

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

Curriculum For Post Graduate M. E. Computer Science and Engineering (Full Time)

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 FAX: +91 0422 - 2433355 E.mail: coegct@gmail.com

VISION AND MISSION OF THE DEPARTMENT

VISION

To be in the frontier of Computer Science and Engineering and to produce globally competent graduates with moral values committed to build a vibrant nation.

MISSION

- To strengthen the core competence in Computer Science and Engineering through analytical learning.
- To produce successful graduates with personal and professional responsibilities and commitment to lifelong learning.
- To uplift innovative research in Computer Science and Engineering to serve the needs of Industry, Government and Society.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 M.E.COMPUTER SCIENCE AND ENGINEERING

FIRST SEMESTER

SI.	Course	Course Title	Category	CA	End Sem	Total		Hou	rs/Wee	k
No	Code	course mile	Category	Marks	Marks	Marks	L	Т	Р	С
			THEORY	Y						
1	23CSFCZ1	Research Methodology and IPR (Common to All Branches)	FC	40	60	100	3	0	0	3
2	23CSFC02	Mathematical Foundations of Computer Science	FC	40	60	100	3	1	0	4
3	23CSPC01	Formal Languages, Machines and Computations	PC	40	60	100	3	1	0	4
4	23CSPC02	High Performance Computer Architecture	РС	40	60	100	3	0	0	3
5	23CSPC03	Algorithms and Complexity Analysis	PC	40	60	100	3	0	0	3
6	23CSPEXX	Professional Elective I	PE	40	60	100	3	0	0	3
7	23CSACXX	Audit Course I	AC	40	60	100	2	0	0	0
	PRACTICAL									
8	23CSPC04	Advanced Algorithms and Elective Laboratory	PC	60	40	100	0	0	3	1.5
			340	460	800	20	2	3	21.5	

SECOND SEMESTER

SI.	Course Code	Course Title	Catagory	СА	End	Total		Hour	s/Weel	κ.
No	Course Code	Course The	Category	Marks	Marks	Marks	L	Т	Р	С
			THEORY	, ,						
1	23CSPC05	Advanced Database Systems	РС	40	60	100	3	0	0	3
2	23CSPC06	Advanced Computer Networks	PC	40	60	100	3	0	0	3
3	23CSPC07	Advanced Operating System	РС	40	60	100	3	0	0	3
4	23CSPEXX	Professional Elective II	PE	40	60	100	3	0	0	3
5	23CSPEXX	Professional Elective III	PE	40	60	100	3	0	0	3
6	23CSACXX	Audit Course II	AC	40	60	100	2	0	0	0
	1		PRACTICA	L						
7	23CSPC08	Advanced Computer Networks and Electives Laboratory	РС	60	40	100	0	0	3	1.5
8	23CSEE01	Mini Project	EEC	40	60	100	0	0	4	2
	•		340	460	800	17	0	7	18.5	

SI. No	Course Code	Course Title	Category	СА	End Sem	Total		Hours/Week					
No	Course Coue		Cuttgory	Marks	Marks	Marks	L	Т	Р	С			
THEORY													
1	23CSPEXX	Professional Elective IV	PE	40	60	100	3	0	0	3			
2	23\$OEXX	Open Elective	OE	40	60	100	3	0	0	3			
			PRACTIC	AL									
3	23CSEE02	Internship/ Industrial Training	EEC	100	-	100	-	-	**	2			
4	23CSEE03	Project Phase I	EEC	100	100	200	0	0	12	6			
			280	220	500	6	0	12	14				

THIRD SEMESTER

** 4 Weeks Internship/Industrial training

FOURTH SEMESTER

SI.	Course Code	Course Title	Category CA		Category CA End Total Marka Sem Marka		CA End Sem			Hour	s/Week		
No	course coue		Cutegory	Marks	Marks	Marks	L	Т	Р	С			
	PRACTICAL												
1	23CSEE04	Project Phase II	EEC	200	200	400	0	0	24	12			
		Total		200	200	400	0	0	24	12			

Total Credits : 66

PROFESSIONAL ELECTIVE (PE)

SI No	Course Code	le Course Title C	Catagory	CA	End Sem	Total]	Hour	s/We	ek
51.110	Course Coue	Course Thie	Category	Marks	Marks	Marks	L	Т	Р	С
1	23CSPE01	Digital Image Processing	PE	40	60	100	3	0	0	3
2	23CSPE02	Embedded Systems	PE	40	60	100	3	0	0	3
3	23CSPE03	Fuzzy Logic and Neural Networks	PE	40	60	100	3	0	0	3
4	23CSPE04	Cloud Computing	PE	40	60	100	3	0	0	3
5	23CSPE05	Advanced Software Engineering	PE	40	60	100	3	0	0	3
6	23CSPE06	Pattern Recognition	PE	40	60	100	3	0	0	3

PROFESSIONAL ELECTIVES – I

PROFESSIONAL ELECTIVES - II

CL N	Course	Course Title Cat		СА	End	Total	Hours/Week				
SI.NO	Code	Course litte	Category	Marks		Marks	L	Т	Р	С	
1	23CSPE07	Computer Vision Engineering	PE	40	60	100	3	0	0	3	
2	23CSPE08	Internet of Things	PE	40	60	100	3	0	0	3	
3	23CSPE09	Network Science	PE	40	60	100	3	0	0	3	
4	23CSPE10	Machine Learning	PE	40	60	100	3	0	0	3	
5	23CSPE11	Advanced Data Structures	PE	40	60	100	3	0	0	3	
6	23CSPE12	Cryptography and Network Security	PE	40	60	100	3	0	0	3	

GLN	Course	Course Title Cate		СА	End	Total]	Hours/Week					
S1.No	Code	Course Little	Category	Marks	Sem Marks	Marks	L	Т	Р	С			
1	23CSPE13	Data Science	PE	40	60	100	3	0	0	3			
2	23CSPE14	Social Networks	PE	40	60	100	3	0	0	3			
3	23CSPE15	Information Retrieval	PE	40	60	100	3	0	0	3			
4	23CSPE16	Natural Language Processing	PE	40	60	100	3	0	0	3			
5	23CSPE17	Virtual Reality	PE	40	60	100	3	0	0	3			
6	23CSPE18	Theory of Modern Compilers	PE	40	60	100	3	0	0	3			

PROFESSIONAL ELECTIVES - III

PROFESSIONAL ELECTIVES - IV

SI.No	Course	Course Title C	Catagory	СА	End	Total	Hours/Week					
51.110	Code	Course Thie	Category	Marks	Marks	Marks	L	Т	Р	С		
1	23CSPE19	Deep Learning	PE	40	60	100	3	0	0	3		
2	23CSPE20	Cyber Forensics	PE	40	60	100	3	0	0	3		
3	23CSPE21	Mining Massive Datasets	PE	40	60	100	3	0	0	3		
4	23CSPE22	Data Center Networks	PE	40	60	100	3	0	0	3		
5	23CSPE23	Data Visualization	PE	40	60	100	3	0	0	3		
6	23CSPE24	Parallel Algorithms	PE	40	60	100	3	0	0	3		

LIST OF OPEN ELECTIVES

SI.	Course Code	Course Title	Catagowy	СА	End	Total]	Hour	s/We	ek
No	Course Coue	Course Thie	Category	Marks	Marks	Marks	L	Т	Р	С
1	23SEOE01	Building Bye-Law and Codes of Practice	OE	40	60	100	3	0	0	3
2	23SEOE02	Planning of Smart Cities	OE	40	60	100	3	0	0	3
3	23SEOE03	Green Building	OE	40	60	100	3	0	0	3
4	23EEOE04	Environment Health and Safety Management	OE	40	60	100	3	0	0	3
5	23EEOE05	Climate Change and Adaptation	OE	40	60	100	3	0	0	3
6	23EEOE06	Waste to Energy	OE	40	60	100	3	0	0	3
7	23GEOE07	Energy in Built Environment	OE	40	60	100	3	0	0	3
8	23GEOE08	Earth and Its Environment	OE	40	60	100	3	0	0	3
9	23GEOE09	Natural Hazard and Mitigation	OE	40	60	100	3	0	0	3
10	23EDOE10	Business Analytics	OE	40	60	100	3	0	0	3
11	23EDOE11	Introduction to Industrial safety	OE	40	60	100	3	0	0	3
12	23EDOE12	Operations Research	OE	40	60	100	3	0	0	3
13	23MFOE13	Occupational Health and Safety	OE	40	60	100	3	0	0	3
14	23MFOE14	Cost Management of Engineering Projects	OE	40	60	100	3	0	0	3
15	23MFOE15	Composite Materials	OE	40	60	100	3	0	0	3
16	23TEOE16	Global Warming Science	OE	40	60	100	3	0	0	3
17	23TEOE17	Introduction to Nano Electronics	OE	40	60	100	3	0	0	3

18	23TEOE18	Green Supply Chain Management	OE	40	60	100	3	0	0	3
19	23PSOE19	Distribution Automation System	OE	40	60	100	3	0	0	3
20	23PSOE20	Electricity Trading & Electricity Acts	OE	40	60	100	3	0	0	3
21	23PSOE21	Modern Automotive Systems	OE	40	60	100	3	0	0	3
22	23PEOE22	Virtual Instrumentation	OE	40	60	100	3	0	0	3
23	23PEOE23	Energy Management Systems	OE	40	60	100	3	0	0	3
24	23PEOE24	Advanced Energy Storage Technology	OE	40	60	100	3	0	0	3
25	23AEOE25	Design of Digital Systems	OE	40	60	100	3	0	0	3
26	23AEOE26	Basics of Nano Electronics	OE	40	60	100	3	0	0	3
27	23AEOE27	Advanced Processor	OE	40	60	100	3	0	0	3
28	23VLOE28	HDL Programming Languages	OE	40	60	100	3	0	0	3
29	23VLOE29	CMOS VLSI Design	OE	40	60	100	3	0	0	3
30	23VLOE30	High Level Synthesis	OE	40	60	100	3	0	0	3
31	23CSOE31	Artificial Intelligence and Machine Learning	OE	40	60	100	3	0	0	3
32	23CSOE32	Computer Network Engineering	OE	40	60	100	3	0	0	3
33	23CSOE33	Big Data Analytics	OE	40	60	100	3	0	0	3

LIST OF AUDIT COURSES (Common to All Branches)

SI.	Course Code	Course Title	Category	CA	End Sem	Total]	Hour	s/We	ek
No	Course Coue	course rule	Category	Marks	Marks	Marks	L	Т	Р	С
1	23CSACZ1	English for Research Paper Writing	AC	40	60	100	2	0	0	0
2	23CSACZ2	Disaster Management	AC	40	60	100	2	0	0	0
3	23CSACZ3	Value Education	AC	40	60	100	2	0	0	0
4	23CSACZ4	Constitution of India	AC	40	60	100	2	0	0	0
5	23CSACZ5	Pedagogy Studies	AC	40	60	100	2	0	0	0
6	23CSACZ6	Stress Management by Yoga	AC	40	60	100	2	0	0	0
7	23CSACZ7	Personality Development Through Life Enlightenment Skills	AC	40	60	100	2	0	0	0
8	23CSACZ8	Sanskrit for Technical Knowledge	AC	40	60	100	2	0	0	0

SUMMARY OF CREDIT DISTRIBUTION

	Course Work Subject						
S.No	Area	Ι	П	III	IV	Total	Percentage
1.	Foundation Course	7	0	0	0	07	10.61 %
2.	Professional Cores	11.5	10.5	0	0	22	33.33 %
3.	Professional Electives	3	6	3	0	12	18.18 %
4.	Employability Enhancement Courses	0	2	8	12	22	33.33 %
5.	Open Elective Courses	0	0	3	0	03	4.55 %
6.	Audit Courses	0	0	-	-	-	-
	Total Credits	21.5	18.5	14	12	66	100%

23CSEC71	
23CSFCZI	

RESEARCH METHODOLOGY AND IPR (Common to All Branches)

SEMESTER I

NILFC3003Course Objectives1. To impart knowledge on research methodology, Quantitative methods for problem solving, data interpretation and report writing 2. To know the importance of IPR and patent rights.Image: Course problem solving, data interpretation and report writing 2. To know the importance of IPR and patent rights.UNIT - IINTRODUCTIONL(9)Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question-Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code.UNIT - IIQUANTITATIVE METHODS FOR PROBLEM SOLVINGL(9)Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis.L(9)Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tabular and graphs, preparing data for analysis.L(9)Nuttre of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.L(9)Nuttre of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research innovation, patenting,	PREREQUISI	PREREQUISITES CATEGORY								
Course Objectives 1. To impart knowledge on research methodology, Quantitative methods for problem solving, data interpretation and report writing 2. To know the importance of IPR and patent rights. INTRODUCTION L(9) Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question-Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code. L(9) UNIT – II QUANTITATIVE METHODS FOR PROBLEM SOLVING L(9) Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis L(9) Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphis that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis. L(9) Nutre of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patentity under PCT. L(9) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: t		NIL	FC	3	0	0	3			
Objectives problem solving, data interpretation and report writing 2. To know the importance of IPR and patent rights. INTRODUCTION L(9) Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question-Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code. UNIT – II QUANTITATIVE METHODS FOR PROBLEM SOLVING L(9) Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis. L(9) Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis. L(9) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research report, referencing in academic writing. L(9) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Proceedure for grants of patenting and Development: technological research neovation, patenting, development. L(9) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Pro	Course	1. To impart knowledge on research methodolog	y, Quantitative m	etho	ds fo	or				
2. To know the importance of IPR and patent rights. UNIT - I INTRODUCTION L(9) Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question-Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code. UNIT – II QUANTITATIVE METHODS FOR PROBLEM SOLVING L(9) Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis. L(9) Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis. L(9) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Procedure for grants of Patentional Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT. L(9) UNIT – V PATENT RIGHTS L(9) Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Contact Periods Contact Periods: L(9) Patential Oper	Objectives problem solving, data interpretation and report writing									
UNIT - IINTRODUCTIONL(9)Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question-Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code.UNIT - IIQUANTITATIVE METHODS FOR PROBLEM SOLVINGL(9)Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis.L(9)Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tabular and graphs that show the relationship between two variables, Relation between frequency distributions and other graphs, preparing data for analysis.L(9)Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.L(9)Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.L(9)Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.L(9)Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.L	2. To know the importance of IPR and patent rights.									
Definition and objectives of Research – Types of research, Various Steps in Research process, Mathematical tools for analysis, Developing a research question-Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code. UNIT – II QUANTITATIVE METHODS FOR PROBLEM SOLVING L(9) Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis. L(9) Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis. L(9) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT. L(9) Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. L(9) Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. L(9) Patent Rights: Licensing and transfer of technology. Patent information and dat	UNIT – I	INTRODUCTION				Ι	(9)			
Mathematical tools for analysis, Developing a research question-Choice of a problem Literature review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code. UNIT – II QUANTITATIVE METHODS FOR PROBLEM SOLVING L(9) Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis. UNIT – III DATA DESCRIPTION AND REPORT WRITING L(9) Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis. Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing. UNIT – IV INTELLECTUAL PROPERTY L(9) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT. UNIT – V PATENT RIGHTS L(9) Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geo	Definition and	objectives of Research - Types of research, Var	ious Steps in Re	esear	rch	proc	ess,			
review, Surveying, synthesizing, critical analysis, reading materials, reviewing, rethinking, critical evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code. UNIT – II QUANTITATIVE METHODS FOR PROBLEM SOLVING L(9) Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis. UNIT – II DATA DESCRIPTION AND REPORT WRITING L(9) Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis. Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing. UNIT – IV INTELLECTUAL PROPERTY L(9) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT. UNIT – V PATENT RIGHTS L(9) Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	Mathematical to	ools for analysis, Developing a research question	-Choice of a pro	bler	n Li	itera	ture			
evaluation, interpretation, Research Purposes, Ethics in research – APA Ethics code.UNIT – IIQUANTITATIVE METHODS FOR PROBLEM SOLVINGL(9)Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis.L(9)UNIT – IIIDATA DESCRIPTION AND REPORT WRITINGL(9)Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis.L(9)Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing.L(9)Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.L(9)VINT – VPATENT RIGHTSL(9)Pattent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.L(9)Contact Periods: Lecture: 45 PeriodsTutorial: 0 PeriodsParetical: 0 PeriodsLecture: 45 PeriodsTutorial: 0 PeriodsParetical: 0 PeriodsTotal: 45 Periods	review, Surveyi	ng, synthesizing, critical analysis, reading materia	ls, reviewing, ret	hink	ting,	crit	ical			
UNIT - IIQUANTITATIVE METHODS FOR PROBLEM SOLVINGL(9)Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis.Image: Concepts of Correlation and Regression, Applications of Spectral Analysis.UNIT - IIIDATA DESCRIPTION AND REPORT WRITINGL(9)Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis.L(9)Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing.L(9)Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.L(9)VINT - VPATENT RIGHTSL(9)Pattent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.L(9)Contact Periods: Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 PeriodsTutorial: 0 PeriodsPractical: 0 Periods	evaluation, inter	pretation, Research Purposes, Ethics in research – A	APA Ethics code.							
Statistical Modeling and Analysis, Time Series Analysis Probability Distributions, Fundamentals of Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis.UNIT – IIIDATA DESCRIPTION AND REPORT WRITINGL(9)Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis.Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing.L(9)Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.L(9)VINT – VPATENT RIGHTSL(9)Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.L(9)Contact Periods: Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 Periods	UNIT – II	QUANTITATIVE METHODS FOR PROBLE	M SOLVING			Ι	(9)			
Statistical Analysis and Inference, Multivariate methods, Concepts of Correlation and Regression, Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis.UNIT – IIIDATA DESCRIPTION AND REPORT WRITINGL(9)Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis.Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing.L(9)Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.L(9)Patent Rights:Tutorial: 0 PeriodsPractical: 0 PeriodsContact PeriodsTutorial: 0 PeriodsPeriods	Statistical Mode	ling and Analysis, Time Series Analysis Probabilit	y Distributions, I	Fund	lame	ental	s of			
Fundamentals of Time Series Analysis and Spectral Analysis, Error Analysis, Applications of Spectral Analysis. UNIT – III DATA DESCRIPTION AND REPORT WRITING L(9) Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis. Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing. UNIT – IV INTELLECTUAL PROPERTY L(9) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT. UNIT – V PATENT RIGHTS L(9) Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Contact Periods Contact Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	Statistical Analy	sis and Inference, Multivariate methods, Concept	s of Correlation	and	Reg	ress	ion,			
Spectral Analysis.UNIT – IIIDATA DESCRIPTION AND REPORT WRITINGL(9)Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis.Steation between frequency distributions and other graphs, preparing data for analysis.Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing.L(9)UNIT – IVINTELLECTUAL PROPERTYL(9)Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development.International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.UNIT – VPATENT RIGHTSL(9)Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.L(9)Contact Periods:Tutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods	Fundamentals of	of Time Series Analysis and Spectral Analysis,	Error Analysis,	App	licat	tions	s of			
UNIT - IIIDATA DESCRIPTION AND REPORT WRITINGL(9)Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis.Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing.UNIT - IVINTELLECTUAL PROPERTYL(9)Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development.International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.L(9)Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.L(9)Contact Periods:Tutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods	Spectral Analysi	S.								
Tabular and graphical description of data: Tables and graphs of frequency data of one variable, Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis.Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing.UNIT – IVINTELLECTUAL PROPERTYL(9)Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development.International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.UNIT – VPATENT RIGHTSL(9)Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.L(9)Contact Periods: Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods	UNIT – III	DATA DESCRIPTION AND REPORT WRITI	NG			Ι	(9)			
Tables and graphs that show the relationship between two variables , Relation between frequency distributions and other graphs, preparing data for analysis.Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing.UNIT – IVINTELLECTUAL PROPERTYNature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development.International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.UNIT – VPATENT RIGHTSPatent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.Contact Periods:Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods	Tabular and gra	phical description of data: Tables and graphs of	frequency data	of o	ne v	/aria	ble,			
distributions and other graphs, preparing data for analysis.Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing.UNIT – IVINTELLECTUAL PROPERTYL(9)Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.L(9)UNIT – VPATENT RIGHTSL(9)Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.L(9)Contact Periods: Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods	Tables and grap	hs that show the relationship between two variab	les, Relation bet	wee	n fre	eque	ncy			
Structure and Components of Research Report, Types of Report, Layout of Research Report, Mechanism of writing a research report, referencing in academic writing. UNIT – IV INTELLECTUAL PROPERTY L(9) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT. UNIT – V PATENT RIGHTS L(9) Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	distributions and	l other graphs, preparing data for analysis.								
Mechanism of writing a research report, referencing in academic writing. UNIT – IV INTELLECTUAL PROPERTY L(9) Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT. UNIT – V PATENT RIGHTS L(9) Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	Structure and C	Components of Research Report, Types of Repo	ort, Layout of R	esea	rch	Rep	ort,			
UNIT – IVINTELLECTUAL PROPERTYL(9)Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development.Patenting and Development.International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.PATENT RIGHTSUNIT – VPATENT RIGHTSL(9)Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.Contact Periods:Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods	Mechanism of v	rriting a research report, referencing in academic w	riting.							
Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT. UNIT - V PATENT RIGHTS Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Contact Periods: Lecture: 45 Periods	UNIT – IV	INTELLECTUAL PROPERTY				Ι	L(9)			
Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT. UNIT - V PATENT RIGHTS L(9) Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	Nature of Intell	ectual Property: Patents, Designs, Trade and Cop	yright. Process c	of Pa	atent	ing	and			
International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT. UNIT - V PATENT RIGHTS L(9) Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods	Development: te	echnological research, innovation, patenting, develo	pment.							
patenting under PCT. UNIT - V PATENT RIGHTS L(9) Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Contact Periods: Lecture: 45 Periods	International Sc	enario: International cooperation on Intellectual I	Property. Procedu	re f	or g	rants	s of			
UNIT - VPATENT RIGHTSL(9)Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.Contact Periods:Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 Periods	patents, Patenting under PCT.									
Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods	UNIT – V	PATENT RIGHTS				Ι	(9)			
databases. Geographical Indications. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and									
Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	databases. Geographical Indications.									
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	Contact Period	S:								
	Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Peri	ods Total: 45 H	Perio	ods					

1	Stuart Melville and Wayne Goddard, "Research methodology: an introduction", Juta
	Academic, 2nd edition, 2014.
2	Donald H.McBurney and Theresa White, "Research Methods", 9th Edition, CengageLearning,
	2013
3	RanjitKumar, "Research Methodology: A Step by Step Guide for Beginners", 5th Edition,
	2019
4	Dr. C. R. Kothari and GauravGarg, "Research Methodology: Methods and Trends", New age
	international publishers, 4th Edition, 2018

COURS	SE OUTCOMES:	Bloom's Taxonomy
		Mapped
CO1	Formulate research question for conducting research.	K3
CO2	Analyze qualitative and quantitative data.	K4
CO3	Interpret research findings and give appropriate conclusions.	K2
CO4	Develop a structured content to write technical report.	K3
CO5	Summarize the importance of IPR and protect their research work through	K2
	intellectual property.	

COURSE ARTICULATION MATRIX :									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	1	3	3	1	3			
CO2	2	3	1	3	3	3			
CO3	2	3	3	3	3	3			
CO4	2	3	1	3	3	3			
CO5	-	-	2	-	1	3			
23CSFCZ1	2	3	3	3	3	3			
1 - Slight, 2 - M	loderate, 3 – Sul	ostantial	•	•	•	•			

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	40	40	20	-	-	-	100		
CAT2	40	40	20	-	-	-	100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	30	20	-	-	100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	30	20	-	-	100		
ESE	30	30	20	20	-	-	100		

23CSFC02 MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE SEMESTER I

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	FC	3	1	0	4

Course	To enhance the fundamental knowledge in probability concepts and its applications							
Objectives	elevant to various streams of Engineering and Technology. This is a foundation course							
	which mainly deals with topic such as probability, standard statistical distributions,							
	correlation and regression analysis, testing of hypothesis, linear programming problems,							
	transportation and assignment problems and plays an important role in the understanding							
	of Science, Engineering and Computer Science							
	among other disciplines.							
UNIT – I	RANDOM VARIABLES& DISTRIBUTIONSL(9)+T(3)							

Random variables: Discrete and continuous random variables- Moments, Moment generating functions-Binomial, Geometric, Poisson, Uniform, Exponential and Normal distributions.

UNIT - IICORRELATION AND REGRESSION ANALYSISL(9)+T(3)Correlation coefficients- Equation of the lines of regression, Regression coefficients, Regression plane-
Multiple and Partial correlation, Partial regression.L(9)+T(3)

UNIT	-III	TES	STIN	G OF HY	YPOT	HESIS					Ι	L(9)+T(3)
Large	samples:	Tests	for	Mean	and	proportions,	Small	samples:	Tests	for	Mean,	Variance
andAt	andAttributesusingt,F,Chi-Square distributions.											
UNIT	– IV	LI	NEAI	RPROG	RAM	MING PROB	LEMS				Ι	L(9)+T(3)
	1	- ·			1.1	<u>a</u> 1 · 1	N K . 1 . 1	a: 1		D ·	3.6	

Formulation of Linear Programming problem: Graphical Method - Simplex Method - Big M method - dual method.

UNIT – V MARKOVIAN QUEUEING MODELS

Markovian models- Birth and Death Queuing models- steady state results: Single and multiple server queuing models-queues with finite waiting rooms- Finite source models-Little's formula.

Contact Periods:

Lecture: 45 Periods

Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

L(9)+T(3)

1	Veerarajan T, "Probability, Statistics and Random Processes (with Queueing Theory and Queueing
	Networks)", McGraw Hill Education(India)Pvt Ltd., New Delhi, Fourth Edition 2016.
2	Taha H.A., "Operations Research: An introduction", Ninth Edition, Pearson Education, Asia, New
	Delhi, 2012.
3	Gupta S.C and Kapoor V.K, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 2015.
4	Gupta S.P, "Statistical Methods", Sultan Chand & Sons, New Delhi, 2015.
5	Veerarajan T, "Higher Engineering Mathematics", Yes Dee Publishing Pvt Ltd, Chennai, 2016.

6 *Kandasamy P, Thilagavathy K and Gunavathy K,* **"Probability and Queueing Theory",** S. Chand & Co, *Ramnagar, New Delhi, Reprint 2013.*

COUR	SE OUTCOMES:	Bloom's Taxonomy Mapped
CO1	Solve the engineering problems associated with random variables, moments and moment generating functions.	K4
CO2	Calculate the coefficient of correlation, regression coefficients, multiple and partial correlation.	K4
CO3	Test the significance of hypothesis connected to small and large samples using different parameters.	K4
CO4	Form the linear programming problems for a real time phenomena and find the solution for the same by using simplex, big M and dual methods.	K4
CO5	Analyse problems involving single and multi-server markovian models.	K4

COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6		
CO1	3	-	2	-	2	1		
CO2	3	-	2	-	2	1		
CO3	3	-	2	-	2	1		
CO4	3	-	2	-	2	1		
CO5	3	-	2	-	2	1		
23CSFC02	3	-	2	-	2	1		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN	ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	30	40	20	10	-	-	100				
CAT2	30	40	20	10	-	-	100				
	30	40	20	10	-	-					
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	30	40	20	10	-	-	100				
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	30	40	20	10	-	-	100				
ESE	30	40	20	10	-	-	100				

23CSPC01	FORMAL LANGUAGES, MA COMPUTATION	CHINES AND N		SEMESTER 1				
REREOUISITES		CATEGORY	L	Т	Р	С	1	

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	1	0	4

Course Objectives	The aims of this course are to understand basic theory of computation conc that lies at the backbone of all state-of-the-art applications and program des Students should understand the capabilities and limits of computation, parti applications and capabilities of deterministic and non-deterministic finite automata, context-free grammars, and finally Turing machines, as well as N completeness and complexity classes.	epts sign. icular NP-			
UNIT – I	REGULAR LANGUAGES AND APPLICATIONS	L(9)+T(3)			
Regular Expres variants and app	sions and applications – Regular languages, properties and applications – lications – Pumping lemma for RL.	- Finite Automata,			
UNIT – II	CONTEXT FREE LANGUAGES	L(9)+T(3)			
Grammars – Co Stack machines	ntext Free Languages, properties and applications – Stack machines – Con applications – Pumping lemma for CFL.	text free frontier –			
UNIT – III	TURING MACHINES	L(9)+T(3)			
Turing machine Universal TM –	basics – Simple TMs – Language define by TM – Variants of TMs and t Recursive, Recursively Enumerable languages and properties	heir equivalence –			
UNIT – IV	COMPUTABILITY AND UNCOMPUTABILITY	L(9)+T(3)			
Turing computable functions – Functions and languages – TM random access – Church-Turing thesis – Infinite models, finite machines – Halting problem – Reducibility – Rice's theorem – Grammars and Computability – Computable functions - Mathematical uncomputabilities					
UNIT – V	COST MODELS AND ALTERNATE ALGORITHMS	L(9)+T(3)			
Asymptotic notations, properties and functions – TM cost model – Time complexity classes – Space complexity classes – Higher complexity classes – Verification methods – NP, NP hard and NP Complete problems – Approximation algorithms, probabilistic and parallel algorithms – Interactive proof system					
Contact Periods: Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods					

1	John E Hopcroft, Rajeev Motwani, Jeffrey D Ullman, "Introduction to Automata Theory, Languages and Computation", Third Edition, Pearson, 2013
2	John C. Martin, "Introduction to languages and the theory of computation", Third edition, McGrawHil, 2015

3	Michael Sipser, "Introduction to Theory of Computation", Third Edition, Cengage learning, 2013.
4	H.R.Lewis and C.H.Papadimitriou, "Elements of the theory of Computation", Second Edition, Pearson, 2015

COURSE OU	TCOMES:	Bloom's Taxonomy Mapped
CO1	Identify, use and apply Formal Languages	К3
CO2	Solve given problem by constructing appropriate Automata/Machines	K4
CO3	Provide solution model for computable functions	K5
CO4	Classify the problems based on the cost analysis	K6
CO5	Use alternate models of computation such as Approximation algorithms, probabilistic and parallel algorithms and Interactive proof system	К3

COURSE ARTIC	ULATION	MATRIX :				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	-	3	3	3	-
CO2	3	-	2	3	3	-
CO3	3	-	3	3	3	-
CO4	2	-	3	3	2	1
CO5	1	-	1	1	1	2
23CSPC01	3	-	3	3	3	1
l – Slight, 2 – Mod	lerate, 3 – Su	ıbstantial				•

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	50	30	20	-	-	-	100		
CAT2	20	30	30	20	-	-	100		
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	-	-	40	40	20	100		
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	-	-	40	40	20	100		
ESE	40	30	30	-	-	-	100		

23CSPC02

HIGH PERFORMANCE COMPUTER ARCHITECTURE

SEMESTER I

L(9)

L(9)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	3	0	0	3

Course
ObjectivesAfter the completion of the course, the students will be able to understand fundamentals of
Computer Organization, performance laws and memory organization. Concepts and issues in
instruction level parallelism with different types of data Level Parallelism and different types of
thread level parallelism. extract the performance from software that is oblivious to architecture.UNIT – IFUNDAMENTALS OF QUANTITATIVE DESIGN AND ANALYSIS ANDL(9)

UNIT – I FUNDAMENTALS OF QUANTITATIVE DESIGN AND ANALYSIS AND MEMORY HIERARCHY DESIGN

RISC processors - Characteristics of RISC processors, RISC vs CISC, Classification of Instruction Set Architectures - Review of performance measurements - Trends in Technology, Power and Energy in Integrated Circuits and Cost - Dependability - Measuring, Reporting, and Summarizing Performance - Quantitative Principles of Computer Design - Memory Hierarchy Design – Introduction - Memory Technology and Optimizations - Ten Advanced Optimizations of Cache Performance - Virtual Memory and Virtual Machines - Cross-Cutting Issues: The Design of Memory Hierarchies.

Instruction-Level Parallelism: Concepts and Challenges - Basic Compiler Techniques for Exposing ILP -Reducing Branch Costs With Advanced Branch Prediction - Overcoming Data Hazards With Dynamic Scheduling - Dynamic Scheduling: Examples and the Algorithm - Hardware-Based Speculation - Exploiting ILP Using Multiple Issue and Static Scheduling - Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation - Advanced Techniques for Instruction Delivery and Speculation.

		-		-			
UNIT – III	DATA-LEVEL	PARALLELISM	IN	VECTOR,	SIMD,	GPU	L(9)
	ARCHITECTURI	ES ANDWAREHOU	SE-SCA	ALE COMPUT	ERS		

Introduction - Vector Architecture - SIMD Instruction Set Extensions for Multimedia - Graphics Processing Units - Detecting and Enhancing Loop-Level Parallelism - Programming Models and Workloads for Warehouse-Scale Computers - Computer Architecture of Warehouse-Scale Computers - The Efficiency and Cost of Warehouse-Scale Computers - Cloud Computing: The Return of Utility Computing.

UNIT – IV	THREAD-LEVEL PARALLELISM

Introduction - Centralized Shared-Memory Architectures - Performance of Symmetric Shared-Memory Multiprocessors - Distributed Shared-Memory and Directory-Based Coherence - Synchronization: The Basics - Models of Memory Consistency: An Introduction - Cross-Cutting Issues - Multicore Processors and Their Performance - The Future of Multicore Scaling.

UNIT – V	DOMAIN-SPECIFIC ARCHITECTURES	L(9)			
Introduction-	Guidelines for DSAs - Example Domain: Deep Neural Networks - Google's Tensor Pro	ocessing			
Unit, an Inference Data Center Accelerator - Microsoft Catapult, a Flexible Data Center Accelerator - Intel					
Crest, a Data Center Accelerator for Training - Pixel Visual Core, a Personal Mobile Device Image Processing					
Unit -A Vision	of Computer Architecture Research over the Next 15 Years.	_			

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

REFERENCES :

1	John L. Hennessey and David A. Patterson, "Computer Architecture – A Quantitative Approach",
	Morgan Kaufmann / Elsevier, Six edition, 2019.
2	William Stallings, "Computer Organization and Architecture Designing for Performance", Pearson
	Education, Tenth Edition, 2016.
3	D. A. Patterson and J. L. Hennessy, "Computer Organization and Design RISC-V Edition: The Hardware
	Software Interface," 1st Edition, Morgan Kaufmann Publishing Co., Menlo Park, CA., April 2017.
4	Luis Ceze, Mark D. Hill, Thomas F. Wenisch, "Arch2030: A Vision of Computer Architecture Research
	over the Next 15 Years", The Arch2030 Workshop at ISCA 2016.

COURSE OU	TCOMES:	Bloom's Taxonomy Mapped
CO1	Understand the components and operation of a memory hierarchy and the range of performance issues influencing its design.	K2
CO2	Analyze and exploit instruction level parallelism.	K4
CO3	Evaluate performance of different architectures with respect to Data level Parallelism.	K5
CO4	Understand the organisation and operation of current generation multiprocessor and multicore systems.	К2
CO5	Describe and explain current and future trends in computer architecture	K4

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	3	2	3	3		
CO2	3	2	3	2	3	3		
CO3	3	2	3	2	3	3		
CO4	3	2	3	2	3	3		
CO5	3	2	3	2	3	3		
23CSPC02	3	2	3	2	3	3		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	10	40	30	20	-	-	100		
CAT2	-	40	30	30	-	-	100		
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	50	30	20	-	-	100		
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	50	30	20	-	-	100		
ESE	40	30	30	-	-	-	100		

SEMESTER I

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	3	0	0	3

Course	Course The objective of the course is to enable students with the ability to analyze the asymptotic						
Objectives	performance of algorithms along the capability to understand and design algorithms using						
	advanced design and analysis techniques.						
UNIT – I	INTRODUCTION	L(9)					
Role of Algor	ithms in Computing - Characterizing Running Times - Divide and Co	onquer – Probabilistic					
analysis – Rano	domized algorithms – Sorting and Order Statistics						
UNIT – II	ADVANCED DESIGN AND ANALYSIS TECHNIQUES	L(9)					
Dynamic progr	amming: Rod cutting- Matrix-chain multiplication Elements of dynamic	programming, Optimal					
binary search	trees-Greedy Algorithms: An activity-selection problem, Elements of	f the greedy strategy,					
Huffman codes	-offline caching – Amortized Analysis.						
UNIT – III	GRAPH ALGORITHMS	L(9)					
Single source	shortest paths – All pairs shortest paths : Floyd-Warshall algorithm - Jol	hnson's algorithms for					
sparse graphs -	- Maximum Flow: Flow networks - The Ford-Fulkerson method-Maximu	m bipartite matching –					
Matching in B	ipartite Graphs: The stable-marriage problem - The Hungarian algorith	im for the assignment					
problem							
UNIT – IV	ADVANCED ALGORITHMS I	L(9)					
Parallel Algori	thms: Basics of fork-join parallelism - Parallel Matrix multiplication -	Parallel merge sort -					
Online Algorit	hms - Waiting for a elevator - Maintaining a search List -Online Cachi	ing- Matrix Operation:					
Solving system	h & Linear equation -Matrix Inversion - Symmetric Positive definite Mat	trices and least Square					
Approximation	- Linear Programming						
UNIT – V	ADVANCED ALGORITHMS II	L(9)					
Polynomials and FFT – Number theoretic Algorithms-String matching – machine learning algorithms - NP							
Completeness – Approximation Algorithms							
Contact Periods:							
Lecture: 45 Pe	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

1	Thomas H. Cormen, Charles E. Leiseron, Ronald L.Rivest, Clifford Stein, "Introduction to Algorithms",
	Fourth Edition, PH1 learning Pvt. Ltd., 2022.
2	Anany Levitin, "The Design and analysis & algorithms", III Edition, Pearson, 2011.
3	Jeff Erickson, "Algorithms", 1 st edition, 2019.
4	Aho. A.V., Hopcroft. J.E. and Ullman .J.D., "The Design and Analysis of Algorithms", Addison-Wesley,
	1974.

COU	RSE OUTCOMES:	Bloom's Taxonomy Mapped
CO1	Design and analyze algorithms using divide and conquer, dynamic programming, greedy approaches.	K6
CO2	Perform probabilistic analysis and amortized analysis of algorithms.	K1
CO3	Use appropriate graph and matrix manipulation algorithms	K3
CO4	Solve problems using parallel algorithms and linear programming approach.	K2
CO5	Use algorithms on polynomials	K2
CO6	Identify problems that are NP Complete and generate near optimal solution	K4

COURSE ARTICULATION MATRIX :									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	-	2	-	-	2			
CO2	3	-	2	-	-	2			
CO3	2	-	2	-	3	2			
CO4	2	-	2	-	3	2			
CO5	2	-	2	-	1	2			
CO6	2	-	2	-	-	2			
23CSPC03	2	-	2	-	1	2			
1 – Slight, 2 – Moderate, 3 – Substantial									

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	30	30	-	20	-	100		
CAT2	30	40	30	-	-	-	100		
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	30	30	30	-	10	-	100		
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	30	40	30	-	-	-	100		
ESE	30	30	20	-	20	-	100		

23CSPE01

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	1 Understand the basic concepts of image processing like nixel relations, transforms and					
Objectives	Enhancement techniques restoration and compression techniques. Segmentation methods and					
o sjeen ves	Recognition					
	2 Apply image processing concepts in real time applications					
	2. Appry muge processing concepts in rear time appreations					
UNIT – I	FUNDAMENTALS L(9)					
Digital Image	Processing – Fundamental steps, Components – Elements of Visual Perception – Image Sensing					
and Acquisition	n– Sampling and Quantization – Relationship between Pixels – Color Image Fundamentals					
UNIT – II	IMAGE TRANSFORMS AND ENHANCEMENTL(9)					
Image Transfe	orms and its properties: Unitary transform, Discrete Fourier Transform, Discrete Cosine					
Transform, Ha	damard-Walsh transform, Haar Transform, Hoteling Transform – Image Enhancement in spatial					
Domain: Gray	level transformations, Histogram processing, Spatial Filtering - Image Enhancement in spatial					
Domain: Sharp	bening and smoothing filters, Homomorphic filtering					
UNIT – III	IMAGE RESTORATION AND COMPRESSIONL(9)					
Image Restora	tion: Degradation model – Noise models – Estimating Degradation - Algebraic approach to					
restoration -	Inverse Filtering - Wiener Filtering - Blind deconvolution -Image reconstruction from					
projections. In	nage Compression: redundancy and compression models - Loss less compression: variable-					
length, Huffm	an, Arithmetic coding, bit-plane coding, Lossless predictive coding. Lossy compression:					
Transform base	ed coding (DCT), JPEG standard					
UNIT – IV	IMAGE SEGMENTATION, UNDERSTANDING AND RECOGNITION L(9)					
Image Segme	ntation: Line, Edge Detection - Edge Linking and Boundary detection - Region based					
segmentation -	- Boundary representation - Region Descriptors. Image understanding and recognition: Pattern					
classes - Matching by templates, classifiers-statistical and neural network based model						
UNIT – V	APPLICATIONS L(9)					
Applications: A	Automatic fruit grading system in Precision agriculture – Automatic visual system – forensic and					
security system – Medical Investigation – Entertainment: Multimedia						
Contact Perio	ds:					
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

1	Rafael C. Gonzalez and Richard E. Woods, "Digital Image Processing", Fourth Edition, Pearson
	Education, 2018
2	Anil K. Jain, "Fundamental of Digital Image Processing", Prentice Hall, 2015
3	Annadurai S, Shanmugalakshmi R, "Fundamentals of Digital Image Processing", Pearson Education Pvt.
	Ltd., 2007
4	S. Jayaraman, S.Esakkirajan, T.Veerakumar, "Digital Image Processing", Second Edition, Tata McGraw
	Hill Education Pvt. Ltd., 2020.
5	S. Sridhar, "Digital Image Processing", Second Edition, OXFORD University press, 2016

COU	RSE OUTCOMES:	Bloom's Taxonomy Mapped
CO1	Describe the image processing steps and relationship between the pixels.	K2
CO2	Apply the image transforms and enhancement techniques on images.	K3
CO3	Analyze the different kinds of restoration and compression techniques of image	K4
	processing.	
CO4	Perform edge detection and segmentation and Recognize image using matching	K5
	by templates, statistical and neuralnetwork models.	
CO5	Apply suitable image processing techniques for various real time applications	K3
	like medical and network security applications	

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	-	3	-	1	1		
CO2	3	-	3	-	2	2		
CO3	3	-	3	-	2	2		
CO4	3	-	3	-	3	3		
CO5	3	-	3	-	3	3		
23CSPE01	3	-	3	-	2	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	30	30	20	20	-	-	100		
CAT2	20	30	20	30	-	-	100		
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	30	20	20	30	-	100		
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	30	20	-	20	30	100		
ESE	10	30	20	20	10	10	100		

23CSPE02	EMBEDDED SYSTEMS	SEMESTER I

T

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objectives	After the completion of the course, the students will be able to understand e and embedded system architecture with programming of ARM Cortex Selection of a proper Microcontroller for an application. The usage of the	mbedded concepts x Microcontroller. development and					
	debugging tools. Memory systems and Peripherals.	at the print and					
UNIT – I	INTRODUCTION TO EMBEDDED CONCEPTS	L(9)					
Introduction t	o embedded systems, Application Areas, Categories of embedded syste	ms, Overview of					
embedded sys	tem architecture, Specialties of embedded systems, recent trends in er	nbedded systems,					
Architecture of	of embedded systems, Hardware architecture, Software architecture, App	lication Software,					
Communicatio	n Software.						
UNIT – II	OVERVIEW OF ARM AND CORTEX-M3	L(9)					
Background o	f ARM Architecture, Architecture Versions, Processor Naming, Instruction	Set Development,					
Thumb-2 and	Instruction Set Architecture. Cortex-M3 Basics: Registers, General Purpos	e Registers, Stack					
Pointer, Link F	Register, Program Counter, Special Registers, Operation Mode, Exceptions and	I Interrupts, Vector					
Tables, Stack	Memory Operations, Reset Sequence. CortexM3Instruction Sets: Assembly I	Basics, Instruction					
List, instructio	I Code Pus D Code Pus System Pus External PDP and DAP Pus	m, Bus. Interfaces					
UNIT III	CORTEX EXCEPTION HANDI INC AND INTERRUPTS	I (0)					
Exceptions: Ex	cention Types Priority Vector Tables Interrunt Inputs and Pending Behavior	Eault Exceptions					
Supervisor Ca	Il and Pendable Service Call NVIC: Nested Vectored Interrupt Controller	· Overview Basic					
Interrupt Conf	iguration. Software Interrupts and SYSTICK Timer. Interrupt Behavior: I	nterrupt/Exception					
Sequences, Ex	ception Exits, Nested Interrupts, Tail-Chaining Interrupts, Late Arrivals and Int	errupt Latency					
UNIT – IV	CORTEX-M3/M4 PROGRAMMING	L(9)					
Cortex-M3/M4	Programming: Overview, Typical Development Flow, Using C, CMSIS (Cort	ex Microcontroller					
Software Inter	face Standard), Using Assembly. Exception Programming: Using Interrupts, E	Exception/Interrupt					
Handlers, Soft	ware Interrupts, Vector Table Relocation. Memory Protection Unit and other C	ortex-M3 features:					
MPU Registers	MPU Registers, Setting Up the MPU, Power Management, Multiprocessor Communication.						
UNIT – V	CORTEX-M3/M4 DEVELOPMENT AND DEBUGGING TOOLS	L(9)					
STM32L15xxx ARM Cortex M3/M4 Microcontroller: Memory and Bus Architecture, Power Control, Reset							
and Clock Control. STM32L15xxx Peripherals: GPIOs, System Configuration Controller, NVIC, ADC,							
Comparators, GP Timers, USART. Development and Debugging Tools: Software and Hardware tools like Cross							
Assembler, Compiler, Debugger, Simulator, In-Circuit Emulator (ICE), Logic Analyzer etc.							
Contact Periods:							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

REFERENCES :

1	Joseph Yiu," The Definitive Guide to the ARM Cortex-M3", Second Edition, Elsevier Inc. 2010.										
2	Andrew N Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide Designing and										
	Optimizing System Software", Elsevier Publications, 2006										
3	Steve Furber, "ARM System-on-Chip Architecture", 2nd Edition, Pearson Education, India ISBN:										
	9788131708408, 8131708403 , 2015										

4 STM32L152xx ARM Cortex M3 Microcontroller Reference Manual 5/97

5 ARM Company Ltd. "ARM Architecture Reference Manual–ARM DDI 0100E"

COUR	SE OUTCOMES:	Bloom's Taxonomy Mapped
CO1	Understand the Embedded Concepts and Architecture of Embedded Systems.	K2
CO2	Describe the architectural features and instructions of ARM Cortex M3 Microcontroller.	K2
CO3	Use Interrupts, Exception/Interrupt Handlers, Software Interrupts, Vector Table Relocation.	K2
CO4	Use ARM Cortex M3/M4 with Embedded C Programming for Application Development.	K5
CO5	Design and implement software systems to provide an interface to ARM Cortex M3 based hardware systems.	K6

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	2	-	3	2	2	3			
CO2	2	-	3	2	2	3			
CO3	2	-	3	2	2	3			
CO4	3	-	3	3	2	3			
CO5	3	-	3	3	2	3			
23CSPE02	2	-	3	2	2	3			
1 - Slight, 2 - 1	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	50	30	10	10	-	-	100			
CAT2	40	25	20	10	-	5	100			
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	50	30	10	10	-	-	100			
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	5	5	20	20	15	35	100			
ESE	50	25	15	10	-	-	100			

23CSPE03

FUZZY LOGIC AND NEURAL NETWORKS

SEMESTER I

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	e 1. Explain the basics of Fuzzy set, Fuzzy relations, and methods for Fuzzification and Euzzy Logic Systems						
Objectives	2 Understand the architecture and learning rules of simple neural n	otworks DDN DAM					
	2. Oliverstand the architecture and rearning rules of simple neural networks	etworks, DFIN, DAM					
	ELIND A MENTAL & OF EUZZY LOCIC	Ι (0)					
$\frac{\mathbf{UNII} - \mathbf{I}}{\mathbf{OI}}$	FUNDAMENTALS OF FUZZY LOGIC	$\frac{L(9)}{1}$					
Classical And	Classical And Fuzzy Sets: Operations and Properties – Classical Relations and Fuzzy Relations: Properties and						
Operations, C	omposition, Iolerance and Equivalence Relations – Membership Fu	nctions: Features and					
Standard Form	s – Fuzzification – Λ Cuts For Fuzzy Sets and Relations - Defuzzification						
UNIT – II	FUZZY LOGIC SYSTEMS AND APPLICATIONS	L(9)					
Logic and Fuz	zy Systems – Membership Value Assignments – Automated Methods for	Fuzzy Systems: Least					
Squares Algor	rithm, Gradient and Clustering Method – Decision Making with	Fuzzy Information –					
Applications:	Fuzzy Classification, Fuzzy Pattern Recognition – Fuzzy Control Syste	ms: Design Problems,					
Examples, Indu	ustrial Applications– Fuzzy Information Retrieval						
UNIT – III	ARCHITECTURE OF NEURAL NETWORKS	L(9)					
Artificial Neur	al Networks - Biological Neural Networks - Typical Architecture - Setti	ng Weights - Common					
Activations Fu	inctions- Basic Learning Rules - Mcculloch-Pitts Neuron - Simple Ne	eural Nets For Pattern					
Classification:	Architecture, Biases and Thresholds, Linear Separability, Hebb Net-Percep	otron-Adaline.					
UNIT – IV	BASIC NEURAL NETWORK TECHNIQUES	L(9)					
Back Propagat	ion Neural Net: Standard Back Propagation – Architecture, Algorithm- T	Fraining Algorithm for					
Pattern Associ	ation-Hebb Rule and Delta Rule - Associative and other Neural Netwo	rks: Hetro Associative					
Memory Neur	al Net, Auto Associative Net- Bidirectional Associative Memory-Applic	cations-Hopfield Nets-					
Boltzman Mac	hine						
UNIT – V	COMPETITIVE NEURAL NETWORKS	L(9)					
Neural Networ	k Based on Competition: Fixed Weight Competitive Nets- Kohonensel	fOrganizing Maps and					
Applications-Learning Vector Quantization-Counter Propagation Nets and Applications - Adaptive Resonance							
Theory: Basic Architecture and Operation-Architecture, Algorithm, Application and Analysis of ART1 & ART2							
- Cognitron and Neocognitron - Architecture, Training Algorithm and application							
Contact Periods:							
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ds					

1	LaureneFausett, "Fundamentals of Neural Networks", Pearson Education India, 2008.							
2	Timothy J.Ross, "Fuzzy Logic with Engineering Applications", John Wiley and sons Pvt.Ltd, Fourth							
	Edition, 2016							
3	J.A.Freeman and B.M.Skapura, "Neural Networks, Algorithms applications and Programming							
	Techniques", Pearson, 2002							

4	Zimmermann.H.J, "Fuzzy Set Theory and its Applications", Kluwer Academic Publishers,	Dordrecht,
	Germany, Fourth Edition, 2013.	

5 Zurada J.M. "Introduction to Artificial Neural Systems", Jaico Publishing House, 1994

COU	RSE OUTCOMES:	Bloom's Taxonomy Mapped
CO1	Perform simple arithmetic, logical and geometric operations on classical and fuzzy sets.	К3
CO2	Apply Fuzzy Logic techniques for real time applications.	К3
CO3	Apply activation functions suitable for different neural networks and Solve linearly separable problems	К3
CO4	Choose and apply the suitable BPN algorithm for pattern classification, character recognization	K4
CO5	Describe the features, operations and applications of Competitive Networks and Adaptive resonance neural networks, and Neocognitron.	K2

COURSE ARTICULATION MATRIX :

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	2	1	3	2	2	2		
CO2	3	1	3	3	2	2		
CO3	2	1	3	2	2	2		
CO4	3	1	3	3	2	2		
CO5	2	1	3	2	1	2		
23CSPE03	2	1	3	2	2	2		
1 - Slight 2 - Moderate 3 - Substantial								

1 – Slight, 2 – Moderate, 3 – Substantial

ASSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	30	30	20	20	-	-	100			
CAT2	20	30	20	30	-	-	100			
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	30	20	20	30	-	100			
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	30	20	-	20	30	100			
ESE	10	20	30	20	10	10	100			

23CSPE04

SEMESTER I

	•	·	1				-		
PREREQUIS	ITES	CATEGORY	L	Т	Р	C			
	NIL	PE	3	0	0	3			
Г									
Course Objectives	 The objective of the course is to enable students to understand the basic underlying concepts, Characteristics, issues and challenges of cloud computing, architecture and virtualization. Students will be familiar with Cloud application program and the ANEKA latform, security issues of cloud computing. 								
UNIT – I	INTRODUCTION TO CLOUD COMPUTING L(9)								
Overview of Distributed Co issues and cha providers Prop Computing - R	Overview of Computing Paradigm: Recent trends in Computing - Grid Computing, Cluster Computing, Distributed Computing, Utility Computing, Cloud Computing - Introduction to Cloud Computing - Cloud issues and challenges- Cloud Computing (NIST Model) - History of Cloud Computing, - Cloud service providers Properties, Characteristics & Disadvantages - Pros and Cons of Cloud Computing, Benefits of Cloud Computing - Role of Open Standards.								
UNIT – II	CLOUD COMPUTING ARCHITECTURE AND	VIRTUALIZAT	ION				L(9)		
(XaaS)- Infras Software as a Hybrid cloud Virtualization- Virtualization,	tructure as a Service(IaaS) -Platform as a Service(Pa Service(SaaS)- Web services - Web 2.0 - Deployme -Community cloud - Virtualization concepts - In Introduction to Various Hypervisors - High Availab Moving VMs	naS) - Cloud Plat ent Models -Publi ntroduction to vi bility (HA)/Disast	form a ic clou irtualiz er Re	and 1 ud -l zatio cove	Mana Priva on - ery (I	igem te cl Type DR)	ient – oud - es of using		
UNIT – III	CLOUD APPLICATION PROGRAMMING ANI	D THE ANEKA	PLAT	FO	RM		L(9)		
Aneka - Frame and managem applications w programming -	Aneka - Framework overview - anatomy of the Aneka container - Building Aneka clouds - Cloud programming and management - Programming applications with threads - Multithreading with Aneka - Programming applications with Aneka threads - Task computing - Task-based application models - Aneka task-based programming - Data-Intensive Computing - Aneka ManReduce programming								
UNIT – IV	CLOUD SECURITY						L(9)		
Infrastructure Security - Network level security, Host level security, Application level security - Data security and Storage - Data privacy and security Issues, Jurisdictional issues raised by Data location - Identity & Access Management -Access Control -Trust, Reputation, Risk , Authentication in cloud computing, Client access in cloud, Cloud contracting Model, Commercial and business considerations Cloud Reliability and fault- tolerance -privacy - policy and compliance -Cloud federation, interoperability and standards.UNIT - VCLOUD APPLICATIONS AND CASE STUDYL(9)									
Scientific appl ERP – Produc Open Source & Contact Perio	ications : Healthcare – Biology – Geoscience - Busin tivity - Social networking - Media applications - Me & Commercial Clouds – Eucalyptus - Microsoft Azure ds:	ness and consume ultiplayer online - Amazon EC2 - C	r appl gamin Google	icati g - e Apj	ons: Case pEng	CRN Stuc ine.	√ and dy on		
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									

REFERENCES

1	Sosinsky, Barrie. "Cloud computing bible", Vol. 762. John Wiley & Sons, 2010.
2	Kai Hwang, Geoffrey C. Fox, Jack, J. Dongarra "Distributed and Cloud Computing from Parallel
	Processing to the Internet of Things", Elsevier 2012.
3	RajkumarBuyya, Christian Vecchiola, S. ThamaraiSelvi "Mastering Cloud Computing Foundations and
	Applications Programming", 2013.
4	RajkumarBuyya, James Broberg, Andrzej M. Goscinski, "Cloud Computing: Principles and Paradigms",
	Wiley,2011
5	Nikos Antonopoulos, Lee Gillam, "Cloud Computing: Principles, Systems and Applications" Springer,
	2012.
6	Ronald L. Krutz, Russell Dean Vines, "Cloud Security: A Comprehensive Guide to Secure Cloud
	Computing", Wiley-India, 2010.
7	John Ritting house & James Ransome, "Cloud Computing, Implementation, Management and Strategy",
	CRC Press, 2016.

COUI	RSE OUTCOMES:	Bloom's Taxonomy Mapped
CO1	Explain and discuss basic concepts, fundamental issues and challenges of Cloud Computing and paradigms of computing.	K1
CO2	Explain the basic architecture of cloud computing and virtualization techniques.	K2
CO3	Design and implement basic cloud application using Aneka framework.	K3
CO4	Explain the core issues of cloud computing such as security, privacy, and interoperability.	K4
CO5	Provide cloud computing solutions and recommendations and for applications.	K5

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	2	-	-	-	-		
CO2	3	2	-	-	-	-		
CO3	3	3	2	-	3	2		
CO4	3	2	2	2	-	-		
CO5	3	3	2	2	3	-		
23CSPE04	3	2	2	2	3	2		
1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	40	40	20	-	-	-	100		
CAT2	-	30	30	20	20	-	100		
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	40	40	20	-	-	-	100		
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	30	30	20	20	-	100		
ESE	40	20	10	10	10	10	100		

ADVANCED SOFTWARE ENGINEERING

SEMESTER I

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	The objective of the course is to familiarize students with software I	Design and estimation					
Objectives	techniques, software quality, testing and maintenance strategies along with	techniques, software quality, testing and maintenance strategies along with scrum development					
	process						
UNIT – I	INTRODUCTION AND REQUIREMENTS MODELING	L(9)					
Software Engin	neering- Process models-Agile development- Software engineering Know	vledge-core Principles-					
Principles that	guide each framework Activity - Requirements Engineering- Developing	use cases-Building the					
requirements n	nodel-Negotiating, validating Requirements-Requirements Analysis-Requirements	rements Modeling.					
UNIT – II	SOFTWARE DESIGN AND ESTIMATION	L(9)					
Design Process	s - Design Concepts - Design Model - Architectural Design - Compone	ent level design -User					
interface design	n - pattern based design – Web App design – Case Study						
Software Proje	ect Estimation - Process and Project Metrics- Empirical Estimation	model - Specialized					
Estimation Technique for Agile Development - Project Scheduling - Risk Management							
UNIT – III	SOFTWARE QUALITY AND TESTING	L(9)					
UNIT – III Software Qual	SOFTWARE QUALITY AND TESTING ity- Software - Quality Dilemma- Achieving Software Quality- Testing:	L(9) Strategic Approach to					
UNIT – III Software Qual software Testin	SOFTWARE QUALITY AND TESTING ity- Software - Quality Dilemma- Achieving Software Quality- Testing: ng- Strategic IssuesTesting: Strategies for Conventional Software, Object of	L(9) Strategic Approach to priented software, Web					
UNIT – III Software Qual software Testin Apps-Validatin	SOFTWARE QUALITY AND TESTING ity- Software - Quality Dilemma- Achieving Software Quality- Testing: ng- Strategic IssuesTesting: Strategies for Conventional Software, Object o g Testing- System Testing- Art of Debugging	L(9) Strategic Approach to priented software, Web					
UNIT – III Software Qual software Testir Apps-Validatin UNIT – IV	SOFTWARE QUALITY AND TESTING ity- Software - Quality Dilemma- Achieving Software Quality- Testing: ng- Strategic IssuesTesting: Strategies for Conventional Software, Object of g Testing- System Testing- Art of Debugging SOFTWARE MAINTENANCE AND IMPROVEMENT	L(9) Strategic Approach to priented software, Web L(9)					
UNIT – III Software Qual software Testir Apps-Validatin UNIT – IV Software Main	SOFTWARE QUALITY AND TESTING ity- Software - Quality Dilemma- Achieving Software Quality- Testing: ng- Strategic IssuesTesting: Strategies for Conventional Software, Object of g Testing- System Testing- Art of Debugging SOFTWARE MAINTENANCE AND IMPROVEMENT Intenance-Software Supportability- Reengineering- Business Process R	L(9) Strategic Approach to priented software, Web L(9) eengineering-Software					
UNIT – III Software Qual software Testir Apps-Validatin UNIT – IV Software Main Reengineering-	SOFTWARE QUALITY AND TESTING ity- Software - Quality Dilemma- Achieving Software Quality- Testing: ng- Strategic IssuesTesting: Strategies for Conventional Software, Object of g Testing- System Testing- Art of Debugging SOFTWARE MAINTENANCE AND IMPROVEMENT ntenance-Software Supportability- Reengineering- Business Process R - Reverse Engineering-Restructuring- Forward Engineering.Software	L(9) Strategic Approach to priented software, Web L(9) eengineering-Software Process improvement:					
UNIT – III Software Qual software Testin Apps-Validatin UNIT – IV Software Main Reengineering Process – CMM	SOFTWARE QUALITY AND TESTING ity- Software - Quality Dilemma- Achieving Software Quality- Testing: ng- Strategic IssuesTesting: Strategies for Conventional Software, Object of g Testing- System Testing- Art of Debugging SOFTWARE MAINTENANCE AND IMPROVEMENT Intenance-Software Supportability- Reengineering- Business Process R - Reverse Engineering-Restructuring- Forward Engineering.Software I MI – The people CMM – SPI return on investment – SPI Trends.	L(9) Strategic Approach to priented software, Web L(9) eengineering-Software Process improvement:					
UNIT – III Software Qual software Testir Apps-Validatin UNIT – IV Software Main Reengineering Process – CMN UNIT – V	SOFTWARE QUALITY AND TESTING ity- Software - Quality Dilemma- Achieving Software Quality- Testing: ng- Strategic IssuesTesting: Strategies for Conventional Software, Object of g Testing- System Testing- Art of Debugging SOFTWARE MAINTENANCE AND IMPROVEMENT Intenance-Software Supportability- Reengineering- Business Process R - Reverse Engineering-Restructuring- Forward Engineering.Software I MI – The people CMM – SPI return on investment – SPI Trends. INTRODUCTION TO SCRUM DEVELOPMENT PROCESS	L(9) Strategic Approach to priented software, Web L(9) eengineering-Software Process improvement: L(9)					
UNIT – III Software Qual software Testir Apps-Validatin UNIT – IV Software Main Reengineering- Process – CMM UNIT – V Basics of Scrut	Software QUALITY AND TESTING ity- Software - Quality Dilemma- Achieving Software Quality- Testing: ng- Strategic IssuesTesting: Strategies for Conventional Software, Object of ng Testing- System Testing- Art of Debugging SOFTWARE MAINTENANCE AND IMPROVEMENT ntenance-Software Supportability- Reengineering- Business Process R - Reverse Engineering-Restructuring- Forward Engineering.Software I MI – The people CMM – SPI return on investment – SPI Trends. INTRODUCTION TO SCRUM DEVELOPMENT PROCESS m – Running a Scum project – Steps for transition to scrum – Metrics for set	L(9) Strategic Approach to priented software, Web L(9) eengineering-Software Process improvement: L(9) crum –CaseStudy.					
UNIT – III Software Qual software Testin Apps-Validatin UNIT – IV Software Main Reengineering- Process – CMM UNIT – V Basics of Scrut Contact Perior	SOFTWARE QUALITY AND TESTING ity- Software - Quality Dilemma- Achieving Software Quality- Testing: ng- Strategic IssuesTesting: Strategies for Conventional Software, Object or ng Testing- System Testing- Art of Debugging SOFTWARE MAINTENANCE AND IMPROVEMENT ntenance-Software Supportability- Reengineering- Business Process R - Reverse Engineering-Restructuring- Forward Engineering.Software I MI – The people CMM – SPI return on investment – SPI Trends. INTRODUCTION TO SCRUM DEVELOPMENT PROCESS m – Running a Scum project – Steps for transition to scrum – Metrics for so ds:	L(9) Strategic Approach to priented software, Web L(9) eengineering-Software Process improvement: L(9) crum –CaseStudy.					

1	Roger Pressman.S "Software Engineering: A Practitioner's Approach" Eighth Edition, McGraw Hill,
	2014
2	Ian Sommerville "Software Engineering" Tenth Edition, Pearson Education Asia, 2017.
3	Shari Lawrence Pfleeger, Joanne M. Atlee, "Software Engineering: Theory and Practice", Fourth Edition, Pearson Education, 2011.
4	Alistair Cockburn, "Agile Software Development", First Edition, Pearson Education, 2002.

COU	RSE OUTCOMES:	Bloom's Taxonomy Mapped
CO1	Apply different process models for different projects and Perform requirement gathering and model the requirements.	К3
CO2	Design the project and identify risks, construct RMMM plan and develop estimation models.	K4
CO3	Verify and validate the software applications using different types of testing and maintain the quality of software.	<i>K4</i>
CO4	Perform reverse and forward engineering process for maintenance and improvement required in the project	K5
CO5	Apply Scrum Development Process to develop software.	K6

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	3	3	3	1	2	3			
CO2	3	3	3	1	2	3			
CO3	3	3	3	1	2	3			
CO4	3	3	3	1	2	3			
CO5	3	3	3	1	2	3			
23CSPE05	3	3	3	1	2	3			
1 - Slight, 2 - N	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	30	30	40	-	-	-	100	
CAT2	-	20	30	30	-	20	100	
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	-	50	50	-	-	100	
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	-	50	50	-	-	100	
ESE	20	20	20	20	-	20	100	

23CSPE06	PATTERN RECOGNITION	SEMESTER I
----------	---------------------	------------

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objectives	Explain and compare a variety of pattern classification, structural pattern classifier combination techniques	attern recognition and
UNIT – I	INTRODUCTION TO PATTERN RECOGNITION	L(9)
Introduction to	Pattern Recognition - Data structures for pattern recognition - Review	of Random Vectors.
Expectation, C	orrelation. Covariance - Review of Linear Algebra- Linear Transformation	s -Feature Extraction-
Training and L	earning– Discriminant Functions.	
UNIT – II	LINEAR CLASSIFIERS	L(9)
Bayes Decision	n Theory - The Gaussian Probability Density Function - Minimum Dista	nce classifiers –
Mixture Mode	ls - Perceptron Algorithm – The Sum of Error Squares Classifier - Suppor	t Vector Machines: K-
Nearest-Neigh	bor Classification	
UNIT – III	UNSUPERVISED LEARNING AND CLUSTERING	L(9)
Terminologies-	-Maximum likelihood estimation -Applications - Clustering - Sequen	tial algorithms –Data
descriptions - (Criterion functions -Spectral Clustering - Hierarchical Clustering	-
UNIT – IV	SYNTACTICAL PATTERN RECOGNITION	L(9)
Elements of fe	ormal grammars - String generation as pattern description - Case Stu	dies - Recognition of
syntactic descr	iption - Parsing - Stochastic grammars and applications - Graph based str	uctural representation
UNIT – V	FEATURE SELECTION TECHNIQUES	L(9)
Outlier Remov	val - Normalization - ROC Curve - Fishers Discriminant Ratio - Class	Separability - Feature
Subset Selection	on - Unsupervised learning in neural Pattern Recognition - Self-organizing	networks
Contact Perio	ds:	
Lecture: 45 Po	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45Period	ls

1	M. Narasimha Murthy and V. Susheela Devi, "Pattern Recognition. An Algorithmic approach", Springer,
	2011.
2	Robert J.Schalkoff, "Pattern Recognition Statistical, Structural and Neural Approaches", Wiley, India,
	2009.
3	SergiosTheodoridis, Konstantinos Koutroumbas, "Introduction to Pattern Recognition: A Matlab
	Approach", Elsevier Academic Press, 2010.
4	Andrew R. Webb, Keith D. Copsey, "Statistical Pattern Recognition", Third Edition, Wiley, 2011.
5	Duda R.O., HarP.E., and David G Stork, "Pattern Classification", Second edition, John Wiley & Sons,
	NewYork, 2012

COUR	RSE OUTCOMES:	Bloom's Taxonomy Mapped
CO1	Describe the significance of pattern recognition	K2
CO2	Analyze the given patterns and apply suitable pattern classifiers for pattern classification	K4
CO3	Apply appropriate clustering techniques for high dimensional datasets.	К3
CO4	Summarize various syntactical pattern recognition models.	K4
CO5	Identify appropriate feature selection techniques.	K4

COs/POs	PO 1	PO2	PO 3	PO 4	PO5	PO6			
CO1	1	2	3	1	2	2			
CO2	1	2	3	1	2	2			
CO3	1	2	3	1	2	2			
CO4	1	2	3	1	2	2			
CO5	1	2	3	1	2	2			
23CSPE06	1	2	3	1	2	2			
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial								

ASSESSMEN	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	-	20	40	40	-	-	100			
CAT2	-	20	40	40	-	-	100			
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	-	-	100	-	-	100			
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	-	-	100	-	-	100			
ESE	-	30	40	30	-	-	100			

23CSACZ1	

ENGLISH FOR RESEARCH PAPER WRITING (Common to All Branches)

SEMESTER I

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	AC	2	0	0	0

Course	The objective of the course is to make the learners understand the format and in	ntricacies				
Objectives	involved in writing a research paper.					
UNIT – I	PLANNING AND PREPARATION	L(6)				
Need for public	shing articles, Choosing the journal, Identifying a model journal paper, Creation	of files for each				
section, Expect	ations of Referees, Online Resources					
UNIT – II	SENTENCES AND PARAGRAPHS	L(6)				
Basic word in	English, Word order in English and Vernacular, placing nouns, Verbs, Adjecti	ves, and Adverb				
suitably in a se	entence, Using Short Sentences, Discourse Markers and Punctuations- Structure	e of a Paragraph,				
Breaking up let	Breaking up lengthy Paragraphs					
UNIT – III	ACCURACY, BREVITY AND CLARITY (ABC) OF WRITING	L(6)				
Accuracy, Brev	vity and Clarity in Writing, Reducing the linking words, Avoiding redundancy, A	ppropriate use of				
Relative and R	Relative and Reflexive Pronouns, Monologophobia, verifying the journal style, Logical Connections between					
others author's findings and yours						
UNIT – IV	HIGHLIGHTING FINDINGS, HEDGING AND PARAPHRASING	L(6)				
Making your findings stand out, Using bullet points headings, Tables and Graphs- Availing non-experts						
opinions, Hedging, Toning Down Verbs, Adjectives, Not over hedging, Limitations of your research.						
UNIT – V	SECTIONS OF A PAPER	L(6)				
Titles, Abstract	s, Introduction, Review of Literature, Methods, Results, Discussion, Conclusion	s, References				
Contact Perio	ds:					

Lecture: 30 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 30 Periods

1	Goldbort R, "Writing for Science", Yale University Press (available on GoogleBooks), 2006.
2	Day R, "How to Write and Publish a Scientific Paper", Cambridge University Press, 2006.
3	Highman N, "Handbook of Writing for the Mathematical Sciences", SIAM. Highman's book, 1998.
4	Adrian Wallwork, "English for Writing Research Papers", Springer New York Dordrecht Heidelberg London, 2011.

COU	RSE OUTCOMES:	Bloom's Taxonomy Mapped
CO1	Understand the need for writing good research paper.	K2
CO2	Practice the appropriate word order, sentence structure and paragraph writing	K4
CO3	Practice unambiguous writing	K3
CO4	Avoid wordiness in writing	K2
CO5	Exercise the elements involved in writing journal paper.	K3

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	1	1	1	2
CO2	3	3	1	1	1	2
CO3	3	3	1	1	1	2
CO4	3	3	1	1	1	2
CO5	3	3	1	1	1	2
23CSACZ1	3	3	1	1	1	2

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1/Case Study 1/Seminar 1/Project 1	-	50	50	-	-	-	100
Individual Assessment 2/Case Study 2/Seminar 2/Project 2	-	50	50	-	-	-	100
ESE	30	30	40	-	-	-	100

727 807 07
230.360.04

ADVANCED ALGORITHMS AND ELECTIVE LAB

PREREQUISITES

QUISITES	CATEGORY	L	Т	P	С
NIL	РС	0	0	3	1.5

Lecture: 0]	Periods	Tutorial: 0 Periods	Practical: 45 Periods	Total:45 Periods			
Contact per	iods:						
10	Implement	Computational Geomet	try algorithms				
9	Implement String matching algorithms						
8	Implement Shortest path and Maximum flow algorithms						
7	Implement an algorithm to construct Minimum Spanning Trees.						
6	Implement Graph Traversal algorithms.						
5	Implement stack operations and calculate the amortized cost.						
4	Implement	Implement Merge sort algorithm using Divide and Conquer approach.					
	Activity sel	Activity selection problem.					
3	Implement	Implement an algorithm based on greedy approach to solve knapsack problem and					
2		contiguous subsequence using dynamic programming approach.					
1	Implement total numbe	an algorithm that comb er of elements.	ines k sorted lists in time	O(n log k)where n is the			
	PRACTIC EXERCISI	ALS ESILLUSTRATINGTH	IEFOLLOWINGCONCE	CPTS:			
Objectives	algorithms in	common engineering de	esign solutions.				
Course	Explain impo	ortant algorithmic design	n paradigms and methods of	of analysisto design efficient			

COUF	RSE OUTCOMES:	Bloom's Taxonomy
		Mapped
CO1	Design and analyze algorithms using divide and conquer, dynamic	K6
	programming, greedy algorithms	
CO2	Perform probabilistic analysis and amortized analysis of algorithms	K4
CO3	Implement Minimum spanning trees, shortest path and Maximum flow	K6
	algorithms in graphs to solve problems	
CO4	Solve problems using String matching algorithms	K6
CO5	Solve problems using Computational geometry algorithms	K6

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	3	3	3	1	3	3		
CO2	3	3	3	1	3	3		
CO3	3	3	3	1	3	3		
CO4	3	3	3	1	3	3		
CO5	3	3	3	1	3	3		
23CSPC04	3	3	3	1	3	3		
1 – Slight, 2 – Moderate, 3 – Substantial								