	
	WinterkornH.F. and FangH.Y., "Foundation Engineering Handbook", Galgotia Book source, 2000.	
	RoweR.K., "Geotechnical and Geo environmental Engineering Hand Book", Kluwer Academ.	ic
	Publishers, 2001.	
	Militisky.Jand WoodsR. "Earth and earth retaining structures" , Routledge, 1992.	
	DasB.M., "Principles of Geotechnical Engineering (Fourth edition)", The PWS series in Civ	ril
	Engineering, 1998.	
	Clayton C.R.I. Militisky, J and WoodsR., "Earth pressure and earth retaining structures (second Edition	<u>n)",</u>
	Survey University Press, 1993.	
	McCarthyD.F., "Essentials of soil Mechanics and foundations", Basic Geotechnics (sixth Edition	on)
	PrenticeHall,2002	

COUI	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able:	Taxonomy Mapped
CO1	To understand earth pressure theories and computation of earth pressure.	K2
CO2	To calculate the forces on retaining walls and design the retaining walls.	K3
CO3	To carry out analysis and design of sheet pile walls.	K3
CO4	To design braced excavations, soil nailing, pinning, and anchoring on stability considerations.	К3
CO5	To apply concepts of reinforcement in earth retaining structures.	K2

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	-	2	-	-				
CO2	-	-	3	-	2	-				
CO3	3	-	-	-	1	-				
CO4	2	-	2	-	3	-				
CO5	2	-	-	3	1	-				
23GEPE19	3	-	3	3	1	-				
1-Slight,2-Mo	derate,3-S	ubstantial	•							

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	40	40	20	-	-	-	100			
CAT2	40	40	20	-	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	% -	-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	40	40	20		-	-	100			

23GEPE20	PROFESSIONAL PRACTICES IN DESIGN OF GEOTECHNICAL STRUCTURES							
PREREQUISI	ITES	CATEGORY	L	T	P	С		
N	TIL .	PE	3	0	0	3		
Course To gain exposure on practical aspects of designs relating to substructure elements using software, Geotechnical construction practices, and field execution of the works.								
UNIT-I	CONSTRUCTION TECHNIQUES			9 Pe	eriod	s		
	Geotechnical Plant and Machinery – Safety aspect—Quality management—Geosynthetics—Geomembran RETAINING STRUCTURES		tion 1					
Design of reta Shoring system	UNIT-II RETAINING STRUCTURES Design of retaining wall–Design of culvert–Design of deep excavations–Sheet pile–diaphragm walls–Shoring system–Design of Caisson.							
UNIT-III	SUBSTRUCTURES				eriod			
_	ver Foundation–Design of Floating foundation–Design Design of abutment – Design of Pier –	•			_			
UNIT-IV	DYNAMIC RESPONSE OF FOUNDATIONS			9 Pe	eriod	s		
	Soil behaviour – Dynamic properties of soil– Seismic performance analysis – Calculation of seismic loads in foundation–Design procedure for earthquake resistant foundation –Soil structure interaction–Retrofitting.							
UNIT-V FINITE ELEMENT ANALYSES AND SOFTWARE 9 Periods APPLICATION								
Finite Element PLAXIS.	Analysis applied to Geotechnical Engineering-A	ANSYS–Modelling–A	Appli	catio	ns–C)asys-		
Contact Period Lecture: 45 Pe	H H	ods Total: 45 Pe	riods	S				

1	Helmsley, "Design Applications of Raft Foundations".					
2	Michael John Tomlinson, R. Boorman, "Foundation Design & Construction", Prentice Hall PTR, 2001.					
3	George paaswell "Retaining Walls: Design & Construction", Bibliobazaar, 2009.					
4	"Design & Construction of bridge approaches", Transportation Research Board, 1990					
5	Davies and Poulos, "Analysis and design of pile foundation", John Wiley and Sons, 1980					
6	Potts and Zdravkovic, "Finite Element Analyse Applied to Geotechnical Engineering", Vol. 1					
	(Theory) and Vol.2 Applications					

COU	RSE OUTCOMES:	Bloom's	
Upon completion of the course, the students will be able to:			
CO1	To know the field practices in investigations, safety, and quality on Substructure components.	K2	
CO2	To design foundations for special structures using softwares.	К3	
CO3	To evaluate dynamic properties of soils and design earthquake resistant foundations.	К3	
CO4	To know about various substructure retrofitting techniques	K3	
CO5	To acquire knowledge about the use of finite element based softwares to analyse geotechnical engineering structures.	К3	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	3	-	-	-			
CO2	-	-	3	-	_	-			
CO3	-	-	3	2	_	3			
CO4	1	-	3	-	-	-			
CO5	1	-	3	-	_	2			
23GEPE20	1	-	3	2	-	3			
1 – Slight, 2 – Mode	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	40	20	-	-	-	100			
CAT 2	40	40	20	-	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	<u></u>	-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	40	40	20	-	-	-	100			

23GEPE21 GROUND IMPROVEMENT TECHNIQUES										
PREREQUISITES:	CATEGORY	L	Т	P	С					
NIL	PE	3	0	0	3					
Course To impart knowledge on the various impro	vement techniques f	or	cohe	sionle	ess and					
Objective cohesive soils.	Objective cohesive soils.									
UNIT – I DEWATERING			9	Perio	ods					
Introduction-Necessity of ground improvement-Current state	us and scope in I	ndia	1 cc	ntex	t-New					
Technologies-Basic concepts-Drainage methods-Ground water	r lowering by well	poin	ts—]	Deep	well,					
Vacuum and Electro-Osmosis methods.				_						
UNIT – II COMPACTION AND SAND DRAINS			9	Perio	ods					
In-situ compaction of cohesionless and cohesive soils - Sha	allow and deep com	pact	ion	–Vit	ration					
methods- Vibro-compaction, Blasting, Vibrating probe, Vibratory	y rollers, Vibro-displa	cem	ent c	ompa	action,					
Vibro flotation - Concept, Factors influencing compaction- Hea	avy Tamping–Vertica	ıl dra	ains–	Prelo	oading					
with sand drains, Fabric drains, Wick drains-Design of sand drain	s-Relative									
Merits of different methods – limitations.										
UNIT – III STONE COLUMN AND EARTH REINFORG				Perio						
Pre-compression and consolidation –Dynamic consolidation –Ele										
- Functions - Methods of installation - Design estimation of		y of	` stoı	ne co	olumn–					
Settlement of stone column-Lime piles-Earth reinforcement-Soil	Nailing and Rock									
Bolting –Types of reinforcement material–Applications.										
UNIT-IV STABILIZATION	77			Perio						
Electrical stabilization-Stabilization by Thermal and Freezin	Introduction—Stabilization methods— Mechanical, Cement, Lime, Bitumen, Chemical stabilization—Electrical stabilization—Stabilization by Thermal and Freezing techniques—Ground improvement by excavating and replacing—Stabilization of expansive clays—Prewetting.									
UNIT-V GROUTING			9	Perio	ods					
Introduction-Applications-Functions-Characteristics of grouts-	Types of grout–Suspo	ensic	n ai	nd sc	lution					
routs-Basic requirements of grout-Displacement-Compaction	grouting, displacen	nent	–So	il fr	acture					
grouting, Jet-Displacement grouting, and Permeation grouting-	Grouting equipment-	-Inje	ction	met	thods-					
Grout monitoring - Deep vertical cut-stability considerations - Ca	se studies.									
Contact Periods:										

Moseley M.D., "Ground Treatment", Blackie Academic and Professional, 1998.
 Koerner, R.M., "Designing with Geosynthetics" (fourth edition), Prentice Hall, NewJersey, 1999.
 Purushothama Raj P., "Ground Improvement Techniques", Laxmi Publications(P)Ltd., NewDelhi, 2005
 Shroff, A.V., "Grouting Technology in Tunnelling and Dam", Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 2009.

COURSE OUTCOMES:			
Upon completion of the course, the students will be able to:			
CO1	Ascertain the parameters of weak soil and the techniques used for treating such soils.	K2	
CO2	Select various shallow and deep compaction techniques.	K3	
CO3	Design stone column and learn the consolidation processes.	K3	
CO4	Choose various types of stabilizers and stabilizing techniques.	K3	
CO5	Gain knowledge for application of grouting methods in the field.	K3	

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	2	3	3	3	2	
CO2	3	1	2	3	_	-	
CO3	2	3	3	3	-	3	
CO4	3	-	2	2	3	-	
CO5	3	-	2	2	-	2	
23GEPE21	3	3	3	3	3	2	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	30	30	40	-	-	-	100			
CAT 2	30	30	40	-	-	-	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	40	40	3	-	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2 / Project 2	20	40	40	-	-	-	100			
ESE	30	30	40	- 1	-	-	100			

23GEPE22 MARINE GEOTECHNICAL ENGINEERING								
PREREQUISI	TES	CATEGORY	L	T	P	С		
	NIL	PE	3	0	0	3		
Course To impart knowledge on marine environment, dynamic loading on soils and diff foundations on marine deposits.								
UNIT – I MARINE SOIL DEPOSITS					9 P	Periods		
deposits- Physi	Offshore environment- Offshore structures and foundations- Specific problems related to marine soil deposits- Physical and engineering properties of marine soils.							
UNIT – II BEHAVIOUR OF SOILS SUBJECTED TO DYNAMIC LOADING					9 P	Periods		
of mechanics- AUNIT – III Challenges of	Challenges of site investigation in marine environment- Different site investigation techniques- sampling techniques -Geophysical methods- recent advancements in site investigation - sampling used for marine soil							
UNIT – IV	FOUNDATIONS IN MARINE SOIL DEPOSITS	0			9 P	eriods		
Different offsh spudcans.	Different offshore and near shore foundations-Gravity platforms-Jack-uprigs- pile foundations- Cassions-							
UNIT-V	UNIT-V NUMERICAL MODELING OF MARINE FOUNDATIONS 9 Period					eriods		
	Numerical modeling of cyclic behaviour of soils- empirical models- elastic-plastic models- FEM analysis of marine foundations subjected to wave loading.							
	Contact Periods: Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Periods Total: 45 Periods							

1	George P T sinker, "Port Engineering planning, construction, maintenance and security", John Wiley
	& Sons, Inc.2004.
2	M J Tomlinson, "Pile design and construction practice", View point Publications , Palladian
	Publications Limited, 1987.
3	H.G.Poulos, "Marine Geotechnics", Prentice Hall Inc., 1988.
4	Ben C Gerwick, jr., "Construction of marine and offshore structures", CRC Press, Taylor and
	Francis Group.2012.

COUR	COURSE OUTCOMES:		
Upon completion of the course, the students will be able to:			
1	open comprehen of the course, the source will be used to:		
CO1	Understand marine environment related problems.	K2	
CO2	Acquire knowledge about effect of dynamic loading on soils.	K3	
CO3	Familiarize about various Site investigation techniques.	K1	
CO4	Apply the knowledge of marine platforms for various geotechnical applications.	K3	
CO5	Perform numerical modeling on marine foundations.	К3	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	2	3	1	1			
CO2	2	-	2	3	1	1			
CO3	2	-	2	3	1	1			
CO4	2	-	2	3	1	1			
CO5	2	-	2	3	1	1			
23GEPE22	2	-	2	3	1	1			
1 - Slight, 2 - Mode	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT 1	40	40	20	-	-	-	100		
CAT 2	40	40	20	-	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	7	-	-	100		
ESE	40	40	20	11-	-	-	100		

23GEPE23 UNSATURATED SOIL MECHANICS									
PREREQUISITES: CATEGORY L T P							С		
		NIL	PE	3	0	0	3		
Course	To u	understand the properties of unsaturated soils, the stress state variables and the modeling							
Objective		niques.							
UNIT-I		ATE OF UNSATURATED SOIL					eriods		
		plinary nature of unsaturated soil- soil classific					stress		
_		ariables – material variables constitutive law –suc	ction potential of so	oil w	ater.				
UNIT-II		YSICS OF SOIL WATER SYSTEM					eriods		
1 7 1		of air and water - partial pressure and relative h	•						
		f water. Solubility of air in water - air water solid	-	_			_		
soil water chara	cteri	stic curve. Capillary tube model - contacting spl	nere model. Young	g La	place	e equ	ıation-		
Height of cap	illary	rise-Rate of capillary rise- capillary pore	size distribution	ı-The	eoret	ical	basis-		
determination-la	borat	ory method.							
UNIT-III	ST	RESS STATE VARIABLES AND SHEAR ST	RENGTH			9 P	eriods		
Effective stress-	stress	s between two spherical particles - Hysteresis in S	WCC - stress para	mete	r, stı	ess t	ensor-		
stress control by	axis	translation analytical representation of stress-vo	lume change chara	icteri	stics	-Ext	ended		
Mohr-Coulomb	criter	ion-shear strength parameters-Interpretation of D	irect shear test resu	ılts a	nd T	riaxi	al test		
results-unified r	epres	entation of failure envelope-Influence of suction i	n earth pressure di	strib	utior	۱.			
UNIT-IV		EADY AND TRANSIENT FLOWS					eriods		
		Permeability and Hydraulic conductivity- cap	•	-					
evaporation-Vap	or fl	ow-Air diffusion in water-Principles for pore liqu	uid flow-Rate of in	ıfiltr	ation	, Tra	nsient		
suction and moi	sture	profiles-Principles for Pore Gas flow- Barometric	pumping analysis						
UNIT-V	MA	TERIAL VARIABLE MEASUREMENT AND I	MODELLING			9 P	eriods		
Measurement of	f tota	l suction -psychrometers- Filter paper measurer	ment of matric suc	ction	-Hig	h air	entry		
disks-Direct m	easur	ements- Tensiometers- Air-translation technic	que-Indirect meas	surer	nents	s Tł	nermal		
conductivity sensors-measurement of osmotic suction-squeezing technique-soil water Characteristic curves									
and Hydraulic co	ondu	ctivity models.							
Contact Period	s:								

Lecture: 45 Periods

Fredlund, D.G. . Rahardjo, H. and Fredlund, M.D. "Unsaturated Soil Mechanics in Engineering Practice", John Wiley & Sons, INC, NewJersey, 2012.
 Ning Luand William, J.Likes, "Unsaturated Soil Mechanics", John Wiley & sons, INC. NewJersey, 2004
 NgCharles, Ww Menzies Bruce, "Advanced unsaturated Soil Mechanism and Engineering", Taylor & Francis Group, 2007.
 NingLu, LaureanoR. Hoyes and Lakshmi Reddi, "Advances in unsaturated soil, seepage and Environmental Geotechnics", ASCE, Geotechnical special publication No. 148.
 Jean-Louis Briaud., "Geotechnical Engineering: Unsaturated and Saturated soils", John Wiley & Sons, INC, NewJersey, 2013.

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

COUI	RSE OUTCOMES:	Bloom's		
Upon	Upon completion of the course, the students will be able to:			
CO1	Gain knowledge on stress state variables, material variables and constitutive law of Unsaturated soil.	K2		
CO2	Study the physics of soil –water mechanism, relationship of models.	K2		
CO3	Determine soil-water characteristic curve and the shear strength of unsaturated soil.	К3		

CO4	Learn the principles of vapour flow, air diffusion, pore liquid flow and rate of Infiltration in unsaturated soil.	K1
CO5	Measure the material variables and select the suitable soil models.	K3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	1	-	-	3	3			
CO2	2	1	3	2	2	3			
CO3	3	-	3	3	2	2			
CO4	1	1	-	2	2	3			
CO5	3	-	2	3	3	2			
23GEPE23	3	1	3	3	2	3			
1 – Slight, 2 – Mode	erate, 3 – Su	ıbstantial							

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT 1	30	30	40	-	-	-	100		
CAT 2	30	30	40	(O) -	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20	40	40	7-	-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20	40	40	-	-	-	100		
ESE	30	30	40	(C) /-	-	-	100		
		10%	the second	37					

23GEPE24 TUNNEL ENGINEERING										
PREREQUISI	PREREQUISITES CATEGORY L T P									
	NIL	PE	3	0	0	3				
Course Objective	To understand the fundamentals, different technique the hazards related to tunneling.	s of tunneling and g	gain l	know	vledg	ge on				
UNIT-I	INTRODUCTION			9 Pe	riod	S				
Scope and app	blication, historical developments, art of tunneling,	tunnel engineering	, fu	ure	tunn	eling				
considerations-	Types of Underground Excavations: Tunnel, adit, of	lecline, shaft; para	nete	rs in	flue	ncing				
location, shape	and size; geological aspects; planning and site investig	gations.								
UNIT-II	TUNNELING METHODS			9 Pe	riod	S				
Types and pur	pose of tunnels; factors affecting choice of excava	tion technique; Me	thoc	ls-so	ft gı	ound				
tunneling, hard	rock tunneling, shallow tunneling, deep tunneling; S	hallow tunnels – cu	t and	d cov	ver,	cover				
and cut, pipe ja	acking, jacked box excavation techniques, methods of	muck disposal, su	port	ing,	prol	olems				
encountered an	d remedial measures.									
UNIT-III	TUNNELING BY DRILLING AND BLASTING			9 Pe	riod	S				
Unit operations	in conventional tunneling; Drilling - drilling princip	les, drilling equipm	ent,	drill	ing	tools,				
drill selection, s	pecific drilling, rock drill ability factors; Blasting-exp	losives, initiators, b	lasti	ng n	necha	anics.				
blast holes non	nenclature; types of cuts- fan, wedge and others; bl	ast design, tunnel	olast	perf	form	ance-				
powder factor,	parameters influencing, models for prediction; mu	icking and transpo	rtati	on e	quip	ment				
selection.	- 7									
UNIT-IV	GROUND TREATMENT IN TUNNELING			9 Pe	riod	S				
Adverse ground	conditions and its effect on tunneling; introduction to	ground control.								
UNIT-V	TUNNELING HAZARDS			9 Pe	riod	S				
Explosion, floo	ding, chimney formation, squeezing ground.									
Contact Periods:										
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Period	Total: 45 Pe	riods	S						

1	Ratan Raj Tatiya, "Surface and underground Excavation", Second Edition, 2005.
2	David Chapman, Nicole Metje and Alfred Stark, "Introduction to Tunnel Construction", Spon Press, Second edition, 2010.
3	Hoek and Brown, "Underground excavation in rock", Revised First Edition, 2003
4	Palmström and Stille, "Rock Engineering", Second Edition, 2014

COUI	COURSE OUTCOMES:					
Upon	Upon completion of the course, the students will be able:					
CO1	To apply the fundamentals of tunnel engineering.	K2				
CO2	To identify and evaluate different tunneling methods.	К3				
CO3	To apply knowledge on drilling and blasting tunneling techniques.	K2				
CO4	To identify and deal with different ground conditions during tunneling.	K2				
CO5	To anticipate tunneling hazards and apply safety measures.	K2				

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	1	2	-	-				
CO2	-	-	3	2	-	-				
CO3	1	-	-	2	1	-				
CO4	2	-	-	2	-	-				
CO5	-	-	-	1	-	-				
23GEPE24	3	-	3	2	1	-				
1-Slight, 2-M	1–Slight, 2–Moderate, 3–Substantial									

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT 1	40	40	20	-	-	-	100	
CAT 2	40	40	20	-	-	-	100	
Individual			Jummy					
Assessment 1 /		O ATTION		52/0				
Case Study 1/	50	50	10 \$4 BY	72) -	_	-	100	
Seminar 1 /		922	Na Principal					
Project1			-					
Individual		1100	30					
Assessment 2 /				#				
Case Study 2/	50	50		11 -	-	-	100	
Seminar 2 /		// 6		1//				
Project 2		1 &						
ESE	40	40	20	Nh -	-	-	100	

22CEOE01		BUILDING B	YE-LAWS AND	CODES OF PRA	CTI	CE		
23SEOE01			(Common to	all Branches)				
PREREQUISI'	TES			CATEGORY	L	T	P	С
		NIL		OE	3	0	0	3
Course	Course To impart knowledge on the building bye –laws and to emphasize the significance of codes of							
Objectives	pract	ice in construction sector.						
UNIT – I	INT	RODUCTION TO BUILDIN	NG BYE-LAWS				9 Peri	ods
Introduction to	Buile	ling Bye Laws and regulation	on, their need a	nd relevance, Gen	eral	defini	tions	such as
building height	, bui	ding line, FAR, Ground Co	overage, set bac	k line. Introducti	on to	Mas	ster Pl	an and
understanding v	ariou	land uses like institutional, re	esidential etc T	erminologies of Bu	ıildin	g bye	-laws.	
UNIT – II	ROI	E OF STATUTORY BODI	ES				9 Peri	ods
Role of various	statut	ory bodies governing building	g works like deve	lopment authorities	s, mu	nicipa	l corpo	orations
etc. Local Plann	ing A	uthority, Town and Country p	olanning organisa	tion, Ministry of u	ban o	develo	pment	· •
UNIT – III	APP	LICATION OF BUILDING	BYE-LAWS			9	9 Perio	ods
Interpretation of	f info	rmation given in bye laws inc	cluding ongoing	changes as shown	in va	rious	annex	ure and
appendices. App	plicat	on of Bye-laws like structura	l safety, fire safe	ty, earthquake safe	ty, ba	aseme	nt, ele	ctricity,
water, and comi	nunic	ation lines in various building	types.					
UNIT – IV	INT	RODUCTION TO CODES (OF PRACTICE	:0			9 Peri	ods
Introduction to	vario	us building codes in professi	onal practice - C	Codes, regulations	to pr	otect	public	health,
safety and welfa	are - C	odes, regulations to ensure co	ompliance with the	he local authority.				
UNIT – V	APP	LICATION OF CODES OF	PRACTICE	77			9 Peri	ods
Applications of	Applications of various codes as per various building types. Bureau of Indian Standards, Eurocode -					code –		
Introduction to	Introduction to other international codes.							
Contact Period	ls:							
Lecture: 45 Per	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	"National Building Code of India 2016 - SP 7", NBC 2016, Bureau of Indian Standards.
2	"Model Building Bye-Laws (MBBL) – 2016", Town and Country Planning Organization, Ministry of
	Housing and Urban Affairs, Government of India.
3	"Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
4	Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COUF	COURSE OUTCOMES:			
		Taxonomy		
Upon completion of the course, the students will be able to:				
CO1	Apply the building bye-laws in planning, design and construction works.	К3		
CO2	Familiarize with the role of various statutory bodies.	K2		
CO3	Execute safety related work practices in the construction sector.	K3		
CO4	Ensure compliance with the rules and regulations in design and construction	К3		
	practices.			
CO5	Perform design and construction practices based on national and international	К3		
	codal provisions.			

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	3	1	1	2	3
CO2	1	3	1	1	2	3
CO3	1	3	1	1	2	3
CO4	2	3	1	1	2	3
CO5	2	3	1	1	2	3
23SEOE01	2	3	1	1	2	3
1 – Slight, 2 – Moderate,	3 – Substantial	•		•		•

ASSESSMENT	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	40	40	20	-	-	-	100	
CAT2	40	40	20	: P	-	-	100	
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	40	40	20	7	-	-	100	
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	40	40	20		-	-	100	
ESE	40	40	20	-	-	-	100	

0.0

22550502	PLANNING OF SM	ART CITIES					
23SEOE02	(Common to all	Branches)					
PREREQUISITE	S	CATEGORY	L	T	P	С	
	NIL	OE	3	0	0	3	
Course	To have an exposure on planning of smart cities v	vith consideration	of the	recer	nt chall	enges	
Objectives	and to address the importance of sustainable develo	and to address the importance of sustainable development of urban area.					
UNIT – I	SMART CITIES DEVELOPMENT I	POTENTIALS	ANI		0 D		
	CHALLENGES				9 Peri	oas	
Perspectives of Sn	nart Cities: Introduction and Overview - Implementa	ation Challenges -	Metho	dolog	gical is	sues -	
Spatial distributio	n of startup cities - Re imagining postindustrial	cities - Impleme	entatio	n Ch	alleng	es for	
Establishing Smart	: Urban Information and Knowledge Management S	ystem.					
UNIT – II	SUSTAINABLE URBAN PLANNING				9 Peri	ods	
Optimising Green	Spaces for Sustainable Urban Planning - 3D City M	odels for Extractin	ıg Urb	an Er	vironr	nental	
Quality Indicators	- Assessing the Rainwater Harvesting Potential	- The Strategic R	cole o	f Gre	en Spa	aces -	
Monitoring Urban	Expansion.						
UNIT – III	ENERGY MANAGEMENT AND SUSTAINAB	LE DEVELOPM	ENT		9 Peri	ods	
Alternatives for l	Energy Stressed Cities - Social Acceptability of	Energy - Effici	ent L	ightin	g - E	nergy	
Management - Url	oan Dynamics and Resource Consumption - Issues	and Challenges of	f Susta	ainab	le Tou	rism -	
Green Buildings: I	Eco-friendly Technique for Modern Cities.)"					
UNIT – IV	MULTIFARIOUS MANAGEMENT FOR SMA	ART CITIES			9 Peri	ods	
Assessment of Do	mestic Water Use Practices - Issue of Governance	in Urban Water S	Supply	- As	sessm	ent of	
Water Consumption	on at Urban Household Level - Water Sustainabi	ility - Socio-econo	omic]	Deter	minant	s and	
Reproductive Heal	thcare System - Problems and Development of Slum	ıs.					
UNIT – V	INTELLIGENT TRANSPORT SYSTEM				9 Peri	ods	
Introduction to Int	elligent Transport Systems (ITS) - The Range of I'	TS Applications -l	Netwo	rk Op	otimiza	ition -	
Sensing Traffic us	sing Virtual Detectors - Vehicle Routing and Person	onal route informa	tion -	The	Smart	Car -	
Commercial Routing and Delivery - Electronic Toll Collection - The Smart Card - Dynamic Assignment -							
Traffic Enforcement. Urban Mobility and Economic Development.							
Contact Periods :							
Lecture: 45 Peri	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva" , 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems
	And Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Indicate the potential challenges in smart city development.	K2
CO2	Select the different tools for sustainable urban planning.	К3
CO3	Choose appropriate energy conservation system for smart cities.	К3
CO4	Identify the proper method of water management system.	К3

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	2	3	1	1
CO2	1	1	1	3	2	1
CO3	1	1	-	2	2	1
CO4	1	-	1	2	1	1
CO5	1	-	1	3	1	-
23SEOE02	1	1	2	3	2	1
1 - Slight, 2 - Mode	rate, 3 – Sub	stantial	•	•	•	•

ASSESSMENT P	ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	25	45	30	n -	-	-	100	
CAT2	25	45	30	0 -	-	-	100	
Individual	15	40	45	-	-	-	100	
Assessment 1 /			- G	7				
Case Study 1/			- 1					
Seminar 1 /								
Project1								
Individual	10	45	45	l) -	-	-	100	
Assessment 2 /		A E	11 11	3				
Case Study 2/		The same		<u> </u>				
Seminar 2 /				5				
Project 2		The same	COLUMN DE LA COLUM					
ESE	20	40	40	_	_	_	100	

23SEOE03		GREEN BUILDING					
ZSECEUS		(Common to a	all Branches)				
PREREQUISITE	ES		CATEGORY	L	T	P	C
		NIL	OE	3	0	0	3
Course	To	introduce the different concepts of energy e	efficient buildings	, indo	or e	nviron	mental
Objectives	qua	lity management, green buildings and its design.					
UNIT – I	INT	RODUCTION				9 Peri	ods
Life cycle impac	ts of	materials and products - sustainable design	concepts - strat	egies	of d	esign	for the
Environment -The	e sun	-earth relationship and the energy balance on	the earth's surfac	e, clin	nate,	wind -	– Solar
radiation and sola	r tem	perature - Sun shading and solar radiation on s	surfaces – Energy	impac	t on	the sha	ipe and
orientation of buil	dings	s – Thermal properties of building materials.					
UNIT – II	EN	ERGY EFFICIENT BUILDINGS				9 Peri	ods
Passive cooling as	nd da	ay lighting – Active solar and photovoltaic- Bu	ilding energy ana	llysis	meth	ods- B	uilding
energy simulation	n- Bi	uilding energy efficiency standards-Lighting	system design- I	Lightin	ıg ec	onomi	cs and
aesthetics- Impacts of lighting efficiency - Energy audit and energy targeting- Technological options for energy							
management.	management.						
UNIT – III INDOOR ENVIRONMENTAL QUALITY MANAGEMENT 9 Periods						ods	
Psychrometry- Co	Psychrometry- Comfort conditions- Thermal comfort- Ventilation and air quality-Air conditioning requirement-						
Visual perception	n- Il	lumination requirement- Auditory requirement	ent- Energy man	nagem	ent	option	s- Air
conditioning systems- Energy conservation in pumps- Fans and blowers- Refrigerating machines- Heat rejection							
equipment- Energy efficient motors- Insulation.							

UNIT – IV GREEN BUILDING CONCEPTS

9 Periods

Green building concept- Green building rating tools- Leeds and IGBC codes. – Material selection Embodied energy- Operating energy- Façade systems- Ventilation systems- Transportation- Water treatment systems- Water efficiency- Building economics

UNIT – V GREEN BUILDING DESIGN - CASE STUDY

9 Periods

Case studies - Building form, orientation and site considerations; conservation measures; energy modeling; heating system and fuel choices; renewable energy systems; material choices - construction budget

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green
	Globes", , Elsevier Science, 2012.
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and
	Delivery", 3rd Edition, 2012
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.

COURS	COURSE OUTCOMES:		
		Taxonomy	
Upon co	ompletion of the course, the students will be able to:	Mapped	
CO1	Apply the concepts of sustainable design in building construction.	К3	
CO2	Execute green building techniques including energy efficiency management in the	К3	
	building design.		
CO3	Establish indoor environmental quality in green building.	К3	
CO4	Perform the green building rating using various tools.	К3	
CO5	Create drawings and models of green buildings.	K3	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	2	3	3	3			
CO2	3	3	2	3	3	3			
CO3	2	2	2	2	3	3			
CO4	2	3	1	3	3	3			
CO5	3	3	1	3	3	3			
23SEOE03	3	3	2	3	3	3			
1 – Slight, 2 – Mode	rate, 3 – Subs	stantial		•		•			

ASSESSMENT P	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %			
CAT1	40	40	20	-	-	-	100		
CAT2	40	40	20	70 -	-	-	100		
Individual	40	40	20	Ĭ) -	-	-	100		
Assessment 1 /									
Case Study 1/			-	77					
Seminar 1 /			_ \(\bar{\Pi}\)	/					
Project1			No. (4 P.)	\					
Individual	40	40	20	\\ -	-	-	100		
Assessment 2 /		8		1					
Case Study 2/		al R	10.11	VB.					
Seminar 2 /		325		200					
Project 2			SA POR	\Rightarrow					
ESE	40	40	20	-	-	-	100		

23EEOE04 ENVIRONMENT HEALTH AND SAFETY MANAGEMENT (Common to all Branches)								
DDEDEOLIG	`	, ,	T	Tr.	ъ			
PREREQUIS	NIL	CATEGORY OE	<u>L</u>	T 0	P 0	<u>C</u>		
Course		<u> </u>			·			
Objectives	Course To impart knowledge on occupational health hazards, safety measures at work place, accident prevention, safety management and safety measures in industries.							
UNIT – I	UNIT – I OCCUPATIONAL HEALTH HAZARDS 9 Periods							
Occupation, F	Iealth and Hazards - Safety Health and Mana	gement: Occupat	tional	Health	Haz	ards -		
Ergonomics -	Importance of Industrial Safety - Radiation and	Industrial Haza	rds: Ty	pes a	nd ef	fects -		
Vibration - Inc	lustrial Hygiene - Different air pollutants in indust	tries and their eff	ects - I	Electri	cal, f	ire and		
Other Hazards.								
UNIT – II	SAFETY AT WORKPLACE				eriod	-		
	xplace - Safe use of Machines and Tools: Safety in							
	Machine guarding - working in different workplace	es - Operation, In	spection	n and 1	maint	enance		
- Housekeeping	g, Industrial lighting, Vibration and Noise.							
	ACCIDENT PREVENTION				eriod	-		
	ention Techniques - Principles of accident preven							
	ysis, Hazop studies, Job safety analysis - Theories a				sation	- First		
Aid: Body stru	cture and functions - Fracture and Dislocation, Injur	ries to various boo	ly parts					
UNIT – IV	SAFETY MANAGEMENT				eriod			
Health and Env	ement System and Law - Legislative measures in vironment Management, Bureau of Indian Standard ess safety management (PSM) and its principles - EF	s on Health and S						
UNIT – V	GENERAL SAFETY MEASURES	7		9 P	eriod	s		
Plant Layout fo	or Safety - design and location, distance between ha	zardous units, ligl	nting, c	olour o	codin	g, pilot		
	Housekeeping - Accidents Related with Maintenan							
	f Documentation - Case studies involving implem							
Industries.				•				
Contact Perio	ds:							
Lecture: 45 Po	eriods Tutorial: 0 Periods Practical: () Periods	Total:	45 Pei	riods			

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications, 2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao ,
	PharmaMed Press, 1st edition, 2021.

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon c	Upon completion of the course, the students will be able to:			
CO1	Identify the occupational health hazards.	K3		
CO2	Execute various safety measures at workplace.	K3		
CO3	Analyze and execute accident prevention techniques.	K3		
CO4	Implement safety management as per various standards.	K3		
CO5	Develop awareness on safety measures in Industries.	K3		

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	2	2	2	3	2		
CO2	2	2	2	1	2	2		
CO3	2	3	2	1	2	2		
CO4	1	1	1	2	2	2		
CO5	1	1	1	1	1	2		

1 01 1 0 3 1 1 0 0 0 1	23EEOE04	1	2	2	1	2	2
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT P.	ATTERN – THE	ORY				•	
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

CLIMATE CHANGE AND ADAPTATION **23EEOE05** (Common to all Branches) **PREREQUISITES CATEGORY** \mathbf{C} NIL OE 3 0 3 To understand the Earth's climate system, changes and their effects on the earth, identifying the Course **Objectives** impacts, adaptation, mitigation of climate change and for gaining knowledge on clean technology, carbon trading and alternate energy sources. UNIT – I **EARTH'S CLIMATE SYSTEM** 9 Periods

Introduction-Climate in the spotlight - The Earth's Climate Machine - Climate Classification- Global Wind Systems - Trade Winds and the Hadley Cell - The Westerlies - Cloud Formation and Monsoon Rains - Storms and Hurricanes - The Hydrological Cycle - Global Ocean Circulation - El Nino and its Effect - Solar Radiation - The Earth's Natural Green House Effect - Green House Gases and Global Warming - Carbon Cycle.

UNIT – II OBSERVED CHANGES AND ITS CAUSES

9 Periods

Observation of Climate Change – Changes in patterns of temperature, precipitation and sea level rise – Observed effects of Climate Changes – Patterns of Large-Scale Variability –Drivers of Climate Change – Climate Sensitivity and Feedbacks – The Montreal Protocol –UNFCCC – IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India – climate change modeling.

UNIT – III | IMPACTS OF CLIMATE CHANGE

9 Periods

Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios – Projected Impacts for Different Regions – Uncertainties in the Projected Impacts of Climate Change – Risk of Irreversible Changes.

UNIT – IV | CLIMATE CHANGE ADAPTATION AND MITIGATION MEASURES

9 Periods

Adaptation Strategy/Options in various sectors – Water – Agriculture — Infrastructure and Settlement including coastal zones – Human Health – Tourism – Transport – Energy – Key Mitigation Technologies and Practices – Energy Supply – Transport – Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) – Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation.

UNIT - V CLEAN TECHNOLOGY AND ENERGY

9 Periods

Clean Development Mechanism – Carbon Trading - examples of future Clean Technology –Biodiesel – Natural Compost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Biofuels– Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding.

Contact Periods:

Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total:45 Periods

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report –Working Group I Report, "The physical sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability",
	2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate Change,
	Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Classify the Earths climatic system and factors causing climate change and global	K2
	warming.	
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise and Observed effects of Climate Changes	K2
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible changes.	К3
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	K3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	3	2	3	1		
CO2	3	2	2	2	3	2		
CO3	2	2	2	2	3	2		
CO4	3	2	2	2	2	2		
CO5	3	3	2	3	3	3		
23EEOE05	3	3	3	3	3	3		
1 – Slight, 2 – Moderate	, 3 – Substanti	al	•		•	•		

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	30	35	10	-	-	100			
CAT2	25	30	35	10	-	-	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	-	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100			
ESE	25	30	35	10	-	-	100			

	T							
23EEOE06	WASTE TO ENER							
20220200	(Common to all Br	anches)						
PREREQUISI	TES	CATEGORY	L	T	P	C		
	NIL	OE	3	0	0	3		
Course	To classify waste as fuel, introduce conversion dev	ices, gain knowled	edge about Biomass					
Objectives	Pyrolysis, demonstrate methods, factors for biomass	gasification, and	acqu	ire k	now	ledge		
	about biogas and its development in India.							
UNIT – I	INTRODUCTION			9 P	erio	ds		
Introduction to	Energy from Waste: Classification of waste as fuel –	Agro based, Forest	resi	due,	Indu	ıstrial		
waste - MSW -	Conversion devices - Incinerators, Gasifiers, Digestors	•						
UNIT – II	BIOMASS PYROLYSIS			9 P	erio	ds		
Biomass Pyroly	ysis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis -	Manufacture of ch	arco	al – l	Meth	iods –		
Yields and App	lications - Manufacture of Pyrolytic oils and gases, Yie	lds and Application	s.					
UNIT – III	BIOMASS GASIFICATION		9 Periods			ds		
Gasifiers – Fix	xed bed system - Downdraft and updraft gasifiers	 Fluidized bed § 	gasifi	ers	– D	esign,		
Construction ar	nd Operation – Gasifier burner arrangement for thermal	heating – Gasifier I	Engir	ne ar	range	ement		
and electrical p	ower – Equilibrium and Kinetic Considerations in gasifi	er operation.						
UNIT – IV	BIOMASS COMBUSTION			9 P	erio	ds		
	bustion - Biomass Stoves - Improved Chullahs, typ							
	pes - Inclined grate combustors - Fluidized bed c	combustors, design	, co	nstru	ction	n and		
operation of all	the above biomass combustors.							
UNIT – V BIOENERGY SYSTEM						ds		
Biogas: Propert	Biogas: Properties of biogas (Calorific value and composition) – Biogas plant technology and status – Bio							
	 Design and constructional features – Biomass resource 							
	cesses – Thermo chemical conversion – Direct combust							
	n – biochemical conversion – anaerobic digestion – Ty							
Alcohol produc	tion from biomass - Bio diesel production - Urban w	vaste to energy con	vers	ion -	- Bio	omass		
energy program	ime in India.							
Contact Period								
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Pe	riods Total: 4	5 Pe	riod	S			

1	"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P Jayaram Reddy, Taylor and Francis Publications, 2016.
2	"Waste – to – Energy: Technologies and project Implementations", Marc J Rogoff, Francois Screve, ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications, Illustrated Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", PrabirELSEVIER Publication 2010.

COUR	Bloom's	
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	K3
CO3	Demonstrate methods and factors considered for biomass gasification.	K3
CO4	Identify the features of different facilities available for biomass combustion.	K4
CO5	Analyze the potential of different Bioenergy systems with respect to Indian	K2
	condition.	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	3	3	2	3	1			
CO2	3	2	2	2	3	1			
CO3	3	3	2	3	2	1			
CO4	3	2	2	3	3	1			
CO5	2	3	3	3	2	1			
23EEOE06	3	3	3	3	3	1			
1 - Slight, 2 - Moderate, 3 - Started	Substantial								

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	10	20	20	25	15	10	100				
CAT2	10	25	20	10	25	10	100				
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	15	35	50	-	-	100				
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	10	40	50	-	-	100				
ESE	10	25	25	20	10	10	100				

23GEOE07	ENERGY IN BUILT ENVIRONMENT (Common to all Branches)							
PDEDEOLUGIA			-	7EC	ъ.			
PREREQUISIT		CATEGORY	L	T	P	C		
	NIL	OE	3	0	0	3		
Course	To understand constructional energy requirement	nts of buildings,	ene	ergy	auc	lit		
Objective	methods and conservation of energy.							
UNIT-I	INTRODUCTION 9 Periods							
Indoor activities	and environmental control - Internal and external fac	ctors on energy us	e –(Char	acte	ristics		
of energy use an	nd its management -Macro aspect of energy use i	n dwellings and	its i	mpl	icati	ons –		
Thermal comfo	ort-Ventilation and air quality-Air-conditioning	requirement-Vi	sual	p	erce	ption-		
Illumination requ	irement-Auditory requirement.							
UNIT-II LIGHTING REQUIREMENTS IN BUILDING								
The sun-earth re	lationship - Climate, wind, solar radiation and ter	nperature - Sun s	shad	ing	and	solar		
radiation on surfa	ces-Energy impact on the shape and orientation of b	ouildings–Lighting	g an	d da	ıy liş	ghting		
:Characteristics as	nd estimation, methods of day-lighting-Architectura	l considerations fo	or da	ıy-li	ghtii	ng.		
UNIT-III	ENERGY REQUIREMENTS IN BUILDING			9 Periods		ods		
Steady and unste	eady heat transfer through wall and glazed window-	Standards for the	rma	l pe	rfori	nance		
of building enve	lope- Evaluation of the overall thermal transfer- Th	nermal gain and n	et h	eat	gain	-End-		
Use energy requi	rements-Status of energy use in buildings-Estimation	n of energy use in	a bı	ıildi	ng.			
UNIT-IV	ENERGY AUDIT			9]	Peri	ods		
Energy audit and	l energy targeting-Technological options for energy	y management-Na	atura	al ai	nd f	orced		
ventilation-Indoor	environment and air quality-Air flow and air pressu	ure on buildings-F	low	due	e to	Stack		
effect.								
UNIT-V	COOLING IN BUILT ENVIRONMENT			91	Peri	ods		
1	g architecture - Radiative cooling-Solar cooli	•						
	for ventilation-Natural and active cooling with adaptive	ptive comfort–Eva	apor	ativ	e co	oling -		
Zero energy build								
Contact Periods						·		
Lecture: 45 Peri	ods Tutorial: 0 Periods Practical: 0 Perio	ods Total: 45	5 Pe	rioc	ls			

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill,
	2000.
2	S.M. Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinois ,USA.

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon	Upon completion of the course, the students will be able to:		
CO1	Understand energy and its usage	K2	
CO2	Know lighting to be given to a building	K1	
CO3	Analyse the energy requirements in a building	K3	
CO4	Apply the energy audit concepts.	К3	

CO5	Study architectural specifications of a building	K1
-----	--	----

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	-	3	1	2	1		
CO2	2	-	3	1	2	1		
CO3	2	-	3	1	2	1		
CO4	2	-	3	1	2	1		
CO5	2	-	3	1	2	1		
23GEOE07	2	-	3	1	2	1		
1-Slight, 2-Moderate	e, 3–Substantia	il	1	•	1	1		

Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20		-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50			-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50			-	-	100
ESE	40	40	20		-	-	100

22CEOE00		EARTH AND ITS ENVIRONMENT					
23GEOE08		(Common to all Branches)					
PREREQUISIT	ES	CATEGORY	L	T	P	C	
	NIL	OE	3	0	0	3	
Course	To kno	ow about the planet earth, the geosystems and the resources like	gro	ounc	wat	er and	
Objective	air and	d to learn about the Environmental Assessment and sustainability	7.				
UNIT-I	EVOL	LUTION OF EARTH		9	Peri	ods	
Evolution of ear	th as h	abitable planet-Evolution of continents-oceans and landforms	s-ev	olut	ion	of life	
through geologic	cal time	es - Exploring the earth's interior - thermal and chemical str	uctı	ıre	- ori	gin of	
gravitational and	magnet	ic fields.					
UNIT-II		GEOSYSTEMS	9 Periods			ods	
Plate tectonics -	working	g and shaping the earth - Internal geosystems – earthquakes – v	olca	anoe	s -cl	imatic	
excursions through	gh time	- Basic Geological processes - igneous, sedimentation - metamo	rph	ic p	oces	sses.	
UNIT-III		GROUND WATER GEOLOGY		9 Periods			
Geology of ground	nd wate	r occurrence –recharge process-Ground water movement-Ground	nd v	vate	dis	charge	
		y – Ground water as a resource - Natural ground water quality a	nd (cont	amir	nation-	
Modelling and m	anaging	g ground water systems.					
UNIT-IV		ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY	7	9	Peri	ods	
		nable development - population and urbanization - toxic ch					
resources - wate	r scarcit	ty and conflict - Environmental risk - risk assessment and characteristics	cter	izat	on –	hazard	
assessment-exposure assessment.							
UNIT-V		AIR AND SOLIDWASTE	SOLIDWASTE 9 Periods				
	_	ring-introduction to atmospheric composition-behaviour-at	mos	sphe	ric	photo	
		anagement-characterization-management concepts.					
Contact Periods	:						
Lecture: 45 Peri	lods 7	Tutorial: 0 Periods Practical: 0 Periods Total:	45	Per	iods		

	ET ETTE (CEC
1	John Grotzinger and Thomas H.Jordan, "Understanding Earth", Sixth Edition, W.H.Freeman, 2010.
2	Younger, P.L., "Ground water in the Environment: An introduction", Blackwell Publishing, 2007.
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,
	Sustainability and Design", Wiley, NJ, 2010.

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and the	K2
	Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground water	К3
	and the modeling systems.	
CO4	To assess the Environmental risks and the sustainability developments.	К3
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	-	2	2	-
CO2	3	-	3	3	-	3
CO3	2	-	-	-	-	-
CO4	-	2	-	-	1	-
CO5	2	2	-	1	-	-
23GEOE08	2	2	3	3	2	3
1–Slight, 2–Moderate, 3–Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20		-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	7	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100
ESE	40	40	20	1970 J -	-	-	100

23GEOE09 NATURAL HAZARDS AND MITIGATI (Common to all Branches)							
PREREQUISITES	S:	CATEGORY	L	T	P	C	
	NIL	OE	3	0	0	3	
Course Objective	To get idea on the causes, effects and mitigation recase studies.	neasures of differen	ent typ	es of h	azards	with	
UNIT-I	ARTH QUAKES 9 Periods					5	
	sic concepts-different kinds of hazards-causes- s-plate tectonics-seismic waves-measures of	•		•			
UNIT-II	SLOPE STABILITY		9 Periods				
measures for slope		stability analysis-	reme				
- '	FLOODS			9 Periods			
	Floods-causes of flooding-regional flood free forecasting-warning systems.	quency analysis—	flood	contro	l mea	sures-	
UNIT-IV	DROUGHTS			9 F	Periods	5	
-	types of droughts –effects of drought -hazard a sessment–mitigation-management.	assessment – deci	sion n	naking	-Use o	f GIS	
UNIT-V	SUNAMI 9 P					9 Periods	
	fects-under sea earthquakes-landslides-volcan- precautions-case studies.	ic eruptions–impa	act of	sea me	eteorite		
Contact Periods: Lecture: 45 Period	ls Tutorial: 0 Period Practical: 0 Perio	ods T	otal:	45 Pei	riods		

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage
	Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press, 2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley & Sons,
	<i>Inc</i> , 2005.
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering", John Wiley &
	Sons, Inc, 2008

COURSE	Bloom's	
Upon com	appletion of the course, the students will be able to:	Taxonomy Mapped
CO1	Learn the basic concepts of earthquakes and the design concepts of earthquake	K2
	Resistant buildings.	
CO2	Acquire knowledge on the causes and remedial measures of slope stabilization.	К3
CO3	As certain the causes and control measures of flood.	К3
CO4	Know the types, causes and mitigation of droughts.	K2
CO5	Study the causes, effects and precautionary measures of Tsunami.	K2

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	1	-	3	2	3	
CO2	3	1	2	3	3	3	
CO3	3	2	3	-	-	3	
CO4	3	-	-	3	2	3	
CO5	3	-	2	2	-	3	
23GEOE09	3	1	2	3	2	3	
1–Slight, 2–Moderate, 3–Substantial							

ASSESSMENT	PATTERN – T	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual			- Chumus D				
Assessment 1 /		7603	Discount S	E S			
Case Study 1/	-	50	50		-	-	100
Seminar 1 /							
Project1		100	-	7 //			
Individual							
Assessment 2 /		11		. (
Case Study 2/	-	50	50	\ <u>\</u>	-	-	100
Seminar 2 /		//	8				
Project 2		JA.	K.	VA.			
ESE	40	40	20		-	-	100

23EDOE10	BUSINESS ANALYTICS (Common to all Branches)					
PREREQUISITES CATEGORY L T P					P	C
NIL OE				0	0	3
Course Objectives	 To gain knowledge about fundamental busine To study modeling for uncertainty and statisti 	 To apprehend the fundamentals of business analytics and its life cycle. To gain knowledge about fundamental business analytics. To study modeling for uncertainty and statistical inference. To apprehend analytics the usage of Hadoop and Map Reduce frameworks. 				

UNIT – I BUSINESS ANALYTICS AND PROCESS 9 Periods
Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

UNIT – II REGRESSION ANALYSIS

9 Periods

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

UNIT – III STRUCTURE OF BUSINESS ANALYTICS

9 Periods

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

UNIT – IV FORECASTING TECHNIQUES

9 Periods

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

UNIT – V DECISION ANALYSIS AND RECENT TRENDS IN BUSINESS 9 ANALYTICS

9 Periods

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making. Recent Trends: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0Periods Total:45 Periods

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R – A Practical Approach", Apress,
	2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press,
	2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R.
	Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition, 2016.
5	U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making",
	Wiley, 2017.
6	Rui Miguel Forte "Mastering Predictive Analytics with R". Packt Publication 2015

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:				
CO1	Identify the real world business problems and model with analytical solutions.	K4			
CO2	Solve analytical problem with relevant mathematics background knowledge.	K4			
CO3	Convert any real world decision making problem to hypothesis and apply suitable statistical testing.	K4			
CO4	Write and Demonstrate simple applications involving analytics using Hadoop and Map Reduce	K4			
CO5	Use open source frameworks for modeling and storing data.	K4			

COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	1	2	1	2	1
CO2	1	1	1	2	1
CO3	2	2	1	1	-
CO4	2	2	1	-	-
CO5	1	2	males (-	-
23EDOE10	1	2	2(VI)	2	1
- Slight, 2 - Moderate,	3 – Substantial				•

ASSESSMENT	' PATTERN	I – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDOE11	INTRODUCTION TO INDUSTRIAL SAFETY (Common to all Branches)						
PREREQUISI	PREREQUISITES CATEGORY L						
	NIL	OE	3	0	0	3	
Course Objectives	 Summarize basics of industrial safety. Describe fundamentals of maintenance engi Explain wear and corrosion. Illustrate fault tracing. Identify preventive and periodic maintenance 	C					
UNIT – I	INTRODUCTION	_		9	Perio	ods	

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc., Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT – II FUNDAMENTALS OF MAINTENANCE ENGINEERING 9 Periods

Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT – III WEAR AND CORROSION AND THEIR PREVENTION 9 Periods

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT – IV FAULT TRACING 9 Periods

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault-finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT – V PERIODIC AND PREVENTIVE MAINTENANCE 9 Periods

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0Periods Total: 45 Periods

REFERENCES

Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London, 2013.
 "Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers, 2017
 "Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
 "Industrial Engineering And Production Management", S. Chand Publishing; Third edition ,2018
 "Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Ability to summarize basics of industrial safety	K4
CO2	Ability to describe fundamentals of maintenance engineering	K4
CO3	Ability to explain wear and corrosion	K4
CO4	Ability to illustrate fault tracing	K4

CO_{c}/PO_{c} PO_{1} PO_{2} PO_{3} PO_{4} PO_{5}							
COs/POs	PO1	PO2	PO3	PO4	PO5		
CO1	2	1	1	-	-		
CO2	2	2	1	-	1		
CO3	1	2	1	1	1		
CO4	2	1	1	1	1		
CO5	2	1	2	1	1		
23EDOE11	2	1	1	1	1		

ASSESSMENT	PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23FDOF12	23EDOE12 OPERATIONS RESEARCH					
ZSEDUE12	(Common to all I	Branches)				
PREREQUISITE	ES	CATEGORY	L	T	P	C
	NIL	OE	3	0	0	3
Course	Solve linear programming problem and solve	using graphical met	hod.			
Objectives	 Solve LPP using simplex method. 					
	 Solve transportation, assignment problems. 					
	 Solve project management problems. 					
	 Solve scheduling problems. 					
UNIT – I	INTRODUCTION			9	Per	iods
Optimization Tecl	nniques, Model Formulation, models, General L.R Form	mulation, Simplex	echi	nique	es, So	ensitivity
Analysis, Inventor						
UNIT – II	LINEAR PROGRAMMING PROBLEM			9 Periods		
	LPP - Graphical solution revised simplex method -	duality theory - d	ual	simp	lex 1	nethod -
	s - parametric programming					
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM			9	Per	iods
1 0	mming problem - Kuhn-Tucker conditions min cos	t flow problem -	max	flo	w pı	oblem -
CPM/PERT						
UNIT – IV	SEQUENCING AND INVENTORY MODEL			9	Per	iods
	Scheduling and sequencing - single server and multiple server models - deterministic inventory models -					
	Probabilistic inventory control models - Geometric Programming.					
= '	UNIT – V GAME THEORY 9 Periods					
	els, Single and Multi-channel Problems, Sequencing	Models, Dynamic I	rogr	amn	ning,	Flow in
	Networks, Elementary Graph Theory, Game Theory Simulation					
Contact Periods						
Lecture: 45 Perio	ods Tutorial: 0 Periods Practical: 0 Periods	Total:45 Perio	ds			

1	H.A. Taha"Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021.

COUL	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Formulate linear programming problem and solve using graphical method.	K4
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
CO4	Solve project management problems.	K4
CO5	Solve scheduling problems	K4

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	2	1	1	-	-			
CO2	2	2	1	-	-			
CO3	1	1	2	1	1			
CO4	1	1	-	-	-			
CO5	2	1	-	-	-			
23EDOE12	2	1	1	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	25	25	25			100			
CAT2	20	25	25	30			100			
Assignment 1	25	30	25	20			100			
Assignment 2	30	20	30	20			100			
ESE	20	30	20	30			100			

23MFOE13	OCCUPATIONAL HEALTH AND SAFETY (Common to all Branches)					
PREREQUIS	PREREQUISITES CATEGORY L				P	С
	NIL OE 3					
Course Objectives	 NIL OE 3 0 0 3 To gain knowledge about occupational health hazard and safety measures at work place. To learn about accident prevention and safety management. To learn about general safety measures in industries. 					
UNIT – I OCCUPATIONAL HEALTH AND HAZARDS 9 Periods				ds		
Safaty History and dayslamment National Safaty Palicy, Occupational Health Hazards, Excapanics						

Safety- History and development, National Safety Policy- Occupational Health Hazards - Ergonomics - Importance of Industrial Safety Radiation and Industrial Hazards- Machine Guards and its types,

Automation.

UNIT – II SAFETY AT WORKPLACE

9 Periods

Safety at Workplace - Safe use of Machines and Tools: Safety in use of different types of unit operations - Ergonomics of Machine guarding - working in different workplaces - Operation, Inspection and maintenance, Plant Design and Housekeeping, Industrial lighting, Vibration and Noise Case studies.

UNIT – III ACCIDENT PREVENTION

9 Periods

Accident Prevention Techniques - Principles of accident prevention - Definitions, Theories, Principles - Hazard identification and analysis, Event tree analysis, Hazop studies, Job safety analysis - Theories and Principles of Accident causation - First Aid : Body structure and functions - Fracture and Dislocation, Injuries to various body parts.

UNIT – IV SAFETY MANAGEMENT

9 Periods

Safety Management System and Law - Legislative measures in Industrial Safety: Various acts involved in Detail- Occupational safety, Health and Environment Management: Bureau of Indian Standards on Health and Safety, 14489, 15001 - OSHA, Process safety management (PSM) and its principles - EPA standards-Safety Management: Organisational & Safety Committee - its structure and functions.

UNIT – V GENERAL SAFETY MEASURES

9 Periods

Plant Layout for Safety -design and location, distance between hazardous units, lighting, colour coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work Permit System: Significance of Documentation Directing Safety, Leadership -Case studies involving implementation of health and safety measures in Industries.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
2	Danuta Koradecka, Handbook of Occupational Health and Safety , CRC, 2010.
3	Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
4	Deshmukh. L.M., Industrial Safety Management, 3 rd Edition, Tata McGraw Hill, NewDelhi, 2008.
5	https://nptel.ac.in/courses/110105094
6	https://archive.nptel.ac.in/courses/110/105/110105094/

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Gain the knowledge about occupational health hazard and safety measures at work	K3
	place.	
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures in industries.	K3
CO4	Know various laws, standards and legislations.	K2

COURSE ARTICULATION MATRIX:								
Cos/Pos	PO1	PO2	PO3	PO4	PO5			
CO1	2	1	1	1	1			
CO2	2	2	1	1	1			
CO3	1	2	1	1	1			
CO4	2	1	1	1	1			
CO5	2	1	2	1	1			
23MFOE13	2	1	1	1	1			
1 - Slight, 2 - Moderate, 3 -	Substantial			1	1			

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1		50	50		,		100		
CAT2		50	30	20			100		
Individual		50	50				100		
Assessment 1/ Case Study 1/ Seminar 1 / Project1		C 100	September 1	5					
Individual Assessment 2/ Case Study 2/ Seminar 2 / Project 2		50	30	20			100		
ESE		40	40	20			100		

23MFOE14	COST MANAGEMENT OF ENGINEERING PROJECTS (Common to all Branches)							
PREREQUISITES CATEGORY L NIL OE 3						С		
NIL OE 3					0	3		
Course	To understand the costing concepts and the costing concepts and the cost in the cost	neir role in decision	n mak	king.				
Objectives	 To acquire the project management of selection. To gain the knowledge in costing conceptor of the cost of th	ts with project execution	cution secto	n.	1			
UNIT – I	INTRODUCTION TO COSTING CONCEPTS	INTRODUCTION TO COSTING CONCEPTS 9 Periods						
Introduction as	nd Overview of the Strategic Cost Management Proces	ss, Cost concepts i	n de	cisic	n-m	aking;		
Relevant cost,	Differential cost, Incremental cost and Opportunity c	ost. Objectives of	a Co	ostin	ng S	ystem;		
Inventory volu	ation: Creation of a Database for aparational control: Pro	vicion of data for 1	Dagic	ion	M	lzina		

Inventory valuation; Creation of a Database for operational control; Provision of data for Decision - Making.

PROJECT PLANNING ACTIVITIES

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities. Detailed Engineering activities. Pre project execution main clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process.

UNIT - III COST ANALYSIS

9 Periods

Cost Behaviour and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decision-making problems. Standard Costing and Variance Analysis.

UNIT – IV PRICING STRATEGIES AND BUDGETORY CONTROL

9 Periods

Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing, Costing of service sector, Just-in time approach, Material Requirement Planning, Enterprise Resource Planning. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

TOM AND OPERATIONS REASEARCH TOOLS

9 Periods

Total Quality Management and Theory of constraints, Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor
	&Francis, 2016
3	Nigel J, Engineering Project Management , John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall of
	India, New Delhi, 2011.
5	https://archive.nptel.ac.in/courses/110/104/110104073/

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Apply the costing concepts and their role in decision making.	K3
CO2	Apply the project management concepts and analyze their various aspects in	K4
	selection.	
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various budgetary	K2
	control techniques.	
CO5	Become familiar with quantitative techniques in cost management.	K3

COs/Pos	PO1	PO2	PO3	PO4	PO5
CO1	1	1	2	1	1
CO2	2	1	1	1	-
CO3	2	2	2	-	-
CO4	1	1	1	1	1
CO5		2	1	1	-
23MFOE14	0	Ente Itus	30 /1	1	1
- Slight, 2 – Moderate, 3 –	Substantial	PAULICIAN C		1	

ASSESSMENT F	PATTERN - THE	ORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	(K1) /0	(IXZ) /0	40	60	(K3) /0	(K0) /0	100
CAT2		30	30	40			100
Individual		888 VC	40	60			100
Assessment 1 /							
Case Study 1/		O'THE O'T	0000				
Seminar 1 /		1620	S COLUMN				
Project1							
Individual		30	30	40			100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE		20	40	40			100

23MFOE15	COMPOSITE MATERIALS (Common to all Branches)							
PREREQUISI	TES	CATEGORY	L	T	P	C		
	NIL	OE	3	0	0	3		
Course Objectives	To summing the sharesteristics of composite materials and critery of							
UNIT – I	INTRODUCTION			9	Per	riods		
composites. Fu	·			nent	on	overall		
UNIT – II	REINFORCEMENT					riods		
Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isosteresconditions.								
UNIT – III	MANUFACTURING OF METAL MATRIX COM	MPOSITES		9	Per	riods		
Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing- Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering–Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving- Properties and applications.								
UNIT – IV	MANUFACTURING OF POLYMER MATRIX (COMPOSITE		9	Per	riods		
Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method –Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.								

UNIT - V STRENGTH ANALYSIS OF COMPOSITES

9 Periods

Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1		Chawla K.K., Composite Materials, Springer, 2013.
2	'	Lubin.G, Hand Book of Composite Materials , Springer New York, 2013.
3	'	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	!	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz, 2013.
5	'	https://nptel.ac.in/courses/112104168

COUL	RSE OUTCOMES:	Bloom's Taxonomy
	completion of the course, the students will be able to:	Mapped
CO1	Know the characteristics of composite materials and effect of reinforcement in composite materials.	K2
CO2	Know the various reinforcements used in composite materials.	K2
CO3	Understand and apply the manufacturing processes of metal matrix composites	K3
CO4	Understand and apply the manufacturing processes of polymer matrix composites.	K3
CO5	Analyze the strength of composite materials.	K4

COURSE ARTICULATION MATRIX:						
COs/Pos	PO1	PO2	PO3	PO4	PO5	
CO1	1	2	1	1	1	
CO2	2	2	1	1	2	
CO3	2	1	2	1	1	
CO4	1	2	2	2	1	
CO5	1	2	1	1	1	
23MFOE15	1	2	2	1	1	
1 - Slight, 2 - Moderate, 3 - 3	Substantial					

ASSESSMENT P	ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1		60	40				100	
CAT2			60	40			100	
Individual		60	40				100	
Assessment 1 /								
Case Study 1/			mmn					
Seminar 1 /		000	9	90				
Project1		OV TO	See By the	(2)				
Individual			60	40			100	
Assessment 2 /								
Case Study 2/		180 100						
Seminar 2 /				11				
Project 2			STEP 1	//				
ESE		40	40	20			100	

22TEQE16	GLOBAL WARN	MING SCIENCE						
23TEOE16	(Common to all Branches)							
PREREQUISIT	ΓES	CATEGORY	L	T	P	С		
	NIL	OE	3	0	0	3		
Course	To make the students learn about the material co	onsequences of climate	change,	sea l	evel o	chang		
Objectives due to increase in the emission of greenhouse gases and to examine the science be					d miti	igation		
	and adaptation proposals.							
UNIT – I	INTRODUCTION							
Terminology rel	lating to atmospheric particles - Aerosols - Types	, characteristics, meas	surements	- Pa	article	e mas		
spectrometry - A	Anthropogenic-sources, effects on humans.							
UNIT - II CLIMATE MODELS					9 Periods			
General climate model, land model	modeling- Atmospheric general circulation mode del concept, paleo-climate - Weather prediction by	_		n mo	del, s	sea ic		
General climate model, land mod Climate Sensitiv	modeling- Atmospheric general circulation modedel concept, paleo-climate - Weather prediction by rity - Forcing and feedback.	numerical process. In		n mo	del, s	sea ic		
General climate model, land mod Climate Sensitiv UNIT – III	modeling- Atmospheric general circulation model del concept, paleo-climate - Weather prediction by vity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST	numerical process. In	npacts of	n mo	del, sate ch	sea ic		
General climate model, land mod Climate Sensitiv UNIT – III Carbon cycle-pr	modeling- Atmospheric general circulation model concept, paleo-climate - Weather prediction by rity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST occss, importance, advantages - Carbon on earth -	numerical process. In	irs - Inte	n mo	del, sonte che per per per per per per per per per pe	sea ice		
General climate model, land mod Climate Sensitiv UNIT – III Carbon cycle-pr human activities	modeling- Atmospheric general circulation model concept, paleo-climate - Weather prediction by vity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST cocess, importance, advantages - Carbon on earth - Gand carbon cycle - Geologic time scales - Fossil fundamental concept.	numerical process. In	irs - Inte	n mo clima ractic	del, sonte character del del, sonte character del	sea ice lange riods		
General climate model, land model, land model, land model with the control of the	modeling- Atmospheric general circulation model concept, paleo-climate - Weather prediction by rity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST ocess, importance, advantages - Carbon on earth - Gand carbon cycle - Geologic time scales - Fossil fur GREENHOUSE GASES	numerical process. In Global carbon reservo els and energy - Pertur	irs - Inte	n mo clima ractic	del, so dell'elle, so dell	sea ice ange riods		
General climate model, land model, land model, land model, land model, land land land land land land land land	modeling- Atmospheric general circulation mode del concept, paleo-climate - Weather prediction by rity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST ocess, importance, advantages - Carbon on earth - 6 and carbon cycle - Geologic time scales - Fossil fur GREENHOUSE GASES attion - Layer model - Earth's atmospheric composition	numerical process. In Global carbon reservo els and energy - Pertur	irs - Inte	n mo clima ractic	del, so dell'elle, so dell	sea ice ange riods		
General climate model, land model, land model, land model, land model with the control of the co	modeling- Atmospheric general circulation model concept, paleo-climate - Weather prediction by rity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST occss, importance, advantages - Carbon on earth - Grand carbon cycle - Geologic time scales - Fossil fur GREENHOUSE GASES attion - Layer model - Earth's atmospheric compositionactive equilibrium - Earth's energy balance.	numerical process. In Global carbon reservo els and energy - Pertur	irs - Inte	ractic	del, son te che che che che che che che che che ch	riods riods reathe		
General climate model, land model, land model, land model, land model, land land climate and climate - Radinate - Radinat	modeling- Atmospheric general circulation model concept, paleo-climate - Weather prediction by vity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST cocess, importance, advantages - Carbon on earth - Grand carbon cycle - Geologic time scales - Fossil fur GREENHOUSE GASES ation - Layer model - Earth's atmospheric compositionactive equilibrium - Earth's energy balance. GEO ENGINEERING	numerical process. In Global carbon reservo els and energy - Pertur ition and Green house	irs - Interbed carbo	ractic	9 Per on w	riods riods riods riods riods		
General climate model, land model, land model, land model, land model, land model, land climate and cl	modeling- Atmospheric general circulation model concept, paleo-climate - Weather prediction by rity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST occss, importance, advantages - Carbon on earth - Grand carbon cycle - Geologic time scales - Fossil fur GREENHOUSE GASES attion - Layer model - Earth's atmospheric compositionactive equilibrium - Earth's energy balance. GEO ENGINEERING - Strategies - Carbon dioxide removal - Solar radioactive and carbon dioxide removal - Solar radioactive equilibrium - Earth's energy balance.	numerical process. In Global carbon reservo els and energy - Pertur ition and Green house	irs - Interbed carbo	ractic	9 Per on w	riods riods riods riods riods		
General climate model, land model, land model, land model, land model, land model, land climate and climate - Ray UNIT - V Solar mitigation global warming	modeling- Atmospheric general circulation model concept, paleo-climate - Weather prediction by vity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST cocess, importance, advantages - Carbon on earth - Grand carbon cycle - Geologic time scales - Fossil fur GREENHOUSE GASES ation - Layer model - Earth's atmospheric compositionactive equilibrium - Earth's energy balance. GEO ENGINEERING - Strategies - Carbon dioxide removal - Solar rad for sea level rise, drought, glacier extent.	numerical process. In Global carbon reservo els and energy - Pertur ition and Green house	irs - Interbed carbo	ractic	9 Per on w	riods riods riods riods riods		
General climate model, land model, land model, land model, land model, land model, land climate and cl	modeling- Atmospheric general circulation model concept, paleo-climate - Weather prediction by vity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST cocess, importance, advantages - Carbon on earth - Grand carbon cycle - Geologic time scales - Fossil fur GREENHOUSE GASES ation - Layer model - Earth's atmospheric compositionactive equilibrium - Earth's energy balance. GEO ENGINEERING - Strategies - Carbon dioxide removal - Solar rad for sea level rise, drought, glacier extent.	numerical process. In Global carbon reservo els and energy - Pertur ition and Green house	irs - Interbed carbo	ractic	9 Per on w	riods riods riods riods riods		

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and Its
	Consequences", Princeton University Press, 1^{st} Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5 th Edition, 2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions for Global
	Warming", Elsevier, 1 st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1st edition, 2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global energybalance",
	Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Understand the global warming in relation to climate changes throughout the earth.	K2
CO2	Assess the best predictions of current climate models.	K4
CO3	Understand the importance of carbon cycle and its implication on fossil fuels.	K2
CO4	Know about current issues, including impact from society, environment, economy as well	K4
C04	as ecology related to greenhouse gases.	K4
CO5	Know the safety measures and precautions regarding global warming.	K5

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	2	1	1	2
CO2	1	1	2	1	1	1
CO3	1	2	1	1	1	2
CO4	1	1	1	1	1	2
CO5	2	1	2	1	1	2
23TEOE16	1	1	1	1	1	2

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	35	35	10	-	-	100
CAT2	15	25	25	20	15	-	100
Individual			The same				
Assessment 1/		1 (0 1 1 2)	of Se Bride Plan	697			
Case Study 1/	25	20	20	35	-	-	100
Seminar 1 /]
Project 1		18 8]
Individual				1			
Assessment 2/				//]
Case Study 2/	20	20	35	15	10	-	100
Seminar 2/		(8)					
Project 2		A B	10.	V.S.]
ESE	25	20	25	20	10	-	100

23TEOE17	INTRODUCTION TO NANO ELECTRONICS (Common to all Branches)					
PREREQUISIT	TES	CATEGORY	L	T	P	C
ENGINEERIN	G PHYSICS	OE	3	0	0	3
Course	To make the students provide strong, essential, important	methods and four	datio	ons o	f qua	antum
Objectives	mechanics and apply quantum mechanics on engineering fiel	ds.				
UNIT – I	UNIT – I INTRODUCTION					ds
Particles and W	aves - Operators in quantum mechanics - The Postulates of	quantum mechanic	s - T	he S	chro	linger
equation values	and wave packet Solutions - Ehrenfest's Theorem.					
UNIT – II	ELECTRONIC STRUCTURE AND MOTION			9 I	Perio	ds
Atoms- The Hy	drogen Atom - Many-Electron Atoms - Pseudopotentials, N	uclear Structure, N	lolec	ules,	Crys	stals -
Translational me	otion - Penetration through barriers - Particle in a box - Tw	o terminal quantun	n dot	devi	ices -	- Two
terminal quantur	n wire devices.					
UNIT – III	SCATTERING THEORY			9 I	Perio	ds
The formulation	of scattering events - Scattering cross section - Stationary se	cattering state - Par	tial	wave	stati	onary
scattering events	s - multi-channel scattering - Solution for Schrodinger equation	on- Radial and wave	e equ	ation	1 - G1	reens'
function.						
UNIT – IV	CLASSICAL STATISTICS			9 I	Perio	ds
Probabilities and	1 microscopic behaviours - Kinetic theory and transport process	esses in gases - Ma	ignet	ic pr	opert	ies of

QUANTUM STATISTICS

9 Periods

Statistical mechanics - Basic Concepts - Statistical models applied to metals and semiconductors - The thermal properties of solids- The electrical properties of materials - Black body radiation - Low temperatures and degenerate systems.

Contact Periods:

UNIT – V

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

REFERENCES:

materials - The partition function.

1	Vladimi V.Mitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "Introduction to Nanoelectronics:
	Science, Nanotechnology, Engineering, and Applications" , Cambridge University Press, 1 st Edition, 2007.
2	Vinod Kumar Khanna, "Introductory Nanoelectronics: Physical Theory and Device Analysis", Routledge,
	<i>I</i> st Edition, 2020.
3	George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States Edition, 2007.
4	Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.
5	Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian Edition,
	2009.
6	Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum Statistical
	Mechanics", Wiley, 2004.
7	A. F. J. Levi, "Applied Quantum Mechanics", 2 nd Edition, Cambridge, 2012.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Understand the postulates of quantum mechanics.	K2
CO2	Know about nano electronic systems and building blocks.	K2
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4
CO4	Learn the concepts involved in kinetic theory of gases.	K2

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	1
CO2	2	2	1	1	1	1
CO3	2	2	2	1	1	1
CO4	1	1	1	1	1	1
CO5	1	1	1	1	1	1
23TEOE17	1	1	1	1	1	1
1 – Slight, 2 –	Moderate, 3 –	Substantial		•	•	•

ASSESSMENT	PATTERN – THI	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	30	30	20	20	-	-	100
CAT2	30	30	20	20	-	-	100
Individual		760000	CHINES THE	16			
Assessment 1/		V 695	BELLEVE CO				
Case Study 1/	35	25	20	20	-	-	100
Seminar 1/			-	77			
Project 1			- 7	(
Individual			TO A PORT				
Assessment 2/		// 4/6		/			
Case Study 2/	30	25	20	25	-	-	100
Seminar 2/		al E	0.0	Vla			
Project 2		882		400			
ESE	20	30	30	20	-	-	100

23TEOE18	GREEN SUPPLY CHAIN MANAGEMENT					
	(Common to	all Branches)				
PREREQUISI	TES	CATEGORY	L	T	P	C
	NIL	OE	3	0	0	3
Course	To make the students learn and focus on the	fundamental strates	gies, t	ools a	nd tech	niques
Objectives	required to analyze and design environmentally	sustainable supply	chain	system	ıs.	
UNIT – I	INTRODUCTION				9 Peri	ods
Intro to SCM	- complexity in SCM, Facility location - Logis	tics - Aim, activit	ies, ir	nporta	nce, pr	ogress,
current trends -	Integrating logistics with an organization.					
UNIT – II	- II ESSENTIALS OF SUPPLY CHAIN MANAGEMENT 9 Periods					
Basic concepts	of supply chain management - Supply chain open	rations – Planning a	ınd so	urcing	- Maki	ng and
delivering - Su	pply chain coordination and use of technology - D	Developing supply of	hain s	system	s.	
UNIT – III	PLANNING THE SUPPLY CHAIN	PLANNING THE SUPPLY CHAIN 9 Periods				
Types of deci	sions – strategic, tactical, operational - Logist	tics strategies, imp	leme	nting t	he stra	itegy -
Planning resou	arces - types, capacity, schedule, controlling	material flow, n	neasur	ing ar	nd imp	roving
performance.						
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN				9 Peri	ods
Procurement –	cycle, types of purchase - Framework of e-pro	ocurement - Invent	ory n	nanage	ment –	EOQ,
uncertain dema	and and safety stock, stock control - Material hand	dling – Purpose of	wareh	ouse a	nd own	ership,
layout, packag	ing - Transport - mode, ownership, vehicle	routing and sched	uling	model	ls- Tra	velling
salesman probl	ems - Exact and heuristic methods.					
UNIT – V	SUPPLY CHAIN MANAGEMENT STRATE	EGIES			9 Peri	ods
Five key conf	iguration components - Four criteria of good	supply chain stra	tegies	- Ne	xt gen	eration
strategies- Nev	v roles for end-to-end supply chain management	t - Evolution of su	pply	chain c	organiza	ation –
International is	sues in SCM – Regional differences in logistics.					
Contact Perio	ds:					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0	0 Periods T	otal:	45 Per	iods	

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply Chain
	Management", Routledge, 1 st Edition, 2019.
2	Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle
	Approach",McGraw-Hill Education, 1 st Edition, 2011.
3	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management", Routledge, 1 st Edition, 2017.
4	Arunachalam Rajagopal, "Green Supply Chain Management: A Practical Approach", Replica, 2021.
5	Mehmood Khan, Matloub Hussain and Mian M. Ajmal, "Green Supply Chain Management for
	Sustainable Business Practice", IGI Global, 1 st Edition, 2016.
6	S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.
7	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction", Routledge,
	<i>I</i> st Edition, 2017.

COUF	RSE OUTCOMES:	Bloom's Taxonom
Upon	completion of the course, the students will be able to:	y Mapped
CO1	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and operational decisions.	K5
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	K3
CO4	Analyze inventory management models and dynamics of supply chain.	K4

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	3
CO2	2	2	1	1	1	1
CO3	2	1	2	1	1	1
CO4	2	2	1	1	2	2
CO5	1	1	2	1	1	3
23TEOE18	2	1	1	1	1	2

ASSESSMENT	PATTERN – THI	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	25	30	10	10	-	100
CAT2	30	40	20	10	-	-	100
Individual		0.00	9 17				
Assessment 1/		(V)55	And Bridge	(2)			
Case Study 1/	30	20	25	15	10	-	100
Seminar 1/			-	77			
Project 1			*	//			
Individual			AUD AUD	· 1/2			
Assessment 2/		// ^		//			
Case Study 2/	35	30	25	10	-	-	100
Seminar 2/		1 8		1			
Project 2		ALL IN		7.69g			
ESE	30	30	20	10	10	-	100

22DCOE10				DIS	TRIE	BUT	TI	ON	A	U	TC	M	A'	ΓΙΟ	N S	YS	ГΕ	M					
23PSOE19						((Co	omi	m(on	to	all	Bı	ranc	ches	s)							
PREREQUISIT	ΓES													CA	TE	GC	RY	7	L		T	P	C
			NIL												()E			3		0	0	3
Course	To stu	ıdy abou	t the dist	tributed	auto	omat	atio	n a	nd	l ec	con	om	nic	eva	luat	ion	sch	em	es of	pc	wer	netv	vork
Objectives																							
UNIT – I	INTR	RODUCT	ΓΙΟΝ																			9 Pe	riods
Introduction to	Distrib	oution A	utomatio	on (DA	<u>v) - (</u>	Con	ntro	ol s	sys	stei	m	inte	erf	ace	s- (on	rol	an	d da	ta	requ	iiren	ents-
Centralized (vs)	decenti	ralized c	ontrol- I	DA syste	em-D	DA l	haı	ırdv	var	re-l	DA	S S	sof	twa	re.								
UNIT – II DISTRIBUTION AUTOMATION FUNCTIONS 9 Period								riods															
DA capabilities	- Auto	omation	system	comput	ter fa	facili	litie	es-	M	an	age	eme	ent	pre	oces	ses	- Ir	for	matio	on	maı	nagei	nent-
System reliabilit	y mana	agement-	System	efficier	ncy n	mana	nage	gem	en	t- V	Vo	ltag	ge	mar	age	me	nt-	Loa	d ma	ına	gem	ent.	
UNIT – III	UNIT – III COMMUNICATION SYSTEMS 9							9 Pe	riods														
Communication	requir	rements	- relial	bility- (Cost	t eff	ffec	ctiv	en	ess	S-	Da	ta	rec	quir	eme	nts	- T	wo	wa	ay c	apab	ility-
Communication	during	outages	and fau	ılts - Ea	ise of	of op	pera	atic	n	an	d r	nai	nte	enar	ice-	Co	nfo	rmi	ng to	th	ne ar	chite	cture
of flow. Distrib	oution 1	line carr	rier- Rip	ple con	ntrol-	l-Zer	ro	cro	SS	sing	g t	ech	nni	que	- T	elep	hor	ıe,	cable	eΤV	V, r	adio,	AM
broadcast, FM S	SCA,VI	HF radio	, micro	wave sa	atellit	ite, f	fibe	er (opt	tics	s-H	Iyb:	ric	l co	mm	uni	ati	on s	syste	ms	use	ed in	field
tests.																							
UNIT – IV	ECO	NOMIC	EVAL	UATIO	N M	1ET	ГНО	OD	S	_		_										9 Pe	riods
Development an	nd evalu	uation o	f alterna	ate plans	s- se	elect	t st	tud	y	are	ea -	– S	Sel	ect	stuc	ly p	erio	od-	Proj	ect	loa	d gro	wth-
Develop alternat	ives- C	Calculate	operatir	ng and n	naint	tenai	anc	e c	ost	ts-l	Eva	alua	ate	alte	erna	tive	s.						
UNIT – V	ECO	NOMIC	COMP	ARISO	N			-			-	37	į.									9 Pe	riods
Economic comp	oarison	of alte	rnate p	lans-Cla	assific	icati	ion	1 0	f	exp	per	ises	s -	- ca	pita	ıl e	хрє	ndi	tures	-C	omp	arisc	n of
revenue require	ments	of alter	native p	olans-Bo	ook 1	life	ar	nd	cc	onti	inu	iing	3 1	olan	t ar	aly	sis-	Y	ear l	эy	yea	r rev	enue
requirement ana	lysis, S	Short ter	m analy	sis- End	d of	stud	ıdy	ad	jus	stm	nen	t-B	re	ak e	ever	an	aly	sis,	sens	itiv	vity	anal	ysis -
Computational a	ids.				魚	10	2/11	3	A	1		1											
Contact Periods	s:			11	89	1		-	-	1	b.	J											
Lecture: 45 Per	iods	Tuto	rial: 0 l	Periods	P	Pract	ctic	cal:	0	Pe	ric	ods	è	Tot	al: 4	45 I	eri	ods	·				

1	M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications,
	Ltd., 2010.
2	Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design", Springer
	Science & Business Media, 21-Mar-2013
3	IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE
	Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society.
	Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
4	Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	Upon completion of the course, the students will be able to:	
CO1	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed automation.	K3
CO4	Study the economic evaluation method	K4
CO5	Understand the comparison of alternate plans	K5

COs/Pos	PO1	PO2	PO3	PO4
CO1	2	-	1	3
CO2	3	-	3	2
CO3	3	-	3	2
CO4	3	-	3	1
CO5	2	-	1	2
23PSOE19	3	-	3	2

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20%	30%	20%	10%	20%	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	10%	30%	20%	20%	-	100%
Assessment1/		W 5 5	PRINCIPLE OF				
Case study1/							
Seminar 1/		1100	70				
Project1							
Individual	20%	30%	10%	20%	20%	-	100%
Assessment2/		// <u>û</u>	(多)(多)	. //			
Case study2/		11 8		0.1			
Seminar 2 /		AL JA	. "	VA.			
Project2							
ESE	30%	20%	20%	20%	10%	-	100%

22BCOE20	ELECTRICITY TRADING AND	ELECTRICITY A	CTS			
23PSOE20	(Common to all I	Branches)				
PREREQUISIT	TES	CATEGORY	L	T	P	C
	NIL	OE	3	0	0	3
Course	To acquire expertise on Electric supply and demand	of Indian Grid, gair	expos	ure o	n en	ergy
Objectives	trading in the Indian market and infer the electricity ac	ts and regulatory au	thoritie	s.		
UNIT – I	ENERGY DEMAND			9	Per	iods
Basic concepts	in Economics - Descriptive Analysis of Energy D	Demand - Decompo	sition	Anal	ysis	and
Parametric App	roach - Demand Side Management - Load Managemen	nt - Demand Side M	lanage:	ment	- En	ergy
Efficiency - Reb	ound Effect					
UNIT – II	ENERGY SUPPLY			9	Per	ods
Supply Behavio	r of a Producer - Energy Investment - Economics of N	Ion-renewable Resor	urces -	Econ	omic	s of
Renewable Ene	rgy Supply Setting the context - Economics of Ren	ewable Energy Sup	ply -	Econ	omic	s of
Electricity Supp	ly					
UNIT – III	ENERGY MARKET			9	Peri	iods
^	tion as a Market Form - Why is the Energy Market not	•		Marke	et Fai	lure
and Monopoly -	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E	ra II - Oil Market: C	PEC			
UNIT – IV	LAW ON ELECTRICITY				Per	
	the Electricity Law; Constitutional Design - Evolution of		•		ature	s of
Electricity Act,	2003 - Evolution of Laws on Electricity - Salient Featur		Act 200	03		
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRI				Per	
Regulatory Com	missions - Appellate Tribunal - Other Institutions under	er the Act - Electrici	ty (Am	endn	nent)	Bill
2020/2021. A C	critical Comment - Renewable Energy - Role of Civil	Society; Comments	on Dra	aft Re	enew	able
Energy Act, 201						
Contact Period						
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods	}			

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of
	Energy", Vol. 1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
4	Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands,
	2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
6	Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and
	Practices ", Cambridge Univesity Press, 2014.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Describe electric supply and demand of power grid	K1
CO2	Summarize various energy trading strategies	K2
CO3	Relate the electricity acts practically	К3
CO4	Cite the electricity regulatory authorities	K2
CO5	Analyze/check the existing power grid for its technical and economical sustainability	K4

COs/Pos	PO1	PO2	PO3	PO4
CO1	3	-	3	3
CO2	3	-	1	1
CO3	3	-	2	2
CO4	3	-	1	2
CO5	3	-	3	3
23PSOE20	3	-	2	2

ASSESSMENT	PATTERN – TI	HEORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	30%	30%	20%	-	-	100%
Assessment1/		VES	HODDA C	(A)			
Case study1/							
Seminar 1/			-	7			
Project1			*				
Individual	20%	30%	AUD-	20%	-	40%	100%
Assessment2/		// ^/		11			
Case study2/		A	ALL STATES	. 11			
Seminar 2 /		A &		W/B			
Project2		THE STATE OF	7	768			
ESE	30%	30%	No.	20%	20%	-	100%

22DCOE21	MODERN AUTOMOTIV	VE SYSTEMS								
23PSOE21	(Common to all F	Branches)								
PREREQUISI	TES	CATEGORY	L	T	P	C				
	NIL	OE	3	0	0	3				
Course	To expose the students with theory and applications of	Automotive Electri	cal an	d Elec	ctroni	c				
Objectives	Systems.									
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIVE	NTRODUCTION TO MODERN AUTOMOTIVE ELECTRONICS 9 Periods								
Introduction to	modern automotive systems and need for electronics	in automobiles- Ro	le of	electr	onics	and				
microcontroller	s- Sensors and actuators- Possibilities and challen	ges in automotive	indu	stry-	Enal	bling				
technologies an	d industry trends.									
UNIT – II	SENSORS AND ACTUATORS			- 1	9 Per					
Introduction- ba	asic sensor arrangement- Types of sensors- Oxygen se	ensor, engine cranks	haft a	ngula	r pos	ition				
sensor – Engin	e cooling water temperature sensor- Engine oil pressu	ire sensor- Fuel me	tering-	- veh	icle s	peed				
sensor and det	onation sensor- Pressure Sensor- Linear and angle s	sensors- Flow sensors	or- Te	mper	ature	and				
humidity sensor	rs- Gas sensor- Speed and Acceleration sensors- Knock	sensor- Torque sens	sor- Y	aw ra	ite sei	nsor-				
Tyre Pressure se	ensor- Actuators - Stepper motors – Relays.									
UNIT – III	POWERTRAIN CONTROL SYSTEMS IN AUTO				9 Per					
	smission Control - Digital engine control system: Ope	-	_		-					
	and warm up control- Acceleration- Detonation and idle	•	aust e	missi	on co	ntrol				
	board diagnostics- Future automotive powertrain system									
UNIT – IV	SAFETY, COMFORT AND CONVENIENCE SYS				9 Per					
	Anti-lock Braking Control- Traction and Stability con	ntrol- Airbag contro	l syste	m- S	usper	nsion				
	g control- HVAC Control.									
UNIT – V	ELECTRONIC CONTROL UNITS (ECU)				9 Per					
	Energy Sources for ECU, Need for ECUs- Advance					_				
_	ECUs- V-Model for Automotive ECU's- Architecture				,					
1	Tricore) used in the design of automobile ECUs- On chi	ip peripherals, proto	col int	erfac	es, ar	ıalog				
and digital inter										
Contact Period	s:									

Contact Periods:

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods **Lecture: 45 Periods**

	KEI EKEI (CEB
1	Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John
	Wiley and Sons, 2001.
2	M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press,
	series on Power Engineering, 2000.
3	Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power
	SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
4	G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2

CO3	Analyze the impact of modern automotive techniques in various Engineering	K4
	applications	
CO4	Develop modern automotive control system for electrical and electronics systems	K6
CO5	Understand the function of sensors and actuators	K2

COURSE ARTICULATION M	IATRIX		,	_
COs/Pos	PO1	PO2	PO3	PO4
CO1	3	-	1	3
CO2	3	-	3	2
CO3	3	-	3	2
CO4	2	-	3	1
CO5	2	-	1	2
23PSOE21	3	-	2	2
1 – Slight, 2 – Moderate, 3 – Sub	stantial			

ASSESSIVIEN I	PATTERN – TH	ILUKY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual Assessment1/ Case study1/ Seminar 1/ Project1	20%	30%		20%	-	30%	100%
Individual Assessment2/ Case study2/ Seminar 2 / Project2	20%	30%		20%	-	40%	100%
ESE	30%	30%	20%	20%	-	-	100%

22DEOE22	VIRTUAL INSTRUMENTATION									
23PEOE22	(Common to all Branches)									
PREREQUISI	CATEGORY	L	T	P	C					
	OE	3	0	0	3					
Course	rse To comprehend the Virtual instrumentation programming concepts towards measurements and									
Objectives	control and to instill knowledge on DAQ, signal cond	litioning and its associ	ated	softw	are to	ools				
UNIT – I	UNIT – I INTRODUCTION 7 Pe					Periods				
Introduction - advantages - Block diagram and architecture of a virtual instrument - Conventional Instruments					uments					
versus Traditional Instruments - Data-flow techniques, graphical programming in data flow, compar				ariso	n with					
conventional pr	ogramming.									

UNIT – II GRAPHICAL PROGRAMMING AND LabVIEW

9 Periods

Concepts of graphical programming - LabVIEW software - Concept of VIs and sub VI - Display types - Digital - Analog - Chart and Graphs. Loops - structures - Arrays - Clusters- Local and global variables - String - Timers and dialog controls.

UNIT – III MANAGING FILES & DESIGN PATTERNS

11 Periods

High-level and low-level file I/O functions available in LabVIEW – Implementing File I/O functions to read and write data to files – Binary Files – TDMS – sequential programming – State machine programming – Communication between parallel loops –Race conditions – Notifiers & Queues – Producer Consumer design patterns

UNIT – IV PC BASED DATA ACQUISITION

9 Periods

Introduction to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, Resolution, - analog inputs and outputs - Single-ended and differential inputs - Digital I/O, counters and timers, DMA, Data acquisition interface requirements - Issues involved in selection of Data acquisition cards - Use of timer-counter and analog outputs on the universal DAQ card.

UNIT - V DATA ACQUISITION AND SIGNAL CONDITIONING

9 Periods

Components of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ hardware – Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation – Signal conditioning systems – Synchronizing measurements in single & multiple devices – Power quality analysis using Electrical Power Measurement tool kit.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.
2	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
3	Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional
	Publishing, 2019
4	Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
5	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and
	Control", Newness, 2000

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	K6

CO5 Familiarize and expe	eriment with DAQ	and Signal Cond	itioning		K3
COURSE ARTICULATION	ON MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	3	-	3	2	1
CO2	3	-	3	2	1
CO3	3	-	2	2	2
CO4	3	1	3	3	1
CO5	3	1	3	3	2
23PEOE22	3	1	3	2	1
1 – Slight, 2 – Moderate, 3 -	I – Slight, 2 – Moderate, 3 – Substantial				

ASSESSMENT	T PATTERN – TI	HEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	40	15	15	-	-	100
CAT2	15	10	25	30	20	-	100
Individual	10	10	20	30	20	10	100
Assessment1/		4 (D) 10 (D)	0,65 BK (16 617)	29/			
Case study1/		(19.30	जामारमध्य				
Seminar 1/							
Project1		100	-0				
Individual	25	40	20	15	-	-	100
Assessment2/		11 70		11			
Case study2/		// <u>a</u> //	不管人	//			
Seminar 2 /		1 8					
Project2		A B		A B			
ESE	30	25	15	20	5	5	100

22DEOE22	ENERGY MANAGEMENT	SYSTEMS				
23PEOE23	(Common to all Bra	anches)				
PREREQUISI	ΓES	CATEGORY	L	T	P	C
	NIL	OE	3	0	0	3
Course	To Comprehend energy management schemes, perform	n energy audit ar	nd ex	recut	e ec	onomic
Objectives	analysis and load management in electrical systems.					
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND MANAGEMENT 9 Periods					
Energy Conserv	ation Act 2001 and policies – Eight National Missions - B	asics of Energy ar	nd its	forr	ns (T	hermal
and Electrical)	- Energy Management and Audit - Energy Managers an	nd Auditors - Typ	es a	nd N	l etho	dology
Audit Report -	Material and energy balance diagrams Energy Monitorin	ng and Targeting.				
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENE	CRATION			9 F	Periods
Boiler Systems	- Types - Performance Evaluation of boilers - Energ	y Conservation (Орро	rtuni	ity -	Steam
Distribution - H	Efficient Steam Utilisation - Furnaces:types and classifi	cation - Performa	ance	eval	uatio	n of a
typical fuel fire	ed furnace. Cogeneration: Need - Principle - Technica	l options - classi	ificat	ion	- Te	chnical
parameters and	factors influencing cogeneration choice - Prime Movers - T	Γrigeneration.				
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS				9 F	Periods
Electricity Billin	ng – Electricity load management - Maximum Demand Co	ontrol - Power Fac	tor i	mpro	vem	ent and
its benefits - pf	controllers - capacitors - Energy efficient transformers	and Induction mo	tors	- rev	vindi	ng and
other factors inf	luencing energy efficiency - Standards and labeling progr	amme of distribut	ion t	ransf	orme	rs and
IM - Analysis of	f distribution losses - demand side management - harmoni	cs - filters - VFD	and	its se	electi	on.
UNIT – IV	STUDY OF ELECTRICAL UTILITIES					Periods
	es - Performance - Air system components - Efficient					
Compressor ca	pacity assessment - HVAC: psychrometrics and air	-conditioning pro	cess	es -	Ty	pes of
	stem - Compressor types and applications - Performan			gerat	ion p	olants -
Lighting Systems: Energy efficient lighting controls - design of interior lighting - Case study.						
UNIT – V PERFORMANCE ASSESSMENT FOR EQUIPMENT 9 Period					eriods	
Performing Financial analysis: Fixed and variable costs - Payback period - ROI - methods - factors affecting						
	analysis. Energy Performance Assessment: Heat exchangers - Fans and Blowers - Pumps. Energy Conservation					
	in buildings and ECBC.					
Contact Period	s:					
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods				

1	Murphy W.R. and G.Mckay Butter worth, "Energy Management", Heinemann Publications, 2007
2	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
	Publishers, 2012.
3	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
	edition, Technical Publications, 2019.
4	S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali
	Prakashan Publications, 2021.
5	www.em-ea.org/gbook1.asp

COUI	RSE OUTCOMES:	Bloom's			
		Taxonomy			
Upon	Upon completion of the course, the students will be able to:				
CO1	Analyze the feature of energy audit methodology and documentation of report.	К3			
CO2	Perform action plan and financial analysis	K4			
CO3	Familiarize with thermal utilities.	K4			
CO4	Familiarize with electrical utilities.	K4			

CO5 Perform assessment		K5							
COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5				
CO1	3	2	2	1	1				
CO2	3	2	2	1	1				
CO3	3	2	2	1	1				
CO4	3	2	2	1	1				
CO5	3	2	2	1	1				
23PEOE23	3	2	2	1	1				
1 – Slight, 2 – Moderate, 3 –	- Substantial				•				

ASSESSMENT I	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	10	30	30	20	10	-	100					
CAT2	10	30	30	20	10	-	100					
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	20	-	100					
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100					
ESE	10	30	30	20	10	-	100					

23PEOE24		ADVANCED ENERGY STORAGE TECHNOLOGY (Common to all Branches)							
PREREQUISI	PREREQUISITES CATEGORY L T								
	NIL	OE	3	0	0	3			
Course	To explore the fundamentals, technologies and application	ons of energy stora	ige						
Objectives									
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTI	NERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION 9 Periods							
	AND CHANGES								

Storage Needs- Variations in Energy Demand- Variations in Energy Supply- Interruptions in Energy Supply- Transmission Congestion - Demand for Portable Energy-Demand and scale requirements - Environmental and sustainability issues-conventional energy storage methods: battery-types.

UNIT – II TECHNICAL METHODS OF STORAGE

9 Periods

Introduction: Energy and Energy Transformations, Potential energy (pumped hydro, compressed air, springs)-Kinetic energy (mechanical flywheels)- Thermal energy without phase change passive (adobe) and active (water)-Thermal energy with phase change (ice, molten salts, steam)- Chemical energy (hydrogen, methane, gasoline, coal, oil)- Electrochemical energy (batteries, fuel cells)- Electrostatic energy (capacitors), Electromagnetic energy (superconducting magnets)- Different Types of Energy Storage Systems.

UNIT – III PERFORMANCE FACTORS OF ENERGY STORAGE SYSTEMS

9 Periods

Energy capture rate and efficiency- Discharge rate and efficiency- Dispatch ability and load flowing characteristics, scale flexibility, durability – Cycle lifetime, mass and safety – Risks of fire, explosion, toxicity-Ease of materials, recycling and recovery- Environmental consideration and recycling, Merits and demerits of different types of Storage.

UNIT – IV APPLICATION CONSIDERATION

9 Periods

Comparing Storage Technologies- Technology options- Performance factors and metrics- Efficiency of Energy Systems- Energy Recovery - Battery Storage System: Introduction with focus on Lead Acid and Lithium-Chemistry of Battery Operation, Power storage calculations, Reversible reactions, Charging patterns, Battery Management systems, System Performance, Areas of Application of Energy Storage: Waste heat recovery, Solar energy storage, Green house heating, Power plant applications, Drying and heating for process industries, energy storage in automotive applications in hybrid and electric vehicles.

UNIT - V HYDROGEN FUEL CELLS AND FLOW BATTERIES

9 Periods

Hydrogen Economy and Generation Techniques, Storage of Hydrogen, Energy generation - Super capacitors: properties, power calculations – Operation and Design methods - Hybrid Energy Storage: Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor "Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation) Bacitor + Fuel Cell or Flow Battery operation-Applications: Storage for Hybrid Electric Vehicles, Regenerative Power, capturing methods.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES:

DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.
 Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy Storage and Conversion", John Wiley and Sons, 2012.
 Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.
 Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical Society, New Jersy, 2010.

COUI	RSE OUTCOMES:	Bloom's		
		Taxonomy		
upon o	upon completion of the course, the students will be able to:			
CO1	Recollect the historical perspective and technical methods of energy storage.	K1		
CO2	Explain the basics of different storage methods.	K2		
CO3	Determine the performance factors of energy storage systems.	K2		
CO4	Identify applications for renewable energy systems.	K4		
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2		

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5				
CO1	3	1	3	3	3				
CO2	3	1	3	3	3				
CO3	3	1	3	3	3				
CO4	3	1	3	3	3				
CO5	3	1	3	3	3				
23PEOE24	3	1	3	3	3				
1 – Slight, 2 – Moderate, 3 –	Substantial	TO B	A	•					

ASSESSMENT	T PATTERN – TH	IEORY	-	7			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23AEOE25		DESIGN OF D	DIGITAL SYSTEM	S					
		(Commo	on to all Branches)						
PREREQUISITI	ES		CATEGORY	L	T	P	C		
	NIL OE 3 0								
Course To gain knowledge in the design and VHDL programming of synchronous and asynchronous									
Objectives seq	uent	ial circuits, PLD's and the basic concepts of	testing in VLSI circ	uits					
UNIT- IS	SYN	CHRONOUS SEQUENTIAL CIRCUIT	DESIGN			9 Peri	ods		
Analysis of Cloc	ked	Synchronous Sequential Circuits - Modeling	g, state table reduction	on, state a	ssignn	nent, De	sign		
of Synchronous	Sequ	ential circuits, Design of iterative circuits- A	ASM chart –ASM rea	alization.					
		CHRONOUS SEQUENTIAL CIRCUIT				9 Peri			
Analysis of Asy	nchr	onous Sequential Circuits - Races in ASC -	- Primitive Flow Ta	ble - Flo	w Tabl	e Redu	ction		
Techniques, Stat	e As	signment Problem and the Transition Table	– Design of ASC –	Static and	l Dyna	mic Haz	zards		
– Essential Haza	rds-	Data Synchronizers.							
UNIT-III SY	YST	EM DESIGN USING PLDS				9 Peri	ods		
Basic concepts	– Pr	ogramming Technologies - Programmable	Logic Element (Pl	LE) – Pr	ogramı	nable A	rray		
Logic (PLA)-Pro	ograi	nmable Array Logic (PAL) -Design of cor	nbinational and sequ	uential cir	rcuits ı	ising PI	LDs-		
Complex PLDs ((CPL	Ds).							
UNIT-IV IN	TR	ODUCTION TO VHDL				9 Peri	ods		
Design flow -S	Softw	vare tools - VHDL: Data Objects-Data	types - Operators	–Entitie	s and	Archite	ectures		
Components and	d Co	onfigurations - Signal Assignment - Con	current and Sequen	itial state	ments	—Beha	vioral,		
Dataflow and Sta	ructu	ral modeling- Transport and Inertial delays	-Delta delays-Attrib	butes - Ge	enerics-	–Packag	es and		
Libraries.									
UNIT-V LO	OGI	C CIRCUIT TESTING AND TESTABLE	E DESIGN			9 Peri	ods		
Digital logic cir	cuit	testing - Fault models - Combinational logic	circuit testing - Seq	uential lo	gic circ	cuit testi	ng-		
Design for Testa	abilit	y - Built-in Self-test, Board and System Le	vel Boundary Scan -	- Case St	udy: Ti	raffic Li	ght		
Controller.		9							
Contact Periods	s:	1 8	N.						
Lecture: 45 Per	iods	Tutorial: 0 Periods Practical: 0	Periods Total:	45 Perio	ds				

1	Donald G. Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni, "Circuit Design withVHDL", PHILearning,2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", AcademicPress, 1997.
5	Charles HRoth, "Digital Systems Design Using VHDL", Cencage 2 nd Edition 2012.
6	NripendraN.Biswas, "Logic Design Theory" Prentice Hal l of India, 2001.

COUF	RSEOUTCOMES:	Bloom's		
Upon	Upon completion of the course ,students will be able to/have:			
CO1	To design synchronous sequential circuits based on specifications.	Mapped K3		
CO2	To design asynchronous sequential circuits based on specifications	K3		
CO3	Ability to illustrate digital design implementation using PLDs.	K2		
CO4	To develop algorithm and VHDL code for design of digital circuits.	К3		
CO5	Understand the different testing methods for combinational and sequential circuits.	K2		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3	-	2	-	-	1
23AEOE25	3	-	2	-	-	1

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	40%	40%	20%				100%				
CAT2	40%	40%	20%				100%				
Individual		50%	50%	0.00			100%				
Assessment 1 /		767	I Co Brillo all	497.							
Case Study 1/		(9.30	WILLIAM CONTROL								
Seminar 1 /			*								
Project1		100	× ×								
Individual		50%	50%				100%				
Assessment 2 /		// 7/		1							
Case Study 2/		// g\		1							
Seminar 2 /		1 8									
Project 2		A Ba		A Second							
ESE	20%	45%	35%				100%				

The second second

23AEOE26	BASICS OF NANO ELECTRONICS							
	(Common to	all Branches)						
PREREQUISI	TES	CATEGORY	L	T	P	C		
	NIL	OE	3	0	0	3		
Course	The students will be able to acquire knowledge ab	students will be able to acquire knowledge about nano device fabrication technology, nano						
Objective	structures, nano technology for memory devices a	actures, nano technology for memory devices and applications of nano electronics in data						
	transmission.							
UNIT – I	TECHNOLOGY AND ANALYSIS	ECHNOLOGY AND ANALYSIS 9 Periods						
Fundamentals	: Dielectric, Ferroelectric and Optical properties - Film	n Deposition Metho	ods – Lit	hograp	ohy			
Material remo	ving techniques - Etching and Chemical Mechanical	Polishing - Scan	ning Pro	obeTec	hniques	•		
UNIT – II	CARBON NANO STRUCTURES				9 Pe	eriods		
Principles and	concepts of Carbon Nano tubes - Fabrication - E	lectrical, Mechani	cal and	Vibra	tionProp	erties		
- Applications	of Carbon Nano tubes.							
UNIT – III	LOGIC DEVICES				9 Pe	eriods		
Silicon MOSI	FET's: Novel materials and alternative concepts - S	ingle electron dev	ices for	logic	applicat	ions -		
Super conduct	or digital electronics - Carbon Nano tubes for data processing	essing.						
UNIT – IV	MEMORY DEVICES AND MASS STORAGE DE	EVICES			9 Pe	eriods		
	es - Capacitor based Random Access Memories - Mag	N. (10)				nation		
	based on phase change materials - Resistive Random Access Memories - HolographicData storage.							
	UNIT - V DATA TRANSMISSION AND INTERFACING DISPLAYS 9 Periods							
	works - RF and Microwave Communication System	n - Liquid Crysta	ıı Dispi	ays -	Organic	Light		
emitting diode	11	/						
Contact Perio	THE CO.		n · 1					
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Per	riods Total: 45	Periods	8				

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronic and novel
	devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics Science,
	Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C. Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer, 2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher, California", 2003.

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon c	Upon completion of the course, students will be able to/have:			
CO1	Explain principles of nano device fabrication technology.	K2		
CO2	Describe the concept of Nano tube and Nano structure.	K2		
CO3	Explain the function and application of various nano devices	K3		
CO4	Reproduce the concepts of advanced memory technologies.	K2		
CO5	Emphasize the need for data transmission and display systems.	K2		

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	-	2	-	-	1	
CO2	3	-	2	-	-	1	
CO3	3	-	2	-	-	1	
CO4	3	-	2	-	-	1	
CO5	3	-	2	-	-	1	
22AEOE26	3	-	2	-	-	1	
- Slight, 2 - Moderate, 3 - Substantial							

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluatin	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	g (K5) %	(K6) %	%
CAT1	50%	25%	25%				100%
CAT2	50%	25%	25%				100%
Individual	50%	25%	25%				100%
Assessment 1/			- Sum				
Case Study 1/		y Gilbiba	Carrello arres	20/2			
Seminar 1 /		W/5 3F	DEW CO				
Project1							
Individual	50%	25%	25%				100%
Assessment 2/				11			
Case Study 2/			SAN LA	//			
Seminar 2 /		// e/%	3/15/	1			
Project 2		1 8		. 1			
ESE	50%	25%	25%	V.B.			100%
				234			
		0000	DYGDE	320			

	(Common s	(Common to all Branches)						
PREREQUI	SITES	CATEGORY	L	T	P	C		
	NIL OE 3 0							
Course	The students will be able to acquire knowledge about the high performance RISC, CISC							
Objective	purpose processors.							
UNIT – I	MICROPROCESSOR ARCHITECTURE 9 Periods							
Virtual m Instruction 1	Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile – Cach – Virtual memory and paging – Segmentation – Pipelining – The instruction pipeline – pipeline hazards Instruction level parallelism – reduced instruction set – Computer principles – RISC versus CISC – RISC propertie – RISC evaluation.							
UNIT – II	HIGH PERFORMANCE CISC ARCHITECTU	RE -PENTIUM			9 Pei	riods		
The softwar	The software model - functional description - CPU pin descriptions - Addressing modes - Processor flags							
Instruction set – Bus operations – Super scalar architecture – Pipe lining – Branch prediction – The instruction and						tion and		
caches – Floating point unit– Programming the Pentium processor.								
UNIT – III	UNIT – III HIGH PERFORMANCE CISC ARCHITECTURE – PENTIUM INTERFACE 9 Periods							
Protected m	Protected mode operation - Segmentation - paging - Protection - multitasking - Exception and interrupts- Input							

ADVANCED PROCESSOR

UNIT – IV HIGH PERFORMANCE RISC ARCHITECTURE: ARM

9 Periods

ARM architecture – ARM assembly language program – ARM organization and implementation – ARM instruction set - Thumb instruction set.

UNIT – V SPECIAL PURPOSE PROCESSORS

/Output – Virtual 8086 model – Interrupt processing.

9 Periods

Altera Cyclone Processor – Audio codec – Video codec design – Platforms – General purpose processor – Digital signal processor – Embedded processor – Media Processor – Video signal Processor – Custom Hardware – Co-Processor.

Contact Periods:

23AEOE27

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System –On –Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COUF	COURSE OUTCOMES:				
Upon	Upon completion of the course, students will be able to				
		Mapped			
CO1	Describe the fundamentals of various processor architecture.	K2			
CO2	Interpret and understand the high performance features in CISC architecture.	K2			
CO3	Describe the concepts of Exception and interrupt processing.	K2			
CO4	Develop programming skill for ARM processor.	К3			
CO5	Explain various special purpose processor	K2			

COURSE ARTICULA	TION MATR	RIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3	-	2	-	-	1
22AEOE27	3	-	2	-	-	1

1 – Slight, 2 – Moderate, 3 – Substantial

ASSESSMENT I	PATTERN – THE	EORY					·
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual		50%	50%				100%
Assessment 1 /		7 (01/07	BoyCo Brills & FIR	29/2			
Case Study 1/		V.59	S. SHAMMER				
Seminar 1 /							
Project1		18.7	Bo				
Individual		50%	50%	11			100%
Assessment 2 /				1			
Case Study 2/		// 6	(3/10)	1			
Seminar 2 /		1 8					
Project 2		A B		VA.			
ESE	30%	40%	30%	(C)(K)			100%

23VLOE28	HDL PROGRAMMING	G LANGUAGES					
23 V LUE 28	(Common to al	l Branches)					
PREREQUISI	ΓES	CATEGORY	L	T	P	C	
NIL		OE	3	0	0	3	
Course	To code and simulate any digital function in Verilog	HDL and understar	d the	diffe	erence	e between	
Objective	synthesizable and non-synthesizable codes.						
UNIT – I	VERILOG INTRODUCTION AND MODELING				9	9 Periods	
Introduction to	Verilog HDL, Language Constructs and Conventions,	Gate Level Modelin	g, M	odeli	ng at	Dataflow	
Level, Behavior	ral Modeling, Switch Level Modeling, System Tasks, Fu	inctions and Compile	r Dir	ective	es.		
	CROHENERAL MODELING AND TREETING			1			
UNIT – II	SEQUENTIAL MODELING AND TESTING					9 Periods	
•	lels - Feedback Model, Capacitive Model, Implicit Mo	· · · · · · · · · · · · · · · · · · ·		•			
•	Machine Coding, Sequential Synthesis. Test Bench		cuits	Test	ing, S	Sequential	
Circuit Testing,	Test Bench Techniques, Design Verification, Assertion	Verification.					
UNIT – III	SYSTEM VERILOG				9	9 Periods	
Introduction, Sy	ystem Verilog declaration spaces, System Verilog Lite	eral Values and Buil	lt-in]	Data	Туре	s, System	
Verilog User-Defined and Enumerated Types, system Verilog Arrays, Structures and Unions, system verilog						m verilog	
Procedural Bloc	ks, Tasks and Functions.						
UNIT – IV	SYSTEM VERILOG MODELING	EV.			9	9 Periods	
System Verilog	System Verilog Procedural Statements, Modeling Finite State Machines with System Verilog, System Verilog						
Design Hierarchy.							
UNIT – V	INTERFACES AND DESIGN MODEL 9 Peri					9 Periods	
System Verilog Interfaces, A Complete Design Modeled with System Verilog, Behavioral and Transaction Level							
Modeling.							
Contact Period	s:						
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods					

	ADA ZADI
1	T.R.Padmanabhan, B Bala Tripura Sundari, "Design through Verilog HDL", Wiley 2009.
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog For Design
	Second Edition A Guide to Using System Verilog for Hardware Design and Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of Projects on
	FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language Features",
	Springer 2006.
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using System
	Verilog for Hardware Design and Modeling" 1st Edition, 2003

COURS	COURSE OUTCOMES:					
		Taxonomy				
Upon co	Upon completion of the course, the students will be able to:					
CO1	Explain the verilog coding and simulate any digital function using Verilog HDL	K2				
CO2	Develop sequential modeling based Verilog HDL code and develop the test bench	K3				
	for the modeling					
CO3	Explain the system verilog modeling	K2				
CO4	Differentiate the synthesizable and non-synthesizable code	K3				
CO5	Apply good coding techniques on system verilog interfaces and complete design	K3				
	model					

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3		2		2		
CO2	3	3		2		2		
CO3	3	3		2		2		
CO4	3	3		2		2		
CO5	3	3		2		2		
23VLOE28	3	3		2		2		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT I	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	40%	40%	20%	-	-	-	100%			
CAT2	40%	40%	20%	-	-	-	100%			
Individual	-	50%	50%	-	-	-	100%			
Assessment 1 /		4 651 67 W	Co 115 (16 to 17)	396						
Case Study 1/		V595	DEWINE C							
Seminar 1 /										
Project1		18 8	-							
Individual	-	50%	50%	-	-	-	100%			
Assessment 2 /		11 1/4		//						
Case Study 2/		// e//	多顺	//						
Seminar 2 /		& \								
Project 2		X B	10.	VA.						
ESE	40%	40%	20%	<u> </u>	-	-	100%			

23VLOE29		CMOS VLSI DESIGN (Common to all Branches)							
PREREQUISIT	`	CATEGORY	L	Т	P	С			
NIL NIL	ES	OE	1		3				
			3						
Course	To gain knowledge on CMOS Circuits with its cha	aracterization and to	design	ı CM	JS log	gic and			
Objective	sub-system with low power								
UNIT – I	INTRODUCTION TO MOS CIRCUITS				9 P	eriods			
MOS Transistor	Theory -Introduction MOS Device Design Equation	ions -MOS Transist	or as	a Swi	tches	- Pass			
Transistor - CM	OS Transmission Gate -Complementary CMOS Inve	erter - Static Load N	MOS In	verte	rs - In	verters			
with NMOS load	ls - Differential Inverter - Tri State Inverter - BiCMO	S Inverter.							
UNIT – II	CIRCUIT CHARACTERIZATION AN	D PERFORMA	ANCE		9 P	eriods			
	ESTIMATION								
Delay Estimation	n, Logical Effort and Transistor Sizing, Power Dissip	pation, Sizing Routi	ng Con	ducto	rs, Ch	arge			
Sharing, Design	Margin and Reliability.								
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN				9 P	eriods			
CMOS Logic Ga	ate Design, Physical Design of CMOS Gate, Designi	ng with Transmissio	on Gate	s, CN	IOS L	ogic			
Structures, Clock	king Strategies, I/O Structures.								
UNIT – IV	CMOS SUBSYSTEM DESIGN				9 P	eriods			
DataPath Opera	tions-Addition/Subtraction, Parity Generators, Co	omparators, Zero/O	ne De	tector	s, Bi	nary			
Counters, ALUs,	Multipliers, Shifters, Memory Elements, Control-FS	M, Control Logic In	nplemei	ntatio	n.				
UNIT – V	LOWPOWERCMOS VLSIDESIGN				9 P	eriods			
Introduction to L	ow Power Design, Power Dissipation in FET Devices	s, Power Dissipation	in CM	OS, L	ow-Po	wer			
Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach -									
Pipelining and Pa	Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design.								
Contact Periods Lecture: 45 Per		ls Total: 45 Period	ds						

1	Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata Mc-Graw Hill,						
	2011.						
2	N. Weste and K. Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley, 1998.						
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems						
	Perspective", Pearson Education 2013.						
4	Kiat-Seng Yeo, Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill Professional, 2004.						
5	Gary K. Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.						
6	Jan M. Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.						

COUF	COURSE OUTCOMES:					
		Taxonomy				
Upon	Upon completion of the course, the students will be able to:					
CO1	Explain the MOS circuits and Transmission gates	K2				
CO2	Illustrate the CMOS Circuits with its characterization	K2				
CO3	Design CMOS logic circuits	K3				
CO4	Design CMOS sub-system	К3				
CO5	Discuss low power CMOS VLSI Design	K2				

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	-	2	-	3		
CO2	2	1	-	2	-	3		
CO3	2	1	-	2	-	3		
CO4	3	1	-	2	-	3		
CO5	3	1	-	2	-	3		
23VLOE29	3	1	-	2	-	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	40%	40%	20%	-	-	-	100%				
CAT2	40%	40%	20%	-	-	-	100%				
Individual	-	50%	50%		-	-	100%				
Assessment 1/		(B34 6 4 0	10,50 B/CUS \$17	307							
Case Study 1/		V59	AND THE PROPERTY OF								
Seminar 1/											
Project1		1100	- 4								
Individual	-	50%	50%	- 110 -	-	-	100%				
Assessment 2 /		11 19		1							
Case Study 2/		// g\	(多)(多)	1							
Seminar 2/		1 8									
Project 2		X Be) B							
ESE	40%	40%	20%	-	-		100%				

23VLOE30	HIGH LEVEL SYNTHESIS (Common to all Branches)								
PREREQUISI	ΓES	CATEGORY	L	T	P	С			
NIL	TIL OE								
Course Objective	To provide students with foundations in High level synthesis,	To provide students with foundations in High level synthesis, verification and CAD Tools							
UNIT – I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS			9	Peri	ods			
	flow, Scheduling Techniques, Resource sharing and Bin ration Techniques.	ding Technique	s, D	ata-p	ath	and			
UNIT – II	HIGH LEVEL SYNTHESIS			9	Peri	ods			
UNIT – III Simulation bas	HIGH-LEVEL SYNTHESIS VERIFICATION ed verification - Formal Verification of digital systems- Bl	DD based appro	ache		Peri				
UNIT – IV	ite state automata, ω-automata, FSM verification. CAD TOOLS FOR SYNTHESIS			9	Peri	ods			
CAD tools for special realizati	UNIT – IV CAD TOOLS FOR SYNTHESIS CAD tools for synthesis, optimization, simulation and verification of design at various levels as well as for special realizations and structures such as microprogrammes, PLAs, gate arrays etc. Technology mapping for FPGAs. Low power issues in high level synthesis and logic synthesis.								
UNIT – V	ADVANCED TOPICS			9	Peri	ods			
Relative Scheduling, IO scheduling modes - cycle fixed scheduling modes, super-fixed scheduling modes, free-floating scheduling mode, Pipelining, Handshaking, System Design, High-Level Synthesis for FPGA.									
Contact Period Lecture: 45 Per	II AA	ıl: 45 Periods							

	DVG
1	Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit",
	Springer, 2008.
2	Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
3	D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
4	Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.
5	Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
6	David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and
	Synchronization Constraints", Kluwer Academic Publishers, 1992.
7	K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999, Wiley.
8	Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System Design
	and Analysis", Springer, 2006.

COUR	COURSE OUTCOMES:					
		Taxonomy				
Upon c	Upon completion of the course, the students will be able to:					
CO1	Understand the fundamentals of High level synthesis	K2				
CO2	Synthesis the HDL for operation scheduling	K2				
CO3	Simulate and verify any digital systems	K2				
CO4	Apply CAD tools for synthesis	K2				

CO5	15 Have knowledge on various scheduling modes							
COURSE ARTICULATION MATRIX:								
	COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
	CO1	2	2		2	2		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	-	2	2	-
CO4	2	2	-	2	2	-
CO5	2	2	-	2	2	-
23VLOE30	2	2	-	2	2	-

ASSESSMENT	PATTERN – T	HEORY					
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluati ng (K5)	Creatin g (K6) %	Total %
CAT1	50%	50%		-	-	-	100%
CAT2	50%	50%		-	-	-	100%
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	-	50%	50%		-	-	100%
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	50%	50%	-	-	-	100%
ESE	50%	50%		7.00g	-	-	100%

23CSOE31	ARTIFICIAL INTE									
20 00 0 201	(Common to all Branches)									
PREREQUIS	PREREQUISITES CATEGORY L									
	NIL OE 3									
Course	Identify and apply AI techniques in the design of systems that act intelligently, making									
Objectives	automatic decisions and learn from experience.									
UNIT – I	SEARCH STRATEGIES				9 Pe	eriods				
Uninformed S	Strategies - BFS, DFS, Djisktra, Informed Strategies	ies – A* search, He	euristic	e func	tions	s, Hill				
Climbing, Adv	versarial Search – Min-max algorithm, Alpha-beta Pro	uning								
UNIT – II	PLANNING AND REASONING				9 P	eriods				
State Space se	earch, Planning Graphs, Partial order planning, Unce	ertain Reasoning – Pr	robabi	listic 1	Reas	oning,				
Bayesian Netv	vorks, Dempster Shafer Theory, Fuzzy logic									
UNIT – III	UNIT – III PROBABILISTIC REASONING 9 Periods									
Probabilistic I	Reasoning over Time - Hidden Markov Models, Ka	lman Filters, Dynam	ic Bay	esian	Netv	vorks.				
Knowledge Re	epresentations – Ontological Engineering, Semantic N	letworks and descript	ion lo	gics.						
UNIT – IV	DECISION MAKING				9 P	eriods				
Utility Theory	y, Utility Functions, Decision Networks - Sequential	Decision Problems	- Part	tially (Obse	rvable				
MDPs – Game	e Theory.									
UNIT – V REINFORCEMENT LEARNING 9 Periods										
Reinforcement Learning - Passive and active reinforcement learning - Generations in Reinforcement Learning -										
Policy Search	Policy Search – Deep Reinforcement Learning.									
Contact Periods:										
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods										

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice
	Hall,2010.
4	Elaine Rich, Kevin Knight, Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill,
	2009.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	K3
CO3	Examine data using statistical codes and solve complex AI problems	K6
CO4	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	K6

COURSE ARTICULATION MATRIX									
COs/ POs	PO 1	PO2	PO 3	PO 4	PO5	PO6			
CO1	3		2		3	3			
CO2	3		2		3	3			
CO3	3		3		3	3			
CO4	3		3		3	3			
CO5	3		3		3	3			
23CSOE31	3		3		3	3			

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		20	40	20	20		100
CAT2		10	20	40	10	20	100
Individual							
Assessment 1/							
Case study 1/					50	50	100
Seminar 1/							
Project 1							
Individual							
Assessment 2/							
Case study 2/					50	50	100
Seminar 2/		~~~	many _				
Project 2		OF THE PARTY OF TH	0 10	90			
ESE	30	30	40	2)			100

23CSOE32	COMPUTER NETWORK MANAGEMENT						
23CSOE32	(Common to all	l Branches)					
PREREQUI	SITES	CATEGORY	L	T	P	С	
	NIL	OE	3	0	0	3	
Course	After the completion of the course, the students will b	e able to understa	nd the c	once	pt of	layering	
Objectives	in networks, functions of protocols of each layer of	networks, functions of protocols of each layer of TCP/IP protocol suite, concepts related to					
	network addressing and routing and build simple LA	Ns, perform basic	configu	ratio	ns fo	r routers	
	and switches, and implement IPv4 and IPv6 addressing schemes using Cisco Packet Tracer.						
UNIT – I	NTRODUCTION AND APPLICATION LAYER 9 Periods						
Building net	work - Network Edge and Core - Layered Architec	eture – OSI Mode	el – Inte	ernet	Arcl	nitecture	
(TCP/IP) Ne	tworking Devices: Hubs, Bridges, Switches, Routers	s, and Gateways	- Perfo	rmar	nce N	1etrics -	
Ethernet Netv	working - Introduction to Sockets - Application Layer	protocols - HTTP	- FTP	Ema	il Pro	otocols –	
DNS.							
UNIT – II	TRANSPORT LAYER AND ROUTING				9	Periods	
Transport La	yer functions -User Datagram Protocol - Transmis	ssion Control Pro	tocol –	- Flo	w Co	ontrol –	
Retransmission	on Strategies - Congestion Control - Routing Princip	les – Distance Ve	ctor Ro	uting	Li	nk State	
Routing – RI	P – OSPF – BGP – Introduction to Quality of Service	(QoS).Case Study	: Confi	gurin	ıg RII	P, OSPF	
BGP using Pa	acket tracer	_					
UNIT – III	UNIT – III NETWORK LAYER		9	Periods			
Network Layer: Switching concepts – Internet Protocol – IPV4 Packet Format – IP Addressing – Subnetting –							
Classless Inter Domain Routing (CIDR) – Variable Length Subnet Mask (VLSM) – DHCP – ARP – Network							
Address Translation (NAT) - ICMP - Concept of SDN.Case Study: Configuring VLAN, DHCP, NAT using							
Packet tracer							
UNIT – IV	INTERNETWORK MANAGEMENT				9	Periods	
Introduction to the Cisco IOS - Router User Interface - CLI - Router and Switch Administrative Functions -							
D . T . C	W C . 1E . C	1 . 1	C C		0		

Introduction to the Cisco IOS - Router User Interface – CLI - Router and Switch Administrative Functions - Router Interfaces - Viewing, Saving, and Erasing Configurations - Switching Services - Configuring Switches - Managing Configuration Registers - Backing Up and Restoring IOS - Backing Up and Restoring the Configuration - Using Discovery Protocol (CDP) - Checking Network Connectivity

UNIT – V TRAFFIC MANAGEMENT AND WAN PROTOCOLS

9 Periods

Managing Traffic with Access Lists: Introduction to Access Lists - Standard Access Lists - Extended Access Lists - Named Access Lists - Monitoring Access Lists - Wide Area Networking Protocols: Introduction to Wide Area Networks - Cabling the Wide Area Network - High-Level Data-Link Control (HDLC) Protocol - Point-to-Point Protocol (PPP) - Frame Relay: Frame Relay Implementation and Monitoring - Integrated Services Digital Network (ISDN) - Dial-on-Demand Routing (DDR): Configuring DDR

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh Edition,
	Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education, 2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition, Morgan
	Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNATM: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex, 2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw
	Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COUR	COURSE OUTCOMES:					
		Taxonomy				
Upon completion of the course, the students will be able to:						
CO1	Highlight the significance of the functions of each layer in the network.	K1				
CO2	Identify the devices and protocols to design a network and implement it.	K4				
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	K3				
CO4	Build simple LANs, perform basic configurations for routers and switches	K6				
CO5	Illustrate various WAN protocols	K2				

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3		2	1
CO2	3		3		2	2
CO3	3		3		3	2
CO4	3		3		3	3
CO5	3		3		3	3
23CSOE32	3	2002	3	- Chu	3	2
1 – Slight, 2 –	- Moderate	e, 3 – Substanti	al	UVID STIPS		
		(0	V 59 200	TEN POST		•

ASSESSMENT	PATTERN – TI	HEORY (Times N	ew Roman,	Size 11)			
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*				1			
CAT1	30	30	20	20			100
CAT2		30	20	30	10	10	100
Individual	10	30	20	20	20		100
Assessment 1/							
Case Study 1/		O TO	OYOU IS				
Seminar 1/		1623	50000	7			
Project 1							
Individual		20	20	20	20	20	100
Assessment 2/							
Case Study 2/							
Seminar 2/							
Project 2							
ESE	20	40	40				100

BLOCKCHAIN TECHNOLOGIES								
23CSOE33	(Common to all Branches)							
PREREQUISITES		CATEGORY	L	T	P	$ \mathbf{C} $		
	NIL	OE 3 0 0						
Course The ob	jective of the course is to explore basics of block chain techn	ology and its applica	tion	in v	ario	us		
Objectives domaii	n							
UNIT – I INTRO	DDUCTION OF CRYPTOGRAPHY AND BLOCKCHAI	N		9 I	Peri	ods		
History of Blockch	ain - Types of blockchain- CAP theorem and blockcha	in – benefits and	Limi	itatic	ns	of		
Blockchain – Decen	talization using blockchain - Blockchain implementations- I	Block chain in practi	cal u	ıse -	Leg	gal		
and Governance Use	e Cases							
UNIT – II BITCO	- II BITCOIN AND CRYPTOCURRENCY							
Introduction to Bitco	oin, The Bitcoin Network, The Bitcoin Mining Process, Mini	ng Developments, B	itcoi	n W	alle	ts,		
Decentralization an	d Hard Forks, Ethereum Virtual Machine (EVM), Merk	tle Tree, Double-Sp	end	Pro	ble	m,		
Blockchain and Dig	tal Currency, Transactional Blocks, Impact of Blockchain Te	chnology on Cryptoc	urre	ncy				
UNIT – III ETHE	REUM			9 I	Peri	ods		
Introduction to Ethe	reum, Consensus Mechanisms, Metamask Setup, Ethereum A	Accounts, , Transacti	ons,	Rec	eivi	ng		
Ethers, Smart Contra	acts							
UNIT – IV HYPE	UNIT – IV HYPERLEDGER AND SOLIDITY PROGRAMMING				Peri	ods		
Introduction to Hyp	erledger, Distributed Ledger Technology & its Challenges,	Hyperledger & Dis	tribu	ıted	Led	lger		
Technology, Hyperl	edger Fabric, Hyperledger Composer. Solidity – Programming	g with solidity						
UNIT - V BLOC	UNIT - V BLOCKCHAIN APPLICATIONS 9 Period					ods		
Ten Steps to build	your Blockchain application - Application: Internet of Thi	ngs, Medical Record	d Ma	anag	eme	nt		
System, Domain Na	me Service and Future of Blockchain, Alt Coins							
Contact Periods:								
Lecture: 45 Periods	Tutorial: 0 Periods Practical: 0 Periods To	otal: 45 Periods						

1	Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart					
	Contracts Explained", Second Edition, Packt Publishing, 2018.					
2	Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and					
	Technology Solutions",McGraw Hill Education ,2018.					
3	Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A					
	Comprehensive Introduction" Princeton University Press, 2016.					
4	Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.					
5	Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly					
	Publishing, 2018					
6	NPTEL Course: Blockchain and its applications https://archive.nptel.ac.in/courses/106/105/106105235/					

COUR	COURSE OUTCOMES:					
		Taxonom				
Upon completion of the course, the students will be able to:						
CO1	Comprehend the working of Blockchain technology	K2				
CO2	Narrate working principle of smart contracts and create them using solidity for given	К3				
	scenario.					
CO3	Comprehend the working of Hyperledger in an real time application	K2				
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum	К3				
CO5	Develop applications on Blockchain	К3				

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2		3	2		3
CO2	2	3	3	3	2	3
CO3	3		3	2		3
CO4	3	3	3	3	2	3
CO5	3	3	3	3	2	3
23CSOE33	3	3	3	3	2	3
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PA	ATTERN – THEOF	RY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*			, ,				
CAT1	20	40	40				100
CAT2	20	30	50				100
Individual			everya.				
Assessment 1/		30	70	.0			100
Case Study 1/		CV Fig.	S. D. C.	2)			
Seminar 1 /		902	DICTOR OF				
Project1				7			
Individual			*	l.			
Assessment 2/		40	60				100
Case Study 2/		// .16					
Seminar 2 /		/ B	ALL ALL	1			
Project 2		1 8		b			
ESE	10	60	30	£			100

23GEACZ1 ENGLISH FOR RESEARCH PAPER WRITING (Common to all Branches)								
PREREQUIS	SITES		CATEGORY	L	T	P	С	
		NIL	AC	2 0 0				
Course	The objective of the course is to make the learners understand the format and intricacies							
Objective	es	involved in writing a research paper.						
UNIT – I		PLANNING AND PREPARATION 6 Periods						
Need for publ	lishing	articles, Choosing the journal, Identifying a mo-	del journal paper, (Creatio	n of fi	iles fo	r each	
section, Expec	ctation	s of Referees, Online Resources.						
UNIT – II		SENTENCES AND PARAGRAPHS			(6 Peri	iods	
Basic word in	n Engli	ish, Word order in English and Vernacular, plac	eing nouns, Verbs,	Adjec	tives,	and A	dverb	
suitably in a s	senten	ce, Using Short Sentences, Discourse Markers a	nd Punctuations- S	tructu	re of a	ı Para	.graph,	
Breaking up le	engthy	Paragraphs.						
UNIT – III		ACCURACY, BREVITY AND CLARITY (A	BC) OF WRITIN	G	(6 Peri	iods	
Accuracy, Bre	evity a	nd Clarity in Writing, Reducing the linking word	s, Avoiding redund	ancy, A	Appro	priate	use of	
Relative and l	Reflex	ive Pronouns, Monologophobia, verifying the j	ournal style, Logic	al Cor	nectio	ons be	etween	
others author's	s findi	ngs and yours.						
UNIT – IV		HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING				6 Peri	ods	
Making your	findin	gs stand out, Using bullet points headings, Ta	ables and Graphs-	Avail	ing	non-e	experts	
opinions, Hedging, Toning Down Verbs, Adjectives, Not over hedging, Limitations of your research.								
UNIT – V		SECTIONS OF A PAPER 6 Period					iods	
Titles, Abstrac	cts, Int	roduction, Review of Literature, Methods, Result	ts, Discussion, Con	clusior	ıs, Ref	ferenc	es.	
Contact Perio	ods:							
Lecture: 30 I	Period	s Tutorial: 0 Periods Practical: 0 Perio	ds Total: 30 Pe	riods				

1	Goldbort R, "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.
4	Adrian Wallwork," English for Writing Research Papers ", Springer New York Dordrecht Heidelberg London, 2011.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	empletion of this course the learners will be able to	Mapped
CO1	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph	K4
	writing.	
CO3	Practice unambiguous writing.	К3
CO4	Avoid wordiness in writing.	K2
CO5	Exercise the elements involved in writing journal paper.	К3

COURSE ARTICULATION MATRIX :									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	1	1	1	1			
CO2	3	3	1	1	1	1			
CO3	3	3	1	1	1	1			
CO4	3	3	1	1	1	1			
CO5	3	3	1	1	1	1			
23GEACZ1	3	3	1	1	1	1			
1 – Slight, 2 – Modera	ate, 3 – Substantia	al							

ASSESSMENT F	PATTERN – THE	CORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1/ Case Study 1/	-	50	50	<u></u>	-	-	100
Seminar 1/ Project 1			T	7			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100
ESE	30	30	40	-	-	-	100

100 000 000 100 000 000

Course Objectives To become familiar in key concepts and consequences about hazards, disaster and area of occurrence. To know the various steps in disaster planning. To create awareness on disaster preparedness and management. UNIT - I INTRODUCTION 6 Periods
Objectives area of occurrence. To know the various steps in disaster planning. To create awareness on disaster preparedness and management.
 To know the various steps in disaster planning. To create awareness on disaster preparedness and management.
 To create awareness on disaster preparedness and management.
UNIT – I INTRODUCTION 6 Periods
Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural a
Manmade Disasters: Difference, Nature, Types and Magnitude. Areas proneto ,EarthquakesFlood
Droughts, Landslides ,Avalanches ,Cyclone and Coastal Hazards with Special Reference to Tsunami.
UNIT – II REPERCUSSIONS OF DISASTERS AND HAZARDS 6 Periods
Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disaster
Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanch
Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks
Disease and Epidemics, War and Conflicts.
UNIT – III DISASTER PLANNING 6 Periods
Disaster Planning-Disaster Response Personnel roles and duties, Community Mitigation Goals, Pre-Disaster Response Personnel roles and duties, Community Mitigation Goals, Pre-Disaster Response Personnel roles and duties, Community Mitigation Goals, Pre-Disaster Response Personnel roles and duties, Community Mitigation Goals, Pre-Disaster Response Personnel roles and duties, Community Mitigation Goals, Pre-Disaster Response Personnel roles and duties, Community Mitigation Goals, Pre-Disaster Response Personnel roles and duties, Community Mitigation Goals, Pre-Disaster Response Personnel roles and duties, Community Mitigation Goals, Pre-Disaster Response Personnel Response
Mitigation Plan, Personnel Training, Comprehensive Emergency Management, Early Warning Systems.
UNIT – IV DISASTER PREPAREDNESS AND MANAGEMENT 6 Periods
Preparedness: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of Risk: Application
Remote Sensing, Data from Meteorological and other Agencies, Media Reports: Governmental a
Community Preparedness.
UNIT – V RISK ASSESSMENT 6 Periods
Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation
Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People
Participation in Risk Assessment, Strategies for Survival.
Contact Periods:
Lecture:30 Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 Periods

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies", New
	Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New
	Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep Publication
	Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International Publishing
	House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	2	1	1	2	2			
CO2	1	2	1	1	1			
CO3	1	1	1	2	2			
CO4	1	1	1	2	2			
CO5	2	1	1	2	2			
23GEACZ2	1	1	1	2	2			
1 – Slight, 2 – Moderate, 3	– Substantial	•	•	•				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2		9	100				100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	50	50					100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2		-083k	100				100
ESE	25	25	50	10			100

23GEACZ3	VALUE EDUCATION (Common to all Branches)						
PREREQUISIT	ES	CATEGORY	L	T	P	С	
	NIL	AC	2	0	0	0	
Course • Value of education and self- development							
Objectives	Requirements of good values in students.	nts					
	Importance of character						
UNIT – I	ETHICS AND SELF-DEVELOPMENT				6 F	Periods	
	d individual attitudes. Work ethics, Indian vision rds and principles. Value judgements.	on of humanism.	Mora	l and	d non	-moral	
UNIT – II	PERSONALITY AND BEHAVIOR DEVE	LOPMENT			6 F	Periods	
Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance.							
UNIT – III VALUES IN HUMAN LIFE 6 Periods							
•	altivation of values, Sense of duty. Devotion, S anliness. Honesty, Humanity. Power of faith, Nat						

UNIT – IV VALUES IN SOCIETY

6 Periods

True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature.

UNIT – V POSITIVE VALUES

6 Periods

Character and Competence –Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively.

Contact Periods:

Discipline.

Lecture: 30 Periods

Tutorial: 0 Periods Pract

Practical: 0 Periods

Total: 30 Periods

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press,
	New Delhi, 1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi, 2004
4	https://nptel.ac.in/courses/109104068/36

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Know the values and work ethics.	К3
CO2	Enhance personality and 157ehavior development.	K3
CO3	Apply the values in human life.	К3
CO4	Gain Knowledge of values in society.	К3
CO5	Learn the importance of positive values in human life.	К3

COURSE ARTICULATION MATRIX								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	-	3	-	-	1		
CO2	-	-	3	-	-	1		
CO3	-	-	3	-	-	1		
CO4	-	-	3	-	-	1		
CO5	-	-	3	-	-	1		
23GEACZ3	-	-	3	-	-	1		
1 – Slight, 2 – Moderate, 3 – Su	bstantial	•	•			•		

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %	
CAT1	20%	50%	30%	-	-	-	100%	
CAT2	20%	50%	30%	-	-	-	100%	
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%	
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%		-	-	100%	
ESE	20%	50%	30%	J/A	-	-	100%	

23GEACZ4	A S)						
PREREQUISIT	ES	CATEGORY		T	P	C	
NIL		AC	2	0	0	0	
Course Objectives		 To address the importance of constitutional rights and duties To familiarize about Indian governance and local administration. 					
	 To know about the functions of election commission. 	To know about the functions of election commission.					
UNIT – I	INDIAN CONSTITUTION	AN CONSTITUTION 6 Periods					
History of Makir	ng of the Indian Constitution: History Drafting Committee, (Composi	ition & Working) - P	hilos	ophy	y of	

History of Making of the Indian Constitution: History Drafting Committee, (Composition & Working) - Philosophy of the Indian Constitution: Preamble Salient Features.

UNIT – II CONSTITUTIONAL RIGHTS & DUTIES

6 Periods

Contours of Constitutional Rights & Duties: Fundamental Rights , Right to Equality, Right to Freedom, Right against Exploitation, Right to Freedom of Religion, Cultural and Educational Rights, Right to Constitutional Remedies, Directive Principles of State Policy, Fundamental Duties.

UNIT – III ORGANS OF GOVERNANCE

6 Periods

Organs of Governance: Parliament, Composition, Qualifications and Disqualifications, Powers and Functions, Executive, President, Governor, Council of Ministers, Judiciary, Appointment and Transfer of Judges, Qualifications, Powers and Functions.

UNIT – IV LOCAL ADMINISTRATION

6 Periods

Local Administration: District's Administration head: Role and Importance, Municipalities: Introduction, Mayor and role of Elected Representative, CEO of Municipal Corporation. Panchayat raj: Introduction, PRI: Zila Panchayat. Elected officials and their roles, CEO Zila Panchayat: Position and role. Block level: Organizational Hierarchy (Different departments), Village level: Role of Elected and Appointed officials, Importance of grass root democracy.

UNIT - V ELECTION COMMISSION

6 Periods

Election Commission: Role and Functioning. Chief Election Commissioner and Election Commissioners. State Election Commission: Role and Functioning. Institute and Bodies for the welfare of SC/ST/OBC and women.

Contact Periods:

Lecture: 30 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the	K2
	conceptualization of social reforms leading to revolution in India.	
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	-	1	1	1	1		
CO2	-	-	1	1	1	2		
CO3	-	-	1	1	2	1		
CO4	-	-	1	1	1	1		
CO5	-	-	1	1	1	1		
23GEACZ4	-	-	1	1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20%	50%	30%	-	-	-	100%		
CAT2	20%	50%	30%	-	-	-	100%		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%	7	-	-	100%		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	<u> </u>	-	-	100%		
ESE	20%	50%	30%	(E) -	-	-	100%		

06 66 C3

23GEAC	Z 5	PEDAGOGY ST (Common to all							
PREREQUISIT	TES	•	CATEGORY	L	T	P	С		
NIL			AC	2	0	0	0		
Course Objectives	• A	o understand of various theories of learning, sign of curriculum in engineering studies. oplication of knowledge in modification of curriculum in teaching methodology.		C	nd int	roduc	ction		
UNIT – I	INTROD	UCTION			6 I	Perio	ds		
Theories of lear methodology and	Introduction and Methodology: Aims and rationale, Policy background, Conceptual framework and terminology Theories of learning, Curriculum, Teacher education. Conceptual framework, Research questions. Overview of methodology and Searching.								
UNIT – II	PEDAGO	GICAL PRACTICES			6 I	Perio	ds		
developing cour Methodology for	ntries. Curr	ogical practices are being used by teachers in iculum, Teacher education. Evidence on the ends that stage: quality assessment of included studies.							
UNIT – III	PEDAGO	GICAL APPROACHES			6 I	Perio	ds		
support effectiv	e pedagog	(curriculum and practicum) and the school cur? Theory of change. Strength and nature of gogic theory and pedagogical approaches. Teache	the body of ev	idence	for	effec	ctive		
UNIT – IV	PROFES	SIONAL DEVELOPMENT			6 I	Perio	ds		
Professional development: alignment with classroom practices and follow-up support. Peer support, Support from the head teacher and the community. Curriculum and assessment Barriers to learning: limited resources and large class sizes.									
UNIT – V	CURRIC	ULUM AND ASSESSMENT			6 I	Perio	ds		
0 1		directions Research design Contexts Pedagogy and research impact.	Teacher educat	tion C	urricu	ılum	and		

Contact Periods:

Lecture: 30 Periods

1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261, 2001.
2	Alexander RJ, Culture and pedagogy: International comparisons in primary education. Oxford and Boston:
	Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and
	reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3):
	272–282, 2013.
4	Agrawal M, Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36
	(3): 361-379, 2004

Tutorial: 0 Periods

Practical: 0 Periods Total: 30 Periods

COURSE OUTCOMES:			
Upon completion of the course, the students will be able to:			
CO1	Explain the concept of curriculum, formal and informal education systems and teacher	K3	
	education.		

CO2	Explain the present pedagogical practices and the changes occurring in pedagogical	К3
	approaches	
CO3	Understand the relation between teacher and community, support from various levels of	K3
	teachers to students and limitation in resources and size of the class.	
CO4	Perform research in design a problem in pedagogy and curriculum development.	K3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	-	1	1	2	1		
CO2	-	-	1	1	1	2		
CO3	-	-	1	1	2	1		
CO4	-	-	1	1	2	1		
23GEACZ5	-	-	1	1	2	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	<u> </u>	-	-	100%
CAT2	20%	50%	30%	<u> </u>	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%		-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23GEACZ6		STRESS MANAGEMENT BY YOGA									
ZSGERCZ		(Common to all 1	(Common to all Branches)								
PREREQUISIT	ΓES		CATEGORY	L	T	P	C				
		NIL	AC	2	0	0	0				
Course	•	To create awareness on the benefits of yoga and r	To create awareness on the benefits of yoga and meditation.								
Objectives	•	To understand the significance of Asana and Pran	ayama.								
UNIT – I	UNIT – I PHYSICAL STRUCTURE AND ITS FUNCTIONS										
Yoga - Physical	structu	re, Importance of physical exercise, Rules and regu	lation of simplifi	ed pl	nysic	al exe	rcises,				
hand exercise,	leg e	xercise, breathing exercise, eye exercise, kapal	apathy, maharas	sana,	bod	ly ma	issage,				
acupressure, boo	ly relax	ation.									
UNIT – II	YOG	A TERMINOLOGIES				6 Periods					
Yamas - Ahimsa	i, satya	astheya, bramhacharya, aparigraha									
Niyamas- Sauch	a, santo	osha, tapas, svadhyaya, Ishvara pranidhana.									
UNIT – III	ASA					6 P	eriods				
Asana - Rules &	Regula	ations – Types & Benefits									
UNIT – IV	PRA	NAYAMA				6 P	eriods				
Regularization of	of breatl	ning techniques and its effects-Types of pranayama									
UNIT – V MIND 6 Period						eriods					
Bio magnetism& mind - imprinting & magnifying - eight essential factors of living beings, Mental frequency and											
ten stages of mind, benefits of meditation, such as perspicacity, magnanimity, receptivity, adaptability, creativity.											
Contact Period	s:	Co marketa									
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods											

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Training-Part-I", Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", Advaita Ashrama (Publication
	Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New Dawn Press,
	New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi, 2007.

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon c	Upon completion of the course, the students will be able to:		
CO1	Practice physical exercises and maintain good health.	K3	
CO2	Attain knowledge on the various concepts of Yoga.	K2	
CO3	Perform various asanas with an understanding on their benefits.	K3	
CO4	Practice breathing techniques in a precise manner.	K3	
CO5	Attain emotional stability and higher level of consciousness.	K2	

COURSE ARTICULATION	MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5
CO1	-	-	-	-	2
CO2	-	-	-	-	3
CO3	-	-	-	-	2
CO4	-	-	-	-	1
CO5	-	-	-	-	1
23GEACZ6	-	-	-	-	2
1 – Slight, 2 – Moderate, 3 – Substantial					

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	30%	30%	-	-	-	100%
CAT2	30%	40%	30%	-	-	-	100%
Individual Assessment1/ Case study1/ Seminar 1/ Project1	40%	40%	20%	-	-	-	100%
Individual Assessment2/ Case study2/ Seminar 2 / Project2	30%	30%	40%	-	-	-	100%
ESE	30%	30%	40%	-	-	-	100%

23GEACZ7		PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS (Common to all Branches)							
PREREQUISITI	ES:	CATEGORY	L	T	P C				
NIL		AC	2	0	0 0				
Course	To familiar with Techniques to achieve the high	ghest goal in life.							
Objectives	To become a person with stable mind, pleasing	g personality and deter	rminat	ion.					
UNIT – I				6	Periods				
Neetisatakam-Hol Verses- 26,28,6.	istic development of personality-Verses- 19,20,21,22 (v	wisdom)-Verses29,31,	,32 (pı	ride &	heroism)-				
UNIT – II				6	Periods				
	(dont's)-Verses- 71,73,75,78 (do's) Approach to Chapter 2-Verses 41, 47,48,	day to day work	and d	luties	- Shrimad				
UNIT – III				6	Periods				
Shrimad Bhagwad 46, 48.	dGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Ve	rses 5,13,17, 23, 35,-	Chapt	er 18-`	Verses 45,				
UNIT – IV				6	Periods				
	ic knowledgeShrimad BhagwadGeeta: -Chapter2-Vers lity of Role model.	es 56, 62, 68 -Chapter	· 12 -V	erses	13, 14, 15,				
UNIT – V	V 6 Periods								
Shrimad Bhagwad Verses 37,38,63.	dGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,4	2, Chapter 4-Verses	18, 38	,39-Cł	napter18 –				
Contact Periods: Lecture: 30 Periods	ods Tutorial: 0 Periods Practical: 0 Periods	Total: 30 Periods							

1	Swami SwarupanandaAdvaita Ashram " Srimad Bhagavad Gita ",AdvaitaAshrama, Kolkata,2016
2	P.Gopinath, Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Satakam" (Niti-sringar-vairagya), New
	Delhi, 1986.
3	Swami Mukundananda, JagadguruKripalujiYog " Bhagavad Gita: The Song Of God ", USA,2019
4	A.C. Bhaktivedanta Swami Prabhupada "Bhagavad-Gita As It Is",Bhaktivedanta Book Trust
	Publications,2001

COUR	COURSE OUTCOMES:		
		Taxonomy Mapped	
Upon	Upon completion of the course, the students will be able to:		
CO1	Apply the Holistic development in life	K4	
CO2	Effective Planning of day to day work and duties	K4	
CO3	Identify mankind to peace and prosperity	K4	
CO4	Develop versatile personality.	K4	
CO5	Awakening wisdom in life	K4	

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	1	-	-	-
CO2	-	-	1	-	-	-
CO3	-	-	1	-	-	-
CO4	-	-	1	-	-	-
CO5	-	-	1	-	-	-
23GEACZ7	-	-	1	-	-	-
1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23GEACZ8		SANSKRIT FOR TECHNICAL KNOWLEDGE (Common to all Branches)							
PREREQUIS	SITES:	CATEGORY	L	T	P	C			
NIL		AC	2	0	0	0			
Course	To get a working knowledge in illustrious Sanski	To get a working knowledge in illustrious Sanskrit, the scientific language in the							
Objectives	world.								
	Learning of Sanskrit to improve brain functioning	• Learning of Sanskrit to improve brain functioning.							
	Enhancing the memory power.								
	Learning of Sanskrit to develop the logic in math	• Learning of Sanskrit to develop the logic in mathematics, science & other subjects.							
UNIT – I	BASICS OF SANSKRIT			6	Perio	ds			
Alphabets in S	Sanskrit, Past/Present/Future Tense.		ı						
UNIT – II	SENTENCES AND ROOTS			6	Perio	ds			
Simple Senter	ices - Order, Introduction of roots		•						
UNIT – III	SANSKRIT LITERATURE			6	Perio	ds			
Technical info	ormation about Sanskrit Literature		'						
UNIT – IV	TECHNICAL CONCEPTS -1 6 Periods				ds				
Technical concepts of Engineering-Electrical, Mechanical									
UNIT – V	TECHNICAL CONCEPTS -2 6 Periods								
Technical con	Technical concepts of Engineering-Architecture, Mathematics								
	Contact Periods:								
Lecture: 30	Periods Tutorial: 0 Periods Practical: 0 Periods	Total: 30 Per	riods	3					

1	Dr. Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.
2	Prathama Deeksha Vempati Kutumbshastri, "Teach Yourself Sanskrit", Rashtriya Sanskrit Sansthanam,
	New Delhi, Publication, 2009.
3	Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi, 2006.

COURS	Bloom's	
		Taxonomy
Upon completion of the course, the students will be able to:		Mapped
CO1	Recognize ancient literature and their basics	К3
CO2	Formulate the sentences with order and understand the roots of Sanskrit	K2
CO3	Acquire familiarity of the major traditions of literatures written in Sanskrit	К3
CO4	Distinguish the Technical concepts of Electrical & Mechanical Engineering	K2
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	-	-	-	1	2	1				
CO2	-	-	-	1	2	-				
CO3	-	-	-	1	1	1				
CO4	-	-	-	2	1	1				
CO5	-	-	-	1	2	1				
23GEACZ8	-	-	-	1	2	1				

1 – Slight, 2 – Moderate, 3 – Substantial

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %		
Category*									
CAT1	20%	50%	30%	-	-	-	100%		
CAT2	20%	50%	30%	-	-	-	100%		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%		
ESE	20%	50%	30%	_	-	-	100%		

