DEPARTMENT OF CIVIL ENGINEERING GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE.

(An Autonomous Institution Affiliated to Anna University, Chennai)

M.E GEOTECHNICAL ENGINEERING 2023 REGULATIONS CURRICULUM & SYLLABI

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- To achieve academic excellence through innovative teaching and learning practices.
- To enhance employability and entrepreneurship.
- To improve the research competence to address societal needs.
- To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore–641013 DEPARTMENT OF CIVIL ENGINEERING (Geotechnical Engineering)

VISION AND MISSION

VISION

To provide quality education in Civil Engineering to the societal growth in sustainable manner on par with global standards.

MISSION

- * To establish the process of teaching and learning to meet the global standards for sustainable built environment.
- * To make Civil Engineering department are now Ned high-tech consultancy centre.
- * To carry out socially relevant and forward looking research for societal needs.
- * Integrated with opportunities for team work, leadership, values, ethics and social activities.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore–641 013 DEPARTMENT OF CIVIL ENGINEERING (Geotechnical Engineering)

PROGRAMME OUTCOMES (POs)

Students in the Geotechnical Engineering Programme should beat the time of their graduation be in possession of the following:

- **PO1:** An ability to independently carry out research/investigate on and development work to solve practical problems.
- PO2: An ability to write and present a substantial technical report/document.
- **PO3:** Students should inculcate the capacity to develop and demonstrate Innovative ideas/techniques in the area of Geotechnical Engineering.
- **PO4:** To prepare graduates to excel in their academic and Professional careers, tackle challenging geotechnical problems giving sustainable solutions.
- **PO5:** To create a centre of excellence for doing advanced research and providing solutions to complex geotechnical problems.
- **PO6:** To nurture the students in understanding the importance of Geotechnical Engineering by continual life-long learning process.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore – 641 013 DEPARTMENT OF CIVIL ENGINEERING (Geotechnical Engineering)

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The following Programme Educational Objectives are designed based on the department mission:

- **PEO1:** Graduates will have an advanced conceptual understanding, in depth knowledge, smart skills and awareness of their responsibilities to the society so that, they emerge themselves as globally competent Geotechnical Engineers.
- **PEO2:** Graduates will emerge as specialist in handling investigations and testing devices to evaluate and analyses ground conditions for evolving solutions in challenging situations.
- **PEO3:** Graduates will have an extensive knowledge of analytical and design softwares that enable them to cope with the rapid development of the construction industry.
- **PEO4:** Graduates will be able to recognize social needs and ethical responsibilities and become a successful entrepreneur and to apply the ideas and concepts to evaluate the problems more effectively through advanced testing and measurements in order to design Geotechnical Structures.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) Coimbatore–641 013 M.E. GEOTECHNICAL ENGINEERING

FIRST SEMESTER

SI.	Course Code	e Course Title Ca		СА	End	Total	Н	ours	/Wee	ek
No	Course Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	Р	С
		ТН	EORY							
1	23GEFCZ1	Research Methodology and IPR (Common to all Branches)	FC	40	60	100	3	0	0	3
2	23GEFC02	Analytical and Numerical Methods (Common to Structural & Geotechnical	FC	40	60	100	3	0	0	3
		Engineering)								
3	23GEPC01	Strength and Deformation Characteristics of Soils	РС	40	60	100	3	0	0	3
4	23GEPC02	Advanced Foundation Engineering	PC	40	60	100	3	0	0	3
5	23GEPC03	Structural Design of Foundations and Substructures	PC	40	60	100	3	0	0	3
6	23GEPEXX	Professional Elective I	PE	40	60	100	3	0	0	3
7	23GEACXX	Audit Course-I	AC	40	60	100	2	0	0	0
		PRA	CTICAL	1	•	•				
8	23GEPC04	Advanced Soil Mechanics Laboratory	PC	60	40	100	0	0	4	2
		TOTAL		340	460	800	20	0	4	20

SECOND SEMESTER

SI.	Course		Category	СА	End	Total	Н	lours	s/We	ek		
No	Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	Р	С		
		Т	HEORY									
1	1Soil Dynamics and MachinePC40601003104											
1	23GEPC05	Foundations	10	-10	00	100	5	1	v	Т		
2		Site Exploration and soil	PC	40	60	100	3	0	0	r		
2	23GEPC06	Investigation	10	40	00	100	,	U	U	5		
3	23GEPEXX	Professional Elective II	PE	40	60	100	3	0	0	3		
4	23GEPEXX	Professional Elective III	PE	40	60	100	3	0	0	3		
5	23GEACXX	Audit Course - II	AC	40	60	100	2	0	0	0		
		PR.	ACTICAL									
6	23GEPC07	Subsoil Exploration Laboratory	PC	60	40	100	0	0	4	2		
7	23GEPC08	Finite Element Analysis	PC	60	40	100	0	0	4	2		
	25011008	Laboratory	10	00	-10	100	0	0	4	2		
8	23GEEE01	Mini Project	EEC	60	40	100	0	0	4	2		
		TOTAL		380	420	800	14	1	12	19		

THIRD SEMESTER

SI.	Course	Course Title	Category CA Marks	CA	End	Total	Hours/Week			
No	Code	Course Title		Marks	Sem. Marks	Marks	L	Т	Р	С
		T	HEORY							
1	23GEPEXX	Professional Elective IV	PE	40	60	100	3	0	0	3
2	23GEOEXX	Open Elective – I	OE	40	60	100	3	0	0	3
	•	PRA	ACTICAL							
3	23GEEE02	Internship/ Industrial Training	EEC	100		100			**	2
4	23GEEE03	Project - I	EEC	60	40	100	0	0	24	12
		TOTAL		240	160	400	6	0	24	20

**Industrial Training/Internship – 4Weeks

FOURTH SEMESTER

SI.	Course	e Course Title	mm	СА	End	End	d Total	Hours/Week				
No	Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	Р	С		
		PR	ACTICAL									
1	23GEEE04	Project - II	EEC	60	40	100	0	0	48	24		
		TOTAL		60	40	100	0	0	48	24		

Total Credits - 83

	(=						
		99		No of Ci	redits		
S.No	Course Work Subject Area	I	П	Ш	IV	Total	Percentage
1.	Foundation Course	6	-	-	-	6	7.23 %
2.	Professional Cores	11	11	-	-	22	26.51 %
3.	Professional Electives	3	6	3	-	12	14.46 %
4.	Employability Enhancement Courses	-	2	14	24	40	48.19 %
5.	Open Elective Courses	-	-	3	-	3	3.61 %
	Total Credits	20	19	20	24	83	100

SUMMARY OF CREDIT DISTRIBUTION

FOUNDATION COURSES (FC)

SI	Course	se Course Title		CA	End	Total	Hours/Week				
No	Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	Р	С	
1	23GEFCZ1	Research Methodology and IPR (Common to all Branches)	FC	40	60	100	3	0	0	3	
2	23GEFC02	Analytical and Numerical Methods	FC	40	60	100	3	0	0	3	
		(Common to Structural & Geotechnical Engineering)									
	TOTAL			80	120	200	6	0	0	6	

PROFESSIONAL COURSES (PC)

SI.	Course				End	Total		Hour	rs/Week		
No	Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	Р	С	
1	23GEPC01	Strength and Deformation Characteristics of Soils	PC	40	60	100	3	0	0	3	
2	23GEPC02	Advanced Foundation Engineering	PC	40	60	100	3	0	0	3	
3	23GEPC03	Structural Design of Foundations and Substructures	PC	40	60	100	3	0	0	3	
4	23GEPC04	Advanced Soil Mechanics Laboratory	PC	60	40	100	0	0	4	2	
5	23GEPC05	Soil Dynamics and Machine Foundations	PC	40	60	100	3	1	0	4	
6	23GEPC06	Site Exploration and soil Investigation	PC	40	60	100	3	0	0	3	
7	23GEPC07	Subsoil Exploration Laboratory	PC	60	40	100	0	0	4	2	
8	23GEPC08	Finite Element Analysis Laboratory	PC	60	40	100	0	0	4	2	
	TOTAL			380	420	800	15	1	12	22	

SI.	Course			СА	End	Total	H	ours	/We	eek
No	Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	Р	С
1	23GEPE01	Remote Sensing and its applications in Geotechnical Engineering	PE	40	60	100	3	0	0	3
2	23GEPE02	Soil Properties and Behaviour	PE	40	60	100	3	0	0	3
3	23GEPE03	Sustainable Geotechnics	PE	40	60	100	3	0	0	3
4	23GEPE04	Reinforced Soil Structures	PE	40	60	100	3	0	0	3
5	23GEPE05	Finite Element Analysis for Geotechnical Engineering	PE	40	60	100	3	0	0	3
6	23GEPE06	Foundation in Expansive Soils	PE	40	60	100	3	0	0	3
7	23GEPE07	Soil Structure Interaction (Common to Structural & Geotechnical Engineering)	PE	40	60	100	3	0	0	3
8	23GEPE08	Forensic Geotechnical Engineering	PE	40	60	100	3	0	0	3
9	23GEPE09	Rock Mechanics in Engineering Practice	PE	40	60	100	3	0	0	3
10	23GEPE10	Geotechnical Earthquake Engineering	PE	40	60	100	3	0	0	3
11	23GEPE11	Design of Underground Excavations	PE	40	60	100	3	0	0	3
12	23GEPE12	Computational Geomechanics	PE	40	60	100	3	0	0	3
13	23GEPE13	Slope Stability and Landslides	PE	40	60	100	3	0	0	3
14	23GEPE14	Geology in Geotechnical Engineering	PE	40	60	100	3	0	0	3
15	23GEPE15	Land Reclamation	PE	40	60	100	3	0	0	3
16	23GEPE16	Environmental Geotechnology	PE	40	60	100	3	0	0	3
17	23GEPE17	Pavement Engineering	PE	40	60	100	3	0	0	3
18	23GEPE18	Theoretical Soil Mechanics	PE	40	60	100	3	0	0	3
19	23GEPE19	Earth Retaining Structures	PE	40	60	100	3	0	0	3
20	23GEPE20	Professional Practices in Design Of Geotechnical Structures	PE	40	60	100	3	0	0	3
21	23GEPE21	Ground Improvement Technique	PE	40	60	100	3	0	0	3
22	23GEPE22	Marine Geotechnical Engineering	PE	40	60	100	3	0	0	3
23	23GEPE23	Unsaturated Soil Mechanics	PE	40	60	100	3	0	0	3
24	23GEPE24	Tunnel Engineering	PE	40	60	100	3	0	0	3

PROFESSIONAL ELECTIVES (PE)

OPEN ELECTIVES (OE)

SI.	Course		Catagory CA		End	Total	H	ours	/Wee	ek
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	C
1	23SEOE01	Building Bye-Laws and Codes of Practice	OE	40	60	100	3	0	0	3
2	23SEOE02	Planning of Smart Cities	OE	40	60	100	3	0	0	3
3	23SEOE03	Green Building	OE	40	60	100	3	0	0	3
4	23EEOE04	Environment Health and Safety Management	OE	40	60	100	3	0	0	3
5	23EEOE05	Climate Change and Adaptation	OE	40	60	100	3	0	0	3
6	23EEOE06	Waste to Energy	OE	40	60	100	3	0	0	3
7	23GEOE07	Energy in Built Environment	OE	40	60	100	3	0	0	3
8	23GEOE08	Earth and Its Environment	OE	40	60	100	3	0	0	3
9	23GEOE09	Natural Hazards and Mitigation	OE	40	60	100	3	0	0	3
10	23EDOE10	Business Analytics	OE	40	60	100	3	0	0	3
11	23EDOE11	Introduction to Industrial safety	OE	40	60	100	3	0	0	3
12	23EDOE12	Operations Research	OE	40	60	100	3	0	0	3
13	23MFOE13	Occupational Health and Safety	OE	40	60	100	3	0	0	3
14	23MFOE14	Cost Management of Engineering Projects	OE	40	60	100	3	0	0	3
15	23MFOE15	Composite Materials	OE	40	60	100	3	0	0	3
16	23TEOE16	Global Warming Science	OE	40	60	100	3	0	0	3
17	23TEOE17	Introduction to Nano Electronics	OE	40	60	100	3	0	0	3
18	23TEOE18	Green Supply Chain Management	OE	40	60	100	3	0	0	3
19	23PSOE19	Distribution Automation System	OE	40	60	100	3	0	0	3
20	23PSOE20	Electricity Trading & Electricity Acts	OE	40	60	100	3	0	0	3
21	23PSOE21	Modern Automotive Systems	OE	40	60	100	3	0	0	3
22	23PEOE22	Virtual Instrumentation	OE	40	60	100	3	0	0	3
23	23PEOE23	Energy Management Systems	OE	40	60	100	3	0	0	3
24	23PEOE24	Advanced Energy Storage Technology	OE	40	60	100	3	0	0	3
25	23AEOE25	Design of Digital Systems	OE	40	60	100	3	0	0	3
26	23AEOE26	Basics of Nano Electronics	OE	40	60	100	3	0	0	3
27	23AEOE27	Advanced Processor	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL Programming Languages	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI Design	OE	40	60	100	3	0	0	3
30	23VLOE30	High Level Synthesis	OE	40	60	100	3	0	0	3
31	23CSOE31	Artificial Intelligence	OE	40	60	100	3	0	0	3
32	23CSOE32	Computer Network Management	OE	40	60	100	3	0	0	3
33	23CSOE33	Block Chain Technologies	OE	40	60	100	3	0	0	3

AUDIT COURSES (AC)

(Common to all Branches)

GL	C				End	T ()	Н	ours	/Wee	ek
SI. No	Course Code	Course Title	Category	CA Marks	Sem. Marks	l otal Marks	L	Т	Р	С
1	23GEACZ1	English for Research Paper writing	AC	40	60	100	2	0	0	0
2	23GEACZ2	Disaster Management	AC	40	60	100	2	0	0	0
3	23GEACZ3	Value Education	AC	40	60	100	2	0	0	0
4	23GEACZ4	Constitution of India	AC	40	60	100	2	0	0	0
5	23GEACZ5	Pedagogy Studies	AC	40	60	100	2	0	0	0
6	23GEACZ6	Stress Management by Yoga	AC	40	60	100	2	0	0	0
7	23GEACZ7	Personality Development Through life enlightenment skills	AC	40	60	100	2	0	0	0
8	23GEACZ8	Sanskrit for Technical Knowledge	AC	40	60	100	2	0	0	0

EMPLOYABILTY ENHANCEMENT COURSES (EEC)

120

			_							
GL	G				End	T ()		Hour	∶s/We	ek
SI. No	Course Code	Course Title	Category	CA Marks	Sem. Marks	l otal Marks	L	Т	Р	С
1	23GEEE01	Mini Project	EEC	60	40	100	0	0	4	2
2	23GEEE02	Internship/Industrial Training	EEC	100	-	100	-	-	**	2
3	23GEEE03	Project - I	EEC	60	40	100	0	0	24	12
4	23GEEE04	Project - II	EEC	60	40	100	0	0	48	24

**Industrial Training/Internship – 4Weeks

L: Credits for Lecture Hours

P: Credits for Practical Hours

T: Credits for Tutorial Hours

C: Total Number of Credits

23GEFCZ1	RESEARCH METHODOLOGY AND IPR SEMESTER I								
	(Common to all Branches)	CATECODY		Т	n	C			
PREREQUISI	I ES	CATEGORY		1	P 0	2			
Carrier	NIL The invest law of the later	FC	3	0	U	3			
Course	• 10 impart knowledge on research methodology	y, Quantitative n	netnoa	S 101	r pro	blem			
Objective	 To know the importance of IPR and patent rights 								
	To know the importance of it is and patent rights.					-			
UNIT-I	INTRODUCTION	·		<u>9 P</u>	Perio	ds			
Definition and	objectives of Research – Types of research, Va	rious Steps in	Rese	arch	pro	cess,			
Mathematical to	ools for analysis, Developing a research question- Cho	pice of a problem	n Lite	ratur	e rev	view,			
Surveying, synt	hesizing, critical analysis, reading materials, review	ing, rethinking,	critic	al ev	alua	tion,			
interpretation,									
Research Purpos	ses, Ethics in research–APA Ethics code.								
UNIT-II	QUANTITATIVE METHODS FOR PROBLEM SC	DLVING		9 F	Perio	ds			
Statistical Mod	eling and Analysis, Time Series Analysis Probabil	ity Distributions	s, Fur	ıdam	enta	ls of			
Statistical Anal	ysis and Inference, Multivariate methods, Concep-	ts of Correlation	on and	d Re	egres	sion,			
Fundamentals of	f Time Series Analysis and Spectral Analysis, Error	Analysis, Appl	icatior	ns of	Spe	ectral			
Analysis.									
UNIT-III	DATA DESCRIPTION AND REPORT WRITING			9 F	Perio	ds			
Tabular and gra	phical description of data: Tables and graphs of freque	ncy data of one	variab	le, T	ables	and			
graphs that sho	w the relationship between two variables, Relation b	between frequend	cy dist	tribu	tions	and			
other graphs, pr	eparing data for analysis.								
Structure and Co	omponents of Research Report, Types of Report, Layou	t of Research Re	port, N	Mech	anis	m of			
Writing a resear	ch report, referencing in academic writing.		-						
UNIT-IV	INTELLECTUAL PROPERTY			9 F	Perio	ds			
Nature of Inte	llectual Property: Patents, Designs, Trade and Co	pyright. Process	ofl	Pater	ting	and			
Development: te	chnological research, innovation, patenting, developme	ent.							
International Sc	enario: International cooperation on Intellectual Propert	y. Procedure for	grants	of p	aten	s,			
Patenting under	PCT.	-	C	1		·			
UNIT-V	PATENT RIGHTS			9 F	Perio	ds			
Patent Rights:	Scope of Patent Rights, Licensing and transfer of t	technology. Pate	ent inf	orm	ation	and			
databases. Geog	raphical Indications.								
Contact Period	s:								
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Per	riods						
					_	_			
REFERENCE	CS								
1 Stuart Melvi	lle and Wayne Goddard, "Research methodology : an i	ntroduction", Ju	ta Aca	ıdem	ic, 2	ıd			
<i>edition</i> , 2014	4.								

- 2 Donald H.Mc Burney and Theresa White, "Research Methods", 9thEdition, Cengage Learning, 2013.
 3 Ranjit Kumar, "Research Methodology: A Step by Step Guide for Beginners", 5thEdition, 2019.
 4 Dr.C. R. Kothari and Gaurav Garg, "Research Methodology: Methods and Trends", New Age International Publishers, 4thEdition, 2018.

COU	COURSE OUTCOMES:			
Upon c	Upon completion of the course, the students will be able to:			
CO1	Formulate research question for conducting research.	K3		
CO2	Analyze qualitative and quantitative data.	K4		
CO3	Interpret research findings and give appropriate conclusions.	K2		
CO4	Develop a structured content to write technical report.	K3		
CO5	Summarize the importance of IPR and protect their research work through	K2		
	Intellectual property.			

COURSEARTICULATIONMATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	2	3	2	1	1		
CO2	2	-	3	2	1	-		
CO3	2	2	3	2	1	-		
CO4	-	3	2	1	1	-		
CO5	-	2	3	1	-	1		
23GEFCZ1	2	2	3	2	1	1		
1-Slight, 2-Moderate, 3-Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	40	40	20	-	-	-	100		
CAT2	40	40	20	-	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100		
ESE	30	30	20	20	-	-	100		
		C.S.	And acon	T					

			1						
23GEFC0	2 ANALYTICAL AND NUMERICAL M	IETHODS		SEME	STER	[
	(Common to Structural & Geotechnical	Engineering)				-			
PREREQU	ISITES	CATEGORY	L	T	Р	С			
	NIL	FC	3	0	0	3			
Course	To familiarize the foundations of numerical methods	and analysis technic	ques mo	stly us	ed in var	rious			
Objective	Objective applications in engineering and technology.								
UNIT–I	UNIT-ISOLUTIONS OF EQUATIONS AND EIGEN VALUE PROBLEMS9 Periods								
Error Analys	sis: Sources of Error in Numerical Computations,	Absolute and Rel	lative E	rrors,	Round	off and			
Truncation H	Errors. Solutions of nonlinear algebraic and trar	scendental equation	ons by	fixed	point it	eration			
method and	Newton Raphson method. Solutions of linear syst	em of equations b	y Gaus	s Elim	nination,	Gauss			
Jordan and G	auss Seidel method. Eigen value of Matrix by Pow	ver method and Jac	obi met	hod.					
UNIT-II	CURVE FITTING AND INTERPOLATION				9 Per	iods			
Curve fitting	Fitting a straight line and parabola by method of	least squares. Cur	ves red	ucible	to linea	r form.			
Newton's di	vided difference formula, Lagrange's interpolation	n-Newton's Forw	ard and	backy	ward dif	ference			
formula.									
UNIT-III	NUMERICAL DIFFERENTIATION AND N	UMERICAL			9 Per	iods			
	INTEGRATION								
Numerical a	pproximation of derivatives using interpolation	n polynomials -	Nume	rical	integra	tion by			
Trapezoidal,	Simpson's one third rule and Simpson's three eig	ght rule- Two poin	t and	three	point G	aussian			
quadrature fo	ormula - Double integration using Trapezoidal and	Simpson one third	rule.						
UNIT-IV	NUMERICAL SOLUTION OF ORDINARY	DIFFERENTIAL			9 Per	iods			
	EQUATIONS								
Taylor series	s method - Euler method - Modified Euler method	od - Fourth order	r Runge	e - Ku	ıtta meth	od for			
solving first	order equations - Predictor and corrector methods	s: Milne's and Ada	ım Bash	nforth 1	methods				
UNIT-V	UNIT-V NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 9 Periods								
Finite differen	nce solutions for the second order ordinary differenti	al equations – Finit	te differ	ence so	olutions	for one			
dimensional 1	Heat Equation (Both Explicit and Implicit Methods)	One dimensional	wave e	quatior	n - Lapla	ace and			
Poisson equat	tion.	icute							
Contact Pe	riods:	D							
Lecture:45	Periods Tutorial: 0 Period Practica	l: 0 Periods	Total:	45 Per	riods				

1	Steven C. Chapra, Raymond P., Canale, "Numerical Methods for Engineers", McGraw Hill Education
	Pvt Ltd 8th Edition 2021.
2	Srimanthapal "Numerical Methods, Principles, Analyses and Algorithm", Oxford University Press, New
	Delhi, 1 st Edition, 2009.
3	Veerarajan T and Ramachandran T "Numerical Methods with Programming in C" McGraw Hill
	Education Pvt Ltd, New Delhi, 1 st Edition, Reprint, 2016.
4	S.S.Sastry, "Introduction to Methods of Numerical Analysis", Prentice Hall of India, Delhi,
	5 th Edition, 2015.
5	Dr. J.S Chitode "Numerical Methods" Technical Publications, Pune, 2010.

COURSI	E OUTCOMES:	Bloom's
Upon completion of the course, the students will be able to:		
CO1	Understand the numerical solutions to algebraic, exponential, logarithmic, transcendental and linear system of simultaneous equations.	К3
CO2	Appreciate the numerical techniques of interpolation and error approximations in various intervals in real life situations.	К3
CO3	Apply the numerical techniques of finite differences to numerical differentiation and numerical integration in engineering problems.	К3
CO4	Understand the numerical solution to first order ordinary differential equations by different methods like single step and multistep.	К3
CO5	Solve second order partial differential equations with initial and boundary conditions by using certain techniques with engineering applications.	К3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	201-	2	2		
CO2	3	2	3	<u> </u>	2	3		
CO3	3	2	3	<u> </u>	2	2		
CO4	3	2	2	1 -	2	2		
CO5	3	2	3	-	2	2		
23GEFC02	3	2	3	-	2	3		
1-Slight,2-Moderate,3-Substantial								

R. A

A

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	40	40	-	-	-	100		
CAT2	20	40	40	-	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100		
ESE	20	40	40	-	-	-	100		

23GEPC01	STRENGTH AND DEFO CHARACTERISTICS	ORMATION S OF SOILS	SE		MESTER I	
PREREQUIS	SITES	CATEGORY	L	Т	Р	C
	NIL	РС	3	0	0	3
Course	To impart knowledge on stress-strain character	ristics of soils an	d its b	ehavic	our in the	e for
	SUEAD STRENCTH OF COUFSIONLE			0 Po	riode	
Shear strength	of granular soils_ Direct shear_ Triavial Te	sting _ Drained :	and und	910 Irained	1_Stress	-ctr
behaviour –	Dilatation $-$ Contraction and critical states	– Liquefaction	and Li	nuefac	tion nc	oten
.Factors influe	encing–Stress-strain–Volume change behavio	r of soils.		queia	non pe	, cm
UNIT-II	SHEAR STRENGTH OF COHESIVE SO	ILS		9 Pe	riods	
Shear strengt	h of clavs –Stress-strain behavior –Vane s	hear–UCC–Triax	ial test	ting a	nd stres	s p
plotting- Pore	pressure parameter of Skempton and Henk	el–Total stress ar	nd effec	ctive s	tress ap	proa
-Shearstrengt	hofpartiallysaturated clavinterms of stress states	ariables-Drained	andund	lraineo	I-Factor	rs
influencing st	ress-strain and shear strength.					
	VIELD CRITERION			9P01	·inde	
Concepts of v	ield and failure in soils-Vield criteria of Vo	n Mises, Tresca -	_their a	pplica	hility to	soi
Detailed discu	ssion of Mohr–Coulomb failure criterion.		unen a	ppnou	onity to	
UNIT-IV	STRESS-STRAIN LAWS			9Per	riods	
Stress-strain la	aws for soils–Hyperbolic law–Linear visco -	Elastic and Elastc	–Plasti	c laws	-Yield	
functions, har	dening law, flow rules and plastic strain comp	putation-Cam-cla	ay mod	el.		
UNIT–V	CRITICAL STATE SOIL MECHANICS			9Per	riods	
Introduction to	o critical state soil mechanics -critical state li	ne–Roscoe and H	vorslev	v's bou	undary S	Surf
Contact Perio	ods:	A				
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0	Periods Tota	al: 45 P	Period	s	
	Cale	acus			~	
REFER	RENCES	T				
1 RobertD.H	oltz., William D. Kovacs. Thomas C. Sk	heahan., "An in	troduci	tion t	o geote	chn
Engineeri	ng" Dorling Kindersley India pvt. Ltd., Secon	nd edition,2013.				
2 Braja,M.D	as., "Advanced Soil Mechanics", C R C Pre	ss, Fifth edition,2	019.			
3 Wood,D.M	., "Soil behavior and Critical State Soil	Mechanics", C	ambrid	ge Ur	iversity	, Pr
NewYork, I	990			-		
4 Lambe, T. W	V. and WhitmanR.V., Soil Mechanics in S.I.	Units John Wilev.	India.	PvtLtd	.,2008.	
5 AtkinsonJ.	H. and BrandsbyP.L. "Introduction to Crit	ical State Soil M	Iechan	ics". I	ndo Am	ierio
Books; Rep	printed Edition, 2013.			, -		
1						
RSE OUTCO	DMES:					Bloc
completion o	f the course, the students will be able:				T	axo
1					1	Mar

CO1	01 To evaluate the shear strength parameters of cohesionless soil and to gain knowledge					
	about liquefaction.					
CO2	To obtain shear strength parameters of cohesive soil under different drainage	K3				
	conditions.					
CO3	To understand failure criteria of soils and apply models to study the time-deformation	K2				

	behavior of soils.	
CO4	To understand stress strain laws of soils.	K1
CO5	To get an exposure towards critical state soil mechanics.	K1

COURSEARTICULATIONMATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	1	-	2	-	-			
CO2	3	1	-	2	2	-			
CO3	-	-	-	2	3	-			
CO4	3	1	-	2	-	-			
CO5	-	-	1	-	3	-			
23GEPC01	3	1	1	2	3	-			
1-Slight,2-Moderate,3-Substantial									

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20		-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100
ESE	40	40	20	-	-	-	100

23GEPC02	ADVANCED FOUNDATION ENG	INEERING		SE	EMEST	ER I
PREREQUIS	ITES	CATEGORY	L	Т	Р	C
	NIL	РС	3	0	0	3
Course Objective	To learn different soil exploration technic different types of foundations including	iques and to estimate g selection of suitab	load le typ	carryin be of f	g capac oundati	city of on on
	problematic soils.					
UNIT-I	PLANNING OF SOIL EXPLORATION				9 Pe	eriods
Exploration m vane shear tes of samples.	ethods for different projects - methods of bo t - field permeability test-rock boring - offsh	orings - penetration te ore exploration- prese	ests - p ervatic	oressure on, shipi	meter nent an	test, fiel d storag
UNIT–II	SHALLOW FOUNDATIONS				9 Pe	eriods
Requirements settlement of f	for satisfactory performance of foundat ooting sand rafts – Proportioning of footing	tions, methods of es as – Isolated, Combine	stimat ed and	ing bea Raft fo	aring c undatio	apacity, ns.
UNIT-III	PILE FOUNDATIONS				9 Pe	eriods
settlement, ne load-settlemer	gative skin friction of piles, laterally loaded the behavior of piles, construction of Pile and	d piles, pile load tes Pile cap, lateral and u	ts, ai plift c	nalytica apacity	l estim of piles	nation of s.
UNIT–IV	WELL FOUNDATION				9 Pe	eriods
Problematic s Clays and exp and design – F	Foundations under uplifting loads.	SOILS AND COFFE ils, Organic soils, Dis ing behavior Cofferd	RDA persiv ams –	MS re and V various	9 Pe farved types, a	e riods analysis
Lecture: 45 P	eriods Tutorial: 0 Periods Practica	al: 0 Periods	Total	: 45 Per	riods	
REF	ERENCES					
1 Narayan	V.Nayak, "Foundation Design Manual for	Practising Engineers	s and	Civil Ei	ngineer	ing
2 Bowles. 5 th edition	J.E., "Foundation Analysis and Desi 2001.	in eatiion(Reprint200 i gn" , Tata McGraw	1). v-Hill	Interno	ational	Editie
3 Das B.M	., "Shallow Foundations: Bearing capacity	and Settlement", CR	C Pre	ss, 1999	•	
4 Tomlinso	on M.J., "Pile design and Construction Prac	c tice" , Chapman and	Hall F	Publicat	ion, 199	4.
5 Braja. 9 th Editio	M.Das, " Principles of Geotechnical n,2017	Engineering" Ceng	age	India	Private	Limit
6 <i>V.N.S.M</i>	arthy, "Advanced Foundation Engineering	", CBS Publishers & I	Distril	butors 1	st Editio	on, 2017
COURSE	OUTCOMES:			E	Bloom's	5
Unon com	pletion of the course, the students will be abl	le to:		Ta	axonom	y

completion of the course, the students will be able to:	Mapped
Identify and select suitable exploration techniques for different projects.	K2
Evaluate the bearing capacity and settlement of shallow foundations.	K3
Estimate the pile capacity and settlement of piles.	K3
Analyse the various components and forces acting on well foundation.	K3
Gain knowledge about different types of foundations in problematic soils.	K3
	completion of the course, the students will be able to:Identify and select suitable exploration techniques for different projects.Evaluate the bearing capacity and settlement of shallow foundations.Estimate the pile capacity and settlement of piles.Analyse the various components and forces acting on well foundation.Gain knowledge about different types of foundations in problematic soils.

COURSE AR	TICULATION	MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	-	3	3
CO2	3	3	2	-	3	3
CO3	-	3	2	-	3	3
CO4	-	-	1	3	2	-
CO5	3	-	1	3	2	3
23GEPC02	3	3	2	3	3	3
1-Slight, 2-M	oderate, 3-Subs	tantial				

ASSESSMENT	PATTERN - 7	THEORY					
Test / Bloom's	Remembering Understanding A		Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT 1	25	25	50	-	-	-	100
CAT 2	20	20	60	-	-	-	100
Individual			mm				
Assessment 1 /		Contraction of the second	1 D	0000			
Case Study 1/	25	25	50	5.91	-	-	100
Seminar 1 /		92	UTROAL OF				
Project1							
Individual			50	1			
Assessment 2 /							
Case Study 2/	20	20	60	- ///	-	-	100
Seminar 2 /				1			
Project 2							
ESE	20	20	60	-	-	-	100

23GEPC03	STRUCTURAL DESIGN OF FOUNDATI SUBSTRUCTURES	SEMESTER I				
PREREQUIS	ITES	CATEGORY	L	Т	Р	С
	NIL	PC	3	0	0	3
Course	To impart knowledge on the structural design of	of shallow, deep	and	specia	1 typ	be of
Objective	foundations.					
UNIT–I	DESIGN OF FOOTINGS			9 Pe	riod	5
Introduction t	o Limit State Design of reinforced concrete	in foundations;	So	il pre	essur	e for
structural de	esign, Conventional structural design of	f continuous	foot	ings, i	ndiv	idual
footings – rec	ctangular and circular, combined footings - 1	rectangular, trapez	oidal	and s	trap.	
UNIT-II	DESIGN OF RAFTS		9 Periods			5
Raft Foundati	ons- Structural Design of rectangular and circul	lar rafts and mats	usin	g con	venti	onal
method of ana	lysis, Analysis and design of rafts incorporating sc	oil structure interac	tion	using	any I	FEM
software.						
UNIT-III	DESIGN OF PILES			9 Pe	riod	S
Structural desi	gn of piles including pile caps, under - reamed pile	es.				
UNIT-IV	DESIGN OF FOUNDATION AND COFFER I	DAM		9 Pe	riod	5
Types of well	foundation - components - structural design of we	ell foundation – typ	pes of	f coffe	r dar	n –
design – latera	l pressure stability.	0				
UNIT-V	NIT-V DESIGN OF RETAINING WALLS			9 Periods		
Structural des	sign of retaining walls-Reinforced Concrete C	Cantilever retainin	ıg w	all, Co	ounte	erfort
retaining wall,	Flexible retaining Structures - Sheet Pile Wall, A	nchored Bulk Hea	ds.			
Contact Perio	ods:					
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					
REFER	ENCES	3. 3. 3. 3.				

	A second time to a second
1	Nainan P.Kurian "Design of Foundation Systems: Principles and Practices", Narosa publish House, NewDelhi, 2005.
2	SwamiSaran, "Analysis and Design of Substructures", Oxford & IBH PublishingCo,2005.
3	TomlinsonM.J., "Foundation Design and Construction", PrenticeHal, 2003l.
4	NainanP.Kurian "Shell foundations: Geometry, Analysis, Design and Construction", Alpha Science International Ltd, 2006.
5	TomlinsonM.J., JohnWoodward "Pile Design and Construction Practice", Routledge, 2008.
6	SomN.N., and DasS.C., "Theory and Practice of Foundation Design", Prentice Hall of India, 2003.
7	Sharat Chandra Gupta, "Raft Foundations – Design and Analysis with Practical Approach" , New Age International Pvt. Ltd, New Delhi, 2006.

COUF	Bloom's	
Upon	Taxonomy Mapped	
CO1	Design the isolated and combined footing.	K2
CO2	Carryout analysis and design of rafts	К3
CO3	Get familiarized with design of piles and pier.	К3
CO4	Carryout structural design of well foundation and cofferdam.	K3
CO5	Carryout design of retaining wall.	К3

COURSE ART	ICULATIO	N MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	2	3	-	1
CO2	1	-	2	3	1	1
CO3	1	-	2	3	1	1
CO4	1	-	2	3	1	1
CO5	1	-	2	3	1	1
23GEPC03	1	-	2	3	1	1
1-Slight, 2-Mod	derate, 3–Sub	stantial		·		·

ASSESSMENT	PATTERN – T	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	30	40	30	-	-	-	100
CAT 2	30	40	30	SUSJECT .	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100
ESE	30	40	30		-	-	100
		and a	10000 1000 1000 1000 1000 1000 1000 10	a va			

25011004		SEI			K I			
PREREQUISI	TES	CAT	EGORY	L	T	P	C	
-	NIL (1 1	$\frac{\mathbf{NIL}}{\mathbf{T}} \qquad \qquad \mathbf{PC} \qquad 0 0 4 2$						
Course	To get exposure on the cha	the handling of Gootechnical instr	detailed lab	orato	ory e	exper	imen	
Objective	and to be faminarized with	the handling of Geotechinear list	uments.					
MODULES FESTS ON SC								
1 Determi	nation of Moisture Conten	t and Specific gravity of soil						
2 Mechan	ical Sieve Analysis and Hyd	drometer Analysis						
3 Atterber	o's Limits (Liquid Limit P	lastic limit Shrinkage limit)						
4. Differer	tial Free Swell Test	iastie initi, Shirinage initi)						
5. Vibratic	on test for relative density of	f sand						
6. Standar	d and modified Proctor com	paction test						
7. Constan	t head permeability test and	Falling head permeability test						
8. Consoli	dation test							
9. Unconfi	ned Compression test							
10. Direct s	hear test							
11. Tri-axia	l compression test – UU, C	U, CD tests						
12. Laborat	ory vane shear test							
13. Swell P	ressure Test	V SS States of Col						
GEOTECHNI	CAL INSTRUMENTATI	ON						
1. Total Pr	essure using Earth pressure	cell						
2. Strain measurement using vibrating wire strain gauge								
3. Depth an	d pressure of ground water	using Piezometer						
4. Water lev	el in bore hole using Electr	onic water level indicator.						
Contact Period	ls:							
Lecture: 0 Per	iod Tutorial: 0 Periods	Practical: 60 Periods	Total: 60	Peri	ods			

1	Shashi K Gulhati and Manoj Datta., "Geotechnical Engineering" Tata McGraw Hill Company Limited, NewDelhi, 2009
2	C.Venkatramaiah, "Geotechnical Engineering", New Age International Publishers, 2009
3	Gopal Ranjan, ASR Rao, "Basic and Applied Soil Mechanics", New Age International Publishers, 2004.
4	Iqbal H Khan, "Textbook of Geotechnical Engineering", PHI Learning Private limited, 2012.

COUI Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Determine the physical characteristics of soils.	K3
CO2	Classify the given soils as per IS classification system.	K3
CO3	Determine the shear strength of the soil.	K3
CO4	Evaluate the compressibility and swelling characteristics of soils.	K3
CO5	Familiarize with handling of lab equipments and geotechnical instrumentation	K3

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	1	3	3	3	3				
CO2	-	1	-	2	-	1				
CO3	-	3	3	3	2	3				

٦

CO4	3	2	3	3	2	3			
CO5	3	-	3	3	1	3			
23GEPC04	3	1	3	3	2	3			
1–Slight ,2–Moderate ,3–Substantial									

23GEPC05	SOIL DYNAMICS AND MACHINE FOUN	SI	SEMESTER II									
PREREQUIS	TES	CATEGORY	GORY L T P C									
	NIL PC 3 1 0 4											
Course	Course To inculcate the fundamentals of soil dynamics and design different types of machine											
Objective	bjective foundations based on the dynamic properties of soils and to get an exposure on											
vibration isolation techniques.												
UNIT–I	THEORY OF VIBRATION			9+3	Peri	ods						
Introduction – vibration – Sin – Forced vibra of transient and	Nature of dynamic loads – Basic definitions – Simp gle degree and multi degree of freedom systems – F tions – Resonance – Viscous damping – Principles l pulsating loads.	ble harmonic mot ree vibrations of of vibrations me	tion – l spring asuring	Fund – M g sys	amen ass sy tems-	tals of ystems -Effect						
UNIT-II	DYNAMIC SOIL PROPERTIES			9+3	Peri	ods						
Dynamic stress Field tests – B liquefaction – Dynamic bearing	Dynamic stress strain characteristics – Principles of measuring dynamic properties–Laboratory techniques – Field tests – Block vibration test – Factors affecting dynamic properties – Typical values. Mechanism of liquefaction – Influencing factors – Evaluation of liquefaction potential – Analysis from SPT test – Dynamic bearing capacity – Dynamic earth pressure.											
UNIT–III	MACHINE FOUNDATIONS	9		9+3	Peri	ods						
Introduction – Design approad – dashpot mod	Types of machine foundations – General requireme ch for machine foundation – Vibration analysis – Ela el – Permissible amplitudes – Permissible bearing pro	nts for design of astic Half Space t essures.	machi heory -	ne fo - Ma	ounda ss – s	tions. spring						
UNIT–IV	DESIGN OF MACHINE FOUNDATION			9+3	Peri	ods						
Evaluation of importance – vibration of a r vertical compr Barken's metho	design parameters – Types of Machines and found Analysis and design of block type and framed ty igid foundation – Foundations for reciprocating mac ressor, Double acting steam hammer – Codal rec od – Bulb of pressure concept – Pauw's analogy – Vi	dations – Genera ype machine for hines, impact ma commendations. ibration table stud	al requ undatio uchines Empir dies.	nrem ns – , Tw ical	ents - - Mo o –Cy appro	- their des of /linder bach –						
UNIT–V	VIBRATION ISOLATION			9+3	Peri	ods						
Vibration isolation – Types of isolation – Transmissibility – Passive and active isolation – Methods of isolation – Use of springs and damping materials – Properties of isolating materials – Vibration control of existing machine foundation. Contact Periods: Lecture: 45 Periods – Tutorial: 15 Periods – Practical: 0 Periods – Total: 60 Periods												
REFERENCES 1 Kameswan 2 Moore,P	s raRao,N.S.V., "Dynamics soil tests and applications I., "Analysis and Design of Foundations for Vibrati	", WheelerPublis	shing, 1 d IBH,	Vew1 2000	Delhi S	2000.						
3 Krammer Education	S.L., "Geotechnical Earthquake Engineering" , Pren (Singapore) Pvt Ltd, 2004.	itice Hall, Intern	ational	3 <i>KrammerS.L., "Geotechnical Earthquake Engineering"</i> , <i>Prentice Hall, International series, Pearson Education (Singapore) Pvt Ltd, 2004.</i>								

4 *SwamiSaran,* **"Soil Dynamics and Machine Foundation"**, Galgotia publications Pvt. Ltd. New Delhi, 1999.

5 Prakash, S. and Puri, V.K. **"Foundations for Machines: Analysis and Design", John Wiley & Sons, New** York, U.S.A, 1988.

6 KameswaraRao, "Vibration Analysis and Foundation Dynamics", Wheeler Publishing, NewDelhi, 1998.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
CO1	To solve dynamic soil problems using the knowledge acquired about theories of vibration	K2			
CO2	To evaluate the dynamic properties of soil using laboratory and field tests.	K2			
CO3	To acquire basic knowledge about types of machine foundations and design approach.	K2			
CO4	To know and be capable of analyzing and designing machine foundations.	K3			
CO5	To apply vibration isolation techniques for various field problems.	K1			

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	1	-	2	-				
CO2	-	-	3	2	-	-				
CO3	3		mmn -	2	1	-				
CO4	1	Const Const	2	· ·	-	-				
CO5	1	Wash	THE REAL	- (9	2	-				
23GEPC05	3	1-2	3	2	2	-				
1-Slight, 2-Moderate, 3-	Substantial			77		1				
				(

ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT 1	40	40	20	A	-	-	100				
CAT 2	40	40	20		-	-	100				
Individual											
Assessment 1 /		500	a a a a	0000							
Case Study 1/	-	50	50	2	-	-	100				
Seminar 1 /											
Project1											
Individual											
Assessment 2 /											
Case Study 2/	-	50	50	-	-	-	100				
Seminar 2 /											
Project 2											
ESE	40	40	20	-	-	-	100				

			-								
23GEPC06	SITE EXPLORATION AND SOIL INVE	5	SEMESTER II								
PREREQUIS	ITES:	CATEGORY	L	Τ	Р	С					
	NIL	РС	3	0	0	3					
Course Objective	To impart knowledge on the different exploration techniques, the samplers used for the Collection of samples and the various geotechnical instrumentation used for field monitoring.										
UNIT-I	SCOPE AND OBJECTIVES OF SITE INVE	ESTIGATION AN	D		9 P	eriods					
Scope and ob Spacing – Dep Marine explor	jective – Preliminary desk studies – Planning an oth of borings – Stabilization of boreholes – Soil Pration and exploration reports.	exploration Progra rofile – Borelog –	ımn Dat	ne – a Pro	Loc	ation – tation –					
UNIT-II	EXPLORATION TECHNIQUES				9 P	eriods					
Methods of be difficult sub-se exploration an	oring and drilling – Non – displacement and dis oil conditions – Advantages and limitations of var d interpretation Seismic refraction and electrical re	placement method rious drilling techn esistivity methods.	ls iqu	– : es- (Drill Geop	ling in bhysical					
UNIT-III	SAMPLES AND SAMPLERS				9 P	eriods					
Type of sampl disturbance – samples – Sh Preservation a	les – Disturbed and undisturbed – Sample disturba Area and recovery ratio – RQD – Types of samp allow penetration samplers – Advanced samplin nd handling of samples.	nce – Design feat plers – Methods f ng techniques – (or p Dffs	affe reve hore	ectin ntin sar	g sample g loss of npling –					
UNIT-IV	FIELD TESTING	(9 P	eriods					
Field tests – I Test – Dynam –Dilatometer t	mportance – Penetration testing – Standard Pene ic cone penetration test – Plate load test – Field test – Data interpretation – Field Permeability test.	etration Test – Sta Vane shear test -	tic - Pr	Con essu	e Pe re n	netration neter test					
UNIT-V INSTRUMENTATION 9 Periods											
Instrumentation and induction sand slope ind	Instrumentation in soil Engineering – Pore pressure – Ground water table – Strain gauges – Resistance and induction type – Load cells – Earth pressure cells – Settlement and heave gauges – Piezometer sand slope indicators – Inclinometer – Case studies.										
Contact Perio Lecture: 45 P	ods: eriods Tutorial : 0 Periods Practical : 0 Pe	eriods Total: 45	Per	riod	5						

1	Buert.G., Taylor & Francis, "Hand book of Geotechnical Investigation and Design Tables" 2 nd Edition, 2019.
2	<i>M. Jund H vorslev</i> "Surface exploration and sampling of soils for Civil Engineering Purposes" — <i>Waterways Experiment Station, MISSISSIPPI,1978.</i>
3	E. Hunt "Geotechnical Engineering Investigation Handbook", McGraw Hill, 2 ^{na} edition, 2019.
4	Winterkorn, H.F and Fang, H.Y., "Foundation Engineering Handbook", Nostrand Reinhold 1994.
5	Hanna T.H., "Field Instrumentation in Geotechnical Engineering", Trans Tech., 1985.
6	Cudoto and Donald "Geotechnical Engineering Principles and Practices", New jersey: Pearson Higher Education, 2011.

COUR	SE OUTCOMES:	Bloom's		
Upon completion of the course ,the students will be able to:				
CO1	Plan for soil investigation and exploration in soil and rock.	K2		
CO2	Select appropriate equipment for the exploration work for different subsoil condition.	К3		
CO3	Gain the practice of recovering samples using advanced sampling techniques.	K3		
CO4	Assess the importance of field testing and handling of field equipment.	К3		
CO5	Implement geotechnical instrumentation in the field and evolve solutions for different soil conditions	К3		

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	3	2	2	3			
CO2	-	3	3	-	3	3			
CO3	3	3	3	-	2	3			
CO4	3	2	1	Ros I	2	3			
CO5	3	2	Stature C	N)1	2	3			
23GEPC06	3	3	3	1	2	3			
1-Slight, 2-Mod	erate, 3-Subs	tantial	4						

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT 1	20	30	50		-	-	100		
CAT 2	20	30	50		-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	40	60		-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	40	60	-	-	-	100		
ESE	20	30	50	-	-	-	100		

23GEPC07 SUBSOIL EXPLORATION LABORATORY		SEMESTER II					
PREREQUISI	TES	CATEGORY	L	Т	Р	С	
NIL PC 0 0 4							
Course	To impart practical exposure to subsurface exploration	n through different	t field	l and	l		
Objective	laboratory testing.						
List of Practic	als:						
1. Auger be	oring						
2. One dim	ensional Consolidation Test						
3. Triaxial	test						
4. Standard	Penetration test						
5. Dynamic	c Cone Penetration test						
6. Static co	ne penetration test						
7. Light W	eight Deflectometer test						
8. Ring she	ar Apparatus						
9. Electrica	l Resistivity meter test						
10. Plate loa	d test (Demo only)						
11. Dynamic pile load test (Demo only)							
Contact Period	ls:						
Lecture: 0 Period Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods							
	Vs2 June 2 CV						

1	J.E.Bowles, "Physical and Geotechnical Properties of Soils", 2 nd Edition, Mc.GrawHill, New York, 1984.
2	Das, B.M., "Soil Mechanics Laboratory Manual", Engineering Press, Austin, 1997.
3	Al-Khataji, A.W. and Anderstand, O.B., "Geotechnical Engineering & Soil Testing", Sounders College Publishing, FortWorth, 1992.
4	Alam Singh and Chowdary, G.R., "Soil Engineering in Theory and Practice (Vol.2) Geotechnical Testing and Instrumentation, CBS Publishers and Distributors, NewDelhi, 2006.

and the second

COURSE OUTCOMES:

Upon o	Taxonomy Mapped	
CO1	To attain adequate knowledge in assessing compressibility and shear strength Characteristics of soils	K5
CO2	To gain knowledge in assessing the safe bearing capacity of soil through field tests.	K5
CO3	To assess the subgrade modulus of soil or design of pavement thickness.	K5
CO4	To perform geophysical exploration test and interpret the results.	K5
CO5	To attain ability for solving geotechnical problems in field.	K5

Bloom's

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	2	-	1	-
CO2	-	1	-	2	-	-
CO3	3	1	-	1	-	-
CO4	-	2	2	-	2	-
CO5	2	-	-	2	1	-
23GEPC07	3	1	2	2	1	-

1-Slight, 2-Moderate, 3-Substantial

23GEPC08	3GEPC08 FINITE ELEMENT ANALYSIS LABORATORY					SEMESTER II				
PREREQUIS	ITES	CATEGORY	L	Т	P	С				
NIL PC				0	4	2				
Course Objective	CourseTo acquire knowledge of software applications for various field problems and for various conditions and to demonstrate the ability to use computer-based techniques for analysis.									
MODULEI 1. Shallow 2. Retaining	MODULEI 1. Shallow and deep foundations, slope stability analysis 2. Retaining walls, reinforced earth structures using geotechnical software packages.									

3. Seismic hazard analysis and ground response analysis

- 4. Mathematical and statistical packages (MATLAB and SPSS)
- 5. Data processing and graphical presentation using MS EXCEL and ORIGIN.

Contact Periods :	SV B	1959 Br (1979	
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 60 Periods	Total: 60 Periods

REFERENCES

1 Rajasekaran.S, Finite Element Analysis in Engineering Design, wheeler publishing, 1993

2 Krishnamurthy, Finite Element Analysis – Theory and Programming, second Edition, Tata Mcgraw Hill Publishing.Co, 1994

Bloom's

COURSE OUTCOMES:

	Quero Companyo	Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Attain sample knowledge in analyzing the settlement of the substructure	K3
CO2	Trained to gain data in assessing the various geotechnical problems	К3
CO3	Analyzing capability for various the slope stability problems	К3
CO4	Gain knowledge in various dynamic analysis problems and analyzing various structures like raft, pile draft, embankment etc.,	К3
CO5	Gain knowledge about mathematical and statistical packages	K3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	-	2	2	-	1	
CO2	1	-	3	2	-	1	
CO3	2	-	3	3	1	2	
CO4	1	-	2	3	1	2	
CO5	2	-	3	3	-	1	
23GEPC08	1	-	3	3	1	1	
1-Slight, 2-Moderate, 3-Substantial							

23 GEEE01	MINI PROJECT	SEMESTER II				
PREREQUISITESCATEGORY					Р	С
	NIL	EEC	0	0	4	2
Course	To evaluate various methods, methodolog	ies and to arrive so	olutio	ns f	or v	various
Objective	geotechnical problems.					

1. Design Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.

- 2. End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution.
- 3. Continuous assessment of Mini Project at Mid Semester and End Semester will be monitored by the departmental committee.

Contact Periods :			
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 60 Periods	Total: 60 Periods

COUR	RSE OUTCOMES:	Bloom's
Upon o	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Identify geotechnical engineering problems reviewing available literature.	К3
CO2	Study different techniques used to analyze complex Geotechnical systems.	K4
CO3	Work on the solutions given and present solution by using his/her technique	K4
	Applying engineering principles	
CO4	Identify the methodology to analyze Geotechnical problems	K3
CO5	Preparation of reports on the project designed.	K4

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	2	3	-	1		
CO2	1	-	3	2	-	1		
CO3	2	-	2	3	1	2		
CO4	1	-	2	3	1	2		
CO5	2	-	2	3	-	1		
23GEEE01	1	-	2	3	1	1		

23GEEE02	23GEEE02 INTERNSHIP / INDUSTRIAL TRAINING						
PREREQUI	SITES	CATEGORY	L	Т	Р	C	
NIL EEC						-	
Course Objective	Course To train the students to apply theoretical knowledge to practical problem thorough with the use various geotechnical equipments and software's to						
	structures.			U			
MODULE							
1. St re	tudents can undertake training in any reputed organi lated projects for a period of Four weeks.	zation dealing Geotec	hnic	al E	nginee	ering	
2. O ur	2. On completion of the training programme, students have to submit detailed report on the works undertaken.						
3. E ⁻ P1	3. Evaluation will be done by the internal committee based on the report submission and on the Presentation made.						
				1			

COUI	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Know the field problems and relate theoretical knowledge and practical experience.	K1
CO2	Work in multi-disciplinary projects either individually or as a team.	К3
CO3	Handle real-time problems and providing solutions to complex situations.	K3
CO4	Undertake collaborative research projects meeting society demands.	К3
CO5	Submit documentation of works in the form of reports.	K3
COUD	CE ADTICUL ATION MATRIX	
COUR	SE AKTICULATION MATKIX	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	2	TT	1	3				
CO2	3	-	3	2	3	2				
CO3	3	-	3	3	3	2				
CO4	3	-	3	2	3	2				
CO5	-	3	-	-	-	1				
23GEEE02	3	3	3	2	3	2				

23GEEE03 PROJECT - I SEME					ГER	III	
PREREQUIS	TES	CATEGORY	L	T	P	С	
	NIL EEC 00						
CourseTo identify field problems and to develop suitable methodologies for finding to present the work in the form of report.							
MODULE							
 1. Project w like Grou Engineerin settlemen capable of 2. Collection literatures 3. In additio wide idea work. 	nd Improvement, Slope stability analysis, Environ ag, Soil Dynamics, Earth Reinforcement, Pavemen studies by conducting model load test etc. in the d giving solutions to various Geotechnical problems. I of literatures from indexed journals, thorough an will help the students to identify and choose the right to problem identification, review of literatures help s, techniques, and methodologies to evolve solutions	mental Geotec t Engineering, lepartments of nd detailed stu at problem for os the students for the selecte	chnology Bearir that the udy of the Pha to form ed topic	the se I p of re	arthq apaci dents colle proje ernati esear	uake ty – are cted ct. ve ch	
4. Prelimina which wil	ry studies and few laboratory investigations are to b I help the students to undertake a detailed study in Pl	e carried out i nase II.	n the P	hase	I pro	oject	
Contact Period	ls:						
Lecture: 0 Per	iods Tutorial: 0 Periods Practical: 360 Per	riods Tota	l: 360 P	Perio	ds		
COURSEOUT	COMES:				Blo	om's	
T T 1		3.			Taxo	nomy	
Upon complet	on of the course, the students will be able to:	ġ			Maj	pped	
CO1 Know Project	he state of art in the area and will be in a positio in a systematic way.	n to carry the	phase	I		K3	
CO2 Enhanc	e the ability to work independently on the	topic using	differen	t		K3	

CO2Enhance the ability to work independently on the topic using differentK3Experimental and analytical approaches.K3CO3Acquire a formulated methodology in solving any problem and to present the
Solutions in a proper way.K3

COURSE ARTICULATION MATRIX

COURSE ANTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	2	1	1	1				
CO2	3	2	2	1	1	1				
CO3	3	1	2	2	2	2				
23GEEE03	3	3	2	1	1	1				
1–Slight, 2–Moderate, 3–Substantial										

23GI	23GEEE04 PROJECT - II							FER I	[V
PREF	REQUISI	TES			CATEGORY	L	Τ	P	С
NIL EEC									24
Course To carry out extensive research on current topics and problems of societal ne									
Objective relevant solutions to the identified problems, and also to publish papers in ref									ıls.
				-					
MODU	JLE								
	1. The	prim	ary objective of thi	s course is to find the resea	arch potential in var	rious tl	neme	s of	
	Geot	echn	nical Engineering.		-				
	2. The	stude	ents are trained to d	o extensive literature surve	ey in order to get in	depth	knov	wledg	e
	and	findi	ng research gaps of	the selected topics.				C	
			0 01	1					
	3. To c	arrv	out detailed experin	nental analysis/numerical r	nodeling/field stud	ies on	speci	ific	
	resea	arch 1	topics to give soluti	ons to various Geotechnica	al Engineering relat	ed pro	blem	ns.	
			Sere Sere			ee pro			
	4. Duri	ng th	e course, the stude	nts develop skills in the do	cumentation of wo	rk, pre	parat	tion of	f
	techi	nical	papers and to mak	e technical presentations.		· 1	L		
Conta	ct Period	s:	1 1	T Biller O anternation artiger	1				
Lectu	re: 0 Per	iod	Tutorial: 0 Perio	d Practical: 720 Perio	ds Total: 72) Perio	ods		
COU	RSE OUT	CO	MES:	The second	11		B	loom'	's
					(Ta	xonon	ny
Upon completion of the course, the students will be able to: Manned									d
C01	Familiar	ize v	with the laboratory	and field equipments relate	ed to the research to	pic.		K1	
CO2	Conduct	nun	nerical analysis of v	various Geotechnical struct	ures			K2	
CO3	Prepare	detai	iled documentation	of the research work	A			K3	
CO4	04 Make presentation and publication of the research outcomes								

CO4Make presentation and publication of the research outcomesCO5Give solutions to challenging problems in the area of Geotechnical Engineering

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	-	2	3	-				
CO2	3	-	-	3	3	-				
CO3	1	3	3	1	-	1				
CO4	1	3	3	1	2	1				
CO5	3	-	-	3	3	3				
23GEEE04	3	3	3	3	3	1				
1-Slight, 2-Moderate, 3-Su	1-Slight, 2-Moderate, 3-Substantial									

215

CO POINT

K3

23GEPE01

REMOTE SENSING AND ITS APPLICATIONS IN GEOTECHNICAL ENGINEERING

PREREQUISI	ГЕЅ	CATEGORY	L	T	Р	С						
	NIL	PE	3	0	0	3						
Course	To introduce the elements of GIS applied to Geotech	nical Engineering	g and t	o be	famil	iar						
Objective	Objective with the use of GIS and GPS.											
UNIT–I	UNIT-I INTRODUCTION 9 Periods											
Remote sensing	Fundamentals: Definition-Scope-Types and historica	l development-I	deal ar	nd rea	al ren	note						
sensing system.	Comparison of conventional survey, aerial remote s	ensing and satel	lite rei	note	sensi	ng–						
Advantages and	limitation of satellite remote sensing.											
EMR and Rea	mote Sensing: Energy sources-Electro Magnetic	Radiation-Spect	tral re	gions	s–Ene	ergy						
Interaction in th	e atmosphere-Atmospheric windows-Energy Interaction	on with earth surf	ace fea	tures	_							
Spectral reflecta	nce patterns for different region of EMR											
UNIT- II	SENSORS AND PLATFORMS			91	Perio	ds						
Land observatio	n satellites and sensors LANDSAT-Classification of se	nsors and platfor	ms LA	NSA	T, SP	ΟT,						
IRS and IKON	S sensors-scanning and orbiting mechanisms-Resolut	ion: spatial, spec	ctral, r	adion	netric	and						
temporal resolut	ion of the satellites-Classification of platforms.											
UNIT-III	IMAGES INTERPRETATION AND DIGITAL IMA	GE PROCESSI	NG	91	Perio	ds						
Interpretation pr	ocedure-Elements of Photo Interpretation-Strategies of	of Image Interpre	tation-	Keys	of Ir	nage						
Interpretation-E	Basic equipments for Image Interpretation-Digital Signa	al Processing Dig	ital an	alysis	–Ima	ıge						
Rectification and	d Restoration-Geometric correction-Image Enhanceme	ent and Image trai	nsform	ation								
UNIT-IV	GEOGRAPHICAL INFORMATION SYSTEM (GIS)		91	Perio	ds						
Definition data	input and output: Topology, Digital elevation data-Data	a management–R	elation	al da	ta mo	del						
–Spatial data mo	odels-Raster and Vector data Models-GIS analysis-Cla	ssification, overl	ay ope	ratior	1.							
UNIT–V	APPLICATION OF REMOTE SENSING A	AND GIS IN		91	Perio	ds						
	GEOTECHNICAL ENGINEERING											
Role of Remote	Sensing and GIS in terrain investigation-Digital Terrai	n Modeling (DT	M)–Tr	iangu	lated							
Irregular Netwo	rk (TIN)–Land use and Land cover mapping–Land slid	e studies and seis	mic ha	zard	mapp	oing.						
Contact Period	S: Quipe Cool and											
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Perio	ds Total:	45 Per	riods								

1	A M Chandra, S K Ghosh, "Remote Sensing and Geographic information system", Narosa Publishing
	house.2016.
2	LillesandT.M. and Kiefer R.W., "Remote Sensing and image interpretation", John Wiley and Sons,
	<i>NewYork.2015.</i>
3	J.B.Campbell, Taylor&Francis, "Introduction to remote sensing", London.1985.
4	J.R.Jensen, "Introductory digital image processing", Prentice Hall International Ltd., London. 2009.

COU	RSE OUTCOMES:	Bloom's
TT		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Study about the remote sensing system, analysis of data and the interpretation of	K1
	data.	
CO2	Obtain knowledge about remote sensing sensors and platforms.	K2
CO3	Gain the knowledge about image interpretation and processing techniques.	K2
CO4	Gain the knowledge about data collection and management of GIS.	K1
CO5	Know the application of GIS in various fields.	K2

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	-	-	-	-				
CO2	-	-	-	-	-	1				
CO3	-	-	-	-	-	-				
CO4	-	2	-	-	-	1				
CO5	-	-	2	-	1	2				
23GEPE01	1	2	2	-	1	2				
1-Slight, 2-Moderate, 3-Substantial										

ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	40	40	20	-	-	-	100					
CAT2	40	40	20	-	-	-	100					
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	40	30	30		-	-	100					
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	30	40	30		-	-	100					
ESE	35	35	30	-	_	-	100					

23GEPE02

SOIL PROPERTIES AND BEHAVIOUR

PREREQUISI	TES:	CATEGORY	LT	P	С		
NIL		PE	3 0	0	3		
Course To study the different clay minerals and to understand the properties of soils and also to predict							
Objective	Objective soil behavior using conduction phenomenon.						
UNIT–I	FORMATION OF SOILS AND CLAY MINERA	LS	9 Periods				
Introduction - Soil Formation - Types of soils - Geological and pedogical background -Various soil							
deposits and their engineering suitability - Composition and structure of clay minerals - Structure of							
Allophane, Kaolinite, Hallosite, Montmorillonite, Illite, Chlorite and Vermiculite minerals, mixed layer							
minerals-Classification and identification of clay minerals- X- ray diffraction data - electron microscopic							
analysis-Differential thermal analysis-Anion and cation exchange capacity of clays- Specific surface area-							
Bonding in clays.							
UNIT-II	PHYSICAL AND PHYSIO-CHEMICAL BEHAVIO	OUR OF SOIL	9	Perio	ds		
Physical and Physio-Chemical behavior of Soils-Diffused double layer theory-Computation of double							
layer distance–Dielectric constant–Temperature on double layer–Ion Exchange–Cation exchange capacity–							
Causes of cation exchange effect–Fixation of cations–Determination of cation							
Exchange capac	vity-Exchangeable cations.						
UNIT-III	EXPANSIVE AND SHRINKING SOIL		9	Perio	ds		
Introduction-Swelling and shrinking behaviour of soils-Problems associated-Characteristics affecting							
shrinkage - Crack formation during shrinkage - Measurements of shrinkage for samples -Identification of							
expansive claysFactors influencing swell- Shrink characteristics-Swelling pressure of soils-Swell							
pressure determination -Mechanism of swelling-Volume changes and Engineering problem in the field-							
Osmotics well pressure-Soil fabric and measurement-Pore characterization-voids distribution-Methods of							
fabric character	ization						
UNIT-IV	COMPRESSIBILITY AND COLLAPSIBLE SOIL		9	Perio	ds		
Introduction-Compressibility-Permeability behaviour of soils and clays-Mechanism involved -Factors							
governing compressibility-Soil water-Consumption of soilwater -Capillary tube, capillary potential-Soil							
moisture–Methods of determination of soil moisture–Physical behavior of soil water systems–Liquefaction–							
Liquefaction potential–Soil suction–Determination of suction potential–Collapsible soil– identification–							
Effects on foundation.							
UNIT-V	CONDUCTION PHENOMENON AND PREDIC	CTION OF	9	Perio	ds		
	SOIL BEHAVIOUR	1. 1 001					
Conduction in	soils-Coupled flows-Electrical, Chemical, Hydr	raulic and Therma	al flows	s 1n	soils-		
Consolidation by Electro-osmosis–Clay mineralogy in relation to physical and engineering properties of							
clay minerals–Prediction of engineering behavior of soils–Empirical correlations and their applicability–							
Granular soil structure–Clay structure models.							
Contact Periods:							
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Peri	iods Total: 45	Periods				

1	Bowles J.E., "Engineering properties of soils and their measurement", McGraw Hill. 4 th Edition, 2012.	
2	Mitchell J.K., "Fundamentals of Soil Behaviour", John Wiley, NewYork, 1993.	
3	Knappett J.A and R.F.Craig., "Craig's Soil Mechanics" Span Press, 2012.	
4	Braja.M.Das, "Principles of Foundation Engineering", C L Engineering, 2013.	
5	Mc Carthy D.F., "Essentials of Soil Mechanics and Foundations", Prentice Hall, 2002.	
COUI Upon	Bloom's Taxonomy Mapped	
--------------	--	----
CO1	Get knowledge about the structure and identification of clay minerals.	K1
CO2	Use the concept of diffuse double layer theory and the cation exchange capacity to determine the chemical behavior of soils.	K3
CO3	Analyse the mechanism and effects of swelling, shrinkage in clay soils.	К3
CO4	Assess the behavior of collapsible soil and the compressibility characteristics.	K3
C05	Use the clay models and conduction phenomenon to predict the Engineering behavior of soils.	K3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	2	1	3	3		
CO2	2		1	1	2	2		
CO3	2	1	3	2	3	2		
CO4	3	3	3	1	3	3		
CO5	2	2	P	2	3	2		
23GEPE02	2	2	3	9 1	3	2		
1-Slight, 2-Moderate, 3-Substantial								
			Summer of the local division of the local di	77				

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT 1	30	30	40	1	-	-	100		
CAT 2	20	20	60		-	-	100		
Individual		JA		B					
Assessment 1 /		1298	1154						
Case Study 1/	25	25	50		-	-	100		
Seminar 1 /		100 m	a Da	alus .					
Project1		0							
Individual									
Assessment 2 /									
Case Study 2/	20	20	60	-	-	-	100		
Seminar 2 /									
Project 2									
ESE	20	20	60	-	-	-	100		

SUSTAINABLE GEOTECHNICS

PREREQUISI	Г Е Ѕ	CATEGORY	L	T P	C		
	NIL	PE	3	0 0	3		
Course	To learn the characterization of geomaterials, understan	d the interaction med	chan	ism an	d to		
Objective	adopt suitable remediation technologies.						
UNIT–I	INTRODUCTION		9	Perio	ds		
Scope - Geotec	hnical Engineering for sustainability - efficient and	environment friendl	y m	aterial	s in		
geotechnical wo	rks - Recent trends - Natural and manmade environme	nts - Sources and ty	pes	of gro	und		
contamination -	pollution problem sand waste minimization - rol	e of soiling geo-	envi	ironme	ntal		
applications.							
UNIT–II	CHARACTERIZATION OF GEOMATERIAL		9	Perio	ds		
Need for mater	al characterization and its types-physical, chemical, g	geotechnical, minera	alogi	cal, w	aste		
and recycled m	aterial - modeling and design methods of Waste Me	chanics - lifecycle	asse	essmen	t in		
Geotechnical ap	plications.						
UNIT-III	ENVIRONMENTAL INTERACTION		9	Perio	ds		
Soil - Water – E fate of contamin	nvironmental interaction, Soil – Contaminant Interactio ants. Monitoring of contaminated land – case studies (re	n, Contaminant Tran elated to soil contam	nspo inat	rt and ion)	the		
UNIT–IV	REMEDIATION TECHNIQUES		9	Perio	ds		
Method of reme	diation - isolation and containment - on site, ex-situ so	oil cleaning, soil wa	shin	g-Ther	mal		
desorption - so	l vapour extraction - air stripping - ground freezing	; - soil heating - T	radi	tional	and		
innovative barr	ier technologies - Eco-friendly ground improvement	ent techniques - 1	mon	itoring	of		
remediation (dur	ring treatment and post treatment)-case studies						
UNIT-V	SUSTAINABLE DEVELOPMENT		9	Perio	ds		
Definition – co	mponents of sustainable development - climatic cha	nge and energy de	pleti	ion - I	Bio-		
Geotechnology	- energy Geotechnology - sustainable geotechnic	al design - sustai	inabl	le use	of		
underground spa	ace - utilization of geo-material for sustainable develop	ment – industrial by	y-pro	oducts	and		
applications – land reclamation - Case Studies							
Contact Period	Contact Periods:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	Slobodan B.Mickovski, "Sustainable Geotechnics (Theory, Practice, and Applications)" MDPI,
	UK.ISBN978-3-0365-1480-2(PDF)
2	Sanjay Kumar Shukla, Sudhir kumarV.Barai, "Advances in Sustainable Construction Materials And
	Geotechnical Engineering", Proceedings of TRACE2018.
3	Environmental Geotechnics, Edited by (ISSMGE) Second Edition 2006
4	Reddy, K.R., and Adams, J.A., "Sustainable Remediation of Contaminated Sites", Momentum Press,
	NewYork, 2015, 160p.(ISBN:9781606505205).
5	HariD.Sharma, KrishnaR.Reddy "GeoEnvironmental Engineering", John Wiley&Sons, Inc.2004
6	Reddy, K.R., Cameselle, C., and Adams, J.A., "Sustainable Engineering : Drivers, Metrics, Tools, and
	Applications", John Wiley & Sons, Inc., Hoboken, NewJersey, 2019, 544p(ISBN:978-1-119-49393-8).

COURSE OUTCOMES:				
Upon completion of the course, the students will be able to:				
CO1	Gained equate knowledge on the scope and the use of environment friendly materials	K2		
CO2	Characterize the geo-materials and to carryout life cycle assessment studies	K3		
CO3	Study the mechanism and interaction between soil, water, air and the geo-material	K3		
CO4	Assess and select appropriate remediation techniques	K3		

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	2	3	2	-	2		
CO2	1	-	3	-	-	2		
CO3	2	1	1	1	3	3		
CO4	3	1	1	-	-	3		
CO5	3	2	3	3	3	2		
23GEPE03	3	2	3	3	3	2		
1–Slight, 2–Moderate, 3–Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT 1	30	30	40		-	-	100		
CAT 2	30	30	40	191	-	-	100		
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20	20	60	har	-	-	100		
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20	20	60		-	-	100		
ESE	30	30	40	A CON	-	-	100		

23GEPE04	IL STRUCTURES							
PREREQUIS	ITE	S	CATEGORY	L	Т	Р	С	
		NIL	PE	3	0	0	3	
Course Objective	To reii fou	To impart knowledge on geosynthetics, design principles, materials and mechanism of reinforced soil, soil nailing and its applications in dams, embankments, pavements and foundation structures.						
UNIT–I	PR	INCIPLES AND MECHANISMS			9	Perio	ods	
Historical back reinforced soil	kgrou – Fa	and – Initial and recent developments – Principlators affecting behavior and performance of so	les, Concepts and m il – Reinforcement	echai intera	nism: action	s of ns.		
UNIT–II	MA	TERIALS AND MATERIAL PROPERTIES			9	Perio	ods	
Materials used	l in r	einforced soil structures - Fill materials, reinfo	orcing materials, m	etal s	trips,	Geo	textile,	
Geogrids, Geo	omen	nbranes, Geocomposites, Geojutes, Geofoam, r	natural fibres, coir (Geote	xtile	s - B	amboo	
– Timber – F Preservation m	Facir nethc	ng elements – Properties – Methods of test	ing – Advantages	and	disao	lvanta	ages –	
UNIT–III	DE	SIGN PRINCIPLES AND APPLICATIONS			9	Perio	ods	
Design aspects	s of	reinforced soil - Soil reinforcement function -	– Separator, Filtrati	on, I	Drain	age, l	Barrier	
function – Des	sign	and applications of reinforced soil of various s	tructures – Retainir	ig wa	11s –	Found	lations	
– Embankmen	its an	id slopes.	-	C				
UNIT-IV	GE	OSYNTHETICS AND APPLICATIONS	97		9	Perio	ods	
Introduction –	Hist	torical background – Applications – Design cri	teria – Geosyntheti	cs in	road	s –De	esign –	
Giroud and No	oiray	approach – Geosynthetics in landfills – Geosy	ynthetic clay liner -	Des	ign o	f land	dfills –	
Barrier walls.		X I	(
UNIT-V	SO	IL NAILING AND CASE HISTORIES			9	Perio	ods	
Soil nailing – I	Intro	duction – Overview – Soil-Nail interaction – B	ehaviour – Design	proce	dure	-Beh	aviour	
in seismic con	nditi	ons. Performance studies of reinforced dam	s, embankments, H	aven	nents	, Rai	lroads,	
Foundations –	Case	e studies.	a					
Contact Perio	ds:	All Mar	500 C					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								
REFERENCES								
1 Jewell, R.A	1., "S	Soil Reinforcement with Geotextile", CIRIA, Lo	ondon, 1996.					
2 John, N.W.	М.,	"Geotextiles", John Blackie and Sons Ltd., Lond	don, 1987.					
				100				

3 Jones, C.J.F.P., "Earth Reinforcement and Soil Structures", Earthworks, London, 1982.

4 Koerner, R.M., "Designing with Geosynthetics", (Third Edition), Prentice Hall, 1997.

5 Proc. Conference on polymer and Reinforcement, Thomas Telford Co., London, 1984.

6 *Gray,D.H., and Sotir, R.B.,* " *Biotechnical and Soil Engineering Slope Stabilization. A Practical Guide for Erosion Control*", *John Wiley & SonInc., NewYork, 1996.*

COUI Upon	RSE OUTCOMES: completion of the course, the students will be able:	Bloom's Taxonomy Mapped
CO1	To understand the soil-reinforcement interaction mechanism.	K2
CO2	To enrich their knowledge on properties, testing methods of geosynthetics in Earth reinforcement.	K1
CO3	To get detailed knowledge on soil reinforcement functions and the ability to Select suitable reinforcing material to suit the functional requirement.	K3

CO4	To understand the design criteria for use of geosynthetics in landfills, pavement, liners.	K2
CO5	To design various soil reinforcements, soil nailing major projects.	K2
	·	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	-	-	2	-			
CO2	-	-	3	3	2	2			
CO3	2	-	1	-	-	-			
CO4	-	-	-	-	3	-			
CO5	2	-	-	-	2	1			
23GEPE04	2	-	3	3	2	2			
1-Slight, 2-Moderate, 3-Substantial									

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	40	40	20	-	-	-	100			
CAT2	40	40	20	TIPEON C	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	A A	-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100			
ESE	40	40	20		-	-	100			
	·	and a second	100 000	ALL ALL			·			

23GEPE05	FINITE ELEMENT ANALYSIS FOR GE	EOTECHNICAL E	NGIN	EERI	NG	
PREREQUISI	ГЕЅ	CATEGORY	L	Τ	Р	C
	NIL	PE	3	0	0	3
Course	To impart knowledge on elasticity concepts, finit	e element processe	s and s	oil ap	plicati	ons.
Objective						
UNIT–I	INTRODUCTION TO ELASTICITY			91	Period	S
Principles of El	asticity – Elasticity Equations - Stress-strain equa	tions – Strain-Disp	olaceme	ent rel	ations	hips
in Matrix form	- Equilibrium equations - Compatibility equations	s – Plane stress and	Plane	strain	equat	ions
	FINITE FLEMENT PROCESS			91	Period	6
Historical back	ground - Matrix approach - Principles of discre	etization Classical	techni	aues	in FE	<u> </u>
Weighed residu	al method - Galerkin method - Variational au	nnroach - The Ra	vleigh	Ritz	meth	od -
Numerical inte	gration – Gaussian Quadrature technique – For	mulation of Stiff	less m	atrix .	– Eler	nent
stiffness matrix	– Global stiffness matrix				2101	
UNIT-III	ELEMENT PROPERTIES AND ISOPARAME	TRIC		91	Period	s
	FORMULATIONS					~
Concept of an Shape Function elements –Serer	element – Various element shapes – Displacem s – Formulation of 4-noded and 8-noded isoparam adipity elements	ent models – Gen netric quadrilateral	eralize	d coo ts – L	rdinate agrang	es – gian
UNIT-IV	HIGHER ORDER ELEMENTS)		91	Period	S
Finite Element	Analysis on Two-dimensional problem – CST and	d LST elements –	formul	ation -	– Elen	nent
matrices Assem	bly - Boundary conditions and solutions - Axisy	ymmetric elements	– App	licati	ons of	the
axisymmetric el	ement – Stress distribution in thick cylinder - Bous	ssineq's problem.				
UNIT-V	SOIL APPLICATIONS			91	Period	S
Geotechnical co	nsiderations - Choice of Soil Properties for Finite	Element Analysis	- Total	stress	analy	sis -
pore pressure ca	alculation - Real soil behaviour - behaviour of cla	ay, sand and both o	clay an	d sanc	l - Sin	nple
elasto plastic co	onstitutive models - Tresca, Von-mises and Mohr	-coulomb models	- Non-l	inear	mode	ls—
Modified Newto	on Raphson method - Seepage and consolidation: s	steady state seepage	e - Hyd	raulic	bound	lary
conditions Pe	rmeability model sun confined seepage flow- Con	nsolidation Analysi	s: settle	ement	analys	sis -
Terzaghi's cons	olidation problem -Finite Element Analysis on e	mbankments, shall	low foi	Indati	ons, E	arth
retaining structu	res and pile group behaviour.					
Contact period	s:					
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 P	Periods Total	: 45 Pe	riods		
REFERENCES						
1 Krishnamur McGraw Hi	thy C.S, "Finite Element Analysis – Theory o ll Publishing Co.2004	and programming	", Sec	ond e	dition,	Tat
2 Desai C.S.,	"Elementary Finite Element Method", Prentice H	Hall, INC1979				
3 Rajasekarar	n S., "Finite Element Analysis in Engineering De	esign", Wheeler pu	blishin	g, 200	8	
4 Chandrapat	la Tirupathi.Rand Belegundu, Ashok. D., "Intro	duction to Finite	Elemen	ts in		
Engineering	g, Second edition, Prentice Hall of India, 2014					
5 David M Po Thomas Tel	tts. And Lidija, Zdravkovic, Finite Element Analy ford, London.	vsis in Geotechnico	al Engi	neerii	1g, Vo	l 1&2

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Understand the various stress-strain-displacement relations.	K1
CO2	Know the concept of stiffness matrix and understand choosing boundary conditions and	K2
	various classical techniques of FEA.	

CO3	Know the elements and its discretization to solve the problems of various element types.	K2
CO4	Learn higher order elements in finite element analysis.	K3
CO5	Attain exposure towards various concepts in geotechnical finite element analysis.	K3

COURSE ART	ICULATIO	N MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	-	2	2	-	1
CO2	1	-	3	2	-	1
CO3	2	-	3	3	1	2
CO4	1	-	2	3	1	2
CO5	2	-	3	3	-	1
23GEPE05						
1-Slight, 2-Mo	derate, 3–Sul	ostantial		*		

ASSESSMENT	PATTERN – TH	IEORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT 1	30	40	30		-	-	100
CAT 2	30	40	30	101	-	-	100
Individual			- MULTURE				
Assessment 1 /							
Case Study 1/	-	50	50	- //-	-	-	100
Seminar 1 /							
Project1			ATTER				
Individual		11					
Assessment 2 /							
Case Study 2/	-	50	50	-	-	-	100
Seminar 2 /		AL /	2	A			
Project 2							
ESE	30	40	30	Orvio -	-	-	100
		E.	146 0 C	T.			

FOUNDATION IN EXPANSIVE SOILS

PREREQUISI	TES:	CATEGORY	L	Т	P	С				
	NIL	PE	3	0	0	3				
Course	To study the properties, the controlling technique	To study the properties, the controlling techniques of swelling and to select suitable								
Objective	foundations in expansive soils.									
UNIT–I	GENERAL PRINCIPLES			9	Peri	ods				
Origin of expa Identification of conditions that	Origin of expansive soils – Physical properties of expansive soils – Mineralogical composition – Identification of expansive soils – simple laboratory tests – Classification of expansive soils – Field conditions that favour swelling – Consequences of swelling.									
UNIT-II	SWELLING CHARACTERISTICS			9	Peri	ods				
Swelling Mech Swelling charac	anism, Swelling measurements – factors affecting eteristics – Evaluation of heave.	- Laboratory metho	ods	- P1	edic	tion of				
UNIT-III	TECHNIQUES FOR CONTROLLING SWELL	ING		9 Periods						
Horizontal moi wetting – Soil r	sture barriers – Vertical moisture barriers – Sur eplacement – Sand cushion techniques – CNS layer	face and subsurface technique.	ce	drair	nage	– Pre-				
UNIT-IV	FOUNDATIONS ON EXPANSIVE SOILS			9	Peri	ods				
Belled piers – H – Under-reamed	Bearing capacity and skin friction – Advantages and I piles – Design and construction.	l disadvantages – De	sigr	n of l	selle	d Piers				
UNIT-V	MODIFICATION OF SWELLING CHARACTE	RISTICS		9	Peri	ods				
Lime stabiliz Chemical stabil	ation – Mechainsms – Limitations – Lime inje ization – Construction.	ction – Lime colu	umn	s –	Mix	ing –				
Contact Period	ls:	7								
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Pe	riods Total: 45 I	Perio	ods						
REFERENCES										

1	Fu Hua Chen, "Foundations on Expansive Soils", Elsevier Scientific Publishing Company,
	NewYork, 2012.
2	Gopal Ranjan and A.S.RRao, "Basic and Applied Soil Mechanics", New Age International
	Publishers–NewDelhi, 2018.
3	Hand Book on "Under reamed and Bored Compaction Pile Foundation", CBRI, Roorkee. 2001.
4	IS:2720 (PartXLI) –1977–Measurement of Swelling Pressure of Soils.
5	R.K.Katti, D.R KAtti, A.R.Katti, "Behaviour of Saturated Expansive Soil & Control Methods",
	<i>CRC Press, 2002.</i>
6	Alam Singh, "Modern Geotechnical Engineering", Geo-Environ Academia, Jodhapur.3 rd Edition,
	2006.

COURSE	COUTCOMES:	Bloom's
Upon con	npletion of the course, the students will be able to:	Taxonomy Mapped
C01	Assess the occurrence and distribution of expansive soils.	K2
CO2	Study the properties of expansive soils and the controlling techniques.	K2
CO3	Get exposure on various methods of stabilization of expansive soils.	K3
CO4	Design different types of foundations on expansive soil.	K3
CO5	Select suitable techniques and learn the mechanism of treatment of swelling soils.	K3

COURSE ARTICUL	ATION MA	ATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	2	1	1	-
CO2	3	2	3	1	2	3
CO3	3	2	3	2	2	2
CO4	-	3	3	1	3	3
CO5	2	1	2	2	3	2
23GEPE06	3	2	3	1	3	3
1-Slight, 2-Moderate,	3–Substant	ial				

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT 1	30	40	30	-	-	-	100
CAT 2	30	40	30	-	-	-	100
Individual							
Assessment 1 /			100000000				
Case Study 1/	20	30	50		-	-	100
Seminar 1 /		1001	Cansto acus				
Project1		U S	- AND THE				
Individual							
Assessment 2 /				- //			
Case Study 2/	20	30	50	S (/-	-	-	100
Seminar 2 /			STUD				
Project 2		1					
ESE	30	40	30	-//	-	-	100
		J.	5400 0000	N.			

23GEPE07	SOIL STRUCTURE INTER	ACTION				
PREREOUIS	(Common to Structural & Geolechnick		L	т	р	C
TREADQUIC	3	0	0	3		
Course	To inculcate the knowledge on soil foundation inter	action, soil models	and e	elastic	analy	sis o
Objective	piles and piled raft.	,			5	
UNIT–I	SOIL – FOUNDATION INTERACTION			9 Per	riods	
Introduction 1	to soil – Foundation interaction problems – Soil	behaviour – Fou	Indati	on bel	navio	ur –
Interface beha	viour - Scope of soil - foundation interaction analy	ysis – Soil respon	se mo	odels –	Win	kler,
Elastic continu	uum, Two parameter elastic models, Elastic – Plastic	behaviour-Time	depei	ndent b	oehav	iour.
UNIT-II	BEAM SON ELASTIC FOUNDATION – SOIL	MODELS		9 Per	riods	
Infinite beam	- Two parameters - Isotropic elastic half space	- Analysis of bea	ims o	f finite	e leng	th –
Classification	of finite beams in relation to their stiffness - Analyst	is through applicat	ion pa	ckages	s	
UNIT-III	PLATE ON ELASTIC MEDIUM			9 Per	riods	
Infinite plate	- Winkler, Two parameters, Isotropic elastic mediu	m, Thin and thick	plate	es – A	nalys	is of
finite plates –	Rectangular and circular plates - Numerical analy	sis of finite plates	– Sir	nple so	olutio	ns –
Analysis of br	aced cuts- Application packages.					
UNIT-IV	ELASTIC ANALYSIS OF PILE			9 Per	riods	
Elastic analys	is of single pile – Theoretical solutions for settlemen	t and load distribut	tion –	Analy	sis of	pile
group – Intera	ction analysis – Load distribution in groups with rigi	d cap – Pile raft–A	pplic	ation p	ackag	ges.
UNIT-V	LATERALLY LOADED PILE	2		9 Pe	riods	
Load deflection	on prediction for laterally loaded piles - Subgrade re	eaction and elastic	analy	sis – I	nterac	ction
analysis – Pile	e raft system – Solutions through influence charts – A	application package	es			
Contact Perio	ods:					
Lecture: 45 P	Periods Tutorial: 0 Periods Practical: 0 I	Periods Total: 4	5 Per	iods		
REFERENCE	s	4				

1	Saran, S., "Analysis and design of substructures", Taylor & Francis Publishers, 2006.
2	Hemsley, J.A., "Elastic Analysis of Raft Foundations", Thomas Telford, 1998.
3	Poulos, H.G., and Davis, E.H., "Pile Foundation Analysis and Design", John Wiley, 2008.
4	Murthy, V.N.S., "Advanced Foundation Engineering", CBS Publishers, NewDelhi, 2007.
5	McCarthy, R.N., "Essentials of Soil Mechanics and Foundations: Basic Geotechnics", Sixth Edition,
	Prentice Hall, 2002.
6	Selvadurai, A.P.S., "Elastic Analysis of Soil Foundation Interaction", Elsevier, 1979.
7	Scott, R.F., "Foundation Analysis", Prentice Hall, 1981.
8	Structure Soil Interaction–State of Art Report, Institution of structural Engineers, 1978. ACI336,
	Suggested Analysis and Design Procedures for Combined Footings and Mats, American Concrete
	Institute, Delhi, 1988.

COUR	SE OUTCOMES:	Bloom's				
		Taxonomy				
Upon c	completion of the course, the students will be able to:	Mapped				
C01	Understand various soil response models applicable to soil-foundation interaction analysis.	K2				
CO2	Come up with elastic solutions for problems of pile, pile-raft system.					
CO3	Use software packages to analyze soil – foundation system including laterally	K3				
	loaded piles.					
CO4	Acquire knowledge on elastic analysis of pile and pile group.	K3				

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	-	2	1	2	1		
CO2	3	-	2	1	2	1		
CO3	3	-	2	1	2	1		
CO4	3	-	2	1	2	1		
CO5	3	-	2	1	2	1		
23GEPE07	3	-	2	1	2	1		
1-Slight, 2-Moderate, 3-Substantial								

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT 1	30	40	30	-	-	-	100	
CAT 2	30	40	30	-	-	-	100	
Individual			R					
Assessment 1 /		100110	asto acus ar	<0Y				
Case Study 1/	-	50	50	-	-	-	100	
Seminar 1 /								
Project1			1	11				
Individual			X	(
Assessment 2 /			STUD	·				
Case Study 2/	-	50	50	\\ -	-	-	100	
Seminar 2 /		// 8						
Project 2		8						
ESE	30	40	30	S.	-	-	100	

K3

23GEPE08	FORENSIC GEOTECHNICAL ENGINEERING							
PREREQUIS	ITES	CATEGORY	L	Т	P	С		
	NIL	PE	3	0	0	3		
Course Objective	To understand the roles and responsibilities of a forensic geotechnical engineer and to develop skill in site investigation and report preparation with gain of knowledge on settlement of structures on problematic soil conditions. Further to develop knowledge on different geotechnical problems and recommend suitable repair and rehabilitation techniques.							
UNIT–I	INTRODUCTION 9 Periods							
Definition of F	orensic Engineer-Types of Damage-Typical clients-	-Legal Process-Ex	amp	les.				
UNIT-II	ASSIGNMENT AND INVESTIGATION			9	Peri	ods		
Preliminary in	nformation-Planning-Site Investigation-Documents	s Search–Analysis	s ar	nd c	oncl	usion-		
Report prepara	tion.							
UNIT-III	FORENSIC GEOTECHNICAL AND FOUNDA	TION		9	Peri	ods		
	INVESTIGATIONS							
Settlement of	structures-Allowable Settlement-Collapsible soil-	Other causes of se	ettle	men	t–Ex	pansive		
soil–Types of I	Expansive soil movement-Pavements-Case Study.							
UNIT-IV	OTHER GEOTECHNICAL AND FOUNDATION	PROBLEMS		9	Peri	ods		
Earthquakes, e	rosion, deterioration, tree roots, bearing capacity F	ailures, Retaining	wal	ls ar	d H	istoric		
structures with	case study.							
UNIT–V	REPAIR AND CRACK DIAGNOSIS	7		9	Peri	ods		
Development of Cracks in walls	of repair recommendations–Repair of Surficial Slop s–Foundation cracks–Cracking to repaired structures	e failures–Cracks-	–Pav	eme	nt ci	acks-		
Contact Perio Lecture: 45 P	ds: eriods Tutorial: 0 Periods Practical: 0 Per	·iods Tota	al: 4	5 Pe	riod	S		
REFERENCES 1 Robert W. Edition, 20	S Day, "Forensic Geotechnical and Foundation 011.	Engineering" Mo	cGra	iw F	Hill,	Second		
2 Malcolm L	D. Bolton, "A Guide to Soil Mechanics" Universities	s Press, 2003.						
2 Sarana D	S "Technical Ethical and Logal Issues with 1	Foransia Caotach	inal	E n	aina	aning		

3 Saxena, D. S., **"Technical, Ethical and Legal Issues with Forensic Geotechnical Engineering-A Case History"**, Proceedings, 13th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Kolkata, India, 11 December 2007.

COUF	Bloom's TaxonomyM	
Upon o	completion of the course, the students will be able to:	apped
CO1	To comprehend a forensic geotechnical engineer's roles and responsibilities.	K1
CO2	To collect preliminary information, plan, adopt suitable investigating techniques available and prepare a report	K2
CO3	To recognize settlement failures on problematic soils and identify factors causing the settlement.	K3
CO4	To identify various other geotechnical problems and understand them.	K3
CO5	To recommend repair and rehabilitation options.	K2

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	-	-	-	2	-		
CO2	-	3	3	3	2	1		
CO3	2	-	-	-	2	-		
CO4	-	-	-	-	3	2		
CO5	2	-	-	-	2	-		
23GEPE08	2	3	3	3	2	2		
1-Slight, 2-Moderate, 3-Substantial								

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	40	40	20	-	-	-	100	
CAT2	40	40	20	-	-	-	100	
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100	
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	× (-	-	100	
ESE	40	40	20	A	-	_	100	

ROCK MECHANICS IN ENGINEERING PRACTICE

PREREQUISI	ITES			CATEGORY	L	Т	P	С
	NII			PE	3	0	0	3
Course	To ma	ike the students underst	and the properties of	rock, pattern of fa	ilure	e, ev	aluat	ion of
Objective	stresse	es and stability consideration	ations of rock masses.					
UNIT–I	CLAS	SIFICATION OF RO	CKS				9 Pe	riods
Rocks of peni Competent and	insular l incomj	India and the Himala petent rock–Value of RM	yas–Index properties MR and ratings in field	and classificatio estimations.	n of	roc	ck m	asses,
UNIT-II	STRE	NGTH CRITERIA OF	F ROCKS				9 Pe	riods
Behaviour of ro	ock und	ler hydrostatic compress	sion and deviatoric loa	ding-Modes of ro	ck fa	ailur	e–Pla	ines of
weakness and	joint ch	aracteristics – Joint test	ting, Mohr – Coulom	b failure criterion	and	tens	ion c	ut-off,
Hoek and Bro	own Stu	ength criteria for rock	ks with discontinuity	set. Value of R	QD	rati	ng in	n field
estimations.		C	2				C	
UNIT-III	DESI	GN ASPECTS IN ROC	CKS				9 Pe	riods
Insitu stresses a	and thei	r measurements, flat jac	k–Over and under cor	ing methods-stress	s aro	und	unde	rground
excavations-De	esign as	pects of openings in roc	ks–Case studies.					_
UNIT-IV	SLOP	E STABILITY OF RO	OCKS				9 Pe	riods
Rock slopes–R measures for cr	Role of ritical sl	discontinuities in slop opes–Case studies.	pe failure, slope anal	ysis and factor o	of sa	ifety	–Rer	nedial
UNIT-V	METI	HODS OF IMPROVING	G ROCK MASS PROI	PERTIES			9 Pe	riods
Rock Reinforc	cement-	Rock bolting-Mechania	sm of Rock bolting	and its types-Pri	ncip	les	of de	esign-
Pressure grouti	ing-gro	ut curtains and consolid	ation grouting-Shotcre	ting-anchoring-In	stall	atior	n met	hods-
Case studies.	Case studies.							
Contact Perio	ods:							
Lecture: 45 Pe	eriods	Tutorial: 0 Periods	Practical: 0 Perio	ds Total: 45	Peri	ods		
REFERENCES								

1	Goodman, R. E., "Introduction to Rock Mechanics", John Wiley and Sons, 1989.
2	Hool, E and Bray, J., "Rock Slope Engineering, Institute of Mining and Metallurgy", U.K. 1981.
3	Hoek, E and Brown, E. T., "Underground Excavations in Rock", Institute of Mining and Metallurgy, U.K. 1981.
4	Obvert, L. and Duvall, W., "Rock Mechanics and the Design of Structures in Rock", John Wiley, 1967.
5	Bazant, Z. P., "Mechanics of Geomaterials Rocks, Concrete and Soil", John Wiley and Sons, Chichester, 1985.
6	Wittke, W., "Rock Mechanics: Theory and Applications with Case Histories", Springerverlag, Berlin, 1990.

COUF	COURSE OUTCOMES:				
Upon o	Upon completion of the course, the students will be able to:				
CO1	Know the formation and classification of rocks in India.	K1			
CO2	Understand the strength of the rocks in field assessment.	K3			
CO3	Understand the in-situ stresses developed and methods of measurement.	K2			
CO4	Evaluate the strength parameters of rocks and adopt appropriate remedial	K3			
	Measures for stability of critical slopes of rocks.				
CO5	Give suitable remedial measures in fractured rocks	K2			

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	-	-	-	-		
CO2	-	2	-	2	2	-		
CO3	2	-	-	-	-	-		
CO4	3	-	-	-	-	3		
CO5	3	-	-	-	-	3		
23GEPE09	3	2	-	2	2	3		
1–Slight, 2–Moderate, 3–Substantial								

ASSESSMENT	PATTERN – THE	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	30	40	30		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	35	35	30	-	-	-	100
ESE	35	35	30	-	-	-	100

GEOTECHNICAL EARTHQUAKE ENGINEERING

		-				
PREREQUIS	ITES	CATEGORY	L	T	P	С
	NIL	PE	3	0	0	3
Course	To understand the mechanism of earthquake,	earthquake hazard	ls a	and	miti	gation.
Objective	Phenomena of Liquefaction and the seismic analysis.					
UNIT–I	EARTHQUAKE SEISMOLOGY			9) Per	iods
Causes of eart	hquake-Plate tectonics-Earthquake Fault sources-Ela	astic Rebound theo	ry-S	Seisn	nic w	vaves-
Elastic Rebour	nd theory-Locating an earthquake-Quantification of ea	arthquakes–Intensit	y an	d ma	agnit	udes –
Locating an ea	rthquake–Case studies.					
UNIT-II	GROUND MOTION AND GROUND RESPONSE	ANALYSIS		9) Per	iods
Characteristics Lab tests–Need	of ground motion–Factors influencing ground motio I for Ground Response Analysis–Methods of Ground I	n–Evaluation of sh Response analysis.	lear	wav	e vel	ocity–
UNIT-III	LIQUEFACTION AND LATERAL SPREADING			9) Per	iods
Liquefaction r	elated phenomena-Liquefaction susceptibility-Evaluation	ation of liquefaction	n b	у Су	vclic	Stress
and Cyclic Str	ain approaches-Lateral deformation and spreading Cr	riteria for mapping	liqu	efact	tion 1	hazard
zones–Liquefa	ction computation from Lab and Field tests.					
UNIT-IV	SEISMIC DESIGN OF FOUNDATIONS, RETA	INING WALLS A	ND	9) Per	iods
	SLOPES					
Seismic desig	n requirements of foundation–Seismic design of	pile foundations-	Seis	mic.	desi	gn of
Retaining wall	s-Behaviour of reinforced slope under seismic conditi-	on Recommendatio	ns o	I sei	smic	codes
	SELENIC HAZADD ANAL VEIC				<u> </u>	• 1
UNII-V	SEISMIC HAZAKD ANALYSIS	7.:1. T	C		Per	10 0 \$
Seismic hazar	a analysis–DSHA–PSHA–Seismic microzonation -3	Soll Improvement	Ior	reme	ediat	ion of
Canta at Daria	5.					
Contact Perio		• 1 - 77 - 1	45 D	•		
Lecture: 45 P	eriods Iutorial: U Periods Practical: U Pe	eriods I otal:	45 P	erio	as	
REFERENCES	8					
I Kameswar	ra Rao, N. S. V., "Dynamics soil tests and applications	", Wheller Publishi	ing-	New	Dell	<i>ii, 2000</i>
2 Krammer	S. L., "Geotechnical Earthquake Engineering", Pre	ntice Hall, Interna	tion	al se.	ries .	Pearsor
<i>Education</i>	(Singapore) Pvt. Ltd., 2004. Kameswara Rao, Vibrat	tion Analysis and F	ound	latio	n Dy	namics
Wheeler P	Publishing, New Delhi, 1998.					
3 McGuire,	R. K., "Seismic Hazard and Risk Analysis, Earth	juake Engineering	Re	sear	ch I	nstitute

MNo-10,ISB N0-943198-01-1, 2004. 4

Mahanti, N. C., Samal, S. K., Datta, P., Nag N. K., "Disaster Management, Narosa Publishing House, New Delhi, India ISB No:81-7319-727X-2006. Bharat Bhushan Prasad, "Fundamentals of Soil Dynamics and Earthquake Engineering", PHI 5 Learning Pvt. Ltd., New Delhi, 2009.

Bharat Bhushan Prasad, "Advanced Soil Dynamics and Earthquake Engineering", PHI Learning 6 Pvt. Ltd., New Delhi, 2011.

COU	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Acquire knowledge about the earthquake ground motion, making familiar with code And software packages to study the ground motion.	K2
CO2	Analyze the liquefaction susceptibility of the site using laboratory and field tests.	K2
CO3	Design earthquake resistant geotechnical structures and the methods to improve the Ground for hazard resistance.	K3
CO4	Acquire knowledge about Seismic related codes in geotechnical engineering.	K3

CO5 Acquire knowledge about soil improvement for remediation of seismic hazards.

K3

COURSE ARTICULA	COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	-	-	-	2	1	1				
CO2	-	-	-	2	1	1				
CO3	-	-	-	2	1	1				
CO4	-	1	-	2	1	1				
CO5	-	1	-	2	1	1				
23GEPE10	-	1	-	2	1	1				
1-Slight, 2-Moderate,	3-Substantia	al								

ASSESSMENT	PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20		-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20		-	-	100

Aud week

23GEPE11	DESIGN OF UNDERGROU	DESIGN OF UNDERGROUND EXCAVATIONS							
PREREQUISI	TES	CATEGORY	L	Τ	P	С			
	NIL	PE	3	0	0	3			
Course Objective	To get exposure to planning, analysis and design of underground support system and to learn about the various field tests conducted during and after construction of underground structures								
UNIT–I	PLANNING AND EXPLORATION			9	Peri	ods			
Introduction- p Projection meth	lanning and exploration for various underground od- principle and its application in underground exca	construction proje vation design.	ects-	- ste	reogi	raphic			
UNIT-II	ANALYSIS AND DESIGN OF UNDERGROUND S	STRUCTURES		9	Peri	ods			
Elastic stress di stress condition elasto-plastic ar	stribution around tunnels- stress distribution for diffe is- Green span method- design principles- multiple on alysis of tunnels- Daemen's theory.	prent shapes and un ppenings-openings i	der o n la	differ mina	rent i ited i	n-situ rocks-			
UNIT-III	TUNNELING METHODS			9	Peri	ods			
Application of	rock mass classification systems- ground conditions	in tunneling- analy	vsis	of u	nderg	ground			
openings in squ	eezing and swelling ground- empirical methods- estimated	mation of elastic me	odul	us ar	nd me	odulus			
of deformation	of rocks- uniaxial jacking / plate jacking tests0- radi	al jacking and Goo	dma	ın jac	cking	g tests-			
long term beha	aviour of tunnels and caverns- New Austrian Tur	nneling Method (N	AT	M)-	Norv	vegian			
Tunneling Meth	ood (NTM)- construction dewatering.)							
UNIT-IV	ROCK MASS			9	Peri	ods			
Rock mass-tun	nel support interaction analysis- ground response a	nd support reaction	cu	rves-	Lad	lanyi's			
elasto-plastic a	nalysis of tunnels- design of various support systemeters	ems including con	crete	e and	d she	otcrete			
linings- steel se	ts- rock bolting and rock anchoring- combined suppo	ort systems- estimat	ion (of loa	ad ca	rrying			
capacity of rock	a bolts.								
UNIT-V	INSTRUMENTATION			9	Peri	ods			
In-situ stress,	flat jack- hydraulic fracturing and over coring te	chniques and USE	BM	type	dril	l hole			
deformation g	auge- single and multi-point bore hole extense	ometers- load cel	ls,	press	sure	cells-			
Instrumentation	and monitoring of underground excavations durin	g and after constru	ctio	n- va	ariou	s case			
studies.									
Contact Period	s:								
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Period	s Total: 45 P	erio	ds					
REFERENCES									

1	Hoek, E and Brown, E. T., "Underground Excavations in Rocks, Institute of Mining Engineering",
	1981
2	Obert, L and Duvall, W. I., "Rock Mechanics and Design of Structures in Rocks", John Wiley, 1967.
3	Singh, B and Goel, R. K., "Rock Mass Classification-A Practical Engineering Approach", Elsevier,
	1999.
4	Singh, B and Goel, R. K., "Tunneling in Weak Rocks", Elsevier, 2006.

COU	RSE OUTCOMES:	Bloom's
Unon	completion of the course, the students will be able:	Taxonomy
Opon	completion of the course, the students will be able.	Mapped
CO1	To understand the use of elastic and plastic analysis in the design of Underground	K1
	support system.	
CO2	To get idea about the field tests generally conducted during and after Construction of	K1
	underground structures	
CO3	To critically analyse the behaviour of underground structures.	К3
CO4	To understand the different methods of tunneling suited to different ground conditions.	K2

CO5	То	gain	knowledge	about	instrumentation	during	and	after	construction	of	K1
	Unc	lergrou	and construction	ion.							

COURSE ARTICUI	LATION M	ATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	3	2	-	-
CO2	-	-	3	2	2	-
CO3	2	-	2	2	1	-
CO4	-	-	-	3	2	-
CO5	-	-	1	-	3	-
23GEPE11	3	-	3	2	2	-
1-Slight,2-Moderate	,3–Substanti	al				

ASSESSMENT	PATTERN – TI	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100
ESE	40	40	20	-	-	-	100

COMPUTATIONAL GEOMECHANICS

PREREQUISI	ΓΕS	CATEGORY	L T P C						
	NIL	PE	3	0	0	3			
Course	To get exposure on finite difference and finite el	lement method and	to 1	earn	abou	it the			
Objective	various mathematical applications on geotechnical a	spects.							
UNIT–I	SOLUTION OF LINEAR AND NON – LINEAR	EQUATIONS		9	Perio	ods			
Bisection- False	position- Newton- Raphson - successive approxima	tion method-Iterativ	e m	ethod	l. Sol	ution			
of Linear Equat	tion by Jacobi's method – Gauss Seidal method –Suc	cessive over relaxati	on n	nethe	od				
UNIT-II	FINITE DIFFERENCE METHOD AND FINITI METHOD	E ELEMENT		9	Perio	ods			
Two point Bou differential equa	ndary value problems – Disichlet conditions – Neu ation	mann conditions; o	rdin	ary a	ind p	artial			
UNIT-III	FINITE ELEMENT METHOD 9 Periods								
Fundamentals –	constitutive finite element models for soils. Correlat	tion – Scatter diagram	n –	Karl	Pear	son –			
coefficient of co	orrelation – Limits of correlation coefficient; Regress	sion – Lines of regre	ssio	n – I	Regre	ssion			
curves - Regres	sion coefficient - Differences between correlation and	l regression analysis.							
UNIT-IV	ONE DIMENSIONAL CONSOLIDATION THROUGH POROUS MEDIA	N AND FLOV	W	9	Perio	ods			
Theory of conse	olidation - Analytical procedures - Finite difference	e solution procedure	for	mult	i –la	yered			
systems- Finite	element formulation. Geotechnical aspects – Numeri	cal methods – Appli	catio	ons a	nd D	esign			
analysis – Flow	in jointed media								
UNIT–V	RISK ASSESSMENT IN GEOTECHNICAL EN	GINEERING		9	Perio	ods			
Probabilistic site	e characterization and design of foundation								
Contact Period	s:								
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Pe	eriods Total: 45	Peri	ods					
REFERENCES									

1	S. Chandrakant Desai and John T. Christian, "Numerical Methods in Geotechnical
	Engineering", Mc.Graw Hill Book Company, 1977.
2	M. K. Jain, S. R. K. Iyengar and R.K. Jain, "Numerical Methods for Scientific and Engineering
	Computation", Third edition, New Age International(P) Ltd. Publishers, NewDelhi-1996.
3	D. J. Naylorand, G. N. Pande, "Finite Elements in Geotechnical Engineering", Pine ridge press Ltd.,
	<i>UK- 1981</i> .
4	Sam Helwany, "Applied Soil mechanics", John Wiley & sons, Inc-2007.

COU	RSE OUTCOMES:	Bloom's
Unon	completion of the course, the students will be able to:	Taxonomy
opon	completion of the course, the students will be usic to:	Mapped
CO1	Understand different numerical and statistical tools for analyzing various geotechnical engineering problems.	K2
CO2	Apply probabilistic approach for selection of design parameters and compute their impact on risk assessment.	K3
CO3	Understand the fundamentals constitutive models for soil.	K2
CO4	Evaluate finite element solutions to consolidation and flow through porous media.	K3
CO5	Compute risk assessment both in characterization of soil and in the design.	K2

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	-	2	1	2	1					
CO2	3	-	2	1	2	1					
CO3	3	-	2	1	2	1					
CO4	3	-	2	1	2	1					
CO5	3	-	2	1	2	1					
23GEPE12		-									
1-Slight, 2-Moderate, 3-Substantial											

ASSESSMENT PATTERN – THEORY													
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total						
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%						
CAT 1	40	30	30	-	-	-	100						
CAT 2	40	30	30	-	-	-	100						
Individual		Corlege Corleg											
Assessment 1 /		PV EG	2050 Br. 0										
Case Study 1/	-	50	50	-	-	-	100						
Seminar 1 /													
Project1			30										
Individual													
Assessment 2 /			AND Y										
Case Study 2/	-	50	50	<u> </u>	-	-	100						
Seminar 2 /		1 8	Call Party and Call P	1									
Project 2													
ESE	40	30	30		-	-	100						

23GEPE13	SLOPE STABILITY AN	ND LANDSLIDES								
PREREQUIS	TES	CATEGORY	L	Т	P	С				
	NIL	PE	3	0	0	3				
Course	To analyze stability of finite and irregular slopes and	l to impart knowled	ge o	n me	echar	nism of				
Objective	Objective landslides and understand the importance of field instrumentation and remedial measures.									
UNIT–I	STABILITY OF SLOPES			9	Peri	ods				
Introduction – Stability compu	Importance – General characteristics – Types of failutation – Investigation of failures – Procedure – Case s	ures – Causes of fa tudies.	ilure	es –	Purp	ose of				
UNIT-II	STABILITY ANALYSIS			9	Peri	ods				
Stability analys	is – Method of slices – Friction circle method – Soils	with cohesion Soils	s wit	h co	hesio	on and				
angle of interna	al friction. Critical states for design for embankments	- Stability comput	atior	ns –	Eval	uation				
of pore water p	ressure.									
UNIT-III	IRREGULAR SLOPES			9	Peri	ods				
Non – uniform stress approach	soils – Janbu's analysis – Taylor's analysis – Bishop es – Composite surfaces of sliding – Block sliding.	's analysis – Total	stres	ss an	id eff	ective				
UNIT-IV	LANDSLIDES			9	Peri	ods				
General Chara	cteristics - Sources-Stability of Hill side slopes -	Open cuts – Eng	ginee	ering	g pro	blems				
involving the s	stability of slopes - Cuts in sand - Cuts in loess -	Homogeneous and	sof	t cla	ıy slo	opes –				
Sudden spread	ng of clay slopes - Clay flows - Clays containing po	ckets and sand mas	ses -	– Sli	ides i	n stiff				
clay slopes on	shale - Slopes on weathered rock; talus slopes, slope	es on over consolid	ated	l cla	ys –	Slides				
along coastal a	reas and tropically weathered residual soils - Long terr	m stability of clay s	lope	es.						
UNIT-V	FIELD OBSERVATIONS AND SLOPE STABILIZ	ZATION		9	Peri	ods				
Field instrume	ntation - Observation studies during construction	– Post constructi	on,	piez	zome	ters –				
Settlement plates - Inclinometer - Case histories. Compaction of new embankments - Compaction of										
natural masses of soil and existing fills - Compaction of deep deposits of sand - Vibroflotation -										
Compaction of compressible soils-Drainage as a means of stabilization-Use of Geotextiles-Soil nailing.										
Contact Perio	ds:	3								
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical:	0 Periods Tota	al: 4	<u>5 P</u> e	eriod	S				
REFERENCES	162 CO									

1	Duncan J. M., Wright S. G., and Brandon. T. L, "Soil Strength and Slope Stability" (2 nd Edition), Wiley,
	2014.
2	Chowdhury R, Flentje P and Bhattacharya G, "Geotechnical Slope Analysis", CRC Press, 2019.
3	McCarthy, D.F., "Essentials of Soil Mechanics and Foundations: Basic Geotechnics", Sixth Edition,
	Prentice Hall, 2002.
4	Winterkorn, H.F. and Fang, H. Y., "Foundation Engineering Handbook", Van No strand Reinhold,
	1994.

5 Bramhead, E.N., "The Stability of Slopes", Blacky Academic and Professionals Publications, Glasgow1986.6Anderson, M.G., and Richards, K.S., "Slope Stability", JohnWiley, 1987.

COURSE OUTCOMES:	Bloom's Taxonomy
Upon completion of the course, the students will be able to:	Mapped
CO1 To gain knowledge about the purpose of computing slope stability.	K2
CO2 To analyse stability of slopes in cohesive and cohesionless soils.	K3
CO3 To familiarize on the analysis of irregular slopes with different approaches.	K3
CO4 To identify and report the causes of landslides in different soil conditions.	K1

COURSE ARTICULATION MATRIX												
COs/POs	PO1	PO2	PO3	PO5	PO6							
CO1	3	-	1	2	-	-						
CO2	-	-	3	2	-	-						
CO3	-	-	-	-	-	-						
CO4	2	-	-	2	-	-						
CO5	-	-	-	1	-	-						
23GEPE13	3	-	3	2	-	-						
1–Slight, 2–Moderate, 3–Substantial												

ASSESSMENT PATTERN – THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT 1	40	40	20	-	-	-	100						
CAT 2	40	40	20		-	-	100						
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50	9 7	-	-	100						
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100						
ESE	40	40	20	133-	-	-	100						

23GEPE1	4				GI	EOLO	G Y	IN	GE	TO:	EC	CHN	NICA	٩L	ENC	GINE	ER	ING	ſ		
PREREQUI	PREREQUISITES CATEGORY L 1											Т	P	С							
	NIL PE 3 0											0	3								
Course	Course To impart knowledge and skills in assessing the quality rocks in foundation to assess th											ess the									
Objective	aggregates and building materials derived from rocks and the geological suitability of sites for																				
	eng	igineer	gineering projects.																		
UNII-I	Er FC	NGIN ORM/	LEKI ATIOI	NG N	PK	OPER	KIII	ESC	JF]	кU	CK	.5 A	ND	50	IL				9	Periods
Geology for	four	indatic	n engi	neeri	ng _ '	Types	of ro	ocks	. rc	ock	des	scrit	otio	n-te	xture	e. str	uctu	re. d	com	osit	ion and
its relation to) au	uality	and str	engt	1 of re	ocks. e	engir	neer	ing	cla	issit	fica	tion	of	rock	s – v	veat	heri	ngg	rade	and its
significance	in e	engine	ering s	ite –	Engin	eering	g pro	opert	ies	of	roc	ks –	- So	il fo	rma	tion -	– So	oil ty	pes	of In	dia.
UNIT-II	SU	UBSU	RFAC	CE G	EOL	OGI	CAI	L IN	VI	EST	ſIG	AT	OI	N						9	Periods
Geotechnical	In	nvestig	ation	– Ge	ophys	sical r	meth	ods	of	su	bsu	rfac	ce in	nves	stiga	tions	– E	lect	rical	, Ma	agnetic,
gravitational,	, sei	eismic	radio	activ	e and	geocl	hemi	ical	m	leth	ods	s —	Infl	uen	ce o	f str	uctu	re a	nd	text	ure of
rocks, Engin	neeri	ring p	roperti	ies, f	founda	ation 1	prob	lem	s in	n i	gne	ous	, se	dim	ienta	ry a	nd	met	amo	rphic	rocks
including rec	ent	t sedin	nents -	- Cas	e stud	ies. In	nvest	tigat	ion	s fo	or fe	oun	dati	on c	of da	ms a	ind	rese	rvoii	s –P	roblem
encountered	and	l treati	nent, c	case s	tudies	s – Inv	vestig	gatio	on o	of ca	ana	ls a	nd d	eep	cuts	-C	ase	stud	ies.		
UNIT-III	LA	ANDS	LIDE	S AN	ID EA	RTH	QUA	AKI	E SI	EIS	SM	OL	OG	Y						9	Periods
Land Slides case studies -	– C – se	Causes eismic	– Pre zones	venti in In	ve an dia, ea	d cont arthqua	trol 1 ake 1	mea mec	sur han	es isn	– E n an	ngi nd c	neer ause	ring es –	prol Elas	olem tic R	s re Lebo	lateo	to theo	eartl ry.	nquakes
UNIT-IV	GI	EOTE	CHN	ICAI	L INV	ESTI	GA	TIO	NS	FC)R	GR	OU	ND	WA	TEF	2			9	Periods
Ground Wate – Conservati	er p on c	orobler of gro	ns – L undwa	locati ter –	on of Scope	water e of gro	tabl	les, d dwat	con er i	npo inve	ositi esti	on gati	of g on i	roui n Ci	ndwa ivil I	ater - Engii	- Gi neer	oun ing	dwa	ter S	urveys
UNIT–V	STF	RUCI	TURA	L GF	COLC	GY II	NVF	EST	IG	AT	IOI	N F	OR	FO	UNI	DAT	IOI	N		9	Periods
Altitude of b	eds,	s, Dip	and St	rike,	Chara	cterist	tics,	Тур	es,	Ca	use	s ar	nd m	nech	anis	m of	fol	ding	, Cla	assifi	cation,
Causes and n	necl	hanisı	n of fa	ults–	Field	evider	nces	and	Re	ecog	gnit	ion	of f	ault	s. Jo	oint s	yste	ems	– Cl	assif	ication
and its types, Difference between faults and joints. Definition, importance and field Recognition of																					
unconformity	у.					Que	3	44	Ya	N	32	100)								
Contact Per	iods	s:				13	50	200	Í	2	20	Y									
Lecture: 45	Per	riods	Tuto	rial:	<u>0 Pe</u> r	iods		Pra	acti	ical	l: 0	Per	riod	S	T	otal:	45]	Peri	ods		
REFERENC	ES																				

1	RoyE.Hunt,"Geotechnical Engineering Investigation Handbook", CRC Press, 2005.
2	Varghese P.C., "Engineering Geology for Civil Engineers", PHI learning Pvt.Ltd.NewDelhi,2012.
3	Krynine and Judd, "Principles of Engineering Geology and Geotechnics", CBS Publishers and
	Distributors Pvt ltd., ebook edition, 2008.
4	Parbin Singh, Engineering and General Geology ", 8 th revised edition S.K. Kataria & Sons Publishers,
	2015.
5	Blyth, "Geology for Engineering", ELBS1995.
6	Legget "Geology and Engineering", McGraw Hill Book Company, 1998.
7	Krynine and Judd, "Principles of Engineering Geology and Geotechniques", 1998.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the soil types and its historical background of formation.	K2
CO2	Identify mineral content, texture and structural behaviour of rocks using microscopic study.	K1
CO3	Carryout investigation for foundations of massive structures, handle situations	K2

	of earthquake and landslide.	
CO4	Do groundwater survey and understand groundwater investigation studies.	K2
CO5	Gain knowledge about structural problems and recognition of field and give	K3
	the suitable remedial measures.	

COURSEARTICULATIONMATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	1	-	-	-	-			
CO2	-	-	-	2	-	-			
CO3	-	-	-	-	-	3			
CO4	2	-	-	-	1	-			
CO5	-	-	-	2	-	-			
23GEPE14	2	1	-	2	-	3			
1-Slight,2-Moderate	,3–Substant	ial							

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	40	40	20	e e e	-	-	100			
CAT2	40	40	20		-	-	100			
Individual										
Assessment 1 /				2 //						
Case Study 1/	40	40	20	K (F	-	-	100			
Seminar 1 /			ATTA							
Project1		11								
Individual										
Assessment 2 /										
Case Study 2/	40	40	20	A.	-	-	100			
Seminar 2 /										
Project 2		Carro		Barry I						
ESE	40	40	20	-217-	-	-	100			
				5						

LAND RECLAMATION

PREREQUIS	TES	CATEGORY	L	Т	Р	С	
	NIL	PE	3	0	0	3	
Course Objective	se ive To get an idea of characteristic of waste, processes and remediation techniques and to impart knowledge on the needs, techniques, classification, design and operation of landfills.						
UNIT–I	INTRODUCTION			9 Pe	eriod	S	
UNIT–I Soil around us and Wetlands, S	INTRODUCTION , Soil Water Characteristics, Soil Erosion, Soil and Soil Pollution Management, Nuclear Waste Managem	Pollution, Water re nent, Solid Waste M	esour anag	9 Pe ces, emei	e riod Irrig nt.	s ation	
UNIT–I Soil around us and Wetlands, S UNIT–II	INTRODUCTION , Soil Water Characteristics, Soil Erosion, Soil and Soil Pollution Management, Nuclear Waste Managen TRANSPORTATION OF WASTES	Pollution, Water reneated Notes Pollution, Water Pollution, Water Market Market Market Market Market Market Market Pollution, Pollution, Nature, Pollution, Pollution, Nature, Pollution, Pollution, Nature, Pollution,	esour anage	9 Pe ces, emei 9 Pe	e riod Irrig nt. e riod	s ation s	

of collection systems- Need for transfer and transport- Transfer stations Optimizing Waste allocationcompactability, storage, labeling and handling of hazardous wastes-hazardous waste manifests and transport. TREATMENTOEWASTES

UNIT-III	TREATMENTOFWASTES	9 Periods
Objectives of v	vaste processing- material separation and processing technologies-biologi	cal and chemical
conversion tec	hnologies- method and controls of composting-thermal conversion t	echnologies and
energy recover	y-incineration-solidification and stabilization of hazardous wastes-treatme	ent of Biomedical
wastes.		

UNIT-IV LANDFILLS 9 Periods Waste disposal options- Disposal in landfills- Landfill Classification, types and methods- site selectiondesign and operation of sanitary landfills, secure landfills and landfill bioreactors- leachate and landfill gas management-landfill closure and environmental monitoring-closure of landfills-landfill remediation.

UNIT-V	WASTEMANAGEMENTANDBIOREMEDIATION	9 Periods
Types and Sou	arces of solid and hazardous wastes-Need for solid and hazardous was	te management-
Elements of int	egrated waste management and roles of stakeholders-Salient features of In	dian legislations
on manageme	nt and handling of municipal solid wastes, hazardous wastes, bior	nedical Wastes-
Bioremediation	-techniques-field applications.	
Contact Perio	ds:	

Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total:45 Periods

1	George Tchobanoglous, Hilary Theisen and Samuel A, Vigil "Integrated Solid Waste
	Management", McGraw-Hill International edition, New York, 1993.
2	CPHEEO "Manual on Municipal Solid waste management, Central Public Health and
	Environmental Engineering Organization", Government of India, NewDelhi, 2000.
3	MicheaelD.Lagrega, Philip L Buckingham, Jeffrey C.Evans "Environmental Resources
	Management, Hazardous waste Management", McGraw-Hill International edition, Newyork, 2001.
4	VesilindP.A., Worrell Wand Reinhart, "Solid Waste Engineering", Thomson Learning
	Inc., Singapore, 2002.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	To understand the fundamentals of solid and hazardous wastes and also the types,	K2
	need and sources of solid and hazardous wastes.	
CO2	To understand the methods of waste characterization and source reduction and to	К3
	study the various methods of generation of wastes.	
CO3	To understand in detail about the storage, collection handling, segregation and	К3
	transport of wastes.	
CO4	To gain the knowledge on the waste processing techniques which includes	K2

	incineration, solidification and stabilization of hazardous wastes.	
CO5	To know the basics of various waste disposal methods.	K2

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	-	-	3	3	-		
CO2	3	-	-	-	3	-		
CO3	3	-	3	2	-	2		
CO4	1	-	-	-	2	-		
CO5	1	-	-	-	2	-		
23GEPE15	1	-	3	3	3	2		
1-Slight,2-Moderate,	3–Substant	ial						

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	40	20	-	-	-	100			
CAT 2	40	40	20	-	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	40	40	20	100	-	-	100			

23GEPE16 ENVIRONMENTAL GEOTECHNOLOGY										
PREREQUISI	ГЕS		CATEGORY	L	Τ	P	С			
	NIL	3	0	0	3					
Course	o acquire knowledge on the interaction mechanism of pollutants, contaminant transport									
Objective and remediation of contaminated sites.										
UNIT–I	SOIL POLLUTION AND IN	NTERACTION			9	Peri	ods			
Introduction 1	o Geo-environmental engi	neering-Environmer	ntal cycle–Sources	, p	orodu	ction	and			
classification of	waste - Causes of soil pollu	tion - Classification	n, identification and	ch	aract	eriza	tion of			
contaminated se	oils-Factors governing soil-Po	llutant interaction-Fa	ailures of foundation	ns du	ie to	Pollu	ıtants–			
Environmental	Geotechnical problems-Case st	tudies.								
UNIT-II	SITE SELECTION AND SA	AFE DISPOSAL OF	WASTE		9	Peri	ods			
Safe disposal o	waste-Site selection for land	lfills- Characterizati	on of landfill sites	– R	isk a	issess	sment–			
Stability of land	fills-Current practice of waste	e disposal–Design of	f landfill –Monitori	ng fa	acilit	ies–I	Passive			
containment sy	tem-Leachate contamination-	Hydrological consid	eration in landfill de	esign	–Ap	plica	tion of			
geosynthetics in	solid waste management-Rig	id and Flexible liners	s–Design.							
UNIT-III	TRANSPORT OF CONTAI	MINANTS			9	Peri	ods			
Contaminant tr	ansport in sub surface – Adv	vection – Diffusion	- Dispersion - Go	vern	ing o	equat	tions –			
Contaminant tra	insformation – Sorption – Bic	odegradation – Ion ex	xchange – Precipitat	tion	– Gr	ound	l water			
pollution – Bea	ring capacity of compacted fil	ls – Foundation for v	waste fill ground – P	ollu	tion	of A	quifers			
by mixing of lic	uid waste - Protection of aqui	fers.	~							
UNIT-IV	WASTE STABILIZATION	AND DISPOSAL			9	Peri	ods			
Hazardous was	te control and storage system	m–Stabilization/Solie	dification of wastes	–Mi	cro	and	Macro			
encapsulation-	bsorption, adsorption, precip	oitation-Detoxification	on-Mechanism of s	tabil	izati	on–C	Organic			
and inorganic st	abilization–Utilization of solic	l waste for soil impro	ovement-Case studie	s.						
UNIT-V REMEDIATION OF CONTAMINATED SOILS							ods			
Rational approach to evaluate and remediate contaminated sites-Monitored natural attenuation-Ex-situ										
and in-situ remediation-Solidification, Bio-remediation, incineration, soil washing, electro-kinetics, soil										
heating, vitrific	ation, bio-venting-Groundwat	ter remediation-Pum	np and treat, air spa	ring	, rea	ctive	e-well-			
Case studies.	10	10 0 CS	5	-						
Contact Period	s:									
Lecture: 45 Pe	riods Tutorial:0 Periods	Practical: 0 Peri	iods Total:45	Peri	ods					
RFFFRFNCFS										

1	Daniel, D.E., "Geotechnical Practice for waste disposal", Chapman and Hall, London, 1993.
2	Westlake, K., "Landfill Waste pollution and Control", Albion Publishing Ltd., England, 1995.
3	Lagrega ,M.D., Buckingham, P.L., and Evans, J.C., "Hazardous Waste Management", McGraw
	Hill,Inc. Singapore, 1994.
4	Jo Strange and Nick Langdon, "Contaminated Land: Investigation, Assessment and Remediation –
	Design and Practice Guides", ICE, 2008.
5	Yue Rong, "Fundamentals of Environmental Site Assessment and Remediation", CRC Press, 2018.

COURS	Bloom's	
		Taxonomy
Upon co	Mapped	
CO1	Learn about soil contamination and soil pollutant interaction	K2
CO2	Select suitable sites for safe disposal of wastes	К3
CO3	Assess different mechanisms of transport of contaminants	K3

CO4	Adopt appropriate waste stabilization techniques	K3
CO5	Remediate contaminated soils using different methods	K3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	3	1	3	3				
CO2	3	-	2	2	-	-				
CO3	2	-	3	-	3	3				
CO4	3	-	-	3	2	-				
CO5	3	-	2	3	2	-				
23GEPE16	3	-	3	3	3	3				
1-Slight,2-Moderate,3-Substantial										

ASSESSMENT	[°] PATTERN – TH	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analysing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	20	40	40	-	-	-	100
CAT 2	20	40	40	-	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	10	50	40		-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2 / Project 2	10	50	40	-	-	-	100
ESE	20	40	40	128	-	-	100

23GEPE17	
----------	--

PAVEMENT ENGINEERING

9 Periods

9 Periods

PREREQUISI	CATEGORY	L	Т	Р	С		
	PE	3	0	0	3		
Course	To design flexible and rigid pavements as per IRC codes, evaluate pavements for distress and						
Objective	to adopt suitable rehabilitation techniques.						
UNIT–I	BASIC CONCEPTS				9 P	eriods	

Pavement-types-Historical developments-Approaches to pavement design-Vehicle and traffic considerations- Behaviour of road materials under repeated loading-Stresses and deflections in Layered systems.

UNIT–II FLEXIBLE PAVEMENT

Factors affecting flexible pavements–Types of stresses and causes–Material characterization for Analytical pavement design–CBR and stabilometer tests–Resilient modulus–Fatigue subsystem–Failure criteria for bituminous pavements–IRC design guidelines

UNIT-III	NIT-III RIGID PAVEMENT								9 Periods	
Factors affectir	ig rigid pa	ven	nents-T	ypes of stresses a	and o	causes-	-Design	procedures fo	r 1	rigid pavement-
IRC guideline	s–Design	of	joints,	reinforcements,	tie	bars,	dowel	bars-Airfield	r	pavements-CRC

pavements.

UNIT-IV PAVEMENT EVALUATION AND REHABILITATION

Pavement evaluation and rehabilitation, condition and evaluation surveys–Evaluation by Non-destructive tests- FWD- Benkelman Beam Deflection Test- Wave Propagation Test–PSI models–Serviceability index of rural roads–Overlays and design-pavements maintenance management and Construction.

UNIT-V STABILIZATION OF SOILS FOR ROAD CONSTRUCTIONS 9 Periods

Need for a stabilized soil–Design criteria and choice of stabilizers–Testing and field control– Stabilization for rural roads–Pavement recycling–Use of recycled materials–geosynthetics in road construction– Case studies.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical:0 Periods Total:45 Periods

- Wright, P.H., "Highway Engineers", John wiley & Sons, Inc. NewYork, 2009.
 Yoder, R.J and Witchak, M.W., "Principles of Pavment Design", John wiley, 2000.
 Khanna, S.Kand Justo C.E.G., "Highway Engineering", New Chand and Brothers, Roorkee, 1998.
 "Design and specification of Rural Roads (Manual"), Ministry of rural roads, Government of India, NewDelhi, 2001.
- 5 **"Guidelines for the Design of Flexible Pavements"**, IRC:37–2012, The Indian Roads Congress, NewDelhi.
- 6 **"Guidelines for the Design of Rigid Pavements"**, IRC:58–2012,The Indian Roads Congress, NewDelhi.

COURSE OUTCOMES:					
		Taxonomy			
Upon completion of the course, the students will be able to:					
CO1	Learn loading conditions and corresponding stresses and deformation	K2			
	developed.				
CO2	Carryout material characterization and the design of flexible pavement.	K3			
CO3	Design of rigid pavement as per IRC guidelines.	K3			
CO4	Evaluate pavement and to select appropriate rehabilitation technique.	K3			
CO5	Select suitable stabilizers and their applicability in pavements.	K2			

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	3	1	3	3				
CO2	3	-	2	2	-	-				
CO3	2	-	3	-	3	3				
CO4	3	-	-	3	2	-				
CO5	3	-	2	3	2	-				
23GEPE17	3	-	3	3	3	3				
1-Slight,2-Moderate	1-Slight,2-Moderate,3-Substantial									

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analysing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	10	40	50	-	-	-	100				
CAT2	10	40	50	-	-	-	100				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20	40	40		-	-	100				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20	40	40	R	-	-	100				
ESE	10	40	50		-	-	100				

23GEPE18	THEORETICAL SOIL MECHANICS						
PREREQUISIT	UISITES CATEGORY L T						
	NIL PE						
Course	To learn the material behaviour and basics of stress fields in soil based on theory of						
Objective	elasticity and plasticity.	elasticity and plasticity.					
UNIT–I	FHEORY OF ELASTICITY 9 Periods					eriods	
Introduction – N	Material behaviour - Idealistic behaviour - Elastic,	viscous and plas	tic –	Ela	sticit	y and	
stability problen	ns, concept of stress and strain-Plane stress, plane	strain and axisy	mme	tric	prob	lems–	
Equation of equi	librium and compatibility– Stress functions						
UNIT-II	STRESSES AND DISPLACEMENTS (ELASTIC S	OLUTIONS)			9 P	eriods	
Stresses in elas	tic half-space medium by external loads-Fundame	ntal solutions-Bo	oussi	nesq	, Fla	amant,	
Kelvin and Min	dlin solution- Applications of fundamental solution	s–Anisotropic and	l nor	-hor	noge	eneous	
linear continuum	–Influence charts–Elastic displacement.						
UNIT–III	LIMIT EQUILIBRIUM ANALYSIS				9 P	eriods	
Limit equilibrium analysis- Perfectly plastic material-Stress-strain relationship-Stress and displacement							
field calculations	s – Slip line solutions for undrained and drained loading	ng – Dimensional	simil	itude	e.		
UNIT-IV	LIMIT ANALYSIS				9 P	eriods	
Limit analysis - Principles of virtual work - Theorems of plastic collapse - Mechanism for plane plastic							
collapse – Simp	le solutions for drained and undrained loading - S	tability of slopes,	cuts	s and	d ret	aining	
structures. Centr	ifuge model- Principles and scale effects, practical co	nsiderations.					
UNIT–V	FLOW THROUGH POROUS MEDIA				9 P	eriods	
Flow through po	Flow through porous media – Darcy's law – General equation of flow – Steady state condition –Solution by						
flow net – Fully saturated conditions – Flow net in anisotropic soils – construction of flow net for different							
cases.							
Contact Periods:							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							
REFERENCES							
1 Aysen,A.,' 2002.	Soil Mechanics: Basic concepts and Engineering A	pplication",A.A.B	alker	na P	Publis	shers,	

	2002.
2	Ulrich Smoltc, Y.K, "Geotechnical Engineering Handbook(Vol.1)", Ernot & Sohn, 2002.
3	Aysen, A., "Problem Solving in Soil Mechanics", A.A.Balkema Publisher, 2003.
4	Davis, R.O., and Selvadurai, A.P.S., "Elasticity and Geomechanics", Cambridge University Press,
	1996.
5	Taylor, R.N., "Geotechnical Centrifuge Technology", Blackie Academic and Professional 1995.
6	Wai-FahChen, and Liu, X.L., Limit Analysis in Soil Mechanics", Elsevier Science Ltd., 1991.
7	MuniBudhu, "Soil Mechanics and Foundations", John Wiley and Sons, Inc, Network, 2000.
8	Atkinson, J.H., "Foundations and Slopes", McGrawHill, 1981.
9	Harr,M.E., "Foundations of Theoretical Soil Mechanics", McGrawHill, 1966.
10	Cedergren, H.R., "Seepage Drainage and Flownets", JohnWiley, 1997.
11	Winterkorn, H.F., and Fang, H.Y., "Foundation Engineering Handbook", Galgottia, Book source, 2000.
12	Karl Terzaghi, "Theoritical Soil Mechanics", John Wiley & Sons Publications.

COURS	E OUTCOMES:	Bloom's	
Upon co	Upon completion of the course, the students will be able to:		
•		Mapped	
CO1	Apply theories of elasticity and plasticity to characterize the stress-strain	K3	
	behaviour of soil.		
CO2	Imparting knowledge required for calculating stress and settlement at any depth	K2	
	in semi-infinite elastics oil medium, anisotropic and layered medium due to		
	external loads.		
CO3	Acquiring knowledge on slip line solutions on drained and undrained condition.	K3	
CO4	Arrive at solutions for drained and undrained loading conditions for analysis of	K3	
	slopes, cuts and retaining structures for their stability using theorem of plastic		
	collapse.		
CO5	Understand the concept of flow through soil media and to construct flow nets	K2	
	for different cases.		

COURSEARTICULATIONMATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1 16	STATE STATE	2	2	-	1	
CO2	1 🔍	19 monte	2	2	-	1	
CO3	3	-	3	3	1	1	
CO4	3		3	3	1	1	
CO5	2	-	3	2	1	1	
23GEPE18	3	N S	3	2	1	1	
1-Slight,2-Moderate,3-Substantial							

1

			1				
ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT 1	40	30	30	-	-	-	100
CAT 2	40	30	30	-	-	-	100
Individual							
Assessment 1 /							
Case Study 1/	-	50	50	-	-	-	100
Seminar 1 /							
Project1							
Individual							
Assessment 2 /							
Case Study 2/	-	50	50	-	-	-	100
Seminar 2 /							
Project 2							
ESE	40	30	30				100

EARTH RETAINING STRUCTURES

20 GEI EI)								
PREREQUISIT	TES	CATEGORY	L	T P	С			
	NIL	PE	3	0 0	3			
Course	To impart knowledge on earth pressure theories,	design of retainin	ng w	alls, she	et pile			
Objective	walls, concepts of braced excavation and underst reinforced earth retaining wall.	and the concepts	and	mechan	isms of			
UNIT-I	EARTH PRESSURE THEORIES			9 Per	iods			
Introduction – S	tate of stress in retained soil mass - Classical earth p	pressure theories –	Acti	ve and	Passive			
earth pressures	- Earth pressure at rest - Earth pressure due to exte	ernal loads – Empi	rical	method	s–Wall			
movements and	l complex geometry-Graphical method of comp	uting earth press	ure–I	Rehbann	i's and			
Culmann's appro	oach.							
UNIT-II	RETAINING WALLS			9 Per	iods			
Retaining walls	- Uses and types - Forces on retaining walls - De	esign of retaining	walls	s by lin	it state			
method - Gener	ral principles - Design and construction details - I	Design of solid gra	avity	walls,	Semi –			
gravity walls, ca	ntilever walls, counterfort walls-Stability of retaining	g walls–Drainage a	rrang	gements	and its			
influence.								
UNIT-III	SHEET PILE WALLS			9 Per	iods			
Earth retaining s	tructures- Selection of soil parameters-Analysis and	design of cantileve	er an	d ancho	red sheet			
pile walls– Dead	I man and continuous anchor–Diaphragm and bored p	oile walls–Design r	equi	rements				
UNIT-IV	BRACED EXCAVATION			9 Per	iods			
Braced cuts in sand and clay–Lateral pressure on sheeting in Braced excavation– Stability against Piping and bottom heaving–Procedure for computation of lateral earth pressure for braced cuts and Flexible Bulk heads– Soil anchors– Soil nailing– Soil pinning– Methods of design.								
UNIT-V	REINFORCED EARTH RETAINING WALL			9 Per	iods			
Reinforced earth retaining wall–General principles, Concepts and Mechanism of reinforced earth–Design consideration of reinforced earth– Geotextile, geogrids, metal strips and facing elements–Construction–Selection of type of retaining structures– Construction practice– Field observations.								
Contact Periods:								
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Per	iods Total	: 45	Periods				
REFERENCES								
1 WinterkornH.F. and FangH.Y., "Foundation Engineering Handbook", Galgotia Book source, 2000.								
Publishers, 2001.								
3 Militisky. Jand WoodsR. "Earth and earth retaining structures", Routledge, 1992.								
4 DasB.M., "Principles of Geotechnical Engineering (Fourth edition)", The PWS series in Civil								
Engineering, 1998. 5 Claston C. P. I. Militiahy L and Wooda P. "Farth processing and south notations structures (associal Edition)?								
Survey University Press, 1993.								
6 McCarthyD.1	6 McCarthyD.F., "Essentials of soil Mechanics and foundations", Basic Geotechnics (sixth Edition)							
PrenticeHall,	2002		<u>.</u>					

COU	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able:	Taxonomy Mapped
CO1	To understand earth pressure theories and computation of earth pressure.	K2
CO2	To calculate the forces on retaining walls and design the retaining walls.	K3
CO3	To carry out analysis and design of sheet pile walls.	K3
CO4	To design braced excavations, soil nailing, pinning, and anchoring on stability considerations.	K3
CO5	To apply concepts of reinforcement in earth retaining structures.	K2

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	-	2	-	-				
CO2	-	-	3	-	2	-				
CO3	3	-	-	-	1	-				
CO4	2	-	2	-	3	-				
CO5	2	-	-	3	1	-				
23GEPE19	3	-	3	3	1	-				
1-Slight,2-Mo	1–Slight,2–Moderate,3–Substantial									

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	- 1	-	-	100

23GEPE20

PROFESSIONAL PRACTICES IN DESIGN OF GEOTECHNICAL STRUCTURES

	GEOTECHNICAL S	IRUCTURES								
PREREQUIS	ITES	CATEGORY	Y L T P							
Ν	IL	PE	3	3						
Course	To gain exposure on practical aspects of designs	relating to substructu	re el	leme	nts ı	ising				
Objective	software, Geotechnical construction practices, and field execution of the works.									
UNIT–I	CONSTRUCTION TECHNIQUES			9 Pe	eriod	S				
Project plannin	ng – Geotechnical engineering practices – Soil pr	rofile – Bore log – H	Repo	rt re	view	⁷ and				
preparation –	Geotechnical Plant and Machinery - Safety aspec	ets at site- Constructi	on n	nana	gem	ent –				
Quality control	-Quality management-Geosynthetics-Geomembran	ie.								
UNIT-II	RETAINING STRUCTURES			9 Pe	eriod	S				
Design of reta	ining wall-Design of culvert-Design of deep ex	xcavations-Sheet pile	-dia	phra	gm '	walls-				
Shoring system	–Design of Caisson.									
UNIT-III	SUBSTRUCTURES			9 Periods		S				
Design of Tow	ver Foundation-Design of Floating foundation-Des	ign of Pile and Pile g	roup	-De	esign	ı of				
under reamed	pile - Design of abutment - Design of Pier - Design	gn of mat foundation	– De	esign	n of j	pile				
draft foundatio	n.									
UNIT-IV	DYNAMIC RESPONSE OF FOUNDATIONS			9 Pe	eriod	S				
Soil behaviour	- Dynamic properties of soil- Seismic performance	e analysis – Calculatio	on of	seis	mic	loads				
in foundation-	Design procedure for earthquake resistant foundation	n –Soil structure intera	ctior	ı–Re	trofi	tting.				
UNIT-V	FINITE ELEMENT ANALYSES AND SOFTW	ARE		9 Pe	eriod	S				
	APPLICATION	7								
Finite Element PLAXIS.	Analysis applied to Geotechnical Engineering-A	ANSYS–Modelling–A	pplic	catio	ns–C)asys–				
Contact Perio	ds:									
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Perio	ods Total: 45 Per	iods	;						
	AL R									
REFERENCES	ALTER LOG DO DUN)								
1 Holmalar	"Design Applications of Daft Form dations"									

	LINEINCELS
1	Helmsley, "Design Applications of Raft Foundations".
2	Michael John Tomlinson, R. Boorman, "Foundation Design & Construction", Prentice Hall PTR, 2001.
3	George paaswell "Retaining Walls: Design & Construction", Bibliobazaar, 2009.
4	"Design & Construction of bridge approaches", Transportation Research Board, 1990
5	Davies and Poulos, "Analysis and design of pile foundation", John Wiley and Sons, 1980
6	Potts and Zdravkovic,"Finite Element Analyse Applied to Geotechnical Engineering", Vol.1
	(Theory) and Vol.2 Applications

COU	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	To know the field practices in investigations, safety, and quality on Substructure components.	K2
CO2	To design foundations for special structures using softwares.	К3
CO3	To evaluate dynamic properties of soils and design earthquake resistant foundations.	K3
CO4	To know about various substructure retrofitting techniques	K3
CO5	To acquire knowledge about the use of finite element based softwares to analyse geotechnical engineering structures.	K3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	-	3	-	-	-				
CO2	-	-	3	-	-	-				
CO3	-	-	3	2	-	3				
CO4	1	-	3	-	-	-				
CO5	1	-	3	-	-	2				
23GEPE20	1	-	3	2	-	3				
1 – Slight, 2 – Mode	erate, 3 – Sub	ostantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	40	40	20	-	-	-	100			
CAT 2	40	40	20	-	-	-	100			
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100			
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100			
ESE	40	40	20		-	-	100			

23GEPE21 GROUND IMPROVEMENT TECH	HNIQUE	S			
PREREQUISITES: CATEG	GORY	L	T	P	С
NIL PI	E	3	0	0	3
Course To impart knowledge on the various improvement techn	niques fo	or c	ohes	ionle	ess and
Objective cohesive soils.					
UNIT – I DEWATERING			9]	Perio	ods
Introduction-Necessity of ground improvement-Current status and scop	pe in In	ndiar	co	ntex	t-New
Technologies-Basic concepts-Drainage methods-Ground water lowering b	y well p	ooint	s– I	Deep	well,
Vacuum and Electro-Osmosis methods.					
UNIT – II COMPACTION AND SAND DRAINS			9]	Perio	ods
In-situ compaction of cohesionless and cohesive soils - Shallow and de	eep com	pact	ion	–Vit	oration
methods-Vibro-compaction, Blasting, Vibrating probe, Vibratory rollers, Vibr	ro-displac	eme	ent co	ompa	action,
Vibro flotation - Concept, Factors influencing compaction- Heavy Tamping	-Vertical	l dra	ins–	Prelo	oading
with sand drains, Fabric drains, Wick drains-Design of sand drains-Relative					
Merits of different methods – limitations.					
UNIT – III STONE COLUMN AND EARTH REINFORCEMENT			9]	Perio	ods
Pre-compression and consolidation –Dynamic consolidation –Electro-osmotic	consolid	atior	n-Sto	one c	olumn
- Functions - Methods of installation - Design estimation of load carrying	g capacity	y of	stor	e co	olumn–
Settlement of stone column-Lime piles-Earth reinforcement-Soil Nailing and I	Rock				
Bolting – Types of reinforcement material–Applications.					
UNIT-IV STABILIZATION			9]	Perio	ods
Introduction–Stabilization methods– Mechanical, Cement, Lime, Bitume	n, Chem	nical	sta	biliz	ation-
Electrical stabilization–Stabilization by Inermal and Freezing techniques	s–Ground	i im	prov	eme	nt by
UNIT V CDOUTING			0.1	Dani	. da
UNIT-V GROUTING Introduction Applications Functions Characteristics of grouts Types of gro	ut Sucne	ncio	9] n an	d so	Jution
route Resign requirements of grout Displacement Compaction grouting d	licnlocom	ant	11 a1. So	iu sc il fr	
routing lat Displacement grouting, and Dermostion grouting Crouting, or	iispiaceiii	CIII Inia	-30	11 11 	the de
Grouting, Jet-Displacement grouting, and Fernieation grouting-Orouting equ	inpinem–	mje		met	nous–
Grout monitoring - Deep vertical cut-stability considerations – Case studies.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Tota	l: 45 Per	<u>io</u> ds			

- Moseley M.D., "Ground Treatment", Blackie Academic and Professional, 1998.
 Koerner, R.M., "Designing with Geosynthetics" (fourth edition), Prentice Hall, NewJersey, 1999.
 Purushothama Raj P., "Ground Improvement Techniques", Laxmi Publications(P)Ltd., NewDelhi, 2005
- 4 Shroff, A.V., "Grouting Technology in Tunnelling and Dam", Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 2009.

COUI Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Ascertain the parameters of weak soil and the techniques used for treating such soils.	K2
CO2	Select various shallow and deep compaction techniques.	K3
CO3	Design stone column and learn the consolidation processes.	K3
CO4	Choose various types of stabilizers and stabilizing techniques.	K3
CO5	Gain knowledge for application of grouting methods in the field.	K3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	3	3	3	2				
CO2	3	1	2	3	-	-				
CO3	2	3	3	3	-	3				
CO4	3	-	2	2	3	-				
CO5	3	-	2	2	-	2				
23GEPE21	3	3	3	3	3	2				
1 - Slight, 2 - Mod	erate, 3 – S	ubstantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT 1	30	30	40	-	-	-	100			
CAT 2	30	30	40	-	-	-	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	40	40	Ð.	-	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2 / Project 2	20	40	40	-	-	-	100			
ESE	30	30	40		-	-	100			

23GEP	YE22 MARINE GEOTECHNICAL ENGINEERING										
PREREC	UISIT	'ES					CATEGORY	L	Τ	P	С
	ľ	NIL					PE	3	0	0	3
Course	e 7	Го im	part kno	wledge on	marine environi	nent, dy	namic loading on	soil	s an	d di	fferent
Objective foundations on marine deposits.											
UNIT – I	N	MAR	INE SOI	L DEPOSI	ГS					9 P	eriods
Offshore	enviror	nment	- Offsho	re structure	es and foundation	ons- Spe	cific problems rel	lated	to	mariı	ne soil
deposits-	Physica	al and	engineer	ing properti	es of marine soil	s.					
UNIT – I	I B	ЕНА	VIOUR C	F SOILS S	SUBJECTED TO	O DYNA	MIC LOADING			9 P	eriods
Effect of	wave	loadir	ig on off	shore foun	dations- Behavio	our of sa	ands and clays un	der (cycli	c loa	iding -
Laborator	y exper	rimen	ts includi	ng repeated	loading- Cyclic	behavio	ur of soils based or	n fun	dame	ental	theory
of mechai	nics- Ap	pprox	imate eng	ineering me	ethods - practical	cases.					
UNIT – I	II S	SITE	INVEST	IGATION	IN MARINE S	OIL DE	POSITS			9 P	eriods
Challenge	es of sit	te inv	estigatior	in marine	environment- D	ifferent	site investigation t	echn	ique	s- sai	mpling
technique	s -Geop	ohysic	al metho	ls- recent a	dvancements in s	ite inves	tigation - sampling	use	d for	mari	ne soil
deposits.											
UNIT – I	VI	FOUN	DATIO	NS IN MAI	RINE SOIL DE	POSITS				9 P	eriods
Different	offshor	re and	l near sho	ore foundation	ions-Gravity plat	tforms-Ja	ack-uprigs- pile for	unda	tions	- Ca	ssions-
spudcans.											
UNIT-V	Γ	NUMI	ERICAL	MODELIN	G OF MARINE	FOUNI	DATIONS			9 P	eriods
Numerica	l model	ling o	f cyclic b	ehaviour of	soils- empirical	models-	elastic-plastic mod	els-]	FEM	anal	ysis of
marine for	undatio	ons su	ojected to	wave loadi	ng.						
Contact I	Periods	:		1		1					
Lecture:	45 Peri	iods	Tutoria	l: 0 Period	Practical: 0	Periods	Total: 45 Pe	eriod	S		
DEEEDEI				Ja.	R						
REFERE	NCES			22			20				
1 Geor	rge P T	' sinke	r, "Port l	Engineering	g planning, const	truction,	maintenance and	secu	rity"	', Joh	n Wiley
& Se	ons, Inc	2004		1	Contrato is car	ET.					
2 M J	Tomli	inson,	"Pile d	esign and	construction pr	actice",	View point Publi	catio	ons,	Pal	ladian
Pub	lication	s Lim	ited,1987	•							
3 H.G.	Poulos	, "Ma	rine Geot	echnics", P	rentice Hall Inc.	,1988.					

4 Ben C Gerwick, jr., "Construction of marine and offshore structures", CRC Press, Taylor and Francis Group. 2012.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:			
C01	Understand marine environment related problems.	K2	
CO2	Acquire knowledge about effect of dynamic loading on soils.	K3	
CO3	Familiarize about various Site investigation techniques.	K1	
CO4	Apply the knowledge of marine platforms for various geotechnical applications.	K3	
CO5	Perform numerical modeling on marine foundations.	K3	

COURSE ARTICU	JLATION	MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	2	3	1	1
CO2	2	-	2	3	1	1
CO3	2	-	2	3	1	1
CO4	2	-	2	3	1	1
CO5	2	-	2	3	1	1
23GEPE22	2	-	2	3	1	1
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT	PATTERN – TI	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	-	-	-	100

22CEDE	22
ZJGEFE	23

UNSATURATED SOIL MECHANICS

PREREQUISITES	S:	CATEGORY	L	Т	Р	С
	NIL	PE	3	0	0	3
Course To	understand the properties of unsaturated soils, the sta	ress state variables	and	the	mode	eling
Objective tec	chniques.					
UNIT–I S	TATE OF UNSATURATED SOIL				9 P	eriods
Definition- Interdis	sciplinary nature of unsaturated soil- soil classific	cation – Nature an	d pi	actio	ce –	stress
profiles, stress state	e variables – material variables constitutive law –suc	ction potential of sc	il w	ater.		
UNIT-II P	HYSICS OF SOIL WATER SYSTEM				9 P	eriods
Physical properties	of air and water - partial pressure and relative h	numidity- density of	of m	oist	air-s	urface
tension - cavitation	of water. Solubility of air in water - air water solid	interface - vapour	pres	sure	lowe	ering -
soil water characte	ristic curve. Capillary tube model - contacting spl	nere model. Young	g Laj	place	e equ	ation-
Height of capilla	ry rise-Rate of capillary rise- capillary pore	size distribution	-The	oreti	ical	basis-
determination-labor	ratory method.					
UNIT–III S	TRESS STATE VARIABLES AND SHEAR ST	RENGTH			9 P	eriods
Effective stress-stre	ess between two spherical particles - Hysteresis in S	WCC - stress para	nete	r, str	ess t	ensor-
stress control by ax	is translation analytical representation of stress-vo	lume change chara	cteri	stics	-Ext	ended
Mohr-Coulomb crit	erion-shear strength parameters-Interpretation of D	irect shear test resu	lts a	nd T	riaxi	al test
results-unified repr	esentation of failure envelope-Influence of suction i	n earth pressure dis	tribu	ition		
UNIT–IV S	TEADY AND TRANSIENT FLOWS				9 P	eriods
Driving mechanism	n- Permeability and Hydraulic conductivity- cap	illary barriers-stea	dy i	infilt	ratio	n and
evaporation-Vapor	flow-Air diffusion in water-Principles for pore liqu	uid flow-Rate of in	filtra	ation	, Tra	nsient
suction and moistur	re profiles-Principles for Pore Gas flow- Barometric	pumping analysis.				
UNIT-V M	IATERIAL VARIABLE MEASUREMENT AND N	MODELLING			9 P	eriods
Measurement of to	otal suction -psychrometers- Filter paper measurer	nent of matric suc	tion	Hig	h air	entry
disks-Direct meas	urements- Tensiometers- Air-translation technic	que-Indirect meas	uren	nents	s Th	nermal
conductivity sensors-measurement of osmotic suction-squeezing technique-soil water Characteristic curves						
and Hydraulic conductivity models.						
Contact Periods :	COLOGIC S AND					
Lecture: 45 Period	ls Tutorial: 0 Periods Practical: 0 Periods	Total: 4	5 Pe	eriod	ls	

1	Fredlund, D.GRahardjo, H. and Fredlund, M.D. "Unsaturated Soil Mechanics in Engineering
	Practice ", John Wiley & Sons, INC, NewJersey, 2012.
2	Ning Luand William, J.Likes, "Unsaturated Soil Mechanics", John Wiley & sons, INC.NewJersey, 2004
3	NgCharles, Ww Menzies Bruce, "Advanced unsaturated Soil Mechanism and Engineering", Taylor
	& Francis Group,2007.
4	NingLu, LaureanoR. Hoyes and Lakshmi Reddi, "Advances in unsaturated soil, seepage and
	Environmental Geotechnics", ASCE, Geotechnical special publication No. 148.
5	Jean-Louis Briaud., "Geotechnical Engineering: Unsaturated and Saturated soils", John Wiley &
	Sons, INC, NewJersey, 2013.

COUF	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Gain knowledge on stress state variables, material variables and constitutive law of	K2
	Unsaturated son.	
CO2	Study the physics of soil -water mechanism, relationship of models.	K2
CO3	Determine soil-water characteristic curve and the shear strength of unsaturated soil.	K3

CO4	Learn the principles of vapour flow, air diffusion, pore liquid flow and rate of Infiltration in unsaturated soil.	K1
CO5	Measure the material variables and select the suitable soil models.	K3

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	1	-	-	3	3
CO2	2	1	3	2	2	3
CO3	3	-	3	3	2	2
CO4	1	1	-	2	2	3
CO5	3	-	2	3	3	2
23GEPE23	3	1	3	3	2	3
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT I	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	30	30	40	-	-	-	100
CAT 2	30	30	40	N91-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20	40	40	7	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20	40	40	-	-	-	100
ESE	30	30	40	1.10	-	-	100
			AUG (See	T			

23GEPE24	TUNNEL ENGINEERING						
PREREOUISI	ΓΕ	CATEGORY	L	Т	Р	С	
	NIL	PE	3	0	0	3	
Course ObjectiveTo understand the fundamentals, different techniques of tunneling and gain knowledge on the hazards related to tunneling.							
UNIT–I	INTRODUCTION			9 Pe	riod	S	
Scope and app	lication, historical developments, art of tunneling,	tunnel engineering	, fut	ure	tunn	eling	
considerations-	Types of Underground Excavations: Tunnel, adit, a	lecline, shaft; parai	meter	rs in	flue	ncing	
location, shape	and size; geological aspects; planning and site investig	gations.					
UNIT-II	TUNNELING METHODS			9 Pe	riod	s	
Types and pur	pose of tunnels; factors affecting choice of excava	tion technique; Me	ethod	S-SO	ft gr	ound	
tunneling, hard	rock tunneling, shallow tunneling, deep tunneling; S	hallow tunnels – cu	t and	l cov	ver, o	cover	
and cut, pipe ja	cking, jacked box excavation techniques, methods of	muck disposal, su	oport	ing,	prob	olems	
encountered and	d remedial measures.						
UNIT-III	TUNNELING BY DRILLING AND BLASTING			9 Pe	riod	s	
Unit operations	in conventional tunneling; Drilling - drilling princip	les, drilling equipm	ient,	drill	ing	tools,	
drill selection, s	pecific drilling, rock drill ability factors; Blasting-exp	losives, initiators, b	lasti	ng m	necha	anics,	
blast holes nom	enclature; types of cuts- fan, wedge and others; bl	ast design, tunnel l	olast	perf	orm	ance-	
powder factor,	parameters influencing, models for prediction; mu	icking and transpo	rtatio	on e	quip	ment	
selection.	7						
UNIT-IV	GROUND TREATMENT IN TUNNELING			9 Pe	riod	S	
Adverse ground	conditions and its effect on tunneling; introduction to	ground control.	•				
UNIT–V	TUNNELING HAZARDS			9 Pe	riod	S	
Explosion, flooding, chimney formation, squeezing ground.							
Contact Periods:Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodTotal: 45 Periods							
REFERENCES							

1	Ratan Raj Tatiya, "Surface and underground Excavation", Second Edition, 2005.
2	David Chapman, Nicole Metje and Alfred Stark, "Introduction to Tunnel Construction", Spon Press, Second edition, 2010.
3	Hoek and Brown, "Underground excavation in rock", Revised First Edition, 2003
4	Palmström and Stille, "Rock Engineering", Second Edition, 2014

COU	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able:	Taxonomy Mapped
CO1	To apply the fundamentals of tunnel engineering.	K2
CO2	To identify and evaluate different tunneling methods.	К3
CO3	To apply knowledge on drilling and blasting tunneling techniques.	K2
CO4	To identify and deal with different ground conditions during tunneling.	K2
CO5	To anticipate tunneling hazards and apply safety measures.	K2

COURSE AR	TICULATI	ON MATRI	X			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	1	2	-	-
CO2	-	-	3	2	-	-
CO3	1	-	-	2	1	-
CO4	2	-	-	2	-	-
CO5	-	-	-	1	-	-
23GEPE24	3	-	3	2	1	-
1–Slight, 2–M	oderate, 3-S	ubstantial				•

ASSESSMENT	PATTERN – THI	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	50	50		-	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	50	50		-	-	-	100
ESE	40	40	20	Nh -	-	-	100

BUILDING BYE-LAWS AND CODES OF PRACTICE										
235E	OEUI	(Common to a	ll Branches)	-						
PRERE	QUISITI	ES	CATEGORY	L	Т	P	C			
		NIL	OE	3	0	0	3			
Cour	se T	o impart knowledge on the building bye -laws and	to emphasize the s	ignif	ïcanc	e of co	des of			
Object	ives p	ractice in construction sector.								
UNIT –	UNIT - IINTRODUCTION TO BUILDING BYE-LAWS9 Periods									
Introduct	tion to B	uilding Bye Laws and regulation, their need an	d relevance, Gen	eral o	defini	tions s	such as			
building	height,	building line, FAR, Ground Coverage, set back	c line. Introductio	on to	Mas	ster Pl	an and			
understa	nding var	ious land uses like institutional, residential etc Te	rminologies of Bu	ilding	g bye	-laws.				
UNIT –	II R	OLE OF STATUTORY BODIES				9 Perio	ods			
Role of v	various st	atutory bodies governing building works like develo	opment authorities	, mur	nicipa	l corpo	orations			
etc. Loca	al Plannin	g Authority, Town and Country planning organisati	ion, Ministry of ur	ban d	levelo	opment				
UNIT –	III A	PPLICATION OF BUILDING BYE-LAWS				9 Perio	ods			
Interpret	ation of i	nformation given in bye laws including ongoing c	hanges as shown	in va	rious	annex	are and			
appendic	es. Appli	cation of Bye-laws like structural safety, fire safety	y, earthquake safet	ty, ba	iseme	nt, elec	ctricity,			
water, an	nd commu	inication lines in various building types.								
UNIT –	IV I	NTRODUCTION TO CODES OF PRACTICE				9 Perio	ods			
Introduct	tion to va	arious building codes in professional practice - Co	odes, regulations t	to pro	otect	public	health,			
safety an	d welfare	- Codes, regulations to ensure compliance with the	e local authority.							
UNIT –	V A	PPLICATION OF CODES OF PRACTICE	7			9 Perio	ods			
Applicati	ions of	various codes as per various building types. B	ureau of Indian	Stan	dards	, Euro	code –			
Introduct	tion to otl	ner international codes.								
Contact	Periods:									
Lecture:	: 45 Perio	ods Tutorial: 0 Periods Practical: 0 P	Periods Tota	al: 45	5 Peri	ods				
		A R	3							
]	REFERE	INCES :	<u><u>ä</u></u>							
1 "A	ational E	Building Code of India 2016 – SP 7", NBC 2016, B	Sureau of Indian St	anda	rds.					
2 "M	<i>Iodel Bu</i>	ilding Bye-Laws (MBBL) – 2016", Town and Cou	ntry Planning Org	ganize	ation,	Minisi	ry of			
Ho	ousing and	d Urban Affairs, Government of India.	2015							
3 "	nified Bi	uilding Bye-laws for Delhi 2016", Nabhi Publicatio	ons, 2017.							
4 Mu	ukesh <i>Mi</i>	ttal, "Building Bye Laws", Graphicart publishers, .	Jaipur, 2013.							
COUR						D1				
COURSE OUTCOMES: Bloom's							1'S			
	1					laxono	my			
Upon completion of the course, the students will be able to: Mapped							ed			
	Apply t	ne building bye-laws in planning, design and constr	uction works.			K3				
CO2	Familia	rize with the role of various statutory bodies.				K2				
CO3	Execute	safety related work practices in the construction se	ctor.			K3				
CO4	4 Ensure compliance with the rules and regulations in design and construction K3									

Perform design and construction practices based on national and international

K3

practices.

codal provisions.

CO5

COURSE ARTICULATION MATRIX										
COs/POsPO1PO2PO3PO4PO5PO										
CO1	1	3	1	1	2	3				
CO2	1	3	1	1	2	3				
CO3	1	3	1	1	2	3				
CO4	2	3	1	1	2	3				
CO5	2	3	1	1	2	3				
23SEOE01	2	3	1	1	2	3				
1 - Slight, 2 - Moderate, 3	3 – Substantial									

ASSESSMENT	PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	- 61	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	40	40	20		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	40	40	20	-	-	-	100
ESE	40	40	20	-	-	-	100

23SEOE02	PLANNING OF SMA	ART CITIES				
25520202	(Common to all	Branches)				
PREREQUISITE	S	CATEGORY	L	Т	Р	C
	NIL	OE	3	0	0	3
Course	To have an exposure on planning of smart cities v	with consideration	of the	recen	t chall	enges
Objectives	and to address the importance of sustainable develo	opment of urban ar	ea.			
UNIT – I	SMART CITIES DEVELOPMENT	POTENTIALS	AND		0 Dawi	oda
	CHALLENGES				9 Peri	bus
Perspectives of Sm	nart Cities: Introduction and Overview - Implementa	ation Challenges -	Metho	lolog	gical is	sues -
Spatial distribution	n of startup cities - Re imagining postindustrial	cities - Impleme	entatior	Ch	allenge	es for
Establishing Smart	Urban Information and Knowledge Management S	ystem.				
UNIT – II	SUSTAINABLE URBAN PLANNING				9 Peri	ods
Optimising Green	Spaces for Sustainable Urban Planning - 3D City M	odels for Extractin	ıg Urba	n En	vironn	nental
Quality Indicators	- Assessing the Rainwater Harvesting Potential	- The Strategic R	ole of	Gree	en Spa	aces -
Monitoring Urban	Expansion.					
UNIT – III	ENERGY MANAGEMENT AND SUSTAINAB	LE DEVELOPM	ENT		9 Peri	ods
Alternatives for I	Energy Stressed Cities - Social Acceptability of	Energy - Efficient	ent Li	ghtin	g - E	nergy
Management - Url	ban Dynamics and Resource Consumption - Issues	and Challenges of	f Susta	inabl	e Tou	rism -
Green Buildings: H	Eco-friendly Technique for Modern Cities.)				
UNIT – IV	MULTIFARIOUS MANAGEMENT FOR SMA	RT CITIES			9 Peri	ods
Assessment of Do	mestic Water Use Practices - Issue of Governance	in Urban Water S	Supply	- As	sessm	ent of
Water Consumption	on at Urban Household Level - Water Sustainabi	ility - Socio-econo	omic D	etern	ninant	s and
Reproductive Heal	thcare System - Problems and Development of Slum	ns.				
UNIT – V	INTELLIGENT TRANSPORT SYSTEM				9 Peri	ods
Introduction to Int	elligent Transport Systems (ITS) - The Range of I'	TS Applications -1	Networ	k Op	otimiza	tion -
Sensing Traffic us	sing Virtual Detectors - Vehicle Routing and Perso	onal route informa	tion -	The	Smart	Car -
Commercial Routi	ing and Delivery - Electronic Toll Collection - T	he Smart Card - 1	Dynam	ic A	ssignn	nent -
Traffic Enforceme	nt. Urban Mobility and Economic Development.	5				
Contact Periods:	The Design of the					
Lecture: 45 Peri	ods Tutorial: 0 Periods Practical: 0 Peri	ods Total: 4	5 Perio	ds		

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva", 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems
	And Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Indicate the potential challenges in smart city development.	K2
CO2	Select the different tools for sustainable urban planning.	K3
CO3	Choose appropriate energy conservation system for smart cities.	K3
CO4	Identify the proper method of water management system.	K3

COURSE ARTICU	COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	2	3	1	1			
CO2	1	1	1	3	2	1			
CO3	1	1	-	2	2	1			
CO4	1	-	1	2	1	1			
CO5	1	-	1	3	1	-			
23SEOE02	1	1	2	3	2	1			
1 - Slight, 2 - Moder	rate, 3 – Sub	stantial							

ASSESSMENT P	PATTERN – THEO	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	45	30	- 9	-	-	100
CAT2	25	45	30	0 -	-	-	100
Individual	15	40	45	-	-	-	100
Assessment 1 /				7			
Case Study 1/			//				
Seminar 1 /							
Project1							
Individual	10	45	45	-	-	-	100
Assessment 2 /		A R		3			
Case Study 2/		A LANG		慶			
Seminar 2 /							
Project 2			COSE PUR				
ESE	20	40	40	-	-	-	100

23SEOE03		GREEN BUILDING							
		(Common to	o all Branches)		1				
PREREQUISITE	ES		CATEGORY	L	T	P	C		
		NIL	OE	3	0	0	3		
Course	То	introduce the different concepts of energy	efficient buildings	s, ind	oor e	environ	mental		
Objectives	qua	lity management, green buildings and its desig	n.						
UNIT – I	INT	TRODUCTION				9 Peri	ods		
Life cycle impact	ts of	f materials and products - sustainable desig	gn concepts – strat	tegies	of d	esign	for the		
Environment -The	e sur	-earth relationship and the energy balance or	n the earth's surfac	e, clin	nate,	wind -	- Solar		
radiation and solar	r ten	perature - Sun shading and solar radiation on	surfaces - Energy	impac	t on	the sha	pe and		
orientation of build	ding	s – Thermal properties of building materials.							
UNIT – II	EN	ERGY EFFICIENT BUILDINGS				9 Peri	ods		
Passive cooling an	nd d	ay lighting – Active solar and photovoltaic- I	Building energy and	alysis	meth	ods- B	uilding		
energy simulation	n-B	uilding energy efficiency standards-Lighting	g system design- I	Lightir	ng ec	onomi	cs and		
aesthetics- Impact	s of	lighting efficiency – Energy audit and energy	targeting- Technolo	ogical	optic	ons for	energy		
management.									
UNIT – III	INI	DOOR ENVIRONMENTAL QUALITY MA	NAGEMENT			9 Peri	ods		
Psychrometry- Co	mfo	rt conditions- Thermal comfort- Ventilation and	nd air quality-Air c	onditio	oning	requir	ement-		
Visual perception	n- I	llumination requirement- Auditory requirement-	ment- Energy ma	nagen	nent	option	s- Air		
conditioning syste	ms-	Energy conservation in pumps- Fans and blov	vers- Refrigerating	machi	nes-]	Heat re	jection		
equipment- Energy	y eff	icient motors- Insulation.	-						
UNIT – IV	GR	EEN BUILDING CONCEPTS				9 Peri	ods		
Green building co	oncep	ot- Green building rating tools- Leeds and IC	GBC codes. – Mate	erial s	electi	on Em	bodied		
energy- Operating	ener	rgy- Façade systems- Ventilation systems-Tran	nsportation- Water t	reatme	ent sy	stems-	Water		
efficiency- Buildir	ng ec	conomics							
UNIT – V	UNIT - VGREEN BUILDING DESIGN - CASE STUDY9 Periods						ods		
Case studies - Bu	uildi	ng form, orientation and site considerations;	conservation mea	sures;	ener	gy mo	deling;		
heating system and	d fue	l choices; renewable energy systems; material	choices - constructi	ion bu	dget				
Contact Periods :		ar ara the second							
Lecture: 45 Perio	ods	Tutorial: 0 Periods Practical: 0 Per	riods Total: 4	<u>5 Peri</u>	ods				
REFER	EN	CES :							

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green				
	Globes", , Elsevier Science, 2012.				
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010				
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and				
	Delivery", 3rd Edition, 2012				
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.				

COURS	E OUTCOMES:	Bloom's	
		Taxonomy	
Upon completion of the course, the students will be able to:			
CO1	Apply the concepts of sustainable design in building construction.	К3	
CO2	Execute green building techniques including energy efficiency management in the	K3	
	building design.		
CO3	Establish indoor environmental quality in green building.	K3	
CO4	Perform the green building rating using various tools.	К3	
CO5	Create drawings and models of green buildings.	K3	

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	2	3	3	3				
CO2	3	3	2	3	3	3				
CO3	2	2	2	2	3	3				
CO4	2	3	1	3	3	3				
CO5	3	3	1	3	3	3				
23SEOE03	3	3	2	3	3	3				
1 – Slight, 2 – Moder	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	· -	-	-	100
Individual	40	40	20	<u> </u>	-	-	100
Assessment 1 /							
Case Study 1/				7/			
Seminar 1 /				1			
Project1							
Individual	40	40	20	-	-	-	100
Assessment 2 /		8					
Case Study 2/		A B		A			
Seminar 2 /		200 may 1100		688			
Project 2		Contractor	1				
ESE	40	40	20		-	-	100

23EEOE04	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT (Common to all Branches)						
PREREQUIS	ITES	CATEGORY	L	Т	P	С	
	NIL	OE	3	0	0	3	
Course	To impart knowledge on occupational health l	nazards, safety n	neasure	es at v	work	place,	
Objectives	accident prevention, safety management and safety	measures in indu	stries.				
UNIT – I	INIT – I OCCUPATIONAL HEALTH HAZARDS						
Occupation, 1	Health and Hazards - Safety Health and Manag	gement: Occupat	ional	Health	Haz	ards -	
Ergonomics -	Importance of Industrial Safety - Radiation and	Industrial Hazar	ds: Ty	pes a	nd ef	fects -	
Vibration - In	dustrial Hygiene - Different air pollutants in indust	tries and their eff	ects - I	Electri	cal, fi	re and	
Other Hazards							
UNIT – II	SAFETY AT WORKPLACE			9 Pe	eriods	š	
Safety at Wor	kplace - Safe use of Machines and Tools: Safety in	use of different	types o	f unit	opera	tions -	
Ergonomics of	f Machine guarding - working in different workplace	es - Operation, Ins	spection	n and 1	nainte	enance	
- Housekeepin	g, Industrial lighting, Vibration and Noise.						
UNIT – III	ACCIDENT PREVENTION			9 Pe	eriods	5	
Accident Prev	rention Techniques - Principles of accident preven	tion - Hazard ide	entifica	tion a	nd an	alysis,	
Event tree ana	lysis, Hazop studies, Job safety analysis - Theories a	and Principles of A	Accidei	nt caus	sation	- Fırst	
Aid: Body stru	acture and functions - Fracture and Dislocation, Injui	ries to various boc	ly parts	6. 0 D	• •		
UNIT - IV	SAFETY MANAGEMENT			9 Pe	eriods	\$	
Safety Manag	ement System and Law - Legislative measures in	i Industrial Safet	y - Oc		onal	safety,	
Health and En	vironment Management, Bureau of Indian Standards	s on Health and S	arety, I	5 1448	s9 sta	ndards	
- USHA, Proc	CENEDAL SAFETY MEASURES	A standards		0.D	mind		
$\frac{UNII - V}{Dlamt I array t f}$	GENERAL SAFETY MEASURES		ting a	9 P(erious) a milat	
plant studies	Housekeeping Accidents Poloted with Maintener	zaruous units, rigi	Worl	z Dorr	it Su	3, prior	
Significance of	of Documentation Case studies involving implem	entation of health	- worr	ofety	ni Sy measi	stem -	
Industries							
Industries.							
Lecture: 45 Periods Tutorial: A Periods Practical: A Pariods Total: 45 Pariods							
Lecture. 45 remous rutorial, o remous rractical, o remous rotal, 45 remous							
REFERENCES							
1 "Physical	Hazards of the Workplace", Barry Spurlock. CRC I	Press, 2017.				ך	
2 "Handboo	ok of Occupational Safety and Health", S. Z. Mansa	lorf, Wiley Public	ations, 2	2019		1	
2 "0 - 6 - 4 - 1	$\frac{1}{2} = \frac{1}{2} = \frac{1}$						

3 "Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4 "Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao, PharmaMed Press, 1st edition, 2021.

COUR	COURSE OUTCOMES:		
Upon c	Mapped		
CO1	Identify the occupational health hazards.	K3	
CO2	Execute various safety measures at workplace.	K3	
CO3	Analyze and execute accident prevention techniques.	K3	
CO4	Implement safety management as per various standards.	K3	
CO5	Develop awareness on safety measures in Industries.	K3	

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	2	2	2	3	2
CO2	2	2	2	1	2	2
CO3	2	3	2	1	2	2
CO4	1	1	1	2	2	2
CO5	1	1	1	1	1	2

23EEOE04	1	2	2	1	2	2
1 – Slight, 2 – Moderate, 3 – Sub	stantial					

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	35	20	10	5	5	100			
CAT2	25	35	20	10	5	5	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100			
ESE	25	35	20	10	5	5	100			

23EEO	DE05	CLIMATE CHANGE AND ADAPTATION (Common to all Branches)							
PREREOUI	SITES		CATEGORY	L	Т	P	С		
L =		NIL	OE	3	0	0	3		
Course	To unders	tand the Earth's climate system, changes and	their effects on th	he eart	h, ide	ntifyi	ng the		
Objectives	impacts, a	daptation, mitigation of climate change and for	r gaining knowled	ge on	clean	techn	ology,		
	carbon tra	ding and alternate energy sources.							
UNIT – I	EARTH'S	S CLIMATE SYSTEM			9) Peri	ods		
Introduction-	Climate in 1	the spotlight - The Earth's Climate Machine – Cl	imate Classificatio	n- Glo	bal W	ind Sv	vstems		
– Trade Wir	nds and the	Hadley Cell – The Westerlies – Cloud Forn	nation and Monso	on Ra	ins –	Storn	is and		
Hurricanes -	The Hydro	logical Cycle – Global Ocean Circulation – El N	Nino and its Effect	- Sola	r Radi	ation	– The		
Earth's Natur	al Green Ho	ouse Effect – Green House Gases and Global Wa	rming – Carbon C	ycle.					
UNIT – II	OBSERV	ED CHANGES AND ITS CAUSES			9) Peri	ods		
Observation	of Climate	Change – Changes in patterns of temperature,	precipitation and s	ea leve	el rise	– Ob	served		
effects of Cli	mate Chang	ges – Patterns of Large-Scale Variability –Drive	rs of Climate Char	ige – C	limate	e Sens	sitivity		
and Feedback	ks – The M	ontreal Protocol –UNFCCC – IPCC – Evidences	of Changes in Cli	mate a	nd En	vironi	nent –		
on a Global S	Scale and in	India – climate change modeling.	C						
UNIT – III	IMPACT	S OF CLIMATE CHANGE			9) Peri	ods		
Impacts of C	limate Chai	nge on various sectors – Agriculture, Forestry an	nd Ecosystem - W	ater Re	esourc	es – F	Iuman		
Health – Ind	ustry, Settl	ement and Society - Methods and Scenarios -	Projected Impacts	for Di	fferen	t Reg	ions –		
Uncertainties	s in the Proj	ected Impacts of Climate Change – Risk of Irreve	ersible Changes.						
UNIT – IV	CLIMAT	E CHANGE ADAPTATION AND MITIGAT	TION MEASURES	5	9) Peri	ods		
Adaptation S	Strategy/Opt	ions in various sectors - Water - Agriculture	Infrastructure a	nd Set	tlemei	nt inc	luding		
coastal zones	s – Human	Health - Tourism - Transport - Energy - Key	y Mitigation Tech	nologie	es and	Pract	tices –		
Energy Supp	ly – Transp	ort – Buildings – Industry –Agriculture – Forest	ry - Carbon seques	tration	– Car	bon c	apture		
and storage	(CCS) - V	Vaste (MSW & Bio waste, Biomedical, Indus	strial waste – Inte	ernatio	nal ar	nd Re	gional		
cooperation.									
UNIT - VCLEAN TECHNOLOGY AND ENERGY9 Periods									
Clean Development Mechanism - Carbon Trading - examples of future Clean Technology -Biodiesel - Natural									
Compost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Biofuels– Solar Energy – Wind – Hydroelectric									
Power – Mitigation Efforts in India and Adaptation funding.									
Contact Per	iods:	100 DG 6000							
Lecture: 45	Periods	Tutorial: 0Periods Practical: 0 Period	ds Total:4	5 Perio	ods				
DEFE	DENCES								

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report – Working Group I Report, "The physical sciencebasis", 2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability",
	2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate Change,
	Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Classify the Earths climatic system and factors causing climate change and global	K2
	warming.	
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise and	K2
	Observed effects of Climate Changes	
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible changes.	K3
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	K3

CO5 Discover clean technologies and alternate energy source for sustainable growth.

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	2	3	2	3	1				
CO2	3	2	2	2	3	2				
CO3	2	2	2	2	3	2				
CO4	3	2	2	2	2	2				
CO5	3	3	2	3	3	3				
23EEOE05 3 3 3 3 3 3										
1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	30	35	10	-	-	100			
CAT2	25	30	35	10	-	-	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	-	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100			
ESE	25	30	35	10	-	-	100			

K3

23EEOE06

WASTE TO ENERGY (Common to all Branches)

	(Common to an Branches)							
PREREQUISI	TES	CATEGORY	L	Т	P	С		
NIL OE 3 0 0 3								
Course	Durse To classify waste as fuel, introduce conversion devices, gain knowledge about Biomass							
Objectives	Pyrolysis, demonstrate methods, factors for biomass	gasification, and	acqu	ire k	now	ledge		
-	about biogas and its development in India.							
UNIT – I	INTRODUCTION			9 P	'erio	ds		
Introduction to	Energy from Waste: Classification of waste as fuel -	Agro based, Forest	t resi	due,	Indu	ıstrial		
waste - MSW -	Conversion devices - Incinerators, Gasifiers, Digestors	•						
UNIT – II	BIOMASS PYROLYSIS			9 P	erio	ds		
Biomass Pyroly	sis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis -	Manufacture of cha	arcoa	ıl — I	Meth	ods –		
Yields and App	lications - Manufacture of Pyrolytic oils and gases, Yie	lds and Application	s.					
UNIT – III	BIOMASS GASIFICATION			9 P	erio	ds		
Gasifiers – Fiz	xed bed system – Downdraft and updraft gasifiers	- Fluidized bed g	gasifi	ers	- De	esign,		
Construction ar	nd Operation – Gasifier burner arrangement for thermal	heating – Gasifier H	Engir	ne ar	range	ement		
and electrical p	ower – Equilibrium and Kinetic Considerations in gasifi	er operation.			_			
UNIT – IV	BIOMASS COMBUSTION			9 P	erio	ds		
Biomass Comb	oustion - Biomass Stoves - Improved Chullahs, typ	bes, some exotic d	lesig	ns, l	Fixed	1 bed		
combustors, ty	pes - Inclined grate combustors - Fluidized bed c	combustors, design	, coi	nstru	ctior	1 and		
operation of all	the above biomass combustors.							
UNIT – V	BIOENERGY SYSTEM			9 P	erio	ds		
Biogas: Proper	ties of biogas (Calorific value and composition) - Bio	gas plant technolog	gy an	d sta	atus ·	– Bio		
energy system	- Design and constructional features - Biomass resour	rces and their class	ificat	ion	- Bic	omass		
conversion proc	cesses - Thermo chemical conversion - Direct combust	tion – biomass gasi	ficati	ion –	- pyr	olysis		
and liquefaction – biochemical conversion – anaerobic digestion – Types of biogas plants – Applications –								
Alcohol production from biomass - Bio diesel production - Urban waste to energy conversion - Biomass								
energy program	nme in India.							
Contact Period	ls:							
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Pe	eriods Total: 4	5 Pe	riod	S			
REFERENCI	ES:							

1	<i>"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P Jayaram Reddy, Taylor and Francis Publications, 2016.</i>
2	<i>"Waste – to – Energy: Technologies and project Implementations",</i> Marc J Rogoff, Francois Screve, ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles" , Brad Hill, NY RESEARCH PRESS Publications, Illustrated Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", PrabirELSEVIER Publication 2010.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	K3
CO3	Demonstrate methods and factors considered for biomass gasification.	K3
CO4	Identify the features of different facilities available for biomass combustion.	K4
CO5	Analyze the potential of different Bioenergy systems with respect to Indian	K2
	condition.	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	3	3	2	3	1			
CO2	3	2	2	2	3	1			
CO3	3	3	2	3	2	1			
CO4	3	2	2	3	3	1			
CO5	2	3	3	3	2	1			
23EEOE06	3	3	3	3	3	1			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	10	20	20	25	15	10	100			
CAT2	10	25	20	10	25	10	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	15	35	50	-	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	10	40	50	-	-	100			
ESE	10	25	25	20	10	10	100			

PREREQUISITES CATEGORY L T PREREQUISITES CATEGORY L T PREREQUISITES CATEGORY L T PREREQUISITES CATEGORY L T PREREQUISITES ODE 3 0 OE 3 0 OE O OE 3 0 OE 3 0 OE O <th colspa<="" th=""><th colspan="10">23GEOE07 ENERGY IN BUILT ENVIRONMENT</th></th>	<th colspan="10">23GEOE07 ENERGY IN BUILT ENVIRONMENT</th>	23GEOE07 ENERGY IN BUILT ENVIRONMENT									
NILOE300Course objectiveTo understand constructional energy requirements of buildings, energy at methods and conservation of energy.UNIT-IINTRODUCTION9Indoor activities and environmental control - Internal and external factors on energy use –Charact of energy use and its management -Macro aspect of energy use in dwellings and its implica Thermal comfort-Ventilation and air quality-Air-conditioning requirement-Visual perce Illumination requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDING9PerThe sun-earth relationship - Climate, wind, solar radiation and temperature - Sun shading an radiation on surfaces-Energy impact on the shape and orientation of buildings–Lighting and day I :Characteristics and estimation, methods of day-lighting–Architectural considerations for day-light UNIT-III9VerENERGY REQUIREMENTS IN BUILDING9VerSteady and unsteady heat transfer through wall and glazed window-Standards for thermal perfor of building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gai Use energy requirements-Status of energy use in buildings-Estimation of energy use in a building. UNIT-IV9ENERGY AUDIT99PerEnergy audit and energy targeting-Technological options for energy management-Natural and ventilation–Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect.9UNIT-VCOOLING IN BUILT ENVIRONMENT9Passive building architecture – Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c<	(2 (
Course Objective To understand constructional energy requirements of buildings, energy at methods and conservation of energy. UNIT-I INTRODUCTION 9 Per Indoor activities and environmental control - Internal and external factors on energy use –Charact of energy use and its management -Macro aspect of energy use in dwellings and its implica Thermal comfort-Ventilation and air quality-Air-conditioning requirement-Visual perce Illumination requirement-Auditory requirement. 9 Per UNIT-II LIGHTING REQUIREMENTS IN BUILDING 9 Per The sun-earth relationship - Climate, wind, solar radiation and temperature - Sun shading an radiation on surfaces-Energy impact on the shape and orientation of buildings–Lighting and day I :Characteristics and estimation, methods of day-lighting–Architectural considerations for day-lighting UNIT-III P Per Steady and unsteady heat transfer through wall and glazed window-Standards for thermal perfo of building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gai Use energy requirements-Status of energy use in buildings-Estimation of energy use in a building. 9 Per Energy audit and energy targeting-Technological options for energy management-Natural and ventilation–Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect. 9 Per UNIT-V COOLING IN BUILT ENVIRONMENT 9 Per Passive building architecture – Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c Zero ener	3) 3									
Objective methods and conservation of energy. UNIT-I INTRODUCTION 9 Per Indoor activities and environmental control - Internal and external factors on energy use –Charact of energy use and its management -Macro aspect of energy use in dwellings and its implica Thermal comfort-Ventilation and air quality-Air-conditioning requirement-Visual perce Illumination requirement-Auditory requirement. IIIGHTING REQUIREMENTS IN BUILDING 9 Per The sun-earth relationship - Climate, wind, solar radiation and temperature - Sun shading an radiation on surfaces-Energy impact on the shape and orientation of buildings–Lighting and day I :Characteristics and estimation, methods of day-lighting–Architectural considerations for day-lighting of building envelope- Evaluation of the overall thermal transfer - Thermal gain and net heat gai 9 Per Steady and unsteady heat transfer through wall and glazed window-Standards for thermal percon of building envelope- Evaluation of the overall thermal transfer - Thermal gain and net heat gai 9 Per UNIT-IV ENERGY AUDIT 9 Per Energy audit and energy targeting-Technological options for energy management-Natural and ventilation–Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect. 9 Per UNIT-V COOLING IN BUILT ENVIRONMENT 9 Per Passive building architecture – Radiative cooling-Solar cooling techniques - Solar de dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c Zer	ıdit	udit									
UNIT-IINTRODUCTION9 PerIndoor activities and environmental control - Internal and external factors on energy use –Charact of energy use and its management -Macro aspect of energy use in dwellings and its implica Thermal comfort-Ventilation and air quality-Air-conditioning requirement-Visual perce Illumination requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDING9 PerThe sun-earth relationship - Climate, wind, solar radiation and temperature - Sun shading an radiation on surfaces-Energy impact on the shape and orientation of buildings–Lighting and day I :Characteristics and estimation, methods of day-lighting–Architectural considerations for day-light UNIT-II 9 PerSteady and unsteady heat transfer through wall and glazed window-Standards for thermal perfor of building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gai Use energy requirements-Status of energy use in buildings-Estimation of energy use in a building.9 PerEnergy audit and energy targeting-Technological options for energy management-Natural and ventilation–Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect.9 PerUNIT-VCOOLING IN BUILT ENVIRONMENT9 PerPassive building architecture – Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c Zero energy building concept.9 Per	Objective methods and conservation of energy.										
Indoor activities and environmental control - Internal and external factors on energy use –Charact of energy use and its management -Macro aspect of energy use in dwellings and its implica Thermal comfort-Ventilation and air quality-Air-conditioning requirement-Visual perce Illumination requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDING9 PerThe sun-earth relationship - Climate, wind, solar radiation and temperature - Sun shading an 	UNIT-I INTRODUCTION 9 Periods										
of energy use and its management -Macro aspect of energy use in dwellings and its implica Thermal comfort-Ventilation and air quality-Air-conditioning requirement-Visual perce Illumination requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDING9 PerThe sun-earth relationship - Climate, wind, solar radiation and temperature - Sun shading an radiation on surfaces-Energy impact on the shape and orientation of buildings-Lighting and day I :Characteristics and estimation, methods of day-lighting-Architectural considerations for day-light9 PerUNIT-IIIENERGY REQUIREMENTS IN BUILDING9 PerSteady and unsteady heat transfer through wall and glazed window-Standards for thermal perfo of building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gai Use energy requirements-Status of energy use in buildings-Estimation of energy use in a building.UNIT-IVENERGY AUDIT9 PerEnergy audit and energy targeting-Technological options for energy management-Natural and ventilation-Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect.9 PerPassive building architecture - Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort-Evaporative c Zero energy building concept.9 Per	erist	terist									
Thermal comfort-Ventilation and air quality-Air-conditioning requirement-Visual percentillumination requirement-Auditory requirement.UNIT-IILIGHTING REQUIREMENTS IN BUILDING9 PerThe sun-earth relationship - Climate, wind, solar radiation and temperature - Sun shading an radiation on surfaces-Energy impact on the shape and orientation of buildings-Lighting and day I :Characteristics and estimation, methods of day-lighting-Architectural considerations for day-light UNIT-III ENERGY REQUIREMENTS IN BUILDING9 PerSteady and unsteady heat transfer through wall and glazed window-Standards for thermal perfo of building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gai Use energy requirements-Status of energy use in buildings-Estimation of energy use in a building.9 PerEnergy audit and energy targeting-Technological options for energy management-Natural and ventilation-Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect.9 PerPassive building architecture - Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort-Evaporative c Zero energy building concept.9 Per	tions	ations									
Illumination requirement-Auditory requirement. 9 Per UNIT-II LIGHTING REQUIREMENTS IN BUILDING 9 Per The sun-earth relationship - Climate, wind, solar radiation and temperature - Sun shading an radiation on surfaces-Energy impact on the shape and orientation of buildings–Lighting and day I characteristics and estimation, methods of day-lighting–Architectural considerations for day-light 9 Per UNIT-III ENERGY REQUIREMENTS IN BUILDING 9 Per Steady and unsteady heat transfer through wall and glazed window-Standards for thermal perfor of building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gai 9 Per UNIT-IV ENERGY AUDIT 9 Per Energy audit and energy targeting-Technological options for energy management-Natural and ventilation–Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect. 9 Per UNIT-V COOLING IN BUILT ENVIRONMENT 9 Per Passive building architecture – Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c Zero energy building concept.	eptic	ceptic									
UNIT-IILIGHTING REQUIREMENTS IN BUILDING9 PerThe sun-earth relationship - Climate, wind, solar radiation and temperature - Sun shading an radiation on surfaces-Energy impact on the shape and orientation of buildings-Lighting and day I :Characteristics and estimation, methods of day-lighting-Architectural considerations for day-light UNIT-III Second Seco	-	-									
The sun-earth relationship - Climate, wind, solar radiation and temperature - Sun shading an radiation on surfaces-Energy impact on the shape and orientation of buildings–Lighting and day l :Characteristics and estimation, methods of day-lighting–Architectural considerations for day-lightUNIT–IIIENERGY REQUIREMENTS IN BUILDING9 PerSteady and unsteady heat transfer through wall and glazed window-Standards for thermal perfo of building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gai Use energy requirements-Status of energy use in buildings-Estimation of energy use in a building.9 PerUNIT–IVENERGY AUDIT9 PerEnergy audit and energy targeting-Technological options for energy management-Natural and ventilation–Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect.9 PerUNIT–VCOOLING IN BUILT ENVIRONMENT9 PerPassive building architecture – Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c Zero energy building concept.Solar	riods	riods									
radiation on surfaces-Energy impact on the shape and orientation of buildings–Lighting and day l:Characteristics and estimation, methods of day-lighting–Architectural considerations for day-lightingUNIT-IIIENERGY REQUIREMENTS IN BUILDING9 PerSteady and unsteady heat transfer through wall and glazed window-Standards for thermal perforof building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gaiUse energy requirements-Status of energy use in buildings-Estimation of energy use in a building.9 PerEnergy audit and energy targeting-Technological options for energy management-Natural and ventilation–Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect.9 PerNIT-VCOOLING IN BUILT ENVIRONMENT9 PerPassive building architecture – Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c Zero energy building concept.Solar	d so	nd so									
:Characteristics and estimation, methods of day-lighting–Architectural considerations for day-lightUNIT–IIIENERGY REQUIREMENTS IN BUILDING9 PerSteady and unsteady heat transfer through wall and glazed window-Standards for thermal perfoof building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gaiUse energy requirements-Status of energy use in buildings-Estimation of energy use in a building.9 PerUNIT–IVENERGY AUDIT9 PerEnergy audit and energy targeting-Technological options for energy management-Natural and ventilation–Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect.9 PerUNIT–VCOOLING IN BUILT ENVIRONMENT9 PerPassive building architecture – Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c Zero energy building concept.9 Per	ighti	lighti									
UNIT-IIIENERGY REQUIREMENTS IN BUILDING9 PerSteady and unsteady heat transfer through wall and glazed window-Standards for thermal perfoof building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gainUse energy requirements-Status of energy use in buildings-Estimation of energy use in a building.UNIT-IVENERGY AUDIT9 PerEnergy audit and energy targeting-Technological options for energy management-Natural and ventilation-Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect.9 PerUNIT-VCOOLING IN BUILT ENVIRONMENT9 PerPassive building architecture – Radiative cooling-Solar cooling techniques - Solar dehumidification-Natural and active cooling with adaptive comfort-Evaporative cZero energy building concept.	ing.	iting.									
Steady and unsteady heat transfer through wall and glazed window-Standards for thermal perfoof building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gaiUse energy requirements-Status of energy use in buildings-Estimation of energy use in a building.UNIT-IVENERGY AUDITEnergy audit and energy targeting-Technological options for energy management-Natural and ventilation-Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect.UNIT-VCOOLING IN BUILT ENVIRONMENTPassive building architecture – Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort-Evaporative c Zero energy building concept.	riods	riods									
of building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gain use energy requirements-Status of energy use in buildings-Estimation of energy use in a building.UNIT-IVENERGY AUDIT9 PerEnergy audit and energy targeting-Technological options for energy management-Natural and ventilation-Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect.9 PerUNIT-VCOOLING IN BUILT ENVIRONMENT9 PerPassive building architecture - Radiative cooling-Solar cooling techniques - Solar dehumidification for ventilation-Natural and active cooling with adaptive comfort-Evaporative cZero energy building concept.1000000000000000000000000000000000000	rman	ormar									
Use energy requirements-Status of energy use in buildings-Estimation of energy use in a building. UNIT-IV ENERGY AUDIT 9 Per Energy audit and energy targeting-Technological options for energy management-Natural and ventilation–Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect. UNIT-V COOLING IN BUILT ENVIRONMENT 9 Per Passive building architecture – Radiative cooling-Solar cooling techniques - Solar dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c Zero energy building concept. Solar dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c	in-Er	ain-Er									
UNIT-IVENERGY AUDIT9 PerEnergy audit and energy targeting-Technological options for energy management-Natural and ventilation-Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect.UNIT-VCOOLING IN BUILT ENVIRONMENT9 PerPassive building architecture – Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort-Evaporative c Zero energy building concept.9 Per		5.									
Energy audit and energy targeting-Technological options for energy management-Natural and ventilation–Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect. UNIT-V COOLING IN BUILT ENVIRONMENT 9 Per Passive building architecture – Radiative cooling-Solar cooling techniques - Solar dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c Zero energy building concept. 9	riods	riods									
ventilation–Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to effect. UNIT-V COOLING IN BUILT ENVIRONMENT 9 Per Passive building architecture – Radiative cooling-Solar cooling techniques - Solar dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c Zero energy building concept. 9 Per	force	force									
effect. UNIT-V COOLING IN BUILT ENVIRONMENT 9 Per Passive building architecture – Radiative cooling-Solar cooling techniques - Solar dehumidification for ventilation-Natural and active cooling with adaptive comfort-Evaporative c Zero energy building concept.	ventilation-Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to Stack										
UNIT-VCOOLING IN BUILT ENVIRONMENT9 PerPassive building architecture – Radiative cooling-Solar cooling techniques - Solar dehumidification for ventilation-Natural and active cooling with adaptive comfort-Evaporative c9 PerZero energy building concept.2000 - 20000 - 2000	effect.										
Passive building architecture – Radiative cooling-Solar cooling techniques - Solar d dehumidification for ventilation-Natural and active cooling with adaptive comfort–Evaporative c Zero energy building concept.	riods	riods									
dehumidification for ventilation-Natural and active cooling with adaptive comfort-Evaporative c Zero energy building concept.	esico	desico									
Zero energy building concept.	oolin	coolin									
Contact Periods:											
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods											
BOUCC S											

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill,
	2000.
2	S.M.Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinois ,USA.

COUR	Bloom's	
		Taxonomy
Upon completion of the course, the students will be able to:		Mapped
C01	Understand energy and its usage	K2
CO2	Know lighting to be given to a building	K1
CO3	Analyse the energy requirements in a building	K3
CO4	Apply the energy audit concepts.	K3

CO5 Study architectural specifications of a building

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	-	3	1	2	1		
CO2	2	-	3	1	2	1		
CO3	2	-	3	1	2	1		
CO4	2	-	3	1	2	1		
CO5	2	-	3	1	2	1		
23GEOE07	2	-	3	1	2	1		
1–Slight, 2–Moderate, 3–Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Rememberi	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	ng (K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT 1	40	40	20	-	-	-	100		
CAT 2	40	40	20	-	-	-	100		
Individual		1 871	10 months	119200					
Assessment 1 /		(V)	- Shunnurle	200					
Case Study 1/	50	50		-	-	-	100		
Seminar 1 /				5 77					
Project1									
Individual			AND Y						
Assessment 2 /									
Case Study 2/	50	50		1	-	-	100		
Seminar 2 /		A		A					
Project 2		1238	1100						
ESE	40	40	20	Our D	-	-	100		
		CO.	12.00 B 550	T					

K1

EART	TH AND ITS ENVIRON	MENT				
28	(Common to all Branch	es) FEGORY	L	Т	Р	<u> </u>
		OE	3	0	0	3
To know about the planet earth, the	he geosystems and the res	sources like	gro	ound	wat	er and
air and to learn about the Environment	mental Assessment and su	istainability	<i>.</i>			
EVOLUTION OF EARTH				9	Perio	ods
h as habitable planet-Evolution of	of continents-oceans and	l landforms	s-ev	olut	ion o	of life
al times - Exploring the earth's	interior - thermal and cl	hemical str	uctu	ire -	- ori	gin of
nagnetic fields.						
GEOSYSTEMS				9	Perio	ods
orking and shaping the earth - In	ternal geosystems – earth	nquakes – v	olca	anoe	es -cl	imatic
h time - Basic Geological processe	es - igneous, sedimentation	n – metamo	rph	ic p	roces	ses.
GROUND WATER GEO	LOGY			9	Perio	ods
d water occurrence -recharge proc	cess-Ground water mover	ment-Groui	nd v	vate	r dise	charge
drology – Ground water as a resou	rce - Natural ground wat	er quality a	nd	cont	amin	ation-
naging ground water systems.						
ENVIRONMENTAL ASS	SESMENT AND SUSTAI	NABILITY	7	9	Perio	ods
sustainable development - popu	lation and urbanization	- toxic ch	emi	cals	and	finite
scarcity and conflict - Environme	ntal risk - risk assessmen	t and chara	cter	izati	ion –	hazard
ure assessment.						
AIR AND SOLIDWAST	E			9	Perio	ods
ngineering-introduction to atmo	ospheric composition-b	ehaviour-at	mos	sphe	eric	photo
aste management-characterization	n-management concepts.					
ds Tutorial: 0 Periods P	Practical: 0 Periods	Total	45	Per	riods	
nger and Thomas H.Jordan, "Und	erstanding Earth", Sixth	Edition, W	.H.I	Free	man,	2010.
0	General Contraction of the second sec	,				
"Cround mator in the Furi	mante An intraduction"	Dlack wall I	0.1.1	iali	20 20	07
	S IIL To know about the planet earth, th air and to learn about the Environm EVOLUTION OF EARTH h as habitable planet-Evolution of al times - Exploring the earth's nagnetic fields. GEOSYSTEMS vorking and shaping the earth - In h time - Basic Geological processe GROUND WATER GEO d water occurrence –recharge prod drology – Ground water as a resounaging ground water systems. ENVIRONMENTAL ASS sustainable development - population sustainable development - population water management–characterization ods Tutorial: 0 Periods Particular Base Periods	(Common to all Branch S CAT IIL To know about the planet earth, the geosystems and the resair and to learn about the Environmental Assessment and su EVOLUTION OF EARTH h as habitable planet-Evolution of continents-oceans and al times - Exploring the earth's interior - thermal and cleanagnetic fields. GEOSYSTEMS vorking and shaping the earth - Internal geosystems – earth h time - Basic Geological processes - igneous, sedimentation GROUND WATER GEOLOGY d water occurrence – recharge process-Ground water mover drology – Ground water as a resource - Natural ground wate naging ground water systems. ENVIRONMENTAL ASSESMENT AND SUSTAI sustainable development - population and urbanization scarcity and conflict - Environmental risk - risk assessmen ure assessment. AIR AND SOLIDWASTE engineering-introduction to atmospheric composition–b vaste management–characterization-management concepts. ods Tutorial: 0 Periods Practical: 0 Periods Practical: 0 Periods	(Common to all Branches) S CATEGORY IL OE To know about the planet earth, the geosystems and the resources like air and to learn about the Environmental Assessment and sustainability EVOLUTION OF EARTH h as habitable planet-Evolution of continents-oceans and landforms al times - Exploring the earth's interior - thermal and chemical str magnetic fields. GEOSYSTEMS vorking and shaping the earth - Internal geosystems – earthquakes – v h time - Basic Geological processes - igneous, sedimentation – metamo GROUND WATER GEOLOGY d water occurrence –recharge process-Ground water movement-Grour drology – Ground water as a resource - Natural ground water quality a maging ground water systems. ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY sustainable development - population and urbanization - toxic ch scarcity and conflict - Environmental risk - risk assessment and characure assessment. AIR AND SOLIDWASTE ingineering-introduction to atmospheric composition-behaviour-attraste management-characterization-management concepts. Total: ods Tutorial: 0 Periods Practical: 0 Periods Total:	(Common to all Branches) S CATEGORY L IL OE 3 To know about the planet earth, the geosystems and the resources like groair and to learn about the Environmental Assessment and sustainability. EVOLUTION OF EARTH h as habitable planet-Evolution of continents-oceans and landforms-evalt times - Exploring the earth's interior - thermal and chemical structure magnetic fields. Image: CeoSySTEMS ororking and shaping the earth - Internal geosystems – earthquakes – volcath time - Basic Geological processes - igneous, sedimentation – metamorph GROUND WATER GEOLOGY Image: CeoSySTEMS other - Basic Geological processes - igneous, sedimentation – metamorph GROUND WATER GEOLOGY Image: CeoSystems - earthquakes – volcath time - Basic Geological processes - igneous, sedimentation – metamorph GROUND WATER GEOLOGY d water occurrence – recharge process-Ground water movement-Ground vertice drougy – Ground water as a resource - Natural ground water quality and character ure assessment. Imaging ground water systems. ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY sustainable development - population and urbanization - toxic chemi scarcity and conflict - Environmental risk - risk assessment and character ure assessment. AIR AND SOLIDWASTE Imaging erind-characterization-management concepts. ads Tutorial: 0 Periods Practical: 0 Periods Total: 45	(Common to all Branches) S CATEGORY L T IIL OE 3 0 To know about the planet earth, the geosystems and the resources like ground air and to learn about the Environmental Assessment and sustainability. 9 EVOLUTION OF EARTH 9 9 h as habitable planet-Evolution of continents-oceans and landforms-evolut al times - Exploring the earth's interior - thermal and chemical structure magnetic fields. 9 GEOSYSTEMS 9 vorking and shaping the earth - Internal geosystems – earthquakes – volcance the time - Basic Geological processes - igneous, sedimentation – metamorphic pic GROUND WATER GEOLOGY 9 d water occurrence – recharge process-Ground water movement-Ground water drology – Ground water as a resource - Natural ground water quality and continaging ground water systems. 9 ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY 9 sustainable development - population and urbanization - toxic chemicals scarcity and conflict - Environmental risk - risk assessment and characterizati ure assessment. 9 Mark AND SOLIDWASTE 9 mgineering-introduction to atmospheric composition–behaviour-atmospheraster management–characterization-management concepts. Total: 45 Permise ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Permise	(Common to all Branches) S CATEGORY L T P OE 3 0 To know about the planet earth, the geosystems and the resources like ground wat air and to learn about the Environmental Assessment and sustainability. EVOLUTION OF EARTH 9 Periot h as habitable planet-Evolution of continents-oceans and landforms-evolution of al times - Exploring the earth's interior - thermal and chemical structure - orignagnetic fields. 9 Periot GEOSYSTEMS 9 Periot vorking and shaping the earth - Internal geosystems – earthquakes – volcances -cl htime - Basic Geological processes - igneous, sedimentation – metamorphic process GROUND WATER GEOLOGY 9 Periot d water occurrence – recharge process-Ground water movement-Ground water disc drology – Ground water as a resource - Natural ground water quality and contamin maging ground water systems. ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY 9 Periot sustainable development - population and urbanization - toxic chemicals and sustainable development - population and urbanization - toxic chemicals and sustainable development - population and urbanization - toxic chemicals and scarcity and conflict - Environmental risk - ris

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and the	K2
	Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground water	K3
	and the modeling systems.	
CO4	To assess the Environmental risks and the sustainability developments.	K3
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

Sustainability and Design", Wiley, NJ, 2010.

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	-	-	2	2	-	
CO2	3	-	3	3	-	3	
CO3	2	-	-	-	-	-	
CO4	-	2	-	-	1	-	
CO5	2	2	-	1	-	-	
23GEOE08	2	2	3	3	2	3	
1–Slight, 2–Moderate, 3–Substantial							

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20		-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20		-	-	100
	•	69	AR BOCC	2			

23GEOE09 NATURAL HAZARDS AND MITIGATIC (Common to all Branches)					N			
PREREQUISITE	S:	X	CATEGORY	L	Т	Р	С	
	3	0	0	3				
Course	То	get idea on the causes, effects and mitigation n	nt typ	es of h	azards	with		
Objective	cas	e studies.						
UNIT–I	EA	RTH QUAKES			9 F	Period	5	
Definitions and ba	asic	concepts-different kinds of hazards-causes-	Geologic Hazards	–Ear	thquak	es-cau	ses of	
earthquakes-effect	ts-pl	ate tectonics-seismic waves-measures of s	size of earthqual	kes-ea	irthqua	ke res	sistant	
design concepts.								
UNIT-II	SL	OPE STABILITY			9 F	Period	8	
Slope stability and	d laı	ndslides-causes of landslides-principles of s	tability analysis-	reme	dial an	d corr	ective	
measures for slope	e stal	bilization.						
UNIT-III	FL	OODS			9 F	Period	8	
Climatic Hazards-	-Flo	ods-causes of flooding-regional flood freq	uency analysis-f	lood	contro	l mea	sures-	
flood routing-flood	d for	ecasting-warning systems.						
UNIT-IV	DR	OUGHTS			9 Periods			
Droughts causes	- typ	bes of droughts -effects of drought -hazard a	ssessment – decis	sion n	naking	-Use c	of GIS	
in natural hazard a	sses	sment-mitigation-management.						
UNIT–V	TS	UNAMI			9 F	Period	8	
Tsunami–causes–e	effec	ts-under sea earthquakes-landslides-volcani	ic eruptions-impa	ict of	sea me	eteorite	<u>,</u>	
remedial measures-precautions-case studies.								
Contact Periods:								
Lecture: 45 Periods Tutorial: 0 Period Practical: 0 Periods Total: 45 Periods								
REFERENCE	S							

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage
	Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press, 2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley & Sons,
	Inc, 2005.
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering", John Wiley &
	Sons,Inc,2008

COURSE OUTCOMES:				
Upon com	pletion of the course, the students will be able to:	Taxonomy Mapped		
CO1	Learn the basic concepts of earthquakes and the design concepts of earthquake	K2		
	Resistant buildings.			
CO2	Acquire knowledge on the causes and remedial measures of slope stabilization.	K3		
CO3	As certain the causes and control measures of flood.	K3		
CO4	Know the types, causes and mitigation of droughts.	K2		
CO5	Study the causes, effects and precautionary measures of Tsunami.	K2		

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	-	3	2	3
CO2	3	1	2	3	3	3
CO3	3	2	3	-	-	3
CO4	3	-	-	3	2	3
CO5	3	-	2	2	-	3
23GEOE09	3	1	2	3	2	3
1-Slight, 2-Moderate, 3-Substantial						

ASSESSMENT	PATTERN – T	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	-	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100
ESE	40	40	20		-	-	100
	,			au a			

23EDOE10	BUSINESS ANALY	TICS						
PREREQUISI	TES	CATEGORY	L	T	P	C		
	NIL	OE	3	0	0	3		
Course	• To apprehend the fundamentals of business an	alytics and its life	cycl	e.				
Objectives	To gain knowledge about fundamental busine	ss analytics.						
	• To study modeling for uncertainty and statistic	cal inference.						
	• To apprehend analytics the usage of Hadoop a	nd Map Reduce fr	ame	worl	κs.			
	• To acquire insight on other analytical framework	orks.						
UNIT – I	BUSINESS ANALYTICS AND PROCESS			9 P	erio	ds		
Business analyt	tics: Overview of Business analytics, Scope of Bu	siness analytics, I	Busii	ness	Ana	alytics		
Process, Relatio	onship of Business Analytics Process and organization	, competitive adva	intag	es o	f Bu	siness		
Analytics. Stati	stical Tools: Statistical Notation, Descriptive Statist	ical methods, Rev	view	of j	prob	ability		
distribution and	data modelling, sampling and estimation methods ove	rview.						
UNIT – II	REGRESSION ANALYSIS			9 P	erio	ds		
Trendiness and	Regression Analysis: Modelling Relationships and	nd Trends in Da	ita,	simp	ole l	Linear		
Regression. Imp	portant Resources, Business Analytics Personnel, Dat	a and models for	Busi	ness	ana	lytics,		
problem solving	, Visualizing and Exploring Data, Business Analytics	Technology.						
UNIT – III	STRUCTURE OF BUSINESS ANALYTICS			9 P	erio	ds		
Organization S	tructures of Business analytics, Team manageme	nt, Management	Issu	es,	Desi	igning		
Information Pol	licy, Outsourcing, Ensuring Data Quality, Measuring	g contribution of	Busi	ness	ana	lytics,		
Managing Chan	ges. Descriptive Analytics, predictive analytics, predic	cative Modelling,	Predi	ctiv	e ana	alytics		
analysis, Data	Mining, Data Mining Methodologies, Prescriptive an	halytics and its st	ep 11	n th	e bu	siness		
analytics Proces	s, Prescriptive Modelling, nonlinear Optimization.			0.0				
	FORECASTING TECHNIQUES	<u> </u>		9 P	erio	ds		
Forecasting Te	chniques: Qualitative and Judgmental Forecastin	g, Statistical Fo	recas	sting	g M	odels,		
Forecasting Mo	dels for Stationary Time Series, Forecasting Models	for Time Series w	ith a	Lin	ear	I rend,		
Forecasting Tir	ne Series with Seasonality, Regression Forecasting	g with Casual V	ariat	nes,	Sel	ecting		
Lising Analytic	Solver Platform New-Product Development Mode	Newsvendor M	odel		erbc	oking		
Model Cash Bu	idget Model		ouci	, 01	CIUC	oking		
LINIT V	DECISION ANALVSIS AND DECENT TDEND	C IN DUCINECC		0 D	orio	da		
UNII – V	ANALYTICS	5 IIN DUSIINESS		91	erio	us		
Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome								
Probabilities, Decision Trees, The Value of Information, Utility and Decision Making. Recent Trends:								
Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data								
journalism								
Contact Period	ls:							
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0Per	iods Total:45	Peri	ods				

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R – A Practical Approach", Apress,
	2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University Press,
	2012.
4	Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R.
	Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition, 2016.
5	U. Dinesh Kumar, "Business Analytics: TheScience of Data-Driven Decision Making",
	Wiley, 2017.
6	Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COUI Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Identify the real world business problems and model with analytical solutions.	K4
CO2	Solve analytical problem with relevant mathematics background knowledge.	K4
CO3	Convert any real world decision making problem to hypothesis and apply suitable statistical testing.	K4
CO4	Write and Demonstrate simple applications involving analytics using Hadoop and Map Reduce	K4
CO5	Use open source frameworks for modeling and storing data.	K4

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5						
CO1	1	2	1	2	1						
CO2	1	1	1	2	1						
CO3	2	2	1	1	-						
CO4	2	2	1	-	-						
CO5	1 6	2	A TIBLOS	-	-						
23EDOE10	1 (4	2	EV.	2	1						
1 - Slight, 2 - Moderate,	3 – Substantial										

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	-25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDOE11		INTRODUCTION TO INDUSTRIAL SAFETY											
DDFDFAIller	 TES				(C	ommon	to all	Branch	ies)	Т	Т	D	
NIL OF 3 0										3			
Course		• Sum	marize basi	cs of indus	ıstrial	l safety			U L	5	U	U	5
Objectives		 Desc 	ribe fundar	nentals of	f mair	ntenance	e engin	eering.					
0		• Expl	ain wear an	d corrosio	on.		8						
		• Illust	trate fault tr	acing.									
		• Ident	tify prevent	ive and pe	eriodi	ic maint	tenance	•					
UNIT – I	IN	roduc	CTION								9	Perio	ods
Accident, cause steps/procedure layouts, light, firefighting, equ	es, ty c, des clear uipme	pes, result cribe salid liness, freent and mo	Its and corr ent points c ire, guardin ethods.	ntrol, mech of factories ng, pressu	chanic es act ure v	cal and 1948 fe vessels,	electric or healt etc., S	cal haz h and s Safety	ards, types safety, was color code	, caus h roon s. Fir	es and ns, dri e prev	l prevo nking vention	entive water n and
UNIT – II		FUNDA	MENTAL	S OF MA	AINT	ENAN	CE EN	GINE	ERING		9	Perio	ods
Definition and maintenance de Maintenance co	aim epart ost &	of mair ment, Ty its relatio	ntenance en pes of ma n with repla	ngineering antenance, acement ec	g, Pr e, Ty econo	rimary pes an my, Ser	and se d appli vice lif	condar ications e of eq	y functions s of tools uipment.	s and used	respo for n	onsibili nainter	ity of nance,
UNIT – III		WEAR	AND COR	ROSION	N AN	D THE	IR PR	EVEN	ΓΙΟΝ		9	Perio	ods
general sketch, lubrication, iv. Definition, prince UNIT – IV Fault tracing-cc activities, show automotive, the Internal combus	Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.UNIT - IVFAULT TRACING9 PeriodsFault tracing-concept and importance, decision tree concept, need and applications, sequence of fault-finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv.Internal combustion anging v. Boilar, vi. Electrical meters. Types of foults in machine tools and their caparal												
causes.		DEDIO			PETS /	EMAR		NCE				D ·	1
UNIT - VPERIODIC AND PREVENTIVE MAINTENANCE9 PeriodsPeriodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance													
Contact Period	ds:												
Lecture: 45 Per	riods	Tu	torial: 0 Pe	eriods	P	ractical	:0Perio	ods	Total:45 H	Period	S		
REFERE 1Hans F. With2"Maintena3"Industria"	NCE interi ance	S korn, "Fo Engineer ety Mana	vundation E ing" by Dr. gement", M	E ngineerin Siddharth IcGraw H	ng H tha Ra Hill Ea	a ndboo ay, New ducatio	k", Cha Age In n; New	ipman ternation edition	& Hall Lon onal (P) Lta (1 July 20	don, 2 1., Put 17)	013. olisher	s, 201	7
4 <i>"Industria</i>	l Eng	gineering	And Produ	iction Mar	nage	ement",	S. Char	nd Pub	lishing; Th	ird edi	tion ,2	018	
5 "Industria	ıl Saf	ety and M	laintenanc	e Enginee	ering	", Parth	i B. Sha	th, 202	Ι.				

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Ability to summarize basics of industrial safety	K4
CO2	Ability to describe fundamentals of maintenance engineering	K4
CO3	Ability to explain wear and corrosion	K4
CO4	Ability to illustrate fault tracing	K4

CO5	Ability to identify preventive and periodic maintenance	K4

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5						
CO1	2	1	1	-	-						
CO2	2	2	1	-	1						
CO3	1	2	1	1	1						
CO4	2	1	1	1	1						
CO5	2	1	2	1	1						
23EDOE11	2	1	1	1	1						
1 – Slight, 2 – Moderate, 3 – Substantial											

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	25	25	25	25			100				
CAT2	20	25	25	30			100				
Assignment 1	25	30	25	20			100				
Assignment 2	30	20	30	20			100				
ESE	20	30	20	30			100				

22EDOE12	OPERATIONS RESEARCH										
25EDUE12	(Common to all E	Branches)									
PREREQUISITE	L	Т	P	С							
	3	0	0	3							
Course	Solve linear programming problem and solve using graphical method.										
Objectives	• Solve LPP using simplex method.	• Solve LPP using simplex method.									
	• Solve transportation, assignment problems.										
	 Solve project management problems. 										
	 Solve scheduling problems. 										
UNIT – I	INTRODUCTION			9	Per	riods					
Optimization Tech	nniques, Model Formulation, models, General L.R Forr	nulation, Simplex 7	Techi	nique	es, S	ensitivity					
Analysis, Inventor	y Control Models										
UNIT – II	LINEAR PROGRAMMING PROBLEM			9	Per	riods					
Formulation of a	LPP - Graphical solution revised simplex method -	duality theory - d	ual s	simp	lex 1	nethod -					
sensitivity analysis	s - parametric programming										
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM			9	Per	riods					
Nonlinear program	nming problem - Kuhn-Tucker conditions min cost	t flow problem -	max	flo	w pi	roblem -					
CPM/PERT											
UNIT – IV	SEQUENCING AND INVENTORY MODEL			9	Per	riods					
Scheduling and s	sequencing - single server and multiple server mod	lels - deterministic	e inv	vento	ory 1	nodels -					
Probabilistic inver	tory control models - Geometric Programming.										
UNIT – V	GAME THEORY 9 Periods										
Competitive Mode	els, Single and Multi-channel Problems, Sequencing I	Models, Dynamic I	Progr	amm	ning,	Flow in					
Networks, Elemen	tary Graph Theory, Game Theory Simulation										
Contact Periods:											
Lecture: 45 Perio	ds Tutorial: 0 Periods Practical:0Periods	Total:45 Perio	ds								

- H.A. Taha"Operations Research, An Introduction", PHI, 2017. 1
- *2 "Industrial Engineering and Managemen 3 "Operations Research"*, S.K. Patel, 2017. "Industrial Engineering and Management", O. P. Khanna, 2017.
- "Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021. 4

COUH	Bloom's	
		Taxonomy
Upon	Mapped	
CO1	Formulate linear programming problem and solve using graphical method.	K4
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
CO4	Solve project management problems.	K4
CO5	Solve scheduling problems	K4

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5						
CO1	2	1	1	-	-						
CO2	2	2	1	-	-						
CO3	1	1	2	1	1						
CO4	1	1	-	-	-						
CO5	2	1	-	-	-						
23EDOE12	2	1	1	1	1						
1 – Slight, 2 – Moderate, 3 – Substantial											

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	25	25	25	25			100				
CAT2	20	25	25	30			100				
Assignment 1	25	30	25	20			100				
Assignment 2	30	20	30	20			100				
ESE	20	30	20	30			100				

23MFOE13	OCCUPATIONAL HEALTH AND SAFETY (Common to all Branches)								
PREREQUIS	ITES	CATEGORY	L	Т	P	С			
-	NIL	OE	3	0	0	3			
Course Objectives	Course • To gain knowledge about occupational health hazard and safety measures at work place. Objectives • To learn about accident prevention and safety management. • To learn about general safety measures in industries.								
UNIT – I	OCCUPATIONAL HEALTH AND HAZARDS			9 P	erio	ds			
Safety- History Importance of Automation.	and development, National Safety Policy- Occupation Industrial Safety Radiation and Industrial Hazard	onal Health Haza s- Machine Gua	rds - rds	Erg and	gonor its	nics - types,			
UNIT – II	SAFETY AT WORKPLACE			9 P	erio	ds			
Safety at Work Ergonomics o maintenance, P	place - Safe use of Machines and Tools: Safety in use f Machine guarding - working in different workp lant Design and Housekeeping, Industrial lighting, Vibr	of different types places - Operatic ation and Noise C	of un on, I ase s	nit o nspe tudio	perat ectior es.	tions - n and			
UNIT – III	ACCIDENT PREVENTION			9 P	erio	ds			
Principles of A Injuries to varie UNIT – IV Safety Manage Detail- Occupa and Safety, 144 Safety Manage	Hazard identification and analysis, Event tree analysis, Hazop studies, Job safety analysis - Theories and Principles of Accident causation - First Aid : Body structure and functions - Fracture and Dislocation, Injuries to various body parts. UNIT - IV SAFETY MANAGEMENT 9 Periods Safety Management System and Law - Legislative measures in Industrial Safety: Various acts involved in Detail- Occupational safety, Health and Environment Management: Bureau of Indian Standards on Health and Safety, 14489, 15001 - OSHA, Process safety management (PSM) and its principles - EPA standards-								
UNIT – V	CENERAL SAFETY MEASURES			91	Porio	de			
Plant Layout for Safety -design and location, distance between hazardous units, lighting, colour coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work Permit System: Significance of Documentation Directing Safety, Leadership -Case studies involving implementation of health and safety measures in Industries.									
REFERENCES									
1 Benjamin C	Alli, Fundamental Principles of Occupational Health	and Safety ILO 2	008.						
2 Danuta Kor	radecka, Handbook of Occupational Health and Safety	, CRC, 2010.	1. 1		015				
3 Dr. Siddhar	tha Ray, Maintenance Engineering, New Age Internati	onal (P) Ltd., Pub	lishe	2rs, 2	2017				
4 Deshmukh.	L.M., Industrial Safety Management , 3 ^{ra} Edition, Tata	McGraw Hill, Nev	vDel	hi, 2	008.				
5 https://npte	l.ac.in/courses/110105094								
o https://arch	ive.nptei.ac.in/courses/110/105/110105094/								

COUR	RSE OUTCOMES:	Bloom's Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Gain the knowledge about occupational health hazard and safety measures at work	K3
	place.	
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures in industries.	K3
CO4	Know various laws, standards and legislations.	K2

CO5 Implement safety and proper management of industries.

K4

COURSE ARTICULATION MATRIX:								
Cos/Pos	PO1	PO2	PO3	PO4	PO5			
CO1	2	1	1	1	1			
CO2	2	2	1	1	1			
CO3	1	2	1	1	1			
CO4	2	1	1	1	1			
CO5	2	1	2	1	1			
23MFOE13	2	1	1	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1		50	50				100		
CAT2		50	30	20			100		
Individual		50	50				100		
Assessment 1/		~	mm						
Case Study 1/		Contraction of the second	9 39 11 12	0					
Seminar 1 /		Contraction of the second	See Brents	Θ					
Project1		Yozh	DHENT OF						
Individual		50	30	20			100		
Assessment 2/				(
Case Study 2/				(
Seminar 2 /			STUR Y						
Project 2									
ESE		40	40	20			100		

23MFOE14	COST MANAGEMENT OF ENGINEERING PROJECTS (Common to all Branches)									
PREREQUISI	ГЕS	CATEGORY	L	Т	P	С				
	NIL	OE	3	0	0	3				
Course	• To understand the costing concepts and the	neir role in decisior	ı mal	king.						
Objectives	• To acquire the project management conselection	oncepts and their	vario	ous	aspe	ects in				
	 To gain the knowledge in costing concent 	ts with project exec	entio	n						
	To gain the knowledge in costing concept To develop knowledge of costing tech	niques in service	secto	11. Ar 91	nd v	arious				
	budgetary control techniques	inques in service	seen	Jia	liu v	arious				
	 To familiarize with quantitative technique 	es in cost managem	nent							
UNIT – I	INTRODUCTION TO COSTING CONCEPTS	es in cost managen	ient.	Q	Pori	ode				
Introduction an	Overview of the Strategic Cost Management Proces	s Cost concents i	n de	cisic	n_m	akina.				
Relevant cost	Differential cost Incremental cost and Opportunity c	ost Objectives of	a Co	ostin	og Sv	ustem.				
Inventory valua	tion; Creation of a Database for operational control; Pro	vision of data for l	Decis	sion	- Ma	king.				
UNIT – II	PROJECT PLANNING ACTIVITIES			9	Peri	ods				
Project: meanin	g, Different types, why to manage, cost overruns center	rs, various stages o	f pro	ject	exec	ution:				
conception to c	ommissioning. Project execution as conglomeration of	technical and non	tech	nical	acti	vities.				
Detailed Engine	ering activities. Pre project execution main clearances	and documents Pr	roject	t tea	m: R	ole of				
each member.	Importance Project site: Data required with signifi	cance. Project co	ntrac	ts.	Гуре	es and				
contents. Project	t execution Project cost control. Bar charts and Netw	ork diagram. Proj	ect c	omn	nissi	oning:				
mechanical and	process.									
UNIT – III	COST ANALYSIS			9	Peri	ods				
Cost Behaviour	and Profit Planning Marginal Costing; Distinction betw	veen Marginal Cost	ting a	and A	Abso	rption				
Costing; Break-	even Analysis, Cost-Volume-Profit Analysis. Various	decision-making	prob	lems	. Sta	andard				
Costing and Var	riance Analysis.									
UNIT – IV	PRICING STRATEGIES AND BUDGETORY CO	ONTROL		9	Peri	ods				
Pricing strategie	es: Pareto Analysis. Target costing, Life Cycle Costin	g, Costing of serv	ice s	ecto	r, Ju	st-in -				
time approach,	Material Requirement Planning, Enterprise Resource I	Planning. Budgetar	y Co	ontro	l; Fl	exible				
Budgets; Perfo	rmance budgets; Zero-based budgets. Measurement	t of Divisional p	rofit	abili	ty p	oricing				
decisions includ	ing transfer pricing.									
UNIT – V	TQM AND OPERATIONS REASEARCH TOOL	S		9	Peri	ods				
Total Quality N	Ianagement and Theory of constraints, Activity-Based	l Cost Managemer	nt, B	ench	n Ma	rking;				
Balanced Score Card and Value-Chain Analysis. Ouantitative techniques for cost management. Linear										
Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve										
Theory.										
Contact Periods:										
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Perio	ds							
<u> </u>										
REFERENCES										
I Charles T. I	torngren and George Foster, Advanced Management A	Accounting, 2018.	hual	0000	T	vlor				
2 John M. I &Francis 2	nicnoias, r rojeci management jor Engineering, B 016	usiness and 1ec	nnol	ogy,	10	ylor				
2 Migol L Francis, 2	in anning Duciaat Managam ant Jahn Wilm and Carry	tol Smith 2015								

5	Nigel J, Engineering Project Mundgement, John Wiley and Sons Lid, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis , Prentice Hall of India, New Delhi, 2011.

5 <u>https://archive.nptel.ac.in/courses/110/104/110104073/</u>

Γ

COUR	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply the costing concepts and their role in decision making.	K3
CO2	Apply the project management concepts and analyze their various aspects in	K4
	selection.	
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various budgetary	K2
	control techniques.	
CO5	Become familiar with quantitative techniques in cost management.	K3

COURSE ARTICULATION MATRIX:

	1	1	1	1	1		
COs/Pos	PO1	PO2	PO3	PO4	PO5		
CO1	1	1	2	1	1		
CO2	2	1	1	1	-		
CO3	2	2	2	-	-		
CO4	1	1	1	1	1		
CO5		2	1	1	-		
23MFOE14	1	anste Cus	S 9 1	1	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY Test / Bloom's Understanding Applying Remembering Analyzing Evaluating Creating Total (K4) % Category* (K1) % (K2) % (K3) % (K5) % (K6) % % CAT1 40 100 60 CAT2 30 30 40 100 Individual 100 40 60 Assessment 1 / Case Study 1/ Seminar 1 / Project1 Individual 30 30 40 100 Assessment 2 / Case Study 2/ Seminar 2 / Project 2 ESE 20 40 40 100

23MFOE15	COMPOSITE MATERIALS (Common to all Branches)								
PREREQUISI	TES	CATEGORY	L	Т	P	С			
	NIL	OE	3	0	0	3			
Course Objectives	 To summarize the characteristics of composite materials and effect of reinforcement in composite materials. To identify the various reinforcements used in composite materials. To compare the manufacturing process of metal matrix composites. To understand the manufacturing processes of polymer matrix composites. To analyze the strength of composite materials. 								
UNIT – I	INTRODUCTION			9	Peri	ods			
Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement on overall composite performance.									
UNIT – II	REINFORCEMENT			9	Peri	ods			
Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isosteresconditions.									
UNIT – III	MANUFACTURING OF METAL MATRIX COM	MPOSITES		9	Peri	ods			
Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing- Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering–Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving- Properties and applications.									
UNIT – IV	MANUFACTURING OF POLYMER MATRIX (COMPOSITE		9	Peri	ods			
Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.									
UNIT – V	UNIT – V STRENGTH ANALYSIS OF COMPOSITES 9 Periods					ods			
Laminar Failure Criteria-strength ratio, maximum stress criteria, maximum strain criteria, interacting failure criteria, hygrothermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.									
Contact Perio Lecture: 45 Pe	ds: riods Tutorial: 0 Periods Practical: 0 Pe	riods Tota	l: 45	Per	iods				

1 Chawla K.K., Composite Materials, Springer, 2013. 2 Lubin.G, Hand Book of Composite Materials, Springer New York, 2013. 3 Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.

4 uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz, 2013.

5 https://nptel.ac.in/courses/112104168

COU	RSE OUTCOMES:	Bloom's		
		Taxonomy		
Upon completion of the course, the students will be able to:				
CO1	Know the characteristics of composite materials and effect of reinforcement in	K2		
	composite materials.			
CO2	CO2 Know the various reinforcements used in composite materials.			
CO3	Understand and apply the manufacturing processes of metal matrix composites	K3		
CO4	Understand and apply the manufacturing processes of polymer matrix	K3		
	composites.			
CO5	Analyze the strength of composite materials.	K4		

COURSE ARTICULATION MATRIX:								
COs/Pos	PO1	PO2	PO3	PO4	PO5			
CO1	1	2	1	1	1			
CO2	2	2	1	1	2			
CO3	2	1	2	1	1			
CO4	1	2	2	2	1			
CO5	1	2	1	1	1			
23MFOE15	1	2	2	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT P	PATTERN – THE	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		60	40				100
CAT2			60	40			100
Individual		60	40				100
Assessment 1 /							
Case Study 1/		-	mm				
Seminar 1 /		A CTUT	1 100	0			
Project1		CV LOS	Sto Brite	2)			
Individual		y and the second	60	40			100
Assessment 2 /							
Case Study 2/				1			
Seminar 2 /				11			
Project 2			SUR				
ESE		40	40	20			100

23TEOE16

GLOBAL WARMING SCIENCE

	(Common to	all Branches)				
PREREQUISIT	ES	CATEGORY	L	Т	Р	С
	NIL	OE	3	0	0	3
Course	To make the students learn about the material con	sequences of climate	e change,	sea le	evel o	change
Objectives	due to increase in the emission of greenhouse gase	s and to examine the	science b	ehino	l miti	gation
	and adaptation proposals.					
UNIT – I	INTRODUCTION				9 Per	riods
Terminology rela	ating to atmospheric particles - Aerosols - Types,	characteristics, meas	surements	- Pa	article	e mass
spectrometry - A	nthropogenic-sources, effects on humans.					
UNIT – II	CLIMATE MODELS				9 Per	riods
General climate	modeling- Atmospheric general circulation model	- Oceanic general of	circulation	n mo	del, s	sea ice
model, land mod	el concept, paleo-climate - Weather prediction by n	umerical process. In	npacts of	clima	te ch	ange -
Climate Sensitivi	ty - Forcing and feedback.					
UNIT – III	EARTH CARBON CYCLE AND FORECAST				9 Per	riods
Carbon cycle-pro	ocess, importance, advantages - Carbon on earth - G	lobal carbon reservo	irs - Inter	ractio	ns be	etween
human activities	and carbon cycle - Geologic time scales - Fossil fuel	s and energy - Pertur	bed carbo	on cyc	ele.	
UNIT – IV	GREENHOUSE GASES				9 Per	riods
Blackbody radiat	ion - Layer model - Earth's atmospheric compositi	ion and Green house	gases ef	fects	on w	<i>reather</i>
and climate - Rad	lioactive equilibrium - Earth's energy balance.	36				
UNIT – V	GEO ENGINEERING	9			9 Per	riods
Solar mitigation	- Strategies - Carbon dioxide removal - Solar radia	ation management -]	Recent ob	serve	ed tre	nds in
global warming f	or sea level rise, drought, glacier extent.	(
Contact Periods						
Lecture: 45 Peri	ods Tutorial: 0Periods Practical: 0 Pe	riods Total: 4	5 Periods			
		13				

REFERENCES:

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and Its
	Consequences ", Princeton University Press, 1 st Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5 th Edition, 2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions for Global
	Warming", Elsevier, 1 st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1 st edition, 2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global energybalance",
	Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

8<u>8</u>

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Understand the global warming in relation to climate changes throughout the earth.	K2
CO2	Assess the best predictions of current climate models.	K4
CO3	Understand the importance of carbon cycle and its implication on fossil fuels.	K2
COA	Know about current issues, including impact from society, environment, economy as well	K A
04	as ecology related to greenhouse gases.	124
CO5	Know the safety measures and precautions regarding global warming.	K5

COURSE ART	FICULATION	MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	1	2	1	1	2
CO2	1	1	2	1	1	1
CO3	1	2	1	1	1	2
CO4	1	1	1	1	1	2
CO5	2	1	2	1	1	2
23TEOE16	1	1	1	1	1	2
1 - Slight, 2 - N	Moderate, 3 – Su	Ibstantial				

ASSESSMENT P	ATTERN – THEO	RY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	35	35	10	-	-	100
CAT2	15	25	25	20	15	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	25	20	20	35	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	20	35	15	10	-	100
ESE	25	20	25	20	10	-	100

23TEOE17

INTRODUCTION TO NANO ELECTRONICS (Common to all Branches)

				,		
PREREQUISIT	ES	CATEGORY	L	Τ	P	С
ENGINEERING	G PHYSICS	OE	3	0	0	3
Course	To make the students provide strong, essential, important	t methods and foun	datic	ons o	f qua	intum
Objectives	mechanics and apply quantum mechanics on engineering fie	lds.				
UNIT – I	INTRODUCTION			9 F	'erio	ds
Particles and Wa	aves - Operators in quantum mechanics - The Postulates of	quantum mechanics	s - T	he S	chrod	linger
equation values a	nd wave packet Solutions - Ehrenfest's Theorem.					
UNIT – II	ELECTRONIC STRUCTURE AND MOTION			9 F	erio	ds
Atoms- The Hyd	drogen Atom - Many-Electron Atoms - Pseudopotentials, N	Juclear Structure, M	lolec	ules,	Crys	tals -
Translational mo	tion - Penetration through barriers - Particle in a box - Tv	vo terminal quantum	1 dot	devi	ces -	Two
terminal quantum	n wire devices.					
UNIT – III	SCATTERING THEORY			9 F	erio	ds
The formulation	of scattering events - Scattering cross section - Stationary s	scattering state - Par	tial	wave	stati	onary
scattering events	- multi-channel scattering - Solution for Schrodinger equation	on- Radial and wave	e equ	ation	i - Gr	eens'
function.						
UNIT – IV	CLASSICAL STATISTICS			9 F	'erio	ds
Probabilities and	microscopic behaviours - Kinetic theory and transport proc	cesses in gases - Ma	ignet	ic pr	operti	ies of
materials - The p	artition function.					
UNIT – V	QUANTUM STATISTICS			9 F	Perio	ds
Statistical mecha	anics - Basic Concepts - Statistical models applied to met	als and semiconduc	ctors	- Tł	ne the	ermal
properties of soli	ds- The electrical properties of materials - Black body radia	tion - Low temperat	ures	and	deger	nerate
systems.						
Contact Periods						
Lecture:45 Perio	ods Tutorial: 0 Periods Practical: 0 Periods	Total:45 Periods	S			
	A B					
REFERI	ENCES:					
1 Vladimi V.N	Iitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "	'Introduction to N	anoe	electr	onics	:
Science, Nar	notechnology, Engineering, and Applications", Cambridge U	Iniversity Press, 1 st E	Editic	on, 20)07.	
2 Vinod Kuma	r Khanna, "Introductory Nanoelectronics: Physical Theory	and Device Analy	sis",	Rout	ledge	2,
1 st Edition, 2	020.					
3 George W. H	lanson, "Fundamentals of Nanoelectronics" , Pearson Publis	hers, United States I	Editie	on, 20	907.	
4 Marc Baldo,	"Introduction to Nanoelectronics", MIT Open Courseware I	Publication, 2011.				
5 Vladimi V.N.	litin, "Introduction to Nanoelectronics", Cambridge Univ	ersity Press, South	Asic	an Eo	dition	l,
6 Datas I II	rolatoin Stanhan D. Santunia and Town, D. Andarda "Untradu	atom Annlind Anne	<i>41.1.</i>	C 4 ~ 4	intia.	.1
Mechanics",	eisiein, siepnen D. seniuria and Terry P. Orianao, " Introdu Wiley, 2004.	ciory Appliea Quan	um	Stat	istica	u -
7 A. F. J. Levi,	"Applied Quantum Mechanics", 2 nd Edition, Cambridge, 20	12.				

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Understand the postulates of quantum mechanics.	K2
CO2	Know about nano electronic systems and building blocks.	K2
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4
CO4	Learn the concepts involved in kinetic theory of gases.	K2

CO5	Know about statistical models applies to metals and semiconductor.	K3

COURSE AR	TICULATIO	N MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	1
CO2	2	2	1	1	1	1
CO3	2	2	2	1	1	1
CO4	1	1	1	1	1	1
CO5	1	1	1	1	1	1
23TEOE17	1	1	1	1	1	1
1 – Slight, 2 –	Moderate, 3 –	Substantial				

ASSESSMENT	PATTERN – THF	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	30	30	20	20	-	-	100
CAT2	30	30	20	20	-	-	100
Individual		of selection	THE PARTY				
Assessment 1/		(V)595	HERE SC	2)			
Case Study 1/	35	25	20	20	-	-	100
Seminar 1/			- LaJ	77			
Project 1				(
Individual			STOR Y I				
Assessment 2/				1			
Case Study 2/	30	25	20	25	-	-	100
Seminar 2/		A B		13			
Project 2				代表			
ESE	20	30	30	20	-	-	100
		CONT OF	Contraction of	A			

23TEOE18

GREEN SUPPLY CHAIN MANAGEMENT

PREREQUISITESCATEGORYLTPCNILOE3003CourseTo make the students learn and focus on the fundamental strategies, tools and techniquesObjectivesrequired to analyze and design environmentally sustainable supply chain systems. $oll3UNIT - IINTRODUCTION9 PeriodsIntro to SCM - complexity in SCM, Facility location - Logistics - Aim, activities, importance, progress, current trends - Integrating logistics with an organization.9 PeriodsUNIT - IIESSENTIALS OF SUPPLY CHAIN MANAGEMENT9 PeriodsBasic concepts of supply chain management - Supply chain operations - Planning and sourcing - Making and delivering - Supply chain coordination and use of technology - Developing supply chain systems.9 PeriodsUNIT - IIIPLANNING THE SUPPLY CHAIN9 PeriodsTypes of decisions - strategic, tactical, operational - Logistics strategies, implementing the strategy -9 PeriodsPlanning resources - types, capacity, schedule, controlling material flow, measuring and improving performance.9 PeriodsUNIT - IVACTIVITIES IN THE SUPPLY CHAIN9 PeriodsProcurement - cycle, types of purchase - Framework of e-procurement - Inventory materies and ownership, layout, packaging - Transport - mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.virtual and scheduling - Purpose of ware-burget - Travelling salesman problems - Travelling salesman problems - Exact and heuristic methods.virtual and scheduling - Purpose of ware-burget - Travelling salesman problems - Travelling salesman problems - Travelling salesman prob$
NIL OE 3 0 0 3 Course To make the students learn and focus on the fundamental strategies, tools and techniques required to analyze and design environmentally sustainable supply chain systems. and techniques Objectives required to analyze and design environmentally sustainable supply chain systems. 9 Periods UNIT - I INTRODUCTION 9 Periods Intro to SCM – complexity in SCM, Facility location - Logistics – Aim, activities, importance, progress, current trends - Integrating logistics with an organization. 9 Periods UNIT - II ESSENTIALS OF SUPPLY CHAIN MANAGEMENT 9 Periods Basic concepts of supply chain management - Supply chain operations – Planning and sourcing - Making and delivering - Supply chain coordination and use of technology - Developing supply chain systems. 9 Periods UNIT - III PLANNING THE SUPPLY CHAIN 9 Periods Types of decisions – strategic, tactical, operational - Logistics strategies, implementing the strategy - Planning resources – types, capacity, schedule, controlling material flow, measuring and improving performance. 9 UNIT – IV ACTIVITIES IN THE SUPPLY CHAIN 9 9 Procurement – cycle, types of purchase – Framework of e-procurement - Inventory management - EOQ, uncertain demand and safety stock, stock control - Materia
Course ObjectivesTo make the students learn and focus on the fundamental strategies, tools and techniques required to analyze and design environmentally sustainable supply chain systems.UNIT - IINTRODUCTION9 PeriodsIntro to SCM - complexity in SCM, Facility location - Logistics - Aim, activities, importance, progress, current trends - Integrating logistics with an organization.9 PeriodsUNIT - IIESSENTIALS OF SUPPLY CHAIN MANAGEMENT9 PeriodsBasic concepts of supply chain management - Supply chain operations - Planning and sourcing - Making and delivering - Supply chain coordination and use of technology - Developing supply chain systems.9 PeriodsUNIT - IIIPLANNING THE SUPPLY CHAIN9 PeriodsTypes of decisions - strategic, tactical, operational - Logistics strategies, implementing the strategy - Planning resources - types, capacity, schedule, controlling material flow, measuring and improving performance.9 PeriodsUNIT - IVACTIVITIES IN THE SUPPLY CHAIN9 PeriodsProcurement - cycle, types of purchase - Framework of e-procurement - Inventory management - EOQ, uncertain demand and safety stock, stock control - Material handling - Purpose of warehouse and ownership, layout, packaging - Transport - mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.0 Periods
Objectivesrequired to analyze and design environmentally sustainable supply chain systems.UNIT - IINTRODUCTION9 PeriodsIntro to SCM - complexity in SCM, Facility location - Logistics - Aim, activities, importance, progress, current trends - Integrating logistics with an organization.9 PeriodsUNIT - IIESSENTIALS OF SUPPLY CHAIN MANAGEMENT9 PeriodsBasic concepts of supply chain management - Supply chain operations - Planning and sourcing - Making and delivering - Supply chain coordination and use of technology - Developing supply chain systems.9 PeriodsUNIT - IIIPLANNING THE SUPPLY CHAIN9 PeriodsTypes of decisions - strategic, tactical, operational - Logistics strategies, implementing the strategy - Planning resources - types, capacity, schedule, controlling material flow, measuring and improving performance.9 PeriodsUNIT - IVACTIVITIES IN THE SUPPLY CHAIN9 PeriodsProcurement - cycle, types of purchase - Framework of e-procurement - Inventory management - EOQ, uncertain demand and safety stock, stock control - Material handling - Purpose of warehouse and ownership, layout, packaging - Transport - mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.0 Purpose of warehouse and ownership.
UNIT - IINTRODUCTION9 PeriodsIntro to SCM - complexity in SCM, Facility location - Logistics - Aim, activities, importance, progress, current trends - Integrating logistics with an organization.9 PeriodsUNIT - IIESSENTIALS OF SUPPLY CHAIN MANAGEMENT9 PeriodsBasic concepts of supply chain management - Supply chain operations - Planning and sourcing - Making and delivering - Supply chain coordination and use of technology - Developing supply chain systems.9 Making and 9 PeriodsUNIT - IIIPLANNING THE SUPPLY CHAIN9 PeriodsTypes of decisors - strategic, tactical, operational - Logistics strategies, implementing the strategy - Planning resources - types, capacity, schedule, controlling material flow, measuring and improving performance.9 PeriodsUNIT - IVACTIVITIES IN THE SUPPLY CHAIN9 PeriodsProcurement - cycle, types of purchase - Framework of e-procurement - Inventory margement - EOQ, uncertain demand and safety stock, stock control - Material handling - Purpose of warehouse and ownership, layout, packaging - Transport - mode, ownership, vehicle routing and scheduling models - Travelling salesman problems - Exact and heuristic methods.0 Putot - U
Intro to SCM – complexity in SCM, Facility location - Logistics – Aim, activities, importance, progress, current trends - Integrating logistics with an organization. UNIT – II ESSENTIALS OF SUPPLY CHAIN MANAGEMENT 9 Periods Basic concepts of supply chain management - Supply chain operations – Planning and sourcing - Making and delivering - Supply chain coordination and use of technology - Developing supply chain systems. 9 Periods UNIT – III PLANNING THE SUPPLY CHAIN 9 Periods Types of decisions – strategic, tactical, operational - Logistics strategies, implementing the strategy - Planning resources – types, capacity, schedule, controlling material flow, measuring and improving performance. 9 Periods UNIT – IV ACTIVITIES IN THE SUPPLY CHAIN 9 Periods Procurement – cycle, types of purchase – Framework of e-procurement - Inventory management – EOQ, uncertain demand and safety stock, stock control - Material handling – Purpose of warehouse and ownership, layout, packaging - Transport – mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods. 0 p. t. t.
current trends - Integrating logistics with an organization. UNIT - II ESSENTIALS OF SUPPLY CHAIN MANAGEMENT 9 Periods Basic concepts of supply chain management - Supply chain operations – Planning and sourcing - Making and delivering - Supply chain coordination and use of technology - Developing supply chain systems. 9 Periods UNIT - III PLANNING THE SUPPLY CHAIN 9 Periods Types of decisions – strategic, tactical, operational - Logistics strategies, implementing the strategy - Planning resources – types, capacity, schedule, controlling material flow, measuring and improving performance. 9 Periods UNIT - IV ACTIVITIES IN THE SUPPLY CHAIN 9 Periods Procurement – cycle, types of purchase – Framework of e-procurement - Inventory management – EOQ, uncertain demand and safety stock, stock control - Material handling – Purpose of warehouse and ownership, layout, packaging - Transport – mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods. 0 Period Supply chain supply ch
UNIT - IIESSENTIALS OF SUPPLY CHAIN MANAGEMENT9 PeriodsBasic conceptsof supply chain management - Supply chain operations – Planning and sources - Making and delivering - Supply chain coordination and use of technology - Developing supply chain systems Making and of technology - Developing supply chain systems.UNIT - IIIPLANNING THE SUPPLY CHAIN9 PeriodsTypes of decisions – strategic, tactical, operational - Logistics strategies, implementing the strategy - Planning resources – types, capacity, schedule, controlling material flow, measuring and improving performance.9 PeriodsUNIT - IVACTIVITIES IN THE SUPPLY CHAIN9 PeriodsProcurement – cycle, types of purchase – Framework of e-procurement - Inventory maxgement – EOQ, uncertain demaid and safety stock, stock control - Material handling – Purpose of warehouse and ownership, layout, packaging - Transport – mode, ownership, vehicle routing and scheduling - Travelling salesman problems - Exact and heuristic methods.0 Periods
Basic concepts of supply chain management - Supply chain operations – Planning and sourcing - Making and delivering - Supply chain coordination and use of technology - Developing supply chain systems. Image: Concepts of Supply chain systems. UNIT – III PLANNING THE SUPPLY CHAIN 9 Periods Types of decisions – strategic, tactical, operational - Logistics strategies, implementing the strategy - Planning resources – types, capacity, schedule, controlling material flow, measuring and improving performance. 9 Periods UNIT – IV ACTIVITIES IN THE SUPPLY CHAIN 9 Periods Procurement – cycle, types of purchase – Framework of e-procurement - Inventory management – EOQ, uncertain demand and safety stock, stock control - Material handling – Purpose of warehouse and ownership, layout, packaging - Transport – mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods. 9 Periods
delivering - Supply chain coordination and use of technology - Developing supply chain systems. UNIT - III PLANNING THE SUPPLY CHAIN 9 Periods Types of decisions – strategic, tactical, operational - Logistics strategies, implementing the strategy - Planning resources – types, capacity, schedule, controlling material flow, measuring and improving performance. UNIT – IV ACTIVITIES IN THE SUPPLY CHAIN 9 Periods Procurement – cycle, types of purchase – Framework of e-procurement - Inventory management – EOQ, uncertain demand and safety stock, stock control - Material handling – Purpose of warehouse and ownership, layout, packaging - Transport – mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.
UNIT - IIIPLANNING THE SUPPLY CHAIN9 PeriodsTypes of decisions - strategic, tactical, operational - Logistics strategies, implementing the strategy - Planning resources - types, capacity, schedule, controlling material flow, measuring and improving performance.9 PeriodsUNIT - IVACTIVITIES IN THE SUPPLY CHAIN9 PeriodsProcurement - cycle, types of purchase - Framework of e-procurement - Inventory management - EOQ, uncertain demand and safety stock, stock control - Material handling - Purpose of warehouse and ownership, layout, packaging - Transport - mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.0 Put the Material handling - Purpose of warehouse and built of the following models - Travelling salesman problems - Exact and heuristic methods.
Types of decisions – strategic, tactical, operational - Logistics strategies, implementing the strategy - Planning resources – types, capacity, schedule, controlling material flow, measuring and improving performance. UNIT – IV ACTIVITIES IN THE SUPPLY CHAIN 9 Periods Procurement – cycle, types of purchase – Framework of e-procurement - Inventory management – EOQ, uncertain demand and safety stock, stock control - Material handling – Purpose of warehouse and ownership, layout, packaging - Transport – mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.
Planning resources – types, capacity, schedule, controlling material flow, measuring and improving performance. UNIT – IV ACTIVITIES IN THE SUPPLY CHAIN 9 Periods Procurement – cycle, types of purchase – Framework of e-procurement - Inventory management – EOQ, uncertain demand and safety stock, stock control - Material handling – Purpose of warehouse and ownership, layout, packaging - Transport – mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.
performance. 9 Periods UNIT - IV ACTIVITIES IN THE SUPPLY CHAIN 9 Periods Procurement - cycle, types of purchase - Framework of e-procurement - Inventory management - EOQ, uncertain demand and safety stock, stock control - Material handling - Purpose of warehouse and ownership, layout, packaging - Transport - mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.
UNIT – IV ACTIVITIES IN THE SUPPLY CHAIN 9 Periods Procurement – cycle, types of purchase – Framework of e-procurement - Inventory management – EOQ, uncertain demand and safety stock, stock control - Material handling – Purpose of warehouse and ownership, layout, packaging - Transport – mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.
Procurement – cycle, types of purchase – Framework of e-procurement - Inventory management – EOQ, uncertain demand and safety stock, stock control - Material handling – Purpose of warehouse and ownership, layout, packaging - Transport – mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.
uncertain demand and safety stock, stock control - Material handling – Purpose of warehouse and ownership, layout, packaging - Transport – mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.
layout, packaging - Transport – mode, ownership, vehicle routing and scheduling models- Travelling salesman problems - Exact and heuristic methods.
salesman problems - Exact and heuristic methods.
UNIT – V SUPPLY CHAIN MANAGEMENT STRATEGIES 9 Periods
Five key configuration components - Four criteria of good supply chain strategies - Next generation
strategies- New roles for end-to-end supply chain management - Evolution of supply chain organization -
International issues in SCM – Regional differences in logistics.
Contact Periods:
Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods
REFERENCES:
1 Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply Chai
Management", Routledge, 1 st Edition, 2019.
2 Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycl
 2 Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle Approach", McGraw-Hill Education, 1st Edition, 2011. 3 Joseph Sarkis and Viiie Dou, "Green Supply Chain Management", Poutlades, 1stEdition, 2017.

5 Mehmood Khan, Matloub Hussain and Mian M. Ajmal,"Green Supply Chain Management for Sustainable Business Practice", IGI Global, 1st Edition, 2016.

6 S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.

7 Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction", Routledge, 1st Edition, 2017.

COUF	RSE OUTCOMES:	Bloom's Taxonom
Upon o	completion of the course, the students will be able to:	y Mapped
CO1	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and operational decisions.	K5
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	K3
CO4	Analyze inventory management models and dynamics of supply chain.	K4

K3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	1	1	3		
CO2	2	2	1	1	1	1		
CO3	2	1	2	1	1	1		
CO4	2	2	1	1	2	2		
CO5	1	1	2	1	1	3		
23TEOE18	2	1	1	1	1	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	25	25	30	10	10	-	100			
CAT2	30	40	20	10	-	-	100			
Individual										
Assessment 1/		CV BS	15.50 Br. 10	\sim						
Case Study 1/	30	20	25	15	10	-	100			
Seminar 1/				7						
Project 1			*	(/						
Individual										
Assessment 2/				//						
Case Study 2/	35	30	25	10	-	-	100			
Seminar 2/										
Project 2		m Jag								
ESE	30	30	20	10	10	-	100			
	Contraction of the second second									

23PSOE19

DISTRIBUTION AUTOMATION SYSTEM

(Common to all Branches)

PREREQUISI	TES	CATEGORY	L	Τ	Р	C			
	3	0	0	3					
Course	To study about the distributed automation and econom	ic evaluation scheme	es of p	ower	netwo	ork			
Objectives									
UNIT – I	INTRODUCTION				9 Per	iods			
Introduction to	Distribution Automation (DA) - Control system inte	erfaces- Control and	1 data	requ	iireme	ents-			
Centralized (vs)	Centralized (vs) decentralized control- DA system-DA hardware-DAS software.								
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS				9 Per	iods			
DA capabilities	s - Automation system computer facilities- Manageme	ent processes- Inforr	nation	mar	nagem	nent-			
System reliabili	ty management- System efficiency management- Voltag	e management- Load	d mana	agem	ent.				
UNIT – III	COMMUNICATION SYSTEMS				9 Per	iods			
Communication	n requirements - reliability- Cost effectiveness- Dat	ta requirements- T	wo w	ay c	apabi	lity-			
Communication	during outages and faults - Ease of operation and main	ntenance- Conformir	ng to t	he ar	chitec	cture			
of flow. Distri	bution line carrier- Ripple control-Zero crossing tech	nique- Telephone, d	cableT	V, r	adio,	AM			
broadcast, FM	SCA,VHF radio, microwave satellite, fiber optics-Hybr	rid communication s	ystem	s use	ed in f	field			
tests.									
UNIT – IV	ECONOMIC EVALUATION METHODS				9 Per	iods			
UNIT – IV Development a	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – S	elect study period-	Projec	t loa	9 Per i d grov	iods wth-			
UNIT – IV Development a Develop alterna	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – S tives- Calculate operating and maintenance costs-Evalua	elect study period- I ate alternatives.	Projec	t loa	9 Per d grov	iods wth-			
UNIT – IV Development a Develop alterna UNIT – V	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Set tives- Calculate operating and maintenance costs-Evaluate ECONOMIC COMPARISON	elect study period- 1 nte alternatives.	Projec	t loa	9 Per d grov 9 Per	iods wth- iods			
UNIT – IV Development a Develop alterna UNIT – V Economic com	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – S tives- Calculate operating and maintenance costs-Evalua ECONOMIC COMPARISON parison of alternate plans-Classification of expenses	elect study period- l ate alternatives.	Projec	t loa Comp	9 Per d grov 9 Per arisor	iods wth- iods n of			
UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Settives- Calculate operating and maintenance costs-Evaluate ECONOMIC COMPARISON parison of alternate plans-Classification of expenses ements of alternative plans-Book life and continuing	elect study period- l ite alternatives. - capital expendit plant analysis- Ye	Projec tures-C	t load Comp yea	9 Per d grov 9 Per arisor r reve	iods wth- iods n of enue			
UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require requirement an	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Se tives- Calculate operating and maintenance costs-Evalua ECONOMIC COMPARISON parison of alternate plans-Classification of expenses ements of alternative plans-Book life and continuing alysis, Short term analysis- End of study adjustment-B	elect study period- l ite alternatives. - capital expendit plant analysis- Ye reak even analysis,	Projec tures-C ear by sensiti	t load Comp yeat	9 Per d grov 9 Per arisor r reve analys	iods wth- iods n of enue sis -			
UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require requirement an Computational	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – S tives- Calculate operating and maintenance costs-Evalua ECONOMIC COMPARISON parison of alternate plans-Classification of expenses ements of alternative plans-Book life and continuing alysis, Short term analysis- End of study adjustment-Ba aids.	elect study period- l ite alternatives. - capital expendit plant analysis- Ye reak even analysis,	Projec tures-C ar by sensiti	t load Comp yeat vity	9 Per d grov 9 Per arisor r reve analys	iods wth- iods n of enue sis -			
UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require requirement an Computational Contact Period	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Se tives- Calculate operating and maintenance costs-Evalua ECONOMIC COMPARISON parison of alternate plans-Classification of expenses ements of alternative plans-Book life and continuing alysis, Short term analysis- End of study adjustment-Be aids. Is:	elect study period- l ite alternatives. - capital expendit plant analysis- Ye reak even analysis,	Projec tures-C ar by sensiti	t load Comp yeat	9 Per d grov 9 Per arisor r reve analys	iods wth- iods n of enue sis -			
UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require requirement an Computational Contact Period Lecture: 45 Pe	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – S tives- Calculate operating and maintenance costs-Evalua ECONOMIC COMPARISON parison of alternate plans-Classification of expenses ements of alternative plans-Book life and continuing alysis, Short term analysis- End of study adjustment-Baids. Is: riods Tutorial: 0 Periods	elect study period- l ite alternatives. - capital expendit plant analysis- Ye reak even analysis, Total: 45 Periods	Projec ures-C ar by sensiti	t load Comp yeat vity	9 Per d grov 9 Per arisor r reve analys	iods wth- iods n of enue sis -			
UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require requirement an Computational Contact Period Lecture: 45 Pe	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Settives- Calculate operating and maintenance costs-Evaluate ECONOMIC COMPARISON parison of alternate plans-Classification of expenses ements of alternative plans-Book life and continuing alysis, Short term analysis- End of study adjustment-Baids. Is: riods Tutorial: 0 Periods	elect study period- l ite alternatives. - capital expendit plant analysis- Ye reak even analysis, Total: 45 Periods	Projec ures-C ar by sensiti	t load Comp yeat vity	9 Per d grov 9 Per arisor r reve analys	iods wth- iods n of enue sis -			
UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require requirement an Computational Contact Period Lecture: 45 Pe	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – S tives- Calculate operating and maintenance costs-Evalua ECONOMIC COMPARISON parison of alternate plans-Classification of expenses ements of alternative plans-Book life and continuing alysis, Short term analysis- End of study adjustment-Bi aids. Is: riods Tutorial: 0 Periods Practical: 0 Periods ENCES	elect study period- l ite alternatives. - capital expendit plant analysis- Ye reak even analysis, Total: 45 Periods	Projec ures-C ar by sensiti	t load Comp yeat vity	9 Per d grov 9 Per arisor r reve analys	iods wth- iods n of enue sis -			
UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require requirement an Computational Contact Period Lecture: 45 Pe REFERN 1 M.K. Khedka	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – S tives- Calculate operating and maintenance costs-Evalua ECONOMIC COMPARISON parison of alternate plans-Classification of expenses ements of alternative plans-Book life and continuing alysis, Short term analysis- End of study adjustment-B aids. Is: riods Tutorial: 0 Periods Practical: 0 Periods ENCES ar, G.M. Dhole, "A Textbook of Electric Power Distribu-	elect study period- l te alternatives. - capital expendit plant analysis- Ye reak even analysis, Total: 45 Periods bution Automation"	Projec ures-C ar by sensiti	t load Comp yeat vity	9 Per d grov 9 Per arisor r reve analys	iods wth- iods n of enue sis - tions,			
UNIT – IV Development a Develop alterna UNIT – V Economic com revenue require requirement an Computational Contact Period Lecture: 45 Pe REFERI 1 M.K. Khedk Ltd., 2010.	ECONOMIC EVALUATION METHODS nd evaluation of alternate plans- select study area – Select Study and maintenance costs-Evaluated ECONOMIC COMPARISON parison of alternate plans-Classification of expenses ements of alternative plans-Book life and continuing alysis, Short term analysis- End of study adjustment-Beads. Is: riods Tutorial: 0 Periods Practical: 0 Periods ENCES ar, G.M. Dhole, "A Textbook of Electric Power Distributed and selected and select	elect study period- l ite alternatives. - capital expendit plant analysis- Ye reak even analysis, Total: 45 Periods bution Automation"	Projec ures-C ar by sensiti	t load Comp yeat vity	9 Per d grov 9 Per arisor r reve analys	iods wth- iods n of enue sis - tions,			
UNIT – IVDevelopment aDevelop alternaUNIT – VEconomic comrevenue requirerequirement anComputationalComputationalContact PeriodLecture: 45 PeREFERI1M.K. KhedkLtd., 2010.22Maurizio Di	ECONOMIC EVALUATION METHODS and evaluation of alternate plans- select study area – Select study area – Select Study area – Select Study and maintenance costs-Evaluate ECONOMIC COMPARISON parison of alternate plans-Classification of expenses ements of alternative plans-Book life and continuing alysis, Short term analysis- End of study adjustment-Baids. Is: riods Tutorial: 0 Periods Practical: 0 Periods ENCES ar, G.M. Dhole, "A Textbook of Electric Power Distribution" Paolo Emilio, "Data Acquisition Systems: From Function"	elect study period- 1 ite alternatives. - capital expendit plant analysis- Ye reak even analysis, Total: 45 Periods bution Automation" adamentals to Appli	Projec ures-C ar by sensiti	t load Comp yeat vity	9 Per d grov 9 Per arisor r reve analys blicat	iods wth- iods n of enue sis - tions,			

3 IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society. Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988

4 Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

COUR	Bloom's	
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed automation.	K3
CO4	Study the economic evaluation method	K4
CO5	Understand the comparison of alternate plans	K5

COURSE ARTICULATION MATRIX							
COs/Pos	PO1	PO2	PO3	PO4			
CO1	2	-	1	3			
CO2	3	-	3	2			
CO3	3	-	3	2			
CO4	3	-	3	1			
CO5	2	-	1	2			
23PSOE19	3	-	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	20%	30%	20%	10%	20%	-	100%		
CAT2	20%	20%	20%	20%	20%	-	100%		
Individual	20%	10%	30%	20%	20%	-	100%		
Assessment1/		V 59	ANTIGAC'						
Case study1/									
Seminar 1/									
Project1									
Individual	20%	30%	10%	20%	20%	-	100%		
Assessment2/		// 魚							
Case study2/		1 8							
Seminar 2 /		X JA		A					
Project2				133					
ESE	30%	20%	20%	20%	10%	-	100%		
		1000	See Co	I.					

23PSOE20

ELECTRICITY TRADING AND ELECTRICITY ACTS

	(Common to all Branches)									
PREREQUISI	TES	CATEGORY	L	Т	Р	C				
	NIL	OE	3	0	0	3				
Course	To acquire expertise on Electric supply and demand	ure o	n en	ergy						
Objectives	bjectives trading in the Indian market and infer the electricity acts and regulatory authorities.									
UNIT – I	ENERGY DEMAND			9	Peri	iods				
Basic concepts	in Economics - Descriptive Analysis of Energy I	Demand - Decompo	osition	Anal	ysis	and				
Parametric Appr	roach - Demand Side Management - Load Management	nt - Demand Side M	lanager	nent	- Enc	ergy				
Efficiency - Reb	ound Effect									
UNIT – II	ENERGY SUPPLY			9	Peri	iods				
Supply Behavio	r of a Producer - Energy Investment - Economics of N	Ion-renewable Resou	rces -	Econ	omic	s of				
Renewable Ene	rgy Supply Setting the context - Economics of Ren	ewable Energy Sup	ply - I	Econo	omics	s of				
Electricity Supp	ly									
UNIT – III	ENERGY MARKET			9	Peri	iods				
Perfect Competi	tion as a Market Form - Why is the Energy Market not	t Perfectly Competiti	ive? - N	/Jarke	t Fai	lure				
and Monopoly -	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E	ra II - Oil Market: O	PEC							
UNIT – IV	LAW ON ELECTRICITY			9	Peri	iods				
Introduction of	he Electricity Law; Constitutional Design - Evolution of	of Laws on Electricit	ty Salie	nt Fe	ature	s of				
Electricity Act, 2	2003 - Evolution of Laws on Electricity - Salient Featur	es of the Electricity	Act 200)3						
UNIT – V	REGULATORY COMMISSIONS FOR ELECTRI	CITY ACT		9	Peri	iods				
Regulatory Com	missions - Appellate Tribunal - Other Institutions under	er the Act - Electrici	ty (Am	endm	ient)	Bill				
2020/2021. A C	critical Comment - Renewable Energy - Role of Civil	Society; Comments	on Dra	aft Re	enew	able				
Energy Act, 201	5									
Contact Period	s:									
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods								
DEEEDE	NCFS	X								

REFERENCES

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of
	Energy", Vol.1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
4	Mohammad Naseem, "Energy Laws in India", Kluwer Law International, 3rd Edn, The Netherlands,
	2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
6	Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and
	Practices ", Cambridge University Press, 2014.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Describe electric supply and demand of power grid	K1
CO2	Summarize various energy trading strategies	K2
CO3	Relate the electricity acts practically	K3
CO4	Cite the electricity regulatory authorities	K2
CO5	Analyze/check the existing power grid for its technical and economical sustainability	K4

COURSE ARTICULATION MATRIX							
COs/Pos	PO1	PO2	PO3	PO4			
CO1	3	-	3	3			
CO2	3	-	1	1			
CO3	3	-	2	2			
CO4	3	-	1	2			
CO5	3	-	3	3			
23PSOE20	3	-	2	2			
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	20%	30%	20%	30%	-	-	100%			
CAT2	20%	20%	20%	20%	20%	-	100%			
Individual	20%	30%	30%	20%	-	-	100%			
Assessment1/		(Wass	ASA BUT	$\langle \mathbf{v}^{2} \rangle$						
Case study1/		42								
Seminar 1/				77						
Project1				1						
Individual	20%	30%	SUR	20%	-	40%	100%			
Assessment2/				//						
Case study2/		I &								
Seminar 2 /		A B								
Project2										
ESE	30%	30%		20%	20%	-	100%			
The same and a same										

22DGOE21	MODERN AUTOMOTIVE SYSTEMS							
23P80E21	(Common to all I	Branches)						
PREREQUISI	TES	CATEGORY	L	Т	P	С		
	NIL	OE	3	0	0	3		
Course	To expose the students with theory and applications of	Automotive Electric	cal an	d Eleo	etroni	с		
Objectives	Systems.							
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIVE	ELECTRONICS			9 Per	riods		
Introduction to	Introduction to modern automotive systems and need for electronics in automobiles- Role of electronics and							
microcontrollers	s- Sensors and actuators- Possibilities and challen	ges in automotive	indu	stry-	Ena	bling		
technologies and	d industry trends.							
UNIT – II	UNIT - IISENSORS AND ACTUATORS9 Periods							
Introduction- ba	asic sensor arrangement- Types of sensors- Oxygen se	ensor, engine cranks	haft a	ngula	r pos	sition		
sensor – Engine	e cooling water temperature sensor- Engine oil pressu	ire sensor- Fuel met	tering	- veh	icle s	peed		
sensor and dete	onation sensor- Pressure Sensor- Linear and angle s	sensors- Flow sense	or- Te	emper	ature	and		
humidity sensor	s- Gas sensor- Speed and Acceleration sensors- Knock	sensor- Torque sens	sor- Y	aw ra	ite se	nsor-		
Tyre Pressure se	ensor- Actuators - Stepper motors – Relays.							
UNIT – III	POWERTRAIN CONTROL SYSTEMS IN AUTO	MOBILE			9 Pei	riods		
Electronic Tran	smission Control - Digital engine control system: Op	en loop and close lo	oop c	ontrol	l syst	ems-		
Engine cooling	and warm up control- Acceleration- Detonation and idle	e speed control - Exh	aust e	missi	on co	ntrol		
engineering- On	board diagnostics- Future automotive powertrain system	ns.						
UNIT – IV	SAFETY, COMFORT AND CONVENIENCE SYS	STEMS			9 Pei	riods		
Cruise Control-	Anti-lock Braking Control- Traction and Stability cor	ntrol- Airbag control	l syste	em- S	uspei	nsion		
control- Steering	g control- HVAC Control.							
UNIT – V	ELECTRONIC CONTROL UNITS (ECU)				9 Pei	riods		
Introduction to Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotives - Design								
complexities of ECUs- V-Model for Automotive ECU's- Architecture of an advanced microcontroller (XC166								
Family, 32-bit Tricore) used in the design of automobile ECUs- On chip peripherals, protocol interfaces, analog								
and digital interfaces.								
Contact Periods:								
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods						
	NODO							
REFERE	NCES							

1 Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John Wiley and Sons, 2001.

2 *M. H. J. Bollen,* "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press, series on Power Engineering, 2000.

3 Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.

4 G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	Mapped	
CO1	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2

CO3	Analyze the impact of modern au	tomotive technique	es in various Enginee	ering	K4		
	applications						
CO4	Develop modern automotive cont	Develop modern automotive control system for electrical and electronics systems					
C05	Understand the function of sensor		K2				
	COURSE ARTICULATION MATRIX						
	COs/Pos	PO3	PO4				
	CO1	3	-	1	3		
	CO2	3	-	3	2		
	CO3	3	-	3	2		
	CO4	2	-	3	1		
	CO5	2	-	1	2		
	23PSOE21	3	-	2	2		
	1 – Slight, 2 – Moderate, 3 – Substa	ntial	·	·			

ASSESSMENT	TPATTERN – TH	IEORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	30%	-	20%	-	30%	100%
Assessment1/				(
Case study1/							
Seminar 1/			9V2 ()	1			
Project1		g g					
Individual	20%	30%	-	20%	-	40%	100%
Assessment2/		A BA					
Case study2/		2					
Seminar 2 /		92190	202	5.000			
Project2		C.S.	as acar	2			
ESE	30%	30%	20%	20%	-	-	100%

23PEOE22

VIRTUAL INSTRUMENTATION

(Common to all Branches)

PREREQUISITES CATEGORY L T P C						С
NIL		OE	3	0	0	3
Course To comprehend the Virtual instrumentat	tion programn	ning concepts towards	mea	surem	nents a	and
Objectives control and to instill knowledge on DAC), signal cond	litioning and its associa	ated	softwa	are to	ols
UNIT – I INTRODUCTION					7 P	eriods
Introduction - advantages - Block diagram and archited	Introduction - advantages - Block diagram and architecture of a virtual instrument - Conventional Instruments					
versus Traditional Instruments - Data-flow techniques,	graphical pr	ogramming in data fl	low,	comp	ariso	n with
conventional programming.						
UNIT – II GRAPHICAL PROGRAMMING AN	D LabVIEW	1			9 P	eriods
Concepts of graphical programming - LabVIEW softwar	re - Concept o	of VIs and sub VI - Di	splay	y type	s - D	igital -
Analog - Chart and Graphs. Loops - structures - Arrays	- Clusters- I	local and global varia	bles	– Stri	ng - '	Timers
and dialog controls.						
UNIT – III MANAGING FILES & DESIGN PAT	ITERNS				11 P	eriods
High-level and low-level file I/O functions available in	LabVIEW – I	Implementing File I/O	func	ctions	to re	ad and
write data to files - Binary Files - TDMS - sequ	ential progra	amming – State mac	hine	prog	ramn	ning –
Communication between parallel loops -Race condition	ons – Notifier	rs & Queues – Produ	lcer	Const	ımer	design
patterns	m R	-				
UNIT – IV PC BASED DATA ACQUISITION	BULUS ATTRON				9 P	eriods
Introduction to data acquisition on PC, Sampling funda-	mentals, ADC	Cs, DACs, Calibration	, Re	soluti	on, -	analog
inputs and outputs - Single-ended and differential inputs	- Digital I/O,	counters and timers, I	DMA	, Data	i acqu	isition
interface requirements - Issues involved in selection of	Data acquisiti	ion cards - Use of tim	er-co	ounter	and	analog
outputs on the universal DAQ card.						
UNIT – V DATA ACQUISITION AND SIGNAL	L CONDITIC	DNING			9 P	eriods
Components of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ hardware -						
Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation - Signal						
conditioning systems - Synchronizing measurements in single & multiple devices - Power quality analysis using						
Electrical Power Measurement tool kit.						
Contact Periods:	CO DEVO	Į.				
Lecture: 45 Periods Tutorial: 0 Periods Practi	cal: 0 Period	s Total: 45 Periods				

REFERENCES:

2 Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010

3 Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional Publishing, 2019

4 Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.

5 Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control", Newness, 2000

COUI Upon	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	K6

CO5 Familiarize and experi		K3						
COURSE ARTICULATION MATRIX								
COs/POs PO1 PO2 PO3 PO4 PO5								
CO1	3	-	3	2	1			
CO2	3	-	3	2	1			
CO3	3	-	2	2	2			
CO4	3	1	3	3	1			
CO5	3	1	3	3	2			
23PEOE22	3	1	3	2	1			
1 - Slight, 2 - Moderate, 3 - S	Substantial							

ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*									
CAT1	30	40	15	15	-	-	100		
CAT2	15	10	25	30	20	-	100		
Individual	10	10	20	30	20	10	100		
Assessment1/		60100	a Sto graus a Fil	SON 1					
Case study1/			UTURCE						
Seminar 1/									
Project1									
Individual	25	40	20	15	-	-	100		
Assessment2/			SV2 Y	//					
Case study2/		/							
Seminar 2 /									
Project2		A B							
ESE	30	25	15	20	5	5	100		
Carried Carlos Carried Street									

23PEOE23	ENERGY MANAGEMENT	ENERGY MANAGEMENT SYSTEMS					
PREREOUISI	(Common to all Br	ancnes)	T	Т	P	C	
TREREQUISI	NII	OF	3	1	1	3	
Course	To Comprehend energy management schemes perform	n energy audit ar	J nd ev	vecut		nomic	
Objectives analysis and load management in electrical systems							
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND M	IANAGEMENT			9 F	Periods	
Energy Conserv	ation Act 2001 and policies – Eight National Missions - B	asics of Energy ar	nd its	form	ns (T	hermal	
and Electrical)	- Energy Management and Audit - Energy Managers ar	nd Auditors - Typ	es a	nd N	letho	dology	
Audit Report - 1	Material and energy balance diagramsEnergy Monitorin	ng and Targeting.					
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENE	ERATION			9 F	Periods	
Boiler Systems	- Types - Performance Evaluation of boilers - Energ	y Conservation (Oppo	ortuni	ty -	Steam	
Distribution - E	Efficient Steam Utilisation - Furnaces:types and classifi	ication - Performa	ance	eval	uatio	n of a	
typical fuel fire	ed furnace. Cogeneration: Need - Principle - Technica	l options - classi	ificat	ion	- Te	chnical	
parameters and f	factors influencing cogeneration choice - Prime Movers -	Trigeneration.					
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS				9 F	Periods	
Electricity Billir	ng - Electricity load management - Maximum Demand Co	ontrol - Power Fac	tor i	mpro	vem	ent and	
its benefits - pf	controllers - capacitors - Energy efficient transformers	and Induction mo	tors	- rev	vindi	ng and	
other factors inf	luencing energy efficiency - Standards and labeling progr	amme of distribut	ion t	ransf	orme	ers and	
IM - Analysis of	f distribution losses - demand side management - harmoni	ics - filters - VFD	and	its se	electi	on.	
UNIT – IV	STUDY OF ELECTRICAL UTILITIES				9 F	Periods	
Compressor typ	es - Performance - Air system components - Efficient	operation of com	pres	sed a	uir sy	stems-	
Compressor ca	pacity assessment - HVAC: psychrometrics and air	-conditioning pro	ocess	es -	Ty	pes of	
refrigeration sys	stem - Compressor types and applications - Performan	ce assessment of	refri	gerat	ion p	olants -	
Lighting Systems: Energy efficient lighting controls - design of interior lighting - Case study.							
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMEN	T			9 F	Periods	
Performing Financial analysis: Fixed and variable costs - Payback period - ROI - methods - factors affecting							
analysis. Energy Performance Assessment: Heat exchangers - Fans and Blowers - Pumps. Energy Conservation							
in buildings and ECBC.							
Contact Periods:							
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods					

	Murphy W.K. and O.Mckay Datter worth, "Lifegy Management ", Hethemann Fublications, 2007
$\begin{bmatrix} 2 & A \end{bmatrix}$	Albert Thumann, Terry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
I	Publishers, 2012.
3 <i>L</i>	Dr. Subhash Gadhave Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
e	edition, Technical Publications, 2019.
4 S	S. M. Chaudhari, S. A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali
$ $ P	Prakashan Publications, 2021.
5 v	www.em-ea.org/gbook1.asp

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Analyze the feature of energy audit methodology and documentation of report.	K3
CO2	Perform action plan and financial analysis	K4
CO3	Familiarize with thermal utilities.	K4
CO4	Familiarize with electrical utilities.	K4

CO5 Perform assessment of		K5							
COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5				
CO1	3	2	2	1	1				
CO2	3	2	2	1	1				
CO3	3	2	2	1	1				
CO4	3	2	2	1	1				
CO5	3	2	2	1	1				
23PEOE23	3	2	2	1	1				
1 - Slight, $2 - $ Moderate, $3 - $ S	Substantial		•						

ASSESSMENT I	PATTERN – THI	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	20	-	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23PEOE24

ADVANCED ENERGY STORAGE TECHNOLOGY

	(Common to all Bra	anches)						
PREREQUISI	TES	CATEGORY	L	Т	Р	С		
	NIL	OE	3	0	0	3		
Course	o explore the fundamentals, technologies and applications of energy storage							
Objectives								
UNIT – I	NERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION 9 Periods							
	AND CHANGES							
Storage Needs-	Variations in Energy Demand- Variations in Energy Su	pply- Interruption	s in	Energ	gy Sup	ply-		
Transmission Co	ongestion - Demand for Portable Energy-Demand and so	cale requirements	- Env	viron	mental	and		
sustainability iss	sues-conventional energy storage methods: battery-types.							
UNIT – II	TECHNICAL METHODS OF STORAGE				9 Per	riods		
Introduction: Er	ergy and Energy Transformations, Potential energy (pur	mped hydro, comp	press	ed ai	r, sprii	ngs)-		
Kinetic energy	(mechanical flywheels)- Thermal energy without phase	e change passive	(ado	obe)	and a	ctive		
(water)-Thermal	energy with phase change (ice, molten salts, steam)-	Chemical energy	(hydı	ogen	, metł	nane,		
gasoline, coal,	oil)- Electrochemical energy (batteries, fuel cells))- Electrostatic	energ	gy (c	capacit	ors),		
Electromagnetic	energy (superconducting magnets)- Different Types of En	nergy Storage Syst	ems.					
UNIT – III	PERFORMANCE FACTORS OF ENERGY STORA	GE SYSTEMS			9 Per	riods		
Energy capture	rate and efficiency- Discharge rate and efficiency-	Dispatch ability	anc	i loa	d flo	wing		
characteristics, s	cale flexibility, durability - Cycle lifetime, mass and saf	ety – Risks of fire	, exp	losio	n, toxi	city-		
Ease of material	s, recycling and recovery- Environmental consideration	and recycling, M	erits	and o	lemeri	ts of		
different types o	f Storage.							
UNIT – IV	APPLICATION CONSIDERATION				9 Per	riods		
Comparing Stor	age Technologies- Technology options- Performance fac	tors and metrics- l	Effici	iency	of En	ergy		
Systems- Energ	y Recovery - Battery Storage System: Introduction wi	th focus on Lead	Aci	d and	d Lith	ium-		
Chemistry of B	attery Operation, Power storage calculations, Reversible	e reactions, Charg	ing p	atter	ns, Ba	ttery		
Management sys	stems, System Performance, Areas of Application of Ener	gy Storage: Waste	heat	reco	very, S	Solar		
energy storage,	Green house heating, Power plant applications, Drying an	d heating for proce	ess in	dustr	ries, en	ergy		
storage in autom	otive applications in hybrid and electric vehicles.							
UNIT – V	HYDROGEN FUEL CELLS AND FLOW BATTERI	ES			9 Per	riods		
Hydrogen Econ	omy and Generation Techniques, Storage of Hydrogen,	Energy generation	1 - S	uper	capaci	tors:		
properties, powe	er calculations - Operation and Design methods - Hybrid	d Energy Storage:	Man	aging	g peak	and		
Continuous pov	Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor "Battery + Capacitor"							
Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation) Bacitor + Fuel Cell or Flow								
Battery operation-Applications: Storage for Hybrid Electric Vehicles, Regenerative Power, capturing methods.								
Contact Period	S:							
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods						

REFERENCES :

1	DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.
2	Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy
	Storage and Conversion", John Wiley and Sons, 2012.
3	Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.
4	Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The
	Electrochemical Society, New Jersy, 2010.

COU	Bloom's	
		Taxonomy
upon o	completion of the course, the students will be able to:	Mapped
C01	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
CO4	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	3	1	3	3	3			
CO2	3	1	3	3	3			
CO3	3	1	3	3	3			
CO4	3	1	3	3	3			
CO5	3	1	3	3	3			
23PEOE24	3	1	3	3	3			
1 – Slight, 2 – Moderate, 3 – Substantial								
Constant and the second								

ASSESSMENT	T PATTERN – TH	IEORY	-	1			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23AEOE25 DESIGN OF DIGITAL SYSTEMS									
		(Commo	on to all Branches)						
PREREQUISIT	TES		CATEGORY	L	Т	Р	C		
		NIL	OE	OE 3 0					
Course To	o gain	knowledge in the design and VHDL program	mming of synchrono	us and as	ynchro	onous			
Objectives se	quent	ial circuits, PLD's and the basic concepts of	testing in VLSI circ	uits					
UNIT– I	SYN	CHRONOUS SEQUENTIAL CIRCUIT	DESIGN			9 Perio	ods		
Analysis of Clo	ocked	Synchronous Sequential Circuits - Modeling	g, state table reduction	on, state a	ssignn	nent, De	sign		
of Synchronous	s Sequ	iential circuits, Design of iterative circuits- A	ASM chart –ASM rea	alization.					
UNIT-II A	ASYN	CHRONOUS SEQUENTIAL CIRCUIT	DESIGN			9 Perio	ods		
Analysis of As	ynchr	onous Sequential Circuits - Races in ASC -	 Primitive Flow Ta 	ble - Flo	w Tab	le Reduc	ction		
Techniques, Sta	ate As	ssignment Problem and the Transition Table	– Design of ASC –	Static and	l Dyna	mic Haz	ards		
– Essential Haz	ards–	Data Synchronizers.							
UNIT-III S	SYST	EM DESIGN USING PLDS				9 Perio	ods		
Basic concepts	- P1	ogramming Technologies - Programmable	Logic Element (Pl	LE) – Pro	ogrami	mable A	rray		
Logic (PLA)-P	rograi	mmable Array Logic (PAL) –Design of cor	nbinational and sequ	uential cir	cuits u	using PL	Ds–		
Complex PLDs	(CPI	LDs).							
UNIT-IV I	NTR	ODUCTION TO VHDL				9 Perio	ods		
Design flow -	Softw	vare tools – VHDL: Data Objects-Data	types - Operators	-Entitie	s and	Archite	ecture		
Components an	nd Co	onfigurations – Signal Assignment – Con	current and Sequen	tial state	ments	—Beha	vioral		
Dataflow and S	tructu	aral modeling- Transport and Inertial delays	-Delta delays-Attrib	outes - Ge	enerics	–Packag	es an		
Libraries.			7						
UNIT–V I	JOGI	C CIRCUIT TESTING AND TESTABLE	E DESIGN			9 Perio	ods		
Digital logic ci	rcuit	testing - Fault models - Combinational logic	circuit testing - Seq	uential log	gic cire	cuit testi	ng-		
Design for Test	tabilit	y - Built-in Self-test, Board and System Le	vel Boundary Scan -	- Case Stu	ıdy: T	raffic Li	ght		
Controller.									
Contact Period	ds:								
Lecture: 45 Pe	riods	Tutorial: 0 Periods Practical: 0	Periods Total:	45 Perio	ds				
REFERENCE	S:	ALVER ALVE SEE							

1	Donald G. Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni, "Circuit Design withVHDL", PHILearning, 2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", AcademicPress, 1997.
5	CharlesHRoth, "Digital Systems Design Using VHDL", Cencage 2 nd Edition2012.
6	NripendraN.Biswas, "Logic Design Theory" Prentice Hal 1 of India, 2001.

COUR	RSEOUTCOMES:	Bloom's	
Upon completion of the course students will be able to/have:			
		Mapped	
CO1	To design synchronous sequential circuits based on specifications.	К3	
CO2	To design asynchronous sequential circuits based on specifications	K3	
CO3	Ability to illustrate digital design implementation using PLDs.	K2	
CO4	To develop algorithm and VHDL code for design of digital circuits.	K3	
CO5	Understand the different testing methods for combinational and sequential circuits.	K2	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	2	-	-	1			
CO2	3	-	2	-	-	1			
CO3	3	-	2	-	-	1			
CO4	3	-	2	-	-	1			
CO5	3	-	2	-	-	1			
23AEOE25	3	-	2	-	-	1			
-Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understandi ng (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual		50%	50%				100%
Assessment 1 /		10000	a Sto Brens 11	201			
Case Study 1/		92	STORE C	\sim			
Seminar 1 /			-				
Project1			X	1			
Individual		50%	50%				100%
Assessment 2 /				//			
Case Study 2/		a g					
Seminar 2 /							
Project 2		A BA					
ESE	20%	45%	35%				100%
		Call of the second	in deep				

23AEOE26	6 BASICS OF NANO ELECTRONICS							
	(Common to all Branches)							
PREREQUISIT	ES	CATEGORY	L	Т	Р	C		
	NIL	OE	3	0	0	3		
Course	The students will be able to acquire knowledge ab	out nano device fa	bricatio	on tech	nology,	nano		
Objective s	tructures, nano technology for memory devices a	and applications of	f nano	electro	onics ir	1 data		
t	ransmission.							
UNIT – I	TECHNOLOGY AND ANALYSIS				9 P	eriods		
Fundamentals	Dielectric, Ferroelectric and Optical properties - Film	n Deposition Metho	ds – Lit	thograp	ohy			
Material remov	ring techniques - Etching and Chemical Mechanical	Polishing - Scanr	ing Pro	obeTec	hniques	•		
UNIT – II	CARBON NANO STRUCTURES				9 P	eriods		
Principles and	concepts of Carbon Nano tubes - Fabrication - E	lectrical, Mechanic	al and	Vibra	tionProp	perties		
- Applications of	of Carbon Nano tubes.							
UNIT – III	LOGIC DEVICES				9 P	eriods		
Silicon MOSFI	ET's: Novel materials and alternative concepts - S	ingle electron devi	ces for	· logic	applicat	tions -		
Super conducto	r digital electronics - Carbon Nano tubes for data proce	essing.						
UNIT – IV	MEMORY DEVICES AND MASS STORAGE DE	VICES			9 P	eriods		
Flash memories	s - Capacitor based Random Access Memories - Mag	netic Random Acc	ess Mei	mories	- Inforr	nation		
storage based or	n phase change materials - Resistive Random Access M	Memories - Hologra	phicDa	ta stora	ige.			
UNIT – V	DATA TRANSMISSION AND INTERFACING D	ISPLAYS			9 P	eriods		
Photonic Netw	orks - RF and Microwave Communication System	n - Liquid Crysta	l Displ	ays -	Organic	Light		
emitting diodes.								
Contact Period	ls:							
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Per	riods Total: 45	Period	6				
REFERENCE	s:	A						

1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronicmaterials and novel
	devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics Science,
	Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C. Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer, 2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher, California", 2003.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, students will be able to/have:	Mapped
CO1	Explain principles of nano device fabrication technology.	K2
CO2	Describe the concept of Nano tube and Nano structure.	K2
CO3	Explain the function and application of various nano devices	K3
CO4	Reproduce the concepts of advanced memory technologies.	K2
CO5	Emphasize the need for data transmission and display systems.	K2

COURSE ARTI	CULATION	MATRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	-	2	-	-	1
CO2	3	-	2	-	-	1
CO3	3	-	2	-	-	1
CO4	3	-	2	-	-	1
CO5	3	-	2	-	-	1
22AEOE26	3	-	2	-	-	1
1 - Slight, 2 - Mode	erate, 3 – Sub	ostantial				

ASSESSMENT	PATTERN – THE	CORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluatin	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	g (K5) %	(K6) %	%
CAT1	50%	25%	25%				100%
CAT2	50%	25%	25%				100%
Individual	50%	25%	25%				100%
Assessment 1/		- A	R				
Case Study 1/		16010101	Sei neus Mille	30			
Seminar 1 /		C B B B	Darred				
Project1							
Individual	50%	25%	25%	1			100%
Assessment 2/				10			
Case Study 2/			SV& Y				
Seminar 2 /		A 4					
Project 2							
ESE	50%	25%	25%	A			100%

23AEOE	27	ADVANCED PROCESSOR					
	(Common to all Branches)						
PREREQUIS	ITES		CATEGORY	L	Т	Р	С
		NIL	OE	3	0	0	3
Course	The stu	dents will be able to acquire knowledge about	the high perform	ance R	SC, CIS	C and sp	pecial
Objective	purpose	pose processors.					
UNIT – I	MICF	ROPROCESSOR ARCHITECTURE				9 Pe	riods
Instruction se – Virtual me Instruction le – RISC evalu	et – Data emory a vel para ation.	a formats – Instruction formats – Addressing r and paging – Segmentation – Pipelining – allelism – reduced instruction set – Computer	modes – Memory The instruction principles – RISC	hierarc pipelir Cversus	hy – regi ne – pipo CISC – I	sterfile eline ha RISC pi	– Cache zards – coperties
UNIT – II	HIGH	I PERFORMANCE CISC ARCHITECTU	RE –PENTIUM			9 Per	riods
The software	model	– functional description – CPU pin descri	ptions – Address	sing mo	des – P	rocessor	flags –
Instruction se	et – Bus	s operations – Super scalar architecture – Pipe	e lining – Branch	predict	ion – Th	e instruc	tion and
caches – Floa	ting po	int unit- Programming the Pentium processor.		1			
UNIT – III	HIGH	I PERFORMANCE CISC ARCHITECTU	RE – PENTIUM	INTEF	RFACE	9 Per	riods
Protected mo /Output – Vir	de oper tual 80	ration – Segmentation – paging – Protection 86 model – Interrupt processing.	– multitasking –	Except	ion and i	nterrup	ts- Input
UNIT – IV	HIGH	I PERFORMANCE RISC ARCHITECTUI	RE: ARM			9 Per	riods
ARM architecture – ARM assembly language program – ARM organization and implementation – ARM instruction set - Thumb instruction set.							
UNIT – V	SPEC	IAL PURPOSE PROCESSORS	//			9 Per	riods
Altera Cyclor signal proces Processor. Contact Peri Lecture: 45	ne Proc sor – E ods: Period	essor – Audio codec – Video codec design – Embedded processor – Media Processor – Vi	- Platforms – Gen ideo signal Proce Periods Tota	eral pu ssor – (rpose pro Custom 1	bcessor Hardwa	–Digital re – Co-
REFEREN	CES:						

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System –On –Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, "Embedded Microcomputer Systems" Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COUR	Bloom's	
Upon c	completion of the course, students will be able to	Taxonomy
		Mapped
CO1	Describe the fundamentals of various processor architecture.	K2
CO2	Interpret and understand the high performance features in CISC architecture.	K2
CO3	Describe the concepts of Exception and interrupt processing.	K2
CO4	Develop programming skill for ARM processor.	К3
CO5	Explain various special purpose processor	K2

COURSE ARTICULAT	FION MATH	RIX					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	-	2	-	-	1	-
CO2	3	-	2	-	-	1	1
CO3	3	-	2	-	-	1	1
CO4	3	-	2	-	-	1	1
CO5	3	-	2	-	-	1	1
22AEOE27	3	-	2	-	-	1	1
1 – Slight, 2 – Moderate,	3 – Substant	ial					

ASSESSMENT I	PATTERN – THE	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual		50%	50%				100%
Assessment 1 /		Contra	Andre Britis B 178				
Case Study 1/		U 99	SUTUR G				
Seminar 1 /							
Project1			4	1			
Individual		50%	50%				100%
Assessment 2 /			(SVA)				
Case Study 2/		// 盒					
Seminar 2 /		1 6					
Project 2		系 為		A.			
ESE	30%	40%	30%				100%
		ar co	Los cont P	377			

Γ

HDL PROGRAMMING LANGUAGES

23VI OF28	HDL PROGRAMMING LANGUAGES					
	(Common to al	l Branches)				
PREREQUISIT	TES	CATEGORY	L	Т	Р	С
NIL		OE	0	0	3	
Course	To code and simulate any digital function in Verilog	; HDL and understan	d the	diffe	erence	e between
Objective	synthesizable and non-synthesizable codes.					
UNIT – I	VERILOG INTRODUCTION AND MODELING				9	Periods
Introduction to	Verilog HDL, Language Constructs and Conventions,	Gate Level Modelin	g, M	odeli	ng at	Dataflow
Level, Behaviora	al Modeling, Switch Level Modeling, System Tasks, Fu	inctions and Compile	r Dir	ective	es.	
						. D · 1
UNIT - II	SEQUENTIAL MODELING AND TESTING	11.5 1.16	~		9	Periods
Sequential Mod	els - Feedback Model, Capacitive Model, Implicit Mo	odel, Basic Memory	Com	pone	nts, F	unctional
Register, Static	Machine Coding, Sequential Synthesis. Test Bench	- Combinational Cire	cuits	Testi	ng, S	Sequential
Circuit Testing,	Test Bench Techniques, Design Verification, Assertion	Verification.				
UNIT – III	SYSTEM VERILOG				9	Periods
Introduction, Sy	stem Verilog declaration spaces, System Verilog Lite	eral Values and Buil	t-in 1	Data	Туре	s, System
Verilog User-D	efined and Enumerated Types, system Verilog Arra	ays, Structures and	Unio	ons, s	syster	n verilog
Procedural Bloc	ks, Tasks and Functions.					
UNIT – IV	SYSTEM VERILOG MODELING				9) Periods
System Verilog	Procedural Statements, Modeling Finite State Machi	nes with System Ve	erilog	, Sys	tem	Verilog
Design Hierarch	y. Vs house V					
UNIT – V	INTERFACES AND DESIGN MODEL 9 Periods					Periods
System Verilog Interfaces, A Complete Design Modeled with System Verilog, Behavioral and Transaction Level						
Modeling.						
Contact Periods:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
<u> </u>						
REFEREN	ICES:					

1	T.R.Padmanabhan, B Bala Tripura Sundari, "Design through Verilog HDL", Wiley 2009.
2	Stuart Sutherland, Simon Davidmann, Peter Flake, Foreword by Phil Moorby, "System Verilog For Design
	Second Edition A Guide to Using System Verilog for Hardware Design and Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of Projects on
	FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language Features",
	Springer 2006.
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using System
	Verilog for Hardware Design and Modeling" 1st Edition, 2003

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Explain the verilog coding and simulate any digital function using Verilog HDL	K2
CO2	Develop sequential modeling based Verilog HDL code and develop the test bench	K3
	for the modeling	
CO3	Explain the system verilog modeling	K2
CO4	Differentiate the synthesizable and non-synthesizable code	K3
CO5	Apply good coding techniques on system verilog interfaces and complete design	K3
	model	

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3		2		2		
CO2	3	3		2		2		
CO3	3	3		2		2		
CO4	3	3		2		2		
CO5	3	3		2		2		
23VLOE28	3	3		2		2		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	40%	40%	20%	-	-	-	100%		
CAT2	40%	40%	20%	-	-	-	100%		
Individual	-	50%	50%	-	-	-	100%		
Assessment 1 /		1601010	ISTO NEWS ATTR						
Case Study 1/			DAWARd						
Seminar 1 /									
Project1			4	1					
Individual	-	50%	50%	-	-	-	100%		
Assessment 2 /			SV2 Y	//					
Case Study 2/		自							
Seminar 2 /									
Project 2		A B		VA.					
ESE	40%	40%	20%	-	-	-	100%		
		Quere of a	202	ve					
		C.S.	as accepted	I.					

22VI OF20	CMOS VLSI DESIGN								
23 V LUE 29	(Common to a	ll Branches)							
PREREQUISIT	TES	CATEGORY	L	T	Р	C			
NIL	OE 3					3			
Course	To gain knowledge on CMOS Circuits with its cha	aracterization and to	design	CM	OS log	gic and			
Objective	sub-system with low power	sub-system with low power							
UNIT – I	INTRODUCTION TO MOS CIRCUITS				9 F	Periods			
MOS Transistor	Theory -Introduction MOS Device Design Equati	ons -MOS Transist	or as a	a Sw	itches	- Pass			
Transistor - CM	OS Transmission Gate -Complementary CMOS Inve	erter - Static Load N	AOS In	verte	rs - In	verters			
with NMOS load	ls - Differential Inverter - Tri State Inverter - BiCMOS	S Inverter.							
UNIT – II	CIRCUIT CHARACTERIZATION AN	D PERFORMA	ANCE		9 F	Periods			
	ESTIMATION								
Delay Estimation	n, Logical Effort and Transistor Sizing, Power Dissig	oation, Sizing Routin	ng Con	ducto	ors, Ch	arge			
Sharing, Design	Margin and Reliability.								
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN				9 F	Periods			
CMOS Logic Ga	ate Design, Physical Design of CMOS Gate, Designing	ng with Transmissio	on Gate	s, CN	10S L	ogic			
Structures, Clock	king Strategies, I/O Structures.								
UNIT – IV	CMOS SUBSYSTEM DESIGN				9 F	Periods			
DataPath Opera	ations-Addition/Subtraction, Parity Generators, Co	omparators, Zero/O	ne De	tecto	rs, Bi	nary			
Counters, ALUs	, Multipliers, Shifters, Memory Elements, Control-FSI	M, Control Logic Im	plemei	ntatio	n.				
UNIT – V	LOWPOWERCMOS VLSIDESIGN				9 F	Periods			
Introduction to L	ow Power Design, Power Dissipation in FET Devices	s, Power Dissipation	in CM	OS, I	Low-P	ower			
Design through Voltage Scaling - VTCMOS Circuits, MTCMOS Circuits, Architectural Level Approach -									
Pipelining and Parallel Processing Approaches, Low Power Basics CMOS Gate and Adder Design.									
Contact Poriods:									
Contact Ferrous. Lastura: 15 Pariods Tutarial: A Pariods Practical: A Pariods Tatal: 15 Pariods									
Lecture, 45 rerious rutorial: o rerious rractical, o rerious rotal, 45 rerious									
		8							
REFEREN	CES:	1/							

1	Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata Mc-Graw Hill,								
	2011.								
2	N.Weste and K.Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley, 1998.								
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems								
	Perspective", Pearson Education 2013.								
4	Kiat-Seng Yeo, Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill Professional, 2004.								
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.								
6	Jan M. Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.								

COUF	COURSE OUTCOMES:			
		Taxonomy		
Upon o	Mapped			
CO1	Explain the MOS circuits and Transmission gates	K2		
CO2	Illustrate the CMOS Circuits with its characterization	K2		
CO3	Design CMOS logic circuits	К3		
CO4	Design CMOS sub-system	К3		
CO5	Discuss low power CMOS VLSI Design	K2		

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	-	2	-	3		
CO2	2	1	-	2	-	3		
CO3	2	1	-	2	-	3		
CO4	3	1	-	2	-	3		
CO5	3	1	-	2	-	3		
23VLOE29	3	1	-	2	-	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1	40%	40%	20%	-	-	-	100%	
CAT2	40%	40%	20%	-	-	-	100%	
Individual	-	50%	50%	-	-	-	100%	
Assessment 1/		16011010	10500 preus \$17					
Case Study 1/		V53	MARCE					
Seminar 1/								
Project1			4	(
Individual	-	50%	50%	-	-	-	100%	
Assessment 2 /			(ANA)					
Case Study 2/		// 食						
Seminar 2/		1 8						
Project 2		X JA		A				
ESE	40%	40%	20%		-	-	100%	
		Que rel la	0000	15400				
		100	AL BOOC	D'				

223/1 0.520	HIGH LEVEL SYNTHESIS							
23VLOE30	(Common to all Branches)							
PREREQUISI	TES CATEGORY	L	Τ	P	С			
NIL	OE	3	0	0	3			
Course	To provide students with foundations in High level synthesis, verification a	nd CA	D To	ools				
Objective								
UNIT – I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS		9	Peri	ods			
Overview HLS	flow, Scheduling Techniques, Resource sharing and Binding Technic	ues, I)ata-p	ath	and			
Controller Gene	eration Techniques.							
UNIT – II		9	Peri	ods				
Introduction to	HDL, HDL to DFG, operation scheduling: constrained and unconstrained	sched	uling	, AS	AP,			
ALAP, List sch	neduling, Force directed Scheduling, operator binding, Static Timing Ana	ysis: I	Delay	mod	els,			
setup time, hold	l time, cycle time, critical paths, Topological mvs. Logical timing analysis,	False	paths	, Arr	ival			
time (AT), Requ	aired arrival Time (RAT), Slacks.							
UNIT – III	HIGH-LEVEL SYNTHESIS VERIFICATION		9 Periods					
Simulation bas	ed verification - Formal Verification of digital systems- BDD based ap	proach	es, fi	inctic	onal			
equivalence, fin	ite state automata, ω-automata, FSM verification.							
UNIT – IV	CAD TOOLS FOR SYNTHESIS		9	Peri	ods			
CAD tools for	synthesis, optimization, simulation and verification of design at various	evels a	is we	ll as	for			
special realizati	ons and structures such as microprogrammes, PLAs, gate arrays etc. Tech	nology	' map	ping	for			
FPGAs. Low po	ower issues in high level synthesis and logic synthesis.							
UNIT – V	ADVANCED TOPICS		9	Peri	ods			
Relative Schedu	ling, IO scheduling modes - cycle fixed scheduling modes, super-fixed sch	eduling	g mod	les, fi	ree-			
floating schedul	ing mode, Pipelining, Handshaking, System Design, High-Level Synthesis f	or FPG	A.					
Contact Period	s:							
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							
REFEREN	CES:							
1 Philippe	Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Dig	gital Ci	rcuit	",				
Springer	<i>; 2008.</i>							
2 Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.								

3 D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.

4 Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.

5 Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)

6 David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and Synchronization Constraints", Kluwer Academic Publishers, 1992.

7 K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999, Wiley.

8 Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System Design and Analysis", Springer, 2006.

COUR	COURSE OUTCOMES:				
		Taxonomy			
Upon completion of the course, the students will be able to:					
CO1	Understand the fundamentals of High level synthesis	K2			
CO2	Synthesis the HDL for operation scheduling	K2			
CO3	Simulate and verify any digital systems	K2			
CO4	Apply CAD tools for synthesis	K2			
CO5	Have knowledge on various scheduling modes				
-----	--				
COU	RSE ARTICULATION MATRIX:				

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2	2	-	2	2	-				
CO2	2	2	-	2	2	-				
CO3	2	2	-	2	2	-				
CO4	2	2	-	2	2	-				
CO5	2	2	-	2	2	-				
23VLOE30	2	2	-	2	2	-				

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluati ng (K5) %	Creatin g (K6) %	Total %		
CAT1	50%	50%		-	-	-	100%		
CAT2	50%	50%		-	-	-	100%		
Individual	-	50%	50%	-	-	-	100%		
Assessment 1/		COLDING STATE	1						
Case Study 1/		(White	ALCONTROL	\sim					
Seminar 1 /		92							
Project1				. 77					
Individual	-	50%	50%	<i>((</i> -	-	-	100%		
Assessment 2/			AND						
Case Study 2/				1					
Seminar 2/		1 &							
Project 2		A Q							
ESE	50%	50%			-	-	100%		

K2

23CSOE31

ARTIFICIAL INTELLIGENCE (Common to all Branches)

	(Common to an	Drunenes)							
PREREQUISIT	TES	CATEGORY	L	Т	P	С			
	NIL	OE	3 0 0						
Course	Identify and apply AI techniques in the design of systems that act intelligently, making								
Objectives	automatic decisions and learn from experience.	automatic decisions and learn from experience.							
UNIT – I	SEARCH STRATEGIES				9 P	eriods			
Uninformed Str	ategies – BFS, DFS, Djisktra, Informed Strategi	es – A* search, He	uristic	e func	tions	, Hill			
Climbing, Adver	rsarial Search – Min-max algorithm, Alpha-beta Pru	ining							
UNIT – II	PLANNING AND REASONING				9 P	eriods			
State Space sear	rch, Planning Graphs, Partial order planning, Unce	ertain Reasoning – Pr	obabi	listic 1	Reas	oning,			
Bayesian Netwo	rks, Dempster Shafer Theory, Fuzzy logic								
UNIT – III	PROBABILISTIC REASONING				9 P	eriods			
Probabilistic Re	asoning over Time - Hidden Markov Models, Kal	lman Filters, Dynami	c Bay	vesian	Netv	vorks.			
Knowledge Rep	resentations – Ontological Engineering, Semantic N	etworks and descript	ion lo	gics.					
UNIT – IV	DECISION MAKING				9 P	eriods			
Utility Theory,	Utility Functions, Decision Networks - Sequential	Decision Problems	– Part	ially (Obse	rvable			
MDPs – Game 7	Theory.								
UNIT – V	REINFORCEMENT LEARNING	0			9 P	eriods			
Reinforcement I	Learning - Passive and active reinforcement learning	g - Generations in Rei	nforce	ement	Lear	ning -			
Policy Search –	Deep Reinforcement Learning.								
Contact Period	s:	77							
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Periods	5						
REFERE	NCES :								

REFERENCES:

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice
	Hall,2010.
4	Elaine Rich, Kevin Knight, Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw Hill,
	2009.

COUR	Bloom's Taxonomy	
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	K3
CO3	Examine data using statistical codes and solve complex AI problems	K6
CO4	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	K6

COURSE ARTICULATION MATRIX									
COs/ POs	PO 1	PO2	PO 3	PO 4	PO5	PO6			
CO1	3		2		3	3			
CO2	3		2		3	3			
CO3	3		3		3	3			
CO4	3		3		3	3			
CO5	3		3		3	3			
23CSOE31	3		3		3	3			

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1		20	40	20	20		100			
CAT2		10	20	40	10	20	100			
Individual										
Assessment 1/										
Case study 1/					50	50	100			
Seminar 1/										
Project 1										
Individual										
Assessment 2/										
Case study 2/					50	50	100			
Seminar 2/		-M	mm							
Project 2			C States	0						
ESE	30	-30	40	2			100			

23CSOF32	COMPUTER NETWORK MANAGEMENT									
2JUSUEJ2	(Common to all	l Branches)								
PREREQUIS	SITES	CATEGORY	L	T	P	С				
	NIL	OE	3	0	0	3				
Course	After the completion of the course, the students will be able to understand the concept of layering									
Objectives	in networks, functions of protocols of each layer of	TCP/IP protocol	suite, c	once	pts re	lated to				
	network addressing and routing and build simple LA	Ns, perform basic	configu	ratio	ns foi	routers				
	and switches, and implement IPv4 and IPv6 addressin	ig schemes using (Cisco Pa	cket	Trace	er.				
UNIT – I	INTRODUCTION AND APPLICATION LAYER				9	Periods				
Building netv	vork - Network Edge and Core - Layered Architec	ture – OSI Mode	el – Inte	ernet	Arch	itecture				
(TCP/IP) Net	working Devices: Hubs, Bridges, Switches, Routers	s, and Gateways	– Perfo	rmar	nce M	letrics -				
Ethernet Netw	vorking – Introduction to Sockets – Application Layer	protocols – HTTP	P – FTP	Ema	il Pro	tocols –				
DNS.					~ `	D • •				
	TRANSPORT LAYER AND ROUTING			T 1	9	Periods				
Transport La	yer functions –User Datagram Protocol – Transmis	ssion Control Pro	tocol –	- Flo	w Co	ontrol –				
Retransmissio	n Strategies – Congestion Control - Routing Princip.	$(O_{2}S) C_{2} = S_{2} + \frac{1}{2}$	ctor Ko	uting	; – L11	1K State				
Routing – Kir	eket tracer	(QoS).Case Study	: Confi	gurir	ig Kli	, USPF				
		9			0	Pariods				
Network Lave	r: Switching concents - Internet Protocol - IPV/4 Pac	ket Format – IP A	ddressi	na _	Subn	etting _				
Classless Inte	r Domain Routing (CIDR) – Variable Length Subnet	Mask (VLSM) –	DHCP -	- AF	2P – 1	Jetwork				
Address Tran	slation (NAT) – ICMP – Concept of SDN.Case Stud	v: Configuring VI	LAN. D	HCI	P. NA	T using				
Packet tracer			,		,	0				
UNIT – IV	INTERNETWORK MANAGEMENT				9	Periods				
Introduction t	o the Cisco IOS - Router User Interface - CLI - Rou	uter and Switch A	dminist	rativ	e Fun	ctions -				
Router Interfa	ces - Viewing, Saving, and Erasing Configurations - S	Switching Services	- Conf	iguri	ng Sw	vitches -				
Managing Co	onfiguration Registers - Backing Up and Restoring	g IOS - Backing	g Up a	nd I	Restor	ring the				
Configuration	- Using Discovery Protocol (CDP) - Checking Networ	rk Connectivity								
UNIT – V	TRAFFIC MANAGEMENT AND WAN PROT	OCOLS			9	Periods				
Managing Tra	ffic with Access Lists: Introduction to Access Lists	- Standard Access	Lists -	Ext	ended	Access				
Lists - Named	Access Lists - Monitoring Access Lists - Wide Area	Networking Protoc	cols: Int	rodu	ction	to Wide				
Area Network	s - Cabling the Wide Area Network - High-Level Data	a-Link Control (H	DLC) P	roto	col - F	oint-to-				
Point Protoco	(PPP) - Frame Relay: Frame Relay Implementation a	and Monitoring - In	ntegrate	d Se	rvices	Digital				
Network (ISD	N) - Dial-on-Demand Routing (DDR): Configuring D	DR								
Contact Periods:										
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Perio	ods Total: 45 Pe	riods							
DEFEDE	NCES									
1 James F	Kurose Keith W Ross "Computer Networking.	A Ton-Down An	nroach	<u>" s</u>	ovontl	n Edition				
Pearson E	Education, 2017.	21 τυρ-συώπ Αρ	prouch	, 0	eventi					
2 William S	tallings, "Data and Computer Communications", Ten	th Edition, Pearso	n Educ	ation	, 201-	4				
3 Larry L.	Peterson, Bruce S. Davie, "Computer Networks: A	Systems Approac	ch", Fif	th E	dition	, Morgai				
Kaufmann	Publishers Inc., 2011.									

4 Todd Lammle, "CCNATM: Cisco[®] Certified Network Associate Study Guide", 5th Edition, Sybex, 2003

5 Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw Hill, 2012.

6 Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	K3
CO4	Build simple LANs, perform basic configurations for routers and switches	K6
CO5	Illustrate various WAN protocols	K2

COURSE ARTICULATION MATRIX

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3		2	1
CO2	3		3		2	2
CO3	3		3		3	2
CO4	3		3		3	3
CO5	3		3		3	3
23CSOE32	3		3	mo	3	2
1 - Slight, 2 -	Moderate	, 3 – Substanti	al	CHUN BRIDE	10	

ASSESSMENT PATTERN – THEORY (Times New Roman, Size 11)										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
Category*			SV& Y							
CAT1	30	30	20	20			100			
CAT2		30	20	30	10	10	100			
Individual	10	30	20	20	20		100			
Assessment 1/										
Case Study 1/		Que con	DON'S OF	50						
Seminar 1/		CE A	S SCELES	7						
Project 1										
Individual		20	20	20	20	20	100			
Assessment 2/										
Case Study 2/										
Seminar 2/										
Project 2										
ESE	20	40	40				100			

BI OCKCHAIN TECHNOLOCIES

23(50)	E33	1	BLUCKCHAIN IECHNU	DLOGIES				
	200		(Common to all Bran	ches)				
PREREQUIS	SITES			CATEGORY	L	T	P	C
		NIL		OE	3	0	0	3
Course	Гhe obj	ective of the course is to explo	ore basics of block chain tee	chnology and its applie	cation	in v	ario	us
Objectives d	lomaiir	l						
UNIT – I I	INTRO	DUCTION OF CRYPTOGI	RAPHY AND BLOCKCH	AIN		9]	Peri	ods
History of B	lockcha	ain - Types of blockchain-	· CAP theorem and block	chain – benefits and	l Lim	itatio	ons	of
Blockchain –	Decent	alization using blockchain – I	Blockchain implementation	s- Block chain in prac	tical 1	use -	Leg	gal
and Governan	ce Use	Cases						
UNIT – II 🛛 I	BITCO	IN AND CRYPTOCURREN	NCY			9]	Peri	ods
Introduction to	o Bitco	in, The Bitcoin Network, The	Bitcoin Mining Process, N	lining Developments,	Bitco	in W	alle	ts,
Decentralizati	on and	l Hard Forks, Ethereum Vi	irtual Machine (EVM), M	lerkle Tree, Double-	Spend	l Pr	oble	m,
Blockchain an	nd Digit	al Currency, Transactional Bl	ocks, Impact of Blockchain	Technology on Crypto	ocurre	ency		
UNIT – III 🛛 I	ETHE	REUM				9]	Peri	ods
Introduction to	o Ether	eum, Consensus Mechanisms	, Metamask Setup, Ethereur	m Accounts, , Transac	tions,	Rec	eivi	ng
Ethers, Smart	Contra	cts						
UNIT – IV	HYPEI	RLEDGER AND SOLIDITY	PROGRAMMING			9]	Peri	ods
Introduction t	ю Нур	erledger, Distributed Ledger	Technology & its Challeng	ges, Hyperledger & D	istrib	uted	Led	lger
Technology, H	Iyperle	dger Fabric, Hyperledger Con	nposer. Solidity – Programn	ning with solidity				
UNIT – V	BLOCI	KCHAIN APPLICATIONS	NOTION OF			9]	Peri	ods
Ten Steps to	build y	our Blockchain application -	- Application: Internet of	Things, Medical Reco	ord M	anag	geme	ent
System, Doma	ain Nar	ne Service and Future of Bloch	kchain, Alt Coins					
Contact Perio	ods:							
Lecture: 45 P	Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods				
		// B						
REFE	RENC	ES:						
1 Imran Bo	ashir,	"Mastering Blockchain: Dis	stributed Ledger Technolo	ogy, Decentralization	, and	l Sn	art	
Contracts	s Expla	ined", Second Edition, Packt	Publishing, 2018.					
	- 1			Developing D.	T			\neg

- 2 Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and Technology Solutions", McGraw Hill Education ,2018.
- 3 Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction" Princeton University Press, 2016.
- 4 Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.
- 5 Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly Publishing, 2018
- 6 NPTEL Course : Blockchain and its applications https://archive.nptel.ac.in/courses/106/105/106105235/

COURSE OUTCOMES:				
		Taxonom		
Upon c	Upon completion of the course, the students will be able to:			
CO1	Comprehend the working of Blockchain technology	K2		
CO2	Narrate working principle of smart contracts and create them using solidity for given	K3		
	scenario.			
CO3	Comprehend the working of Hyperledger in an real time application	K2		
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum	K3		
CO5	Develop applications on Blockchain	K3		

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2		3	2		3	
CO2	2	3	3	3	2	3	
CO3	3		3	2		3	
CO4	3	3	3	3	2	3	
CO5	3	3	3	3	2	3	
23CSOE33	3	3	3	3	2	3	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	20	40	40				100	
CAT2	20	30	50				100	
Individual			000000					
Assessment 1/		30	70				100	
Case Study 1/		Nov Los	Sto Br. US	2)				
Seminar 1 /		492	and the second					
Project1				77				
Individual			* /					
Assessment 2/		40	60				100	
Case Study 2/		// .16						
Seminar 2 /								
Project 2				6				
ESE	10	60	30	53			100	

23GEACZ1		ENGLISH FOR RESEARCH PAPER WRITING (Common to all Branches)								
PREREQUIS	SITES		CATEGORY	L	Т	P	С			
		NIL	AC	2	0	0	0			
Course		The objective of the course is to make the learners understand the format and intricacies								
Objective	S	involved in writing a research paper.								
UNIT – I		PLANNING AND PREPARATION			(6 Peri	ods			
Need for publ	ishing	articles, Choosing the journal, Identifying a mod	lel journal paper, (Creation	1 of fi	les fo	r each			
section, Expec	ctation	s of Referees, Online Resources.								
UNIT – II		SENTENCES AND PARAGRAPHS			(6 Peri	ods			
Basic word in	n Engl	ish, Word order in English and Vernacular, plac	ing nouns, Verbs,	Adject	ives,	and A	dverb			
suitably in a s	senten	ce, Using Short Sentences, Discourse Markers a	nd Punctuations- S	Structur	e of a	Para	graph,			
Breaking up le	engthy	Paragraphs.								
UNIT – III		ACCURACY, BREVITY AND CLARITY (A	BC) OF WRITIN	G	(5 Peri	ods			
Accuracy, Bre	evity a	nd Clarity in Writing, Reducing the linking word	s, Avoiding redund	ancy, A	pprop	oriate	use of			
Relative and	Refley	tive Pronouns, Monologophobia, verifying the jo	ournal style, Logic	al Con	nectio	ns be	etween			
others author'	s find	ngs and yours.								
UNIT – IV		HIGHLIGHTING FINDINGS, HEDGING A	ND PARAPHRA	SING	(6 Peri	ods			
Making your	findi	ngs stand out, Using bullet points headings, Ta	bles and Graphs-	Availi	ng	non-e	xperts			
opinions, Hedging, Toning Down Verbs, Adjectives, Not over hedging, Limitations of your research.										
UNIT – V		SECTIONS OF A PAPER 6 Periods								
Titles, Abstracts, Introduction, Review of Literature, Methods, Results, Discussion, Conclusions, References.										
Contact Perio	ods:									
Lecture: 30	Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods									

REFERENCES :

	(Hardin Tax					
1	Goldbort R, "Writing for Science", Yale University Press (available on GoogleBooks),2006					
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.					
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.					

4 Adrian Wallwork," **English for Writing Research Papers**", Springer New York Dordrecht Heidelberg London, 2011.

COURSE OUTCOMES :				
Upon completion of this course the learners will be able to				
CO1	Understand the need for writing good research paper.	K2		
CO2	Practice the appropriate word order, sentence structure and paragraph	K4		
	writing.			
CO3	Practice unambiguous writing.	K3		
CO4	Avoid wordiness in writing.	K2		
CO5	Exercise the elements involved in writing journal paper.	K3		

COURSE ARTICULATION MATRIX :							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	3	1	1	1	1	
CO2	3	3	1	1	1	1	
CO3	3	3	1	1	1	1	
CO4	3	3	1	1	1	1	
CO5	3	3	1	1	1	1	
23GEACZ1	3	3	1	1	1	1	
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT P	ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
CAT1	40	40	20	-	-	-	100	
CAT2	40	40	20	-	-	-	100	
Individual			E.					
Assessment 1/		10010	Dansto grus ar	NC 2				
Case Study 1/	-	50	50	- 🔍	-	-	100	
Seminar 1/								
Project 1			4					
Individual								
Assessment 2/								
Case Study 2/	-	50	50	-	-	-	100	
Seminar 2/		1 9						
Project 2		AL N	6	A				
ESE	30	30	40		-	-	100	
	-	00.000	S DOD	acute .				
		100	San Beech	I A				

22CEAC72	DISASTER MANAGEMENT						
23GEAUZZ	(Common to all Branches)						
Course	• To become familiar in key concepts and consequences about hazards, disaster and						
Objectives	area of occurrence.						
	• To know the various steps in disaster planning.						
	• To create awareness on disaster preparedness and management.						
UNIT – I	INTRODUCTION	6 Periods					
Disaster: Defini	tion, Factors and Significance; Difference between Hazard and Dis	aster; Natural and					
Manmade Disas	ters: Difference, Nature, Types and Magnitude. Areas proneto ,E	arthquakesFloods,					
Droughts, Lands	lides ,Avalanches ,Cyclone and Coastal Hazards with Special Reference to	o Tsunami.					
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods					
Economic Dama	age, Loss of Human and Animal Life, Destruction of Ecosystem.	Natural Disasters:					
Earthquakes, Vo	lcanisms, Cyclones, Tsunamis, Floods, Droughts and Famines, Landslid	es and Avalanches,					
Man-made disas	ter: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks and S	pills, Outbreaks of					
Disease and Epic	lemics, War and Conflicts.						
UNIT – III	DISASTER PLANNING	6 Periods					
Disaster Planning	g-Disaster Response Personnel roles and duties, Community Mitigation	Goals, Pre-Disaster					
Mitigation Plan,	Personnel Training, Comprehensive Emergency Management, Early Warn	ning Systems.					
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT	6 Periods					
Preparedness: M	onitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of F	Risk: Application of					
Remote Sensing	, Data from Meteorological and other Agencies, Media Reports:	Governmental and					
Community Prep	aredness.						
UNIT – V	RISK ASSESSMENT	6 Periods					
Disaster Risk: Co	oncept and Elements, Disaster Risk Reduction, Global and National Disa	ster Risk Situation.					
Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's							
Participation in Risk Assessment, Strategies for Survival.							
Contact Periods:							
Lecture:30 Periods Tutorial: 0 Periods Practical: 0Periods Total: 30 Periods							
	The second sub-sup-						
REFERENC	ES:						

R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies", New Royal book Company, 2007. Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi, 2010 Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep &Deep Publication Pvt. Ltd., New Delhi, 2008. Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International Publishing House Pvt. Ltd., New Delhi, 2007. Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015 Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon completion of the course, the students will be able to:		
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4

CO5	Prepare risk assessment strategy for national and global disaster.	K4

COURSE ARTICULATIO	COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5							
CO1	2	1	1	2	2							
CO2	1	2	1	1	1							
CO3	1	1	1	2	2							
CO4	1	1	1	2	2							
CO5	2	1	1	2	2							
23GEACZ2	1	1	1	2	2							
1 - Slight, 2 - Moderate, 3 -	- Substantial											

ASSESSMENT	PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2		6	100				100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	50	50					100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2			100				100
ESE	25	25	50	12			100

23GEACZ3

VALUE EDUCATION (Common to all Branches)

	<u> </u>	,									
PREREQUISITE	ES	CATEGORY	L	Т	P	С					
	0	0	0								
Course	• Value of education and self- developm	• Value of education and self- development									
Objectives	• Requirements of good values in stude	ents									
	• Importance of character										
UNIT – I	ETHICS AND SELF-DEVELOPMENT				61	Periods					
Social values and	d individual attitudes. Work ethics, Indian visio	on of humanism.	Mora	and	1 nor	n-moral					
valuation. Standar	ds and principles. Value judgements.										
UNIT – II	PERSONALITY AND BEHAVIOR DEVE	LOPMENT			61	Periods					
Soul and Scient	tific attitude. Positive Thinking. Integrity a	nd discipline. Pu	inctua	lity,	Lov	e and					
Kindness. Avoid	fault Thinking. Free from anger, Dignity of labo	our. Universal brot	therho	od a	nd re	ligious					
tolerance.											
UNIT – III	VALUES IN HUMAN LIFE				6 1	Periods					
Importance of cu	ltivation of values, Sense of duty. Devotion, S	Self-reliance. Conf	idence	, Co	ncen	tration.					
Truthfulness, Clea	anliness. Honesty, Humanity. Power of faith, Nat	tional Unity. Patric	otism.	Love	e for	nature,					
Discipline.	Biller Danse grub stigge	20									
UNIT – IV	VALUES IN SOCIETY	D			6 1	Periods					
True friendship.	Happiness Vs suffering, love for truth. Aware	e of self-destructiv	ve hal	oits.	Asso	ciation					
andCooperation. I	Doing best for saving nature.	(
UNIT – V	POSITIVE VALUES				6 1	Periods					
Character and Co	ompetence -Holy books vs Blind faith. Self-ma	anagement and Go	od he	alth.	Scie	ence of					
reincarnation. Equ	ality, Nonviolence, Humility, Role of Women. A	ll religions and san	ne mes	sage	. Mir	nd your					
Mind, Self-contro	l. Honesty, Studying effectively.	3									
Contact Periods :		98									
Lecture: 30 Perio	ods Tutorial: 0 Periods Practical: 0 Pe	eriods Total: 30) Peri	ods							
	105 00 00 CD										

REFERENCES :

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press,
	New Delhi, 1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi, 2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi, 2004
4	https://nptel.ac.in/courses/109104068/36

COU	RSE OUTCOMES :	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Know the values and work ethics.	K3
CO2	Enhance personality and 157ehavior development.	K3
CO3	Apply the values in human life.	K3
CO4	Gain Knowledge of values in society.	K3
CO5	Learn the importance of positive values in human life.	K3

COURSE ARTICULATION MATRIX												
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6						
CO1	-	-	3	-	-	1						
CO2	-	-	3	-	-	1						
CO3	-	-	3	-	-	1						
CO4	-	-	3	-	-	1						
CO5	-	-	3	-	-	1						
23GEACZ3	-	-	3	-	-	1						
1 – Slight, 2 – Moderate, 3 – Sub	ostantial											

ASSESSMENT	PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%		-	-	100%
ESE	20%	50%	30%		-	-	100%

23GEACZ4		CONSTITUTION OF IND	IA				
		(Common to all Branche	s)	1			1
PREREQUISIT	ES		CATEGORY	L	Т	Р	C
NIL			AC	2	0	0	0
Course		• To address the importance of constitutional rights and du	ties				
Objectives		• To familiarize about Indian governance and local administ	stration.				
		• To know about the functions of election commission.					
UNIT – I	IN	IDIAN CONSTITUTION			6 I	Peri	ods
History of Making	g of	the Indian Constitution: History Drafting Committee, (Compos	sition & Working) - P	hilos	oph	v of
the Indian Constit	utic	n: Preamble Salient Features.		/		1	0
UNIT – II	C	ONSTITUTIONAL RIGHTS & DUTIES			6 I	Peri	ods
Contours of Cons	titu	tional Rights & Duties: Fundamental Rights, Right to Equality	, Right to Freedo	om, F	Right	aga	inst
Exploitation, Rig	ht t	o Freedom of Religion, Cultural and Educational Rights, R	ight to Constitut	tiona	l Re	med	lies,
Directive Principle	es c	f State Policy, Fundamental Duties.	C				ŕ
UNIT – III	0	RGANS OF GOVERNANCE			6 I	Peri	ods
Organs of Gover	rnaı	nce: Parliament, Composition, Qualifications and Disqualif	ications, Powers	and	l Fu	ncti	ons,
Executive, Preside	ent,	Governor, Council of Ministers, Judiciary, Appointment and	Transfer of Judge	s, Qı	ıalifi	cati	ons,
Powers and Funct	ion	S. Comming					
UNIT – IV	L	OCAL ADMINISTRATION			6 I	Peri	ods
Local Administrat	tion	: District's Administration head: Role and Importance, Munic	ipalities: Introduc	ction	, Ma	yor	and
role of Elected R	Repr	esentative, CEO of Municipal Corporation. Panchayat raj: In	ntroduction, PRI:	Zila	ı Par	ncha	yat.
Elected officials	and	their roles, CEO Zila Panchayat: Position and role. Block	level: Organiza	tiona	ıl Hi	erar	chy
(Different departn	nen	ts), Village level: Role of Elected and Appointed officials, Impo	ortance of grass ro	oot d	emoc	racy	у.
UNIT – V	E	LECTION COMMISSION			6 I	Peri	ods
Election Commis	ssio	n: Role and Functioning. Chief Election Commissioner and	d Election Com	nissi	oner	s. S	tate
Election Commiss	sion	: Role and Functioning. Institute and Bodies for the welfare of	SC/ST/OBC and	wom	en.		
Contact Periods:			、 · · 1				
Lecture: 30 Perio	Das	i utoriai: o Periods Practical: o Periods Total: 30 I	riods				
REFERENCES:							
1 "The Constitu	utio	n of India", 1950 (Bare Act), Government Publication.					
2 Dr. S. N. Busi	i, D	r. B. R. Ambedkar "Framing of Indian Constitution", 1st Editi	on, 2015.				
2 M D L · $2T$. 1.					ł	

3 M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.

4 D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed the	K2
	conceptualization of social reforms leading to revolution in India.	
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	-	-	1	1	1	1					
CO2	-	-	1	1	1	2					
CO3	-	-	1	1	2	1					
CO4	-	-	1	1	1	1					
CO5	-	-	1	1	1	1					
23GEACZ4	-	-	1	1	1	1					
1 - Slight, 2 - Moderate	e, 3 – Substantial	l									

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%		-	-	100%
ESE	20%	50%	30%	- (ev	-	-	100%
		Con and a second	00 000000	T			1

23GEAC	225	PEDAGOGY STUDIES (Common to all Branches)									
PREREOUISIT	TES		CATEGORY	L	Т	P	C				
NIL			AC	2	0	0	0				
Course	• T	o understand of various theories of learning, prevailing pedagogical practices and									
Objectives	de	esign of curriculum in engineering studies.		C	•						
-	• A	pplication of knowledge in modification of curric	ulum, its assessn	nent a	nd int	rodu	ction				
	ot	f innovation in teaching methodology.	,								
UNIT – I	INTROD	UCTION			61	Perio	ds				
Introduction and	l Methodol	ogy: Aims and rationale, Policy background, Co	nceptual framew	ork a	nd ter	mino	logy				
Theories of lear	ning, Curri	culum, Teacher education. Conceptual framewo	ork, Research que	estions	. Ove	erviev	w of				
methodology and	d Searching		•								
UNIT – II	PEDAGO	OGICAL PRACTICES			61	Perio	ds				
Thematic overvi	iew: Pedag	ogical practices are being used by teachers in	formal and inf	ormal	class	room	is in				
developing cour	ntries. Curr	iculum. Teacher education. Evidence on the e	ffectiveness of p	edago	gical	prac	tices				
Methodology for	the in dep	h stage: quality assessment of included studies.	r	8-	0	r					
UNIT – III	PEDAGO	OGICAL APPROACHES			61	Perio	ds				
How can teache	r education	(curriculum and practicum) and the school cu	rriculum and gui	dance	mate	rials	best				
support effectiv	e nedagog	v^{2} Theory of change Strength and nature of	the body of ev	idence	for	effe	ctive				
pedagogical prac	tices. Peda	gogic theory and pedagogical approaches. Teache	r's attitudes and h	beliefs	and F	Pedag	ogic				
strategies.		8-8				2	- 8				
UNIT_IV	PROFES	SIONAL DEVELOPMENT			61	Perio	de				
					Sum		<u>us</u>				
the head teacher	elopment:	augnment with classroom practices and follow-up	support. Peer su	ippori	, Sup	port 1	rom				
class sizes.	and the co	mmunity. Curriculum and assessment Barriers to	earning: inmited	1 reso	irces	and	arge				
UNIT – V	CURRIC	ULUM AND ASSESSMENT			61	Perio	ds				
Research gans	and future	directions Research design Contexts Pedagogy	. Teacher educat	tion (urrici	ulum	and				
assessment Disse	emination a	nd research impact.	reacher educat	lion C	unite	414111	ana				
Contact Periods	S:	-									
Lecture: 30 Per	iods 7	futorial: 0 Periods Practical: 0 Periods Tot	al: 30 Periods								
REFERENCES 1 Ackers J, H	: Iardman F ,	Classroom interaction in Kenyan primary schoo	ols, Compare, 31	(2): 24	15-26	1, 200	01.				
2 Alexander	DI Culture	and nadagaony. International companisons in nu	in am advation	Orto	nd an	$1 D_{00}$	ton				

- Alexander RJ, Culture and pedagogy: International comparisons in primary education. Oxford and Boston: Blackwell, 2001
 Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and mading in African Development and the mathematical basic maths and
- reading in Africa: Does teacher preparation count? International Journal Educational Development, 33 (3): 272–282, 2013.
 4 Agrawal M, Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies, 36
 - (3): 361-379, 2004

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Explain the concept of curriculum, formal and informal education systems and teacher	K3
	education.	

CO2	Explain the present pedagogical practices and the changes occurring in pedagogical approaches									
CO3	Understand the relation between teacher and community, support from various levels of K3 teachers to students and limitation in resources and size of the class.									
CO4	Perform research in design a problem in pedagogy and curriculum development. K3									
COUR	SE ARTICU	LATION MAT	RIX							
С	Os/POs	PO1	PO2	PO3	PO4	PO5	PO6			
	CO1	-	-	1	1	2	1			
	CO2	-	-	1	1	1	2			
	CO3	-	-	1	1	2	1			
	CO4	-	-	1	1	2	1			
230	GEACZ5	-	-	1	1	2	1			
1 – Slig	ght, 2 – Moder	ate, 3 – Substan	tial	<u> </u>	1					

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20%	50%	30%	201	-	-	100%				
CAT2	20%	50%	30%	×-	-	-	100%				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%		-	-	100%				
ESE	20%	50%	30%	-	-	-	100%				

22054076		STRESS MANAGEMENT BY YOGA										
ZJGŁAUZ	D	(Common to all Branches)										
PREREQUISIT	PREREQUISITES CATEGORY L 7											
		NIL	AC	2	0	0	0					
Course	•	To create awareness on the benefits of yoga a	and meditation.									
Objectives	•	To understand the significance of Asana and	Pranayama.									
UNIT – I	PHYS	SICAL STRUCTURE AND ITS FUNCTION	S			6 P	eriods					
Yoga - Physical	structu	re, Importance of physical exercise, Rules and	regulation of simplifi	ied pl	nysic	al exe	rcises,					
hand exercise,	leg e	xercise, breathing exercise, eye exercise, h	kapalapathy, maharas	sana,	boc	ly ma	assage,					
acupressure, bod	ly relax	ation.										
UNIT – II	YOG	A TERMINOLOGIES				6 P	eriods					
Yamas - Ahimsa	i, satya	astheya, bramhacharya, aparigraha										
Niyamas- Sauch	a, santo	osha, tapas, svadhyaya, Ishvara pranidhana.										
UNIT – III	ASA	NA				6 P	eriods					
Asana - Rules &	Regula	ations – Types & Benefits										
UNIT – IV	PRA	NAYAMA				6 P	eriods					
Regularization o	f breatl	ning techniques and its effects-Types of pranaya	uma									
UNIT – V	MIN					6 P	eriods					
Bio magnetism&	k mind	- imprinting & magnifying - eight essential fac	tors of living beings,	Ment	tal fr	equen	cy and					
ten stages of mir	nd, bene	efits of meditation, such as perspicacity, magnan	nimity, receptivity, ad	aptab	ility,	creat	ivity.					
Contact Period	s:	Contraction of the second s	9									
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods												
REFERENCES	•											

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas jor Group Training-Part-1", Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", Advaita Ashrama (Publication
	Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New Dawn Press,
	New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi, 2007.

C

COUR	Bloom's Taxonomy		
Upon c	Upon completion of the course, the students will be able to:		
CO1	Practice physical exercises and maintain good health.	К3	
CO2	Attain knowledge on the various concepts of Yoga.	K2	
CO3	Perform various asanas with an understanding on their benefits.	K3	
CO4	Practice breathing techniques in a precise manner.	K3	
CO5	Attain emotional stability and higher level of consciousness.	K2	

0

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5						
CO1	-	-	-	-	2						
CO2	-	-	-	-	3						
CO3	-	-	-	-	2						
CO4	-	-	-	-	1						
CO5	-	-	-	-	1						
23GEACZ6	-	-	-	-	2						
1 – Slight, 2 – Moderate, 3 – Substantial											

ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	40%	30%	30%	-	-	-	100%				
CAT2	30%	40%	30%	-	-	-	100%				
Individual	40%	40%	20%	-	-	-	100%				
Assessment1/											
Case study1/											
Seminar 1/											
Project1											
Individual	30%	30%	40%	-	-	-	100%				
Assessment2/											
Case study2/											
Seminar 2 /											
Project2											
ESE	30%	30%	40%	-	-	-	100%				

23GEACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT SKILLS (Common to all Branches)									
PREREQUISIT	ES:	CATEGORY	L	Т	Р	С				
NIL	NIL AC 2									
Course	• To familiar with Techniques to achieve the highest goal in life.									
Objectives	• To become a person with stable mind, pleasing	g personality and deterr	ninat	ion.						
UNIT – I					6 Pe	riods				
Neetisatakam-Ho	listic development of personality-Verses- 19,20,21,22 (v	wisdom)-Verses29,31,3	2 (pi	ide &	& her	oism)-				
Verses- 26,28,6.										
UNIT – II					6 Pe	riods				
Verses- 52,53,59 BhagwadGeeta - 0	(dont's)-Verses- 71,73,75,78 (do's) Approach to Chapter 2-Verses 41, 47,48,	day to day work a	nd c	luties	Sl	hrimad				
UNIT – III					6 Pe	riods				
Shrimad Bhagwad 46, 48.	dGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Ver	rses 5,13,17, 23, 35,- C	hapt	er 18	-Ver	ses 45,				
UNIT – IV					6 Pe	riods				
Statements of bas 16,17, 18-Persona	ic knowledgeShrimad BhagwadGeeta: -Chapter2-Verse llity of Role model.	es 56, 62, 68 -Chapter 1	2 -V	erses	s 13,	14, 15,				
UNIT – V	Contraction of the second				6 Pe	riods				
Shrimad BhagwadGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,42, Chapter 4-Verses 18, 38,39-Chapter18 – Verses 37,38,63.										
Contact Periods:										
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods										
REFERENCES :										

Swami SwarupanandaAdvaita Ashram "Srimad Bhagavad Gita", AdvaitaAshrama, Kolkata, 2016 P.Gopinath, Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Satakam" (Niti-sringar-vairagya), New Delhi, 1986. Swami Mukundananda, JagadguruKripalujiYog "Bhagavad Gita: The Song Of God", USA, 2019 A.C. Bhaktivedanta Swami Prabhupada "Bhagavad-Gita As It Is", Bhaktivedanta Book Trust Publications, 2001

COUF	Bloom's Taxonomy			
Upon	Upon completion of the course, the students will be able to:			
CO1	Apply the Holistic development in life	K4		
CO2	Effective Planning of day to day work and duties	K4		
CO3	Identify mankind to peace and prosperity	K4		
CO4	Develop versatile personality.	K4		
CO5	Awakening wisdom in life	K4		

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	-	-	1	-	-	-					
CO2	-	-	1	-	-	-					
CO3	-	-	1	-	-	-					
CO4	-	-	1	-	-	-					
CO5	-	-	1	-	-	-					
23GEACZ7	-	-	1	-	-	-					
1 - Slight, 2 - Mo	1 – Slight, 2 – Moderate, 3 – Substantial										

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	20%	50%	30%	-	-	-	100%				
CAT2	20%	50%	30%	-	-	-	100%				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%				
ESE	20%	50%	30%	-	-	-	100%				

22CE & C79	SANSKRIT FOR TECHNICAL KNOWLEDGE							
23GEACZ8	(Common to all Branches)							
PREREQUISITES: CATEGORY						С		
NIL AC					0	0		
Course Objectives	• To get a working knowledge in illustrious Sanskrit, the scientific language in the world.							
	Learning of Sanskrit to improve brain functioning.							
	• Enhancing the memory power.							
	• Learning of Sanskrit to develop the logic in math	ematics, science &	& oth	er su	bject	ts.		
UNIT – I	BASICS OF SANSKRIT			6 Periods				
Alphabets in S	Sanskrit, Past/Present/Future Tense.							
UNIT – II	SENTENCES AND ROOTS			6	Perio	ods		
Simple Sentences - Order, Introduction of roots								
UNIT – III	SANSKRIT LITERATURE 6 Periods							
Technical information about Sanskrit Literature								
UNIT – IV	UNIT – IV TECHNICAL CONCEPTS -1 6 Periods							
Technical concepts of Engineering-Electrical, Mechanical								
UNIT – V	TECHNICAL CONCEPTS -2				6 Periods			
Technical concepts of Engineering-Architecture, Mathematics								
Contact Periods:								
Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods								
REFERENCES:								

1	Dr. Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.
2	Prathama Deeksha Vempati Kutumbshastri, "Teach Yourself Sanskrit", Rashtriya Sanskrit Sansthanam,
	New Delhi, Publication, 2009.
3	Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi, 2006.
	Contraction of the second seco

COURS	Bloom's					
		Taxonomy				
Upon completion of the course, the students will be able to:		Mapped				
CO1	Recognize ancient literature and their basics	K3				
CO2	Formulate the sentences with order and understand the roots of Sanskrit	K2				
CO3	Acquire familiarity of the major traditions of literatures written in Sanskrit	K3				
CO4	Distinguish the Technical concepts of Electrical & Mechanical Engineering	K2				
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2				

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	-	-	-	1	2	1	
CO2	-	-	-	1	2	-	
CO3	-	-	-	1	1	1	
CO4	-	-	-	2	1	1	
CO5	-	-	-	1	2	1	
23GEACZ8	-	-	-	1	2	1	

1 – Slight, 2 – Moderate, 3 – Substantial							
ASSESSMENT PATTERN – THEORY							
Test /	Remembering	Understanding	Applying	Analyzing	Evaluatin	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	g (K5) %	(K6) %	%
Category*							
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual	20%	50%	30%	-	-	-	100%
Assessment 1 /							
Case Study 1/							
Seminar 1 /							
Project1							
Individual	20%	50%	30%	-	-	-	100%
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20%	50%	30%	-	-	-	100%

