

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Chennai)

COIMBATORE – 641 013

CURRICULUM AND SYLLABI FOR M.E. ENVIRONMENTAL ENGINEERING

2023
Regulations

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- To achieve academic excellence through innovative teaching and learning practices.
- To enhance employability and entrepreneurship.
- To improve the research competence to address societal needs.
- To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

GOVERNMENT COLLEGE OF TECHNOLOGY COIMBATORE – 641 013 ENVIRONMENTAL ENGINEERING

VISION AND MISSION OF THE DEPARTMENT

VISION

To transpire as a centre of excellence in research with sustainable development and to articulate professionals with pioneering vision.

MISSION

- > To make the department of Environmental Engineering a renowned centre for research.
- > To transmit strong basics and applied research to bring out novel solutions by technocrats to the community at large.
- > To create a nodal centre for providing consulting services for the benefit of Industries and Society.

GOVERNMENT COLLEGE OF TECHNOLOGY COIMBATORE – 641 013

ENVIRONMENTAL ENGINEERING

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The following Programme Educational Objectives are designed based on the department mission

PEO 1: Graduates will achieve a high level of technical expertise in the subjects related to Environmental Engineering and also good in communication skills that help them to achieve and succeed in various positions.

PEO 2: Graduates will have a strong understanding in Environmental engineering principles to do doctorate programmes and to grab employment and entrepreneurship opportunities.

PEO3: Graduates will get interest on the learning processes and inculcate in them professional ethics, moral values and social concern.

GOVERNMENT COLLEGE OF TECHNOLOGY

COIMBATORE – 641 013

M.E. ENVIRONMENTAL ENGINEERING

PROGRAMME OUTCOMES (POs)

Students of the Environmental Engineering Programme should be in possession of the following at the time of their graduation

- **PO 1:** Ability to apply research skills and provide sustainable solutions in the various fields of environmental engineering employing different methodologies and techniques.
- **PO 2:** Ability to use the latest techniques advanced modern engineering skills, instrumentation and software packages necessary for environmental engineering practice.
- **PO 3:** Ability to communicate effectively and to possess excellent report writing presentation and documentation skills.
- **PO 4:** Ability to execute the multidisciplinary projects with global standards and in a sustainable manner.
- **PO 5:** Ability to recognize ethical and professional responsibilities in providing engineering solutions considering it impact in global, economic, environmental, and societal contexts.
- PO 6: Ability to recognize the significance of lifelong learning and to accommodate themselves to the changing trends as per the societal needs.

Curriculum

CURRICULUM FOR CANDIDATES ADMITTED DURING 2022-2023 AND ONWARDS

TWO YEAR M.E PROGRAMME ENVIRONMENTAL ENGINEERING CHOICE BASED CREDIT SYSTEM-CURRICULUM FIRST SEMESTER

	Course			CA	End	Total	Hours/Week					
S.No	Code	Course Title	FC FC PC PC	Marks	Sem Marks	Marks	L	T	P	C		
1.	23EEFCZ1	Research Methodology and IPR	FC	40	60	100	3	0	0	3		
2.	23EEFCZ2	Applied Mathematics for Environmental Engineers	FC	40	60	100	3	0	0	3		
3.	23EEPC01	Design of water and wastewater Transport Systems	PC	40	60	100	3	0	0	3		
4.	23EEPC02	Design of Physico – Chemical Treatment Systems	PC	40	60	100	3	1	0	4		
5.	23EEPC03	Solid Waste Management	PC	40	60	100	3	0	0	3		
6.	23EEPEXX	Professional Elective I	PE	40	60	100	3	0	0	3		
7	23EEACXX	Audit course I	AC	40	60	100	2	0	0	0		
PRACTICAL												
8.	23EEPC04	Environmental Monitoring and Analysis Laboratory	PC	60	40	100	0	0	4	2		
	Total			340	460	800	20	1	4	21		

SECOND SEMESTER

G N	Course		0 0 0 0	CA	End Sem Marks	Total Marks	Hours/Week				
S.No	Code	Course Title	Category	Marks			L	T	P	C	
	THEORY										
1.	23EEPC05	Biological processes for wastewater treatment	PC	40	60	100	3	1	0	4	
2.	23EEPC06	Industrial Wastewater Management	PC	40	60	100	3	0	0	3	
3.	23EEPC07	Air Quality Management	PC	40	60	100	3	1	0	4	
4	23EEPEXX	Professional Elective II	PE	40	60	100	3	0	0	3	
5	23EEPEXX	Professional Elective III	PE	40	60	100	3	0	0	3	
6	23EEACXX	Audit course II	AC	40	60	100	2	0	0	0	
		PRAG	CTICAL								
7	23EEPC08	Environmental Process Laboratory	PC	60	40	100	0	0	4	2	
8	23EEEE01	Mini project	EEC	60	40	100	0	0	4	2	
		Total		360	440	800	17	2	8	21	

THIRD SEMESTER

	Course			CA	End	Total	Hours/Week				
S.No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	C	
	THEORY										
1.	23EEPEXX	Professional Elective IV	PE	40	60	100	3	0	0	3	
2.	23\$\$OEXX	Open Elective	OE	40	60	100	3	0	0	3	
		PRAC	TICAL								
3.	23EEEE02	Internship/Industrial Training	EEC	100		100	-		**	2	
4.	23EEEE03	Project - I	EEC	60	40	100	0	0	24	12	
	Total			240	160	400	6	0	24	20	

^{** 4} Weeks Internship/Industrial training

FOURTH SEMESTER

S.No	Course	Course Title	('ategory	Category	y CA	CA Marks	Sem	Sem Tota	Total	Н	ours	/Wee	ek
	Code	//	9(6		Marks	Marks	Marks	L	T	P	C		
			PR	ACTICAL			'						
1.	23EEEE04	Project - II	K	EEC	60	40	100	-	-	*	24		
		Total	TO		60	40	100	-	-	*	24		

Note: * Maximum number of periods 720 to earn 24 credits shall be scheduled during the maximum period of 6 months.

TOTAL CREDITS: 86

	LIST	Γ OF FOUNDATION COURSE FO	R M.E. EN	VIRONME	NTAL ENG	INEERI	NG			
C N	Course	C T'4	C .	CA	End	Total	Н	ours	/We	ek
S.No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	C
1.	23EEFCZ1	Research Methodology and IPR	FC	40	60	100	3	0	0	3
2.	23EEFCZ2	Applied Mathematics for Environmental Engineers	FC	40	60	100	3	0	0	3
	LIST OF PROFESSIONAL CORE COURSE FOR M.E. ENVIRONMENTAL ENGINE									
S.No	Course Code	Course Title	Category	CA Marks	End Sem Marks	Total Marks	H _c	ours,	/We	ek C
1.	23EEPC01	Design of water and wastewater Transport Systems	PC	40	60	100	3	0	0	3
2.	23EEPC02	Design of Physico – Chemical Treatment Systems	PC	40	60	100	3	1	0	4
3.	23EEPC03	Solid Waste Management	PC	40	60	100	3	0	0	3
4.	23EEPC04	Environmental Monitoring and Analysis Laboratory	PC	60	40	100	0	0	4	2
5.	23EEPC05	Biological processes for wastewater treatment	PC	40	60	100	3	1	0	4
6.	23EEPC06	Industrial Wastewater Management	PC	40	60	100	3	0	0	3
7.	23EEPC07	Air Quality Management	PC	40	60	100	3	1	0	4
8.	23EEPC08	Environmental Process Laboratory	PC	60	40	100	0	0	4	2
LIS	ST OF EMP	LOYABILITY ENHANCEMENT (COURSE FO	OR M.E. EN	VIRONMI	ENTAL F	ENG	INE	ERI	NG
C N	Course	C Tivi	G .	CA	End	Total	Н	/We	ek	
S.No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	C
1.	23EEEE01	Mini project	EEC	60	40	100	0	0	4	2
2.	23EEEE02	Internship/Industrial Training	EEC	100		100	-	-	**	2
3.	23EEEE03	Project - I	EEC	60	40	100	0	0	24	12
4.	23EEEE04	Project - II	EEC	60	40	100	-	-	*	24

^{** 4} Weeks Internship/Industrial training

LIST OF PROFESSIONAL ELECTIVES FOR M.E. ENVIRONMENTAL ENGINEERING

C N -	Course	C T'4	Cata	CA	End	Total	Hours/Week				
S.No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	C	
1	23EEPE01	Sustainable Environmental Management	PE	PE 40 60		100	3	0	0	3	
2	23EEPE02	Environmental Implications of Engineered Nanomaterial	PE	40	60	100	3	0	0	3	
3	23EEPE03	Environmental Engineering Structures	PE	40	60	100	3	0	0	3	
4	23EEPE04	Ground Water Contamination and Transport Modeling	PE	40	60	100	3	0	0	3	
5	23EEPE05	Environmental Impact Assessment	PE	40	60	100	3	0	0	3	
6	23EEPE06	Environmental Economics	PE	40	60	100	3	0	0	3	
7	23EEPE07	Computing Techniques in Environmental Engineering	PE	40	60	100	3	0	0	3	
8	23EEPE08	Environmental Risk Assessment	PE	40	60	100	3	0	0	3	
9	23EEPE09	Environmental Management Standards	PE	40	60	100	3	0	0	3	
10	23EEPE10	Air Quality Modeling	PE	40	60	100	3	0	0	3	
11	23EEPE11	Environmental System Analysis	PE	40	60	100	3	0	0	3	
12	23EEPE12	Remote Sensing and GIS Applications in Environmental Engineering	PE	40	60	100	3	0	0	3	
13	23EEPE13	Soil Pollution Control	PE	40	60	100	3	0	0	3	
14	23EEPE14	Hazardous Waste Management	PE	40	60	100	3	0	0	3	
15	23EEPE15	Advanced Wastewater Treatment and Reuse	PE	40	60	100	3	0	0	3	
16	23EEPE16	Environmental Biotechnology	PE	40	60	100	3	0	0	3	
17	23EEPE17	Marine Pollution and Control	PE	40	60	100	3	0	0	3	
18	23EEPE18	Geo – Environmental Engineering	PE	40	60	100	3	0	0	3	
19	23EEPE19	Membrane Separation Processes for water and wastewater Treatment	PE	40	60	100	3	0	0	3	
20	23EEPE20	Environmental Policy and Legislation	PE	40	60	100	3	0	0	3	
21	23EEPE21	Instrumentation, Selection and Management of Environmental Engineering Equipments	PE	40	60	100	3	0	0	3	
22	23EEPE22	Environmental Chemistry and Microbiology	PE	40	60	100	3	0	0	3	

LIST OF OPEN ELECTIVES FOR M.E. ENVIRONMENTAL ENGINEERING

Sl.	Course	G TW		CA	End	Total	Hours/Week				
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	C	
1	23SEOE01	Building Bye-Laws and Codes of Practice	OE	40	60	100	3	0	0	3	
2	23SEOE02	Planning of Smart Cities	OE	40	60	100	3	0	0	3	
3	23SEOE03	Green Building	OE	40	60	100	3	0	0	3	
4	23EEOE04	Environment Health and Safety Management	OE	40	60	100	3	0	0	3	
5	23EEOE05	Climate Change and Adaptation	OE	40	60	100	3	0	0	3	
6	23EEOE06	Waste to Energy	OE	40	60	100	3	0	0	3	
7	23GEOE07	Energy in Built Environment	OE	40	60	100	3	0	0	3	
8	23GEOE08	Earth and Its Environment	OE	40	60	100	3	0	0	3	
9	23GEOE09	Natural Hazards and Mitigation	OE	40	60	100	3	0	0	3	
10	23EDOE10	Business Analytics	OE	40	60	100	3	0	0	3	
11	23EDOE11	Introduction to Industrial safety	OE	40	60	100	3	0	0	3	
12	23EDOE12	Operations Research	OE	40	60	100	3	0	0	3	
13	23MFOE13	Occupational Health and Safety	OE	40	60	100	3	0	0	3	
14	23MFOE14	Cost Management of Engineering Projects	OE	40	60	100	3	0	0	3	
15	23MFOE15	Composite Materials	OE	40	60	100	3	0	0	3	
16	23TEOE16	Global Warming Science	OE	40	60	100	3	0	0	3	
17	23TEOE17	Introduction to Nano Electronics	OE	40	60	100	3	0	0	3	
18	23TEOE18	Green Supply Chain Management	OE	40	60	100	3	0	0	3	
19	23PSOE19	Distribution Automation System	OE	40	60	100	3	0	0	3	
20	23PSOE20	Electricity Trading & Electricity Acts	OE	40	60	100	3	0	0	3	
21	23PSOE21	Modern Automotive Systems	OE	40	60	100	3	0	0	3	
22	23PEOE22	Virtual Instrumentation	OE	40	60	100	3	0	0	3	
23	23PEOE23	Energy Management Systems	OE	40	60	100	3	0	0	3	
24	23PEOE24	Advanced Energy Storage Technology	OE	40	60	100	3	0	0	3	
25	23AEOE25	Design of Digital Systems	OE	40	60	100	3	0	0	3	
26	23AEOE26	Basics of Nano Electronics	OE	40	60	100	3	0	0	3	
27	23AEOE27	Advanced Processor	OE	40	60	100	3	0	0	3	
28	23VLOE28	HDL Programming Languages	OE	40	60	100	3	0	0	3	
29	23VLOE29	CMOS VLSI Design	OE	40	60	100	3	0	0	3	
30	23VLOE30	High Level Synthesis	OE	40	60	100	3	0	0	3	
31	23CSOE31	Artificial Intelligence	OE	40	60	100	3	0	0	3	
32	23CSOE32	Computer Network Management	OE	40	60	100	3	0	0	3	
33	23CSOE33	Block Chain Technologies	OE	40	60	100	3	0	0	3	

LIST OF AUDIT COURCES (AC)

GI	C			CA	End	T-4-1	Н	ours/	Wee	k
Sl. No	Course Code	Course Title	Category	CA Marks	Sem. Marks	Total Marks	L	T	P	C
1	23EEACZ1	English for Research Paper writing	AC	40	60	100	2	0	0	0
2	23EEACZ2	Disaster Management	AC	40	60	100	2	0	0	0
3	23EEACZ3	Value Education	AC	40	60	100	2	0	0	0
4	23EEACZ4	Constitution of India	AC	40	60	100	2	0	0	0
5	23EEACZ5	Pedagogy Studies	AC	40	60	100	2	0	0	0
6	23EEACZ6	Stress Management by Yoga	AC	40	60	100	2	0	0	0
7	23EEACZ7	Personality Development Through life enlightenment skills	AC	40	60	100	2	0	0	0
8	23EEACZ8	Sanskrit for Technical Knowledge	AC	40	60	100	2	0	0	0

CURRICULUM DESIGN

C No	Course Work		1	No of C	redits		Damaantaga
S. No	Subject Area	I	П	III	IV	Total	Percentage
1.	Foundation Course	6	0	0	0	06	6.98 %
2.	Professional Cores	12	13	0	0	25	29.07 %
3.	Professional Electives	3	6	3	0	12	13.95 %
4.	Employability Enhancement Courses	0	2	14	24	40	46.51 %
5.	Open Elective Courses	0	0	3	0	03	3.49 %
	Total Credits		21	20	24	86	100%

Syllabus

23EEFCZ1	(Common to all Branches)				SEMESTER I				
PREREQUISI	PREREQUISITES CATEGORY L				P	C			
	NIL				0	3			
Course Objectives									
UNIT – I INTRODUCTION						9 Periods			
Definition and	Assisting and chicatives of Descende Types of personal Venious Stans in Descende manage Mathematical								

Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question-Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code.

UNIT – II QUANTITATIVE METHODS FOR PROBLEM SOLVING

9 Periods

Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis.

UNIT – III DATA DESCRIPTION AND REPORT WRITING

9 Periods

Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables, Relation between frequency distributions and other graphs, preparing data for analysis.

Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing.

UNIT – IV INTELLECTUAL PROPERTY

9 Periods

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development.

International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

UNIT – V PATENT RIGHTS

9 Periods

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

REFERENCES

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction", Juta Academic,
	2^{nd} edition, 2014.
2	Donald H.McBurney and Theresa White, " Research Methods ", 9 th Edition, CengageLearning, 2013
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition, 2019
4	

4 Dr. C. R. Kothari and GauravGarg, "Research Methodology: Methods and Trends", New age international publishers, 4th Edition, 2018

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Formulate research question for conducting research.	K3
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K2
CO4	Develop a structured content to write technical report.	K3
CO5	Summarize the importance of IPR and protect their research work through	K2
	intellectual property.	

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	1	3	-	2	1				
CO2	1	-	3	-	2	1				
CO3	-	-	2	2	3	1				
CO4	-	-	2	-	2	1				
CO5	2	-	3	2	1	1				
23EEFCZ1	2	1	3	2	2	1				
1 – Slight, 2 – Moderate, 3 – Substantial										

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	30	30	10	10	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	30	10	10	-	100
ESE	25	35	20	10	5	5	100

23EEFCZ2	APPLIED MATHEMATICS FOR ENVIRO ENGINEERS	NMENTAL	SEMESTER I						
PREREQUIS	SITES	CATEGORY	L	T	P	С			
	NIL	FC	3	0	0	3			
Course Objectives	Understand the numerical solutions to algeb system of equations	raic, exponential,	logari	thmic	and li	near			
	 Binomial, Poisson and Geometric for disexponential and normal distribution for conting. Understand test of hypothesis for both small distribution and evaluate control limits using product is within control. Understand the basic principles and methods. 	Binomial, Poisson and Geometric for discrete random variable and Uniform, exponential and normal distribution for continuous random variables. Understand test of hypothesis for both small and large samples based on normal distribution and evaluate control limits using control charts to examine whether the product is within control. Understand the basic principles and methods of statistical design of experiments. The significances of effects of various factors on a given response are determined under							
	 Understand multivariate correlation analysis a 	and forming Regre	ssion p	lane.					
UNIT – I	NUMERICAL METHODS					riods			
•	near Equations: Gauss elimination, Gauss Jordan and					•			
	n Method- Nonlinear equations: Regula Falsi and Na Lagrange's interpolation methods.	Newton Raphson	Metho	ds- In	iterpol	ation			
UNIT – II	RANDOM VARIABLES & PROBABILITY DIST	RIBUTIONS			9 Pe	riods			
	ables–Moments–Moment generating functions and thisson, Geometric, Uniform, Exponential and Normal dis		Probab	ility d	istribu	tions			
UNIT – III	TEST OF HYPOTHESIS				9 Pe	riods			
•	es: Tests for Means, Variances and Proportions – Small ng t, F, Chi square distributions – Goodness of fit using	•			riance	s and			
UNIT – IV	DESIGN OF EXPERIMENT	3.			9 Pe	riods			
Analysis of v	ariance: Completely randomized design – Randomized	block design – La	tin squ	are des	sign.				
UNIT – V	STATISTICAL QUALITY CONTROL & CORRE	CLATION ANAL	YSIS		9 Pe	riods			
	sis for Control charts – Control limits – Control charts p, np charts, c chart - Correlation – Regression – Multipl	_			ontrol	char			
Contact Peri			CiatiOl						
Lecture: 45 l		Periods Tota	al: 45 l	Period	s				

REFERENCES

1	Miller and Freund "Probability and Statistics for Engineers", Prentice Hall of India Ltd, New Delhi 2015
2	S. C. Gupta and V. K. Kapoor, "Fundamental Statistics", Sulthan Chand & Sons, New Delhi –Reprint-2018.
3	S. P. Gupta, "Statistical Methods", Sulthan Chand & Sons, New Delhi – 46 th Edition, 2021.
4	Richard A.Johnson and Dean W.Wichern, "Applied Multivariate Statistical Analysis", Pearson Education, Asia, 6th Edition, 2012.
5	Jay L.Devore, "Probability and statistics for Engineering and the Sciences", 8th Edition, Thomson and Duxbury, Singapore, 2012
6	Dr. P. Kandasamy, Dr. K. Thilagavathy, Dr. K. Gunavathy, "Numerical Methods", S.Chand and sons, Ram Nagar, New Delhi, 2010.

	SE OUTCOMES:	Bloom's Taxonomy
Upon co	empletion of the course, the students will be able to:	Mapped
CO1	Solve algebraic, exponential, logarithmic, and linear systems of equations numerically.	K3
CO2	Examine the random variables and corresponding probability distribution of discrete and continuous one-dimension random variables.	К3
CO3	Analyze the hypothesis for both small and large samples based on normal distribution and evaluate control limits using control charts to examine whether the product is within control.	К3
CO4	Apply the basic principles and methods of statistical design of experiments. The significances of effects of various factors on a given response are determined under uncertainty using statistical principles	К3
CO5	Perform the multivariate correlation analysis and forming Regression plane.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	747000	-	-	-
CO2	3	2	O B	- m	-	-
CO3	3	3	3	9) -	-	-
CO4	3	2	3	-	-	-
CO5	3	2	3	7 -	-	-
23EEFCZ2	3	3	3	// -	-	-
1 – Slight, 2 – Moderat	te, 3 – Substan	tial	Ollo V	U.	I	

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
Category*	25	35	20	10	5	5	100			
CAT1				10	_	_	100			
CAT2	25	35	20	10	5	5	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	30	30	10	10	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	30	10	10	-	100			
ESE	25	35	20	10	5	5	100			

23EEPC01	DESIGN OF WATER AND WASTEWATER TRANSPORT SYSTEMS									
PREREQUISI'	ΓES	CATEGORY	GORY L T							
	NIL	PC	3	0 0		3				
Course	Course To impart knowledge on general hydraulics, water transmission, wastewater conveya									
Objectives	storm water drainage and respective software applic	cations.								
UNIT – I	GENERAL HYDRAULICS AND FLOW MEAS	SUREMENT		9	Per	iods				
Fluid properties	s; fluid flow - continuity principle, energy principl	e and momentum	prin	ciple	; fric	ctional				
head loss in free	and pressure flow, minor head losses; Carrying Capa	acity; Flow measu	reme	nt.						
UNIT – II	WATER TRANSMISSION AND DISTRIBUTION	ON		9	Per	iods				
Planning of Wa	ter transport System -Selection of pipe materials, W	ater transmission	main	desi	gn- g	gravity				
and pumping	main; Selection of Pumps- characteristics- econ	omics; Specials,	Join	ts, 1	ayin	g and				
maintenance, w	ater hammer analysis; water distribution pipe netwo	rk design, analysi	s and	lopti	imiza	ıtion –				
appurtenances -	corrosion prevention – minimization of water losses									
UNIT – III	STORM WATER DRAINAGE			9	Per	iods				
Estimation of s	torm water run-off Formulation of rainfall intensity	duration and freq	uenc	y rel	ation	ships-				
Rational method	ls; Necessity and design of combined and separate sy	stem.								
UNIT – IV	WASTEWATER COLLECTION AND CONVE	YANCE		9	Per	iods				
Planning factors	s – Design of sanitary sewer; partial flow in sewers, e	conomics of sewer	r desi	gn; V	Waste	ewater				
pumps and pum	ping stations- sewer appurtenances; material, constr	ruction, inspection	and	mair	itena	nce of				
sewers; Design	of sewer outfalls-mixing conditions; conveyance of c	orrosive wastewat	ers.							
UNIT – V	SOFTWARE APPLICATIONS			9	Per	iods				
Use of comput	er software in water transmission, water distribution	on and sewer desi	ign –	- EP	ANE	T 2.2,				
LOOP version 4	.0, SEWER, BRANCH and GIS based softwares.									
Contact Period	S:									
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Perio	ds Total: 45 Per	rinds							

REFERENCES

1	"Hydraulics and Fluid Mechanics Including Hydraulics Machines", P.N.Modi and S.M.Seth,
	Standard Book House, 2018.
2	"Manual on water supply and Treatment", CPHEEO, Ministry of Urban Development, Government of
	India, New Delhi, 1999.
3	"Manual on Sewerage and Sewage Treatment", CPHEEO, Ministry of Urban Development,
	Government of India, New Delhi, 2013.
4	"Water supply engineering" and "Sewage waste disposal and air pollution engineering"
	(VOL 1 & 2), S.K. GARG, Khanna Publishers, 2010 & 2018.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Apply fluid flow principles in pipe flow calculations	К3
CO2	Analyze and design water transmission and distribution systems	K4
CO3	Estimate the storm water and design the combined and separate systems	K4
CO4	Select pipe materials for wastewater conveyance and design the wastewater pumps	K4
CO5	Illustrate and design the water and wastewater transport systems by applying the software	К3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	1	1	-	-	1			
CO2	3	2	1	-	-	1			
CO3	3	2	1	-	-	1			
CO4	3	2	1	-	-	1			
CO5	2	2	1	-	-	1			
23EEPC01	3	2	1	-	-	1			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	35	20	10	5	5	100			
CAT2	25	35	20	10	5	5	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	30	30	10	10	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	30	10	10	-	100			
ESE	25	35	20	10	5	5	100			

OG GER CON

23EEPC02	DESIGN OF PHYSICO – CHEMICAL TREATM	ENT SYSTEMS	SEMESTER				
PREREQUISI	TES	CATEGORY	L	T	P	С	
	NIL PC						
Course	Course Understanding the qualification and characterisation of water and waste w						
objectives	of Conventional treatment units and exploring the adopted.	advanced treatme	nt n	netho	ods t	o be	
UNIT – I	INTRODUCTION			9+3	Peri	ods	
and effluent st	r and wastewater – Characteristics and Examination of andards – Water Quality Indices - Significance of Natural systems; Primary, Secondary and Tertiary Treatment.	Physico-chemical			•	•	
UNIT – II	TREATMENT PRINCIPLES			9+3	Peri	ods	
Basics principle	es of Physical treatment – Screening, Flow Equalization	on, Mixing and Flo	ccul	atior	ı, Gr	avity	
Separation the	ory, Grit Removal, Primary Sedimentation, Clarific	cation, Flotation,	Oxy	gen	Traı	nsfer,	
Aerations Syste	ems, Removal of Volatile Organic compounds (VOCs)	by aeration - Adso	rptic	n is	other	ms –	
Membrane sepa	ration, reverse Osmosis, Nano filtration, Ultra Filtration	and Hyper filtration	n. B	asic	princ	iples	
of Chemical	Treatment - Coagulation, Flocculation, Precipitatio	on, Solidification	and	sta	biliza	ation,	
Disinfection, Io	n exchange, Electrolytic methods, Solvent extraction, A	dvanced oxidation/	redu	ction	۱.		
UNIT – III	DESIGN OF CONVENTIONAL WATER TREATM	MENT PLANTS		9+3	Peri	ods	
Objectives of c	onventional water treatment units - Design of screens, c	hemical feeding, flo	occu	lator	, claı	rifier,	
tube settlers, Fi	lters - rapid, slow and pressure filters- Disinfection unit	ts. Flow charts – La	ayou	ts –	Hydı	aulic	
profile – Oper existing plants	ation and Maintenance aspects – Residue manageme – case studies.	ent – Recent adva	nces	in 1	upgra	ading	
UNIT – IV	DESIGN OF CONVENTIONAL SEWAGE TREAT	TMENT PLANTS		9+3	Peri	ods	
•	conventional sewage treatment units - Flow charts - rit chamber with proportional flow weir, settling	•					
Neutralization,	Chemical feeding devices – flotation units. Layout a pects – Residue management – Recent advances in upg			_		and	
Neutralization,	315 10 100 100 100 100 100 100 100 100 10	grading existing pla	nts –	case		and	
Neutralization, maintenance as UNIT - V	pects – Residue management - – Recent advances in upg	grading existing pla	nts –	9+3	e stud Perio	and and dies.	
Neutralization, maintenance as UNIT - V Objectives, pri	pects – Residue management - – Recent advances in upg DESIGN OF INDUSTRIAL WATER TREATMEN	T PLANTS thickeners, low r	nts –	9+3 and	e stud Perion	and dies. ods rate	
Neutralization, maintenance as UNIT - V Objectives, pridigesters, sludgesters, sludgesters.	pects – Residue management - – Recent advances in upg DESIGN OF INDUSTRIAL WATER TREATMEN nciples and Typical flow charts – Design of sludge	T PLANTS thickeners, low resign of softeners,	nts –	9+3 and neral	Perion of the structure	and dies. ods rate and	

Contact Periods:

Lecture:45 Periods Tutorial: 15 Periods Practical: 00 Periods Total: 60 Periods

REFERENCES

	ET ETEL (GEG
1	"Physicochemical processes for water quality control", Weber, W.J., John Wiley and sons, New York,
	1983
2	"Wastewater Engineering, Treatment and Reuse", Metcalf and Eddy, Tata McGraw Hill, New Delhi,
	2003.
3	"Wastewater Treatment: Concepts and Design Approach", Karia, G.L., and Christian, R.A., Prentice-Hall
	of India Pvt., Ltd., New Delhi, 2013.
4	"Manual on Sewerage and Sewage Treatment", CPHEEO, Ministry of Urban Development, GOI, New
	Delhi, 2013.
5	"Environmental engineering" Peavy, H. S., Rowe, D. R., Tchobanoglous, McGraw hills, New York, 2013.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Evaluate the water and wastewater quality and environmental significance of various	К3
	parameters.	
CO2	Execute the principles and operation of various treatment units.	К3
CO3	Appraise the suitability of the design of water and wastewater treatment plants and	К3
	unit processes.	
CO4	Evaluate the operation and performance of water and wastewater treatment units.	К3
CO5	Implement the treatment mechanisms for different industrial effluents.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	1
CO2	3	3	2	2	2	1
CO3	3	3	2	2	1	1
CO4	3	3	2	2	2	1
CO5	3	3	2	2	3	1
23EEPC02	3	3	2	2	3	1

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applyin g (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	35	20	10	5	5	100			
CAT2	25	35	20	10	5	5	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	30	30	10	10	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	30	10	10	-	100			
ESE	25	35	20	10	5	5	100			

23EEPC03	SOLID WASTE MANAGEMENT			SEMESTER I					
PREREQUIS	PREREQUISITES CATEGORY				P	C			
	NIL PC					3			
Course Objectives	To understand, characterize and process solid waster recovery and knowledge on sanitary landfill.	with a particular fo	ocus	on m	etho	ds for			
UNIT – I	SOLID WASTE GENERATION AND MANAGE	MENT SYSTEM			9 Pe	eriods			

Definition of solid wastes- Sources and types of municipal solid wastes- Generation rate- Factors affecting generation rates- characteristics- methods of sampling and characterization- Effects of improper disposal of solid wastes public health and environmental effects- Solid Waste Management- Goals and objectives- Functional Elements in a Solid Waste Management- Municipal Solid Waste (M&H) rules 2016

UNIT – II SEGREGATION, STORAGE, COLLECTION AND 9 Periods TRANSPORTATION

Segregation and storage of solid waste at source - Onsite handling - collection systems and services, vehicles and equipment for collection - Factors affecting collection - community involvement and role of informal sector in waste collection- transfer stations - types of transport and location of transfer stations.

UNIT – III RECYCLING AND RECOVERY

9 Periods

Processing Techniques - Advantages of recycling, important recycling materials - stages of material recovery in solid waste management chain - principle of unit operations and equipments employed at material recovery facilities - Composting - Aerobic and anaerobic composting, benefits of composting, factors affecting composting process, windrow, aerated static pile, in-vessel and decentralized composting technologies, vermicomposting.

UNIT – IV WASTE TO ENERGY

9 Periods

Energy recovery potential, basic techniques of energy recovery; incineration – process 3Ts, incinerator details, prevention of air pollution; pyrolysis - process description, various operations involved, end products; biomethanation; refuse derived fuels, gasification.

UNIT – V SANITARY LAND FILLING

9 Periods

Definitions, types of wastes to be accepted at landfills, site selection, essential components of municipal sanitary landfill, landfilling methods, sanitary landfill design, leachate management, active and passive control of landfill gases.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES

- 1 **"CPHEEO (2016) Municipal Solid Waste Management Manual,"**, Central Public Health and Environmental Engineering Organisation, Ministry of Urban Development, New Delhi.
- 2 "Health Monitoring of Structural Materials and Components Methods with Applications", Tchobanoglous G., Theisen H., Vigil S.A. 2nd Ed., McGraw-Hill, USA (2014).
- 3 **"Environmental Engineering",** Peavy, H.S., Rowe, D.R., and Tchobanoglous, G. 1st Ed., McGraw Hill Education, USA (2017).
- 4 "Hand Book of Solid Waste Management", Tchobanoglous G., Frank Kreith, 2nd Ed., McGraw Hill, USA (2002).
- 5 "Geotechnical Aspects of Landfill Design and Construction", Qian X, Koerner RM and Gray DH.,1st Ed., Prentice Hall, USA(2002
- 6 "Solid waste management: Collection, Processing and Disposal" Bhide, A D and Sundaresan, B B NEERI, Nagpur. (2001)

COURS	SE OUTCOMES:	Bloom's Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Summarize the different elements of solid waste management	K2
CO2	Differentiate the concepts of segregation, storage, collection and transportation of solid waste	К3
CO3	Investigate the important concepts of processing techniques and energy recovery	К3
CO4	Implement the concept of energy recovery from waste to wealth	К3
CO5	Apply the knowledge of sanitary landfilling	К3

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	-	2	2	1		
CO2	3	3	-	2	3	1		
CO3	3	3	-	3	3	1		
CO4	3	3	-	3	3	1		
CO5	3	3	-	3	3	1		
23EEPC03	3	3	- June	3	3	1		
1 – Slight, 2 – Moderat	e, 3 – Substant	tial		20	•			

1 2118111, 2		CV Page	The state of the s	2)					
		9220	THE WAY						
ASSESSMENT PATTERN – THEORY									
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
Category*		0		1					
CAT1	25	30	35	10	-	-	100		
CAT2	25	30	35	10	-	-	100		
Individual	20	30	40	10	-	-	100		
Assessment 1/		O'DIT	VAR TO						
Case Study 1/		7000	Contraction of the Contraction o	7					
Seminar 1 /									
Project1									
Individual	20	30	40	10	-	-	100		
Assessment 2/									
Case Study 2/									
Seminar 2/									
Project 2									
ESE	25	30	35	10	-	-	100		

23EEPC04 ENVIRONMENTAL MONITORING AND ANALYSIS LABORATORY						SEMESTER I				
PREREQUISITES CATEGOR				T	P	C				
	NIL	PC	0	0	4	2				
Course	To determining the quality characteristics of water, w	astewater, air and	nois	e.	'					

LAB EXPERIMENTS / PROGRAMS

I. WATER AND WASTEWATER:

- 1. Determination of pH, Solids (TDS, TSS, VS), Acidity, Alkalinity, Hardness, Chlorides and Fluorides
- 2. Determination of Dissolved Oxygen, Biochemical Oxygen Demand and Chemical Oxygen Demand
- 3. Estimation of Nitrogen, Phosphates and Sulphates
- 4. Determination of Available Chlorine in bleaching powder and Break point Chlorination test
- 5. Plate count test and MPN test
- 6. Estimation of Organic Compounds Using HPLC and TOC
- 7. Determination of Heavy metals using AAS

II. AIR:

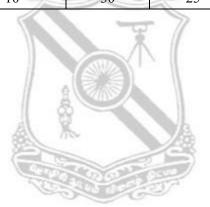
- 8. Estimation of Particulate matter (PM₁₀, PM_{2.5}), SOx, NOx and VOC in ambient air
- 9. Estimation of VOC and CO in Indoor air

III. NOISE:

10. Estimation of ambient Noise level

IV. ADVANCED INSTRUMENT TECHNIQUES:

11. Analysis of Environmental Engineering problems using advanced instruments


Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Analyze the various physical and chemical characteristics of water and wastewater.	K4
CO2	Analyze the various biological characteristics of water and wastewater.	K4
CO3	Identify the heavy metal present in the wastewater.	K4
CO4	Measure the air and noise pollution in outdoor and indoor environment	K4
CO5	Analyze Environmental problems using advanced instrument.	K4

COURSE ARTICULATION MATRIX										
PO1	PO2	PO3	PO4	PO5	PO6					
3	3	2	2	2	1					
3	3	2	2	2	1					
3	3	2	2	2	1					
3	3	2	2	2	1					
3	3	2	2	2	1					
3	3	2	2	2	1					
	PO1 3 3 3 3	PO1 PO2 3 3 3 3 3 3 3 3	PO1 PO2 PO3 3 3 2 3 3 2 3 3 2 3 3 2	PO1 PO2 PO3 PO4 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2	PO1 PO2 PO3 PO4 PO5 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2 3 3 2 2 2					

ASSESSMEN Test /	Remembering	Understanding	Annlying	Analyzing	Evaluating	Creating	Total
			Applying	•			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
Exercise 1	10	15	25	25	20	5	100
Exercise 2	10	15	25	20	25	5	100
Exercise 3	10	15	25	25	20	5	100
Exercise 4	10	15	25	25	20	5	100
Exercise 5	15	15	25	25	15	5	100
Exercise 6	10	15	25	25	20	5	100
Exercise 7	10	10	30	25	20	5	100
Exercise 8	10	15	25	25	20	5	100
Exercise 9	10	15	25	25	20	5	100
Exercise 10	10	15	25	25	20	5	100
Exercise 11	10	25	25	25	10	5	100
Model Lab	10	15	25	20	25	5	100
Other mode	-	-		-	-	-	-
of internal			TO B	-			
assessments		100116	Banks Britis	13) ·			
ESE	10	10	30	25	20	5	100

23EEPC05 BIOLOGICAL PROCESSES FOR WASTEWATER TREATMENT						E R II
PREREQUIS	ITES	CATEGORY	L	T	P	C
	NIL	PC	3	1	0	4
Course	Imparting the principles and applications of biologica	l processes in waste	ewat	er tr	eatm	ent.
Objectives						
UNIT – I	INTRODUCTION, PROCESS ANALYSIS AND S	SELECTION		9+	3 Pe	riods
Biological trea	atment processes – objectives – Choice of treatment	method – Environ	nent	al ir	npac	t and
other consider	ations in planning the treatment - Cost of Wastewat	er treatment – Rea	ctor	s us	ed fo	or the
treatment – ma	ass balance analysis – Reactions, Reaction rates – Enz	yme reaction. Mod	eling	gof	ideal	flow
and non-ideal	flow reactors - Reactors in parallel - Reactors in s	eries – Tracer tes	ts –	Esti	mati	on of
dispersion coe	fficient.					
UNIT – II	SUSPENDED GROWTH TREATMENT PROCE	SS- ASP		9+	3 Pe	riods
Role of micro	organisms - Microbial growth kinetics - Biological o	xidation process -	load	ling	-MC	RT –
F/M ratio – De	etermination of biokinetic coefficients - Modeling of s	uspended growth t	reatr	nent	proc	ess –
Description, D	esign and operating parameters - Modeling of plug f	low reactors - Oxy	gen	requ	iiren	nents-
arrangement fo	or transfer of oxygen- Secondary clarifier- design featur	es.				
UNIT – III	SUSPENDED GROWTH TREATMENT PROCE	SS		9+	3 Pe	riods
Aerated lagoor	ns. Oxidation pond – Stabilization ponds – Classifica	tion - Application	- P	roce	ss de	esign,

UNIT – IV ATTACHED GROWTH TREATMENT PROCESS

Construction and performance – MBBR systems.

Attached Growth Treatment Process – Substrate Removal in Attached Growth Treatment Process - Trickling Filter – Process – Classification - design based on Popular design equations – NRC, Rankine's and Eckenfelder equation – Rotating Biological contactors – Anaerobic attached growth treatment processes – upflow packed Bed – upflow expanded bed – Fluidized bed – Down flow bed. (Only theory).

flow pattern and analysis of Aerobic ponds – Facultative ponds – Anaerobic ponds – maturation ponds –

9+3 Periods

UNIT – V SUSPENDED GROWTH TREATMENT PROCESS- DIGESTION 9+3 Periods PROCESS

Sludge digestion- Sources of sludge- Characteristics- Quantities- Anaerobic digestion- Process- Kinetic relationship- gas production- design considerations. Anaerobic treatment of liquid wastes- Anaerobic sludge blanket process- design considerations. Sludge management facilities, sludge thickening, sludge dewatering (mechanical and gravity) layout.

Contact Periods:

Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

REFERENCES:

1	"Waste Water Engineering – Treatment and reuse", Metcalf and Eddy, Fourth Edition, McGraw Hill
	Education, 2017.
2	"Waste Water Treatment and disposal", Arceivala S. J., Marceldekker publishers, 1981.
3	"Biological process design for Wastewater Treatment", Larry D. Benefield and Clifford W. Randall,
	Ibis publishers, 1994.
4	"Environmental Engineering", Howard S. Peavy, Donald R. Rowe and George Techobanoglous,
	McGraw Hill Education, 2017.
5	"Wastewater Treatment for Pollution Control and Reuse", Arceivala S. J., Third Edition, McGraw
	Hill Education, 2017

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Summarize the background of biological treatment processes.	K2
CO2	Model the suspended growth process.	K3
CO3	Analyze and Design the suspended growth treatment plant and ponds.	K3
CO4	Analyze and Design attached growth treatment process facilities.	K3
CO5	Examine the various digestion processes.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	2	2	-
CO2	3	3	2	3	2	-
CO3	3	2	3	3	2	-
CO4	3	2	2	2	3	-
CO5	3	3	2	2	2	-
23EEPC05	3	3	3	3	3	-
I – Slight, 2 – Moderate, 3 –	Substantial					ı

ASSESSMENT	T PATTERN – T	HEORY	- W	7			
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*			**				
CAT1	10	20	45	20	5	-	100
CAT2	10	20	45	20	5	-	100
Individual	20	30	40	10	-	-	100
Assessment 1/		C The Co	ALD THE	3			
Case Study 1/		70000					
Seminar 1 /		-04					
Project1							
Individual	20	30	40	10	-	-	100
Assessment 2/							
Case Study 2/							
Seminar 2/							
Project 2							
ESE	10	20	45	20	5	-	100

23EEPC06 INDUSTRIAL WASTEWATER MANAGEMENT S				SEMESTER II				
PREREQUISI	TES	CATEGORY	L	T	P	C		
	NIL	PC	3	0	0	3		
Course	lp th	e pr	incip	oles of				
Objectives waste minimization techniques, and also imparting knowledge about pollution								
	industries and treatment technologies.							
UNIT – I	SOURCES AND ENVIRONMENTAL ASPECTS				9 P	eriods		
Sources and ty	pes of industrial wastewater- Environmental Impacts-l	ndustrial wastew	ater	mon	itori	ng and		
sampling -chara	acterization and variables - Toxicity and Bioassay tests	s. Prevention vs C	Conti	ol o	f Ind	lustrial		
Pollution- Sour	ce reduction techniques- effect of Industrial Effluents o	n Streams, Sewer	and	Hun	nan h	ealth.		
UNIT – II	WASTE TREATMENT PRESPECTIVE				9 P	eriods		
Waste minimiz	ation - Equalization - Neutralization -Oil separation -I	Flotation -Precipit	atio	n -H	eavy	metal		
Removal -Adso	orption -Aerobic and anaerobic biological treatment – S	Sequencing batch	reac	tors	-Hig	h-Rate		
reactors - Che	mical and wet air oxidation - Ozonation - Photoc	eatalysis – ion e	xcha	inge-	-men	nbrane		
technologies - 1	Nutrient removal.							
UNIT – III	EFFLUENT DISPOSAL TECHNIQUES				9 P	eriods		
Common Efflu	ent Treatment Plants - Advantages - zero polluting in	dustry concept -	Red	uce,	Reu	se and		
Recycle of wa	stewater-Disposal of effluent on land- characteristics	and disposal of	slu	dge	– Re	esidual		
Management.	Call of Call See March and							
UNIT – IV	INDUSTRIAL WASTEWATER TREATMENT-I				9 P	eriods		
Industrial man	ufacturing process description, wastewater character	istics, source re	duct	ion	poin	ts and		
effluent treatme	ent flow sheet for Textiles - Tanneries - Sugar and dist	illeries – Petroleu	m re	fine	ries -	- Food		
processing - Fe	rtilizers-Dairy - Pharmaceutical industry.							
UNIT – V	INDUSTRIAL WASTEWATER TREATMENT- I	[9 P	eriods		
Industrial man	ufacturing process description, wastewater character	ristics, source re	duct	ion	poin	ts and		
effluent treatme	ent flow sheet for, Pulp and Paper mill - Iron and Stee	el industries- Mea	t pac	cking	g ind	ustries		
and Poultry Pla	nt-Automobile Industry – Industrial Estates.							
~	NI-SC TOTAL							
Contact Period	ls:							

REFERENCES:

1	"Microbiology and Chemistry for Environmental Scientists and Engineers", J N Lester, Second edition, 2018
2	"Chemistry for Environmental Engineering and Science", Clair N. Sawyer, Perry L. Mccarty &
	Gene F Parkin, McGraw Hill Education, Fifth edition, 2017
3	"Environmental Chemistry", Anil Kumar De, Arnab Kumar De, New Age International publishers,
	Tenth edition, 2021.
4	"Environmental Science and Engineering", Yugananth P &Kumaravelan R, Scitech Publications,
	Second edition, 2015.
5	"Manual of Environmental Microbiology", Marylynn V Yates, Fourth edition, 2016.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy
	*	mapped
CO1	Outline the waste water sources and environmental implications of various industrial	K2
	effluents.	
CO2	Summarize the various pollution prevention options.	K2
CO3	Assess the remedial technologies for disposal of industrial effluents.	К3
CO4	Employ the design solutions for the treatment and disposal of treated effluents.	K3
CO5	Implement and comprehend the pollution control methods for specific industries.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	3	2	2	2
CO2	3	2	3	2	2	3
CO3	3	3	2	2	2	1
CO4	3	3	2	3	2	2
CO5	3	2	3	2	2	3
23EEPC06	3	3	3	3	2	3
1 - Slight, $2 - $ Moderate, $3 - $ S	Substantial	Tales Br.				

ASSESSMENT	T PATTERN – TI	HEORY		//			•
Test / bloom's category*	Remembering (k1) %	Understandin g (k2) %	Applying (k3) %	Analyzing (k4) %	Evaluating (k5) %	Creating (k6) %	Total %
CAT1	25	35	20	10	10	-	100
CAT2	25	35	20	10	10	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	10	-	100

23EEPC07 AIR QUALITY MANAGEMENT						SEMESTER II				
PREREQUIS	SITE	S	CATEGOR	Y I	T	P	С			
		NIL	PC	3	1	0	4			
Course	Iden	tifying the different air pollutants sources, characteri	stics and adop	ting su	itable	sam	pling,			
Objectives	mod	eling techniques along with control measures includir	ng indoor air q	uality 1	nanaş	geme	nt and			
	their	legislations.								
UNIT – I	INT	RODUCTION TO AIR POLLUTANTS			9+	3 Pei	riods			
Atmosphere a	as a p	place of disposal of pollutants - Definition- Air Poll	lution – Air P	ollutan	ts – 1	Sourc	e and			
classification	of p	ollutants - Units of measurements of pollutants -	Ambient air c	luality	stanc	lards	- Air			
•	ces -	Air pollution and its effects on human beings, plants	and animals - 1	Econor	nic et	fects	of air			
pollution										
UNIT – II	SAN	MPLING, METEOROLOGY AND AIR QUALITY	MODELLIN	G	9+	3 Per	riods			
Ambient air	samp	oling and measurement of particulate and gaseous	pollutants E1	nvironr	nenta	1 fac	tors -			
Meteorology	- tem	nperature lapse rate and stability - Adiabatic lapse ra	ate – Wind Ro	se - In	versi	on –	Wind			
velocity and t	urbul	ence - Stack sampling - Plume behaviour - Dispersion	n of air polluta	nts - M	axim	um n	nixing			
		model - Fixed Box models - Estimation of plume rise								
UNIT – III		NTROL OF PARTICULATE AND GASEOUS CO				3 Per				
	-	election of Control Equipment – Working principles		_						
		ty Separators, cyclones, Fabric filters, Particulate Sc				•				
U 1	•	s of various types of gaseous control equipment - a		sorption	1, co	ndens	ation,			
		crubbers, Bio filters Case studies for stationary and mo	bile sources.		Δ.	2 D				
UNIT – IV		OOR AIR QUALITY MANAGEMENT		. 1 3		3 Per				
7 1		control of indoor air pollutants, sick building syndro	• 1	kadon I	'ollu1	ion a	nd its			
		ne process - UV photolysis – Health effects of indoor a	*							
UNIT – V		POLLUTION SURVEY, LEGISLATIONS AND				3 Per				
		ey - Air pollution legislation and regulations – Enviro			•	•				
•		Air pollution in Indian cities. Case studies – some sp				indu	ıstry -			
		er - paper industry - Sources of pollutants and its control	ols - Cost bene	fit anal	ysis.					
Contact Peri		10 0 00 00 00 00 00 00 00 00 00 00 00 00								
Lecture: 45 I	Perio	ds Tutorial: 15 Periods Practical: 0 Periods	ods Total	: 60 Pe	riod	5				

REFERENCES

1	"Environmental Engineering", Howard S. Peavy, Doald R. Rowe and George Tchobanoglous,
	McGraw-Hill Co.,2013
2	"Air Pollution and Control Technologies", Dr. Y. Anjaneyulu, Allied publishers Ltd., 2 nd edition, 2018.
3	"Air Quality" Thad Godish, Taylor and Francis, 5 th edition, 2017.
4	"Air pollution prevention and control technologies", Anjaneyulu yerramilli, 2020
5	"Principles of Air Quality Management", Roger D. Griffin, 2020.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Compare the status of global and local air pollution scenario and their effects	K2
CO2	Interpret the modeling and analysis of air pollutants.	К3
CO3	Implement the concepts of control strategies adopted for removal of particulate	К3
	matter and gaseous pollutants	
CO4	Summarize the indoor air pollution sources and management.	K2
CO5	Apply the concepts of air pollution survey, legislation and case studies.	К3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	1	2	2	2				
CO2	3	3	1	3	3	1				
CO3	3	3	1	2	3	2				
CO4	3	3	1	3	3	2				
CO5	3	2	3	2	2	2				
23EEPC07	3	3	3	3	3	2				
1 – Slight, 2 – Moder	ate, 3 – Substa	intial	'	1	•	•				

ASSESSMENT I	PATTERN – TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	30	35	10	-	-	100
CAT2	25	30	35	10	-	-	100
Individual		To the same		200			
Assessment 1/		V 525	1107 CC	9)			
Case Study 1/	20	30	40	10	-	-	100
Seminar 1 /			- Ca)	77			
Project1			_ #	//			
Individual			W Y I				
Assessment 2/				\\			
Case Study 2/	20	30	40	10	-	-	100
Seminar 2/		Al E	10.0	V/s			
Project 2		The same		2 99			
ESE	25	30	35	10	-	-	100

The second second

23EEPC08	23EEPC08 ENVIRONMENTAL PROCESS LABORATORY					
PREREQUIS	PREREQUISITES CATEGORY					С
	NIL	PC	0	0	4	2
Course	To develop the skill for conducting treatability studie	es of water and w	astev	vate	r trea	atment
Objectives	by various operation and processes using laborator	y scale models a	nd to	o as	certa	in the
	suitability of water sample for various purposes.					

LAB EXPERIMENTS / PROGRAMS

- 1. Study on Jar test for determining optimum coagulant dosage.
- 2. Study on Electro Coagulation Process.
- 3. Batch Studies on settling
 - a) Type I Settling
 - b) Type II Settling
- 4. Determination of Characteristics of Filter media.
- 5. Adsorption studies
 - a) Batch
 - b) Continuous
- 6. Performance analysis of Aeration system.
- 7. Performance analysis of Activated Sludge Process
- 8. Advanced Oxidation Studies using Photo catalytic reactor
- 9. Casting and testing of membrane using membrane casting unit
- 10. Synthesis and characterization of Nano rods using Electro spinning techniques / CVD Chamber
- 11. Determination of organic compounds from waste compost

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Perform the coagulation process for wastewater treatment.	K3
CO2	Determine the batch settling data for wastewater	K3
CO3	Investigate the efficiency of colour removal by adsorption process	K3
CO4	Synthesis and characterize the nano materials for the wastewater treatment	K3
CO5	Identify the organic composition from the waste compost	K3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	2	3	3	3				
CO2	3	2	2	3	2	3				
CO3	3	2	2	2	2	3				
CO4	3	3	3	2	2	3				
CO5	3	2	2	2	2	3				
23EEPC08	3	3	3	3	3	3				
1 – Slight, 2 – Moderate, 3 – Sub	stantial									

ASSESSMEN	T PATTERN – T	HEORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
Exercise 1	20	25	25	15	10	5	100
Exercise 2	10	15	25	20	25	5	100
Exercise 3	10	15	25	25	20	5	100
Exercise 4	10	15	25	25	20	5	100
Exercise 5	15	15	25	25	15	5	100
Exercise 6	10	15	25	25	20	5	100
Exercise 7	10	10	30	25	20	5	100
Exercise 8	10	15	25	25	20	5	100
Exercise 9	10	15	25	25	20	5	100
Exercise 10	10	15	25	25	20	5	100
Exercise 11	10	25	25	25	10	5	100
Model Lab	10	15	25	20	25	5	100
Other mode of internal assessments	-	TO THE	The state of the s		-	-	-
ESE	10	10	30	25	20	5	100

23EEEE01	MINI PROJECT		SEMESTER II					
PREREQUISI	TES	CATEGORY	L	T	P	C		
	NIL	EEC	0	0	4	2		

Course To Identify environmental engineering problems, review of literature, methodology, modelling and design of Prototypes by applying engineering principles.

SYLLABUS

Mini Project will have mid semester presentation and end semester presentation. Mid semester presentation will include identification of the problem based on the literature review on the topic referring to latest literature available.

End semester presentation should be done along with the report on identification of topic for the work and the methodology adopted involving scientific research, collection and analysis of data, determining solutions highlighting individuals' contribution.

Continuous assessment of Mini Project at Mid Semester and End Semester will be monitored by the departmental committee.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify Environmental Engineering problems based on the current scenario	K2
CO2	Familiarize with the various treatment process for water, wastewater, air pollution and solid waste.	K2
CO3	Apply different treatments and control systems for waste management.	К3
CO4	Encounter the analysis and design of entire process unit.	K4
CO5	Develop a suitable sustainable solution for environmental engineering problems.	К3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	2	3	3	2				
CO2	3	3	2	3	3	2				
CO3	3	3	2	3	3	2				
CO4	3	3	2	3	3	2				
CO5	3	3	2	3	3	2				
23EEEE01	3	3	2	3	3	2				
1 - Slight, 2 - Moderate, 3 - Supplemental Supp	ıbstantial					•				

A.

ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
Category*											
CAT1	-	10	25	15	10	40	100				
CAT2	-	10	25	15	10	40	100				
Individual Assignment 1/ Case Study 1/ Seminar 1/ Mini project	-	-	-	-	-	-	-				
ESE	-	10	25	15	10	40	100				

23EEEE02 INTERNSHIP/	INDUSTRIAL TRAINING	SEMESTER
----------------------	---------------------	----------

PREREQUISITES: NIL	CATEGORY	L	T	P	C
	EEC	1	1		-

Course Objectives	To acquire entrepreneurship skills in the field of Environmental Engineering. To identify a specific problem and to give the solution for the current need of the industries.
SYLLABUS	
End semester	presentation should be done along with the report on internship training.

	RSE OUTCOMES: Impletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Relate theoretical knowledge and skills to real world situation.	К3
CO2	Integrate knowledge from diverse disciplines in Environmental Sectors.	K3
CO3	Apply higher order thinking skills in making decisions in complex situations.	K3
CO4	Express ideas clearly with clients and in the preparation of technical documents.	К3
CO5	Conduct collaborative research and preparation of technical document.	К3

Course Articulation Matrix									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	3	3	2			
CO2	3	2	2	3	2	2			
CO3	3	3	2	3	3	3			
CO4	3	2	2	2	3	2			
CO5	3	3	2	3	3	3			
CO6	3	2	2	3	2	2			
23EEEE03	3	2	2	3	3	2			

23EEEE03	PROJECT - I	PROJECT - I					
PREREQUISI	CATEGORY	L	T	P	C		
		EEC	0	0	24	12	

Course
Objectives

To identify a specific problem for the current need of the problem, collecting information related to the same through detailed review of literature and to develop the methodology to solve the identified problem.

SYLLABUS

The student individually works on a specific topic approved by faculty member who is familiar in this area of interest. The student can select any topic which is relevant to his/her specialization of the programme. The topic may be experimental or analytical or case studies. At the end of the semester, a detailed report on the work done should be submitted which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work. The students will be evaluated through a viva-voce examination by a panel of examiners including one external examiner.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 360 Periods Total: 360 Periods

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the research problems based on current scenario.	K2
CO2	Collect the literatures relevant to the research problem identified.	K3
CO3	Critically assess and propose solutions to environmental engineering problems.	K4
CO4	Perform analytical and experimental investigation.	K5
CO5	Demonstrate the research findings and present the solutions of the thesis work.	K6

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3	2	3	3	3				
CO2	3	3	2	3	3	3				
CO3	3	3	2	3	3	3				
CO4	3	3	2	3	3	3				
CO5	3	3	2	3	3	3				
23EEEE03	3	3	2	3	3	3				
1 - Slight, $2 - Moderate$, $3 - Slight$	Substantial	'			•	•				

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
Category*											
CAT1	-	10	25	15	10	40	100				
CAT2	-	10	25	15	10	40	100				
Individual											
Assignment 1/											
Case Study 1/	-	-	-	-	-	-	-				
Seminar 1/											
Mini project											
ESE	-	10	25	15	10	40	100				

23EEEE04	EE04 PROJECT - II				SEMESTER IV				
PREREQUISITES CATEGORY					P	C			
	NIL I			-	*	24			
Course To solve the identified problem based on the formulated methodology, and to develop									
Objectives	Objectives skills to analyze and discuss the test results and make conclusions.								

SYLLABUS

The student should continue the Phase I work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report should be prepared and submitted to the head of the department. The students will be evaluated through based on the report and the viva-voce examination by a panel of examiners including one external examiner.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 720 Periods Total: 720 Periods

	Гахопоту Mapped
CO1 Identify the research problems based on current scenario.	Mapped
CO2 Collect the literatures relevant to the research problem identified.	K2
552	К3
CO3 Critically assess and propose solutions to environmental engineering problems.	K4
CO4 Perform analytical and experimental investigation.	K5
CO5 Demonstrate the research findings and present the solutions of the thesis work.	K6

COURSE ARTICULATION	MATRIX		. 1			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	3	3	3
CO2	3	3	2	3	3	3
CO3	3	3	2	3	3	3
CO4	3	3	2	3	3	3
CO5	3	3	2	3	3	3
23EEEE04	3	3	2	3	3	3
1 - Slight, 2 - Moderate, 3 - Su	ıbstantial	•	•	•	•	•

ASSESSMENT	ASSESSMENT PATTERN – THEORY											
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total					
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%					
Category*												
CAT1	-	10	25	15	10	40	100					
CAT2	-	10	25	15	10	40	100					
Individual												
Assignment 1/												
Case Study 1/	-	-	-	-	-	-	-					
Seminar 1/												
Mini project												
ESE	-	10	25	15	10	40	100					

23EEPE01	23EEPE01 SUSTAINABLE ENVIRONMENTAL MANAGEMENT						
PREREQUISI	TES	CATEGORY	L	T	P	C	
	NIL	PE	3	0	0	3	
Course	To emphasize the need on sustainable developme	ent, cleaner produ	uctio	n, v	vaste	e audit,	
Objectives environmental health and safety and to impart knowledge on green process management						ment in	
various industries.							
UNIT – I	SUSTAINABLE DEVELOPMENT			9	Peri	ods	
Concepts of Su	stainable Development - Indicators of Sustainability	 Sustainability St 	trate	gies	, Ba	rriers to	
Sustainability -	Resource Degradation - Industrialization and Sustai	nable Developmen	nt - S	Soci	о Ес	conomic	
Policies for Sus	stainable Development						
UNIT – II	CLEANER PRODUCTION			9	Peri	ods	
Clean Develop	ment Mechanism, - Principles and Concepts of Cleaner	Production - Defi	nitio	n - I	mpo	rtance -	
Historical Evo	lution - Benefits - Promotion - Barriers - Source	Reduction Techni	ques	; -]	Proc	ess and	
Equipment Opt	imization, Reuse, Recovery, Recycle, Raw Material Su	bstitution – Waste	Auc	lit			
UNIT – III	CARBON TRADING			9 Periods			
Green House (Gases and Carbon Credit - Carbon Sequestration- Sus	tainable Developm	nent	thro	ugh	Trade -	
Carbon Trading	g – Carbon footprint						
UNIT – IV	ENVIRONMENTAL HEALTH AND SAFETY			9	Peri	ods	
Ecotoxicology	- Hazards by Industry and its Environmental Effects - l	Relationship of Oc	cupa	tion	al H	ygiene /	
Safety and Di	sease - Overview, Planning, Hazard Identification a	nd Risk Assessme	ent -	- Pe	stici	des and	
Environment.							
UNIT – V	UNIT - V GREEN PROCESS MANAGEMENT 9 Periods						
Green Energy and Green Process Management in Pharmaceutical, Construction, Textiles, Petroleum							
Refineries, Iron and Steel Industries.							
Contact Periods:							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	"Understanding Sustainable Development", John Blewitt, Third edition, Taylor & Francis Ltd., 2017.
2	"Cleaner Production: Toward a Better Future", Francisco Jose Gomes da Silva, Ronny Miguel
	Gouveia , Springer Publications, 2020.
3	"The Carbon Footprint Handbook" Subramanian Senthilkannan Muthu, Taylor & Francis Ltd., 2015.
4	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
5	"Green Business Process Management", Jan Recker, Stefan Seidel, Springer Publications, 2012.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Implement the sustainable development through various strategies.	К3
CO2	Execute various practices of cleaner production.	К3
CO3	Perform waste audit and evaluate carbon footprint to achieve sustainable	К3
	development.	
CO4	Examine the toxicological and hazardous effects of Industries on Environment.	К3
CO5	Apply green process management in various industrial sectors.	К3

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	2	3	3	2			
CO2	3	2	2	3	3	2			
CO3	3	3	2	3	3	1			
CO4	3	2	2	3	3	1			
CO5	3	2	2	3	3	2			
23EEPE01	3	2	2	3	3	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	Γ PATTERN – T	HEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual			MCTO-				
Assessment 1/		a Gran	MB-	_			
Case Study 1/	20	40	30	10	-	-	100
Seminar 1 /		(S.	TO PER V	9			
Project 1				50			
Individual		1/8/1/8/	-0	(
Assessment 2/							
Case Study 2/	20	40	30	10	-	-	100
Seminar 2/		9 2					
Project 2		1 8					
ESE	25	35	20	10	5	5	100

23EEPE02 ENVIRONMENTAL IMPLICATIONS OF ENGINEERED NANOMATERIAL								
PREREQUIS	ITES	CATEGORY	L	T	P	С		
	NIL	PE	3	0	0	3		
Course	Creating an awareness on nanotechnology and their a	applications and i	mpaı	t kno	owle	dge		
Objectives on nano toxicology								
UNIT – I	INTRODUCTION 9 Periods					ds		
Introduction to	o nanotechnology – types of nanomaterials – natu	ral and engineere	d na	nopa	articl	es –		
Properties of	Nanomaterials - synthesis: Physical, chemical and	d Biosynthesis of	Na	nopa	rticl	es –		
characterization	n of nanoparticles – nanotechnology products – Enviro	onmental benefits o	f nan	otec	hnol	ogy.		
UNIT – II APPLICATIONS OF NANOTECHNOLOGY				9 I	Perio	ds		
Nanoparticles	n energy and environment application -Fuel cell techn	nologies nanoteo	chnol	ogy	for v	vater		
remediation -	use of nanomaterials for environmental remediation -	nanomaterial base	d ph	oto (catal	yst –		
kinetics of deg	radation –Nanolithography – Biomedical application.							
UNIT – III	NANOTOXICOLOGY			9 I	Perio	ds		
Nanotoxicolog	y - toxicity of engineered nanoparticles - Health th	reats and effects	of na	nopa	artic	les –		
Entry routes in	to the human body – Threshold-permissible limits - Po	ortals of entry and	targe	t tiss	ue-ro	outes		
of entry of poll	utants- Impact on Environmental health - Occupationa	al exposure.						
UNIT – IV	NANOMATERIAL-POLLUTION AND CONTR	OL STRATEGIE	S	9 I	Perio	ds		
Nanopollution	- Nanomaterials in environment - sources of pollu	tion-transport thro	ugh	envi	ronn	nent-		
Pollution control strategies.								
UNIT – V SUSTAINABLE NANOTECHNOLOGY 9 Periods					ds			
Applications o	f Industrial ecology to nanotechnology- Fate of nano	materials – Enviro	nme	ntal :	life o	cycle		
analysis of n	anomaterials - Environmental reconnaissance and	d surveillance -	Cor	pora	te s	ocial		
responsibility f	or nanotechnology – Nanomaterials in future.							
Contact Perio	ds:							
Lecture: 45 Po	eriods Tutorial: 0 Periods Practical: 0 Pe	eriods Total	: 45 1	Perio	ods			

1	"Introduction to Nanoscience" by Gabor L. Hornyak, Joydeep Dutta, Harry F. Tibbals, Anil K. Rao.
	CRC Press, 2008.
2	"Handbook of Nanofabrication" Edited by Gary Wiederrcht. Elsevier, 2010
3	"Nanotechnology: Health and Environmental risk" by Jo Anne Shatkin. CRC press, 2008.
4	"Nanotechnology: An Introduction to Synthesis Properties and Applications of Nanomaterials",
4	"Nanotechnology: An Introduction to Synthesis Properties and Applications of Nanomaterials", Thomas Varghese, K.M. Balakrishna, Atlantic publications, Reprint 2016 edition.
5	

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Implement the nanotechnology through various method.	K2
CO2	Execute various practices of nanotechnology.	К3
CO3	Implement the nanotoxicology in various field.	К3
CO4	Examine the nanotechnology in pollution control on Environment.	К3
CO5	Apply sustainable nanotechnology.	К3

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	2	2	3	3	1					
CO2	3	2	2	3	3	2					
CO3	3	3	2	3	3	1					
CO4	3	2	2	3	3	1					
CO5	3	2	2	3	3	1					
23EEPE02	3	3	2	3	3	2					
1 - Slight, 2 - Moderate, 3 - Started	Substantial		•	•	•	•					

ASSESSMENT I	ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total					
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%					
CAT1	30	30	20	10	5	5	100					
CAT2	20	40	20	10	5	5	100					
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100					
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100					
ESE	25	35	20	10	5	5	100					

23EEPE03	ENVIRONMENTAL ENGINEERING STRUCTURES										
PREREQUIS	PREREQUISITES CATEGORY L										
	NIL	PE	3	0	0	3					
Course Objectives	To acquire knowledge on design of pipes, roofing structures and to develop knowledge on repair and relative to the structures are to develop knowledge.	•			s, sp	pecial					
UNIT – I	DESIGN OF PIPES			9 P	erio	ds					
Structural desi	gn of Concrete, Prestressed Concrete, Steel and Cast-	iron pipes - pipin	g m	ains	– joi	nts –					
Leak detection	- Advances in the manufacture of pipes.										
UNIT – II	DESIGN OF CONCRETE ROOFING SYSTEMS			9 P	erio	ds					
Design of con-	crete roofing systems - Cylindrical, Spherical and Con	nical shapes using	me	mbra	ne tl	neory					
and design of v	various types of concrete folded plates for roofing.										
UNIT – III	ANALYSIS AND DESIGN OF WATER TANKS			9 P	erio	ds					
IS Codes for the	ne design of water retaining structures - Design of circ	ular, rectangular,	sphe	rical	and	Intze					
type of tanks u	sing concrete.										
UNIT – IV	DESIGN OF SPECIAL PURPOSE STRUCTURE	S		9 P	erio	ds					
Design of Uno	derground reservoirs, swimming pools, Intake towers	, settling tanks, c	lari	- flo	ccul	ators,					
aeration tanks.	Elman J										
UNIT – V	UNIT – V REPAIR AND REHABILITATION OF STRUCTURES 9 Periods										
Diagnosing the	e cause and damage, identification of different types of	f structural and no	n-stı	uctu	ral c	racks					
- repair and re	habilitation methods for Masonry, Concrete and Steel	Structures - Dura	bility	y of	Struc	tures					
used in water a	and sewerage works.										
Contact Perio	ds:										
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Pe	riods Total	: 45	Peri	ods						

1	"The Fundamentals of Piping Design", Peter Smith, Elsevier Science, 2013.
2	"Advanced Reinforced Concrete Design", N. Krishna Raju, CBS Publishers & Distributors, Third
	edition, 2016.
3	"Reinforced Concrete Design", S Unnikrishna Pillai, Devdas Menon, Tata McGraw Hill Foundation
	Private Limited,2017
4	"Maintenance, Repair & Rehabilitation & Minor Works of Buildings", P.C. Varghese, PHI
	Learning Private Limited, 2014.

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Design various piping systems based on environmental conditions.	К3
CO2	Analyze and design concrete roofing systems.	К3
CO3	Analyze and design various types of water tanks	К3
CO4	Execute the design of various special structures such as underground reservoirs,	К3
	swimming pools etc.,	
CO5	Assess the condition of structures and suggest rehabilitation measures.	K3

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	2	2	2	2	2					
CO2	3	2	2	2	2	1					
CO3	3	2	2	2	2	1					
CO4	3	3	2	2	2	2					
CO5	2	3	2	2	3	2					
23EEPE03	3	2	2	2	2	2					
1 – Slight, 2 – Moderate, 3 – Su	bstantial	•	•	•		•					

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	10	15	25	25	15	10	100
CAT2	10	15	25	25	15	10	100
Individual		100000	15 CO 111	χ			
Assessment 1/		TO STATE	THE V				
Case Study 1/	-		50	50	_	-	100
Seminar 1 /		180 100	-0				
Project 1							
Individual							
Assessment 2/		// 鱼					
Case Study 2/	-		50	50	_	-	100
Seminar 2/		A Be		3.			
Project 2			-	<u> </u>			
ESE	10	° 15	25	25	15	10	100

23EEPE04 GROUND WATER CONTAMINATION AND TRANSPORT									IOD		NG	
PREREQUISITES CATEGORY L										P	C	
	N]	L					PE	3	0	0	3	
Course	To stu	dy the	basics of	contam	inant trans	ort phenor	nenon, to ident	ify th	e so	urce	s and	
Objectives	causes	of gr	ound wate	er pollut	tion for p	edicting th	e suitable num	erical	mo	delii	ng of	
	ground	water										
UNIT – I	INTRO	ODUC'	TION TO	GROU	ND WATE	R			9 I	Perio	ds	
Ground water	and the	hydrol	ogic cycle	s; Grou	nd water a	nd geologic	processes. Phy	sical	prop	ertie	s and	
principles - D	arcy's L	aw -	Hydraulic	Head a	nd Fluid	Potential -	Piezometers an	d Ne	sts.	Hyd	raulic	
conductivity ar	id perme	ability	- Homoge	neity and	d Anisotrop	y - Porosity	and voids Ratio	o - Un	satu	rated	l flow	
and the water t	able - Ste	eady sta	ate flow an	nd Transi	ent flow - 0	Compressibi	lity and effectiv	e stres	SS.			
UNIT – II	BASIC	CS OF	CONTAN	IINANT	TRANSP	ORT			9 I	Perio	ds	
					_		sorption - cons					
conservative p	ollutants	- Extr	insic and	Intrinsic	e propertie	s- laws of	conservation-	Reyno	olds	Trai	ısport	
Theorem.												
UNIT – III	GROU	INDW.	ATER CO	NTAM	INATION				9 I	Perio	ds	
Groundwater	contami	nation,	sources	and ca	uses of	groundwater	pollution. Po	ollutio	n l	Dyna	mics,	
Hydrodynamic	s disper	rsions,	Biodegra	dations,	Radioacti	vity decay,	Reactive pro	cesse	s, N	Aulti	phase	
contamination,	NAPLs,	VOCs	, Site spec	ific grou	ndwater qu	ality problei	ns in Indian con	text.				
UNIT – IV TRANSPORT MODELING 9 Periods												
			7.30			- //	of steady and					
saturated and unsaturated domains, Contamination transport modelling, Application of FEM and BIEM in												
saturated and t		groundwater modelling, regional aquifer simulation.										

UNIT - VGROUNDWATER MANAGEMENT9 PeriodsContaminatedgroundwatersystems and their rehabilitation, Developmentand optimization-based management of aquifer systems, stochastic models, Random field concepts in groundwater models; Application emerging techniques to groundwater management.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	"Ground water Hydraulics and Pollutant transport", Randall J. Charbeneau, Prentice Hall, Upper
	Saddle River, 2009.
2	"Ground water Hydrology", Todd David Keith, Second edition, John Wiley and Sons, New York, 2010.
3	"Ground water", Allen Freeze, R. and John A. Cherry, "Ground Water", Prentice Hall, Inc., 2009.
4	"Modelling Ground Water Flow and contaminant Transport", Bear, Jacob, cheng, Alexander H.D.
	2010.
5	"Ground Water Contamination: Transport and Remediation", Philip B, Bedient, Hanadis,
	Rifari,chareless J,NEWELL 1999.

COUF	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy
		Mapped
CO1	Identify the hydrogeological parameters which influence the availability of ground water.	K1
CO2	Know the basics of contaminant transport phenomenon and pollutant nature.	K2
CO3	Examine the causes for ground water pollution at site and its pollution dynamics.	К3
CO4	Develop the Contamination transport modelling for solving real problems.	К3
CO5	Analyze the groundwater management techniques for contaminated aquifers.	K4

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	3	2	1	2	2	1					
CO2	3	2	1	2	2	1					
CO3	3	2	2	2	2	1					
CO4	3	3	2	3	3	2					
CO5	3	3	2	3	3	2					
23EEPE04	3	3	2	3	3	2					
1 – Slight, 2 – Moderate, 3 – Su	bstantial										

ASSESSMEN	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	30	35	35	-	-	-	100					
CAT2	30	30	30	10	-	-	100					
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	30	40	30	7	-	-	100					
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100					
ESE	20	25	30	20	5	-	100					

23EEPE0	5	ENVIRONMENTAL IMPAC	CT ASSESSMEN	Т			
PREREQUIS	PREREQUISITES CATEGORY L						
		NIL	PE	3	0	0	3
Course Objectives		erstanding, assessing the various environmental dentifying the risk identification sources and pro	•		•	cts o	f EIA
UNIT – I	INTI	RODUCTION			9	Per	iods

Historical development of Environmental Impact Assessment (EIA). EIA in Project Cycle. Legal and Regulatory aspects in India. – Types and limitations of EIA – EIA process- screening –scoping - setting – analysis – mitigation. Cross sectoral issues and terms of reference in EIA – Public Participation in EIA-EIA Consultant Accreditation.

UNIT – II IMPACT IDENTIFICATION AND PREDICTION

9 Periods

Matrices – Networks – Checklists –Cost benefit analysis – Analysis of alternatives – Software packages for EIA – Expert systems in EIA. Prediction tools for EIA – Mathematical modeling for impact prediction – Assessment of impacts – air – water – soil – noise – biological — Cumulative Impact Assessment.

UNIT – III SOCIAL IMPACT ASSESSMENT AND EIA DOCUMENTATION

9 Periods

Social impact assessment - Relationship between social impacts and change in community and institutional arrangements. Individual and family level impacts. Communities in transition Documentation of EIA findings – planning – organization of information and visual display materials.

UNIT – IV ENVIRONMENTAL MANAGEMENT PLAN

9 Periods

EIA Report preparation. Environmental Management Plan - preparation, implementation and review – Mitigation and Rehabilitation Plans – Policy and guidelines for planning and monitoring programmes – Post project audit – Ethical and Quality aspects of Environmental Impact Assessment- Case Studies.

UNIT - V ENVIRONMENTAL RISK ASSESSMENT AND MANAGEMENT

9 Periods

Environmental risk assessment framework-Hazard identification -Dose Response Evaluation - Exposure Assessment - Exposure Factors, Tools for Environmental Risk Assessment - HAZOP and FEMA methods - Event tree and fault tree analysis - Multimedia and multipath way exposure modeling of contaminant-Risk Characterization Risk communication - Emergency Preparedness Plans -Design of risk management programs.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- "Environmental Impact Assessment- Theory and Practice,", Wathern, P, Taylor and Francis Group, U.K. 2015
 "Methodologies in Hazard Identification and Risk Assessment", Raghavan K. V. and Khan A A by CLRI, 1990
 "Environmental Impact Assessment Practical Solutions to Recurrent Problems", Lawrence D. P.
 - 3 **"Environmental Impact Assessment: Practical Solutions to Recurrent Problems",** Lawrence, D.P., John Wiley & Sons, Canada (2003)
- 4 **"Environmental Risk and Hazards",** Cutter, S.L Hall of India Pvt. Ltd., New Delhi, Bimal Kanti Paul 2011.

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Interpret the importance of environment assessment studies in project development.	K2
CO2	Apply impact identification and prediction models.	K3
CO3	Prioritize the social impacts in EIA documentation.	К3
CO4	Articulate the environmental management plan including the preparation and mitigation	К3
	aspects.	
CO5	Evaluate the risk assessment based on dose response analysis	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	2	3	1
CO2	3	3	2	2	2	1
CO3	2	2	3	2	3	2
CO4	3	2	2	3	3	2
CO5	3	2	2	3	3	3
23EEPE05	3	3	3	3	3	3
1 – Slight, 2 – Moderate, 3 –	Substantial		OF VY		1	•

ASSESSMENT	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	25	25	35	10	5	-	100					
CAT2	25	25	35	10	5	-	100					
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	10	10	35	45	-	-	100					
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	10	10	35	45	-	-	100					
ESE	25	25	40	10	-	-	100					

23EEPE06	ENVIRONMENTAL ECONOMICS								
PREREQUISI	PREREQUISITES CATEGORY L								
	NIL	PE	3	0	0	3			
Course	Balancing between economic development, environm	ental quality and al	so to	dete	rmir	ie the			
Objectives	Objectives theoretical or empirical effects of environmental policies on the economy.								
UNIT – I	ECONOMY AND THE NATURAL ENVIRONME	ENT		9 I	Perio	ds			

The human economy – natural environment interaction. Biophysical Foundations of production and consumption of human economy Sources and Sink functions of the ecosystem. Material Balance approach: the concept and conditions of sustainability of the human economy. Classification and characterization of resources and pollution as a public good or bad. Role of Externalities as the fundamental determinants. Property Rights, Market, Spatial-temporal dimensions of externality.

UNIT – II THEORY OF ENVIRONMENTAL REGULATION AND POLICY 9 Periods

The socially optimal level of pollution and Pareto optimal allocation of resources. attainment of optimal pollution:

Assignment of Property Rights: Coase Theorem and its limitations, Government interventions - Command and Control: standard setting, Market based instruments: Pigouvian taxes - emission charges, ambient charges, product charges, subsidies, noncompliance fees, Tradable pollution permits. Uncertainty and choice of regulatory instrument.

UNIT – III VALUATION OF ENVIRONMENTAL GOODS AND SERVICES 9 Periods

Environmental valuation and conceptual basis of its methods: Compensating Variations and Surplus, Equivalent Variations and Surplus, Willingness to pay or accept for improvement or loss of environmental goods and services. Empirical approaches in environmental valuation: Indirect Methods of environmental valuation: econometric or statistical methods. Preference Methods: (a) Hedonic Pricing, (b) Household Production Function approach - defensive cost, health cost and travel cost methods. The direct method of environmental valuation: Stated preference: Contingent valuation method.

UNIT – IV SUSTAINABLE ECONOMIC DEVELOPMENT

9 Periods

Capital theoretic basis of the notion of sustainable development: Sustainable Development as non-declining intertemporal utility or that of the value of the wealth. Concepts of Genuine investment or savings and Green National Income. Natural capital stock and sustainable resource accounting. Strong and weak Sustainability, Environmental Adjustment of National Income.

UNIT – V ECONOMIC DEVELOPMENT AND ENVIRONMENT

9 Periods

The relation between Development and Environmental Quality: Environmental Kuznets Curve Development vs conservation of environmental resources: Ecosystem flips and irreversibility: Krutilla-Fisher equation. Environmental Cost-Benefit Analysis under strong and weak conditions of sustainability: Choice of time discount rate for evaluation. Sustainability premium.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 "Environmental Economics: Theory and Applications", Katar Singh, Anil Shishodia, SAGE Publications, First Edition, 2007.
- 2 "Economics of Environment", SunhashiniMuthukrishnan, PHI Learning Pvt. Ltd. Publications, Second Edition, 2015.
- 3 **"Intermediate Environmental Economics"**, Charles Kolstad, Oxford University Press, 2nd edition, 2010.
- 4 "Economics of the Environment: Selected Readings", Robert N. Stavins, W.W.Norton, 5th edition, 2005.
- 5 "Natural Resource and Environmental Economics", Roger Perman, Yue Ma, James McGilvray and Michael Common", Pearson Education/Addison Welsey, 3rd edition, 2003.

COUR	COURSE OUTCOMES:					
		Taxonomy				
Upon c	Upon completion of the course, the students will be able to:					
CO1	Identify the economy and the natural environment	K2				
CO2	Emphasize the Environmental regulation and policy	К3				
CO3	Valuate the environmental goods and services	K3				
CO4	Summarize the sustainable economic development	К3				
CO5	Predict the economic development and environment	К3				

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	3	2	3	2	-			
CO2	2	2	3	2	2	-			
CO3	2	3	2	2	3	-			
CO4	2	3	2	3	3	-			
CO5	2	3	3	2	2	-			
23EEPE06	2	3	3	3	3	-			
1 – Slight, 2 – Moderate,	3 – Substant	ial	A THE STATE OF	20		•			

1 5116111, 2 1	reacture, 5 Subs	tantian		V/s			
		5930	W. Cel				
ASSESSMENT	PATTERN – TH	EORY	-W	77			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total
CAT1	20	35	25	10	10	-	100
CAT2	20	20	25	15	20	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	20	30	50	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	25	25	50	-	-	100
ESE	20	25	20	25	10		100

23EEPE07 COMPUTING TECHNIQUES IN ENVIRONMENTAL ENGINEERING										
PREREQUISI	TES	CATEGORY	L	T	P	C				
	NIL PE 3									
Course	To understand different methods, tools of computing	echniques for solv	ing ei	nviro	nme	ntal				
Objectives	problems for interpretation of the Environmental	Impacts using a	node	rn a	dvan	iced				
	computing tools used in environmental studies.									
UNIT – I	COMPUTING PRINCIPLES			9 P	erio	ds				
Introduction to	Computing techniques - Algorithms and Flowchar	s, Numerical met	hods	-Sol	utior	ı to				
ordinary and p	artial differential equation using Finite difference and	l Finite element m	ethod	d, Nu	ımer	ical				
integration and	differentiation, Design of digital models for Environme	ntal applications.								
UNIT – II	ARTIFICIAL INTELLIGENCE			9 P	erio	ds				
Knowledge ba	sed Expert system concepts - Principle of Artificia	l Neural Network	(AN	NN)	–Ne	ural				
	ture - Neural Network Operations - ANN Algorithm	n - Application o	f AN	N N	Iode	l to				
Environmental	field – Genetic Algorithms.									
UNIT – III	FUZZY LOGIC			9 P	erio	ds				
Fuzzy sets, fuz	zy numbers, fuzzy relations, fuzzy measures, fuzzy log	gic and the theory	of un	certa	inty	and				
information; ap	plications of the theory to inference and control, cluster	ing, and image pro	cessii	ng - l	Vetw	ork/				
analysis models	S.									
UNIT – IV	DATA MANAGEMENT			9 P	erio	ds				
Data base struc	cture - Data acquisition - Data warehouse - Data retriev	al-Data format At	tribut	e -Rl	OBM	1S -				
Data analysis	- Network data sharing - Statistical Analysis (SYST	AT) - Regression	-facto	or ar	alys	is -				
histogram - sca	tter diagram - Goodness of fit.									
UNIT – V	ENVIRONMENTAL MODELING USING MATL			_	erio					
	MATLAB Software - Environmental modeling princ	•	$\overline{\mathbf{B}} \overline{\mathbf{A}}$	pplic	atior	ıs –				
	Pollutants transport, decay and degradation modeling using MATLAB. Case studies.									
Contact Period	Contact Periods:									
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									

1	"Soft Computing and its Applications", Aliev R. A, and Aliev Rashad, World Scientific Publications Co.
	Pte. Ltd. Singapore, 2014.
2	"Numerical Methods for Engineers", Chepra S. C. and Canele R. P., McGraw-Hill, a business unit of
	The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas, NewYork, NY 10020. 6th Edition
	2014.
3	"Data-Driven Modeling: Using MATLAB in Water Resources and Environmental Engineering",
	Springer; 2014 edition.
4	"Numerical methods using MATLAB", Mathews J. H. and Fink K.D, Pearson Education 2010.

COUR	COURSE OUTCOMES:				
		Taxonomy			
Upon	completion of the course, the students will be able to:	Mapped			
CO1	Examine the principle of soft computing for the analysis and design of engineering	К3			
	systems.				
CO2	Articulate the environmental impacts using ANN	К3			
CO3	Solve the environmental impacts using fuzzy logic	К3			
CO4	Discover the data for effective management plan.	К3			
CO5	Use advanced computing tools in environmental studies	К3			

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	2	3	3	2	1			
CO2	3	3	2	2	2	2			
CO3	3	3	2	2	2	2			
CO4	3	3	3	3	3	2			
CO5	2	3	2	3	3	2			
23EEPE07	3	3	3	3	3	2			
1 – Slight, 2 – Moderate, 3 – Su	bstantial								

ASSESSMENT	PATTERN – T	HEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	30	20	40	10	-	-	100
CAT2	30	20	40	10	-	-	100
Individual			- 2 mm				
Assessment 1/		7 601000	STREETS BIRES	26			
Case Study 1/	20	20	40	20	-	-	100
Seminar 1 /							
Project 1		18 8	-	//			
Individual				11			
Assessment 2/				//			
Case Study 2/	20	20	40	20	-	-	100
Seminar 2/		1 8					
Project 2		X B		VB.			
ESE	30	20	40	10	-	-	100

TO GO GOOD

23EEPE08		ENVIRONMENTAL RIS	K ASSESSMENT				
PREREQUISITE	S		CATEGORY	L	T	P	С
		NIL	PE	3	0	0	3
Course	Unde	erstanding the important elements and sources of	environmental haz	ards	to de	mon	strate
Objectives	the to	ools and methods of risk assessment and manager	ment.				
UNIT – I	INT	RODUCTION			9 P	erio	ds
Introduction to En	viron	mental Risk and definitions -Sources of Enviro	nmental hazards –	Envi	ronn	nenta	l risk
assessment framev	vork -	- Regulatory perspectives and requirements – Ris	sk Analysis and Ma	nage	ment	- Pa	ath to
risk analysis; Perce	eption	of risk, risk assessment in different disciplines.					
UNIT – II	ELE	MENTS OF ENVIRONMENTAL RISK ASS	ESSMENT		9 P	Perio	ds
Hazard identificati	on –	Fate and behaviour of toxics and persistent subst	tances in the enviro	nmei	nt – I	Prope	rties,
processes and para	mete	rs that control fate and transport of contaminants	- Receptor exposu	re to	Envi	ronn	nental
Contaminants – D	ose R	tesponse Evaluation – Exposure Assessment – l	Exposure Factors, S	Slope	Fact	tors,	Dose
Response calculati	ons a	nd Dose Conversion Factors - Risk Characteriza	ation and conseque	nce d	eterr	ninat	ion –
Vulnerability asses	ssmen	t – Uncertainty analysis.					
UNIT – III	TOC	OLS AND METHODS FOR RISK ASSESSME	ENT		9 P	Perio	ds
HAZOP and FEM	IA m	ethods - Cause failure analysis - Event tree a	nd fault tree mode	ling	and	analy	vsis –
	•	ath way exposure modeling of contaminant mi	~				
		vater, soils, vegetation and animal products -		_			
_		man health - Methods in Ecological risk assessi	ment – Probabilistic	risk	asse	ssme	ents –
radiation risk asses	ssmen	t – Data sources and evaluation.					
UNIT – IV		TRONMENTAL RISK MANAGEMENT				Perio	
		nd Risk Perception - comparative risks - Risk		_			
		setting - Risk Cost Benefit optimization and trac-	· ·	•			
– Emergency plan	nning	for chemical agent release - Design of risk	management prog	grams	– r	isk 1	based
remediation; Risk	comn	nunication, adaptive management, precaution and	stake holder involv	eme	nt.		
UNIT – V	APP	LICATIONS			9 P	erio	ds
Case studies on r	isk as	ssessment and management for hazardous cher	nical storage - Ch	emic	al in	dusti	ries –
Tanneries - Texti	le ind	lustries - Mineral processing and Petrochemic	al plants – Hazard	ous	wast	e dis	posal
facilities – nuclear	powe	er plants – contaminated site remediation – Case l	nistories on Bhopal	•			
Contact Periods:							

Lecture:45 Periods

1	"Environmental Health and Hazard Risk Assessment,", Theodore L and Dupont R R, CRC Press
	(2012).
2	"Environmental Impact Assessment Methodologies", Anjaneyulu Yerramillivalli, Manickam
	(2020),3rd Edition, BS Publication, 2020
3	"Environmental impact assessment", m.anjireddy, bs publication, 2016
4	"Environmental risk assessment: a toxicological approach", tedsimon, 2014.
5	"Environmental Risk Assessment and Management from a landscape perspective", Wayne landis,
	Lawrence A. Kapustka, 2010.

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Interpret different types of risk and environmental risk assessment.	K2
CO2	Use elements involved in environmental risk assessment and hazard prediction.	K2
CO3	Identify the analyzing tools and methods for risk assessment.	К3
CO4	Evaluate risk communication and risk perception.	K3
CO5	Appraise the risk assessment for different industries.	К3

COURSE ARTICUI	LATION MA	TRIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	2	2	2	1
CO2	2	2	2	3	3	1
CO3	2	3	3	2	3	2
CO4	3	2	3	3	2	2
CO5	3	2	3	2	3	3
23EEPE08	3	3	3	3	3	3
1-Slight, 2- Moderate	, 3- Substantia	al (-	77		

1 Slight, 2 1	vioderate, 3- Subs	tantiai					
ASSESSMENT	T PATTERN – T	HEORY		1			
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	
Category*		1992 NO.	- 1	Z49			
CAT1	25	30	25	10	10	-	100
CAT2	25	30	25	10	10	-	100
Individual							
Assessment 1/							
Case Study 1/	20	40	10	20	10	-	100
Seminar 1 /							
Project 1							
Individual							
Assessment 2/							
Case Study 2/	20	40	10	20	10	-	100
Seminar 2/							
Project 2							
ESE	30	35	25	10			100

23 EEPE09	ENVIRONMENTAL MANAGEM	ENT STANDARI)S			
PREREQUISI	TES	CATEGORY	L	T	P	С
	NIL	PE	3	0	0	3
Course	To impart an understanding of systems approa-	ch to Environmen	ıtal	Man	ager	nent
Objectives	Standards, gain knowledge about audit process,	qualification crite	eria,	labe	els,	self-
	declaration and Environmental Performance Evalua	ntion Guidelines, a	nd e	nhan	ce s	kills
	for Life Cycle Impact Assessment and Life Cycle In	terpretation.				
UNIT – I	INTRODUCTION			9 I	Perio	ods
Environmental	Management system- definition and goal, Need for	EMS implementat	ion,	Inte	rnati	onal
standard organi	aisation – Functions of ISO, - ISO 14000 series-Introd	uction, objective as	nd G	oal.	Scop	e of
the standards of	f ISO 14000 series					
UNIT – II	ENVIRONMENTAL MANAGEMENT SYSTEM	IS		9 I	Perio	ods
ISO 14001- En	vironmental Management Systems: Specification with	Guidance for Use,	ISO	1400	04 :E	EMS
General Guidel	ines on Principles, Systems and Supporting Technique	es				
UNIT – III	ENVIRONMENTAL AUDITING			9 I	Perio	ods
General Princip	oles, Audit Procedures: Auditing of Environmental	Management Syste	ms,	Qual	lifica	ıtion
Criteria for Env	rironmental auditors, Environmental Assessment of Si	tes and Organisatio	ns- I	SO 1	401	5
UNIT – IV	ENVIRONMENTAL LABELS AND DECLARA	ΓΙΟΝS		9 I	Perio	ods
Environmental	Labels and Declarations: General principles, Type	es of labeling. IS	O 14	4021	(20	01):
Environmental	Labels and Declarations: Self-declared Environment	tal Claims (Type	II E	nviro	nme	ental
Labelling), ISC	0 14024 (2001): Type I Environmental Labels: Princ	iples and Procedur	es E	nviro	onme	ental
Management: I	Environmental Performance Evaluation Guidelines-IS	O 14031- case stud	ies.			
UNIT – V	LIFE CYCLE ASSESSMENT			9 I	Perio	ods
Introduction, L	ife Cycle Assessment: Principles and Framework- ISO	O 14040, Goal and	Sco	pe D	efin	ition
and Inventory	Analysis- ISO 14041, Life Cycle Impact Asser	ssment - ISO 14	042,	Lif	e C	ycle
Interpretation-	ISO 14043, Data Documentation Format- ISO 14048.					
Contact Period	ds:					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Pe	riods Total:	45 I	Perio	ds	

1	"ISO 14000 Environmental Management Standards: Engineering and Financial Aspects",
	Dr.Alan Morris, Wiley Publications, 2004.
2	"Concepts of Environmental Management for Sustainable Development", M C.Dash, Wiley
	Publications, 2019.
3	"Introduction to Environmental Management", M.M.Sulphey, M.M.Safeer, PHI Learning
	Publications, 2017.
4	"Environmental Management", R.K.Mishra, AITES Publications, 1st Edition, 2015.

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Value the elements and scope of the standards	K2
CO2	Discuss the guidelines on principles and supporting techniques	K2
CO3	Develop the auditing process and procedures	К3
CO4	Discuss Environmental labels, types and declaration	К3
CO5	Implement Life Cycle Assessment and Impact Assessment	K3

COURSE ARTICULA	ATION MAT	RIX				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	2	2	1
CO2	3	2	2	2	2	1
CO3	2	2	3	2	3	1
CO4	2	2	3	2	3	1
CO5	2	2	2	2	3	1
23EEPE09	3	2	3	2	3	1
1 – Slight, 2 – Moderat	e, 3 – Substant	ial		•	•	•

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total
CAT1	20	25	20	25	10	-	100
CAT2	20	20	25	15	20	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	10	40	50	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	15	35	50	-	-	100
ESE	20	15	25	25	15	-	100

23EEPE10	AIR QUALITY MOD	ELING				
PREREQUIS	ITES	CATEGORY	L	T	P	С
	NIL	PE	3	0	0	3
Course	Understanding the concept of different types of a	ir quality models,	, em	phasi	zing	the
Objectives	importance of meteorological condition in air quality	model ,gaining kno	owle	dge o	n in	dooi
	air quality models and advanced software in air qualit	y modeling				
UNIT – I	MODELING CONCEPT			9 Pe	riod	S
Overview of d	ifferent types of models-deterministic and stochastic ap	proach- Steps in m	odel	deve	lopn	nent-
numerical and	d simulations models- calibration and validation	of models-Limit	ation	s- I	[rans	spor
phenomena- M	lass balance analysis-Model development and decision	making.				
UNIT – II	AIR POLLUTION MODELING			9 Pe	riod	s
Chemistry of a	air Pollutants - Atmospheric reactions, sinks for air po	llution –Transport	of ai	ir Po	lluta	nts -
-	l settling for dispersal of air pollutants – Vertical structions, Wind and shear, self-cleaning of atmospher	re; transport and	diffus	sion	of s	tack
emissions – at	notions, Wind and shear, self-cleaning of atmospher emospheric characteristics significant to transport and	re; transport and	diffus	sion	of s	tack
emissions – at plume characte	notions, Wind and shear, self-cleaning of atmospher emospheric characteristics significant to transport and	re; transport and	diffus	sion	of s	stack
emissions – at plume characte	notions, Wind and shear, self-cleaning of atmospher emospheric characteristics significant to transport and eristics.	re; transport and diffusion of stack	diffus emi	sion ssion 9 Pe	of s n – s eriod	stack stack
emissions – and plume characted UNIT – III Types modeling	notions, Wind and shear, self-cleaning of atmospheremospheric characteristics significant to transport and eristics. AIR QUALITY MODELS	re; transport and diffusion of stack	diffus emi	sion ssion 9 Pe pact,	of s n – s eriod mul	stack stack
emissions – and plume characted UNIT – III Types modeling sources and an arms.	notions, Wind and shear, self-cleaning of atmospheric mospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ag technique, modeling for nonreactive pollutants, single	re; transport and diffusion of stack	diffus emi	9 Pe	of some of som	stack stack s s tiple
emissions – and plume characted UNIT – III Types modeling sources and and of Gaussian plants.	notions, Wind and shear, self-cleaning of atmospheric mospheric characteristics significant to transport and eristics. AIR QUALITY MODELS Ig technique, modeling for nonreactive pollutants, single as sources, Fixed box models- diffusion models – Gaustine and the control of t	re; transport and diffusion of stack le source, short terms ian plume derivate receptor oriented a	m impoint so	9 Pe pact, mod	of s riod mul ificat orie	stack stack stack tiple tions
emissions – and plume characted UNIT – III Types modeling sources and and of Gaussian plants.	notions, Wind and shear, self-cleaning of atmospheric mospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ag technique, modeling for nonreactive pollutants, single ea sources, Fixed box models- diffusion models – Gaussume equation- long term average-multiple cell model	re; transport and diffusion of stack le source, short terms ian plume derivate receptor oriented a	m impoint so	9 Pe pact, mod	of s n – s riod mul ificat orie	stack stack tiple tions ntec
emissions – and plume characted UNIT – III Types modeling sources and and of Gaussian plair pollution materials.	notions, Wind and shear, self-cleaning of atmospher mospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ag technique, modeling for nonreactive pollutants, single ea sources, Fixed box models- diffusion models – Gaustume equation- long term average-multiple cell model to odels- model performance, accuracy and utilization-air	diffusion of stack le source, short terressian plume derivate receptor oriented a Quality Index -air of	m important sequential	9 Per pact, mode burce ty ma	of some riod multificate orient appir	stack stack tiple tions ented
emissions – and plume characted UNIT – III Types modeling sources and and of Gaussian plair pollution material UNIT – IV Indoor Air Pollution in the character of the characte	notions, Wind and shear, self-cleaning of atmospheric mospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ag technique, modeling for nonreactive pollutants, single as sources, Fixed box models- diffusion models — Gaustume equation- long term average-multiple cell model to odels- model performance, accuracy and utilization-air INDOOR AIR QUALITY MODELS	re; transport and diffusion of stack le source, short terms in plume derivate receptor oriented a Quality Index -air of the pour Pollutants Response Pollutants Response receptor oriented a public Pollutants Response receptor receptor oriented a public Pollutants Response receptor re	m impion- qualit	9 Per pact, modern modern modern matern mate	of some riod multificate orient priod ticul	stack stack stack tiple tions ented ng.
emissions – and plume characted UNIT – III Types modeling sources and and of Gaussian plair pollution material UNIT – IV Indoor Air Polling Bio aerosols, F	notions, Wind and shear, self-cleaning of atmospher mospheric characteristics significant to transport and eristics. AIR QUALITY MODELS Ig technique, modeling for nonreactive pollutants, single as sources, Fixed box models- diffusion models – Gaustume equation- long term average-multiple cell model to odels- model performance, accuracy and utilization-air INDOOR AIR QUALITY MODELS Illutants - Volatile Organic Compounds, Inorganic Gased	re; transport and diffusion of stack le source, short terms in plume derivate receptor oriented a Quality Index -air of the pour Pollutants Response Pollutants Response receptor oriented a public Pollutants Response receptor receptor oriented a public Pollutants Response receptor re	m impion- qualit	9 Per pact, modern modern modern matern mate	of some riod multificate orient priod ticul	stack stack stack tiple tions ented
emissions – and plume characted UNIT – III Types modeling sources and and of Gaussian plair pollution material UNIT – IV Indoor Air Polling Bio aerosols, F	notions, Wind and shear, self-cleaning of atmospher mospheric characteristics significant to transport and eristics. AIR QUALITY MODELS ag technique, modeling for nonreactive pollutants, single as sources, Fixed box models- diffusion models – Gaustume equation- long term average-multiple cell model to odels- model performance, accuracy and utilization-air INDOOR AIR QUALITY MODELS dutants - Volatile Organic Compounds, Inorganic Gasec Radon and its decay products-Infectious disease transmissions.	re; transport and diffusion of stack le source, short terms in plume derivate receptor oriented a Quality Index -air of the pour Pollutants Response Pollutants Response receptor oriented a public Pollutants Response receptor receptor oriented a public Pollutants Response receptor re	m impion- qualit	9 Per pact, modern modern modern matern mate	of seriod multificate-orienappir	stack tack tiple tiple tiple ates ates
emissions – and plume characted UNIT – III Types modeling sources and and of Gaussian plair pollution multiple in the control of the control	notions, Wind and shear, self-cleaning of atmospher mospheric characteristics significant to transport and eristics. AIR QUALITY MODELS Ig technique, modeling for nonreactive pollutants, single as sources, Fixed box models- diffusion models – Gaustume equation- long term average-multiple cell model to odels- model performance, accuracy and utilization-air INDOOR AIR QUALITY MODELS lutants - Volatile Organic Compounds, Inorganic Gased adon and its decay products-Infectious disease transmissyndrome-Indoor Air quality Models.	re; transport and diffusion of stack le source, short terms in plume derivate receptor oriented a Quality Index -air of the pour Pollutants Response Pollutants Response receptor oriented a public Pollutants Response receptor receptor oriented a public Pollutants Response receptor re	m impion- qualit	9 Pe pact, modification modifies a property market part of the pact of the pac	of seriod multificate-orienappir	stack stack tiple tiple nntec ng.
emissions – and plume characted UNIT – III Types modeling sources and and of Gaussian plair pollution multiple in the control of the control	notions, Wind and shear, self-cleaning of atmospher mospheric characteristics significant to transport and eristics. AIR QUALITY MODELS Ig technique, modeling for nonreactive pollutants, single as sources, Fixed box models- diffusion models – Gaustume equation- long term average-multiple cell model to odels- model performance, accuracy and utilization-air INDOOR AIR QUALITY MODELS Illutants - Volatile Organic Compounds, Inorganic Gased adon and its decay products-Infectious disease transmissyndrome-Indoor Air quality Models. SOFTWARE PACKAGE APPLICATIONS r quality models -ADMS, Air viro and USEPA models	re; transport and diffusion of stack le source, short terms in plume derivate receptor oriented a Quality Index -air of the pour Pollutants Response Pollutants Response receptor oriented a public Pollutants Response receptor receptor oriented a public Pollutants Response receptor re	m impion- qualit	9 Pe pact, modification modifies a property market part of the pact of the pac	of seriod multificate-orienappir	stack tack tiple tiple tiple ates ates

1	"Air Quality: Monitoring and Modeling", Sunil Kumar, Rakesh Kumar, bod – Books on Demand
	Publisher, 2012.
2	"Air Pollution Modeling and its Application XXVI", Clemens Mensink, Wanmin Gong, Amir
	Hakami, Springer Nature, 2019.
3	"Air Quality: Monitoring, Measuring, and Modeling Environmental Hazards", Marco Ragazzi,
	CRC Press, 2016.
4	"Air Quality: Modeling and Assessment", Frieda Bush, Callisto Reference, 2019.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Classify different mathematical models and their limitations.	K2
CO2	Utilize air pollution modeling parameters in appropriate places	К3
CO3	Develop conceptual schematics required for air quality modeling	К3
CO4	Discover indoor air quality models with different indoor air pollution sources.	К3
CO5	Appraise the advanced software in air quality modeling	К3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	3	2	1	2	2	1	
CO2	2	3	2	2	2	1	
CO3	2	3	2	2	2	1	
CO4	2	3	2	2	2	1	
CO5	2	3	1	2	2	3	
23EEPE10	3	3	2	2	2	3	
1 – Slight, 2 – Moderate, 3	Substantial	•	•	•	1	1	

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Rememberi ng (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
Category*										
CAT1	25	25	40	10	-	-	100			
CAT2	25	25	40	10	-	-	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	10	10	35	45	-	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	10	10	35	45	-	-	100			
ESE	25	25	40	10	-	-	100			

23EEPE11	ENVIRONMENTAL SYSTEM ANALYSIS						
PREREQUISI	TES	CATEGORY	L	T	P	С	
	NIL	PE	3	0	0	3	
Course Develop conceptual schematics for ecological modeling, models for dissolved oxy							
Objectives pathogens, Activated sludge process schemes, linear optimization is					aran	neter	
	estimation and experimental design.						
UNIT – I	ECOLOGICAL SYSTEM			9 Pe	riod	S	
Basic concepts	in ecology and ecological modeling, population dynam	ics: birth and death	Pro	cesse	s. Si	ngle	
species growth,	prey-predator models: Lotka - Volterra, Rosenzweig-m	acarther, Kolmogor	ov n	nodel	s. M	ulti-	
species modelling	ng - structural analysis and stability of complex Ecosyster	ns.					
UNIT – II	REACTOR MODELING			9 Pe	riod	S	
CSTR, plug-flo	w, dispersion. A case study of a tubular reactor with a	xial dispersion, para	mete	er ca	libra	tion:	
search algorithm	ns for nonlinear dynamical models, variance of estimat	ed parameters. App	licati	on to	о Мо	onod	
and Haldane kir	netics.						
UNIT – III	WATER QUALITY MODELING			9 Pe	riod	S	
Rivers and stre	ams water quality modelling -dispersion and mixing- w	ater quality modelling	ng pi	oces	s- m	odel	
sensitivity-asses	ssing model performance; models for dissolved oxygen	and pathogens- poll	utan	t and	l nut	rient	
dynamics -dissolved oxygen dynamics -groundwater quality modeling.							
UNIT – IV	MICROBIAL DYNAMICS AND ENERGETICS			9 Pe	riod	S	
Requirements f	or carbon and nutrient removal. Activated sludge: proce	ess schemes: comple	etely	Mix	ed, p	lug-	
flow, SBR, nu	trient removal. Anaerobic digestion: process dynamic	s, operational Cont	rol c	of wa	astev	vater	
treatment proce	sses.						

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

COMPUTER BASED SOLUTIONS

simulation, parameter estimation and experimental design.

REFERENCES

UNIT – V

Contact Periods:

1	"Environmental Systems Philosophy, Analysis and Control" book by Robert John Bennett and Richard
	J. Chorley, Princeton University press publication,2015
2	"Environmental System Analysis" book by Stefano Marsili-libelli, CRC press publication, 2016
3	"Environmental System Modelling" book by Dr.R.K. Prasad, Standard publishers & Distributors, 2016
4	"Introduction to System Analysis Basic Concepts and App" book by Dieter M. Imboden, Stefan D
	Fenninger, Springer Berlin Heidelberg publications, 14th December 2012
5	"Environmental Pollution Analysis" book by SM. Khopkhar ,2nd Edition, New age international
	publication, 2020

Formulation of linear optimization models. Linear programming. Sensitivity testing and duality. Solution techniques and computer programming; Formulation of linear optimization models. Application of models-

9 Periods

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Describe ecological modeling, single and multi-species modeling on a brief	K2
CO2	Explain modeling of CSTT and the kinetics of reaction taking place in it	К3
CO3	Analyze and model the river system and also ground water system	К3
CO4	Analyze the wastewater treatment system	К3
CO5	Demonstrate computational techniques for modeling	К3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	2	2	2	2	2	-	
CO2	2	2	3	3	2	-	
CO3	3	3	3	3	3	-	
CO4	2	2	3	3	3	-	
CO5	3	3	3	2	2	-	
23EEPE11	3	3	3	3	3	-	
1 – Slight, 2 – Moderate,	, 3 – Substantial		•	•	•	•	

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
Category*										
CAT1	15	10	30	45	-	-	100			
CAT2	15	10	30	45	-	-	100			
Individual Assessment 1/ Case Study 1/	-	20	30	50	-	-	100			
Seminar 1 / Project 1										
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	20	30	50	-	-	100			
ESE	15	10	30	45			100			

23EEPE12	REMOTE SENSING AND GIS APPLICATIONS IN ENVIRONMENTAL ENGINEERING						
PREREQUISITES	TO THE LIVE	CATEGORY	L	Т	P	C	
NIL		PE	3	0	0	3	
_	undamentals of remote se		cauis				
Objectives • To explore the principles and applications of diverse remote sensitives systems.					ique	s and	
structure. • To employ knowled	 To provide an insight of image processing techniques, GIS concepts, and geodatabase structure. To employ knowledge of remote sensing and geographic information systems (GIS) in resource management and pollution monitoring. 						
To employ geospati processing software	l knowledge to environm	ental applications us	sing (GIS a	and i	mage	
UNIT – I FUNDAMENTALS OF R	MOTE SENSING			9 I	Perio	ds	
Introduction to remote sensing – Principles	of Electro – Magnetic Rad	liation – Energy/Ma	tter i	ntera	ction	with	
Atmosphere and land surface – spectral refl	ctance of earth materials	and vegetation – Da	ta pro	oduci	s.		
UNIT – II AERIAL PHOTOGRAPH	AND SATELLITE RE	EMOTE SENSING		91	Perio	ds	
Aerial Photography – Photogrammetry and	Visual Image Interpretati	ion. Various satellite	es in	orbit	and	their	
sensors - Resolutions - Multispectral Ren	of the second se	, -					
sensing - Thermal IR Radiation properties,	ystems and application –	Microwave and LID	AR 1	emo	te se	nsing	
– Principles and applications.							
UNIT – III DATA ANALYSIS AND	TOTAL				Perio		
Data Analysis – Visual interpretation and digital image processing – Classification. Introduction to GIS, concepts and data base structure, various GIS software.							
UNIT – IV REMOTE SENSING AN	GIS APPLICATIONS			91	Perio	ds	
Applications of Remote sensing and GIS – Management and Monitoring of Land, air, water and pollution studies – conservation of resources – coastal zone management –Limitations.							
	zone management –Limi	tations.				ution	
	N			91	Perio		
studies – conservation of resources – coasta	FTWARE APPLICATION	ONS	Wate			ods	
studies – conservation of resources – coasta UNIT – V CASE STUDIES AND SO	FTWARE APPLICATION Spatial analysis- Land su	ONS nitability Analysis –		ershe	d ana	ods alysis	

Lecture: 45 Periods

1	"Text Book of Remote Sensing and Geographical Information Systems", Anji Reddy, Fourth edition,
	BS Publications, 2022.
2	"Remote sensing applications", M.G. Srinivas Narosa publishing house, 2001.
3	"Remote Sensing and Geographical Information System", A.M. Chandra and S.K. Ghosh, second
	edition, Narosa Publishing House, 2016
4	"Application of GIS and Remote Sensing in Environmental Management", Abbasi.S.A., Discovery
	Publication, 2010
5	"Principles of Geographical Information System", Burroughs P.A, Third edition, Oxford University
	Press, 2016.
6	"Remote Sensing and Image Interpretation", Thomas Lillesand, Seventh Edition, John Wiley Sons,
	2015.

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon o	completion of the course, the students will be able to:	Mapped
CO1	Comprehend remote sensing principles and investigate the reflectance properties of	K2
	earth features.	
CO2	Describe various remote sensing systems and their applications in earth observation.	K2
CO3	Apply image processing techniques on satellite images and have a full knowledge of	К3
	GIS concepts and database structure.	
CO4	Employ remote sensing and geographic information systems (GIS) to monitor and	К3
	manage the environment.	
CO5	Employ GIS and image processing tools for environmental applications.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	3	2	1
CO2	3	2	2	3	3	2
CO3	3	3 = 6	2	3	3	2
CO4	3	3	2 - 2	3	3	2
CO5	3	3	2	3	3	2
23EEPE12	3	3	2	3	3	2
Slight, 2 – Modera	ate, 3 – Substa	ntial		11		

ASSESSMENT	ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
Category*		60%										
CAT1	25	35	20	10	5	5	100					
CAT2	20	30	25	15	5	5	100					
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100					
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	35	35	10	-	-	100					
ESE	25	35	20	10	5	5	100					

23EEPE13	SOIL POLLUTION CONTROL									
PREREQUISIT	ES		CATEGORY	Y L T P						
	NIL		PE	3 0 0						
Course	To i	dentify various soil pollution sources and its effect on the ecosystem for analyzing								
Objectives	ctives interaction between soil and pollutants and their mechanisms to select appropria									
	remediation techniques.									
UNIT – I	SOI	L POLLUTION AND ITS SOURCES			9 P	erioc	ls			
Introduction-Sou	rces c	f Pollution-Point source pollution and diffuse	soil pollution- l	Vatur	al, (Geog	enic			
1	_	gricultural, livestock activities-mining and ur	ban expansion a	nd i	nfras	struc	tural			
activities-failure	of geo	structures on contaminated sites- Case studies.								
UNIT – II	IMP	ACT OF SOIL POLLUTION ON ECOSYSTE	CM .		9 P	erioc	ls			
Geological Struct	ture-so	il structure-Ecosystem-food chain contamination	-use of fertilizers a	ınd p	estic	ides,	soil			
pollution from	agricu	lture-Acidification-crop loss-pathways of expo	osure of human	being	gs-E	cosy	stem			
stability.										
UNIT – III	SOI	L POLLUTANT INTERACTION			9 P	erioc	ls			
_		sposal of waste-factors governing soil pollution					_			
		Soil- Chemical kinetics -Governing equati	ons-coupling of	con	ıtami	inant	-soil			
interactions with		ort-solute transport modelling software.								
UNIT – IV		ESSMENT OF CONTAMINATED SITES				erioc				
Site Investigation	1-Risk	Assessment- surface and ground water contain	nination, land con	tamiı	natio	n, h	ealth			
	inmen	t in landfills, leachate-monitoring facilities- IoT T	echnologies-Case	studi	es.					
UNIT – V	REN	MEDIATION TECHNOLOGIES			9 P	erioc	ls			
	_	oremediation- Contemporary approaches to rer								
_		mitations- Phyto stabilization- pump and treat i	-							
Stabilization met	hods –	Solidification- Thermal method-reclaimed sites-	Current Practices a	nd A	pplic	atio	1S.			
Contact Periods	:									
Lecture: 45 Peri	ods	Tutorial: 0 Periods Practical: 0 Periods	ods Total: 4	15 Pe	riod	s				

1	"Soil Pollution, Monitoring and Remediation", Ibrahim A. Mirsal, Springer-Verlag Berlin Heidelberg,
	2008.
2	"Fundamentals of Environmental Site Assessment and Remediation", YueRong, CRC Press, 2018.
3	"Contaminated Land: Investigation, Assessment and Remediation – Design and Practice Guides",
	Jo Strange and Nick Langdon, ICE, 2008.
4	"Geo-Environmental Engineering", HariD.Sharma and Krishna R.Reddy,John Wiley and Sons, INC,
	USA, 2004.
5	"Applied Ground Water modelling: simulation of flow and advective transport", Anderson, Mary P.,
	William W Woessner and Randall J. Hunt, Academic Press, 2015.

COUF	RSE OUTCOMES:	Bloom's	
		Taxonomy	
Upon	Upon completion of the course, the students will be able to:		
CO1	Explain the sources of soil pollution	К3	
CO2	Demonstrate the impacts of pollution on the ecosystem	К3	
CO3	Explain the flow of contaminants and mass transport processes	К3	
CO4	Assess the contaminated sites using conventional and modern technologies	К3	
CO5	Select and apply suitable techniques for the remediation of contaminated sites.	К3	

COURSE ARTICULATION MATRIX														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6								
CO1	3	2	2	3	3	3								
CO2	3	2	2	3	3	2								
CO3	3	2	2	3	3	2								
CO4	3	2	2	3	3	2								
CO5	3	2	2	3	3	2								
23EEPE13	3	2	2	3	3	2								
1 – Slight, 2 – Moderate, 3 –	- Substantial		•	•	1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT	ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
Category*												
CAT1	20	30	25	15	5	5	100					
CAT2	20	30	25	15	5	5	100					
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100					
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100					
ESE	20	30	25	15	5	5	100					

102 10 00 CS

PREREQUISITES NIL PE 3 0 0 3										
NIL	23EEPE14	HAZARDOUS WASTE MA	NAGEMENT							
To understand the characteristics of different types of hazardous wastes and their sources, waste minimization and resource recovery to categorize the different hazardous waste and hazardous waste management. UNIT - I INTRODUCTION TO HAZARDOUS WASTES 9 Periods	PREREQUISI	TES	CATEGORY	L	T	P	С			
Objectives waste minimization and resource recovery to categorize the different hazardous waste and hazardous waste management. UNIT − I INTRODUCTION TO HAZARDOUS WASTES 9 Periods Hazardous waste definition − Sources and classification −Hazardous waste characteristics − Sampling and analysis of hazardous wastes − Collection − handling − storage and transport − TSDF concept − Hazardous waste management rules and regulations. 9 Periods UNIT − II WASTE MINIMIZATION AND RESOURCE RECOVERY 9 Periods Waste reduction process − benefits of hazardous waste reduction − Properties in hazardous waste management − Selection of the waste minimization process − case studies on by product recovery from incineration. Transportation of hazardous wastes − Regulation − containers for hazardous materials − bulk and non-bulk transport − hazardous substances emergency response. UNIT − III HAZARDOUS WASTE MANAGEMENT: NUCLEAR AND BIOMEDICAL WASTE 9 Periods Nuclear waste − Characteristics − Types − Nuclear waste − Uranium mining and processing − Power reactors − Refinery and fuel fabrication wastes − spent fuel − Management of nuclear wastes − Decommissioning of Nuclear power reactors − Health and environmental effects − Biomedical waste − Introduction to biomedical wastes − sources − classification − collection − segregation − treatment and disposal − Biomedical waste management rules. UNIT − IV HAZARDOUS WASTE MANAGEMENT: E-WASTE AND Periods PLASTIC WASTE 9 Periods		NIL	PE	3	0	3				
hazardous waste management. UNIT - I INTRODUCTION TO HAZARDOUS WASTES 9 Periods	Course	To understand the characteristics of different types of	f hazardous wastes	and	thei	r sou	irces,			
Hazardous waste definition – Sources and classification –Hazardous waste characteristics - Sampling and analysis of hazardous wastes – Collection – handling - storage and transport - TSDF concept - Hazardous waste management rules and regulations. WASTE MINIMIZATION AND RESOURCE RECOVERY 9 Periods Waste reduction process - benefits of hazardous waste reduction - Properties in hazardous waste management - Selection of the waste minimization process - case studies on by product recovery from incineration. Transportation of hazardous wastes – Regulation - containers for hazardous materials - bulk and non-bulk transport - hazardous substances emergency response. UNIT – III HAZARDOUS WASTE MANAGEMENT: NUCLEAR AND 9 Periods BIOMEDICAL WASTE Nuclear waste - Characteristics – Types – Nuclear waste – Uranium mining and processing – Power reactors – Refinery and fuel fabrication wastes – spent fuel – Management of nuclear wastes – Decommissioning of Nuclear power reactors – Health and environmental effects - Biomedical waste - Introduction to biomedical wastes - sources – classification - collection – segregation - treatment and disposal - Biomedical waste management rules. UNIT – IV HAZARDOUS WASTE MANAGEMENT: E-WASTE AND 9 Periods PLASTIC WASTE E-waste – Introduction - characteristics - generation – collection – transport - recycling and disposal methods	Objectives									
Hazardous waste definition – Sources and classification –Hazardous waste characteristics - Sampling and analysis of hazardous wastes – Collection – handling - storage and transport - TSDF concept - Hazardous waste management rules and regulations. UNIT – II WASTE MINIMIZATION AND RESOURCE RECOVERY 9 Periods Waste reduction process - benefits of hazardous waste reduction - Properties in hazardous waste management - Selection of the waste minimization process - case studies on by product recovery from incineration. Transportation of hazardous wastes – Regulation - containers for hazardous materials - bulk and non-bulk transport - hazardous substances emergency response. UNIT – III HAZARDOUS WASTE MANAGEMENT: NUCLEAR AND 9 Periods BIOMEDICAL WASTE Nuclear waste - Characteristics – Types – Nuclear waste – Uranium mining and processing – Power reactors – Refinery and fuel fabrication wastes – spent fuel – Management of nuclear wastes – Decommissioning of Nuclear power reactors – Health and environmental effects - Biomedical waste - Introduction to biomedical wastes - sources – classification - collection – segregation - treatment and disposal - Biomedical waste management rules. UNIT – IV HAZARDOUS WASTE MANAGEMENT: E-WASTE AND 9 Periods PLASTIC WASTE E-waste – Introduction - characteristics - generation – collection – transport - recycling and disposal methods			azardous waste management.							
analysis of hazardous wastes – Collection – handling - storage and transport - TSDF concept - Hazardous waste management rules and regulations. UNIT – II WASTE MINIMIZATION AND RESOURCE RECOVERY 9 Periods Waste reduction process - benefits of hazardous waste reduction - Properties in hazardous waste management - Selection of the waste minimization process - case studies on by product recovery from incineration. Transportation of hazardous wastes – Regulation - containers for hazardous materials - bulk and non-bulk transport - hazardous substances emergency response. UNIT – III HAZARDOUS WASTE MANAGEMENT: NUCLEAR AND 9 Periods BIOMEDICAL WASTE Nuclear waste - Characteristics – Types – Nuclear waste – Uranium mining and processing – Power reactors – Refinery and fuel fabrication wastes – spent fuel – Management of nuclear wastes – Decommissioning of Nuclear power reactors – Health and environmental effects - Biomedical waste - Introduction to biomedical wastes - sources – classification - collection – segregation - treatment and disposal - Biomedical waste management rules. UNIT – IV HAZARDOUS WASTE MANAGEMENT: E-WASTE AND 9 Periods PLASTIC WASTE E-waste – Introduction - characteristics - generation – collection – transport - recycling and disposal methods	UNIT – I	INTRODUCTION TO HAZARDOUS WASTES			9 P	erio	ds			
Waste management rules and regulations. UNIT - II WASTE MINIMIZATION AND RESOURCE RECOVERY 9 Periods Waste reduction process - benefits of hazardous waste reduction - Properties in hazardous waste management - Selection of the waste minimization process - case studies on by product recovery from incineration. Transportation of hazardous wastes - Regulation - containers for hazardous materials - bulk and non-bulk transport - hazardous substances emergency response. UNIT - III HAZARDOUS WASTE MANAGEMENT: NUCLEAR AND 9 Periods BIOMEDICAL WASTE Nuclear waste - Characteristics - Types - Nuclear waste - Uranium mining and processing - Power reactors - Refinery and fuel fabrication wastes - spent fuel - Management of nuclear wastes - Decommissioning of Nuclear power reactors - Health and environmental effects - Biomedical waste - Introduction to biomedical wastes - sources - classification - collection - segregation - treatment and disposal - Biomedical waste management rules. UNIT - IV HAZARDOUS WASTE MANAGEMENT: E-WASTE AND 9 Periods PLASTIC WASTE E-waste - Introduction - characteristics - generation - collection - transport - recycling and disposal methods	Hazardous was	te definition - Sources and classification -Hazardous	waste characteristi	cs -	Sam	pling	gand			
WASTE MINIMIZATION AND RESOURCE RECOVERY 9 Periods	analysis of haz	ardous wastes - Collection - handling - storage and to	ransport - TSDF co	ncep	ot - F	Hazar	rdous			
Waste reduction process - benefits of hazardous waste reduction - Properties in hazardous waste management - Selection of the waste minimization process - case studies on by product recovery from incineration. Transportation of hazardous wastes - Regulation - containers for hazardous materials - bulk and non-bulk transport - hazardous substances emergency response. UNIT - III	waste managen	nent rules and regulations.								
management - Selection of the waste minimization process - case studies on by product recovery from incineration. Transportation of hazardous wastes - Regulation - containers for hazardous materials - bulk and non-bulk transport - hazardous substances emergency response. UNIT - III	UNIT – II	WASTE MINIMIZATION AND RESOURCE REG	COVERY		9 P	erio	ds			
incineration. Transportation of hazardous wastes – Regulation - containers for hazardous materials - bulk and non-bulk transport - hazardous substances emergency response. UNIT - III	Waste reduction	on process - benefits of hazardous waste reduction	n - Properties in	haz	zardo	ous v	waste			
Nuclear waste - Characteristics - Types - Nuclear waste - Uranium mining and processing - Power reactors - Refinery and fuel fabrication wastes - spent fuel - Management of nuclear waste - Introduction to biomedical wastes - sources - classification - collection - segregation - treatment and disposal - Biomedical waste management rules. UNIT - IV HAZARDOUS WASTE MANAGEMENT: E-WASTE AND 9 Periods E-waste - Introduction - characteristics - generation - collection - transport - recycling and disposal methods	management -	Selection of the waste minimization process - case	studies on by prod	uct 1	recov	very	from			
UNIT - III	incineration. Tr	ransportation of hazardous wastes - Regulation - contain	ners for hazardous n	nater	ials ·	- bull	k and			
Nuclear waste - Characteristics - Types - Nuclear waste - Uranium mining and processing - Power reactors - Refinery and fuel fabrication wastes - spent fuel - Management of nuclear wastes - Decommissioning of Nuclear power reactors - Health and environmental effects - Biomedical waste - Introduction to biomedical wastes - sources - classification - collection - segregation - treatment and disposal - Biomedical waste management rules. UNIT - IV	non-bulk transp	port - hazardous substances emergency response.								
Nuclear waste - Characteristics - Types - Nuclear waste - Uranium mining and processing - Power reactors - Refinery and fuel fabrication wastes - spent fuel - Management of nuclear wastes - Decommissioning of Nuclear power reactors - Health and environmental effects - Biomedical waste - Introduction to biomedical wastes - sources - classification - collection - segregation - treatment and disposal - Biomedical waste management rules. UNIT - IV	UNIT – III	400000	NUCLEAR AND)	9 P	erio	ds			
- Refinery and fuel fabrication wastes – spent fuel – Management of nuclear wastes – Decommissioning of Nuclear power reactors – Health and environmental effects - Biomedical waste - Introduction to biomedical wastes - sources – classification - collection – segregation - treatment and disposal - Biomedical waste management rules. UNIT – IV										
Nuclear power reactors – Health and environmental effects - Biomedical waste - Introduction to biomedical wastes - sources – classification - collection – segregation - treatment and disposal - Biomedical waste management rules. UNIT – IV		1 has 7 diff 1 and 7 diff 2 and								
wastes - sources - classification - collection - segregation - treatment and disposal - Biomedical waste management rules. UNIT - IV							_			
management rules. UNIT – IV	Nuclear power	reactors - Health and environmental effects - Biomedi	cal waste - Introduc	ction	to b	iome	dical			
UNIT – IV HAZARDOUS WASTE MANAGEMENT: E-WASTE AND PLASTIC WASTE E-waste – Introduction - characteristics - generation – collection – transport - recycling and disposal methods	wastes - source	es - classification - collection - segregation - treatm	ent and disposal -	Bio	medi	ical v	waste			
PLASTIC WASTE E-waste – Introduction - characteristics - generation – collection – transport - recycling and disposal methods	management ru	les.								
E-waste – Introduction - characteristics - generation – collection – transport - recycling and disposal methods	UNIT – IV	HAZARDOUS WASTE MANAGEMENT: E-WAS	STE AND		9 P	erio	ds			
		PLASTIC WASTE								
- Effects of e-wastes on the society and environment - E-waste waste management rules - Plastic waste -	E-waste – Intro	duction - characteristics - generation - collection - tran	sport - recycling and	d dis	posa	l met	thods			
211012 51 5 asses on the sectory and environment 12 asses management failed Tradite waste	- Effects of e-v	wastes on the society and environment - E-waste wast	e management rule	s - P	lasti	c wa	ıste –			

E-waste – Introduction - characteristics - generation – collection – transport - recycling and disposal methods - Effects of e-wastes on the society and environment - E-waste waste management rules - Plastic waste – Sources – Production - Global and Indian Context - Plastic Waste Management Practices – recycling - energy production - other application.

UNIT – V HAZARDOUS WASTE DISPOSAL

9 Periods

Land-fill disposal - Landfill at disposal sites, developing a new facility – landfill operation - Site remediation - Site assessment and inspection - the hazardous system and the national priority list - remedial action - monitoring of disposal sites.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	CPHEEO (2016), "Manual of Municipal Solid Waste Management", Ministry of Urban
	Development, India.
2	"Integrated Solid Waste Management, Engineering Principles and Management Issues", Tchobanoglous G, Theisen H, Vigil S.A., 2 nd Edition.
3	"BASIC HAZARDOUSWASTE MANAGEMENT" book by William Blackman,3 rd Edition, 2016.
4	"SOLID AND HAZARDOUS WASTE MANAGEMENT" book by M.N. Rao, 2 nd Edition, BS Publications / BSP Books; January 1 2020

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Classify the types of hazardous waste and their characteristics.	K2
CO2	Discover the techniques in the field to minimize waste and resource recovery.	K3
CO3	Categorize the methods and analysis of nuclear and biomedical waste management.	К3
CO4	Categorize the methods and analysis of e-waste and plastic waste management.	К3
CO5	Articulate the concepts of hazardous waste disposal in the landfill.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	1	2	2	2
CO2	3	3	2	3	3	2
CO3	3	3	2	3	3	1
CO4	3	3	2	3	3	1
CO5	2	2	m	3	3	2
23EEPE14	3	3	2	3	3	2
1 – Slight, 2 – Moderate,	3 – Substantial	VEST	THE COLV	0	1	

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	30	35	10	-	-	100			
CAT2	25	30	35	10	-	-	100			
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	-	-	100			
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100			
ESE	25	30	35	10	-	-	100			

23EEPE15	ADVANCED WASTEWATER TREAT	MENT AND RE	USE			
PREREQUIS		CATEGORY	L	T	P	C
TREREQUIS	NIL	PE	3	0	0	3
Course	Advanced wastewater treatment, air stripping, nitrog					_
Objectives	processes, nutrient process, membrane structure and i			-		
Objectives	sludge produced from chemical precipitation of pho	-				
	knowledge in reclamation and reuse of Wastewater, pu	•				
	in water reuse.	one nearth and env	nom	101111	11 155	acs
UNIT – I	GENERAL AND STRIPPING		Q	Per	inds	
	aced wastewater treatment – technologies used for advan-	ced treatment – cor				
	in advanced treatment-oxidation processes – regulation					
	ction of unit operation in advanced treatment Gas strip					
	pping towers – applications. – Air stripping of ammon		-			_
exchange	pring towers approaches. The surpring of animon	na Breakpoint e	1110111	iuiio		1011
UNIT – II	NITROGEN REMOVAL AND OXIDATION PROCESSES 9 Periods					
Nutrient removal – Nitrogen removal – forms and sources of nitrogen – Biological nitrogen removal –						
	netics – Denitrification kinetics – Design parameters – I	_	_			
	esses Oxidation processes-advanced oxidation proc	•	•	. •		
1	rivatives-use of peroxy, Cl- and oxy radicals in reducing		-			
UNIT – III	MEMBRANE SEPARTION PROCESSES AN		g	Per	iods	
	DIALYSIS	, E EEE TITO			10 415	
Membrane sep	aration processes – process classification – membrane m	naterials-Symmetri	c and	asvı	nme	tric
	nembrane configuration – membrane fouling- Molecular					
	prane structure and rejection mechanism – osmotic pre	-				
-	ra filtration – Electrodialysis – theory – power requireme	_				
UNIT – IV	PHOSPHOROUS REMOVAL		9	Per	iods	
Phosphorous re	emoval – By biological methods – Phosphorous removal	by chemical additi				
_	vith Aluminium, calcium and Iron – Comparison of					
	chemical precipitation of phosphorous with lime in PST	_				8
UNIT – V	WASTEWATER RECLAIMATION AND REUSE		9	Per	iods	
	nerits of advanced treatment-applications of treated waste	ewater- Wastewate				
	e of water recycling in the hydrologic cycle – wastewate					
	ntal issues in water reuse – Level of treatment – Risk A		_			
with reclaimed						-
Contact Perio	ds:					

Lecture: 45 Periods

1	"Waste Water Engineering – Treatment and reuse", Metcalf and Eddy, Fourth Edition, McGraw
	Hill Education, 2017.
2	"Waste Water Treatment and disposal", Arceivala S. J., Marcel dekker publishers, 1981.
3	"Environmental Engineering", Howard S. Peavy, Donald R. Rowe and George Techobanoglous,
	McGraw Hill Education, 2017.
4	"Wastewater Treatment Plant - Planning, Design and operation", QASIM S. R, Holt Rinchart
	and Winston, New York, 2002.
5	"Biological Process Design for Wastewater Treatment", Larry D. Benefield and Clifford
	W. Randall, Prentice - Hall Series in Environmental sciences, 1985.

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Examine suitable advanced wastewater treatment for critical pollutant removal.	К3
CO2	Demonstrate kinetics involved in nitrogen removal process.	K2
CO3	Label suitable mechanism in membrane process.	K3
CO4	Enumerate methods and process for phosphorus removal.	K2
CO5	Investigate different wastewater reclamation and reuse technique.	К3

CO1 3 CO2 2 CO3 3	3 2	2 3	2 2	3	1
	2	3	2	+	
CO3 3		1		3	1
	3	2	3	2	1
CO4 2	3	2	3	3	1
CO5 2	3	2	3	2	1
23 EEPE15 3	3	3	3	3	1
- Slight, 2 - Moderate, 3 - Substantia	VEG STEEL	200 Nº		.1	

ASSESSMENT	PATTERN – TI	HEORY	ATTURA CONTRACTOR				
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		A E		W.			
CAT1	20	20	30	15	15	-	100
CAT2	20	25	35	10	10	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	20	50	20	10	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	25	40	25	10	-	100
ESE	25	20	30	10	15	-	100

23EEPE16	ENVIRONMENTAL BIOTI	ECHNOLOGY				
PREREQUIS	ITES	CATEGORY	L	T	P	C
	NIL	PE	3	0	0	3
Course	To emphasize the need on wastewater reclamation an	d reuse by imparti	ng kr	nowl	edge	on
Objectives	nitrogen and phosphorus removal and on membrane process and Electro Dialysis.					
UNIT – I	GENERAL AND STRIPPING 9 Periods				iods	
Need for adva	Need for advanced wastewater treatment - technologies used for advanced treatment - conventional					
reactor modifi	cations in advanced treatment-oxidation processes - r	egulations in rem	oval	of N	IBOI	D and
other nutrients	- Selection of unit operation in advanced treatment Gas	s stripping – Analy	ysis o	f ga	s stri	pping
– Design of st	- Design of stripping towers - applications Air stripping of ammonia - Breakpoint chlorination - Ion					
exchange	exchange					
UNIT – II	NITROGEN REMOVAL AND OXIDATION PROCESSES 9 Periods					
Nutrient removal - Nitrogen removal - forms and sources of nitrogen - Biological nitrogen removal -						
Nitrification kinetics - Denitrification kinetics - Design parameters - Nitrogen removal by - physical and						
chemical prod	eesses Oxidation processes-advanced oxidation pro-	ocess in removal	of	nitr	oger	n and
phosphorus de	phosphorus derivatives-use of peroxy, Cl- and oxy radicals in reducing COD.					
UNIT – III	MEMBRANE SEPARTION PROCESSES	AND ELECT	RO	9	Per	iods
	DIALYSIS					
Membrane sep	aration processes – process classification – membrane	materials-Symmet	tric a	nd a	symı	netric
membranes – membrane configuration – membrane fouling- Molecular weight cutoff – Reverse osmosis –						
theory – mem	brane structure and rejection mechanism - osmotic p	ressure – Transpo	rt m	odel	s and	d flux
equations – ult	ra filtration – Electrodialysis – theory – power requiren	nent.				
UNIT – IV	PHOSPHOROUS REMOVAL				Per	
_	emoval - By biological methods - Phosphorous remo	•				-
	n with Aluminium, calcium and Iron - Comparison	-	stima	tion	of s	sludge
produced from	chemical precipitation of phosphorous with lime in PS	T.				
UNIT – V	WASTEWATER RECLAIMATION AND REUSI	E		9	Per	iods

WASTEWATER RECLAIMATION AND REUSE

Merits and demerits of advanced treatment-applications of treated wastewater- Wastewater reclamation and reuse – The role of water recycling in the hydrologic cycle – wastewater reuse applications – public health and environmental issues in water reuse - Level of treatment - Risk Assessment - Ground water recharge with reclaimed water.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	"Waste Water Engineering - Treatment and reuse", Metcalf and Eddy, Fourth Edition, McGraw
	Hill Education, 2017.
2	"Waste Water Treatment and disposal", Arceivala S. J., Marcel dekker publishers, 1981.
3	"Environmental Engineering", Howard S. Peavy, Donald R. Rowe and George Techobanoglous,
	McGraw Hill Education, 2017.
4	"Wastewater Treatment Plant – Planning, Design and operation", QASIM S. R, Holt Rinchart and
	Winston, New York, 2002.
5	"Biological Process Design for Wastewater Treatment", Larry D. Benefield and Clifford W. Randall,
	Prentice - Hall Series in Environmental sciences, 1985.

COUR	COURSE OUTCOMES:		
		Taxonomy	
Upon c	ompletion of the course, the students will be able to:	Mapped	
CO1	Impart knowledge on advanced waste water treatment	K2	
CO2	Understanding about Nitrogen removal and oxidation process	К3	
CO3	Gain knowledge about membrane separation processes and Electro Dialysis	К3	
CO4	Understanding about Phosphorus removal.	K2	
CO5	Knowledge about impact of wastewater reclamation and reuse	К3	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	2	2	3
CO2	2	1	1	3	2	2
CO3	3	3	2	2	1	3
CO4	2	1	1	3	2	2
CO5	3	2	3	1	1	2
23EEPE16	3	3	3	3	2	3
Slight, 2 – Moderate, 3 –	Substantial	TOTAL BY	1			

ASSESSMENT	PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	15	35	20	20	5	5	100
CAT2	15	25	30	20	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	25	15	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	15	35	20	20	5	5	100

23EEPE17 MARINE POLLUTION AND CONTROL						
PREREQUIS	ITES	CATEGORY	L	T	P	С
	NIL PE :					3
Course	To understand the concept of marine and coastal environment.					
Objectives	To know the elements of hydrodyn	To know the elements of hydrodynamics.				
	 To identify the sources of marine pollution and control methods. 					
UNIT – I					S	
G 1	1	C 1 (_	•	1	

Seas and oceans, continental area, coastal zone, properties of sea water, principles of marine geology, coastal features – beaches, estuaries, lagoons, salt marshes, mangroves and sand dunes—the oceans and climate, coastal zone regulation in India- national and international treaties.

UNIT – II OCEAN HYDRODYNAMICS

9 Periods

Wave theory, waves in shallow waters – refraction, diffraction and shoaling, approximations for deep and shallow water conditions – tidal classification - general circulation of ocean waters -ocean currents - coastal sediment transport - onshore offshore sediment transport – beach formation and coastal processes - Tsunamis, storm surge, El Nino effect.

UNIT – III MARINE POLLUTION

9 Periods

Sources of marine pollution – point and non-point sources, pollution caused by effluent discharge, oil exploration, dredging, offshore mining, port and harbour activities, power plants, agriculture runoff, plastic waste, marine debris and marine litter - effects of marine pollution on marine water quality and coastal ecosystems.

UNIT – IV MARINE POLLUTION MONITORING

9 Periods

Basic measurements - sounding boat, echo sounders - current meters - tide gauge - use of GPS - measurement of coastal water characteristics - sea bed sampling - modelling of pollutant transport and dispersion - oil spill models - ocean monitoring satellites - applications of remote sensing and GIS in monitoring marine pollution - online marine pollution monitoring.

UNIT – V MARINE POLLUTION CONTROL MEASURES

9 Periods

Marine discharges and effluent standards, pollution control strategies – marine outfall design – selection of optimal marine outfall locations - Total Maximum Daily Load (TMDL) applications –protocols in marine pollution control– Integrated Coastal Zone Management (ICZM) and sustainable development.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

1	"Marine pollution", christopherl.j.frid, bryony a. Saswell, 2019.
2	"Marine pollution and climate change", Andres Hugo Arias, Jorge Eduardo, Crc Pres, 2017.
3	"Marine Pollution, Shipping waste and International law", Gabriela Arghello, Taylor & Francis Ltd,
	2019.
4	"Marine Pollution: Sources, Fate & Effects of pollutants in coastal Ecosystems", RichardoBeiras,
	2018.
5	"Marine Pollution: Sources, Fate & Effects of pollutants in coastal Ecosystems", RichardoBeiras,
	2018.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Classify the structures of marine environment.	K2
CO2	Interpret the onshore, offshore hydrodynamics.	K2
CO3	Categorize the marine pollution sources and effects.	K3
CO4	Familiarize the methods of monitoring used in marine environment.	K3
CO5	Correlate the marine pollution control strategies	K3

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	3	2	1
CO2	3	3	2	2	2	1
CO3	3	3	2	2	2	2
CO4	3	3	3	3	3	2
CO5	3	3	2	3	3	3
23EEPE17	3	3	3	3	3	3
1 – Slight, 2 – Moderate, 3 – Substantial						

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	30	20	40	10	-	-	100
CAT2	30	20	40	10	_	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	10	20	40	30	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	10	20	40	30	-	-	100
ESE	30	20	40	10	-	-	100

23EEPE18	GEO-ENVIRONMENTAL E	NGINEERING					
PREREQUIS	ITES	CATEGORY	L	T	P	С	
	NIL PE					3	
Course	Course To emphasize the need on geo environmental engineering and creating the awareness or						
Objectives	safe disposal of waste by waste stabilization.						
UNIT – I	GENERATION OF WASTES AND CONSEQUI	ENCES OF SOIL		9 P	erioc	ls	
	POLLUTION						
Introduction t	o Geo environmental engineering – Environmenta	l cycle – Source	s, pi	rodu	ction	and	
	of waste - Causes of soil pollution - Factors gove	rning soil pollution	n in	terac	tion	clay	
minerals - Fail	ures of foundation due to waste movement.						
UNIT – II	- II SITE SELECTION AND SAFE DISPOSAL OF WASTE 9 Periods						
Safe disposal of waste – Site selection for landfills – Characterization of land fill sites and waste – Risk							
assessment - Stability of landfills - Current practice of waste disposal - Monitoring facilities - Passive							
	stem - Application of geosynthetics in solid waste ma	nagement – Rigid	or fl				
UNIT – III	TRANSPORT OF CONTAMINANTS				eriod		
	ransport in sub surface – Advection, Diffusion, D	•					
	ransformation - Sorption - Biodegradation - Ion exc	hange – Precipitati	on –	- Hy	lrolo	gical	
	n land fill design – Ground water pollution.						
UNIT – IV	WASTE STABILIZATION				erioc		
Stabilization - Solidification of wastes - Micro and macro encapsulation - Absorption, Adsorption,							
-	Detoxification – Mechanism of stabilization – O	rganic and inorgan	nic s	stabil	izati	on –	
	olid waste for soil improvement – case studies.						
UNIT – V	REMEDIATION OF CONTAMINATED SOILS				eriod		
	n-situ remediation-Solidification, bio-remediation,	incineration, soil	l wa	ashin	g, p	hyto	
	oil heating, vitrification, bio-venting.						
Contact Perio	41 6						
Lecture:45 Pe	riods Tutorial: 0 Periods Practical: 0 Pe	riods Total	: 45	Peri	ods		

1	"Geo-Environmental Engineering" Hari D. Sharma and Krishna R. Reddy, -John Wiley and Sons,
	INC, USA, 2004.
2	"Geotechnical Practice for waste disposal" Daniel B.E., Chapman & Hall, London 1993.
3	"Waste Disposal in Engineered landfills" Manoj Datta Narosa Publishing House, 1997.
4	"Industrial Solid Waste Management and Landfilling Practice" Manoj Datta, B.P. Parida, B.K.
	Guha, Narosa Publishing House, 1999.WEF, Membrane Bioreactors, WEF manual of Practice
	No.36, Water Environment Federation, USA.2012.
5	"Environmental indices, Theory and Practice" Ott, W.R., Ann Arbor, 1978.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	Mapped	
CO1	Implement the geo environment technology	К3
CO2	Execute various practices of safe disposal of waste	К3
CO3	Perform waste audit and evaluate carbon footprint to achieve sustainable	К3
	development.	
CO4	Examine the waste stabilization. Case study.	К3
CO5	Apply the remediation of contaminated soil	К3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	2	3	3	1				
CO2	3	2	2	3	3	1				
CO3	3	3	2	3	3	1				
CO4	3	2	2	3	3	3				
CO5	3	2	2	3	3	1				
23EEPE18	3	3	2	3	3	3				
1 – Slight, 2 – Moderate, 3 –	Substantial	•	•		•	•				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total
CAT1	25	40	15	10	5	5	100
CAT2	25	30	25	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

23EEPE19	MEMBRANE SEPARATION PROCESSES FOR TREATMENT		WA	STE	WA	TER
PREREQUISI	TES	CATEGORY	L	T	P	C
	NIL	PE	3	0	0	3
Course Objectives	 Acquire in-depth knowledge in the areas of transport models, membrane permeability of modules, membrane contactors / reactors and a Develop skills in applying transport model permeability, flux, and the extent of separation systems. Be able to determine the types of experiment membrane permeability parameters To be able to calculate membrane process separation characteristics Be able to select membrane processes for so applications. 	computations, me applications ls for the calcula on for various metal data needed for performance and	mbration embrather the	of rane calc	mem sepa culat	s and hbrane hration ion of
UNIT – I	INTRODUCTION			Ω	Dani	ods

Advantages- Membrane materials - Membrane modules and its types - Techniques of membrane preparation - membrane characterization - characterization of porous and non-porous membrane

TRANSPORT OF MEMBRANE

9 Periods

Membrane transport theory- The solution-diffusion model – Structure-permeability relationships in solution diffusion membranes - Pore-flow membrane. Facilitated transport: Mechanism of facilitated transport -Coupled transport, carrier agents, competitive facilitated transport with two permeants, active and passive transport, potential applications of facilitated transport.

UNIT – III INDUSTRIAL MEMBRANE 9 Periods **PROCESSES: THEORY AND DEISGN**

Reverse Osmosis - Pressure driven membrane processes: Introduction, Microfiltration - Membranes for microfiltration, Industrial applications. Ultrafiltration - membranes for ultrafiltration - Industrial applications. Reverse osmosis and nanofiltration - membranes for RO and Nanofiltration, Industrial applications. Electrically Driven Processes: Introduction – electrodialysis, Process parameters, Membranes for electrodialysis, applications - membrane electrolysis, Bipolar membranes, Fuel cells

MEMBRANE GAS SEPARATION

9 Periods

Gas separation - gas separation of porous and non-porous membranes- membranes for gas separation -Application – membranes for pervaporation – applications. Dialysis: membrane for dialysis – applications. Liquid membranes: Benefits – Bulk liquid membrane – Emulsion liquid membrane – Thin sheet supported liquid membrane - Hollow fiber supported liquid membrane - Application. Choices of organic solvent and carrier - Applications – Introduction to membrane reactors.

UNIT – V MEMBRANE **FOULING** AND **ADVANCED MEMBRANE** 9 Periods **TECHNOLOGY**

Membrane Fouling – concept – types – factors responsible for fouling (Temperature, pressure, materials used for fouling, Concentration of feed) - Reversible and Irreversible fouling - Effect of fouling. Concept of bio-fouling - Effects and control. Economics of membrane - Feasibility of membrane - Membrane bioreactor - distillation: principle, construction, working - concept of Ion exchange: cations and anion exchange resins.

Contact Periods:

Lecture: 45 Periods **Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods**

1	"Membrane Processes for water reuse" Anthony Wachinski, , McGraw-Hill, USA, 2013
2	"Membrane technology and applications", Baker, R.W., 2 nd ., John Wiley 2004
3	Jorgen Wagner, "Membrane Filtration handbook", Practical Tips and Hints, 2 nd Edition, Revision 2,
	Osmonics Inc., 2001.
4	"Membrane Separations Technology: Principles and Applications" Noble, R.D. and Stern, S.A., Elservier,
	Netherlands, 1995.
5	"Membrane Technology in Environmental management" Yamamoto K. and Urase T, special issue, Water
	Science and technology, Vol.41, IWA Publishing, 2000
6	"Membrane Bioreactors" WEF, WEF manual of Practice No.36, Water Environment Federation,
	USA.2012.

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Apply various transport models for the calculation of membrane fluxes and the extent of separation for various membrane systems.	К3
CO2	Identify the types of experimental data needed for the calculation of membrane parameters	К3
CO3	Select a membrane process and design components to carry out a specific separation	К3
CO4	Apply advanced membrane techniques to solve environmental as well as chemical industries problems.	К3
CO5	Review the importance and relevance of separation process with the help of membrane in industry	К3

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	2	2	3	3	3				
CO2	3	2	2	3	3	2				
CO3	3	3	2	3	3	2				
CO4	3	2	2	3	3	2				
CO5	3	2	2	3	3	2				
23EEPE19	3	3	2	3	3	3				
1 – Slight, 2 – Moderate, 3 – Sub	stantial	1		I	I	I				

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

23EEPE20	ENVIRONMENTAL POLICY AN	ENVIRONMENTAL POLICY AND LEGISLATION							
PREREQUISITI	ES	CATEGORY	L	T	P	C			
	NIL	3	0	0	3				
Course	Course To discuss the environmental policies and recalling the environmental move								
Objectives	In additional to enumerate the international environment	ntal treaties.							
UNIT – I	EVOLUTION OF INTERNATIONAL ENVIRONM	MENTAL POLICY		9 Pe	eriod	ls			
Fundamental prin	nciples of environmental protection - sustainable dev	velopment- Brundtla	and	repo	rt 19	987.			
Intergenerational	and intra-generational Equity, Polluter pays principle,	precautionary princi	ple,	Publ	ic T	rust			
Doctrine. Constit	utional Perspective: Fundamental right to wholesome env	rironment. Directive	princ	ciples	s of s	state			
policy. Fundamen	tal duty. National Environmental Policy. Environmental	Regulatory Framew	ork i	n Inc	lia. F	Role			
of International E	nvironmental Agencies -UNEP, GEF, UNFCC and IPCC.								
UNIT – II	ENVIRONMENTAL MOVEMENT IN INDIA			9 Pe	eriod	ls			
Movements relate	ed to Environment Sacred groves, Bishnoi tradition, C	Chipko movement, '	Tehr	idam	, Sa	rdar			
Sarovar, Narmada	dam, Almatti dam, Silent Valley. Supreme Court Cases	- Ratlam Municipal	ity, C	Gang	a Ac	tion			
Plan, Taj Trapezio	ım, Delhi CNG, Tamil Nadu Tanneries, Doon Valley,Sp	an motels private lin	nited	case	, Ole	eum			
gas case.									
UNIT – III	INTERNATIONAL ENVIRONMENTAL T	REATIES AND		9 Pe	eriod	ls			
	CONVENTIONS								
	ence on human environment, 1972, Ramsar Convention of								
· ·	ention (1989,1992), Earth summit at rio de janeiro, 1992	•							
at johannesburg,	2002. Rotterdam Convention on Prior Informed Conse	ent Procedure for C	ertai	n Ha	azaro	lous			
Chemicals and P	esticides in International Trade 22 Convention on l	Desertification 1996	, Co	nvei	ntion	on			

UNIT – IV OBJECTIVES AND PROVISIONS OF ACTS AND RULES I

Biodiversity & Cartagena Protocol on Bio safety.

9 Periods

Indian Forest Act 1927, Indian Wildlife (Protection) Act, 1972, Forest Conservation Act 1980, Forest Rights Act, Water (Prevention and Control of Pollution) Act, 1974, Air (Prevention and Control of Pollution) Act 1981, Environment (Protection) Act, 1986, Public Liability insuranceact, 1991, Noise Pollution (Regulation and Control) Rules, 2000.

UNIT – V OBJECTIVES AND PROVISIONS OF ACTS AND RULES II 9 Periods

Bio-Medical Waste (Management & Handling) Rules, 1998, Recycled Plastics Manufacture and Usage Rules, 1999, Municipal Solid Waste (Management and Handling Rules) 2000, Biodiversity Act 2002, Water (Prevention and Control of Pollution) Cess (Amendment) Act, 2003, EIA Notification 2006, The Hazardous Wastes (Management, Handling and Transboundary Movement) Rules, 2008, Wetland Rules 2009, National Green Tribunal Act 2010, Coastal Regulation Zones (CRZ) Rules 2011. E-waste Management and Handling Rules 2011, Plastics Manufacture, Sale and Usage Rules, 2011.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	"Environmental Law and Policy in India", Shyam Divan and Armin Rosencranz, Oxford University Press,
	New Delhi, 2005.
2	"Environmental Law Case Book, Lexis Nexis, Butterworths, Mohanty", S. K., Leelakrishnan. P,
	Environment and Pollution Law, Universal Law Publishing Co.Pvt. Ltd., 2011.
3	"Environmental Law, (2nd Edn.)", Shastri S C, Eastern Book Company, Lucknow, 2008.
4	"Environmental Law in India", Singh Gurdip, Mcmillan& Co., 2004,
5	"Introduction to Environmental Law", Shantakumar S, (2nd Edn.), Wadhwa & Company, Nagpur, 2005.
6	"Handbook of Environmental Law in India", Sahasranaman P B, Oxford University Press (India), 2008.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Demonstrate the evolution of International Environmental Policies.	К3
CO2	Recall environmental movements in India	К3
CO3	Discuss the International Environmental Policies	K3
CO4	Underline the act and rules I	К3
CO5	Accentuate the objective and provisions of act and rules II	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	2	3	3	1
CO2	3	3	2	3	2	1
CO3	3	2	3	2	2	1
CO4	2	3	3	2	3	1
CO5	3	2	3	2	3	1
23EEPE20	3	3	3	3	3	1
- Slight, 2 - Moderat	e, 3 – Substant	ial	TUNG!			I

ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
Category* CAT1	20	25	25	15	15		100				
CAT1	20	20	25	20	15	-	100				
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	15	30	35	20	-	100				
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	10	40	25	25	-	100				
ESE	20	25	25	10	20	-	100				

23EEPE21	INSTRUMENTATION, SELECTIO	ON AND MANAGEME	NT (OF		
23EEF E21	ENVIRONMENTAL ENGINE	EERING EQUIPMENT	Γ S			
PREREQUIS	ITES	CATEGORY	L	T	P	C
	NIL	PE	3	0	0	3
Course	To impart knowledge on maintenance of machi	neries and analytical ir	ıstruı	men	s us	ed in
Objectives	water and waste water machineries and equip	ments addition to ga	in k	now	ledg	e on
	equipments in air pollution control					
UNIT – I	GENERAL			9 P	erioc	ls
Study of mac	hinery, electric motors types and characteristic	s, other prime covers,	pum	ıps,	capa	icity,
operation and	maintenance of pumping machinery, air compres	sors preventive mainten	ance	, bre	eak-c	lown
maintenance, s	chedules - Factors to be considered in the selectio	n of the equipment.				
UNIT – II	INSTRUMENTATION			9 P	erioc	ls
pH meter - Fla	me Emission Spectrometry. Absorption spectrome	etry - Nephelometry – A	tomi	ic A	bsor	ption
Spectrometry -	Gas chromatography - working principle and co	mponents. Total carbon	anal	yser	Mei	cury
Analyser polar	graph for metal estimation and organic compound	ds – Ion selective Electr	ode -	-SO2	2 and	l CO
analyser – Insti	rument components and its working principle					
UNIT – III	WATER SUPPLY MACHINERY AN	D WASTEWATER		9 P	erioc	ls
	MACHINERY					
	ment, pumping equipment for wells. Machine		y ar	nd s	ecor	idary
treatment, sewa	age pumps, sludge pumps, vacuum filtration equip	ment				
UNIT – IV	EQUIPMENTS FOR TREATMENT UNITS	7)		9 P	erioc	ls
Equipment for	r treatment unit - electrically and mechanical	ly operated agitators,	mix	ers,	aera	itors,
chlorinators, St	urface aerators. Meters for measurement of flow, h	nead, and electricity.				
UNIT – V	AIR POLLUTION CONTROL EQUIPMENT	ΓS		9 P	erioc	ls
	iples of electrostatic precipitator - cyclone sepa			_		
Maintenance.	Machinery for solid waste collection and dispo-	sal incineration -compa	actors	s –	mag	netic
separators- inc	inerators.	90e				
Contact Perio						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

1	Operation and Control of Water Treatment Processes COX CR WHO 1969.
2	Course Manual on Preventive Maintenance of Water Distribution System, NEERI,1993.
3	"Environmental Engineering", Howard Peavy, Donald Rowe & George Tchobanoglous, McGraw
	Hill publication, 2017.
4	Introduction to instrumentation measurements and field methods in environmental science,
	Ekanade Olusegun, Edward C. Orji, JariSanusiI, National Open University of Nigeria Publications,
	2010.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Illustrate handling and maintenance of water and waste water machineries	К3
	and equipment	
CO2	Demonstrate the principle and operation of various Analytical Instruments.	К3
CO3	Explain the operation of water and wastewater machineries	K3
CO4	Select suitable equipment to be used in treatment units.	К3
CO5	Explain the various equipments used in air pollution control	К3

COURSE ARTICULATION N	MATRIX					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	3	1	1	2	1
CO2	2	3	1	1	2	1
CO3	2	3	1	1	2	1
CO4	1	3	1	1	2	1
CO5	1	3	1	1	2	1
23EEPE21	2	3	1	1	2	1
1 – Slight, 2 – Moderate, 3 – Sul	ostantial	•	•	•		•

ASSESSMENT	SSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

OF THE STATE OF TH

23EEPE22	23EEPE22 ENVIRONMENTAL CHEMISTRY AND MICROBIOLOGY							
PREREQUIS	ITES	CATEGORY	L	T	P	C		
	NIL	PE	3	0	0	3		
Course	Imparting knowledge of Environmental chemistry and	d microbiology and emphasising th						
Objectives	need on sustainable development with help of microor	ganism culture.						
UNIT – I	BASIC PRINCIPLES OF ANALYTICAL CHEMI	STRY		9 P	erio	ds		
Concentration	of solutions-Calculations - Ionic equilibrium of weak	electrolytes, - co	mmo	n ioi	n eff	ect –		
Buffer Solution	ns-Change of pH with salt concentrations, Buffer Index-	Solubility product,	Hyd	rolys	sis of	salts		
– Oxidation an	d Reduction reactions stoichiometry.							
UNIT – II	CHEMICAL KINETICS 9 Pe							
Rate constants	of first and second-order reactions - problems - effe	ct of temperature	on re	actio	on ra	tes –		
Derivation of A	Arrhenius equation – problems – consecutive reactions –	basic concepts of	enzy	mes,	cofa	ctors		
 enzyme catal 	yzed reactions – Temperature dependence of enzyme a	ctivity– Enzyme k	ineti	cs- N	Mich	alei's		
Menton equation	on – significance.							
UNIT – III	AQUATIC AND SOIL CHEMISTRY				erio			
•	nd dissolution- Water softening and water conditioning	•						
organic compl	exes in natural water- Weathering reactions- Structure	e and surface read	tions	of	clays	and		
oxides- Forces	at soil water interfaces.							
UNIT – IV	INTRODUCTION TO MICROBIOLOGY				erio			
	of microorganisms. Culture of micro-organisms- media	_		_				
	f cultures. Culturing methods- Streaking, Pour plate,	• •						
	th, nutritional requirements of micro-organisms -Micro-organisms	crobial metabolisn	n- Re	espir	ation	and		
energy generation.								
UNIT – V	IMPACT OF MICROBES ON ENVIRONMENT &	& HEALTH		9 P	erio	ds		
_	. Role of Microbes in Carbon, Phosphorus, Nitrogen a							
	Leaching - Xenobiotics. Waterborne diseases and their	•						
	n-faecal coliforms-tests for the presence of coliform or				rmed	d and		
completed test,	completed test, MPN index, use of Millipore filter technique, standards for bacteriological quality.							
	CO GO							

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Microbiology, Pelczar. Jr.M.J., Chan, E.C.S., Krieg.R. Noel., and PelczarMernaFoss, 5th Edition, Tata
	McGraw- Hill Publishing Company Limited, New Delhi, 2004.
2	Prescott's Microbiology, Joanne Willey Kathleen Sandman and Dorothy Wood., 11th Edition, Tata
	McGraw-Hill Publishing Company Limited, New Delhi, 2020.
3	Hand Book of Environmental Microbiology S.C. Bhatia, 3rd Edition, Atlantic Publishers and
	Distributors, 2008.
4	Environmental Microbiology, Ian L. Pepper, Charles P. Gerba, Terry Gentry and Raina M. Maier,
	3rd Edition, Academic Press, 2014.
5	Essentials Of Ecology & Environmental Science, S. V. S. Rana, 5th Edition, PHI Learning Press,
	2013.

COUI	COURSE OUTCOMES:			
		Taxonomy		
Upon	completion of the course, the students will be able to:	Mapped		
CO1	Impart knowledge on basic principles of Analytic chemistry	K1		
CO2	Execute various practices of chemical kinetics.	K2		
CO3	Investigating aquatic and soil chemistry	К3		
CO4	Understanding about Microbiology.	K2		
CO5	Knowledge about impact of microbes on Environment and Health	K4		

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	3	2	2	3
CO2	3	2	3	1	2	2
CO3	2	3	3	2	3	3
CO4	3	2	3	2	2	2
CO5	3		2	2	1	3
23EEPE22	3	3	2.3	2	3	3
1 - Slight, 2 - Moderate, 3 -	Substantial			·	•	

ASSESSMENT PATTERN – THEORY							
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	15	35	30	10	5	5	100
CAT2	15	35	20	20	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	10	40	35	15	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

23SEOE01	BUILDING BYE-LAWS AND CODES OF PRACTICE					
25SEOE01	(Common to all	Branches)				
PREREQUISIT	ΓES	CATEGORY	L	T	P	C
	NIL	OE	3	0	0	3
Course	To impart knowledge on the building bye –laws an	nd to emphasize the	esig	nifica	nce of	codes
Objectives	of practice in construction sector.					
UNIT – I	INTRODUCTION TO BUILDING BYE-LAWS	S		9) Perio	ods
Introduction to	Building Bye Laws and regulation, their need ar	nd relevance, Gene	eral	defini	tions s	uch as
building height,	building line, FAR, Ground Coverage, set bac	k line. Introduction	on to) Mas	ter Pla	an and
understanding v	arious land uses like institutional, residential etc	Terminologies of l	Buil	ding b	ye-law	s.
UNIT – II	ROLE OF STATUTORY BODIES			9) Perio	ds
Role of variou	s statutory bodies governing building works l	like development	autl	noritie	s, mu	nicipal
corporations etc	. Local Planning Authority, Town and Country	planning organisat	tion,	Mini	stry of	urban
development.						
UNIT – III	APPLICATION OF BUILDING BYE-LAWS			9) Perio	ods
Interpretation of	f information given in bye laws including ongoin	g changes as show	vn i	n vari	ous an	nexure
and appendices.	Application of Bye-laws like structural safety,	fire safety, earthq	uake	e safet	y, bas	ement,
electricity, water	r, and communication lines in various building type	es.				
UNIT – IV	INTRODUCTION TO CODES OF PRACTICE	\mathbf{E}		9) Perio	ods
Introduction to	various building codes in professional practice - C	odes, regulations t	o pr	otect 1	public	health,
safety and welfa	re - Codes, regulations to ensure compliance with	the local authority.				
UNIT – V	APPLICATION OF CODES OF PRACTICE	(9) Perio	ods
Applications of	various codes as per various building types. E	Bureau of Indian	Stan	dards,	Euro	code –
Introduction to o	other international codes.	\				
Contact Period	s:					
Lecture: 45 Per	riods Tutorial: 0 Periods Practical:	0 Periods To	otal:	45 P	eriods	

1	"National Building Code of India 2016 - SP 7", NBC 2016, Bureau of Indian Standards.
2	"Model Building Bye-Laws (MBBL) – 2016", Town and Country Planning Organization, Ministry of
	Housing and Urban Affairs, Government of India.
3	"Unified Building Bye-laws for Delhi 2016", Nabhi Publications, 2017.
4	Mukesh Mittal, "Building Bye Laws", Graphicart publishers, Jaipur, 2013.

COUF	RSE OUTCOMES:	Bloom's		
		Taxonomy		
Upon	Upon completion of the course, the students will be able to:			
CO1	Apply the building bye-laws in planning, design and construction works.	К3		
CO2	Familiarize with the role of various statutory bodies.	K2		
CO3	Execute safety related work practices in the construction sector.	К3		
CO4	Ensure compliance with the rules and regulations in design and construction	К3		
	practices.			
CO5	Perform design and construction practices based on national and international	К3		
	codal provisions.			

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	3	1	1	2	3			
CO2	1	3	1	1	2	3			
CO3	1	3	1	1	2	3			
CO4	2	3	1	1	2	3			
CO5	2	3	1	1	2	3			
23SEOE01	2	3	1	1	2	3			
1 – Slight, 2 – Moderate, 3	1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	B-G	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	40	40	20	7	-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	40	40	20		-	-	100
ESE	40	40	20	100 J	-	_	100

23SEOE02		PLANNING OF SM (Common to all							
255EOE02									
PREREQUISITE	S		CATEGORY	L	T	P	C		
	NIL		OE	3	0	0	3		
Course	To have an exposure or	n planning of smart cities	with consideration	of the	rece	nt chal	lenge		
Objectives	and to address the impo	nd to address the importance of sustainable development of urban area.							
UNIT – I	SMART CITIES	DEVELOPMENT	POTENTIALS	ANI)	9 Peri	- da		
	CHALLENGES					9 Peri	ous		
Perspectives of Sn	nart Cities: Introduction a	and Overview - Implemen	ntation Challenges -	Metho	dolo	gical is	sues		
Spatial distributio	on of startup cities - Re	e imagining postindustri	ial cities - Implem	entatio	n Cł	nalleng	es fo		
Establishing Smar	t Urban Information and I	Knowledge Management	System.						
UNIT – II	SUSTAINABLE URB	AN PLANNING				9 Peri	ods		
Optimising Green	Spaces for Sustainable U	rban Planning - 3D City	Models for Extracting	ng Urb	an Ei	nvironi	nenta		
_	s - Assessing the Rainw			_					
Monitoring Urban	ū		C			•			
UNIT – III	ENERGY MANAGEN	MENT AND SUSTAINA	ABLE DEVELOPM	1ENT		9 Peri	ods		
Alternatives for	Energy Stressed Cities	- Social Acceptability	of Energy - Effic	ient L	ightii	ng - E	nergy		
Management - Ur	ban Dynamics and Resor	urce Consumption - Issue	es and Challenges of	of Sust	ainab	le Tou	rism ·		
Green Buildings: 1	Eco-friendly Technique fo	or Modern Cities.	_						
UNIT – IV	MULTIFARIOUS MA	ANAGEMENT FOR SM	IART CITIES			9 Peri	ods		
Assessment of Do	mestic Water Use Practi	ces - Issue of Governan	ce in Urban Water	Supply	7 - A	ssessm	ent o		
	on at Urban Household								
•	lthcare System - Problems	Mary Aller Company	///						
UNIT – V	INTELLIGENT TRA		1			9 Peri	ods		
Introduction to In	telligent Transport System	7000/2053 117003	TITS Applications -	Netwo	rk O				
	sing Virtual Detectors -		* *						
-	ing and Delivery - Elec								
	ent. Urban Mobility and E	1. 0 10 10		_ J 1141					
Contact Periods:	und in control and in	Tonomic Do , Cropment.	NO:						
Lecture: 45 Peri	iods Tutorial: 0 Perio	ds Practical: 0 Pe	eriods Total: 4	15 Davi	ode				
Lecture, 45 Feri	ous rutorial, v rerio	us Tractical; UT	rious rotar: 4	13 1 61	ous				

1	Poonam Sharma, Swati Rajput, "Sustainable Smart Cities In India Challenges And Future
	Perspectives", Springer 2017 Co.(P) Ltd. 2013.
2	Ivan Nunes Da Silva, "Rogerio Andrade Flauzino-Smart Cities Technologies-Exli4eva" , 2016.
3	Stan McClellan, Jesus A. Jimenez, George Koutitas "Smart Cities_ Applications, Technologies,
	Standards", and Driving Factors-Springer International Publishing, 2018.
4	Stan Geertman, Joseph Ferreira, Jr., Robert Goodspeed, John Stillwell, "Planning Support Systems
	And Smart Cities", Springer, 2015.
5	Pradip Kumar Sarkar and Amit Kumar Jain "Intelligent Transport Systems", PHI Learning, 2018.

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon c	Upon completion of the course, the students will be able to:			
CO1	Indicate the potential challenges in smart city development.	K2		
CO2	Select the different tools for sustainable urban planning.	К3		
CO3	Choose appropriate energy conservation system for smart cities.	К3		
CO4	Identify the proper method of water management system.	К3		
CO5	Apply Intelligent Transport System concepts in planning of smart city.	К3		

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	-	2	3	1	1		
CO2	1	1	1	3	2	1		
CO3	1	1	-	2	2	1		
CO4	1	-	1	2	1	1		
CO5	1	-	1	3	1	-		
23SEOE02	1	1	2	3	2	1		
- Slight, 2 - Moderate	, 3 – Substantia	al				1		

ASSESSMENT PA	TTERN - THEC	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	25	45	30	-	-	-	100
CAT2	25	45	30	-	-	-	100
Individual	15	40	45	-	-	-	100
Assessment 1 /			D	0			
Case Study 1/		CV		2)			
Seminar 1 /		(200)	TOTAL OF				
Project1			-	77			
Individual	10	45	45	-	-	-	100
Assessment 2 /							
Case Study 2/							
Seminar 2 /		11 8		1			
Project 2		11 89	11 11				
ESE	20	40	40	(i)	-	-	100

22550502	GREEN BUILDING								
23SEOE03	(Common to all Branches)								
PREREQUISITES	8	CATEGORY	L	T	P	C			
	NIL	OE	3	0	0	3			
Course	To introduce the different concepts of energy	troduce the different concepts of energy efficient buildings, indoor environmental							
Objectives	quality management, green buildings and its design	1.							
UNIT – I	NTRODUCTION			9	9 Peri	ods			
Life cycle impacts	of materials and products - sustainable design	n concepts – strat	egies	of de	esign	for the			
Environment -The	sun-earth relationship and the energy balance on	the earth's surface	e, clin	nate,	wind -	- Solar			
radiation and solar	temperature - Sun shading and solar radiation on	surfaces – Energy	impac	t on t	he sha	pe and			
orientation of build	ings – Thermal properties of building materials.								
UNIT – II	ENERGY EFFICIENT BUILDINGS			9	9 Peri	ods			
Passive cooling and	d day lighting – Active solar and photovoltaic- B	uilding energy ana	lysis 1	netho	ds- B	uilding			
energy simulation-	Building energy efficiency standards-Lighting	system design- I	Lightin	g ec	onomi	cs and			
aesthetics- Impacts	of lighting efficiency - Energy audit and energy to	targeting- Technolo	gical	optio	ns for	energy			
management.									
UNIT – III	NDOOR ENVIRONMENTAL QUALITY MA	NAGEMENT		9	9 Peri	ods			
Psychrometry- Con	nfort conditions- Thermal comfort- Ventilation an	d air quality-Air co	onditio	ning	requir	ement-			
1	Illumination requirement- Auditory requiren		_		_				
conditioning systen	ns- Energy conservation in pumps- Fans and blow	ers- Refrigerating 1	nachir	nes- F	leat re	jection			
equipment- Energy	efficient motors- Insulation.	9							
UNIT – IV	GREEN BUILDING CONCEPTS	5)		9	9 Peri	ods			
Green building cor	cept- Green building rating tools- Leeds and IG	BC codes. – Mate	rial se	lectio	on Em	bodied			
energy- Operating 6	energy- Façade systems- Ventilation systems-Trans	sportation- Water to	reatme	nt sy	stems-	Water			
efficiency- Building	geconomics								

Contact Periods:

UNIT – V

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

heating system and fuel choices; renewable energy systems; material choices - construction budget

GREEN BUILDING DESIGN - CASE STUDY

REFERENCES:

1	Sam Kubba "Handbook of Green Building Design and Construction: LEED, BREEAM, and Green				
	Globes", , Elsevier Science, 2012.				
2	Yudelson, Jerry, McGraw-Hill, "Greening existing buildings", New York, 2010				
3	Charles J. Kibert, John Wiley & Sons, "Sustainable Construction: Green Building Design and				
	Delivery", 3rd Edition, 2012				
4	R.S. Means, John Wiley & Sons, "Green Building: Project Planning & Cost Estimating", 2010.				

Case studies - Building form, orientation and site considerations; conservation measures; energy modeling;

9 Periods

COUR	COURSE OUTCOMES:			
		Taxonomy		
Upon co	ompletion of the course, the students will be able to:	Mapped		
CO1	Apply the concepts of sustainable design in building construction.	К3		
CO2	Execute green building techniques including energy efficiency management in the	К3		
	building design.			
CO3	Establish indoor environmental quality in green building.	К3		
CO4	Perform the green building rating using various tools.	К3		
CO5	Create drawings and models of green buildings.	K3		

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	2	3	3	3			
CO2	3	3	2	3	3	3			
CO3	2	2	2	2	3	3			
CO4	2	3	1	3	3	3			
CO5	3	3	1	3	3	3			
23SEOE03	3	3	2	3	3	3			
1 – Slight, 2 – Moder	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT P.	ATTERN – THE	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual	40	40	20	-	-	-	100
Assessment 1 /		O TO	0	(9)			
Case Study 1/			200	2)			
Seminar 1 /		923	Carried Services				
Project1			-	7			
Individual	40	40	20	-	-	-	100
Assessment 2 /							
Case Study 2/				\			
Seminar 2 /							
Project 2		11 8	11 11	h			
ESE	40	40	20	98 -	-	-	100

23EEOE04	ENVIRONMENT HEALTH AN	ENVIRONMENT HEALTH AND SAFETY MANAGEMENT								
25EECE04	(Common to al	1 Branches)								
PREREQUIS	ITES	CATEGORY	L	T	P	C				
	NIL	OE	3	0	0	3				
Course	To impart knowledge on occupational health	Γο impart knowledge on occupational health hazards, safety measu								
Objectives										
UNIT – I	OCCUPATIONAL HEALTH HAZARDS	OCCUPATIONAL HEALTH HAZARDS 9 Periods								
	Health and Hazards - Safety Health and Mar									
Ergonomics -	Importance of Industrial Safety - Radiation ar	nd Industrial Hazai	rds: Ty	pes ai	nd ef	fects -				
Vibration - Inc	dustrial Hygiene - Different air pollutants in indu	ustries and their eff	ects - E	Electri	cal, fi	re and				
Other Hazards										
UNIT – II	SAFETY AT WORKPLACE			9 Pe	eriod	š				
Safety at Worl	xplace - Safe use of Machines and Tools: Safety	in use of different	types o	f unit	opera	tions -				
Ergonomics of	Machine guarding - working in different workpla	nces - Operation, Ins	spection	n and r	naint	enance				
- Housekeepin	g, Industrial lighting, Vibration and Noise.									
UNIT – III	ACCIDENT PREVENTION			9 Pe	eriod	š				
	ention Techniques - Principles of accident prevention					•				
Event tree anal	lysis, Hazop studies, Job safety analysis - Theorie	s and Principles of	Accide	nt caus	ation	- First				
Aid: Body stru	cture and functions - Fracture and Dislocation, Inj	juries to various boo	ly parts							
UNIT – IV	SAFETY MANAGEMENT	39/		9 Pe	eriod	š				
Safety Manag	ement System and Law - Legislative measures	in Industrial Safet	y - Oc	cupati	onal	safety,				
Health and En	vironment Management, Bureau of Indian Standar	rds on Health and S	afety, I	S 1448	39 sta	ndards				
- OSHA, Proce	ess safety management (PSM) and its principles - l	EPA standards								
UNIT – V	GENERAL SAFETY MEASURES			9 Pe	eriod	Š				
Plant Layout fo	or Safety - design and location, distance between h	nazardous units, ligl	nting, co	olour c	odin	g, pilot				
plant studies,	Housekeeping - Accidents Related with Mainten	nance of Machines	- Work	Perm	nit Sy	stem -				
Significance o	f Documentation - Case studies involving imple	mentation of health	h and s	afety 1	meas	ares in				
Industries.	AL IA	V.B.								
Contact Perio	ds:									
Lecture: 45 P	eriods Tutorial: 0 Periods Practical	: 0 Periods	Total:	45 <u>Pe</u> r	iods					

1	"Physical Hazards of the Workplace", Barry Spurlock, CRC Press, 2017.
2	"Handbook of Occupational Safety and Health", S. Z. Mansdorf, Wiley Publications, 2019
3	"Safety, Health, and Environment", NAPTA, 2nd Edition, Pearson Publications, 2019.
4	"Occupational Health and Hygiene in Industries", Raja Sekhar Mamillapalli, Visweswara Rao ,
	PharmaMed Press, 1st edition, 2021.

COUR	SE OUTCOMES:	Bloom's			
		Taxonomy			
Upon c	Upon completion of the course, the students will be able to:				
CO1	Identify the occupational health hazards.	К3			
CO2	Execute various safety measures at workplace.	К3			
CO3	Analyze and execute accident prevention techniques.	K3			
CO4	Implement safety management as per various standards.	К3			
CO5	Develop awareness on safety measures in Industries.	K3			

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	1	2	2	2	3	2				
CO2	2	2	2	1	2	2				
CO3	2	3	2	1	2	2				
CO4	1	1	1	2	2	2				
CO5	1	1	1	1	1	2				
23EEOE04	1	2	2	1	2	2				
1 - Slight, 2 - Moderate, 3 - Su	bstantial									

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	35	20	10	5	5	100
CAT2	25	35	20	10	5	5	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	40	30	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	40	30	10	-	-	100
ESE	25	35	20	10	5	5	100

23EEOE05	(Common to all Branches)									
PREREQUISITES	S		CATEGORY	L	T	P	C			
		NIL	OE	3	0	0	3			
Course		inderstand the Earth's climate system, changes								
Objectives		impacts, adaptation, mitigation of climate chan nology, carbon trading and alternate energy sour	-	ng kn	owieag	ge on	ciean			
UNIT – I	EAF	ARTH'S CLIMATE SYSTEM 9 Pe								
Introduction-Clima	te in	the spotlight - The Earth's Climate Machine	e – Climate Class	ificati	on- G	lobal	Wind			
		and the Hadley Cell – The Westerlies – Cloud								
and Hurricanes - T	he Hy	drological Cycle – Global Ocean Circulation –	El Nino and its E	ffect -	Solar	Radia	ation –			
The Earth's Natural	Gree	en House Effect – Green House Gases and Globa	al Warming – Carb	on Cy	cle.					
UNIT – II	OBS	SERVED CHANGES AND ITS CAUSES			9 P	eriod	S			
Observation of Clin	mate	Change – Changes in patterns of temperature, p	precipitation and so	ea leve	el rise	– Ob	served			
effects of Climate	Cha	inges - Patterns of Large-Scale Variability	-Drivers of Clim	ate C	hange	– C	limate			
Sensitivity and Fee	dbac	ks – The Montreal Protocol –UNFCCC – IPCC	C – Evidences of C	Chang	es in (Clima	ite and			
Environment – on a	ı Glol	oal Scale and in India – climate change modeling	g.							
UNIT – III		ACTS OF CLIMATE CHANGE	(i			eriod				
Impacts of Climate	Char	nge on various sectors - Agriculture, Forestry ar	nd Ecosystem – Wa	ater R	esourc	es – I	Human			
Health – Industry,	Settle	ement and Society - Methods and Scenarios -l	Projected Impacts	for D	ifferen	t Reg	ions –			
Uncertainties in the	Proj	ected Impacts of Climate Change – Risk of Irrev	versible Changes.							
UNIT – IV		MATE CHANGE ADAPTATION AND ASURES	MITIGATION	1	9 P	eriod	S			
Adaptation Strateg	y/Opt	ions in various sectors - Water - Agriculture	Infrastructure a	nd Se	ttlemei	nt inc	luding			
coastal zones – Hu	man	Health – Tourism – Transport – Energy – Key	Mitigation Techr	ologi	es and	Prac	tices –			
Energy Supply – '	Trans	port – Buildings – Industry –Agriculture – F	orestry - Carbon	seque	stratio	n – (Carbon			
capture and storage	(CCS	S) – Waste (MSW & Bio waste, Biomedical, Inc	lustrial waste – Int	ernati	onal a	nd Re	gional			
cooperation.			Š							
UNIT – V	CLF	CAN TECHNOLOGY AND ENERGY			9 P	eriod	S			
Clean Developmen	t Me	chanism - Carbon Trading - examples of futur	e Clean Technolog	gy –B	iodiese	el – N	Vatural			
Compost – Eco- Fr	iendly	y Plastic – Alternate Energy – Hydrogen – Biofu	iels– Solar Energy	– Wiı	nd – H	ydroe	electric			
Power – Mitigation	Effo	rts in India and Adaptation funding.								
Contact Periods:										

Tutorial: 0Periods

Lecture: 45 Periods

1	"Impacts of Climate Change and Climate Variability on Hydrological Regimes", Jan C. Van Dam,
	Cambridge University Press, 2003.
2	IPCC fourth assessment report - The AR4 synthesis report, 2007
3	IPCC fourth assessment report –Working Group I Report, "The physical sciencebasis",2007
4	IPCC fourth assessment report - Working Group II Report, "Impacts, Adaptation and Vulnerability",
	2007
5	IPCC fourth assessment report – Working Group III Report" Mitigation of Climate Change", 2007
6	"Climate Change and Water". Technical Paper of the Intergovernmental Panel on Climate Change,
	Bates, B.C., Z.W. Kundzewicz, S. Wu and J.P. Palutikof, Eds., IPCC Secretariat, Geneva, 2008.

Practical: 0 Periods

Total:45 Periods

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	impletion of the course, the students will be able to:	Mapped
CO1	Classify the Earths climatic system and factors causing climate change and global	K2
	warming.	
CO2	Relate the Changes in patterns of temperature, precipitation and sea level rise and	K2
	Observed effects of Climate Changes	
CO3	Illustrate the uncertainty and impact of climate change and risk of reversible changes.	К3
CO4	Articulate the strategies for adaptation and mitigation of climatic changes.	К3
CO5	Discover clean technologies and alternate energy source for sustainable growth.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	3	2	3	1
CO2	3	2	2	2	3	2
CO3	2	2	2	2	3	2
CO4	3	2	2	2	2	2
CO5	3	3	2	3	3	3
23EEOE05	3	3	3	3	3	3
- Slight, 2 - Moderate	, 3 – Substanti	al	9 //		1	•

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	30	35	10	-	-	100
CAT2	25	30	35	10	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	20	30	40	10	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	40	10	-	-	100
ESE	25	30	35	10	-	-	100

22550500	WASTE TO ENERGY	<u></u>					
23EEOE06	(Common to all Branche	es)					
PREREQUISI	TES	CATEGORY	L	T	P	С	
	NIL	OE	3	0	0	3	
Course	To classify waste as fuel, introduce conversion devices	s, gain knowle	dge	abou	t Bio	mass	
Objectives	Pyrolysis, demonstrate methods, factors for biomass gasific	cation, and acqu	ire k	nowl	edge	abou	
	biogas and its development in India.						
UNIT – I	INTRODUCTION			9 F	Perio	ds	
Introduction to	Energy from Waste: Classification of waste as fuel - Ag	ro based, Fores	t res	idue,	Indu	ıstria	
waste - MSW -	Conversion devices – Incinerators, Gasifiers, Digestors.						
UNIT – II	BIOMASS PYROLYSIS			9 F	Perio	ds	
Biomass Pyrol	ysis: Pyrolysis -Types, Slow Pyrolysis, Fast Pyrolysis – Ma	nufacture of ch	arco	al – 1	Meth	ods -	
Yields and App	olications - Manufacture of Pyrolytic oils and gases, Yields a	nd Applications					
UNIT – III	NIT – III BIOMASS GASIFICATION						
Gasifiers - Fi	xed bed system - Downdraft and updraft gasifiers - 1	Fluidized bed	gasif	iers	- D	esign	
Construction as	nd Operation - Gasifier burner arrangement for thermal hea	ting – Gasifier	Engi	ne ar	range	emen	
and electrical p	ower – Equilibrium and Kinetic Considerations in gasifier op	eration.					
UNIT – IV	BIOMASS COMBUSTION			9 F	Perio	ds	
Biomass Com	bustion - Biomass Stoves - Improved Chullahs, types,	some exotic	desig	ns,	Fixed	l be	
combustors, tyj	pes - Inclined grate combustors - Fluidized bed combustors	, design, constr	actio	n and	l ope	ratio	
of all the above	biomass combustors.						
UNIT – V	BIOENERGY SYSTEM			9 F	Perio	ds	
Biogas: Proper	ties of biogas (Calorific value and composition) - Biogas	plant technolog	gy aı	nd sta	atus -	– Bio	
energy system	- Design and constructional features - Biomass resources	and their class	sifica	tion	- Bio	omas	
conversion pro	cesses - Thermo chemical conversion - Direct combustion	- biomass gas	ificat	ion -	- pyr	olysi	
and liquefactio	n – biochemical conversion – anaerobic digestion – Types	of biogas plan	nts –	App	licati	ons -	
Alcohol produc	ction from biomass - Bio diesel production - Urban wast	e to energy co	nvers	sion -	- Bio	omas	
energy progran	nme in India.						
Contact Period	ds:						
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Period	s Total: 45	Per	iods			

1	"Energy Recovery from Municipal Solid Waste by Thermal Conversion Technologies", P Jayaram Reddy, Taylor and Francis Publications, 2016.
2	"Waste – to – Energy: Technologies and project Implementations", Marc J Rogoff, Francois Screve, ELSEVIER Publications, Third Edition, 2019.
3	"Biogas Technology and Principles", Brad Hill, NY RESEARCH PRESS Publications, Illustrated Edition, 2015.
4	"Biomass Gasification and Pyrolysis Practical Design and Theory", PrabirELSEVIER Publications, 2010.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Investigate solid waste management techniques.	K2
CO2	Get knowledge about biomass pyrolysis.	К3
CO3	Demonstrate methods and factors considered for biomass gasification.	К3
CO4	Identify the features of different facilities available for biomass combustion.	K4
CO5	Analyze the potential of different Bioenergy systems with respect to Indian	K2
	condition.	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	3	3	2	3	1			
CO2	3	2	2	2	3	1			
CO3	3	3	2	3	2	1			
CO4	3	2	2	3	3	1			
CO5	2	3	3	3	2	1			
23EEOE06	3	3	3	3	3	1			
1 - Slight, 2 - Moderate, 3 - S	ubstantial	•	•	•	•				

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	10	20	20	25	15	10	100				
CAT2	10	25	20	10	25	10	100				
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	-	15	35	50	-	-	100				
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	-	10	40	50	-	-	100				
ESE	10	25	25	20	10	10	100				

23GEOE07	ENERGY IN BUILT ENVI						
20 GE GE V	(Common to all Brand	ches)					
PREREQUISIT	ES	CATEGORY	L	T	P	\mathbf{C}	
NIL OE 3							
Course	To understand constructional energy requirements	of buildings, ener	gy	audit	me	thods	
Objective	and conservation of energy.						
UNIT-I	INTRODUCTION			91	Perio	ods	
Indoor activities	and environmental control - Internal and external factor	ors on energy use -	–Ch	arac	teris	tics of	
energy use and it	ts management -Macro aspect of energy use in dwel	lings and its impl	icat	ions	-Th	ermal	
comfort-Ventilati	on and air quality-Air-conditioning requirement	ent-Visual perce	eptio	tion-Illumination			
requirement-Audi	tory requirement.						
UNIT-II I	LIGHTING REQUIREMENTS IN BUILDING			91	Perio	ods	
The sun-earth re	lationship - Climate, wind, solar radiation and ter	nperature - Sun s	shad	ling	and	solar	
radiation on surfaces-Energy impact on the shape and orientation of buildings-Lighting and day lighting							
Characteristics an	Characteristics and estimation, methods of day-lighting-Architectural considerations for day-lighting.						
UNIT-III ENERGY REQUIREMENTS IN BUILDING 9 Periods							
Steady and unste	ady heat transfer through wall and glazed window-S	tandards for therm	nal p	erfo	rmai	nce of	

ENERCY IN DITH T ENVIRONMENT

UNIT-IV ENERGY AUDIT

9 Periods

Energy audit and energy targeting-Technological options for energy management-Natural and forced ventilation—Indoor environment and air quality-Air flow and air pressure on buildings-Flow due to Stack effect.

building envelope- Evaluation of the overall thermal transfer- Thermal gain and net heat gain-End-Use

energy requirements-Status of energy use in buildings-Estimation of energy use in a building.

UNIT-V COOLING IN BUILT ENVIRONMENT

9 Periods

Passive building architecture—Radiative cooling-Solar cooling techniques-Solar desiccant dehumidification for ventilation-Natural and active cooling with adaptive comfort—Evaporative cooling — Zero energy building concept.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	J.Krieder and A.Rabl, "Heating and Cooling of Buildings: Design for Efficiency", McGraw-Hill,
	2000.
2	S.M. Guinnes and Reynolds, "Mechanical and Electrical Equipment for Buildings", Wiley, 1989.
3	A.Shaw, "Energy Design for Architects", AEE Energy Books, 1991.
4	ASHRAE, "Hand book of Fundamentals", ASHRAE, Atlanta, GA., 2001.
5	Reference Manuals of DOE-2 (1990), Orlando Lawrence-Berkeley Laboratory, University of
	California, and Blast, University of Illinoi, USA.

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand energy and its usage	K2
CO2	Know lighting to be given to a building	K1
CO3	Analyse the energy requirements in a building	K3
CO4	Apply the energy audit concepts.	K3
CO5	Study architectural specifications of a building	K1

COURSE ARTICULATION MATRIX							
PO1	PO2	PO3	PO4	PO5	PO6		
2	-	3	1	2	1		
2	-	3	1	2	1		
2	-	3	1	2	1		
2	-	3	1	2	1		
2	-	3	1	2	1		
2	-	3	1	2	1		
	1				PO1 PO2 PO3 PO4 PO5 2 - 3 1 2 2 - 3 1 2 2 - 3 1 2 2 - 3 1 2 2 - 3 1 2 2 - 3 1 2		

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluatin	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	g (K5) %	(K6) %	%			
CAT 1	40	40	20	-	-	-	100			
CAT 2	40	40	20	-	-	-	100			
Individual		9	- B							
Assessment 1 /		1 (0)1640	And British att	39/						
Case Study 1/	50	50	MILLIAN S	<u> </u>	-	-	100			
Seminar 1 /										
Project1		100								
Individual				11						
Assessment 2 /		// 1		11						
Case Study 2/	50	50	(河流)	\\ -	-	-	100			
Seminar 2 /		1 8								
Project 2		黑 / 為		3						
ESE	40	40	20		-	-	100			

23GEOE08		EARTH AND ITS ENVIRONMENT (Common to all Branches)				
PREREQUISIT	ES	CATEGORY	L	T	P	C
	NIL	OE	3	0	0	3
Course	To kno	ow about the planet earth, the geosystems and the resources like	gro	ound	wa	ter and
Objective	air and	d to learn about the Environmental Assessment and sustainability	7.			
UNIT-I	EVOI	LUTION OF EARTH		9	Peri	iods
Evolution of ear	rth as h	abitable planet-Evolution of continents-oceans and landforms	s-ev	olut	ion	of life
through geologic	cal time	es - Exploring the earth's interior - thermal and chemical str	uctı	ıre ·	or	igin of
gravitational and	magnet	ric fields.				
UNIT-II		GEOSYSTEMS		9	Peri	iods
Plate tectonics -	working	g and shaping the earth - Internal geosystems – earthquakes – v	olca	anoe	s -c	limatic
excursions through	gh time	- Basic Geological processes - igneous, sedimentation - metamo	rph	ic pı	oce	sses.
UNIT-III		GROUND WATER GEOLOGY		9	Peri	iods
		r occurrence –recharge process-Ground water movement-Ground				_
and catchment h	ydrolog	y – Ground water as a resource - Natural ground water quality a	nd	cont	ami	nation-
Modelling and m	anaging	g ground water systems.				
UNIT-IV		ENVIRONMENTAL ASSESMENT AND SUSTAINABILITY	7	9	Peri	iods
Engineering and	d sustai	nable development - population and urbanization - toxic ch	emi	cals	and	1 finite
resources - wate	r scarcit	ry and conflict - Environmental risk - risk assessment and chara	cter	izati	on -	-hazaro
assessment-expo	sure ass	sessment.				
UNIT-V		AIR AND SOLIDWASTE		9	Peri	iods
Air resources	enginee	ring-introduction to atmospheric composition-behaviour-at	mo	sphe	ric	photo
chemistry-Solid	waste m	anagement-characterization-management concepts.				
Contact Periods	:					
Lecture: 45 Peri	iods	Tutorial: 0 Periods Practical: 0 Periods Total:	: 45	Per	iods	3

1	John Grotzinger and Thomas H.Jordan, "Understanding Earth", Sixth Edition, W.H.Freeman, 2010.
2	Younger, P.L., "Ground water in the Environment: An introduction", Blackwell Publishing, 2007.
3	Mihelcic, J. R., Zimmerman, J. B., "Environmental Engineering:Fundamentals,
	Sustainability and Design", Wiley, NJ, 2010.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	To know about evolution of earth and the structure of the earth.	K2
CO2	To understand the internal geosystems like earthquakes and volcanoes and the	K2
	Various geological processes.	
CO3	To able to find the geological process of occurrence and movement of Ground water	K3
	and the modeling systems.	
CO4	To assess the Environmental risks and the sustainability developments.	К3
CO5	To learn about the photochemistry of atmosphere and the solid waste	K1
	Management concepts.	

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	-	-	2	2	-			
CO2	3	-	3	3	-	3			
CO3	2	-	-	-	-	-			
CO4	-	2	-	-	1	-			
CO5	2	2	-	1	-	-			
23GEOE08	2	2	3	3	2	3			
1-Slight, 2-Modera	te, 3–Substar	ntial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total
CAT 1	40	40	20	-	-	-	100
CAT 2	40	40	20	<u>-</u>	-	-	100
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	- Section (SEC)	-	-	100

NATURAL HAZARDS AND MITIGATIO (Common to all Branches)										
PREREQUISITE	` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	CATEGORY	L	Т	P	С				
	NIL	OE	3	0	0	3				
Course Objective	5 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -									
UNIT-I	EARTH QUAKES			9 F	Period	š				
earthquakes—effect design concepts.	sic concepts-different kinds of hazards—causes-Gos-plate tectonics-seismic waves-measures of siz	•		ırthqua	ke res	sistant				
UNIT-II	SLOPE STABILITY			9 F	Period	5				
Slope stability and measures for slope	landslides-causes of landslides-principles of statistabilization.	ıbility analysis-	reme	dial an	d corr	ective				
UNIT-III	FLOODS			9 F	Period	ŝ				
	Floods-causes of flooding-regional flood freque forecasting-warning systems.	ency analysis-f	lood	contro	l mea	sures-				
UNIT-IV	DROUGHTS			9 F	Period	s				
	types of droughts –effects of drought -hazard assessment–mitigation-management.	sessment – decis	sion n	naking	-Use o	f GIS				
UNIT-V	TSUNAMI			9 F	Period	s				
	ffects-under sea earthquakes-landslides-volcani -precautions-case studies.	c eruptions-im	pact	of sea	mete	orite–				
Contact Periods: Lecture: 45 Period	ls Tutorial: 0 Periods Practical: 0 Period	ls Total:	45 P	eriods						

1	Donald Hyndman and David Hyndman, "Natural Hazards and Disasters", Brooks/Cole Cengage
	Learning, 2008.
2	Edward Bryant, "Natural Hazards", Cambridge University Press, 2005.
3	J Michael Duncan and Stephan G Wright, "Soil Strength and Slope Stability", John Wiley & Sons,
	<i>Inc</i> , 2005.
4	AmrS.Elnashai and Luigi Di Sarno,"Fundamentals of Earthquake Engineering", John Wiley &
	Sons, Inc, 2008

COURSI	E OUTCOMES:	Bloom's				
T.T		Taxonomy Mapped				
Upon con	Upon completion of the course, the students will be able to:					
CO1	Learn the basic concepts of earthquakes and the design concepts of earthquake	K2				
	Resistant buildings.					
CO2	Acquire knowledge on the causes and remedial measures of slope stabilization.	К3				
CO3	As certain the causes and control measures of flood.	К3				
CO4	Know the types, causes and mitigation of droughts.	K2				
CO5	Study the causes, effects and precautionary measures of Tsunami.	K2				

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	1	-	3	2	3				
CO2	3	1	2	3	3	3				
CO3	3	2	3	-	-	3				
CO4	3	-	-	3	2	3				
CO5	3	-	2	2	-	3				
23GEOE09	3	1	2	3	2	3				
1–Slight, 2–M	1–Slight, 2–Moderate, 3–Substantial									

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT 1	40	40	20	-	-	-	100				
CAT 2	40	40	20	-	-	-	100				
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100				
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	-	50	50		-	-	100				
ESE	40	40	20	7.68	-	-	100				

23EDOE10	BUSINESS ANALYTICS (Common to all Branches)							
PREREQUI	PREREQUISITES CATEGORY							
	NIL	OE	3	0	0	3		
Course	To apprehend the fundamentals of business analy	rtics and its life cy	cle.		-			
Objectives	To gain knowledge about fundamental business a	analytics.						
	To study modeling for uncertainty and statistical	inference.						
	To apprehend analytics the usage of Hadoop and	Map Reduce fram	ewoi	ks.				
	To acquire insight on other analytical framework	s.						
UNIT – I	BUSINESS ANALYTICS AND PROCESS			9 P	erio			

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

UNIT – II REGRESSION ANALYSIS

9 Periods

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression. Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

UNIT – III STRUCTURE OF BUSINESS ANALYTICS

9 Periods

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predictive Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

UNIT – IV FORECASTING TECHNIQUES

9 Periods

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor Model, Overbooking Model, Cash Budget Model.

UNIT - V DECISION ANALYSIS AND RECENT TRENDS IN BUSINESS 9 Periods ANALYTICS

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The Value of Information, Utility and Decision Making. Recent Trends: Embedded and collaborative business intelligence, Visual data recovery, Data Storytelling and Data journalism

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0Periods Total: 45 Periods

1	VigneshPrajapati, "Big Data Analytics with R and Hadoop", Packt Publishing, 2013.
2	Umesh R Hodeghatta, UmeshaNayak, "Business Analytics Using R – A Practical Approach",
	Apress, 2017.
3	AnandRajaraman, Jeffrey David Ullman, "Mining of Massive Datasets", Cambridge University
	Press, 2012.

- 4 Jeffrey D. Camm, James J. Cochran, Michael J. Fry, Jeffrey W. Ohlmann, David R. Anderson, "Essentials of Business Analytics", Cengage Learning, second Edition, 2016.

 5 J. Dinesh Kumar, "Business Analytics: The Science of Data-Driven Decision Making"
- 5 U. Dinesh Kumar, "Business Analytics: The Science of Data-Driven Decision Making", Wiley, 2017.
- 6 Rui Miguel Forte, "Mastering Predictive Analytics with R", Packt Publication, 2015.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Identify the real world business problems and model with analytical solutions.	K4
CO2	Solve analytical problem with relevant mathematics background knowledge.	K4
CO3	Convert any real world decision making problem to hypothesis and apply	K4
	suitable statistical testing.	
CO4	Write and Demonstrate simple applications involving analytics using Hadoop	K4
	and Map Reduce	
CO5	Use open source frameworks for modeling and storing data.	K4

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5				
CO1	1	2		2	1				
CO2	1	1	₹ N	2	1				
CO3	2	2	1 //1	1	-				
CO4	2	2	1	-	-				
CO5	1		h / 	-	-				
23EDOE10	1	∞ 2	1	2	1				
1 – Slight, 2 – Moderate,	3 – Substantial	No.	VA.	1	1				

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	25	25	25	25			100			
CAT2	20	25	25	30			100			
Assignment 1	25	30	25	20			100			
Assignment 2	30	20	30	20			100			
ESE	20	30	20	30			100			

23EDOE11	INTRODUCTION TO INDUSTRIAL SAFETY									
ZSEDUEII	(Common to all B	(Common to all Branches)								
PREREQUISITES CATEGORY L				T	P	C				
NIL OE				0	0	3				
Course	Summarize basics of industrial safety.	Summarize basics of industrial safety.								
Objectives	Describe fundamentals of maintenance eng	Describe fundamentals of maintenance engineering.								
	Explain wear and corrosion.									
	Illustrate fault tracing.									
	Identify preventive and periodic maintenance.									
UNIT – I	INTRODUCTION 9 Periods									

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc., Safety color codes. Fire prevention and firefighting, equipment and methods.

UNIT – II FUNDAMENTALS OF MAINTENANCE ENGINEERING 9 Periods

Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

UNIT – III WEAR AND CORROSION AND THEIR PREVENTION 9 Periods

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods.

UNIT – IV FAULT TRACING 9 Periods

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault-finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

UNIT – V PERIODIC AND PREVENTIVE MAINTENANCE 9 Periods

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Hans F. Winterkorn, "Foundation Engineering Handbook", Chapman & Hall London, 2013.
2	"Maintenance Engineering" by Dr. Siddhartha Ray, New Age International (P) Ltd., Publishers,
	2017
3	"Industrial Safety Management", McGraw Hill Education; New edition (1 July 2017)
4	"Industrial Engineering And Production Management", S. Chand Publishing; Third edition ,2018
5	"Industrial Safety and Maintenance Engineering", Parth B. Shah, 2021.

COUR	COURSE OUTCOMES:			
Upon	Upon completion of the course, the students will be able to:			
CO1	Ability to summarize basics of industrial safety	K4		
CO2	Ability to describe fundamentals of maintenance engineering	K4		
CO3	Ability to explain wear and corrosion	K4		
CO4	Ability to illustrate fault tracing	K4		
CO5	Ability to identify preventive and periodic maintenance	K4		

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5		
CO1	2	1	1	-	-		
CO2	2	2	1	-	1		
CO3	1	2	1	1	1		
CO4	2	1	1	1	1		
CO5	2	1	2	1	1		
23EDOE11	2	1	1	1	1		
1 – Slight, 2 – Moderate, 3 –	Substantial	T. B					

1 Siigiii, 2	Moderate, 3	San		3			
ASSESSMENT Test / Bloom's Category*	PATTERN – THE Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total
CAT1	25	25	25	25	,	,	100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23EDOE12	OPERATIONS RESEARCH							
ZSEDUE1Z	(Common to all Br	anches)						
PREREQUISITE	ES	CATEGORY	L	T	P	\mathbf{C}		
	NIL	OE	3	0	0	3		
Course	Solve linear programming problem and solve	using graphical met	hod.					
Objectives	 Solve LPP using simplex method. 							
	 Solve transportation, assignment problems. 							
	 Solve project management problems. 							
	 Solve scheduling problems. 							
UNIT – I	INTRODUCTION			9	Per	iods		
Optimization Tecl	hniques, Model Formulation, models, General L.R Form	nulation, Simplex	Гесh	nique	es, S	ensitivity		
Analysis, Inventor	ry Control Models							
UNIT – II	LINEAR PROGRAMMING PROBLEM					iods		
Formulation of a	LPP - Graphical solution revised simplex method -	duality theory - d	lual	simp	lex 1	nethod -		
sensitivity analysis	s - parametric programming							
UNIT – III	NON-LINEAR PROGRAMMING PROBLEM			9	Per	iods		
Nonlinear program	mming problem - Kuhn-Tucker conditions min cos	t flow problem -	max	flo	w pı	oblem -		
CPM/PERT								
UNIT – IV	SEQUENCING AND INVENTORY MODEL			9 Periods				
Scheduling and	sequencing - single server and multiple server mod	dels - deterministi	c in	vento	ory 1	nodels -		
Probabilistic inventory control models - Geometric Programming.								
UNIT – V	-V GAME THEORY 9 Periods							
Competitive Mod	els, Single and Multi-channel Problems, Sequencing	Models, Dynamic	Progr	amn	ning,	Flow in		
Networks, Elemen	ntary Graph Theory, Game Theory Simulation							
Contact Periods								
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								

1	H.A. Taha "Operations Research, An Introduction", PHI, 2017.
2	"Industrial Engineering and Management", O. P. Khanna, 2017.
3	"Operations Research", S.K. Patel, 2017.
4	"Operation Research", AnupGoel, RuchiAgarwal, Technical Publications, Jan 2021.

Upon co	Bloom's Taxonomy Mapped	
CO1	Formulate linear programming problem and solve using graphical method.	K4
CO2	Solve LPP using simplex method.	K4
CO3	Formulate and solve transportation, assignment problems.	K4
CO4	Solve project management problems.	K4
CO5	Solve scheduling problems	K4

COURSE ARTICULATION MATRIX						
COs/POs	PO1	PO2	PO3	PO4	PO5	
CO1	2	1	1	-	-	
CO2	2	2	1	-	-	
CO3	1	1	2	1	1	
CO4	1	1	-	-	-	
CO5	2	1	-	-	-	
23EDOE12	2	1	1	1	1	
1 – Slight, 2 – Moderate, 3 – Sub	stantial					

ASSESSMEN	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	25	25	25	25			100
CAT2	20	25	25	30			100
Assignment 1	25	30	25	20			100
Assignment 2	30	20	30	20			100
ESE	20	30	20	30			100

23MFOE13	OCCUPATIONAL HEALTH AND SAFETY (Common to all Branches)						
PREREQUIS	ITES	CATEGORY	L	T	P	С	
	NIL	OE	3	0	0	3	
 Course Objectives To gain knowledge about occupational health hazard and safety measures at work place. To learn about accident prevention and safety management. To learn about general safety measures in industries. 							
UNIT – I	OCCUPATIONAL HEALTH AND HAZARDS	CCUPATIONAL HEALTH AND HAZARDS 9 Periods					
Safety- Histor	y and development, National Safety Policy- Occupation	nal Health Hazard	ls -	Ergo	nom	ics -	
Importance of Industrial Safety Radiation and Industrial Hazards- Machine Guards and its types, Automation.							
UNIT – II	SAFETY AT WORKPLACE 9					ds	
Safety at Workplace - Safe use of Machines and Tools: Safety in use of different types of unit operations -							
Ergonomics of Machine guarding - working in different workplaces - Operation, Inspection and maintenance, Plant Design and Housekeeping, Industrial lighting, Vibration and Noise Case studies.							
UNIT – III ACCIDENT PREVENTION 9 Periods							

to various body parts.

UNIT – IV SAFETY MANAGEMENT

9 Periods

Safety Management System and Law - Legislative measures in Industrial Safety: Various acts involved in Detail- Occupational safety, Health and Environment Management: Bureau of Indian Standards on Health and Safety, 14489, 15001 - OSHA, Process safety management (PSM) and its principles - EPA standards-Safety Management: Organisational & Safety Committee - its structure and functions.

Accident Prevention Techniques - Principles of accident prevention - Definitions, Theories, Principles - Hazard identification and analysis, Event tree analysis, Hazop studies, Job safety analysis - Theories and Principles of Accident causation - First Aid: Body structure and functions - Fracture and Dislocation, Injuries

UNIT – V GENERAL SAFETY MEASURES

9 Periods

Plant Layout for Safety -design and location, distance between hazardous units, lighting, colour coding, pilot plant studies, Housekeeping - Accidents Related with Maintenance of Machines - Work Permit System: Significance of Documentation Directing Safety, Leadership -Case studies involving implementation of health and safety measures in Industries.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

1	Benjamin O.Alli, Fundamental Principles of Occupational Health and Safety ILO 2008.
2	Danuta Koradecka, Handbook of Occupational Health and Safety , CRC, 2010.
3	Dr. Siddhartha Ray, Maintenance Engineering, New Age International (P) Ltd., Publishers, 2017
4	Deshmukh. L.M., Industrial Safety Management, 3 rd Edition, Tata McGraw Hill, NewDelhi, 2008.
5	https://nptel.ac.in/courses/110105094
6	https://archive.nptel.ac.in/courses/110/105/110105094/

COUF	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Gain the knowledge about occupational health hazard and safety measures at work place.	K3
CO2	Learn about accident prevention and safety management.	K2
CO3	Understand occupational health hazards and general safety measures in industries.	К3
CO4	Know various laws, standards and legislations.	K2
CO5	Implement safety and proper management of industries.	K4

COURSE ARTICULATION MATRIX:					
Cos/Pos	PO1	PO2	PO3	PO4	PO5
CO1	2	1	1	1	1
CO2	2	2	1	1	1
CO3	1	2	1	1	1
CO4	2	1	1	1	1
CO5	2	1	2	1	1
23MFOE13	2	1	1	1	1
1 – Slight, 2 – Moderate, 3 –	Substantial	1	1		ı

ASSESSMENT	ASSESSMENT PATTERN – THEORY						
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		50	50				100
CAT2		50	30	20			100
Individual		50	50				100
Assessment 1/							
Case Study 1/			Channel .				
Seminar 1 /		7 031000	9 3311	200			
Project1		VES	S S TOTAL CO	(°			
Individual		50	30	20			100
Assessment 2/				77			
Case Study 2/			_ /	#			
Seminar 2 /				//			
Project 2		// 6		1			
ESE		40	40	20			100

US

23MFOE14	COST MANAGEMENT OF ENGINE		S						
	(Common to all Branches) TES CATEGORY L T P C								
PREREQUISITES CATEGORY						C			
	NIL	OE	3	0	0	3			
Course	• To understand the costing concepts and their role in	decision making.							
Objectives	• To acquire the project management concepts and their various aspects in selection.								
To gain the knowledge in costing concepts with project execution.									
	To develop knowledge of costing techniques in service sector and various budgetary contains.								
	techniques.								
	To familiarize with quantitative techniques in cost management.								
UNIT – I	INTRODUCTION TO COSTING CONCEPTS			9 I	Perio	ds			
Introduction and	Overview of the Strategic Cost Management Proces	s, Cost concepts in	1 dec	ision	-mak	cing			
Relevant cost, D	ifferential cost, Incremental cost and Opportunity cost. Ob	jectives of a Costing	Syste	em; l	nver	ıtory			
valuation; Creati	on of a Database for operational control; Provision of data	for Decision - Makin	ng.						
UNIT – II	PROJECT PLANNING ACTIVITIES			9 I	Perio	ds			
Detailed Engineer member. Import	ommissioning. Project execution as conglomeration of ering activities. Pre project execution main clearances and ance Project site: Data required with significance. Project cost control. Bar charts and Network diagram. Project cost	documents Project contracts. Types ar	team:	Rolentents	e of s. Pro	each oject			
UNIT – III	NIT – III COST ANALYSIS 9 Perio								
	and Profit Planning Marginal Costing; Distinction betweven Analysis, Cost-Volume-Profit Analysis. Various ance Analysis.	-	-		_				
UNIT – IV	PRICING STRATEGIES AND BUDGETORY CON	TROL		9 I	Perio	ds			
approach, Mater	s: Pareto Analysis. Target costing, Life Cycle Costing, Gial Requirement Planning, Enterprise Resource Planning Igets; Zero-based budgets. Measurement of Divisional process.	Budgetary Control	; Flex	ible	Bud	gets			
UNIT – V	TQM AND OPERATIONS REASEARCH TOOLS			9 I	Perio	ds			
Balanced Score	Management and Theory of constraints, Activity-Based Card and Value-Chain Analysis. Quantitative technical ERT/CPM, Transportation problems, Assignment problem	niques for cost ma	anage	ment	, Li	inea			

Tutorial: 0 Periods

Contact Periods:

Lecture: 45 Periods

1	Charles T. Horngren and George Foster, Advanced Management Accounting, 2018.
2	John M. Nicholas, Project Management for Engineering, Business and Technology, Taylor &Francis,
	2016
3	Nigel J, Engineering Project Management, John Wiley and Sons Ltd, Smith 2015.
4	Charles T. Horngren and George Foster Cost Accounting a Managerial Emphasis, Prentice Hall of
	India, New Delhi, 2011.
5	https://archive.nptel.ac.in/courses/110/104/110104073/

Practical: 0 Periods Total: 45 Periods

COURS	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Apply the costing concepts and their role in decision making.	К3
CO2	Apply the project management concepts and analyze their various aspects in	K4
	selection.	
CO3	Interpret costing concepts with project execution.	K4
CO4	Gain knowledge of costing techniques in service sector and various budgetary	K2
	control techniques.	
CO5	Become familiar with quantitative techniques in cost management.	К3

COs/Pos	PO1	PO2	PO3	PO4	PO5
CO1	1	1	2	1	1
CO2	2	1	1	1	-
CO3	2	2	2	-	-
CO4	1	1	1	1	1
CO5	1_0	2	1	1	-
23MFOE14	74	to Se y lub	1	1	1
1 – Slight, 2 – Moderate, 3 –	Substantial	DANDLES AND		1	

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1		A E	40	60			100
CAT2		30	30	40			100
Individual			40	60			100
Assessment 1 /		700	VA GEER	37			
Case Study 1/							
Seminar 1 /							
Project1							
Individual		30	30	40			100
Assessment 2 /							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE		20	40	40			100

23MFOE15	COMPOSITE MATI						
	(Common to all Bra						
PREREQUIS		CATEGORY	L	T	P	C	
	NIL	OE	3	0	0	3	
Course	• To summarize the characteristics of composite r	naterials and effe	ct of	reinf	orce	ment	
Objectives	in composite materials.						
	To identify the various reinforcements used in composite materials.						
	• To compare the manufacturing process of metal n	natrix composites.					
	• To understand the manufacturing processes of pol	lymer matrix com	posite	s.			
	• To analyze the strength of composite materials.						
UNIT – I	INTRODUCTION			9]	Peri	ods	
Definition – C	Classification and characteristics of Composite mater	rials. Advantages	and a	appli	catio	n of	
composites. F	unctional requirements of reinforcement and matrix.	Effect of reinfor	rceme	nt o	n ov	erall	
composite perf	ormance.						
UNIT – II	REINFORCEMENT			9]	Peri	ods	
Preparation-la	rup, curing, properties and applications of glass fibe	ers, carbon fibers,	Kev	lar f	ibers	and	
Boron fibers.	Properties and applications of whiskers, particle rein	forcements. Mech	anica	l Be	havio	or of	
•	ale of mixtures, Inverse rule of mixtures. Isostrain and		ıs.				
UNIT – III	MANUFACTURING OF METAL MATRIX COM	IPOSITES		9]	Peri	ods	
•	d State diffusion technique, Cladding - Hot isostatic			_			
_	osites: Liquid Metal Infiltration - Liquid phase sir		ıring	of (Carbo	on –	
Carbon compo	sites: Knitting, Braiding, Weaving- Properties and app						
UNIT – IV		OMDOSITE		9]	Peri	ods	
	MANUFACTURING OF POLYMER MATRIX C	OMITOSITE					
Preparation of	MANUFACTURING OF POLYMER MATRIX C Moulding compounds and prepregs – hand layup me		meth	od -	Fila:	ment	
•		ethod – Autoclave					
•	Moulding compounds and prepregs – hand layup me	ethod – Autoclave		licat			
winding method	Moulding compounds and prepregs – hand layup med – Compression moulding – Reaction injection mould	ethod – Autoclave ding. Properties ar	ıd app	licat	ions. P eri o	ods	
winding method UNIT – V Laminar Failu	Moulding compounds and prepregs – hand layup med – Compression moulding – Reaction injection mould STRENGTH ANALYSIS OF COMPOSITES	ethod – Autoclave ding. Properties ar maximum strain	nd app	9 1 ia, ir	ions. Perio	ods cting	

Contact Periods: Lecture: 45 Periods

1	Chawla K.K., Composite Materials, Springer, 2013.
2	Lubin.G, Hand Book of Composite Materials, Springer New York, 2013.
3	Deborah D.L. Chung, Composite Materials Science and Applications, Springer, 2011.
4	uLektz, Composite Materials and Mechanics, uLektz Learning Solutions Private Limited, Lektz, 2013.
5	https://nptel.ac.in/courses/112104168

Practical: 0 Periods

Total: 45 Periods

Tutorial: 0 Periods

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Know the characteristics of composite materials and effect of reinforcement in	K2
	composite materials.	
CO2	Know the various reinforcements used in composite materials.	K2
CO3	Understand and apply the manufacturing processes of metal matrix composites	К3
CO4	Understand and apply the manufacturing processes of polymer matrix composites.	К3
CO5	Analyze the strength of composite materials.	K4

COURSE ARTICULATION MATRIX:									
COs/Pos	PO1	PO2	PO3	PO4	PO5				
CO1	1	2	1	1	1				
CO2	2	2	1	1	2				
CO3	2	1	2	1	1				
CO4	1	2	2	2	1				
CO5	1	2	1	1	1				
23MFOE15	1	2	2	1	1				
1 - Slight, $2 - Moderate$, $3 - Special Moderate$	ubstantial			•					

ASSESSMENT 1	PATTERN – THI	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		60	40				100
CAT2			60	40			100
Individual		60	40				100
Assessment 1 /			2000/7012				
Case Study 1/		- Em	mmB_				
Seminar 1 /		C Billion Dank	Notice of the last	27.			
Project1		(1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	TUNGE				
Individual			60	40			100
Assessment 2 /		180 180	-				
Case Study 2/							
Seminar 2 /			1/2 N	1			
Project 2		// 4	(1)	\\			
ESE		40	40	20			100

	GLOBAL WARM	ING SCIENCE				
23TEOE16	(Common to al	l Branches)				
PREREQUISI	TES	CATEGORY	L	T	P	С
	NIL	OE	3	0	0	3
Course	To make the students learn about the material con	sequences of climate	change,	sea le	evel c	hang
Objectives	due to increase in the emission of greenhouse gase	s and to examine the	science b	oehino	l miti	gatio
	and adaptation proposals.					
UNIT – I	INTRODUCTION			9	9 Per	iods
Terminology re	lating to atmospheric particles - Aerosols - Types,	characteristics, meas	surements	s – Pa	ırticle	mas
spectrometry - A	anthropogenic-sources, effects on humans.					
UNIT – II	CLIMATE MODELS					iods
General climate	modeling- Atmospheric general circulation model	- Oceanic general o	circulation	n moo	del. s	ea ic
		Strains Similar			, .	
model, land mod	del concept, paleo-climate - Weather prediction by n	•				
		•				
	del concept, paleo-climate - Weather prediction by n	•		clima		ange
Climate Sensitiv	del concept, paleo-climate - Weather prediction by naity - Forcing and feedback.	numerical process. In	npacts of	clima	te ch	ange
Climate Sensitiv UNIT – III Carbon cycle-pr	del concept, paleo-climate - Weather prediction by notity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST	umerical process. In	irs - Inte	clima	Per ons be	ange
Climate Sensitiv UNIT – III Carbon cycle-pr	del concept, paleo-climate - Weather prediction by ratty - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST ocess, importance, advantages - Carbon on earth - G	umerical process. In	irs - Inte	ractio	Per ons be	iods etwee
Climate Sensitiv UNIT – III Carbon cycle-pr human activities UNIT – IV	del concept, paleo-climate - Weather prediction by mity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST ocess, importance, advantages - Carbon on earth - Gand carbon cycle - Geologic time scales - Fossil fuel	lobal carbon reservo	rirs - Interbed carbo	raction cyc	Per ons becale.	iods etwee
Climate Sensitiv UNIT – III Carbon cycle-pr human activities UNIT – IV Blackbody radia	del concept, paleo-climate - Weather prediction by ratty - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST ocess, importance, advantages - Carbon on earth - Grand carbon cycle - Geologic time scales - Fossil fuel GREENHOUSE GASES	lobal carbon reservo	rirs - Interbed carbo	raction cyc	Per ons becale.	iods etwee
Climate Sensitiv UNIT – III Carbon cycle-pr human activities UNIT – IV Blackbody radia	del concept, paleo-climate - Weather prediction by mity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST ocess, importance, advantages - Carbon on earth - Grand carbon cycle - Geologic time scales - Fossil fuel GREENHOUSE GASES Ition - Layer model - Earth's atmospheric composit	lobal carbon reservo	rirs - Interbed carbo	raction cyc	Per ons becale.	iods etwee
Climate Sensitive UNIT – III Carbon cycle-prehuman activities UNIT – IV Blackbody radia and climate - Rad UNIT – V	del concept, paleo-climate - Weather prediction by raty - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST ocess, importance, advantages - Carbon on earth - Grand carbon cycle - Geologic time scales - Fossil fuel GREENHOUSE GASES Ition - Layer model - Earth's atmospheric composit dioactive equilibrium - Earth's energy balance.	lobal carbon reservo s and energy - Pertur	irs - Interbed carbo	ractio on cyc	Per on w	iods etwee
Climate Sensitive UNIT – III Carbon cycle-prehuman activities UNIT – IV Blackbody radia and climate - Raturn – V Solar mitigation	del concept, paleo-climate - Weather prediction by mity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST ocess, importance, advantages - Carbon on earth - Grand carbon cycle - Geologic time scales - Fossil fuel GREENHOUSE GASES GROUND GROUND	lobal carbon reservo s and energy - Pertur	irs - Interbed carbo	ractio on cyc	Per on w	iods etwee
Climate Sensitive UNIT – III Carbon cycle-prehuman activities UNIT – IV Blackbody radia and climate - Raturn – V Solar mitigation	del concept, paleo-climate - Weather prediction by reity - Forcing and feedback. EARTH CARBON CYCLE AND FORECAST ocess, importance, advantages - Carbon on earth - Grand carbon cycle - Geologic time scales - Fossil fuel of GREENHOUSE GASES attion - Layer model - Earth's atmospheric composit dioactive equilibrium - Earth's energy balance. GEO ENGINEERING Carbon dioxide removal - Solar radiation - Strategies - Carbon dioxide removal - Solar radiation - Sea level rise, drought, glacier extent.	lobal carbon reservo s and energy - Pertur	irs - Interbed carbo	ractio on cyc	Per on w	iods etwee

1	Eli Tziperman, "Global Warming Science: A Quantitative Introduction to Climate Change and Its
	Consequences", Princeton University Press, 1 st Edition, 2022.
2	John Houghton, "Global warming: The Complete Briefing", Cambridge University Press, 5 th Edition,
	2015.
3	David Archer, "Global warming: Understanding the Forecast", Wiley, 2 nd Edition, 2011.
4	David S.K. Ting, Jacqueline A Stagner, "Climate Change Science: Causes, Effects and Solutions for
	Global Warming" , Elsevier, 1 st Edition, 2021.
5	Frances Drake, "Global Warming: The Science of Climate Change", Routledge, 1st edition, 2000.
6	Dickinson, "Climate Engineering-A review of aerosol approaches to changing the global energybalance",
	Springer, 1996.
7	Andreas Schmittner, "Introduction to Climate Science", Oregon State University, 2018.

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Understand the global warming in relation to climate changes throughout the earth.	K2
CO2	Assess the best predictions of current climate models.	K4
CO3	Understand the importance of carbon cycle and its implication on fossil fuels.	K2
CO4	Know about current issues, including impact from society, environment, economy as well as ecology related to greenhouse gases.	K4
CO5	Know the safety measures and precautions regarding global warming.	K5

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	2	1	1	2			
CO2	1	1	2	1	1	1			
CO3	1	2	1	1	1	2			
CO4	1	1	1	1	1	2			
CO5	2	1	2	1	1	2			
23TEOE16	1	1	1	1	1	2			
1 - Slight, 2 - N	Moderate, 3 – Si	ubstantial	•						

ASSESSMENT P.	ATTERN - THEO	ORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	35	35	10	-	-	100
CAT2	15	25	25	20	15	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project 1	25	20	20	35	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	20	35	15	10	-	100
ESE	25	20	25	20	10	-	100

23TEOE17	INTRODUCTION TO NANO ELECTRONICS (Common to all Branches)								
PREREQUISIT	TES	CATEGORY	L	T	P	C			
ENGINEERIN	G PHYSICS	OE	3	0	0	3			
Course	To make the students provide strong, essential, important	methods and four	datic	ns o	f qua	antum			
Objectives mechanics and apply quantum mechanics on engineering fields.									
UNIT – I INTRODUCTION					Perio	ds			
Particles and Wa	aves - Operators in quantum mechanics - The Postulates of q	uantum mechanic	s - T	he So	chroc	linger			
equation values	and wave packet Solutions - Ehrenfest's Theorem.								
UNIT – II ELECTRONIC STRUCTURE AND MOTION 9 Periods					ds				
Atoms- The Hye	drogen Atom - Many-Electron Atoms - Pseudopotentials, Nu	clear Structure, M	lolec	ules,	Crys	stals -			
Translational mo	otion - Penetration through barriers - Particle in a box - Two	terminal quantur	n dot	devi	ices -	· Two			
terminal quantur	n wire devices.								
UNIT – III	SCATTERING THEORY		9 Periods			ds			
The formulation	of scattering events - Scattering cross section - Stationary sc	attering state - Par	rtial v	vave	stati	onary			
scattering events	- multi-channel scattering - Solution for Schrodinger equation	n- Radial and wav	e equ	ation	1 - G1	reens'			
function.									
UNIT – IV	UNIT – IV CLASSICAL STATISTICS 9 Perio					ds			
Probabilities and	l microscopic behaviours - Kinetic theory and transport proce	sses in gases - Ma	agnet	ic pr	opert	ies of			
materials - The partition function.									
UNIT – V	QUANTUM STATISTICS			9 I	Perio	ds			
Statistical mechanics - Basic Concepts - Statistical models applied to metals and semiconductors - The thermal									

properties of solids- The electrical properties of materials - Black body radiation - Low temperatures and degenerate

Practical: 0 Periods

Total:45 Periods

REFERENCES:

Tutorial: 0 Periods

systems.

Contact Periods:

Lecture:45 Periods

	RDI BREI (CES)
1	Vladimi V.Mitin, Viatcheslav A. Kochelap and Michael A.Stroscio, "Introduction to Nanoelectronics:
	Science, Nanotechnology, Engineering, and Applications" , Cambridge University Press, 1 st Edition, 2007.
2	Vinod Kumar Khanna, "Introductory Nanoelectronics: Physical Theory and Device Analysis", Routledge,
	1 st Edition, 2020.
3	George W. Hanson, "Fundamentals of Nanoelectronics", Pearson Publishers, United States Edition,
	2007.
4	Marc Baldo, "Introduction to Nanoelectronics", MIT Open Courseware Publication, 2011.
5	Vladimi V.Mitin, "Introduction to Nanoelectronics", Cambridge University Press, South Asian Edition,
	2009.
6	Peter L. Hagelstein, Stephen D. Senturia and Terry P. Orlando, "Introductory Applied Quantum
	Statistical Mechanics", Wiley, 2004.
7	A. F. J. Levi, "Applied Quantum Mechanics", 2 nd Edition, Cambridge, 2012.

	Upon completion of the course, the students will be able to:			
CO1	Understand the postulates of quantum mechanics.	K2		
CO2	Know about nano electronic systems and building blocks.	K2		
CO3	Solve the Schrodinger equation in 1D, 2D and 3D different applications.	K4		
CO4	Learn the concepts involved in kinetic theory of gases.	K2		
CO5	Know about statistical models applies to metals and semiconductor.	К3		

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	1	1	1	1	1			
CO2	2	2	1	1	1	1			
CO3	2	2	2	1	1	1			
CO4	1	1	1	1	1	1			
CO5	1	1	1	1	1	1			
23TEOE17	1	1	1	1	1	1			
1 – Slight, 2 –	Moderate, 3 –	Substantial							

Test / Bloom's Category* Remembering (K1) % Understanding (K2) % Applying (K3) % Analyzing (K4) % Evaluating (K5) % Cr (K5) % CAT1 30 30 20 20 - CAT2 30 30 20 20 - Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1 35 25 20 20 - Individual 4 4 4 4 4 4	K6) % - -	% 100 100
CAT2 30 30 20 20 - Individual Assessment 1/ Case Study 1/ 35 25 20 20 - Seminar 1/ Project 1	-	
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1 Individual 25 20 20 - 35 35 35 45 46 47 47 48 48 48 48 48 48 48 48 48 48 48 48 48	-	100
Assessment 1/ Case Study 1/ Seminar 1/ Project 1 Assessment 1/ 25 20 20 -		
Individual	-	100
Assessment 2/ Case Study 2/ Seminar 2/ Project 2 Assessment 2/ 25 20 25 -	-	100
ESE 20 30 30 -	-	100

23TEOE18	GREEN SUPPLY CHA	AIN MANAGEME	NT					
	(Common to a	ll Branches)						
PREREQUIS	ITES	CATEGORY	L	T	P	C		
	NIL	OE	3	0	0	3		
Course	To make the students learn and focus on the	fundamental strates	gies,	tools a	nd tech	niques		
Objectives	required to analyze and design environmentally sustainable supply chain systems.							
UNIT – I	INTRODUCTION	INTRODUCTION 9 Periods						
Intro to SCM	- complexity in SCM, Facility location - Logis	tics - Aim, activit	ies, i	mporta	nce, pro	ogress,		
current trends -	Integrating logistics with an organization.							
UNIT – II	ESSENTIALS OF SUPPLY CHAIN MANAGEMENT 9 Periods							
Basic concepts	of supply chain management - Supply chain oper	rations – Planning a	ınd so	urcing	- Maki	ng and		
delivering - Su	pply chain coordination and use of technology - Γ	Developing supply of	hain	system	s.			
UNIT – III	PLANNING THE SUPPLY CHAIN				9 Perio	ods		
Types of deci	sions – strategic, tactical, operational - Logist	tics strategies, imp	leme	nting t	he stra	tegy -		
Planning resor	arces - types, capacity, schedule, controlling	material flow, m	neasu	ring ar	nd imp	roving		
performance.								
UNIT – IV	ACTIVITIES IN THE SUPPLY CHAIN				9 Perio	ods		
Procurement –	cycle, types of purchase - Framework of e-pro	ocurement - Invent	ory r	nanage	ment –	EOQ,		
uncertain dema	and and safety stock, stock control - Material hand	dling – Purpose of	warel	ouse a	nd own	ership,		
layout, packag	ing - Transport - mode, ownership, vehicle	routing and sched	uling	model	s- Tra	velling		
salesman probl	ems - Exact and heuristic methods.	N°)						
UNIT – V	SUPPLY CHAIN MANAGEMENT STRATE	EGIES			9 Perio	ods		
Five key conf	iguration components - Four criteria of good	supply chain stra	tegie	s - Ne	xt gen	eration		
strategies- Nev	v roles for end-to-end supply chain management	t - Evolution of su	pply	chain c	organiza	ıtion –		
	sues in SCM – Regional differences in logistics.	1			-			
Contact Perio	ds:	\\						
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0	O Periods T	otal:	45 Per	iods			

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas, "Green Supply Chain
	Management", Routledge, 1st Edition, 2019.
2	Hsiao-Fan Wang and Surendra M.Gupta, "Green Supply Chain Management: Product Life Cycle
	Approach",McGraw-Hill Education, 1 st Edition, 2011.
3	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management", Routledge, 1st Edition, 2017
4	Arunachalam Rajagopal, "Green Supply Chain Management: A Practical Approach", Replica, 2021.
5	Mehmood Khan, Matloub Hussain and Mian M. Ajmal, "Green Supply Chain Management for
	Sustainable Business Practice", IGI Global, 1 st Edition, 2016.
6	S Emmett, "Green Supply Chains: An Action Manifesto", John Wiley & Sons Inc, 2010.
7	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction", Routledge,
	1 st Edition, 2017.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Integrate logistics with an organization.	K2
CO2	Evaluate complex qualitative and quantitative data to support strategic and operational decisions.	K5
CO3	Develop self-leadership strategies to enhance personal and professional effectiveness.	К3
CO4	Analyze inventory management models and dynamics of supply chain.	K4
CO5	Identify issues in international supply chain management and outsources strategies.	К3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	3	
CO2	2	2	1	1	1	1	
CO3	2	1	2	1	1	1	
CO4	2	2	1	1	2	2	
CO5	1	1	2	1	1	3	
23TEOE18	2	1	1	1	1	2	
1 – Slight, 2 – Moder	rate, 3 – Subst	antial		•	•	•	

ASSESSMENT PATTERN – THEORY								
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	25	25	30	10	10	-	100	
CAT2	30	40	20	10	-	-	100	
Individual								
Assessment 1/			Jummy -					
Case Study 1/	30	20	25	15	10	_	100	
Seminar 1/		(V/59	TO LIVE CO	(V				
Project 1								
Individual		10 1	-	- //				
Assessment 2/			- A	. #				
Case Study 2/	35	30	25	10	-	-	100	
Seminar 2/		// ^	見続し	1/1				
Project 2		11 8	CALLED Y					
ESE	30	30	20	10	10	-	100	
	l	827		1 288		·		
			Tay and the					
		789	NO COL	237				
		100	O GOOD					

23PSOE19	(Common to all Branches)					11	
PREREQUISI	TES	CATEGORY	L	T	P	C	
	NIL	OE	3	0	0	3	
Course Objectives To study about the distributed automation and economic evaluation schemes of power network							
UNIT – I	INTRODUCTION				9 Per	iods	
Introduction to	Distribution Automation (DA) - Control system inte	rfaces- Control an	d data	requ	iireme	ents-	
Centralized (vs)	decentralized control- DA system-DA hardware-DAS se	oftware.					
UNIT – II	DISTRIBUTION AUTOMATION FUNCTIONS 9					iods	
DA capabilities	- Automation system computer facilities- Manageme	nt processes- Infor	mation	n mar	nagem	nent-	
System reliabilit	y management- System efficiency management- Voltag	e management- Loa	ad man	agem	ent.		
UNIT – III	COMMUNICATION SYSTEMS				9 Per	iods	
Communication	requirements - reliability- Cost effectiveness- Dat	a requirements-	Two v	ay c	apabi	lity-	
Communication	during outages and faults - Ease of operation and mair	ntenance- Conformi	ing to	the ar	chitec	ture	
of flow. Distrib	oution line carrier- Ripple control-Zero crossing technology	nique- Telephone,	cable	V, r	adio,	AM	
broadcast, FM S	SCA,VHF radio, microwave satellite, fiber optics-Hybr	rid communication	systen	is use	ed in 1	field	
tests.							
UNIT – IV	ECONOMIC EVALUATION METHODS	X			9 Per	iods	
Development an	nd evaluation of alternate plans- select study area - So	elect study period-	Projec	t loa	d gro	wth-	
Develop alternat	ives- Calculate operating and maintenance costs-Evalua	te alternatives.					
UNIT – V	ECONOMIC COMPARISON				9 Periods		
Economic com	parison of alternate plans-Classification of expenses	- capital expend	itures-	Comp	ariso	n of	
revenue require	ments of alternative plans-Book life and continuing	plant analysis- Y	ear by	yea	r reve	enue	
requirement ana	lysis, Short term analysis- End of study adjustment-Br	reak even analysis,	sensit	ivity	analy	sis -	
Computational a	ids.						
Contact Period	s:						
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Period	S				

1	M.K. Khedkar, G.M. Dhole, "A Textbook of Electric Power Distribution Automation", Laxmi Publications, Ltd., 2010.
2	Maurizio Di Paolo Emilio, "Data Acquisition Systems: From Fundamentals to Applied Design", Springer Science & Business Media, 21-Mar-2013
3	IEEE Tutorial course "Distribution Automation", IEEE Working Group on Distribution Automation, IEEE Power Engineering Society. Power Engineering Education Committee, IEEE Power Engineering Society. Transmission and Distribution Committee, Institute of Electrical and Electronics Engineers, 1988
4	Taub, "Principles Of Communication Systems", Tata McGraw-Hill Education, 07-Sep-2008

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Analyse the requirements of distributed automation	K1
CO2	Know the functions of distributed automation	K2
CO3	Perform detailed analysis of communication systems for distributed automation.	К3
CO4	Study the economic evaluation method	K4
CO5	Understand the comparison of alternate plans	K5

COs/Pos	PO1	PO2	PO3	PO4
CO1	2	-	1	3
CO2	3	-	3	2
CO3	3	-	3	2
CO4	3	-	3	1
CO5	2	-	1	2
23PSOE19	3	-	3	2

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20%	30%	20%	10%	20%	_	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	10%	30%	20%	20%	-	100%
Assessment1/		V/59	STATISTICAL COLOR	(A)			
Case study1/							
Seminar 1/			-0	77			
Project1			1	//			
Individual	20%	30%	10%	20%	20%	-	100%
Assessment2/		// ^	高編	1/			
Case study2/		8	COURS OF THE PROPERTY OF THE P	. 11			
Seminar 2 /		al E		VB.			
Project2		882		J28			
ESE	30%	20%	20%	20%	10%	-	100%

22DCOE20	ELECTRICITY TRADING AND ELECTRICITY ACTS					
23PSOE20	(Common to all Br	anches)				
PREREQUISI	ΓES	CATEGORY	L	T	P	C
	NIL	OE	3	0	0	3
Course	To acquire expertise on Electric supply and demand	of Indian Grid, gair	n expos	ure o	n en	ergy
Objectives	trading in the Indian market and infer the electricity ac	ts and regulatory au	thoritie	s.		
UNIT – I	ENERGY DEMAND			9	Per	iods
Basic concepts in Economics - Descriptive Analysis of Energy Demand - Decomposition Analysis and						
Parametric App	roach - Demand Side Management - Load Managemen	nt - Demand Side N	/Ianagei	ment	- Ene	ergy
Efficiency - Rel	bound Effect					
UNIT – II	ENERGY SUPPLY			9	Per	iods
Supply Behavio	or of a Producer - Energy Investment - Economics of N	Ion-renewable Reso	urces -	Econ	omic	s of
Renewable Ene	ergy Supply Setting the context - Economics of Ren	ewable Energy Sup	oply -	Econ	omic	s of
Electricity Supp	ly					
UNIT – III	ENERGY MARKET			9	Per	2hoi
Perfect Compet	Perfect Competition as a Market Form - Why is the Energy Market not Perfectly Competitive? - Market Failure					
and Monopoly -	ition as a Market Form - why is the Energy Market not	Perfectly Competit	tive? - N	Marke	et Fai	
	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E	• •		Marke	et Fai	
UNIT – IV	•	• •			Per	lure
	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E	ra II - Oil Market: C	OPEC	9	Per	lure iods
Introduction of	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E LAW ON ELECTRICITY	ra II - Oil Market: O	OPEC ity Salie	9 ent Fe	Per	lure iods
Introduction of	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E LAW ON ELECTRICITY the Electricity Law; Constitutional Design - Evolution of	ra II - Oil Market: Of Laws on Electricity	OPEC ity Salie	ent Fe	Per	lure iods s of
Introduction of Electricity Act, UNIT – V	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E LAW ON ELECTRICITY the Electricity Law; Constitutional Design - Evolution of 2003 - Evolution of Laws on Electricity - Salient Feature	of Laws on Electricity CITY ACT	OPEC ty Salie Act 200	9 ent Fe	Periode Periode	lure lods s of
Introduction of Electricity Act, UNIT – V Regulatory Con	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E LAW ON ELECTRICITY the Electricity Law; Constitutional Design - Evolution of 2003 - Evolution of Laws on Electricity - Salient Featur REGULATORY COMMISSIONS FOR ELECTRI	of Laws on Electricity CITY ACT er the Act - Electricity	ty Salie Act 200	ent Fe	Perioature Perioature	iods s of
Introduction of Electricity Act, UNIT – V Regulatory Con	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E LAW ON ELECTRICITY the Electricity Law; Constitutional Design - Evolution of 2003 - Evolution of Laws on Electricity - Salient Featur REGULATORY COMMISSIONS FOR ELECTRICITY missions - Appellate Tribunal - Other Institutions under Critical Comment - Renewable Energy - Role of Civil	of Laws on Electricity CITY ACT er the Act - Electricity	ty Salie Act 200	ent Fe	Perioature Perioature	iods s of
Introduction of Electricity Act, UNIT – V Regulatory Con 2020/2021. A C	Oil Market: Pre OPEC Era I - Oil Market: Pre OPEC E LAW ON ELECTRICITY the Electricity Law; Constitutional Design - Evolution of 2003 - Evolution of Laws on Electricity - Salient Featur REGULATORY COMMISSIONS FOR ELECTRICITY missions - Appellate Tribunal - Other Institutions under Critical Comment - Renewable Energy - Role of Civil	of Laws on Electricity CITY ACT er the Act - Electricity	ty Salie Act 200	ent Fe	Perioature Perioature	iods s of

1	Bhattacharyya, Subhes. C. (2011). "Energy Economics: Concepts, Issues, Markets and Governance".
	Springer.London, UK
2	Stevens, P. (2000). "An Introduction to Energy Economics. In Stevens, P.(ed.) The Economics of
	Energy", Vol.1, Edward Elgar, Cheltenham, UK.
3	Nausir Bharucha, "Guide to the Electricity Laws", LexisNexis, 2018
4	Mohammad Naseem, "Energy Laws in India" , Kluwer Law International, 3rd Edn, The Netherlands, 2017.
5	Alok Kumar & Sushanta K Chaterjee, "Electricity Sector in India: Policy and Regulation", OUP, 2012.
6	Benjamin K Sovacool & Michael H Dowrkin, "Global Energy Justice: Problems, Principles and
	Practices" , Cambridge Univesity Press, 2014.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Describe electric supply and demand of power grid	K1
CO2	Summarize various energy trading strategies	K2
CO3	Relate the electricity acts practically	K3
CO4	Cite the electricity regulatory authorities	K2
CO5	Analyze/check the existing power grid for its technical and economical sustainability	K4

COURSE ARTICULATION MATRIX					
COs/Pos	PO1	PO2	PO3	PO4	
CO1	3	-	3	3	
CO2	3	-	1	1	
CO3	3	-	2	2	
CO4	3	-	1	2	
CO5	3	-	3	3	
23PSOE20	3	-	2	2	
1 – Slight, 2 – Moderate, 3 – Sub	stantial	1	1	1	

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20%	30%	20%	30%	-	-	100%
CAT2	20%	20%	20%	20%	20%	-	100%
Individual	20%	30%	30%	20%	-	-	100%
Assessment1/			O B	0			
Case study1/		CV	BEST BLUE	30).			
Seminar 1/		902	NI) DE CORRE TO				
Project1			1				
Individual	20%	30%	X - X	20%	-	40%	100%
Assessment2/			ATTO ATTO	- II			
Case study2/		// 7		//			
Seminar 2 /		// g					
Project2		11 83	-11				
ESE	30%	30%	- 1	20%	20%	-	100%

23PSOE21	MODERN AUTOMOTIV (Common to all Bra					
PREREQUISI	TES	CATEGORY	L	T	P	C
	NIL	OE	3	0	0	3
Course	To expose the students with theory and applications	of Automotive Elec	trical	and	Elect	ronic
Objectives	Systems.					
UNIT – I	INTRODUCTION TO MODERN AUTOMOTIVE	ELECTRONICS			9 Pei	iods
Introduction to	modern automotive systems and need for electronics	in automobiles- Ro	le of	electr	onics	and

Introduction to modern automotive systems and need for electronics in automobiles- Role of electronics and microcontrollers- Sensors and actuators- Possibilities and challenges in automotive industry- Enabling technologies and industry trends.

UNIT – II SENSORS AND ACTUATORS

9 Periods

Introduction- basic sensor arrangement- Types of sensors- Oxygen sensor, engine crankshaft angular position sensor – Engine cooling water temperature sensor- Engine oil pressure sensor- Fuel metering- vehicle speed sensor and detonation sensor- Pressure Sensor- Linear and angle sensors- Flow sensor- Temperature and humidity sensors- Gas sensor- Speed and Acceleration sensors- Knock sensor- Torque sensor- Yaw rate sensor- Tyre Pressure sensor- Actuators - Stepper motors – Relays.

UNIT – III POWERTRAIN CONTROL SYSTEMS IN AUTOMOBILE

9 Periods

Electronic Transmission Control - Digital engine control system: Open loop and close loop control systems-Engine cooling and warm up control- Acceleration- Detonation and idle speed control - Exhaust emission control engineering- Onboard diagnostics- Future automotive powertrain systems.

UNIT – IV SAFETY, COMFORT AND CONVENIENCE SYSTEMS

9 Periods

Cruise Control- Anti-lock Braking Control- Traction and Stability control- Airbag control system- Suspension control- Steering control- HVAC Control.

UNIT – V ELECTRONIC CONTROL UNITS (ECU)

9 Periods

Introduction to Energy Sources for ECU, Need for ECUs- Advances in ECUs for automotives - Design complexities of ECUs- V-Model for Automotive ECU's- Architecture of an advanced microcontroller (XC166 Family, 32-bit Tricore) used in the design of automobile ECUs- On chip peripherals, protocol interfaces, analog and digital interfaces.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Enrique Acha, Manuel Madrigal, "Power System Harmonics: Computer Modeling and Analysis", John Wiley and Sons, 2001.
- 2 M. H. J. Bollen, "Understanding Power Quality Problems, Voltage Sag and Interruptions", IEEE Press, series on Power Engineering, 2000.
- 3 Roger C. Dugan, Mark F. McGranaghan, Surya Santoso and Wayne Beaty H., "Electrical Power SystemQuality", Second Edition, McGraw Hill Publication Co., 2008.
- 4 G.T.Heydt, "Electric Power Quality", Stars in a Circle Publications, 1994(2nd edition).

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Acquire knowledge about conventional automotive control units and devices.	K1
CO2	Recognize the practical issues in the automotive control systems	K2
CO3	Analyze the impact of modern automotive techniques in various Engineering applications	K4
CO4	Develop modern automotive control system for electrical and electronics systems	K6
CO5	Understand the function of sensors and actuators	K2

COs/Pos	PO1	PO2	PO3	PO4
CO1	3	-	1	3
CO2	3	-	3	2
CO3	3	-	3	2
CO4	2	-	3	1
CO5	2	-	1	2
23PSOE21	3	-	2	2

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Bloom's Remembering Understanding A		Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	20%	30%	20%	30%	-	-	100%			
CAT2	20%	20%	20%	20%	20%	-	100%			
Individual	20%	30%	-	20%	-	30%	100%			
Assessment1/		- 9	- Stemm							
Case study1/		1 6110:6	o Co prob and	300						
Seminar 1/		V/595	WHILE S	V D						
Project1										
Individual	20%	30%	- TG	20%	-	40%	100%			
Assessment2/				11						
Case study2/				//						
Seminar 2 /		// 6/	多源人	1						
Project2		(8)								
ESE	30%	30%	20%	20%	-	-	100%			

22.70

23PEOE22	VIRTUAL INSTRUMENTATION (Common to all Branches)							
PREREQUISITES CATEGORY L T						С		
	NIL OE 3				0	3		
Course	To comprehend the Virtual instrumentation programming concepts towards measurements and							
Objectives	control and to instill knowledge on DAQ, signal conditioning and its associated software tools							
UNIT – I	JNIT - I INTRODUCTION							
Introduction -	advantages - Block diagram and architecture of a vir	tual instrument - Co	nvent	ional	Instr	uments		
versus Traditio	nal Instruments - Data-flow techniques, graphical pr	rogramming in data	flow,	com	pariso	n with		
conventional programming.								
UNIT – II GRAPHICAL PROGRAMMING AND LabVIEW						Periods		
Concepts of graphical programming - LabVIEW software - Concept of VIs and sub VI - Display types - Digital -								

and dialog controls.

UNIT – III MANAGING FILES & DESIGN PATTERNS

11 Periods

High-level and low-level file I/O functions available in LabVIEW – Implementing File I/O functions to read and write data to files – Binary Files – TDMS – sequential programming – State machine programming – Communication between parallel loops –Race conditions – Notifiers & Queues – Producer Consumer design patterns

Analog - Chart and Graphs. Loops - structures - Arrays - Clusters- Local and global variables - String - Timers

UNIT – IV PC BASED DATA ACQUISITION

9 Periods

Introduction to data acquisition on PC, Sampling fundamentals, ADCs, DACs, Calibration, Resolution, - analog inputs and outputs - Single-ended and differential inputs - Digital I/O, counters and timers, DMA, Data acquisition interface requirements - Issues involved in selection of Data acquisition cards - Use of timer-counter and analog outputs on the universal DAQ card.

UNIT – V DATA ACQUISITION AND SIGNAL CONDITIONING

9 Periods

Components of a DAQ system, Bus, Signal and accuracy consideration when choosing DAQ hardware – Measurement of analog signal with Finite and continuous buffered acquisition- analog output generation – Signal conditioning systems – Synchronizing measurements in single & multiple devices – Power quality analysis using Electrical Power Measurement tool kit.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Jeffrey Travis, Jim Kring, "LabVIEW for Everyone: Graphical Programming Made Easy and Fun" (3rd
	Edition), Prentice Hall, 2006.
2	Jovitha Jerome, "Virtual Instrumentation using LabVIEW", PHI, 2010
3	Gary W. Johnson, Richard Jennings, "LabVIEW Graphical Programming", McGraw Hill Professional
	Publishing, 2019
4	Robert H. Bishop, "Learning with LabVIEW", Prentice Hall, 2013.
5	Kevin James, "PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and
	Control", Newness, 2000

COURS	SE OUTCOMES:	Bloom's
Upon co	ompletion of the course, the students will be able to:	Taxonomy Mapped
CO1	Describe the graphical programming techniques using LabVIEW software.	K2
CO2	Explore the basics of programming and interfacing using related hardware.	K4
CO3	Analyse the aspects and utilization of PC based data acquisition and Instrument interfaces.	K4
CO4	Create programs and Select proper instrument interface for a specific application.	K6
CO5	Familiarize and experiment with DAQ and Signal Conditioning	K3

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5		
CO1	3	-	3	2	1		
CO2	3	-	3	2	1		
CO3	3	-	2	2	2		
CO4	3	1	3	3	1		
CO5	3	1	3	3	2		
23PEOE22	3	1	3	2	1		
1 – Slight, 2 – Moderate, 3 – Substantial							

ASSESSMENT PATTERN – THEORY										
Test /	Remembering	Understanding	Applying Analyzing		Evaluating	Creating	Total			
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
Category*										
CAT1	30	40	15	15	-	-	100			
CAT2	15	10	25	30	20	-	100			
Individual	10	10	20	30	20	10	100			
Assessment1/		- 9	mm n							
Case study1/		1 (011010)	0.50 USUS \$17	307						
Seminar 1/		V 5 35	जामाराद्धि ह							
Project1										
Individual	25	40	20	15	-	-	100			
Assessment2/				- 11						
Case study2/		11 %		1						
Seminar 2 /		// g/V	不管人	//						
Project2		1 8								
ESE	30	25	15	20	5	5	100			
		OF THE STATE OF	000	202						
		162	OF BEE	3/						

22000022	ENERGY MANAGEMENT SYSTEMS								
23PEOE23	(Common to all Brand	ches)				ļ			
PREREQUISIT	TES	CATEGORY	L	T	P	С			
	NIL OE 3								
Course	To Comprehend energy management schemes, perform	n energy audit ar	nd ex	ecute	eco	nomic			
Objectives	analysis and load management in electrical systems.	nalysis and load management in electrical systems.							
UNIT – I	GENERAL ASPECTS OF ENERGY AUDIT AND M	IANAGEMENT			9 P	eriods			
Energy Conserv	ation Act 2001 and policies – Eight National Missions - B	asics of Energy ar	nd its	form	ns (Tl	nermal			
and Electrical)	- Energy Management and Audit - Energy Managers an	d Auditors - Typ	es ar	nd M	ethod	dology			
Audit Report - 1	Material and energy balance diagramsEnergy Monitorin	ng and Targeting.				ļ			
UNIT – II	STUDY OF BOILERS, FURNACES AND COGENE	CRATION			9 P	eriods			
Boiler Systems	- Types - Performance Evaluation of boilers - Energ	y Conservation (Oppo	rtuni	ty -	Steam			
Distribution - E	Efficient Steam Utilisation - Furnaces:types and classifi	cation - Performa	ance	eval	uatio	n of a			
typical fuel fire	ed furnace. Cogeneration: Need - Principle - Technica	l options - classi	ificat	ion -	Tec	hnical			
parameters and t	factors influencing cogeneration choice - Prime Movers - T	Γrigeneration.							
UNIT – III	ENERGY STUDY OF ELECTRICAL SYSTEMS				9 P	eriods			
Electricity Billin	ng – Electricity load management - Maximum Demand Co	ontrol - Power Fac	tor in	npro	veme	nt and			
its benefits - pf	controllers - capacitors - Energy efficient transformers	and Induction mo	tors	- rew	indir	ng and			
other factors inf	luencing energy efficiency - Standards and labeling progra	amme of distribut	ion tı	ansf	orme	rs and			
IM - Analysis of	distribution losses - demand side management - harmoni	cs - filters - VFD	and	its se	lectio	n.			
UNIT – IV	STUDY OF ELECTRICAL UTILITIES				9 P	eriods			
Compressor typ	es - Performance - Air system components - Efficient	operation of com	press	sed a	ir sy	stems-			
Compressor ca	pacity assessment - HVAC: psychrometrics and air	-conditioning pro	ocess	es -	Typ	oes of			
refrigeration sys	stem - Compressor types and applications - Performan	ce assessment of	refrig	gerati	on p	lants -			
Lighting System	s: Energy efficient lighting controls - design of interior lig	hting - Case study	7.						
UNIT – V	PERFORMANCE ASSESSMENT FOR EQUIPMENT								
Performing Financial analysis: Fixed and variable costs - Payback period - ROI - methods - factors affecting									
analysis. Energy Performance Assessment: Heat exchangers - Fans and Blowers - Pumps. Energy Conservation									
in buildings and ECBC.									
Contact Periods:									
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									

M.1 D. (1 (1 (1 M
Mckay Butter worth , " Energy Management ", Heinemann Publications, 2007
erry Niehus, William J. Younger, "Handbook of Energy Audits", Ninth Edition, River
ve Anup Goel Siddu S. Laxmikant D. Jathar, "Energy Audit & Management", Second
ublications, 2019.
A. Asarkar, M. A. Chaudhari, "Energy Conservation and Audit", Second Edition, Nirali
ions, 2021.
okl.asp

COUI	RSE OUTCOMES:	Bloom's		
		Taxonomy		
Upon	Upon completion of the course, the students will be able to:			
CO1	Analyze the feature of energy audit methodology and documentation of report.	K3		
CO2	Perform action plan and financial analysis	K4		
CO3	Familiarize with thermal utilities.	K4		
CO4	Familiarize with electrical utilities.	K4		
CO5	Perform assessment of different systems.	K5		

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	3	2	2	1	1			
CO2	3	2	2	1	1			
CO3	3	2	2	1	1			
CO4	3	2	2	1	1			
CO5	3	2	2	1	1			
23PEOE23	3	2	2	1	1			
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN'	T PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	30	20	10	-	100
CAT2	10	30	30	20	10	-	100
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	20	-	100
Individual Assessment2/ Case study2/ Seminar 2 / Project2	_	30	30	20	20	-	100
ESE	10	30	30	20	10	-	100

23PEOE24	ADVANCED ENERGY STORAGE TECHNOLOGY (Common to all Branches)							
PREREQUISI	PREREQUISITES				P	С		
	NIL OE					3		
Course	To explore the fundamentals, technologies and application	ons of energy stora	ige					
Objectives								
UNIT – I	ENERGY STORAGE: HISTORICAL PERSPECTIVE, INTRODUCTION					riods		
	AND CHANGES							

Storage Needs- Variations in Energy Demand- Variations in Energy Supply- Interruptions in Energy Supply- Transmission Congestion - Demand for Portable Energy-Demand and scale requirements - Environmental and sustainability issues-conventional energy storage methods: battery-types.

UNIT – II TECHNICAL METHODS OF STORAGE

9 Periods

Introduction: Energy and Energy Transformations, Potential energy (pumped hydro, compressed air, springs)-Kinetic energy (mechanical flywheels)- Thermal energy without phase change passive (adobe) and active (water)-Thermal energy with phase change (ice, molten salts, steam)- Chemical energy (hydrogen, methane, gasoline, coal, oil)- Electrochemical energy (batteries, fuel cells)- Electrostatic energy (capacitors), Electromagnetic energy (superconducting magnets)- Different Types of Energy Storage Systems.

UNIT – III PERFORMANCE FACTORS OF ENERGY STORAGE SYSTEMS

9 Periods

Energy capture rate and efficiency- Discharge rate and efficiency- Dispatch ability and load flowing characteristics, scale flexibility, durability – Cycle lifetime, mass and safety – Risks of fire, explosion, toxicity-Ease of materials, recycling and recovery- Environmental consideration and recycling, Merits and demerits of different types of Storage.

UNIT – IV APPLICATION CONSIDERATION

9 Periods

Comparing Storage Technologies- Technology options- Performance factors and metrics- Efficiency of Energy Systems- Energy Recovery - Battery Storage System: Introduction with focus on Lead Acid and Lithium-Chemistry of Battery Operation, Power storage calculations, Reversible reactions, Charging patterns, Battery Management systems, System Performance, Areas of Application of Energy Storage: Waste heat recovery, Solar energy storage, Green house heating, Power plant applications, Drying and heating for process industries, energy storage in automotive applications in hybrid and electric vehicles.

UNIT - V HYDROGEN FUEL CELLS AND FLOW BATTERIES

9 Periods

Hydrogen Economy and Generation Techniques, Storage of Hydrogen, Energy generation - Super capacitors: properties, power calculations – Operation and Design methods - Hybrid Energy Storage: Managing peak and Continuous power needs, options - Level 1: (Hybrid Power generation) Bacitor "Battery + Capacitor" Combinations: need, operation and Merits; Level 2: (Hybrid Power Generation) Bacitor + Fuel Cell or Flow Battery operation-Applications: Storage for Hybrid Electric Vehicles, Regenerative Power, capturing methods.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 DetlefStolten, "Hydrogen and Fuel Cells: Fundamentals, Technologies and Applications", Wiley, 2010.
- 2 Jiujun Zhang, Lei Zhang, Hansan Liu, Andy Sun, Ru-Shi Liu, "Electrochemical Technologies for Energy Storage and Conversion", John Wiley and Sons, 2012.
- 3 Francois Beguin and ElzbietaFrackowiak, "Super capacitors", Wiley, 2013.
- 4 Doughty Liaw, Narayan and Srinivasan, "Batteries for Renewable Energy Storage", The Electrochemical Society, New Jersy, 2010.

COUI	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Recollect the historical perspective and technical methods of energy storage.	K1
CO2	Explain the basics of different storage methods.	K2
CO3	Determine the performance factors of energy storage systems.	K2
CO4	Identify applications for renewable energy systems.	K4
CO5	Outline the basics of Hydrogen cell and flow batteries.	K2

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5			
CO1	3	1	3	3	3			
CO2	3	1	3	3	3			
CO3	3	1	3	3	3			
CO4	3	1	3	3	3			
CO5	3	1	3	3	3			
23PEOE24	3	1	3	3	3			
1 – Slight, 2 – Moderate, 3 – Substantial								

Test / Bloom's Category*	PATTERN – THE Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	10	30	30	20	10	-	100			
CAT2	10	30	30	20	10	-	100			
Individual Assessment1/ Case study1/ Seminar 1/ Project1	-	30	30	20	10	10	100			
Individual Assessment2/ Case study2/ Seminar 2 / Project2	-	30	30	20	20	-	100			
ESE	10	30	30	20	10	-	100			

23AEOI	E 25	DESIGN OF DIGITAL SYSTEMS							
(Common to all Branches)									
PREREQUISI	ITES		CATEGORY	L	T	P	C		
NIL OE 3 0									
Course	To gain	knowledge in the design and VHDL p	rogramming of syn	chronous	and a	synchro	nous		
Objectives	sequentia	al circuits, PLD's and the basic concepts of	testing in VLSI circu	uits					
UNIT-	I SYNO	CHRONOUS SEQUENTIAL CIRCUIT	DESIGN			9 Per	riods		
Analysis of C	locked Sy	rnchronous Sequential Circuits - Modeling	, state table reduction	n, state a	ssignm	ent, De	sign		
of Synchronoi	us Sequen	tial circuits, Design of iterative circuits- AS	SM chart –ASM reali	ization.					
UNIT-II	ASYNO	CHRONOUS SEQUENTIAL CIRCUIT	DESIGN			9 Pei	riods		
Analysis of A	synchron	ous Sequential Circuits - Races in ASC -	- Primitive Flow Tal	ble - Flo	w Table	e Redu	ction		
Techniques, S	tate Assig	nment Problem and the Transition Table –	Design of ASC – St	atic and l	Oynami	c Hazaı	rds –		
-	-	a Synchronizers.	C		•				
UNIT-III	SYSTE	M DESIGN USING PLDS				9 Pei	riods		
Basic concept	s – Progra	amming Technologies - Programmable Log	gic Element (PLE) –	Program	mable .	Array L	ogic		
(PLA)-Progra	mmable A	array Logic (PAL) –Design of combination	nal and sequential cir	cuits usin	ng PLD	s– Com	ıplex		
PLDs (CPLDs	s).								
UNIT- IV	INTRO	DUCTION TO VHDL				9 Per	riods		
Design flow -	Software	tools – VHDL: Data Objects-Data types –	Operators –Entities a	and Archi	tecture	s Comp	onen		
and Configur	ations –	Signal Assignment - Concurrent and Se	equential statements	—Behav	vioral,	Dataflo	w ar		
Structural mod	deling- Ti	ansport and Inertial delays –Delta delays-A	Attributes - Generics-	-Package	s and L	ibraries			
UNIT-V	LOGIC	CIRCUIT TESTING AND TESTABLE	E DESIGN			9 Pe	riods		
Digital logic	Digital logic circuit testing - Fault models - Combinational logic circuit testing - Sequential logic circuit testing-								
Design for Te	Design for Testability - Built-in Self-test, Board and System Level Boundary Scan - Case Study: Traffic Light								
Controller.									
Contact Perio	ods:	a a	//						
Lecture: 45 P	Periods	Tutorial: 0 Periods Practical: 0	Periods Total: 4	5 Period	S				

1	Donald G.Givone, "Digital principles and Design", TataMcGrawHill, 2002.
2	Nelson, V.P., Nagale, H.T., Carroll, B.D., and Irwin, J.D., "Digital Logic Circuit Analysis and Design",
	Prentice Hall International, Inc., NewJersey, 1995.
3	VolneiA.Pedroni, "Circuit Design withVHDL", PHILearning,2011.
4	ParagK Lala, "Digital Circuit Testing and Testability", AcademicPress, 1997.
5	Charles HRoth, "Digital Systems Design Using VHDL", Cencage 2 nd Edition 2012.
6	NripendraN.Biswas, "Logic Design Theory" Prentice Hal l of India, 2001.

COUF	COURSEOUTCOMES:						
Upon	Upon completion of the course ,students will be able to/have:						
CO1	To design synchronous sequential circuits based on specifications.	К3					
CO2	To design asynchronous sequential circuits based on specifications	К3					
CO3	Ability to illustrate digital design implementation using PLDs.	K2					
CO4	To develop algorithm and VHDL code for design of digital circuits.	К3					
CO5	Understand the different testing methods for combinational and sequential circuits.	K2					

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	-	2	-	-	1		
CO2	3	-	2	-	-	1		
CO3	3	-	2	-	-	1		
CO4	3	-	2	-	-	1		
CO5	3	-	2	-	-	1		
23AEOE25	3	-	2	-	-	1		
– Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	40%	40%	20%				100%			
CAT2	40%	40%	20%				100%			
Individual		50%	50%	-			100%			
Assessment 1 /		CV	And Britis	20%						
Case Study 1/		197	DOUBLE TO							
Seminar 1 /				. >>						
Project1		1100	X							
Individual		50%	50%	6 11			100%			
Assessment 2 /		//		//						
Case Study 2/		// 8		. 11						
Seminar 2 /		1 8								
Project 2		AL MA	. 7	1						
ESE	20%	45%	35%				100%			
ESE	20%	45%	35%				100			

23AEOE26 BASICS OF NANO ELECTRONICS											
	(Common to all Branches)										
PREREQUISITES CATEGORY L T P NIL OE 3 0 0											
NIL OE 3 0											
Course	The students will be able to acquire knowledge about	out nano device f	abrication	n tech	nology,	nano					
Objective	structures, nano technology for memory devices a	nd applications of	of nano	electro	onics in	data					
	transmission.										
UNIT – I	TECHNOLOGY AND ANALYSIS				9 Pe	eriods					
Fundamentals	: Dielectric, Ferroelectric and Optical properties - Film	n Deposition Metho	ods – Lit	hograp	hy						
Material remo	ving techniques - Etching and Chemical Mechanical	Polishing - Scan	ning Pro	obeTec	hniques						
UNIT – II	CARBON NANO STRUCTURES				9 Pc	eriods					
Principles and	concepts of Carbon Nano tubes - Fabrication - E	lectrical, Mechani	cal and	Vibra	tionProp	erties					
- Applications	of Carbon Nano tubes.										
UNIT – III	LOGIC DEVICES				9 Pc	eriods					
Silicon MOSF	FET's: Novel materials and alternative concepts - S	ingle electron dev	rices for	logic	applicat	ions -					
Super conductor	or digital electronics - Carbon Nano tubes for data proce	essing.									
UNIT – IV	MEMORY DEVICES AND MASS STORAGE DE	VICES			9 Pe	eriods					
Flash memorie	es - Capacitor based Random Access Memories - Mag	netic Random Acc	ess Mei	mories	- Inform	nation					
storage based of	on phase change materials - Resistive Random Access M	Memories - Hologra	aphicDa	ta stora	ige.						
UNIT – V	UNIT - V DATA TRANSMISSION AND INTERFACING DISPLAYS 9 Periods										
Photonic Netv	works - RF and Microwave Communication System	n - Liquid Crysta	ıl Displ	ays -	Organic	Light					
emitting diode	s.	77	_								
Contact Perio	ds:	//									
Lecture: 45 P	Periods Tutorial: 0 Periods Practical: 0 Per	iods Total: 45	Periods	5							

	REFERENCES.
1	Rainer Waser, "Nano Electronics and Information Technology, Advanced Electronic materials and novel
	devices", 3rd Edition, Wiley VCH, 2012.
2	T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.
3	Charles Poole, "Introduction to Nano Technology", Wiley Interscience, 2003
4	Vladimir V.Mitin, Viatcheslav A. Kochelap, Michael A. Stroscio, "Introduction to Nano Electronics Science,
	Nanotechnology, Engineering and Applications", Cambridge University Press, 2011.
5	C. Wasshuber Simon, "Simulation of Nano Structures Computational Single-Electronics", Springer, 2001.
6	Mark Reed and Takhee Lee, "Molecular Nano Electronics, American Scientific Publisher, California", 2003.

COUR	COURSE OUTCOMES:						
		Taxonomy					
Upon c	ompletion of the course, students will be able to/have:	Mapped					
CO1	Explain principles of nano device fabrication technology.	K2					
CO2	Describe the concept of Nano tube and Nano structure.	K2					
CO3	Explain the function and application of various nano devices	K3					
CO4	Reproduce the concepts of advanced memory technologies.	K2					
CO5	Emphasize the need for data transmission and display systems.	K2					

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	
CO1	3	-	2	-	-	1	3	-	1	
CO2	3	-	2	-	-	1	3	-	1	
CO3	3	-	2	-	-	1	3	-	1	
CO4	3	-	2	-	-	1	3	-	1	
CO5	3	-	2	-	-	1	3	-	1	
22AEOE26	3	-	2	-	-	1	3	-	1	
1 – Slight, 2 – Moderate, 3 – Substantial										

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50%	25%	25%				100%
CAT2	50%	25%	25%				100%
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	50%	25%	25%	9			100%
Individual Assessment 2/ Case Study 2/ Seminar 2 / Project 2	50%	25%	25%				100%
ESE	50%	25%	25%				100%

23AEOE27 ADVANCED PROCESSOR									
		(Common to all Branches)							
PREREQUISITES CATEGORY L T P									
NIL OE 3 0					0	0	3		
Course	The stu	dents will be able to acquire knowledge about	the high perform	ance RI	SC, CIS	C and sp	pecial		
Objective	purpose processors.								
UNIT – I	MICI	MICROPROCESSOR ARCHITECTURE 9 Peri							
			4 3.5				~ .		

Instruction set – Data formats – Instruction formats – Addressing modes – Memory hierarchy – registerfile – Cache – Virtual memory and paging – Segmentation – Pipelining – The instruction pipeline – pipeline hazards – Instruction level parallelism – reduced instruction set – Computer principles – RISC versus CISC – RISC properties – RISC evaluation.

UNIT - II HIGH PERFORMANCE CISC ARCHITECTURE -PENTIUM

9 Periods

The software model – functional description – CPU pin descriptions – Addressing modes – Processor flags – Instruction set – Bus operations – Super scalar architecture – Pipe lining – Branch prediction – The instruction and caches – Floating point unit– Programming the Pentium processor.

UNIT – III HIGH PERFORMANCE CISC ARCHITECTURE – PENTIUM INTERFACE 9 Periods

 $\label{eq:protected} Protected\ mode\ operation-Segmentation-paging-Protection-multitasking-Exception\ and\ interrupts-Input\\ /Output-Virtual\ 8086\ model-Interrupt\ processing.$

UNIT - IV HIGH PERFORMANCE RISC ARCHITECTURE: ARM

9 Periods

ARM architecture – ARM assembly language program – ARM organization and implementation – ARM instruction set - Thumb instruction set.

UNIT – V SPECIAL PURPOSE PROCESSORS

9 Periods

Altera Cyclone Processor – Audio codec – Video codec design – Platforms – General purpose processor – Digital signal processor – Embedded processor – Media Processor – Video signal Processor – Custom Hardware – Co-Processor.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

1	Daniel Tabak, "Advanced Microprocessors", McGraw Hill Inc., 2011.
2	James L. Antonakos, "The Pentium Microprocessor", Pearson Education, 1997.
3	Steve Furber, "ARM System -On -Chip architecture", Addison Wesley, 2009.
4	Gene. H. Miller, "Micro Computer Engineering", Pearson Education, 2003.
5	Barry. B. Brey, "The Intel Microprocessors Architecture, Programming and Interfacing", PHI, 2008.
6	Valvano, " Embedded Microcomputer Systems " Cencage Learing India Pvt Ltd, 2011.
7	Iain E.G. Richardson, "Video codec design", John Wiley & sons Ltd, U.K, 2002.

COUR	SE OUTCOMES:	Bloom's	
Upon c	Upon completion of the course, students will be able to		
		Mapped	
CO1	Describe the fundamentals of various processor architecture.	K2	
CO2	Interpret and understand the high performance features in CISC architecture.	K2	
CO3	Describe the concepts of Exception and interrupt processing.	K2	
CO4	Develop programming skill for ARM processor.	К3	
CO5	Explain various special purpose processor	K2	

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	-	2	-	-	1				
CO2	3	-	2	-	-	1				
CO3	3	-	2	-	-	1				
CO4	3	-	2	-	-	1				
CO5	3	-	2	-	-	1				
22AEOE27	3	-	2	-	-	1				
1 – Slight, 2 – Moderate	, 3 – Substanti	al		1		•				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creatin g (K6) %	Total %
CAT1	40%	40%	20%				100%
CAT2	40%	40%	20%				100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1		50%	50%	3			100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2		50%	50%	3.			100%
ESE	30%	40%	30%				100%

23VLOE28	HDL PROGRAMMIN	IG LANGUAGES				
23 V LUE 28	(Common to all	Branches)				
PREREQUISITES	S	CATEGORY	L	T	P	С
	NIL	0	0	3		
Course	To code and simulate any digital function in V	tand	the	difference		
Objective	between synthesizable and non-synthesizable codes	S.				
UNIT – I	VERILOG INTRODUCTION AND MODELIN	G			9	9 Periods
Introduction to Ver	rilog HDL, Language Constructs and Conventions,	Gate Level Modelin	g, M	odeli	ng at	Dataflow
Level, Behavioral M	Modeling, Switch Level Modeling, System Tasks, Fu	nctions and Compile	r Dir	ective	es.	
TINITE II	CECUENTIAL MODELING AND TECTING					
UNIT – II	SEQUENTIAL MODELING AND TESTING			9 Periods		
•	- Feedback Model, Capacitive Model, Implicit Mo	•		•		
Register, Static M	achine Coding, Sequential Synthesis. Test Bench	- Combinational Circ	cuits	Test	ing, S	Sequential
Circuit Testing, Testing	st Bench Techniques, Design Verification, Assertion	Verification.				
UNIT – III	SYSTEM VERILOG				9	9 Periods
Introduction, Syste	m Verilog declaration spaces, System Verilog Lite	eral Values and Buil	t-in]	Data	Туре	s, System
Verilog User-Defin	ned and Enumerated Types, system Verilog Arra	ays, Structures and	Unio	ons,	syste	m verilog
Procedural Blocks,	Tasks and Functions.					
UNIT – IV	SYSTEM VERILOG MODELING	_			9	9 Periods
System Verilog Pr	ocedural Statements, Modeling Finite State Machi	nes with System Ve	erilog	, Sys	stem	Verilog
Design Hierarchy.	V 52 NUMBER COV					
UNIT – V	INTERFACES AND DESIGN MODEL	5			9	9 Periods
System Verilog In	terfaces, A Complete Design Modeled with System	n Verilog, Behaviora	ıl and	d Tra	nsact	ion Level
Modeling.		-				
Contact Periods:						
	//					

	NO.
1	T.R.Padmanabhan, B Bala Tripura Sundari, " Design through Verilog HDL ", Wiley 2009.
2	Stuart Sutherland, Simon Davidmann ,Peter Flake , Foreword by Phil Moorby, "System Verilog For Design
	Second Edition A Guide to Using System Verilog for Hardware Design and Modelling", Springer 2006.
3	Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2009.
4	ZainalabdienNavabi, "Verilog Digital System Design", TMH, 2ndEdition, 2005.
5	System Verilog 3.1a, Language Reference Manual, Accellera, 2004
6	Dr.SRamachandran, "Digital VLSI Systems Design: A Design Manual for Implementation of Projects on
	FPGAs and ASICs Using Verilog", Springer, 2007.
7	Chris Spear, "System verilog for verification a guide to learning the test bench Language Features",
	Springer 2006.
6	Stuart Sutherland, Simon Davidmann, Peter Flake, "System Verilog For Design: A Guide to Using System
	Verilog for Hardware Design and Modeling" 1st Edition, 2003

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Explain the verilog coding and simulate any digital function using Verilog HDL	K2
CO2	Develop sequential modeling based Verilog HDL code and develop the test bench for	K3
	the modeling	
CO3	Explain the system verilog modeling	K2
CO4	Differentiate the synthesizable and non-synthesizable code	K3
CO5	Apply good coding techniques on system verilog interfaces and complete design	K3
	model	

COURSE ARTICULATION MATRIX										
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	3	3		2		2				
CO2	3	3		2		2				
CO3	3	3		2		2				
CO4	3	3		2		2				
CO5	3	3		2		2				
23VLOE28	3	3		2		2				
1 – Slight, 2 – Mod	derate, 3 – Sub	stantial	•			•				

ASSESSMENT	PATTERN - THI	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%	-	-	-	100%
Assessment 1 /			mm R	_			
Case Study 1/		1 (B) (B) (B) (B) (B)	NEUS STEEL	27.			
Seminar 1 /		V5933	TURE V				
Project1							
Individual	-	50%	50%	// -	-	-	100%
Assessment 2 /							
Case Study 2/			1 No.	\			
Seminar 2 /		/ g	廖人	\\			
Project 2		1 8		1			
ESE	40%	40%	20%	/ <u>A</u>	-	-	100%

23VLOE29	CMOS VLSI I	DESIGN								
23 V LUE 29	(Common to all	Branches)								
PREREQUISIT	ΓES	CATEGORY	L	T	P	С				
	NIL	OE	3	0	0	3				
Course	To gain knowledge on CMOS Circuits with its characterization and to design CMOS logic and									
Objective	sub-system with low power									
UNIT – I	INTRODUCTION TO MOS CIRCUITS				9 P	Periods				
MOS Transistor	Theory -Introduction MOS Device Design Equation	ons -MOS Transist	or as a	a Sw	itches	- Pass				
Transistor - CM	OS Transmission Gate -Complementary CMOS Inve	erter - Static Load N	MOS In	verte	rs - In	verters				
with NMOS load	ds - Differential Inverter - Tri State Inverter - BiCMOS	S Inverter.								
UNIT – II	CIRCUIT CHARACTERIZATION AN	D PERFORMA	ANCE		9 P	Periods				
	ESTIMATION									
Delay Estimatio	n, Logical Effort and Transistor Sizing, Power Dissip	oation, Sizing Routin	ng Con	ducto	rs, Ch	arge				
	Margin and Reliability.					_				
UNIT – III	CMOS CIRCUIT AND LOGIC DESIGN				9 P	Periods				
CMOS Logic G	ate Design, Physical Design of CMOS Gate, Designi	ng with Transmissio	n Gate	s, CN	IOS L	ogic				
Structures, Cloc	king Strategies, I/O Structures.	-								
UNIT – IV	CMOS SUBSYSTEM DESIGN				9 P	Periods				
DataPath Oper	ations-Addition/Subtraction, Parity Generators, Co	omparators, Zero/O	ne De	tecto	rs, Bi	nary				
Counters, ALUs	, Multipliers, Shifters, Memory Elements, Control-FS	M, Control Logic Im	plemer	ntatio	n.					
UNIT – V	LOWPOWERCMOS VLSIDESIGN	/			9 P	Periods				
Introduction to I	Low Power Design, Power Dissipation in FET Devices	s, Power Dissipation	in CM	OS, I	Low-Po	ower				
Design through	Voltage Scaling - VTCMOS Circuits, MTCMOS	Circuits, Architectu	ıral Lev	vel A	pproa	ch –				
Pipelining and P	Parallel Processing Approaches, Low Power Basics CM	MOS Gate and Adder	Design	1.						
Contact Period										
	The state of the s	a Total. 45 Davis	la							
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Period	18							

	REI EREI (CES:
1	Sung Mo Kang, Yusuf Lablebici, "CMOS Digital Integrated Circuits: Analysis & Design", Tata Mc-Graw Hill,
	2011.
2	N. Weste and K. Eshranghian, "Principles of CMOS VLSI Design", AddisonWesley, 1998.
3	Neil H. E. Weste, David Harris, Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective",
	Pearson Education 2013.
4	Kiat-Seng Yeo, Kaushik Roy, "Low-Voltage, Low-Power VLSI Subsystems", McGraw-Hill Professional, 2004.
5	Gary K.Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Press, 2002.
6	Jan M. Rabaey, "Digital Integrated Circuits: A Design Perspective", Pearson Education, 2003.

COUR	COURSE OUTCOMES:					
		Taxonomy				
Upon c	Mapped					
CO1	Explain the MOS circuits and Transmission gates	K2				
CO2	Illustrate the CMOS Circuits with its characterization	K2				
CO3	Design CMOS logic circuits	K3				
CO4	Design CMOS sub-system	K3				
CO5	Discuss low power CMOS VLSI Design	K2				

COURSE ARTICULATION MATRIX								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	-	2	-	3		
CO2	2	1	-	2	-	3		
CO3	2	1	-	2	-	3		
CO4	3	1	-	2	-	3		
CO5	3	1	-	2	-	3		
23VLOE29	3	1	-	2	-	3		
1 – Slight, 2 – Mod	1 – Slight, 2 – Moderate, 3 – Substantial							

Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40%	40%	20%	-	-	-	100%
CAT2	40%	40%	20%	-	-	-	100%
Individual	-	50%	50%		-	-	100%
Assessment 1/		7 (07/04)	In Co. U.C. U.S. & I.I.	765			
Case Study 1/		V59	MILLION CO				
Seminar 1/							
Project1		18.7	- 5				
Individual	-	50%	50%	-	-	-	100%
Assessment 2 /		11 19		1			
Case Study 2/		// g	多版人	1			
Seminar 2/		1 8					
Project 2		黑 16		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
ESE	40%	40%	20%	-	-	-	100%

23VLOE30	HIGH LEVEL SYNTHESIS (Common to all Branches)							
PREREQUISI	ΓES	CATEGORY	L	T	P	С		
	NIL	OE	3	0	0	3		
Course	To provide students with foundations in High level synthesis	, verification and	CAI	O To	ols			
Objective								
UNIT – I	HIGH-LEVEL SYNTHESIS (HLS) FUNDAMENTALS			9	Peri	ods		
Overview HLS	flow, Scheduling Techniques, Resource sharing and Bi	nding Technique	s, D	ata-p	ath	and		
Controller Gene	ration Techniques.							
UNIT – II	HIGH LEVEL SYNTHESIS			9	Peri	ods		
Introduction to	HDL, HDL to DFG, operation scheduling: constrained and	unconstrained s	chedi	ıling,	, AS	AP,		
ALAP, List sch	neduling, Force directed Scheduling, operator binding, Stational	c Timing Analys	is: D	elay	mod	els,		
setup time, hold	l time, cycle time, critical paths, Topological mvs. Logical ti	ming analysis, F	alse p	aths	, Arr	ival		
time (AT), Requ	aired arrival Time (RAT), Slacks.							
UNIT – III	HIGH-LEVEL SYNTHESIS VERIFICATION			9	Peri	ods		
Simulation bas	ed verification - Formal Verification of digital systems- I	BDD based appro	oache	es, fu	ınctio	nal		
equivalence, fin	ite state automata, ω-automata, FSM verification.							
UNIT – IV	CAD TOOLS FOR SYNTHESIS			9	Peri	ods		
CAD tools for	synthesis, optimization, simulation and verification of design	gn at various lev	els a	s we	ll as	for		
special realizati	ons and structures such as microprogrammes, PLAs, gate as	rrays etc. Techno	ology	map	ping	for		
FPGAs. Low power issues in high level synthesis and logic synthesis.								
UNIT – V	9 Periods			ods				
Relative Schedu	lling, IO scheduling modes - cycle fixed scheduling modes, s	super-fixed sched	uling	mod	es, f	ree-		
floating schedul	ing mode, Pipelining, Handshaking, System Design, High-Lev	vel Synthesis for l	FPGA	١.				
Contact Period	s:							
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods Tota	al: 45 Periods						

1	Philippe Coussy and Adam Morawiec, "High-level Synthesis from Algorithm to Digital Circuit",
	Springer, 2008.
2	Sherwani, N., "Algorithms for VLSI Physicsl Design Automation", Springer, 3rd ed., 2005.
3	D. Micheli, "Synthesis and optimization of digital systems", Mc Graw Hill, 2005.
4	Dutt, N. D. and Gajski, D. D., "High level synthesis", Kluwer, 2000.
5	Gerez S.H., "Algorithms for VLSI Design Automation", John Wiley (1998)
6	David. C. Ku and G. De Micheli, "High-level Syntehsis of ASICs Under Timing and
	Synchronization Constraints", Kluwer Academic Publishers, 1992.
7	K. Parhi, "VLSI Digital Signal Processing Systems: Design and Implementation", Jan 1999, Wiley.
8	Egon Boerger and Robert Staerk "Abstract State Machines: A Method for High-Level System Design
	and Analysis", Springer, 2006.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon co	ompletion of the course, the students will be able to:	Mapped
CO1	Understand the fundamentals of High level synthesis	K2
CO2	Synthesis the HDL for operation scheduling	K2
CO3	Simulate and verify any digital systems	K2
CO4	Apply CAD tools for synthesis	K2
CO5	Have knowledge on various scheduling modes	K2

COURSE ARTICULATION MATRIX:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	-	2	2	-
CO2	2	2	-	2	2	-
CO3	2	2	-	2	2	-
CO4	2	2	-	2	2	-
CO5	2	2	-	2	2	-
23VLOE30	2	2	-	2	2	-

ASSESSMENT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	50%	50%		-	-	-	100%		
CAT2	50%	50%		-	-	-	100%		
Individual	-	50%	50%	-	-	-	100%		
Assessment 1/									
Case Study 1/									
Seminar 1 /		0	0 3	m.a					
Project1		CV	ale ale no	(2)					
Individual	-	50%	50%	-	-	-	100%		
Assessment 2/			-	7					
Case Study 2/		1100	X	//					
Seminar 2/			ATTION IN	U.					
Project 2		// 3		//					
ESE	50%	50%		- N	-	-	100%		

23CSOE31		ARTIFICIAL IN (Common to a						
PREREQUISIT	ΓES		CATEGORY	L	T	P	С	
		NIL	OE	3	0	0	3	
Course	Ide	ntify and apply AI techniques in the design	of systems that ac	t intel	ligentl	y, m	aking	
Objectives	aute	omatic decisions and learn from experience.						
UNIT – I	SE	ARCH STRATEGIES				9 Pe	eriods	
Uninformed Str	ategi	es – BFS, DFS, Djisktra, Informed Strategi	es – A* search, He	euristic	func	tions	, Hill	
Climbing, Adve	rsaria	ıl Search – Min-max algorithm, Alpha-beta Pru	ıning					
UNIT – II	PL.	ANNING AND REASONING				9 Pe	eriods	
State Space sear	rch, I	Planning Graphs, Partial order planning, Unce	ertain Reasoning – P	robabi	listic 1	Reaso	oning,	
Bayesian Netwo	rks, l	Dempster Shafer Theory, Fuzzy logic						
UNIT – III	PR	OBABILISTIC REASONING				9 Pe	eriods	
Probabilistic Re	ason	ng over Time - Hidden Markov Models, Kal	lman Filters, Dynam	ic Bay	esian	Netv	vorks.	
Knowledge Rep	resen	tations - Ontological Engineering, Semantic N	letworks and descript	ion log	gics.			
UNIT – IV	DE	CISION MAKING				9 Pe	eriods	
Utility Theory,	Utility Theory, Utility Functions, Decision Networks – Sequential Decision Problems – Partially Observable							
MDPs – Game Theory.								
UNIT - V REINFORCEMENT LEARNING						9 Pe	eriods	
Reinforcement Learning - Passive and active reinforcement learning - Generations in Reinforcement Learning -								
Policy Search –	Policy Search – Deep Reinforcement Learning.							
Contact Period	s:		77					
Lecture: 45 Per	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

1	Deepak Khemani, "A First Course in Artificial Intelligence", Tata Mc Graw Hill Education 2013
2	Yang Q, "Intelligent Planning: A decomposition and Abstraction based Approach", Springer, 2006
3	Russell and Norvig, "Artificial Intelligence, A Modern Approach", 3rd edition, Pearson Prentice
	Hall,2010.
4	Elaine Rich, Kevin Knight, Shivashankar B. Nair, "Artificial Intelligence", 3rd edition, TataMcGraw
	Hill, 2009.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Use search techniques to solve AI problems	K2
CO2	Reason facts by constructing plans and understand uncertainty efficiently.	K3
CO3	Examine data using statistical codes and solve complex AI problems	K6
CO4	Apply techniques to make apt decisions.	K4
CO5	Use deep reinforcement learning to solve complex AI problems	K6

COURSE ARTICULATION MATRIX						
COs/ POs	PO 1	PO2	PO 3	PO 4	PO5	PO6
CO1	3		2		3	3
CO2	3		2		3	3
CO3	3		3		3	3
CO4	3		3		3	3
CO5	3		3		3	3
23CSOE31	3		3		3	3
1 – Slight, 2 – Moderate, 3 – Substantial						

ASSESSMENT PATTERN – THEORY							
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1		20	40	20	20		100
CAT2		10	20	40	10	20	100
Individual							
Assessment 1/							
Case study 1/					50	50	100
Seminar 1/							
Project 1							
Individual							
Assessment 2/							
Case study 2/					50	50	100
Seminar 2/							
Project 2							
ESE	30	30	40				100

23CSOE32	COMPUTER NETWOR		T				
	(Common to all	,					
PREREQUIS	PREREQUISITES CATEGORY					C	
	NIL OE				0	3	
Course	After the completion of the course, the students	will be able to ur	dersta	nd th	e con	cept of	
Objectives	layering in networks, functions of protocols of each layer of TCP/IP protocol suite, concepts					oncepts	
	related to network addressing and routing and build simple LANs, perform basic					n basic	
	configurations for routers and switches, and implement IPv4 and IPv6 addressing schemes						
	using Cisco Packet Tracer.						
UNIT – I	INTRODUCTION AND APPLICATION LAYER 9 Period					Periods	
Building netwo	ork – Network Edge and Core – Layered Archite	cture – OSI Model	l – Inte	ernet	Arch	itecture	
(TCP/IP) Netw	orking Devices: Hubs, Bridges, Switches, Router	rs, and Gateways -	- Perfo	rman	ce M	etrics -	
Ethernet Netwo	orking - Introduction to Sockets - Application Layer	er protocols – HTT	P - FT	P En	ail Pr	otocols	
- DNS.							
UNIT – II	TRANSPORT LAYER AND ROUTING				91	Periods	
Transport Lay	er functions –User Datagram Protocol – Transm	ission Control Pro	tocol -	- Flo	w Co	ntrol –	
Retransmission	Strategies – Congestion Control - Routing Princip	ples – Distance Vec	tor Ro	uting	– Lir	nk State	
Routing – RIP	- OSPF - BGP - Introduction to Quality of Service	e (QoS).Case Study:	Config	gurin	g RIP	, OSPF	
BGP using Pac	ket tracer	N/A					
UNIT – III	NETWORK LAYER	(0)			91	Periods	
Network Layer	: Switching concepts – Internet Protocol – IPV4 Pa	cket Format – IP A	ddressi	ng –	Subn	etting –	
Classless Inter	Domain Routing (CIDR) - Variable Length Subne	t Mask (VLSM) – I	OHCP -	– AR	P - N	letwork	
Address Transl	ation (NAT) - ICMP - Concept of SDN.Case Stud	dy: Configuring VI	AN, D	HCF	, NA	T using	
Packet tracer							
UNIT – IV	INTERNETWORK MANAGEMENT	1			91	Periods	
Introduction to	Introduction to the Cisco IOS - Router User Interface - CLI - Router and Switch Administrative Functions -						
Router Interfac	Router Interfaces - Viewing, Saving, and Erasing Configurations - Switching Services - Configuring Switches						
- Managing C	- Managing Configuration Registers - Backing Up and Restoring IOS - Backing Up and Restoring the						
Configuration - Using Discovery Protocol (CDP) - Checking Network Connectivity							
	Osing Discovery I rotocor (CDI) - Checking Netw						
UNIT – V	TRAFFIC MANAGEMENT AND WAN PRO	10 J			91	Periods	
UNIT – V		TOCOLS	Lists -	Exte			
UNIT – V Managing Traf	TRAFFIC MANAGEMENT AND WAN PRO	TOCOLS - Standard Access			nded	Access	
UNIT – V Managing Traf Lists - Named	TRAFFIC MANAGEMENT AND WAN PROfic with Access Lists: Introduction to Access Lists	TOCOLS - Standard Access Area Networking P	rotocol	s: In	nded troduc	Access etion to	
UNIT – V Managing Traf Lists - Named Wide Area Net	TRAFFIC MANAGEMENT AND WAN PRO fic with Access Lists: Introduction to Access Lists Access Lists - Monitoring Access Lists - Wide A	TOCOLS - Standard Access Area Networking P Level Data-Link Co	rotocol ntrol (l	s: In	ended troduc C) Pro	Access etion to otocol -	
UNIT – V Managing Traf Lists - Named Wide Area Net Point-to-Point	TRAFFIC MANAGEMENT AND WAN PROfic with Access Lists: Introduction to Access Lists Access Lists - Monitoring Access Lists - Wide Aworks - Cabling the Wide Area Network - High-L	TOCOLS - Standard Access Area Networking P Level Data-Link Co applementation and	rotocol ntrol (l Monito	s: In	ended troduc C) Pro	Access etion to otocol -	
UNIT – V Managing Traf Lists - Named Wide Area Net Point-to-Point	TRAFFIC MANAGEMENT AND WAN PROfic with Access Lists: Introduction to Access Lists Access Lists - Monitoring Access Lists - Wide Aworks - Cabling the Wide Area Network - High-L Protocol (PPP) - Frame Relay: Frame Relay Implementation of the Network (ISDN) - Dial-on-Demand Routing (DD)	TOCOLS - Standard Access Area Networking P Level Data-Link Co applementation and	rotocol ntrol (l Monito	s: In	ended troduc C) Pro	Access etion to otocol -	

1	James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", Seventh Edition,
	Pearson Education, 2017.
2	William Stallings, "Data and Computer Communications", Tenth Edition, Pearson Education, 2014
3	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach", Fifth Edition,
	Morgan Kaufmann Publishers Inc., 2011.
4	Todd Lammle, "CCNATM: Cisco® Certified Network Associate Study Guide", 5th Edition, Sybex,
	2003
5	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach",
	McGraw Hill, 2012.
6	Ron Gilster, Jeff Bienvenu, and Kevin Ulstad, "CCNA for Dummies", IDG Books Worldwide, 2000

COURSE	OUTCOMES:	Bloom's Taxonomy
Upon con	repletion of the course, the students will be able to:	Mapped
CO1	Highlight the significance of the functions of each layer in the network.	K1
CO2	Identify the devices and protocols to design a network and implement it.	K4
CO3	Apply addressing principles such as subnetting and VLSM for efficient routing.	К3
CO4	Build simple LANs, perform basic configurations for routers and switches	K6
CO5	Illustrate various WAN protocols	K2

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3		3		2	1
CO2	3		3		2	2
CO3	3		3		3	2
CO4	3		3		3	3
CO5	3		3		3	3
23CSOE32	3		3	50	3	2

ASSESSMENT	PATTERN – TH	IEORY (Times Ne	w Roman, Si	ize 11)			
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*	30	30	20	20			100
	30	11 44	13621112 AV 1466	13	1.0	1.0	
CAT2		30	20	30	10	10	100
Individual	10	30	20	20	20		100
Assessment 1/							
Case Study 1/		Qu'I Do	CYCLE	102			
Seminar 1/		1500	Section 1	37			
Project 1							
Individual		20	20	20	20	20	100
Assessment 2/							
Case Study 2/							
Seminar 2/							
Project 2							
ESE	20	40	40				100

23CSOE33	2S						
PREREQUISITI	ES CATE	GORY I	LT	P	С		
	NIL	OE 3	3 0	0	3		
Course The objective of the course is to explore basics of block chain technology and its application in various domaiin							
UNIT – I INT	TRODUCTION OF CRYPTOGRAPHY AND BLOCKCHAIN	N		9 Pe	riods		
History of Block	chain - Types of blockchain- CAP theorem and blockchain -	benefits and	l Limi	itatio	ns of		
Blockchain – Dec	centalization using blockchain – Blockchain implementations- B	lock chain is	n prac	tical	use -		
Legal and Govern	ance Use Cases						
UNIT – II BIT	TCOIN AND CRYPTOCURRENCY		9 Periods				
Introduction to B	itcoin, The Bitcoin Network, The Bitcoin Mining Process, Mi	ning Develo	pment	s, Bi	tcoin		
Wallets, Decentra	alization and Hard Forks, Ethereum Virtual Machine (EVM),	Merkle Tree	, Dou	ble-S	pend		
Problem, Blockel	hain and Digital Currency, Transactional Blocks, Impact of	Blockchain	Techr	مامم			
Cryptocurrency		Dicerciani	I CCIII	iolog	y on		
		Biochenam	1 CCIII	iolog	y on		
UNIT – III ET	HEREUM	Бюсконан					
- '	HEREUM Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum			9 Pe	riods		
Introduction to I	Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum			9 Pe	riods		
Introduction to E Receiving Ethers,	Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum		, Tra	9 Pe	riods tions,		
Introduction to E Receiving Ethers, UNIT – IV HY	Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Smart Contracts	n Accounts,	, Tra	9 Pennsact	riods tions,		
Introduction to F Receiving Ethers, UNIT – IV HY Introduction to F	Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Smart Contracts PERLEDGER AND SOLIDITY PROGRAMMING	n Accounts,	, Tra	9 Peransact 9 Per	riods tions,		
Introduction to E Receiving Ethers, UNIT – IV HY Introduction to E Ledger Technolog	Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Smart Contracts PERLEDGER AND SOLIDITY PROGRAMMING Hyperledger, Distributed Ledger Technology & its Challenges	n Accounts,	, Tra	9 Per Distr	riods tions, riods		
Introduction to F Receiving Ethers, UNIT – IV HY Introduction to F Ledger Technolog UNIT – V BL	Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Smart Contracts PERLEDGER AND SOLIDITY PROGRAMMING Hyperledger, Distributed Ledger Technology & its Challenges sy, Hyperledger Fabric, Hyperledger Composer. Solidity – Program	n Accounts, , Hyperledg	, Tra	9 Per Distry 9 Per	riods tions, riods ibuted		
Introduction to F Receiving Ethers, UNIT – IV HY Introduction to F Ledger Technolog UNIT – V BL Ten Steps to bu	Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Smart Contracts PERLEDGER AND SOLIDITY PROGRAMMING Hyperledger, Distributed Ledger Technology & its Challenges sy, Hyperledger Fabric, Hyperledger Composer. Solidity – Program OCKCHAIN APPLICATIONS	n Accounts, , Hyperledg	, Tra	9 Per Distry 9 Per	riods tions, riods ibuted		
Introduction to F Receiving Ethers, UNIT – IV HY Introduction to F Ledger Technolog UNIT – V BL Ten Steps to bu	Ethereum, Consensus Mechanisms, Metamask Setup, Ethereum Smart Contracts PERLEDGER AND SOLIDITY PROGRAMMING Hyperledger, Distributed Ledger Technology & its Challenges gy, Hyperledger Fabric, Hyperledger Composer. Solidity – ProgramockChain Applications OCKCHAIN APPLICATIONS Hild your Blockchain application – Application: Internet of	n Accounts, , Hyperledg	, Tra	9 Per Distry 9 Per	riods tions, riods ibuted		

1	Imran Bashir, "Mastering Blockchain: Distributed Ledger Technology, Decentralization, and Smart
	Contracts Explained", Second Edition, Packt Publishing, 2018.
2	Joseph J. Bambara Paul R. Allen, "Blockchain A Practical Guide to Developing Business, Law, and
	Technology Solutions", McGraw Hill Education ,2018.
3	Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, "Bitcoin and Cryptocurrency Technologies: A
	Comprehensive Introduction" Princeton University Press, 2016.
4	Manav Gupta "Blockchain for Dummies", IBM Limited Edition 2017.
5	Antonopoulos and G. Wood, "Mastering Ethereum: Building Smart Contracts and Dapps", O'Reilly
	Publishing, 2018
6	NPTEL Course: Blockchain and its applications https://archive.nptel.ac.in/courses/106/105/106105235/

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Comprehend the working of Blockchain technology	K2
CO2	Narrate working principle of smart contracts and create them using solidity for given scenario.	К3
CO3	Comprehend the working of Hyperledger in an real time application	K2
CO4	Apply the learning of solidity to build de-centralized apps on Ethereum	К3
CO5	Develop applications on Blockchain	K3

COURSE ARTI	COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6				
CO1	2		3	2		3				
CO2	2	3	3	3	2	3				
CO3	3		3	2		3				
CO4	3	3	3	3	2	3				
CO5	3	3	3	3	2	3				
23CSOE33	3	3	3	3	2	3				
1 – Slight, 2 – M	oderate, 3	– Substar	itial			•				

Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20	40	40				100
CAT2	20	30	50				100
Individual		0	0 32	S-00			
Assessment 1/		30	70	(<u>0</u>)			100
Case Study 1/		902	WILLIAM OF				
Seminar 1 /			-	7			
Project1		1100 4	東	//			
Individual			AUD V	V.			
Assessment 2/		40	60	//			100
Case Study 2/		// 8		1			
Seminar 2 /		1 8		N.			
Project 2		A Be		Z60			
ESE	10	60	30				100

	ENGLISH FOR RESEARCH	PAPER WRITIN	G			
23EEACZ1	(Common to all Br	ranches)				
PREREQUISIT	EES	CATEGORY	L	Т	P	C
	NIL	AC	2	0	0	0
Course	The objective of the course is to make the learn	ners understand th	e form	at and	lintr	icacies
Objectives						
UNIT – I	PLANNING AND PREPARATION			(6 Peri	iods
Need for publish	ing articles, Choosing the journal, Identifying a mod	lel journal paper, (Creatio	n of fi	les fo	r each
section, Expectat	ions of Referees, Online Resources.					
UNIT – II	SENTENCES AND PARAGRAPHS			(6 Peri	iods
Basic word in E	English, Word order in English and Vernacular, place	eing nouns, Verbs,	Adjec	tives,	and A	Adverb
suitably in a ser	ntence, Using Short Sentences, Discourse Markers a	nd Punctuations- S	Structui	e of a	Para	ıgraph,
Breaking up leng	thy Paragraphs.					
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC	OF WRITING			6 Peri	iods
Accuracy, Brevit	ry and Clarity in Writing, Reducing the linking words	s, Avoiding redund	ancy, A	Approp	riate	use of
Relative and Re	flexive Pronouns, Monologophobia, verifying the jo	ournal style, Logic	cal Co	nnectic	ns be	etween
others author's fi	ndings and yours.					
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND	PARAPHRASINO	\mathbf{G}		6 Peri	ods
Making your fine	dings stand out, Using bullet points headings, Tables a	nd Graphs- Availir	ng noi	n-expe	rts op	inions,
Hedging, Toning	Down Verbs, Adjectives, Not over hedging, Limitation	ons of your research	١.			
UNIT – V	SECTIONS OF A PAPER	7		(6 Peri	iods
Titles, Abstracts,	Introduction, Review of Literature, Methods, Results,	Discussion, Conclu	usions,	Refere	ences.	
Contact Periods						
Lecture: 30 Per	riods Tutorial: 0 Periods Practical: 0 Period	s Total: 30 Peri	ods			

1	Goldbort R, "Writing for Science", Yale University Press (available on GoogleBooks),2006
2	Day R, How to Write and Publish a Scientific Paper, Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.
4	Adrian Wallwork," English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011.

COURS	E OUTCOMES:	Bloom's
		Taxonomy
Upon co	mpletion of this course the learners will be able to	Mapped
CO1	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph writing.	K4
CO3	Practice unambiguous writing.	K3
CO4	Avoid wordiness in writing.	K2
CO5	Exercise the elements involved in writing journal paper.	К3

COURSE ARTICULATION MATRIX :								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	1	1	1	1		
CO2	3	3	1	1	1	1		
CO3	3	3	1	1	1	1		
CO4	3	3	1	1	1	1		
CO5	3	3	1	1	1	1		
23EEACZ1	3	3	1	1	1	1		
1 – Slight, 2 – Moderat	e, 3 – Substanti	al	•	•	•	•		

Test / Bloom's Remembering		Understanding	Applying	Analyzing	Evaluating	Creating	Tota
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual			Jummy D				
Assessment 1/		7 61101	40.50 NC (16 6 11)	307			
Case Study 1/	-	50	50	V -	-	-	100
Seminar 1/							
Project 1		180 4	To the				
Individual				11			
Assessment 2/				1			
Case Study 2/	-	50	50	1 -	-	-	100
Seminar 2/		1 8					
Project 2		黑 / 是		VA.			
ESE	30	30	40	/2% -	-	-	100

23EEACZ2	DISASTER MANAGEMENT	
Zoeen (CZ2	(Common to all Branches)	
Course	To become familiar in key concepts and consequences about hazards, dis	saster and area of
Objectives	occurrence.	
	 To know the various steps in disaster planning. 	
	To create awareness on disaster preparedness and management.	
UNIT – I	INTRODUCTION	6 Periods
Disaster: Det	finition, Factors and Significance; Difference between Hazard and Disaster; Na	tural and Manmade
Disasters: Di	fference, Nature, Types and Magnitude. Areas proneto ,EarthquakesFloods ,Dre	oughts, Landslides,
Avalanches,	Cyclone and Coastal Hazards with Special Reference to Tsunami.	
UNIT – II	REPERCUSSIONS OF DISASTERS AND HAZARDS	6 Periods
Economic Da	amage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Dis	asters: Earthquakes,
Volcanisms,	Cyclones, Tsunamis, Floods, Droughts and Famines, Landslides and Avalanches,	Man-made disaster:
Nuclear Read	tor Meltdown, Industrial Accidents, Oil Slicks and Spills, Outbreaks of Disease	and Epidemics, War
and Conflicts	•	•
UNIT – III	DISASTER PLANNING	6 Periods
Disaster Plan	nning-Disaster Response Personnel roles and duties, Community Mitigation	Goals, Pre-Disaster
Mitigation Pl	an, Personnel Training, Comprehensive Emergency Management, Early Warning S	Systems.
UNIT – IV	DISASTER PREPAREDNESS AND MANAGEMENT	6 Periods
Preparedness	: Monitoring of Phenomena Triggering a Disaster or Hazard; Evaluation of R	Lisk: Application of
_	ing, Data from Meteorological and other Agencies, Media Reports: Government	
Preparedness		•
UNIT – V	RISK ASSESSMENT	6 Periods
Disaster Rish	c: Concept and Elements, Disaster Risk Reduction, Global and National Disa	ster Risk Situation.
Techniques o	of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, Peop	ole's Participation in
_	nent, Strategies for Survival.	-
Contact Peri	ods:	

1	R. Nishith, Singh AK, "Disaster Management In India: Perspectives, Issues And Strategies", New Royal book Company, 2007.
2	Sahni, PardeepEt.Al. (Eds.), "Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi, 2010
3	Goel S. L, "Disaster Administration And Management Text And Case Studies", Deep & Deep Publication Pvt. Ltd., New Delhi, 2008.
4	Jagbir Singh, "Disaster Management: Future Challenges And Opportunities", I.K. International Publishing House Pvt. Ltd., New Delhi, 2007.
5	Damon Coppola "Introduction To International Disaster Management", Butterworth-Heinemann, 2015
6	Ryan Lanclos "Dealing With Disasters: Gis For Emergency Management", ESRI Press 2021.

COUI	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Differentiate hazard and disaster with their significance.	K4
CO2	Analyse the causes and impact of natural and manmade disaster.	K4
CO3	Execute the steps involved in disaster planning.	K4
CO4	Predict vulnerability of disaster and to prevent, mitigate their impact.	K4
CO5	Prepare risk assessment strategy for national and global disaster.	K4

COURSE ARTICULATION MATRIX							
COs/POs	PO1	PO2	PO3	PO4	PO5		
CO1	2	1	1	2	2		
CO2	1	2	1	1	1		
CO3	1	1	1	2	2		
CO4	1	1	1	2	2		
CO5	2	1	1	2	2		
23EEACZ2	1	1	1	2	2		
1 – Slight, 2 – Moderate, 3	3 – Substantial	•	•				

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50					100
CAT2			100				100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project 1	50	50	· ·				100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2		\$4580m	100				100
ESE	25	25	50				100

23EEACZ3	VALUE EDUCATION (Common to all Branches)							
PREREQUISIT	ES	CATEGORY	L	T	P	C		
	NIL	AC	2	0	0	0		
Course Objectives	 Value of education and self- developme Requirements of good values in students Importance of character 							
UNIT – I	ETHICS AND SELF-DEVELOPMENT				6 l	Periods		
	nd individual attitudes. Work ethics, Indian visitrds and principles. Value judgements.	ion of humanism.	Mora	l and	d non	-moral		
UNIT – II	PERSONALITY AND BEHAVIOR DEVELO		6 l	Periods				
•	VALUES IN HUMAN LIFE ultivation of values, Sense of duty. Devotion, eanliness. Honesty, Humanity. Power of faith, Na				oncen			
UNIT – IV	VALUES IN SOCIETY	/			6 l	Periods		
•	Happiness Vs suffering, love for truth. Awar Doing best for saving nature.	e of self-destructi	ve ha	bits.	Asso	ciation		
UNIT – V	POSITIVE VALUES				6 I	Periods		
reincarnation. Eq	Competence –Holy books vs Blind faith. Self-muality, Nonviolence, Humility, Role of Women. Abl. Honesty, Studying effectively.	-						
Contact Periods		520						
Lecture: 30 Peri	ods Tutorial: 0 Periods Practical: 0 P	eriods Total: 30	0 Peri	ods				

1	Chakroborty, S.K. "Values and Ethics for organizations Theory and practice" , Oxford University Press, New Delhi, 1998
2	Dr. Yogesh Kumar Singh, "Value Education", A.P.H Publishing Corporation, New Delhi,2010
3	R.P Shukla, "Value Education and Human Rights", Sarup and Sons, NewDelhi, 2004
4	https://nptel.ac.in/courses/109104068/36

COUI	COURSE OUTCOMES:	
		Taxonomy
Upon	Upon completion of the course, the students will be able to:	
CO1	Know the values and work ethics.	K3
CO2	Enhance personality and 152ehavior development.	K3
CO3	Apply the values in human life.	К3
CO4	Gain Knowledge of values in society.	К3
CO5	Learn the importance of positive values in human life.	К3

COURSE ARTICULATION MATRIX								
Cos/Pos	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	-	-	3	-	-	1		
CO2	-	-	3	-	-	1		
CO3	-	-	3	-	-	1		
CO4	-	-	3	-	-	1		
CO5	-	-	3	-	-	1		
23EEACZ3	-	-	3	-	-	1		
1 – Slight, 2 – Moderate, 3 –	Substantial							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%		-	-	100%
ESE	20%	50%	30%	N.S.	-	-	100%

2255 4 674	CONSTITUTION OF	INDIA				
23EEACZ4	(Common to all Brand	ches)				
PREREQUISITE	S	CATEGORY	L	T	P	C
NIL		AC	2	0	0	0
Course	To address the importance of constitutional right	s and duties				
Objectives	To familiarize about Indian governance and local	l administration				
	• To know about the functions of election commiss	sion.				
UNIT – I	INDIAN CONSTITUTION			6 l	Perio	ds
ļ	g of the Indian Constitution: History Drafting Comm ndian Constitution: Preamble Salient Features.	nittee, (Compos	sition	& Wo	rking	g) -
UNIT – II CONSTITUTIONAL RIGHTS & DUTIES						ds
Remedies, Directiv UNIT – III Organs of Govern	n, Right to Freedom of Religion, Cultural and Educative Principles of State Policy, Fundamental Duties. ORGANS OF GOVERNANCE ance: Parliament, Composition, Qualifications and Disquent, Governor, Council of Ministers, Judiciary, Applyers and Functions.	ualifications, Po	owers	61	Perio	ds ons,
UNIT – IV	LOCAL ADMINISTRATION			6 Periods		
and role of Elected	on: District's Administration head: Role and Importance, and Representative, CEO of Municipal Corporation. Par officials and their roles, CEO Zila Panchayat: Position and departments), Village level: Role of Elected and App	nchayat raj: Int and role. Block	roduct level:	ion, P Organ	RI: Z	Zila onal
UNIT – V	ELECTION COMMISSION			61	Perio	ds
Election Commissi	on: Role and Functioning. Chief Election Commissioner on: Role and Functioning. Institute and Bodies for the we					tate
Contact Periods :						
Lecture: 30 Perio	ls Tutorial: 0 Periods Practical: 0 Periods To	tal: 30 Periods				

1	"The Constitution of India", 1950 (Bare Act), Government Publication.
2	Dr. S. N. Busi, Dr. B. R. Ambedkar "Framing of Indian Constitution", 1st Edition, 2015.
3	M. P. Jain, "Indian Constitution Law", 7th Edn., Lexis Nexis, 2014.
4	D.D. Basu, "Introduction to the Constitution of India", Lexis Nexis, 2015.

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Discuss the growth of the demand for civil rights in India.	K2
CO2	Discuss the intellectual origins of the framework of argument that informed	K2
	the conceptualization of social reforms leading to revolution in India.	
CO3	Understand the various organs of Indian governance.	K2
CO4	Familiarize with the various levels of local administration.	K2
CO5	Gain knowledge on election commission of india.	K2

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	-	1	1	1	1			
CO2	-	-	1	1	1	2			
CO3	-	-	1	1	2	1			
CO4	-	-	1	1	1	1			
CO5	-	-	1	1	1	1			
23EEACZ4	-	-	1	1	1	1			
1 – Slight, 2 – Moder	rate, 3 – Substa	antial		•					

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%		-	-	100%
ESE	20%	50%	30%) <u>3</u>	-	-	100%

(1) 10 10

22EE A.C	75	PEDAGOGY S	STUDIES					
23EEACZ5 (Common to all Branches)								
PREREQUISIT	TES		CATEGORY	L	T	P	C	
NIL			AC	2	0	0	0	
Course	• T	o understand of various theories of learning	, prevailing pedag	gogical	prac	tices	and	
Objectives	de	esign of curriculum in engineering studies.						
	• A	pplication of knowledge in modification of cur	riculum, its assessi	nent a	nd int	rodu	ction	
of innovation in teaching methodology.								
UNIT – I INTRODUCTION								
Introduction and	Methodol	ogy: Aims and rationale, Policy background,	Conceptual framev	vork ar	nd ter	mino	logy	
Theories of lear	ning, Curri	culum, Teacher education. Conceptual framev	work, Research qu	estions	s. Ove	erviev	w of	
methodology and	d Searching							
UNIT – II	PEDAGO	OGICAL PRACTICES			6 Periods			
Thematic overv	iew: Pedag	ogical practices are being used by teachers	in formal and int	formal	class	room	ns in	
developing cour	ntries. Curr	iculum, Teacher education. Evidence on the	effectiveness of 1	oedago	gical	prac	tices	
Methodology for	the in dept	h stage: quality assessment of included studies.						
UNIT – III	PEDAGO	OGICAL APPROACHES			6 Periods			
How can teache	r education	(curriculum and practicum) and the school	curriculum and gu	idance	mate	rials	best	
		y? Theory of change. Strength and nature of	•					
		gogic theory and pedagogical approaches. Teac	•					
strategies.								
UNIT – IV	PROFES	SIONAL DEVELOPMENT			6 1	Perio	ds	
Professional dev	elopment: a	alignment with classroom practices and follow-	up support. Peer si	apport	, Sup	port :	from	
	_	mmunity. Curriculum and assessment Barriers			_	_		
class sizes.		8	C					
UNIT – V	CURRIC	ULUM AND ASSESSMENT			6 1	Perio	ds	

Research gaps and future directions Research design Contexts Pedagogy Teacher education Curriculum and assessment Dissemination and research impact.

Contact Periods:

Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

1	Ackers J, Hardman F, Classroom interaction in Kenyan primary schools, Compare, 31 (2): 245-261, 2001.
2	Alexander RJ, Culture and pedagogy: International comparisons in primary education. Oxford and
	Boston: Blackwell, 2001
3	Akyeampong K, Lussier K, Pryor J, Westbrook J, Improving teaching and learning of basic maths and
	reading in Africa: Does teacher preparation count? International Journal Educational Development, 33
	(3): 272–282, 2013.
4	Agrawal M, Curricular reform in schools: The importance of evaluation, Journal of Curriculum Studies,
	36 (3): 361-379, 2004

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Explain the concept of curriculum, formal and informal education systems and teacher	К3
	education.	
CO2	Explain the present pedagogical practices and the changes occurring in pedagogical	К3
	approaches	
CO3	Understand the relation between teacher and community, support from various levels of	К3
	teachers to students and limitation in resources and size of the class.	
CO4	Perform research in design a problem in pedagogy and curriculum development.	К3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	-	-	1	1	2	1
CO2	-	-	1	1	1	2
CO3	-	-	1	1	2	1
CO4	-	-	1	1	2	1
23EEACZ5	- 2	Q"	"B1	1	2	1
– Slight, 2 – Moder	ate, 3 – Substar	ntial	Br. 100 THE COLUMN	7		

ASSESSMENT	PATTERN – T	HEORY		5 //			
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%		-	-	100%
CAT2	20%	50%	30%	VA.	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%		-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23EEACZ	6	STRESS MANAGEM (Common to all						
PREREQUISIT	ΓES		CATEGORY	L	T	P	C	
		NIL	AC	2	0	0	0	
Course	•	To create awareness on the benefits of yoga and	d meditation.	1	-			
Objectives	•	To understand the significance of Asana and Pr	anayama.					
UNIT – I PHYSICAL STRUCTURE AND ITS FUNCTIONS								
Yoga - Physical	structu	re, Importance of physical exercise, Rules and re	gulation of simplif	ied pl	nysic	al exe	rcises,	
hand exercise,	leg e	xercise, breathing exercise, eye exercise, kaj	palapathy, mahara	sana,	bod	ly ma	issage,	
acupressure, boo	ly relax	ation.						
UNIT – II	YOG	A TERMINOLOGIES				6 P	eriods	
Yamas - Ahimsa	a, satya	astheya, bramhacharya, aparigraha						
Niyamas- Sauch	a, santo	osha, tapas, svadhyaya, Ishvara pranidhana.						
UNIT – III	ASA	NA .				6 P	eriods	
Asana - Rules &	Regul	ations – Types & Benefits						
UNIT – IV	PRA	NAYAMA				6 P	eriods	
Regularization of breathing techniques and its effects-Types of pranayama								
UNIT – V MIND							eriods	
Bio magnetism&	k mind	- imprinting & magnifying - eight essential facto	rs of living beings,	Ment	tal fr	equen	cy and	
ten stages of mir	nd, bene	efits of meditation, such as perspicacity, magnania	nity, receptivity, ad	aptab	ility,	creat	ivity.	
Contact Period	s:	* /						
Lecture: 30 Per	riods	Tutorial: 0 Periods Practical: 0 Perio	ods Total: 3	0 Per	iods			

1	Janardan Swami Yogabhyasi Mandal, "Yogic Asanas for Group Training-Part-I" , Nagpur.
2	Swami Vivekananda, "Rajayoga or conquering the Internal Nature", Advaita Ashrama (Publication
	Department), Kolkata.
3	Pandit Shambu Nath, "Speaking of Stress Management Through Yoga and Meditation", New Dawn
	Press, New Delhi, 2016.
4	K. N. Udupa, "Stress and its management by Yoga", Motilal Banarsidass Publishers, New Delhi, 2007.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Practice physical exercises and maintain good health.	К3
CO2	Attain knowledge on the various concepts of Yoga.	K2
CO3	Perform various asanas with an understanding on their benefits.	К3
CO4	Practice breathing techniques in a precise manner.	К3
CO5	Attain emotional stability and higher level of consciousness.	K2

CO /BO									
COs/POs	PO1	PO2	PO3	PO4	PO5				
CO1	-	-	-	-	2				
CO2	-	-	-	-	3				
CO3	-	-	-	-	2				
CO4	-	-	-	-	1				
CO5	-	-	-	-	1				
23EEACZ6	-	-	-	-	2				

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40%	30%	30%	-	-	-	100%
CAT2	30%	40%	30%	-	-	-	100%
Individual Assessment1/ Case study1/ Seminar 1/ Project1	40%	40%	20%		-	-	100%
Individual Assessment2/ Case study2/ Seminar 2 / Project2	30%	30%	40%	-	-	-	100%
ESE	30%	30%	40%	A	-	-	100%

23EEACZ7	PERSONALITY DEVELOPMENT THROUGH LIFE ENLIGHTENMENT (Common to all Branches)						
PREREQUISITI	ES:	CATEGORY	L	T	P	С	
	NIL	AC	2	0	0	0	
• To familiar with Techniques to achieve the highest goal in life.							
Objectives	To become a person with stable mind, pleasing	g personality and deter	minat	ion.			
UNIT – I					6 Pe	riods	
Neetisatakam-Hol Verses- 26,28,6.	istic development of personality-Verses- 19,20,21,22 (v	wisdom)-Verses29,31,	32 (pı	ride d	& her	roism)-	
UNIT – II					6 Pe	riods	
	(dont's)-Verses- 71,73,75,78 (do's) Approach to Chapter 2-Verses 41, 47,48,	day to day work	and d	luties	s Sl	hrimad	
UNIT – III					6 Pe	riods	
Shrimad Bhagwad 46, 48.	dGeeta -Chapter 3-Verses 13, 21, 27, 35, Chapter 6-Ver	rses 5,13,17, 23, 35,- 0	Chapt	er 18	3-Ver	ses 45,	
UNIT – IV					6 Pe	riods	
	ic knowledgeShrimad BhagwadGeeta: -Chapter2-Verse lity of Role model.	es 56, 62, 68 -Chapter	12 -V	erses	s 13,	14, 15,	
UNIT – V	(Value Book)				6 Pe	riods	
Shrimad Bhagwad Verses 37,38,63.	dGeeta: Chapter2-Verses 17, Chapter 3-Verses 36,37,4	2, Chapter 4-Verses 1	8, 38	,39-0	Chapt	er18 –	
Contact Periods: Lecture: 30 Periods	ods Tutorial: 0 Periods Practical: 0 Periods	Total: 30 Periods					

1	Swami SwarupanandaAdvaita Ashram " Srimad Bhagavad Gita ",AdvaitaAshrama, Kolkata,2016								
2	P.Gopinath, Rashtriya Sanskrit Sansthanam "Bhartrihari's Three Satakam" (Niti-sringar-vairagya),								
	New Delhi, 1986.								
3	Swami Mukundananda, JagadguruKripalujiYog "Bhagavad Gita: The Song Of God", USA,2019								
4	A.C. Bhaktivedanta Swami Prabhupada "Bhagavad-Gita As It Is",Bhaktivedanta Book Trust								
	Publications, 2001								

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
CO1	Apply the Holistic development in life	K4
CO2	Effective Planning of day to day work and duties	K4
CO3	Identify mankind to peace and prosperity	K4
CO4	Develop versatile personality.	K4
CO5	Awakening wisdom in life	K4

COURSE ARTICULATION MATRIX											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6					
CO1	-	-	1	-	-	-					
CO2	-	-	1	-	-	-					
CO3	-	-	1	-	-	-					
CO4	-	-	1	-	-	-					
CO5	-	-	1	-	-	-					
23EEACZ7	-	-	1	_	-	-					
1 - Slight, 2 - N	Moderate, 3 -	- Substantial									

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

23EEACZ8	SANSKRIT FOR TECHNICAL (Common to all Branc	111101111111111111111111111111111111111							
PREREQUIS	`	CATEGORY	L	Т	P	C			
NIL		AC	2	0	0	0			
Course Objectives	To get a working knowledge in mustrous sanskrit, the scientific language								
		 Enhancing the memory power. Learning of Sanskrit to develop the logic in mathematics, science & other subjects. 							
UNIT – I	BASICS OF SANSKRIT			6	Perio	ds			
Alphabets in S	anskrit, Past/Present/Future Tense.								
UNIT – II	SENTENCES AND ROOTS			6 Periods					
Simple Senten	ces - Order, Introduction of roots								
UNIT – III	SANSKRIT LITERATURE			6	Perio	ds			
Technical info	rmation about Sanskrit Literature		•						
UNIT – IV	TECHNICAL CONCEPTS -1			6	Perio	ds			
Technical cond	epts of Engineering-Electrical, Mechanical		•						
UNIT – V	TECHNICAL CONCEPTS -2			6	Perio	ds			
Technical cond	epts of Engineering-Architecture, Mathematics								
Contact Perio	ds:								
Lecture: 30 P	eriods Tutorial: 0 Periods Practical: 0 Periods	Total: 30 Period	ls						

1	Dr. Vishwas, "Abhyaspustakam", Samskrita -Bharti Publication, New Delhi, 2020.
2	Prathama Deeksha Vempati Kutumbshastri, " Teach Yourself Sanskrit ", Rashtriya Sanskrit Sansthanam, New Delhi, Publication, 2009.
3	Suresh Soni, "India's Glorious Scientific Tradition", Ocean books (P) Ltd., New Delhi, 2006.

COURS	E OUTCOMES:	Bloom's Taxonomy
Upon co	mpletion of the course, the students will be able to:	Mapped
CO1	Recognize ancient literature and their basics	K3
CO2	Formulate the sentences with order and understand the roots of Sanskrit	K2
CO3	Acquire familiarity of the major traditions of literatures written in Sanskrit	K3
CO4	Distinguish the Technical concepts of Electrical & Mechanical Engineering	K2
CO5	Categorize the Technical concepts of Architecture & Mathematics	K2

COURSE ARTICULATION MATRIX									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	-	-	-	1	2	1			
CO2	-	-	-	1	2	-			
CO3	-	-	-	1	1	1			
CO4	-	-	-	2	1	1			
CO5	-	-	-	1	2	1			
23EEACZ8	-	-	-	1	2	1			
1 – Slight, 2 – Moder	ate, 3 – Substa	ntial				•			

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	20%	50%	30%	-	-	-	100%
CAT2	20%	50%	30%	-	-	-	100%
Individual Assessment 1 / Case Study 1/ Seminar 1 / Project1	20%	50%	30%	-	-	-	100%
Individual Assessment 2 / Case Study 2/ Seminar 2 / Project 2	20%	50%	30%	-	-	-	100%
ESE	20%	50%	30%	-	-	-	100%

