

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Botton Banja Bring Con

Curriculum For

B. E. MECHANICAL ENGINEERING

(Part Time)

2023

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 E.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University)

Coimbatore - 641 013

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- To achieve academic excellence through innovative teaching and learning practices.
- > To enhance employability and entrepreneurship.
- > To improve the research competence to address societal needs.
- To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University) COIMBATORE-641 013.

VISION AND MISSION OF THE DEPARTMENT

Vision:

To create outstanding Mechanical Engineers with strong domain knowledge and skills capable of working in an interdisciplinary environment with exemplary ethical values contributing to society through innovation, entrepreneurship and leadership.

Mission:

➢ To develop in each student, a strong theoretical and practical knowledge, a global outlook for a sustainable future and problem solving skills.

To make productive members of interdisciplinary teams, capable of adapting to changing environments of Engineering, technology and society.

➢ To inculcate critical thinking abilities among students to enhance innovative ideas and entrepreneurial skills, leadership qualities.

To imbibe moral and ethical values along with leadership qualities in students.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE - 641 013 B.E.MECHANICAL ENGINEERING - PART TIME 2023 REGULATIONS (Candidates admitted during 2023-2024 and onwards)

FIRST SEMESTER

SL	Course	Course Title	СА	End Sem	Total	Hours/Week					
No.	Code	Gourse mer	Marks	Marks	Marks	L	Т	Р	C		
		THEOF	RY								
1	23PTM1Z1	APPLIED MATHEMATICS I (Common to Civil, Mech, EEE & ECE)	40	60	100	3	0	0	3		
2	23PTM1Z2	ENVIRONMENTAL SCIENCES AND ENGINEERING (Common to Civil, Mech, EEE & ECE)	40	60	100	3	0	0	3		
3	23PTM103	MATERIAL SCIENCE	40	60	100	3	0	0	3		
4	23PTM104	BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING	40	60	100	3	0	0	3		
5	23PTM105	APPLIED ENGINEERING MECHANICS	40	60	100	3	0	0	3		
		200	300	500	15	0	0	15			

SI.	Course	Course Title			End Sem	Total		Hours	s/Wee	k
No.	Code		CA	Marks	Marks	Marks	L	Т	Р	С
		THE	ORY							
1	23PTM2Z1	APPLIED MATHEMATICS II		40	60	100	3	0	0	3
2	23PTM202	PYTHON PROGRAMMING		40	60	100	3	0	0	3
3	23PTM203	SOLID MECHANICS		40	60	100	3	0	0	3
4	23PTM204	FLUID MECHANICS AND HYDRAULIC MACHINES		40	60	100	3	0	0	3
5	23PTM205	MATERIALS ENGINEERING AND METALLURGY		40	60	100	3	0	0	3
		TOTAL		200	300	500	15	0	0	15

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE - 641 013 B.E. MECHANICAL ENGINEERING - PART TIME 2023 REGULATIONS (Candidates admitted during 2023-2024 and onwards)

THEORY INOLOGY I 40	s Sem Marks	Marks	L	Т	Р	С	
-	I						
INOLOGY I 40							
	60	100	3	0	0	3	
40	60	100	3	0	0	3	
NES 40	60	100	3	0	0	3	
EMENTS 40	60	100	3	0	0	3	
PRACTICAL							
INOLOGY 60	40	100	0	0	3	1.5	
Total 500 13.5							
	PRACTICAL	PRACTICAL	40 60 100 PRACTICAL 40 40 100 INOLOGY 60 40 100	40 60 100 3 PRACTICAL 40 40 100 0 INOLOGY 60 40 100 0	40 60 100 3 0 PRACTICAL INOLOGY 60 40 100 0 0	40 60 100 3 0 0 PRACTICAL INOLOGY 60 40 100 0 0 3	

THIRD SEMESTER

FOURTH SEMESTER

SLN	Course	Course Title	CA	End Sem	Total		Hours/Week					
0.	Code	course rittle	Marks	Marks	Marks	L	Т	Р	С			
		THEOR	Y									
1	23PTM401	MANUFACTURING TECHNOLOGY II	40	60	100	3	0	0	3			
2	23PTM402	THERMAL ENGINEERING	40	60	100	3	0	0	3			
3	23PTM403	DYNAMICS OF MACHINES	40	60	100	3	0	0	3			
4	23PTM404	HYDRAULICS AND PNEUMATIC CONTROLS	40	60	100	3	0	0	3			
		PRACTIC	AL									
5	23PTM405	THERMAL ENGINEERING LABORATORY I	60	40	100	0	0	3	1.5			
		Total			500				13.5			

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E. MECHANICAL ENGINEERING - PART TIME 2023 REGULATIONS

SI.N	Course Code	Course Title	CA	End Sem	Total	Hours/Week				
0.	course coue	course ritte	Marks	Marks	Marks	L	Т	Р	С	
		THEOR	Y							
1	23PTM501	LEAN MANUFACTURING	40	60	100	3	0	0	3	
2	23PTM502	DESIGN OF MACHINE ELEMENTS	40	60	100	3	0	0	3	
3	23PTM503	HEAT AND MASS TRANSFER	40	60	100	3	0	0	3	
4	23PTM5EX	ELECTIVE I	40	60	100	3	0	0	3	
		PRACTIC	AL							
5	23PTM504	THERMAL ENGINEERING LABORATORY II	60	40	100	0	0	3	1.5	
		Total	E7		500				13.5	

FIFTH SEMESTER

SIXTH SEMESTER

SI.	Course		CA	End	Total	H	Iour	's/W	eek
SL No.	Code	Course Title	Mark s	Sem Mark s	Mark s	L	Т	Р	С
		THEOR	Ϋ́						
1	23PTM601	FINITE ELEMENT ANALYSIS	40	60	100	3	0	0	3
2	23PTM602	DESIGN OF TRANSMISSION SYSTEMS	40	60	100	3	0	0	3
3	23PTM603	MECHATRONICS	40	60	100	3	0	0	3
4	23PTM6EX	ELECTIVE II	40	60	100	3	0	0	3
		PRACTIC	CAL						
5	23PTM604	AUTOMATION LABORATORY	60	40	100	0	0	3	1.5
		Total			500				13.5

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E. MECHANICAL ENGINEERING - PART TIME 2023 REGULATIONS

SI.	Course	Course	СА	End	Total	Hours/Week					
SI. No.	Code	Course Title	Mark s	Sem Mark s	Mark s	L	Т	Р	С		
		THEOR	Y								
1	23PTM701	COMPUTER AIDED DESIGN AND MANUFACTURING	40	60	100	3	0	0	3		
2	23PTM702	REFRIGERATION AND AIR CONDITIONING	40	60	100	3	0	0	3		
3	23PTM703	METROLOGY AND QUALITY CONTROL	40	60	100	3	0	0	3		
4	23PTM704	INDUSTRIAL ROBOTICS	40	60	100	3	0	0	3		
5	23PTM7EX	ELECTIVE III	40	60	100	3	0	0	3		
		Total	S.S.		500				15		

SEVENTH SEMESTER

EIGHTH SEMESTER

SI.N	Course Code	Course Code Course Title CA Sem	Total		Hour	s/W	eek		
0.	course coue	course ritle	Marks	Marks	Marks	L	Т	Р	С
		THEOR	Y						
1	23PTM801	VALUES AND ETHICS	40	60	100	3	0	0	3
2	23PTM802	TOTAL QUALITY MANAGEMENT	40	60	100	3	0	0	3
3	23PTM8EX	ELECTIVE IV	40	60	100	3	0	0	3
		PRACTIC	AL						
4	23PTM803	PROJECT WORK	100	100	200	0	0	6	3
		Total			500				12

TOTAL NO. OF CREDITS: 111

		LIST OF ELE	CTIVES						
No.	Course Code	Course Title	CA	End Sem	Total		Houi	rs/W	eek
110.			Marks	Marks	Marks	L	Т	Р	С
		ELECTIV	'E I						
1	23PTM5E1	ADDITIVE MANUFACTURING TECHNIQUES	40	60	100	3	0	0	3
2	23PTM5E2	DESIGN FOR MANUFACTURE	40	60	100	3	0	0	3
3	23PTM5E3	AUTOMOBILE ENGINEERING	40	60	100	3	0	0	3
4	23PTM5E4	COMPOSITE MATERIALS	40	60	100	3	0	0	3
5	23PTM5E5	OPERATIONS RESEARCH	40	60	100	3	0	0	3
		ELECTIV	E II						
6	23PTM6E1	PROCESS PLANNING AND COST ESTIMATION	40	60	100	3	0	0	3
7	23PTM6E2	DESIGN OF JIGS, FIXTURES AND PRESS TOOLS	40	60	100	3	0	0	3
8	23PTM6E3	RENEWABLE ENERGY SOURCES	40	60	100	3	0	0	3
9	23PTM6E4	GAS DYNAMICS AND JET PROPULSION	40	60	100	3	0	0	3
10	23PTM6E5	WELDING TECHNOLOGY	40	60	100	3	0	0	3
		ELECTIVI	E III						
11	23PTM7E1	COMPUTER INTEGRATED MANUFACTURING	40	60	100	3	0	0	3
12	23PTM7E2	PRODUCT DESIGN AND DEVELOPMENT	40	60	100	3	0	0	3
13	23PTM7E3	POWER PLANT ENGINEERING	40	60	100	3	0	0	3
14	23PTM7E4	COMPUTATIONAL FLUID DYNAMICS	40	60	100	3	0	0	3
15	23PTM7E5	INDUSTRIAL ENGINEERING	40	60	100	3	0	0	3
		ELECTIV	E IV						
16	23PTM8E1	NON-TRADITIONAL MACHINING PROCESSES	40	60	100	3	0	0	3
17	23PTM8E2	MACHINE LEARNING FOR INTELLIGENT SYSTEMS	40	60	100	3	0	0	3
18	23PTM8E3	HYBRID AND ELECTRIC VEHICLE TECHNOLOGY	40	60	100	3	0	0	3
19	23PTM8E4	GREEN SUPPLY CHAIN MANAGEMENT	40	60	100	3	0	0	3
20	23PTM8E5	ENTREPRENEURSHIP DEVELOPMENT	40	60	100	3	0	0	3

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course	This course mainly deals with topics such as linear algebra, single varia	ble calculus and
Objectives	numerical methods and plays an important role in the understanding	of engineering
	science.	
UNIT – I	LINEAR ALGEBRA	9 Periods
Consistency of	System of Linear Equations, Eigenvalues and eigenvectors, Diagonaliza	tion of matrices
by orthogonal	transformation, Cayley-Hamilton Theorem, Quadratic form to canonical	forms.
UNIT – II	DIFFERENTIAL CALCULUS	9 Periods
Radius of curv	ature, Centre of curvature, Circle of curvature , Evolutes of a curve, Enve	lopes
UNIT – III	INTEGRAL CALCULUS	9 Periods
Evaluation of	definite and improper integrals, Applications: surface area and volum	ne of revolution
(Cartesian coo	rdinates only).	
UNIT – IV	NUMERICAL SOLUTION OF EQUATIONS	9 Periods
Algebraic and	Transcendental equation: Fixed point iteration method, Bisection m	ethod, Newton-
	Transcendental equation: Fixed point iteration method, Bisection m nod, Simultaneous equation: Gauss elimination method, Gauss-Jordan	
	nod, Simultaneous equation: Gauss elimination method, Gauss-Jordan	
Raphson metl	nod, Simultaneous equation: Gauss elimination method, Gauss-Jordan	
Raphson meth Seidal method. UNIT – V	nod, Simultaneous equation: Gauss elimination method, Gauss-Jordan	method, Gauss 9 Periods
Raphson meth Seidal method. UNIT – V Equal interval	nod, Simultaneous equation: Gauss elimination method, Gauss-Jordan NUMERICAL INTERPOLATION	method, Gauss 9 Periods uss forward and
Raphson metl Seidal method. UNIT – V Equal interval: Backward diff	nod, Simultaneous equation: Gauss elimination method, Gauss-Jordan NUMERICAL INTERPOLATION Newton's forward and Backward difference interpolation formulae, Gau	method, Gauss 9 Periods uss forward and
Raphson metl Seidal method. UNIT – V Equal interval: Backward diff	nod, Simultaneous equation: Gauss elimination method, Gauss-Jordan NUMERICAL INTERPOLATION Newton's forward and Backward difference interpolation formulae, Gau Ference interpolation formulae, Unequal interval: Lagrange's interpolation nce interpolation.	method, Gauss 9 Periods uss forward and
Raphson meth Seidal method. UNIT – V Equal interval: Backward diff divided differe	nod, Simultaneous equation: Gauss elimination method, Gauss-Jordan NUMERICAL INTERPOLATION Newton's forward and Backward difference interpolation formulae, Gau erence interpolation formulae, Unequal interval: Lagrange's interpolation nce interpolation. ds:	method, Gauss 9 Periods uss forward and ation, Newton's

TEXT BOOK

VeerarajanT., "Engineering Mathematics I", Tata McGraw-Hill Education(India)Pvt. Ltd, New Delhi,2015.
 P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3nd Edition, Reprint 2013.

REFERENCE BOOK

1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44 th Edition, 2017.
2	David C.Lay, "Linear Algebra and Its Application", PearsonPublishers, 6thEdition,2021.
3	Howard Anton, "Elementry Linear Algebra" ,11 th Edition,WileyPublication, 2013.
4	Narayanan.S and Manicavachagom Pillai. T.K. – CalculasVol I and Vol II,S.chand& Co, Sixth
4	Edition, 2014.
	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5 th Edition, 2015.
5	Ward Cheney, David Kincaid, "Numerical Methods and Computin"g, Cengage Learning, Delhi, 7 th
	Edition 2013.
6	Jain R.K. and Iyengar S.R.K., - Advanced Engineering Mathematics, NarosaPublicaitons, Eighth
0	Edition, 2012.

	RSE OUTCOMES:	Bloom's Taxonomy
On co	ompletion of the course, the students will be able to:	Mapped
C01	Use the essential tool of matrices and linear algebra in a comprehensive manner.	КЗ
CO2	Explain the fallouts of circle of curvature, evolute and envelops that is fundamental to application of analysis to Engineering problems.	КЗ
CO3	Interpret the integral calculus to notions of definite and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.	К3
CO4	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	К3
CO5	Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations.	К3

	23	PT	M1	Z2
--	----	----	----	----

PREREQUISI			Т	Р	C
	NIL	3	0	0	3
Course	The second is simpled at anothing succession success the students of	a d	alaa in		+
Course	The course is aimed at creating awareness among the students a	na	also in	semina	tes th
Objectives	critical ideas of preserving environment.				
UNIT – I	ENVIRONMENTAL ENERGY RESOURCES		9	Period	s
Food-effects	of modern agriculture, fertilizers, pesticides, eutrophication & b	iom	agnific	ations-	Energ
resources: re	enewable resources - Hydro Energy, Solar & Wind. Non-renewable	re	source	s – Co	al an
Petroleum - ha	arnessing methods.				
UNIT – II	ECO SYSTEM AND BIODIVERSITY		9	Period	S
Eco system an	nd its components - biotic and abiotic components. Biodiversity: types a	nd	values	of biodi	versit
hot spots of h	piodiversity, endangered and endemic species, conservation of biodive	rsit	y: In si	tu and	ex sit
conservation.	Threats to biodiversity-destruction of habitat, habit fragmentation, h	unti	ing, ov	er expl	oitatio
and man-wild	life conflicts. The IUCN red list categories.				
UNIT – III	ENVIRONMENTAL POLLUTION		9	Period	S
Air pollution,	classification of air pollutants - sources, effects and control of gaseous	pol	lutants	SO ₂ , N	D ₂ , H ₂ S
-	classification of air pollutants – sources, effects and control of gaseous particulates. Water pollution - classification of water pollutants, organic	-			
CO, CO_2 and p		and	l inorga	inic pol	llutants
CO, CO_2 and p	particulates. Water pollution - classification of water pollutants, organic	and	l inorga Tects an	inic pol	llutants ol.
CO, CO ₂ and p sources, effec UNIT – IV	particulates. Water pollution - classification of water pollutants, organic ts and control of water pollution. Noise pollution - decibel scale, sources	and , eff	l inorga Tects an 9	inic pol d contr Period	llutants ol. s
CO, CO ₂ and p sources, effec UNIT – IV Global warmin	barticulates. Water pollution - classification of water pollutants, organic ts and control of water pollution. Noise pollution - decibel scale, sources ENVIRONMENTAL THREATS	and , eff	l inorga Tects an 9 fect, Ac	nic pol d contr Period id rain-	llutants ol. s · effect
CO, CO ₂ and p sources, effec UNIT – IV Global warmin and control of	barticulates. Water pollution - classification of water pollutants, organic ts and control of water pollution. Noise pollution - decibel scale, sources ENVIRONMENTAL THREATS ng-measure to check global warming - impacts of enhanced Greenhous	and , eff	l inorga Tects an 9 fect, Ac	nic pol d contr Period id rain-	llutants ol. s · effect
CO, CO ₂ and p sources, effec UNIT – IV Global warmin and control of	barticulates. Water pollution - classification of water pollutants, organic ts and control of water pollution. Noise pollution - decibel scale, sources ENVIRONMENTAL THREATS ng-measure to check global warming - impacts of enhanced Greenhous of acid rain, ozone layer depletion- effects of ozone depletion, disast	and , eff	l inorga Sects an 9 fect, Ac manag	nic pol d contr Period id rain-	llutants ol. s · effect - flood
CO, CO ₂ and p sources, effec UNIT – IV Global warmin and control of drought, earth UNIT – V	barticulates. Water pollution - classification of water pollutants, organic ts and control of water pollution. Noise pollution - decibel scale, sources ENVIRONMENTAL THREATS ng-measure to check global warming - impacts of enhanced Greenhous of acid rain, ozone layer depletion- effects of ozone depletion, disast nquake and tsunami.	and , eff e eff	l inorga Fects an fect, Ac manag 9	nic pol d contr Period id rain- ement Period	llutants ol. s - effect - flood s
CO, CO ₂ and p sources, effec UNIT – IV Global warmin and control of drought, earth UNIT – V Water conser	barticulates. Water pollution - classification of water pollutants, organic ts and control of water pollution. Noise pollution - decibel scale, sources ENVIRONMENTAL THREATS ng-measure to check global warming - impacts of enhanced Greenhous of acid rain, ozone layer depletion- effects of ozone depletion, disast nquake and tsunami. SOCIAL ISSUES AND ENVIRONMENT	and , eff e eff cer	l inorga Sects an 9 fect, Ac manag 9 c, Wild	nic pol d contr Period id rain- ement Period life Pro	llutant ol. s - effect - flood s utectio
CO, CO ₂ and p sources, effec UNIT – IV Global warmin and control of drought, earth UNIT – V Water conser Act. Populatio	articulates. Water pollution - classification of water pollutants, organic ts and control of water pollution. Noise pollution - decibel scale, sources ENVIRONMENTAL THREATS ng-measure to check global warming - impacts of enhanced Greenhous of acid rain, ozone layer depletion- effects of ozone depletion, disast nquake and tsunami. SOCIAL ISSUES AND ENVIRONMENT vation, rain water harvesting, e-waste management, Pollution Control	and , eff e eff cer Act	l inorga Fects an 9 fect, Ac manag 9 c, Wild g natio	nic pol d contr Period id rain- ement Period life Pro ns, pop	llutant ol. s - effect - flood s tectio pulatio
CO, CO ₂ and p sources, effec UNIT – IV Global warmin and control of drought, earth UNIT – V Water conser Act. Populatic policy. Wome	barticulates. Water pollution - classification of water pollutants, organic ts and control of water pollution. Noise pollution - decibel scale, sources ENVIRONMENTAL THREATS ng-measure to check global warming - impacts of enhanced Greenhous of acid rain, ozone layer depletion- effects of ozone depletion, disast nquake and tsunami. SOCIAL ISSUES AND ENVIRONMENT vation, rain water harvesting, e-waste management, Pollution Control on growth- exponential and logistic growth, variation in population and	and , eff e eff cer Act	l inorga Fects an 9 fect, Ac manag 9 c, Wild g natio	nic pol d contr Period id rain- ement Period life Pro ns, pop	llutant ol. s - effect - flood s tectio pulatio
CO, CO ₂ and p sources, effec UNIT – IV Global warmin and control of drought, earth UNIT – V Water conser Act. Populatic policy. Wome	articulates. Water pollution - classification of water pollutants, organic ts and control of water pollution. Noise pollution - decibel scale, sources ENVIRONMENTAL THREATS ng-measure to check global warming - impacts of enhanced Greenhous of acid rain, ozone layer depletion- effects of ozone depletion, disast nquake and tsunami. SOCIAL ISSUES AND ENVIRONMENT vation, rain water harvesting, e-waste management, Pollution Control on growth- exponential and logistic growth, variation in population and n and Child welfare programs. Role of information technology in huma eventive measures.	and , eff e eff cer Act	l inorga Fects an 9 fect, Ac manag 9 c, Wild g natio	nic pol d contr Period id rain- ement Period life Pro ns, pop	llutant ol. s - effect - flood s tectio pulatio

TEXT BOOK:

1	Sharma J.P., "Environmental Studies" , 4th Edition, University Science Press, New Delhi 2016.
2	AnubhaKaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New age
	International Publishers, New Delhi, 2021.

1	A k de, "Environmental Chemistry", eight edition, new age international publishers, 2017.
2	G Tyler miller and scott e. Spoolman, "Environmental Science", cengage learning indiapvt, ltd, delhi, 2014.
3	ErachBharucha, "Textbook of Environmental Studies", Universities Press(1) Pvt, Ltd, Hydrabad, 2015.
1	Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 3 rd Edition, Pearson
т	Education, 2015.

COUR	SE OUTCOMES:	Bloom's Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
C01	Recognize and understand about the various environmental energy resources and the effective utility of modern agriculture.	K2
CO2	Acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.	K2
CO3	Be aware of the sources of various types of pollution, their ill effects and preventive methods.	K2
CO4	Identify and take the preventive measures to control the environmental threats and effects of Global warming, Ozone depletion, Acid rain, and natural disasters.	K2
C05	Demonstrate an idea to save water and other issues like COVID -19.	K2

23PTM103

PREREQUISITES	L	Т	Р	C
NIL	3	0	0	3

Course	To study the basic concepts and properties of conducting mate	rials, semiconducting			
Objectives	bjectives materials, magnetic and super conducting materials, nanomaterials and advanced				
	engineering materials.				
UNIT – I	CONDUCTING MATERIALS	9 Periods			
Introduction to	o Conductors – classical free electron theory of metals – Draw backs	of classical theory -			
quantum theor	ry - Electrical and Thermal conductivity of Metals – Derivation for Wie	demann – Franz law –			
Lorentz numbe	er –– Fermi distribution function – density of energy states.				
UNIT – II	SEMICONDUCTING MATERIALS	9 Periods			
Introduction	- Properties - elemental and compound semiconductors - Int	rinsic and extrinsic			
semiconducto	ors - properties - Carrier concentration in intrinsic Semico	nductor - extrinsic			
semiconducto	ors - Carrier concentration in P- type and N-type semiconductors.				
UNIT – III	MAGNETIC AND SUPERCONDUCTING MATERIALS	9 Periods			
Introduction - Classification of magnetic materials-dia, para and ferromagnetic materials- domain theory-					
•	ard and soft magnetic materials – superconducting materials and their				
Type II superc	onductors- applications for superconducting materials-Magnetic levitati	on-cryotron.			
UNIT – IV	NANOMATERIALS	9 Periods			
	Nano materials-preparation- top-down and bottom-up methods – Ball milling - chemical vapour deposition				
- Properties an	nd applications of nano materials-carbon nanotubes (CNT)- Structures	and types- Properties			
and applicatio	and applications of carbon nanotubes.				
UNIT – V	ADVANCED ENGINEERING MATERIALS	9 Periods			
Metallic glasses: melt spinning process, properties and applications - Shape memory alloys (SMA): two					
different phases-types of shape memory alloys, characteristics of SMA- Ni-Ti alloy -applications of SMA- Bio					
materials – Pro	materials – Properties and applications.				
Contact Perio					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK

1	K.Rajagopal , Engineering Physics , 3 rd edition, PHI Learning Private Ltd, 2015.
2	A. Marikani, Engineering Phyiscs, PHI Learning Private limited, 2013.

1	P.K.Palanisamy, Engineering Physics-II, Scitech Publications (India) Pvt. Ltd, 2015.
2	William D Callister Jr., and David G. Rethwisch ,Materials science & Engineering : An
	<i>introduction,9</i> th edition , Wiley (2014)
3	Charles P.Poole, Jr; Frank J.Owens, Introduction to Nanotechnology, Wiley India, 2012.
4	S. M. Sze, Semiconductor Devices: Physics and Technology , 3 rd edition, Wiley (2015).
5	A. Marikani, "Engineering Phyiscs" , PHI Learning Private limited, 2013.

COUR	Bloom's Taxonomy		
On co	On completion of the course, the students will be able to:		
C01	Calculate the Fermi energy and the carrier concentration in metals.	K4	
CO2	Analyze the characteristics of solar cells.	K4	
CO3	Select the magnetic and super conducting materials for the desired application.	K4	
C04	Choose the method to synthesis a nanomaterial.	K5	
C05	Apply the advanced engineering materials in various fields.	КЗ	

BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

PREREQUISITES L T P C NIL 3 0 0 3

Course	To study the basic concepts of electric circuits, electrical machines	, analog and digital			
Objectives	ves electronics, house wiring and electrical installations.				
UNIT – I	ELECTRICAL CIRCUITS	9 Periods			
Electrical circui	t elements (R,L and C) - Voltage and Current sources – Ohm's Law – K	Circhoff laws – Time			
domain analysis	s of First order RL and RC circuits – Representation of sinusoidal wa	veforms – Average,			
RMS and Peak	values – Phasor representation – Real, Reactive, Apparent power and	power factor.			
UNIT – II	ELECTRICAL MACHINES AND MEASUREMENTS	9 Periods			
Construction, P	rinciple of Operation, basic equations and Types, Characteristics and	Applications of DC			
generators, DC	motors, Single phase Transformer, Single phase and Three phase	e Induction motor.			
Operating princ	ciples of Moving coil, Moving iron Instruments (Ammeter and Voltmet	ters).			
UNIT – III	ANALOG AND DIGITAL ELECTRONICS	9 Periods			
Analog Electron	ics: Semiconductor devices – P-N junction diode, Zener diode, BJT, Op	perational amplifier			
– principle of o	peration, Characteristics and applications. Digital Electronics: Introd	duction to numbers			
systems, basic l	Boolean laws, reduction of Boolean expressions and implementation v	vith logic gates.			
UNIT – IV	FUNDAMENTAL OF COMMUNICATION ENGINEERING	9 Periods			
Types of Signa	k: Analog and Digital Signals – Modulation and Demodulation: Prin	ciples of Amplitude			
and Frequency	Modulations – Resistive, Inductive, capacitive Transducers- Introduct	ion.			
UNIT – V	ELECTRICAL INSTALLATIONS AND ENERGY CONSERVATION	9 Periods			
Single phase a	nd three phase system – phase, neutral and earth, basic house	wiring -tools and			
components, different types of wiring - basic safety measures at home and industry – Energy efficient					
lamps - Energy billing. Introduction to UPS and SMPS.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK:

1	R.Muthusubramaniam,	R.Salivaganan,	Muralidharan	K.A.,	"Basic	Electrical	and	Electronics
	Engineering" Tata McG	raw Hill , Second	Edition, 2010.					
2	Mittle V.N and Aravind I	Mittal, "Basic Ele	ctrical Enginee	ring",	Tata Mc	Graw Hill, Se	cond	Edition, New
	Delhi, 2005.							

REFERENCE BOOK:

1	D.P.Kothari, I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.		
2	Nagsarkar T.K and Sukhija M.S, "Basic Electrical Engineering", Oxford Press, 2005.		
3	E.Hughes,"Electrical and Elecronics Technology", Pearson, 2010.		
4	MohmoodNahvi and Joseph A.Edminister, "Electric Circuits", Shaum Outline series, McGraw Hill, Sixth		
	edition, 2014.		
5	Premkumar N and Gnanavadivel J, "Basic Electrical and Electronics Engineering", Anuradha		
	Publishers, 4th Edition, 2008.		

COUR	Bloom's	
On co	mpletion of the course, the students will be able to:	Taxonomy Mapped
CO1	Analyze the DC and AC circuits	K4
CO2	Describe the operation and characteristics of electrical machines	K4
CO3	Classify and compare various semiconductor devices and digital electronics.	К3
CO4	Infer the concept of communication engineering and Transducers.	К2
CO5	Assemble and Implement electrical wiring and electrical installations	К6

PREREQUISITES	L	Т	Р	C
NIL	3	0	0	3

Course	To study the forces and moments in various types of mechanical system	ns and to enable			
Objectives	students to understand the relationship between processes, kinetics and	l kinematics.			
UNIT – I	INTRODUCTION TO MECHANICS AND FORCE CONCEPTS	9 Periods			
Principles and	Concepts – Laws of Mechanics – system of forces – resultant of a	force system -			
resolution and	l composition of forces – Lami's theorem – moment of a force – physica	l significance of			
moment-Varig	non's theorem – resolution of a force into force and couple – forces in s	space – addition			
of concurrent	forces in space - equilibrium of a particle in space, Classification of	of beams based			
on supports.					
UNIT – II	FRICTION	9 Periods			
- angle of repo	stance – classification of friction- laws of friction – coefficient of friction- ose –– cone of friction – free body diagram-advantages-equilibrium of a l – non-concurrent force system - ladder friction – rope friction – wedge fr	oody on a rough			
UNIT – III	GEOMETRICAL PROPERTIES OF SECTION	9 Periods			
	ut parts - moment of inertia – theorems of moment of inertia – mome tions – principal moment of inertia of plane areas - radius of gyration. BASICS OF DYNAMICS	ent of inertia of 9 Periods			
motion of a pa – motion und projection – r momentum –	Kinematics and kinetics – displacements, velocity and acceleration - Equations of motion – Rectilinear motion of a particle with uniform velocity, uniform acceleration, varying acceleration – motion curves – motion under gravity – relative motion – curvilinear motion of particles – projectiles – angle of projection – range – time of flight and maximum height. Newton's second law of motion – linear momentum – D'Alembert's principle, Dynamics equilibrium –– work energy equation of particles – law of conservation of energy – principle of work and energy				
UNIT – V	IMPULSE MOMENTUM AND IMPACT OF ELASTIC BODIES	9 Periods			
Principle of impulse and momentum – Equations of momentum – Laws of conservation of momentum. Impact – Time of compression, restitution, collision – Co-efficient of restitution – types of impact – collision of elastic bodies by direct central impact and oblique impact – collision of small body with a massive body – Kinetic energy of a particle. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

ТЕХТ ВООК

1	S.S. Bhavikatti and K.G. Rajasekarappa, "Engineering Mechanics" New Age International (P) Ltd., 1999.
2	S.C. Natesan, "Engineering Mechanics" Umesh Publications, 2005.

1	F.B. Beer and E.R. Johnson, "Vector Mechanics for Engineers", Tata McGraw Hill Pvt. Ltd, 10th
	Edition, 2013.
2	S. Timoshenko, D.H.Young, J.V.Rao and Sukumar Pati, "Engineering Mechanics", McGraw Hill
	Education, 5 th Edition, 2017.
3	Irving Shames and Krishna Mohana Rao, "Engineering Mechanics", Prentice Hall of India Ltd, Delhi,
	2006.
4	R.C. Hibbeller, "Engineering Mechanics" , Prentice Hall of India Ltd, 13 th Edition, 2013.
5	Vela Murali, "Engineering Mechanics", Oxford university Press, 1 st Edition, 2010.

COUR On co	Bloom's Taxonomy Mapped	
C01	Know the concept of mechanics and system of forces and moments.	K5
CO2	Calculate the frictional properties at different bodies.	K5
CO3	Identify the locations of centre of gravity and moment of inertia for different sections.	К5
C04	Understand the basics of dynamics of particles	K5
CO5	Know the impulse and momentum principle and impact of elastic bodies.	K5

SEMESTER II

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course Objectives	1 1 1					
UNIT – I	UNIT – I ORDINARY DIFFERENTIAL EQUATIONS					
Higher order	Higher order linear differential equations with constant coefficients -variable coefficient					
Cauchy-Euler	equation, Cauchy-Legendre equation-Method of variation of parameter	ſS.				
UNIT – II	PARTIAL DIFFERENTIAL EQUATIONS	9 Periods				
Formation of	partial differential equations – First order partial differential equations	s – Standard				
types and La	grange's linear equation – Homogeneous linear partial differential e	quations of				
second and hi	gher order with constant coefficients.					
UNIT – III	NUMERICAL DIFFERENTIATION AND INTEGRATION	9 Periods				
Numerical Di	fferentiation (using Newton's interpolation formula) – Numerical	integration:				
Trapezoidal r	ule and Simpson's rules (Both single and double integrals.					
UNIT – IV	NUMERICAL SOLUTION OF FIRST ORDINARY DIFFERENTIAL EQUATIONS	9 Periods				
Single Step M	Aethods : Taylor's series method-Euler's and modified Euler's meth	ods-Runge-				
Kutta methoo methods	l of fourth order Multi Step methods - Milne's and Adam's predicate	or-corrector				
UNIT – V	NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS	9 Periods				
Finite difference solution of two dimensional Laplace equation and Poisson equation- Implicit and explicit methods for one dimensional heat equation (Bender-Schmidt and Crank-Nicholson methods)-Finite difference explicit method for one dimensional wave equation. Contact Periods :						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

1	Veerarajan.T, "Engineering Mathematics", Tata McGraw Hill Education (India) Private
	Limited, New Delhi, 2018.
2	P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3nd
	Edition, Reprint 2013.

1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44thEdition,
	2018.
2	SrimantaPal, "Numerical Methods Principles, Analyses and Algorithms", Oxford University
	Press, New Delhi, I st Edition 2009.
3	Raisinghania.MD, "Ordinary And Partial Differential Equations", 20th Edition, S.
	ChandPublishing,2020
4	S.S. Sastry, "Introductory methods of numerical analysis" , PHI, New Delhi, 5 th Edition, 2015.
5	S.Larsson and V.Thomee, "Partial Differential Equations with Numerical Methods", Springer,
	2003.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Obtain the knowledge for solving higher order linear differential equation with constant and variable coefficient techniques and simultaneous differential equation.	K3
CO2	Understand the knowledge of partial differential equations (PDEs), modeling; demonstrate accurate and efficient use of Lagrange's techniques.	К3
CO3	Demonstrate and understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	К3
C04	Construct one-step and linear multistep methods for the numerical solution of initial-value problems for ordinary differential equations.	КЗ
C05	Acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes.	К3

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course	1. To solve problems using Python conditionals and loops stat	tements.					
Objectives	es 2. To define Python functions and use function calls to modularize the						
	program.						
	3. To use Python data structures, simple data – lists, tuples, complex data -						
	dictionaries.	1					
	4. To do input/output operations with files in Python.						
UNIT – I	INTRODUCTION	9 Periods					
Fundamental	s of Computing – Identification of Computational Problems - Algori	ithms, building					
blocks of algo	rithms - statements, control flow, notation - pseudo code, flowchart	, programming					
language – D	ata, Expressions, variables and keywords, precedence of operato	ors, comments.					
Python Intera	ctive and script mode.						
UNIT - II CONDITIONAL AND LOOPING STATEMENTS 9 Periods							
Conditional Statements: Boolean values and operators, simple (if), alternative (if-else), chained							
conditional (i	f-elif-else) and Nested. Iteration: while, for, break, continue, pass; ne	sted loops.					
UNIT - III FUNCTION AND STRING 9 Periods							
Function: stru	acture of a function, return values, parameters, local and global sce	ope, recursion.					
String –							
	nctions, methods and slicing.						
UNIT – IV	LIST, TUPLE AND DICTIONARY	9 Periods					
	n, operations, functions, methods and slicing; tuple creation and met						
-	tatements. Dictionaries: operations and methods; advanced list pr	ocessing – list					
comprehensio							
UNIT - V FILES AND EXCEPTIONS 9 Periods							
	eptions: Types of files, reading and writing files, Different file modes,	, copying a file;					
command line arguments, Exceptions: handling exceptions, modules, packages.							
Contact Peri	The second se						
Lecture:45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Tota	l:45 Periods					

TEXT BOOK:

1	Kenneth Leroy Busbee and Dave Braunschweig, "Programming Fundamentals, A Modular
	Structured Approach", Creative Commons Attribution-Share A like 4.0 International License,
	2 nd Edition, 2018.
2	Yashavant Kanetkar and Aditya Kanetkar, "Let us Python" , BPB Publications, 1stEdition, 2019.

REFERENCES:

1	Allen B. Downey, "Think Python: How to Think like a Computer Scientist", O'Reilly
	Publishers, 2 nd Edition, 2016.
2	Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers
	and
	Data Scientists", Notion Press, 1 st Edition, 2021.
3	John V Guttag, "Introduction to Computation and Programming Using Python: With
	Applicationsto Computational Modeling and Understanding Data", The MIT Press, 3rd
	Edition, 2021.
4	Paul Deitel and Harvey Deitel, "Python for Programmers" , Pearson Education, 1 st Edition,
	2021.
	2021.

5 Eric Matthes, **"Python Crash Course, A Hands – on Project Based Introduction to Programming"**, No Starch Press, 2nd Edition, 2019.

COUR	COURSE OUTCOMES:	
Upon	Upon completion of the course, the students will be able to:	
C01	Develop algorithms to simple computational problems.	K3
CO2	Write simple conditional Python programs.	K3
CO3	Write simple Python programs using loops and functions.	K3
C04	Create Python lists, tuples and dictionaries.	K3
C05	Read from a file and write into a file using Python.	K3

23PTM203

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course ObjectivesTo learn the basics techniques to evaluate stresses, strain, bending moment and shear						
UNIT – I	force distribution in engineering structures. UNIT - I STRESS AND STRAIN 9 Periods					
	rain at a point - Tension, compression, shear stresses - Hooke's la					
	strain - Poisson's ratio - Volumetric strain - Bulk modulus - Relat					
	nts – stress strain diagrams for mild steel, cast iron - Ultimate stress					
	ty - Thermal stresses - Thin cylinders - Strain energy due to axial fo	rce - Resilience				
	o gradual load, suddenly applied load and Impact load.					
UNIT – II	SHEAR FORCE AND BENDING MOMENT	9 Periods				
	es of Beams - Types of loads, supports - Shear force – Bending m					
	ding moment diagrams for cantilever, simply supported and over	0 0				
	rated , uniformly distributed, uniformly varying load and couple	- Relationship				
	loading, shear force, bending moment- Point of contraflexure.					
UNIT – III	THEORY OF BENDING AND COMPLEX STRESSES	9 Periods				
Theory of ber	nding - Bending equation - Section Modulus - Stress distribution at	a cross section				
	g moment and shear force for cantilever, simply supported beams w					
loads (Rectan	gular, circular, I & T sections only) - combined direct and bending s	tresses, Kernel				
of section (R	ectangular, Circular Sections only). 2D State of stress - 2D Nor	mal and shear				
stresses on a	ny plane-Principal stresses and Principal planes - Introduction to p	rincipal strains				
and direction	- Mohr's circle of stress (Two dimension only).					
UNIT – IV	DEFLECTION OF BEAMS AND THEORY OF LONG COLUMNS	9 Periods				
Determinatio	ns of deflection curve – Relation between slope, deflection and radi	us of curvature				
- Slope and o	deflection of beam at any section by Macaulay's method - Concer	ot of Conjugate				
beam method	l (Theory only) - Euler's theory of long columns - Expression of cri	ppling load for				
	conditions - Effective length - Slenderness ratio - limitations of E					
	ula for columns.	•				
UNIT – V	THEORY OF TORSION	9 Periods				
Torsion of sh	afts - Torsion equation - Polar modulus - Stresses in solid and l	hollow circular				
shafts – Torsional rigidity - Power transmitted by the shaft – Importance of angle of twist -						
	Strain energy due to torsion - Modulus of rupture – Torsional resilience – Combined bending					
and torsion - Stresses in helical springs - Deflection of helical spring - Introduction to torsion of						
	non - circular sections.					
Contact Peri						
	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK:

Sadhu Singh, "Strength of Materials", Khana Publishers, 11th Edition, 2014.
 R.K.Rajput, "Strength of Materials", S. Chand & Company Ltd., 6th Edition, 2018.

REFERENCES:

1 S.S. Bhavikatti, "Strength of Materials", Vikas Publishing House, 5th Edition, 2022.

2 James M.Gere and Barry J.Goodno, **"Mechanics of Materials"**, Cengage Learning India Pvt. Ltd., 9th Edition, 2022. 3 Srinath L., "Advanced Mechanics of Solids", McGraw Hill Education, 3rd Edition, 2017.

4 Kazimi, **"Solid Mechanics"**, McGraw Hill Education, 2nd Edition, 2017.

5 Jacob Lubliner and Panayiotis Papadopoulos, "Introduction to Solid Mechanics - An Integrated Approach", Springer, 2014th Edition, 2013.

COUR	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
C01	Evaluate stresses and strains for various types of loading.	К2
CO2	Estimate the Shear force and Bending moment and find the point of contraflexure.	K2
CO3	Create shear stress distribution drawings for simple sections and evaluate principal stresses and strains.	КЗ
C04	Use theory of beams and long columns to find slope, deflection, radius of curvature of beams and crippling load of long columns.	КЗ
C05	Apply theory of torsion for problems involving torsion of circular shafts and leaf spring.	КЗ

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course	To understand the Fluid properties, types of fluid flow, dimension	al analysis and
Objectives	performance of pumps and turbines.	
UNIT – I	FLUID PROPERTIES	9 Periods
	nensions – fluid properties – density, specific gravity, viscosity, s ompressibility and bulk modulus – Pascal's law – pressure mo	
	- fluid statics – total pressure and centre of pressure on submerged s	
UNIT – II	FLUID KINEMATICS AND DYNAMICS	9 Periods
-		
three	I flow and flow lines – control volume – continuity equation in one	dimension and
	velocity potential and stream function - energy equation – Euler a	
	pplications of energy equations - flow meters - laminar and turbuler	it now through
	Poisullie equation – Darcy Weisbach formula – applications.	0.0. 1
UNIT – III	DIMENSIONAL ANALYSIS	9 Periods
	nensional analysis – dimensional homogeneity – Rayleigh's an	d Buckingham
methods of		
	analysis - problems. Model study and similitude - scale effects	and distorted
model.		
UNIT – IV	TURBINES	9 Periods
	- construction, working principles and design of Pelton wheel, Fran	
turbines - wo	ork done and efficiency - specific speed - operating characteristics	- governing of
	blems.	
turbines – pr		
	PUMPS	9 Periods
turbines – pr UNIT – V		
turbines – pr UNIT – V Classification	PUMPS	nd efficiency -
turbines – pr UNIT – V Classification multistage pu	PUMPS of pumps - centrifugal pump - working principle - work done a	nd efficiency -
turbines – pr UNIT – V Classification multistage pu	PUMPS of pumps - centrifugal pump - working principle - work done a umps - reciprocating pumps - work done and efficiency - negative sli gram – problems.	nd efficiency -
turbines – pr UNIT – V Classification multistage pu indicator diag	PUMPS of pumps - centrifugal pump - working principle - work done a umps - reciprocating pumps - work done and efficiency - negative sli gram – problems. ods :	nd efficiency -

TEXT BOOK:

1	P.N.Modi and S.N.Seth, "Hydraulics and Fluid Mechanics, Including Hydraulic
	Machines", Standard Book House, 15 th Edition, 2015.
2	R.K.Bansal, "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd.,
	9 th Edition, 2018.

1	K.Subramanya, "Flow in Open channels" , McGraw-Hill, 5 th Edition, 2019.				
2	S.Ramamrutham and R.Narayan, "Hydraulics, Fluid Mechanics and Fluid				
	Machines", Dhanpat Rai Publishing Company, 9 th Edition, 2014.				
3	R.K.Rajput, "A Text Book of Fluid Mechanics and Hydraulic Machines", S.Chand and				
	Company, 9 th Edition, 2015.				

- 4 D.S.Kumar, **"Fluid Mechanics and Fluid Power Engineering"**, S.K.Kataria & Sons, 9th Edition, 2018.
- 5 G.K.Batchelor, **"An Introduction to Fluid dynamics"**, Cambridge University Press, 2nd Edition, 2012.

COURSE OUTCOMES:		Bloom's
	Taxonomy	
Upon completion of the course, the students will be able to:		Mapped
C01	Explain fluid properties and its applications.	K4
CO2	Gain knowledge on fluid flows and to solve practical problems.	K4
CO3	Apply the concepts of dimensional analysis for fluid flow problems.	K4
C04	Analyze the performance of turbines and design of turbines.	K4
C05	Analyze the performance of pumps and design of pumps.	K4

PREREQUISITES		L	Т	Р	С
MATERIAL SCIENCE 3		0	0	3	
Course	Course To study the crystal structure, phase diagrams, phase transformations and heat				
Objectives	jectives treatment of alloys and to acquire knowledge on various testing methods of				
	engineering materials.				
UNIT – I	JNIT – I BASICS OF CRYSTALS STRUCTURES 9 Periods				
Classification of engineering materials, ABAB stacking of HCP structure, ABCABC Stacking of					
CCP structur	CCP structure, Voids in closed packed structure, Dislocations, Slip systems, Deformation by				

CCP structure, Voids in closed packed structure, Dislocations, Slip systems, Deformation by twining, Twin-Tilt Boundary, Burger circuit, Stacking fault, Types of solid solutions, Hume Rotherys rules, Intermediate alloy phases and electron compounds, Solid solutions - Substitutional and interstitial.

UNIT – II	PHASE DIAGRAMS OF ALLOYS AND STRENGTHENING MECHANISMS	9 Periods
	MECHANISMS	

Unary phase diagram, Binary isomorphous and eutectic system, Iron-carbon equilibrium diagram -

Experimental methods of construction of equilibrium diagrams, Invariant reactions - Eutectic, Peritectic, Eutectoid and peritectoid reactions, Strengthening mechanisms: Strengthening by grain size reduction solute hardening, chemical hardening, dispersion hardening, cold working, strain hardening, Recovery recrystallization and grain growth.

UNIT - III PHASE TRANSFORMATIONS AND HEAT TREATMENT OF ALLOYS 9 Periods

Heat treatment of steel - TTT diagram - annealing process, normalizing, hardening and tempering of steels - Age hardening, austempering, martempering, Isothermal transformation diagrams – Cooling curves superimposed on I.T diagram - Effect of alloying elements on Fe-Fe₃C system - hardenability, Jominy-end-quench test, Case hardening – Carburizing - Types, Nitriding, Cyaniding, Carbonitriding, Flame and Induction hardening.

UNIT - IVFERROUS AND NON FERROUS METALS9 PeriodsPlain carbon steels - alloy steels - stainless and tool steels - Cast iron - Gray, White, Malleable,
Spheroidal graphite - alloy cast irons - Heat resistant steels and Die steels. Alloys of Copper,
Aluminum, Nickel, Magnesium, Titanium, Lead, Tin, Composite material, Types - PMCs, MMCs,

CMCs, CAMCs, Material specification and standards.

UNIT – V TESTING OF MATERIALS

9 Periods

Grain size determination by Microscopic techniques, Mechanical tests - tension, compression, impact, hardness, Fracture toughness test, Low and high cycle fatigue test, Crack growth studies – Creep tests. Non destructive testing basic principles and testing method for radiographic testing, Ultrasonic testing, Magnetic particle inspection and Liquid penetrant inspection test, Eddy current testing. Basics of X Ray diffraction test - Bragg's law, Secondary Ion Mass Spectroscopy, Fourier Transform Infra - Red Spectroscopy (FTIR).

Lecture: 45 Periods Tutorial	0 Periods	Practical: 0 Periods	Total: 45 Periods

TEXT BOOK:

- 1 William D. Callister, Jr. and David G. Rethwisch, "Materials Science and Engineering: An Introduction", Wiley, 10th Edition, 2018.
- 2 O.P. Khanna, **"Material Science and Metallurgy"**, Dhanpat Rai Publications, 2nd Edition, 2014.

- 1 George E. Dieter, "Mechanical metallurgy", McGraw-Hill, 3rd Edition, 2017.
- 2 Sydney H.Avner, "Introduction to Physical Metallurgy", McGraw-Hill, 2nd Edition, 2017.
- 3 Kenneth G.Budinski and Michael K.Budinski, **"Engineering Materials: Properties and** Selection", Pearson Education, 9thEdition, 2016.
- 4 Raghavan V., **"Materials Science and Engineering"**, Prentice Hall India Learning Private Ltd., 6th Edition, 2015.
- 5 U.C.Jindal, "Engineering Materials and Metallurgy", Pearson Education, 1st Edition, 2011.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Acquire knowledge in the crystal structure and deformation of pure metals and alloys.	К3
CO2	Understand the alloy phase diagrams basics and their strengthening mechanisms.	K4
CO3	Select suitable and heat treatment methods for various metals and alloys.	K4
C04	Understand the ferrous and nonferrous materials and their application.	K2
C05	Gain knowledge about materials testing methods.	K4
	A A A A A A A A A A A A A A A A A A A	

L	Т	Р	С
3	0	0	3

Course	To acquire knowledge about various types of manufacturing p	rocesses which		
Objectives	includes casting, joining, forming and techniques involve			
	manufacturing, powder metallurgy to produce a product f			
	industrial applications.	p		
UNIT – I	METAL CASTING PROCESSES	(9 Periods)		
	to Concepts of Manufacturing Process -Sand casting – Sand m			
	attern materials – Pattern allowances – Design of riser and gat	• •		
	nd –Properties – Core making – Methods of Sand testing –			
	ell casting, investment casting, die casting, centrifugal casting - Me			
-	ts and remedies – Inspection methods	8		
UNIT – II	JOINING PROCESSES	(9 Periods)		
	ng processes – Types of Gas welding – Equipments used – Flame c			
	x materials - Arc welding equipments - Electrodes –Coating and			
	Resistance welding – Spot/butt, seam welding – Percussion welding			
	nerged arc welding – Electro slag welding – TIG welding –Brazin			
	ling defects: causes and remedies.	5 und soldering		
UNIT – III	BULK DEFORMATION PROCESSES	(9 Periods)		
Hot working and cold working of metals - Forging processes - Open and close die forging -				
	ing Machines – Typical forging operations – Rolling of metals – Fla			
	f rolling – Types of Rolling mills – Tube piercing – Principles of Ex			
	Hot and Cold extrusion – Principle of rod and wire drawing.	JI JI		
UNIT – IV	SHEET METAL FORMING AND PLASTIC COMPONENTS	(9 Periods)		
Typical shear	ing operations, bending and drawing operations – Formability o	```		
Metal spinning – Magnetic pulse forming – Super plastic forming – Types and characteristics of				
	lding of Thermoplastic -Working principle and application of Inje			
	moulding and transfer moulding.	Ċ,		
UNIT – V	ADDITIVE MANUFACTURING PROCESSES	(9 Periods)		
Fundamental	s of Additive Manufacturing (AM)-Product Development-Mate	erials for AM-		
	aphy apparatus - STL file - Fused Deposition Modeling- Lar			
•	g - Selective Laser sintering- 3D Printer – Introduction to powder m			
Contact Peri				
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods Tot	al: 45 Periods		
TEXT BOOKS				

TEXT BOOKS:

1	L	Serope Kalpakjian and Steven R. Schmid,	"Manufacturing Engineering and Technology",
		Pearson Education, 7 th Edition, 2018.	

2 P. C. Sharma, "A Text book of Production Technology", S. Chand and Co. Ltd., 2021.

1	Mikell P. Groover, "Fundamentals of Modern Manufacturing: Materials, Processes, and
	System", John Wiley and Sons, 2010.

- 2 *P. N. Rao,* **"Manufacturing Technology: Foundry, Forming and Welding"**, *McGraw Hill,* 5th *Edition, 2018.*
- 3 Chee Kai Chua, Chu Sing Lim and Kah Fai Leong, **"Rapid Prototyping: Principles and Applications"**, World Scientific Publishers, 3rd Edition 2010.
- 4 R. K. Rajput, "Manufacturing Technology", Laxmi Publication Pvt Ltd, 2nd Edition, 2007.

5 M. Adithan and A. B. Gupta, "Manufacturing Technology", New Age International Pvt Ltd, 2003.

COURSE OUTCOMES:		Bloom's Taxonomy
Upon c	completion of the course, the students will be able to:	Mapped
C01	Apply the principle of metal casting for engineering applications.	КЗ
C02	Identify the suitable welding process to make permanent joints for specific application.	К3
CO3	Familiarize the various forging process and mechanism of flat rolling.	КЗ
CO4	Select a suitable metal forming and plastic moulding process.	КЗ
C05	Familiarize the role of Additive Manufacturing processes and powder metallurgy to interpret with industries requirements.	К3

23PTM302
23711302

THERMODYNAMICS (Use of Approved Steam Tables and Charts are Permitted)

SEMESTER III

L	Т	Р	С
3	0	0	3

Common						
Course	To expose thermodynamic first law, second law concepts					
Objectives	Objectives applications, processes and cycles for analysing the thermodynamic systems					
	and learn the behaviour of pure substance, ideal gases and moist air.					
UNIT – I	UNIT – I BASIC CONCEPT AND FIRST LAW (9 Periods)					
Basic concept	ts - concept of continuum, macroscopic approach, thermodyna	amic systems -				
closed, open a	ind isolated. Property, state, path and process, quasi-static proces	s, work, modes				
of work, Zer	oth law of thermodynamics. Concept of ideal and real gases	s. First law of				
thermodynam	ics – application to closed and open systems, internal energy	, specific heat				
capacities, ent	halpy, steady flow process with reference to various thermal equi	oments.				
UNIT – II	SECOND LAW AND ENTROPY	(9 Periods)				
Second law of	thermodynamics – Kelvin's and Clausius statements of second la	w. Reversibility				
and		-				
Irreversibility. Carnot theorem, Carnot cycle, reversed Carnot cycle, efficiency, COP.						
Thermodynamic temperature scale, Clausius inequality, concept of entropy, entropy of ideal						
gas, principle of increase of entropy.						
UNIT – III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER (9 Periods)						
	CYCLE					
Properties of pure substances- p-v, p-T, T-s, h-s diagrams, PVT surfaces, thermodynamic						
Properties of	pure substances- p-v, p-T, T-s, h-s diagrams, PVT surfaces, t	hermodynamic				
	pure substances- p-v, p-T, T-s, h-s diagrams, PVT surfaces, t steam. Dryness Fraction, Steam Tables, Standard Rankine cyc					
properties of						
properties of regenerative of UNIT – IV	steam. Dryness Fraction, Steam Tables, Standard Rankine cyc cycle, Binary Vapour Cycles. THERMODYNAMIC RELATIONS AND IDEAL GAS MIXTURES	ele, Reheat and				
properties of regenerative of UNIT – IV Maxwell's equ	steam. Dryness Fraction, Steam Tables, Standard Rankine cyc cycle, Binary Vapour Cycles. THERMODYNAMIC RELATIONS AND IDEAL GAS MIXTURES nations - general relations for du, dh, ds, C _p and C _v - Joule Thom	le, Reheat and (9 Periods) son coefficient,				
properties of regenerative of UNIT – IV Maxwell's equ	steam. Dryness Fraction, Steam Tables, Standard Rankine cyc cycle, Binary Vapour Cycles. THERMODYNAMIC RELATIONS AND IDEAL GAS MIXTURES	le, Reheat and (9 Periods) son coefficient,				
properties of regenerative of UNIT – IV Maxwell's equ Clausius Clap	steam. Dryness Fraction, Steam Tables, Standard Rankine cyc cycle, Binary Vapour Cycles. THERMODYNAMIC RELATIONS AND IDEAL GAS MIXTURES nations - general relations for du, dh, ds, C _p and C _v - Joule Thom	le, Reheat and (9 Periods) son coefficient, al and real gas,				
properties of regenerative of UNIT – IV Maxwell's equ Clausius Clap	steam. Dryness Fraction, Steam Tables, Standard Rankine cycle, Binary Vapour Cycles. THERMODYNAMIC RELATIONS AND IDEAL GAS MIXTURES nations - general relations for du, dh, ds, C_p and C_v - Joule Thome eyron equation, Phase Change Processes. Equation of state - idea	le, Reheat and (9 Periods) son coefficient, al and real gas,				
properties of regenerative of UNIT – IV Maxwell's equ Clausius Clap Gas mixtures UNIT – V	steam. Dryness Fraction, Steam Tables, Standard Rankine cycle, Binary Vapour Cycles. THERMODYNAMIC RELATIONS AND IDEAL GAS MIXTURES nations - general relations for du, dh, ds, C_p and C_v - Joule Thome eyron equation, Phase Change Processes. Equation of state - idea - Dalton's law of partial pressures - P-V-T behavior of gas mixtures	ele, Reheat and (9 Periods) son coefficient, al and real gas, (9 Periods)				
properties of regenerative of UNIT – IV Maxwell's equ Clausius Clap Gas mixtures UNIT – V Psychrometry	steam. Dryness Fraction, Steam Tables, Standard Rankine cycle, Binary Vapour Cycles. THERMODYNAMIC RELATIONS AND IDEAL GAS MIXTURES nations - general relations for du, dh, ds, C_p and C_v - Joule Thome eyron equation, Phase Change Processes. Equation of state - idea - Dalton's law of partial pressures - P-V-T behavior of gas mixtures PSYCHROMETRY	ele, Reheat and (9 Periods) son coefficient, al and real gas, (9 Periods) rometric chart,				
properties of regenerative of UNIT – IV Maxwell's equ Clausius Clap Gas mixtures UNIT – V Psychrometry psychrometrie	steam. Dryness Fraction, Steam Tables, Standard Rankine cyc cycle, Binary Vapour Cycles. THERMODYNAMIC RELATIONS AND IDEAL GAS MIXTURES nations - general relations for du, dh, ds, C _p and C _v - Joule Thom eyron equation, Phase Change Processes. Equation of state - idea - Dalton's law of partial pressures - P-V-T behavior of gas mixtures PSYCHROMETRY - psychrometric charts, properties of air vapour mixtures, psych c process – Sensible Heating or Cooling, Cooling and Dehumidif	ele, Reheat and (9 Periods) son coefficient, al and real gas, (9 Periods) rometric chart,				
properties of regenerative of UNIT – IV Maxwell's equ Clausius Clap Gas mixtures UNIT – V Psychrometry psychrometrie	steam. Dryness Fraction, Steam Tables, Standard Rankine cycle, Binary Vapour Cycles. THERMODYNAMIC RELATIONS AND IDEAL GAS MIXTURES nations - general relations for du, dh, ds, C _p and C _v - Joule Thome eyron equation, Phase Change Processes. Equation of state - idea - Dalton's law of partial pressures - P-V-T behavior of gas mixtures PSYCHROMETRY - psychrometric charts, properties of air vapour mixtures, psych c process – Sensible Heating or Cooling, Cooling and Dehumidifiation, Adiabatic - mixing, evaporative cooling.	ele, Reheat and (9 Periods) son coefficient, al and real gas, (9 Periods) rometric chart,				
properties of regenerative of UNIT – IV Maxwell's equ Clausius Clap Gas mixtures UNIT – V Psychrometry psychrometry and humidific	steam. Dryness Fraction, Steam Tables, Standard Rankine cycle, Binary Vapour Cycles. THERMODYNAMIC RELATIONS AND IDEAL GAS MIXTURES nations - general relations for du, dh, ds, C_p and C_v - Joule Thome eyron equation, Phase Change Processes. Equation of state - idea Dalton's law of partial pressures - P-V-T behavior of gas mixtures PSYCHROMETRY - psychrometric charts, properties of air vapour mixtures, psych c process – Sensible Heating or Cooling, Cooling and Dehumidification, Adiabatic - mixing, evaporative cooling. Dds :	ele, Reheat and (9 Periods) son coefficient, al and real gas, (9 Periods) rometric chart,				

TEXT BOOKS:

P. K. Nag, "Engineering Thermodynamics", Tata McGraw Hill Company, 6th Edition, 2017.
 Yunus A. Cengel, "Thermodynamics", Tata McGraw Hill Company, 9th Edition, 2019.

R.K. Rajput, "Thermal Engineering", Laxmi Publications (P) Ltd, 10th Edition, 2020.		
Domkundwar and Kothandaraman, "Thermal Engineering", Dhanpat Rai & Sons, 2016.		
d Richard E. Sonntag, "Fundamentals of Thermodynamics" , John Wiley		
n, 2012.		
dynamics", McGraw Hill Education, 2017.		
Engineering Thermodynamics", Pearson Education India, 1 st Edition,		
)		

COURSE OUTCOMES:		Bloom's Taxonomy Mannad
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply thermodynamic first law to real life thermodynamic problems	K4
CO2	Apply thermodynamic second law and entropy principle for systems.	K4
CO3	Identify the behavior of steam at different conditions of power generation.	K4
C04	Formulate simple thermodynamic relations for gases.	K4
C05	Apply psychometric processes and its characteristics in environs.	K4

L	Т	Р	С
3	0	0	3

Course	To familiarize students with the basic of mechanisms, friction of	trives to build		
Objectives confidence on the basics of cams, gear theory and its nomenclature.				
UNIT – I	BASICS OF MECHANISMS	(9 Periods)		
	and Definitions- Degree of freedom, mobility - Kutzbach criterion-			
00				
	iterion - Mechanical Advantage -Transmission angle – Coupler cur			
	f 4- bar chain and slider crank chains - Description of common			
	l pawl mechanisms- Indexing mechanisms - Rocking mechanisms	- straight line		
- U	Steering mechanisms	(O Derrie de)		
UNIT – II	KINEMATIC ANALYSIS	(9 Periods)		
-	e motion - Relative velocity method – Displacement, velocity an			
	mple mechanisms - Instantaneous center method, Kennedy theore			
-	riolis component of acceleration Klein's construction for slide	r crank chain.		
	Mechanism-four bar mechanism only -Inversion method	(0.0. 1. 1.)		
UNIT – III	FRICTION DRIVES	(9 Periods)		
	Belt and rope drive - Open and cross belt drive - Belt materials - Creep and slip - Ratio of			
	ffect of centrifugal force - condition for maximum power - Fric			
0	Bearing - Flat pivot bearing - Friction clutches - Single plate - Multi plate - Cone clutches -			
Brakes - Shoe brake and Internal Expanding brake only.				
UNIT – IV	CAMS	(9 Periods)		
	ns - Displacement diagrams - Uniform velocity, simple harn			
	and retardation and cycloidal motions - Graphical layout of plate			
	of follower motion – High speed cams – Cams with specified contor			
	 Pressure angle and undercutting – spring surge, jump speed - Ana 			
	UNIT – V GEARS (9 Periods)			
Introduction – Types – Terminology – Law of toothed gearing – Velocity of sliding – Involute				
and cycloidal tooth profiles - Interchangeable gears - Length of path and arc of contact -				
contact ratio - Interference and under cutting - Minimum number of teeth to avoid				
interference in pinion and gear - Nonstandard gear teeth. Gear trains -Simple, compound,				
reverted and epicyclic gear trains - Differentials. Multi speed gear boxes - Speed ratio -				
Kinematic arrangement – Ray diagram.				
Contact Per				
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

TEXT BOOKS:

1	S. S. Rattan, "Theory of Machines", McGraw Hill Education, 5th Edition, 2019.
2	Thomas Bevan, "Theory of Machines" , Pearson Education India, 3 rd Edition, 2010.

1	John J. Uicker, Gordon R. Pennock and Joseph E.Shigley, "Theory of Machines and		
	Mechanisms" , Oxford University Press, 4 th Edition, 2014.		
2	Amitabha Ghosh and Asok K. Mallik, "Theory of Mechanisms and Machines", East West		
	Publishers, 2008.		
3	J. S. Rao and R. V. Dukkipati, "Mechanism and Machine Theory", New Age International		
	Publishers, 2006.		
4	R. S. Khurmi and J. K. Gupta, "Theory of Machines", S.Chand & Company, 14th Edition, 2020.		
5	R. L. Norton, "Kinematics and Dynamics of Machinery", McGraw Hill Education, 2017.		

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
-		
C01	Apply the fundamental concepts in developing various mechanisms.	K2
CO2	Synthesis of mechanisms for given conditions.	КЗ
CO3	Select appropriate type of friction drives gear for a specific application.	КЗ
C04	Construct the cam profile for specific follower motion.	КЗ
C05	Determine appropriate gears for requirements. Compute the parameters in gear trains and determine the speeds in gear boxes.	КЗ

MECHANICAL MEASUREMENTS AND CONTROL

SEMESTER III

L	Т	Р	С
3	0	0	3

Course	To comprehend about measurement systems and their component			
Objectives	various sensors used for measurement of mechanical quantities a	nd to integrate		
	the measurement systems for process monitoring and control.			
UNIT – I	FUNDAMENTAL AND MEASUREMENTS FORCE, TORQUE	(9 Periods)		
Fundamental	Methods of Measurements - Generalized Measuring System -	Measurement		
Standards –	Jnits and Standards – Types of Error – Uncertainty, Estimatio	n of Precision		
Uncertainty –	Strain measurements – Electrical/Metallic Resistance – Strain	Gauge - Strain		
Gauge Ballast	/ Bridge circuit - Temperature compensation - Calibration -	Stress - Strain		
Relationships	- Mechanical Weighing Systems - Elastic Transducers - Load C	ells – Ballistics		
Weighing – To	rque Measurement: Mechanical / Electric / Transmission Dynamo	-meters - Piezo		
electric Senso	rs – Semiconductor sensors – Hall Effects Sensors.			
UNIT –II	MEASUREMENT OF PRESSURE AND FLUID FLOW	(9 Periods)		
Static and D	ynamic Pressures – Pressure Measuring Transducers – Grav	itational Type		
Transducers – Elastic Diaphragms – Strain Gauge Pressure Cells – Measurements of Low / High				
Pressures. Flo	w Characteristics – Obstruction Meters – Flow Meters - Thermal	Anemometry –		
Doppler shift	Measurement.			
UNIT – III	MEASUREMNT OF TEMPERATURE AND MOTION	(9 Periods)		
	erature sensing Elements – Pressure Thermometers – Thermo res			
	ples - Semiconductor - Junction Temperature Sensors -			
	of Heat Flux. Vibrometers - Accelerometers - Seismic Instrum	nent – Seismic		
Accelerometer	3 E Visan / 10	-		
UNIT – IV	CONTROL SYSTEMS	(9 Periods)		
	Control systems- Concept of open loop and closed loop-Tra			
	echanical translational systems, mechanical rotational syste	ms, Electrical		
systems - Bloc	k diagram reduction.			
UNIT – V	SYSTEM MODELS	(9 Periods)		
Time response of First and Second order systems (critically damped, undamped, underdamped,				
-		-		
over damped) (derivation and problems alone) - time domain & freq	uency domain		
over damped specifications) (derivation and problems alone) - time domain & freq (terminologies, definition and formula alone) steady state error	uency domain		
over damped specifications dynamic. PID) (derivation and problems alone) - time domain & freq (terminologies, definition and formula alone) steady state error elementary introduction.	uency domain		
over damped specifications dynamic. PID Contact Perio) (derivation and problems alone) - time domain & freq (terminologies, definition and formula alone) steady state error elementary introduction. ds:	uency domain or - static and		
over damped specifications dynamic. PID) (derivation and problems alone) - time domain & freq (terminologies, definition and formula alone) steady state error elementary introduction. ds:	uency domain		

TEXT BOOKS:

1	Thomas G. Beckwith, Roy D. Marangoni and John H. Lienhard V, "Mechanical Measurements",	
	Pearson Education India, Revised 6 th Edition, 2020.	
2	2 William Bolton, "Instrumentation and Control Systems" , Newnes, 3 rd Edition, 2021.	

1	A. K. Sawhney and Puneet Sawhney, "A Course in mechanical measurements and
	Instrumentation and Control", Dhanpat Rai & Co, 2012.
2	R. K. Rajput, "Mechanical Measurements and Instrumentation (Including Metrology and
	Control Systems)", S. K. Kataria & Sons, 2013.
3	S. K. Singh, "Industrial Instrumentation and Control", McGraw Hill Education, 3 rd Edition,
5	5. K. Singh, Industrial instrumentation and control, McGraw mill Education, 5 rd Edución, 1

4	<i>R. K. Jain, "Mechanical and Industrial Measurements", Khanna Publishers, 11th Edition, 2017.</i>
5	J. P. Holman, "Experimental methods for Engineers", McGraw Hill Education, 8 th Edition, 2015.

COURSE OUTCOMES:		Bloom's Taxonomy
Upon c	Upon completion of the course, the students will be able to:	
C01	Familiarize the basic principle and measurement of force and torque.	КЗ
CO2	Identify to measure the pressure and fluid flow of a system.	КЗ
CO3	Select the suitable instrument to measure temperature and motion.	КЗ
C04	Familiarize the basic concept in control system.	КЗ
C05	Identify the mechanical system model equivalent to instrumentation.	КЗ

23PTM305	MANUFACTURING TECHNOLOGY LABORATORY	2	SEMESTER III			
		L	Т	Р	С	
		0	0	3	1.5	

Cours	se	To provide an understanding of advanced manufacturing methods with
Obje	ctives	idea of the dimensional & form accuracy of products.
LIST		PERIMENTS
1.	Facin	g, Step Turning, Taper Turning using Lathe.
2.	Exter	nal Thread Cutting. Groove Cutting, Knurling and Chamfering using Lathe.
3.	Drilliı	ng and Counter Sinking using Lathe.
4.	Drilliı	ng, Reaming, Tapping and Surface Grinding using Surface Grinder and Radial
	Drilliı	ng Machine.
5.	Exter	nal Cylindrical Grinding of Shaft.
6.	V-Gro	oove Cutting in Shaping Machine.
7.	Spur	Gear Milling.
8.	Helica	al Gear Milling in Universal Milling Machine.
9.	Gear	Shaping.
10.	Gear	Hobbing.
11.	Makir	ng Hexagonal Hole using Slotting Machine.
12.	Letter	r Cutting in Vertical Milling Machine.
13.	CNC F	Part Programming for Machining of Facing, Step Turning, Taper Turning,
		ig in CNC machine.
	ict Perio	
Lectu	re: 0 Pe	eriods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Have the capability of selecting suitable manufacturing processes to manufacture the products optimally.	К2
CO2	Maintain the accuracy & tolerance of components produced.	K4
CO3	Set up machines like lathe, shaper, grinding and milling machine for various applications.	К2
CO4	Prepare gears using forming and generating methods of gear manufacturing.	КЗ
CO5	Write the part programming and perform machining in CNC Machines.	K4

MANUFACTURING TECHNOLOGY II

L	Т	Р	С
3	0	0	3

Course	To understand the motal sutting theory mechanism of convent	ional and non	
	8 5,		
Objectives	conventional machining process to make quality product.	$(0, \mathbf{D}, \mathbf{z}, \mathbf{z}, \mathbf{z}, \mathbf{z})$	
UNIT – I	THEORY OF METAL CUTTING	(9 Periods)	
	f chip formation – forces in machining – types of chips – cutting tool		
	nomenclature – orthogonal and oblique metal cutting – thermal as		
tool materia	s – tool wears – tool life – surface finish – cutting fluids and machin	ability.	
UNIT – II	LATHE, SHAPING AND PLANING MACHINES	(9 Periods)	
Lathe – cons	struction – types – operations – working principle of single and	multi - spindle	
automats – s	shaping and planning machines – principle – types – construction	- mechanism –	
different sha	ping operations – work holding devices, introduction to CNC – appl	ications of CNC	
in various in	dustrial applications		
UNIT – III	DRILLING, BROACHING AND GRINDING MACHINES	(9 Periods)	
Drilling ma	chines – specifications, types - feed mechanism, operations	s – drill tool	
nomenclatur	e – broaching – specifications, types, tool nomenclature, broachir	ng operations –	
	pes of grinding machines – grinding wheels, specifications – bor		
and recondit	ioning of grinding wheels.	-	
UNIT – IV	MILLING AND GEAR GENERATING MACHINES	(9 Periods)	
Milling – spe	cifications – types - cutter nomenclature – types of cutters – milli	ing processes –	
indexing – g	gear forming in milling – gear generation - gear shaping and g	gear hobbing –	
	s - cutters -coated tools & inserts- cutting spur and helical gea		
	gear finishing methods.	0	
UNIT – V	NON-CONVENTIONAL MACHINING	(9 Periods)	
Classification of machining processes - process selection - Electrical discharge machining -			
abrasive jet machining – water jet machining - laser beam machining – electron beam			
machining – plasma arc machining.			
	Contact Periods:		
Lecture: 45		tal: 45	
Periods			

TEXT BOOKS:

1	Serope Kalpakjian Steven R. Schmid, "Manufacturing processes for Engineering Materials",
	Pearson Education, 6 th Edition, 2018.
2	S. K. Hajra Choudhry, and Nirjhar Roy and A. K. Hajra Choudhury, "Elements of Workshop
	Technology Vol II: Machine Tools", Media Promoters and Publishers Pvt. Ltd., 2018.

1	P. C. Sharma, "A Text book of Production Technology", S. Chand and Co. Ltd., 2021.
2	P. N. Rao, "Manufacturing Technology Vol II: Metal Cutting and Machine Tools", McGraw
	Hill Education, 4 th Edition, 2018.
3	R. K. Rajput, "A Text Book of Manufacturing Technology", Lakshmi Publications, 2 nd Edition,
	2019.
4	Hindustan Machine Tools, "Production Technology", HMT publications, 2017.
5	Richerd R. Kibbe, John E. Neely, Roland O. Meyer and Warren T. White, "Machine Tool
	Practices ", Pearson, 11 th Edition, 2020.

COURSE OUTCOMES:		Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the theory of metal cutting to solve the problems in industries.	КЗ
CO2	Understand the operating mechanism of lathe, shaping, planning and CNC.	КЗ
CO3	Gain knowledge on drilling, boring, grinding machine.	КЗ
C04	Familiarize the milling and gear generation process and its uses in industries.	КЗ
C05	Identify a suitable non-conventional machining process for specific application.	КЗ

THERMAL ENGINEERING

(Use of Approved Steam Tables and Charts are Permitted)

SEMESTER IV

L	Т	Р	С
3	0	0	3

Course	To acquire keen knowledge on Thermal devices like IC Engines	, Refrigerators,
Objectives	Boilers, Compressors, Nozzles and Turbines.	
UNIT – I	AIR STANDARD CYCLES	(9 Periods)
Air standard	l cycles - Carnot cycle, Otto cycle, Diesel cycle, Stirling cycle, Erics	son cycle, Dual
cycle – Calc	ulation of Mean Effective Pressure and Air Standard Efficiency -	Comparison of
Otto, Diesel,	Dual and Brayton cycle. Brayton cycle.	
UNIT – II	INTERNAL COMBUSTION ENGINES	(9 Periods)
SI and CI En	gines - Classification - Components and their Function - Valve Timin	ng Diagram and
Port Timing	Diagram - Actual and Theoretical P-V Diagram of Four Stroke a	nd Two Stroke
Engines - Si	mple Carburettor - MPFI, Diesel Pump and Injector System - Ign	ition Systems -
Principles of	Combustion and Knocking in SI and CI Engines - Lubrication and C	ooling Systems
- Performan	ce Characteristics and Testing of IC Engines - Emissions and Emissio	on Control.
UNIT – III	REFRIGERATION	(9 Periods)
Methods of	Refrigeration-applications - Air Refrigeration Systems-Method	ls-Introduction,
Heating load	, Concept of Heat Engine, Refrigerator and Heat Pump. Refrigerant	s- Introduction,
designation,	types, properties. Vapour Compression Refrigeration Systems	- Introduction,
Simple VCR	system- Cascade system Introduction, Simple Vapour Absorptio	n Refrigeration
system, Thei	mo-electric and Vortex tube refrigeration.	
UNIT – IV	BOILERS AND COMPRESSORS	(9 Periods)
Steam Gener	ators – Classification of Boilers, Selection of a Boiler, Boiler Terms	, High Pressure
	Tube Boilers – Simple Vertical Boiler, Water Tube Boilers – Babco	
Boiler Moun	tings and Accessories. Compressed air system - Introduction, Cor	npressor types,
Reciprocatin	g and Rotary Compressors Compressor performance, Compress	sed air system
components	, Compressor capacity assessment.	
UNIT – V	NOZZLES AND TURBINES	(9 Periods)
Flow through Nozzles, Shape of Nozzle, effect of Friction, Critical Pressure Ratio, super		
saturated flow. Turbines - Pelton wheel, Kaplan and Francis Turbines, velocity diagrams,		
Impulse and Reaction principles, Steam and Gas Turbines.		
Contact Per	iods:	
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods To	tal: 45 Periods

TEXT BOOKS:

1	Yunus A. Cengel and Michael A. Boles., "Thermodynamics: An Engineering Approach",
	McGraw Hill Education, 8 th Edition, 2017.
2	Mahesh M. Rathore, "Thermal Engineering Vol I & II", McGraw Hill Education, 1st Edition,
	2018.

1	P. L. Ballaney, "Thermal Engineering", Khanna Publishers, 2015.
2	R. K. Rajput, "Thermal Engineering", Lakshmi Publications, 11th Edition, 2020.
3	M. L. Mathur and F. S. Mehta, "Thermal Science and Engineering", Jain Brothers, 3 rd
	Edition, 2017.

4	A. S. Sarao, "Thermal Engineering", Satya Prakashan, 2016.
5	B. U. Pai, " Turbo Machines" , Wiley Publications, 2 nd Edition, 2013.

COURSE OUTCOMES:		Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Analyse the Air Standard cycles.	K4
CO2	Understand the working of IC Engine.	К3
CO3	Identify the characteristics of Refrigeration and psychrometry.	K4
C04	Apply the Thermodynamic Principles on Boilers and Air Compressors.	K2
C05	Describe working principle and process of Turbines and Nozzles	K2

DYNAMICS OF MACHINES

SEMESTER IV

L	Т	Р	С
3	0	0	3

Course Objectives	To learn the techniques of Force analysis, Flywheel, Governo Balancing and vibration to solve engineering problems.	ors, Gyroscope,		
UNIT – I	FORCE ANALYSIS	(9 Periods)		
	rium of two/three force members – Static equilibrium of members			
	Static force analysis of linkages – D'Alembert's principle – Equivale			
	amic force analysis of four link mechanism and slider crank			
	equivalent system Engine force analysis – Piston and crank ef			
	crankshaft – Turning moment diagrams – single cylinder doubl	0		
-	r stroke IC engine and multi-cylinder steam engine – Fluctuatio	on of energy –		
Flywheel and				
UNIT – II	GOVERNORS AND GYROSCOPE	(9 Periods)		
	erminology - Centrifugal governors -Watt governor - Dead weig			
	ell governor - Spring controlled governor- Hartnell governor - Sens			
	Isochronism - Effort and Power of governor - Gyroscopic Moti			
	orque - Effect of gyroscopic couple on the stability of aero	planes, ships&		
automobiles.	Tank of			
UNIT – III	BALANCING OF MACHINES	(9 Periods)		
Static and dy	namic balancing - Balancing of several masses rotating in the s	ame plane and		
different plar	es - Balancing of primary and secondary forces in reciprocating e	engine - Partial		
balancing of t	wo - cylinder locomotives - Variation of tractive force - swaying co	ouple - hammer		
blow - Balanc	ing of two cylinder in-line engines.			
UNIT – IV	FREE VIBRATION	(9 Periods)		
Basic elemen	ts of vibrating system - Types of free vibrations - Longitudin	al vibrations -		
Equilibrium	method - D'Alembert's principle - Energy method - Rayleis	gh's method -		
Determinatio	n of natural frequency of single degree freedom systems - Effect o	f spring mass -		
Damped free	vibrations - Under damped - over damped and critically dam	ped systems -		
Logarithmic d	lecrement.			
UNIT – V	FORCED VIBRATION	(9 Periods)		
Undamped for	orced vibration of spring mass system – Torsional vibration - I	Damped forced		
	vibrations - Rotating unbalance - Reciprocating unbalance - Vibration isolation - Support motion			
(absolute and relative motion) - Transverse vibration of shaft with single concentrated load,				
several loads, and uniformly distributed load - Critical speed. Introduction to Noise, Vibration				
and Harshnes				
Contact Peri				
Lecture: 45 H		tal: 45 Periods		
TEXT BOOKS				
1 Sadhu Sin	h, "Theory of Machines: Kinematics and Dynamics ", Pearson Edu	cation India, 3 rd		
		-		

Edition, 2019.

2 S. S. Rattan, **"Theory of Machines"**, McGraw Hill Education, 5th Edition, 2019.

REFERENCES:

1	John J. Uicker, Gordon R. Pennock and Joseph E.Shigley, "Theory of Machines and					
	Mechanisms", Oxford University Press, 4 th Edition, 2014.					
2	Amitabha Ghosh and Asok K Mallik "Theory of Mechanisms and Machines" Fast West					

2 Amitabha Ghosh and Asok K. Mallik, **"Theory of Mechanisms and Machines"**, East West Publishers, 2008.

3 J. S. Rao and R. V. Dukkipati, "Mechanism and Machine Theory", New Age International

Publishers, 2006.

4 R. S. Khurmi and J. K. Gupta, "Theory of Machines", S.Chand & Company, 14th Edition, 2020.

5 R. L. Norton, "Kinematics and Dynamics of Machinery", McGraw Hill Education, 2017.

6 Kenneth J. Waldron, Gary L. Kinzel and Sunil K. Agarwal, **"Kinematics, Dynamics, and Design** of Machinery", John Wiley & Sons Ltd., 3rd Edition, 2016.

COURSE OUTCOMES:		Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Able to solve force analysis and turning moment problems.	K1
CO2	Frame and solve Governor and Gyroscopic problems.	K2
CO3	Follow systematic procedure to do balancing of rotary and reciprocating masses.	К2
CO4	Derive equations for vibration problems and to solve free vibration problems.	КЗ
C05	Derive equations for vibration problems and to solve forced vibration problems.	КЗ

HYDRAULICS AND PNEUMATIC CONTROLS

SEMESTER IV

L	Т	Р	С
3	0	0	3

Course	To develop a measurable degree of competence in the design, co	nstruction and			
Objectives	operation of fluid power.				
UNIT – I	FLUID POWER SYSTEMS AND HYDRAULIC PUMPS	(9 Periods)			
	to fluid power - Advantages of fluid power- Application of fluid p				
	d power systems - Properties of hydraulic fluids – types of fluids				
	asics of hydraulics – Applications of Pascal's Law - Losses in pi				
	nping theory – Pump classification – Gear, Vane and piston pumps				
	of pumps – pump Selection.	construction			
UNIT – II	HYDRAULIC CONTROL COMPONENTS AND ACTUATORS	(9 Periods)			
	ow and Directional control valves - Actuators: Linear hydraulic actu				
	cylinders – Single acting, double acting special cylinders like Tan				
-	Cushioning mechanism - Construction of double acting cylinder - Ro				
-	and Piston motors.				
UNIT – III	DESIGN OF HYDRAULIC CIRCUITS	(9 Periods)			
	g- sequencing – synchronizing - series and parallel circuits – regene	· · /			
	double pump circuits – Drilling, Planning, Shaping, Surface grin				
	k Lift application circuit - Intensifier circuits - Fail-safe circuits - A				
	umulators – Application circuits.				
UNIT – IV	PNEUMATIC SYSTEMS AND COMPONENTS	(9 Periods)			
Properties o	Properties of air – Compressors – Filter, Regulator, and Lubricator Unit – Air control valves,				
	st valves, and pneumatic actuators- Control elements – position- pr				
- switching-	Speed control circuits - Pneumo - hydraulic circuit - Sequential cir	cuit design for			
simple appli	cations using cascade method, step counter method - Selection of c	omponents for			
pneumatic s	/stems.				
UNIT – V	ADVANCEMENTS IN FLUID POWER ENGINEERING	(9 Periods)			
Need of automations in industries – PLC - Components of PLC – Applications - Operating Cycle -					
	Types of Programming Languages - Ladder logic diagram - Simple Problems. Servo and				
proportional valves - Construction, types and applications - Industrial internet of things for					
monitoring control and diagnostics of systems for fluid power applications.					
Contact Per					
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods To	tal: 45			
Periods					
TEXT BOOK	S:				

TEXT BOOKS:

1	Md. Abdus Salam, "Fundamentals of Pneumatics and Hydraulics", Springer Nature, 1 st
	Edition, 2022.
2	S. R. Majumdar, "Pneumatic systems: Principles and Maintenance", McGraw Hill Education,
	1 st Edition, 2017.

1	R. Srinivasan, "Hydraulics and Pneumatic Controls" , Vijay Nicole Imprints, 3 rd Edition, 2019.
2	Mohsen Davoudi and Pouya Karimi, "Pneumatic and Hydraulic Control Systems", Noor
	Publishing, 2017.
3	Ilango Sivaraman, "Introduction to Hydraulics and Pneumatics" , PHI Learning, 3 rd Edition,
	2017.
4	Anthony Esposito, "Fluid Power with Applications" , Pearson Education India, 7 th Edition,
	2013.

T. Jagadeesha, "Hydraulics and Pneumatics", I K International Publishing House Pvt. Ltd., 2015.

"Industrial Hydraulics Manual", Eaton Hydraulics Training Services, 5th Edition 2008.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Identify fluid power systems and select the appropriate pumps for industrial applications.	К3
C02	Demonstrate the applicability of hydraulic power systems for engineering applications.	К3
CO3	Design customized circuits in hydraulics for various industrial needs.	КЗ
C04	Choose pneumatic systems and demonstrate the applicability of pneumatic power systems on real life applications.	КЗ
C05	Apply and analyze failure of fluid power systems and to solve them using IoT.	КЗ

L	Т	Р	С
3	0	0	3

Course	To demonstrate and analyze the performance characteristics of an internal
Objectives	combustion engines, compressors and blowers.

LIST OF EXPERIMENTS

- 1. Port timing diagram of single cylinder petrol engine.
- 2. Valve timing diagram of single cylinder diesel engine.
- 3. Performance test on variable compression ratio petrol and diesel engines.
- 4. Economic speed test on diesel engine.
- 5. Retardation test to find frictional power of a diesel engine.
- 6. Heat balance test on 4 stroke Diesel Engine.
- 7. Emission test on internal combustion engine.
- 8. Performance test on constant speed blower.
- 9. Performance test on variable speed blower.
- 10. Performance test on reciprocating air compressor.

Contact periods:	a. 7777 (Ramo	
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 45 Periods	Total: 45
Periods		Car also	

10

77 1

COURSE OUTCOMES:		Bloom's Taxonomy
Upon completion of the course, the students will be able to:		Mapped
C01	Understand the valve timing and port timing diagrams of IC engines	К2
CO2	Analyze the performance characteristics of petrol and diesel engines.	K4
CO3	Interpret the emission characteristics of internal combustion engines.	K4
C04	Evaluate the performance parameters of blowers.	K5
C05	Analyze the air compressor characteristics.	K4

L	Т	Р	С
3	0	0	3

Course To craft the students to acquire knowledge in lean manufacturing tools,					
Objectives	Objectives understand various phases involved and methodology in implementing lean in				
	manufacturing scenario.				
UNIT- I	FOUNDATION AND CONCEPTS OF LEAN	(9 Periods)			
Historical evo	lution of lean manufacturing - Objectives of lean manufacturing -	Key principles			
and implication	ons of lean manufacturing - Traditional verses lean manufacturing	. – Ford System			
– Growing Dy	vsfunction Ten steps to lean production - Necessity of Lean	n Production –			
Systems and le	ean thinking – Construction of Lean Production - Lean images and I	Lean Activities.			
UNIT- II	LEAN TOOLS AND METHODOLOGY	(9 Periods)			
Primary tools	- Implementing 5S, Workplace organization - Stability - Just-In-Tim	me – Takt time -			
One piece flor	w – Pull, Cellular systems, Six Sigma. SMED: Single minute exch	nange of dies -			
Theory and p	ractice of the SMED system - TPM, Pillars of TPM, Conditions fo	r TPM success,			
TPM impleme	ntation process - Overall Equipment Effectiveness - computation of	OEE.			
UNIT- III	VALUE STREAM MAPPING	(9 Periods)			
Process Mapp	ing and Value Stream Mapping - Current state map – Future st	ate map – VSM			
symbols – Maj	oping tips - Need for process maps - types and its construction - ste	eps in preparing			
VSM - Compar	ison of CSVAM and FSVSA – Simulation scenario case studies.				
UNIT- IV	INTEGRATED QUALITY	(9 Periods)			
Development	and necessity – Poke Yoke – mistake proofing - quality improven	nent – Leveling			
and Visual ma	anagement. Common errors - Inspection system and Zone contro	ol – Using Poke			
Yokes – Jidoka implementation -Process capability study – Lean six sigma.					
UNIT- V	LEAN INVOLVEMENT AND CULTURE	(9 Periods)			
Necessity of involvement – Waste of Humanity – Activities supporting involvement – Kaizen					
Circle Activity – Practical Kaizen Training – Key factors in Practical Kaizen Training – Lean					
Culture – Standardization – Standards and abnormality control – 'Five Why' analysis.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK:

1	P. Dennis, "Lean Production Simplified: A Plain Language Guide to the World's Most
	Powerful Production System", Productivity Press, 2009.
2	N. Gopalakrishnan, "Simplifed Lean Manufacture", PHI, 2010.

111			
1	S. R. Devadasan, V. Mohan Sivakumar, R. Murugesh and P. R. Shalij, "Lean and Agile		
	Manufacturing: Theoretical, Practical and Research Futurities", Prentice Hall of India		
	Learning Limited, 2012.		
2	N. Gopalakrishnan, "Simplified Lean Manufacture: Elements, Rules, Tools and		
	Implementation", Prentice Hall of India Learning Private Limited, 2010.		
3	Bill Carreira, "Lean Manufacturing that Works: Powerful Tools for Dramatically		
	Reducing Wastes and Maximizing Profits", Prentice Hall of India Learning Private Limited,		
	2009.		

4	Don Tapping, Tom Luyster and Tom Shuker, "Value Stream Management: Eight Steps to
	Planning, Mapping and Sustaining Lean Improvements", Productivity Press, 2007.
5	J. Liker and D. Meier, "The Toyota Way", Field book, McGraw-Hill, 2010.

COURSE OUTCOMES:		Bloom's Taxonomy
Upon	Upon completion of the course, the students will be able to:	
C01	Describe about the origin and foundation of lean production	K2
CO2	Explain various lean tools and methodologies.	K2
CO3	Explain the methods and processes of Value Stream Mapping.	K2
CO4	Describe about quality in lean system using various techniques.	K3
C05	Describe about lean involvement and culture.	K2

DESIGN OF MACHINE ELEMENTS (Use of Approved Design Data Book is permitted)

SEMESTER V

L	Т	Р	С
3	0	0	3

		-	
	'o study proper procedure and standards to design the differ		
	Objectives elements depending on their physical and mechanical properties along with the		
t	theories of failures.		
-		(9 Periods)	
Basic concept of	f design, classification of design, design procedure – factors influer	ncing machine	
design, Enginee	ring parameters - Stress-strain diagrams - Mechanical properties o	of engineering	
materials – pre	ferred numbers, fits and tolerances - Modes of failure - Stres	ses acting on	
machine element	nts - Stress due to bending and eccentric axial loading - Princi	pal stresses -	
Theories of elas	tic failure - Selection and application of failure theories.		
UNIT – II F	LUCTUATING STRESSES AND DESIGN OF SHAFT	(9 Periods)	
Fluctuating Stre	sses - Stress concentration - Fatigue failure - Endurance limit-low a	and high cycle	
fatigue – Notch	Sensitivity - Reversed stresses - Soderberg, Goodman and Gerb	per relations -	
Design of shaft	under static loading - Problems under single plane and two plan	ne load acting	
shafts- Design o	f shaft under fatigue loading - Case studies.		
UNIT – III D	DESIGN OF ENERGY STORING ELEMENTS	(9 Periods)	
Design of helica	l spring -, Design of torsional spring - Design of leaf springs - Desig	n of flywheels	
considering str	esses in rims and arms for engines and punching machines. C	Case studies -	
springs and flyw	/heel.		
UNIT – IV E	DESIGN OF TEMPORARY AND PERMANENT JOINTS	(9 Periods)	
Introduction ab	out temporary joints – Types of temporary joints- Design of bolted	l joints (sleeve	
and cotter joint,	knuckle joint) - Design of joints with variable loading, adhesive joi	ints – Types of	
permanent joints - Design of riveted joints - Design of welded joints in plates and pressure			
vessels - Design of eccentrically loaded riveted and welded joints. Case studies - joint			
applications.			
UNIT – V M	AISCELLANEOUS ELEMENTS	(9 Periods)	
Design of rigid coupling - Design of flexible coupling - Design of connecting rods - Design of			
crank shafts – Design and selection of rolling and sliding contact bearing.			
Contact Periods:			
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods Total	l: 45 Periods	

TEXT BOOKS:

1 V. B. Bhandari, "Design of Machine Elements", McGraw Hill Education, 5th Edition, 2020.

2 T. V. Sundarajamoorthy and N. Shanmugam, "Machine Design", Anuradha Agencies Publishers, 2017.

REFERENCES:

1	J. E. Shigley and C. R. Mischke, "Mechanical Engineering Design", McGraw Hill International,
	10 th Edition, 2014.
2	R. S. Khurmi and J. K. Gupta, "A text book of Machine Design", S. Chand & Co, 2020.
3	N. C. Pandya and C. S. Shah, "Machine Design", 20th Edition, 2015.
4	Gitin M. Maitra and L. V. Prasad, "Hand Book of Mechanical Design" , 2 nd Edition, 2004.
5	Robert L. Mott, "Machine Elements in Mechanical Design", Pearson, 2020.
("Design Data" DCC College of Technology Coinchatory

6 "Design Data" – P.S.G. College of Technology, Coimbatore.

	RSE OUTCOMES:	Bloom's Taxonomy Mannad
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the different types of designs, stresses, material properties and their significance in machine elements design	K4
CO2	Design the shafts by considering failure theories for reliability	K5
CO3	Design the energy storing elements for various applications according to the prescribed standards	К5
CO4	Design the temporary and permanent joints for fabrication of different machine components and boilers as per the standards	К5
C05	Design the connecting rod, crank shaft and selection of couplings and bearings for industrial applications	КЗ

23PTM503	

HEAT AND MASS TRANSFER

(Use of Approved Heat and Mass Transfer Data Book is permitted)

SEMESTER V

L	Т	Р	С
3	0	0	3

Course	To familiarize and appreciate different modes of heat and mass			
Objectives	applications by imparting knowledge on bioprocess industries,	design of heat		
	and mass transfer equipment's and bio-reactors.			
UNIT – I	MODES OF HEAT TRANSFER	(9 Periods)		
Modes of heat	t transfer; Fourier's law, thermal conductivity, steady state conduction	on in plane wall		
and composit	te walls; Heat flow in cylinder and spheres, countercurrent and p	oarallel current		
flows; Energy	balances, rate of heat transfer, overall heat transfer coefficient, log	arithmic mean		
temperature of	lifference, individual heat transfer coefficients, and fouling factors.			
UNIT – II	HEAT TRANSFER TO FLUIDS WITHOUT PHASE CHANGE AND	(9 Periods)		
	WITH PHASE CHANGE			
Thermal boun	ndary layer, heat transfer by forced convection in laminar flow and	turbulent flow;		
Natural conv	ection to air from vertical and horizontal planes, heat transfer from	om condensing		
vapors and he	eat transfer to boiling liquids.			
UNIT – III	DESIGN OF HEAT TRANSFER EQUIPMENTS	(9 Periods)		
General desi	General design of heat exchange equipment, heat exchangers, condensers, boilers and			
calandrias; L	calandrias; Liquid characteristics, types of evaporators, performance of tubular evaporators,			
enthalpy bala	nces for single effect evaporator.			
UNIT – IV	DIFFUSION AND MASS TRANSFER	(9 Periods)		
Mass transfer	$^{ m o}$ operations, molecular diffusion in fluids, binary solutions, Fick's la	aw of diffusion,		
equation of c	ontinuity, steady state equimolar counter current diffusion, Stefan'	s estimation of		
diffusivity in	gases and liquids, application of molecular diffusion, theories of mas	s transfer.		
UNIT – V	MASS TRANSFER OPERATIONS	(9 Periods)		
Introduction,	counter and cocurrent isothermal absorption and stripping of sin	gle component,		
operating lines, minimum flow rate, determination of number of transfer units and height of				
continuous absorber, determination of number of plates; Steam distillation, flash vaporization				
and differenti	and differential distillation for binary and multi component mixtures.			
Contact Peri	ods:			
Lecture: 45 H	Periods Tutorial: 0 Periods Practical: 0 Periods Tot	al: 45 Periods		

TEXT BOOKS:

- Yunus A. Cengel and Afshin J. Ghajar, "Heat and Mass Transfer", McGraw Hill Education, 2020.
 Frank P. Incronera and David P. Davitt, "Fundamentals of Engineering Heat and Mass."
- 2 Frank P. Incropera and David P. Dewitt, **"Fundamentals of Engineering Heat and Mass Transfer"**, John Wiley and Sons, 2010.

1	C. J. King, "Separation Processes" , McGraw Hill, 2 nd Edition, 2014.		
2	P. M. Doran, "Bioprocess Engineering Principles", Academic Press, 2 nd Edition, 2012.		
3	R. E. Treybal, "Mass Transfer Operations", Mc-Graw Hill, 3 rd Edition, 2017.		
4	M. N. Ozisik, "Heat Transfer" , McGraw Hill Book Co., 2005.		
5	R. Yadav, "Heat and Mass Transfer" , Central Publishing House, 2018.		

	E OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the basic modes of heat and mass transfer.	КЗ
C02	Apply principles of heat and mass transfer to predict transfer coefficients	КЗ
CO3	Analyze working of various heat transfer equipment	КЗ
C04	Design heat and mass transfer equipment.	K4
C05	Evaluate number of stages required for given mass transfer problem.	КЗ

L	Т	Р	С
0	0	3	1.5

CourseTo provide exposure to the students on studying the performance of heatObjectivestransfer equipment's

LIST OF EXPERIMENTS

1. Test on pin fin apparatus.

2. Test on counter flow heat-exchanger.

3. Determination of convection heat transfer coefficient.

4. Determination of thermal resistance and conductivity.

5. Determination of emissivity of non-black surfaces.

6. Determination of transient temperature distribution.

7. Performance test on cooling tower.

8. Determination of COP of a heat pump.

9. Determination of COP of a refrigeration system.

10. Determination of COP of an air-conditioning system.

11. Study of Boiler, Steam turbines and Steam Engines.

Contact periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods To

Total: 45 Periods

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Conduct of experiments on heat transfer.	K4
CO2	Estimate COP of refrigerator, heat pump and air-conditioning system.	K4
CO3	Illustrate the working of boiler, steam turbines and steam engines.	K4

FINITE ELEMENT ANALYSIS

SEMESTER VI

L	Т	Р	С
3	0	0	3

-				
Course	To learn the techniques of finite element analysis to model and s	olve structural,		
Objectives	thermal, dynamic problems in engineering.			
UNIT – I	RELEVANCE OF FEM	(9 Periods)		
	kground - basic concept of FEM – discretization of 1D, 2D and 3D			
	nd their types - convergence requirements – error estimates – Su			
-	ry (SPR), Recovery by equilibrium of patches (REP) -Introduction t	o gradient and		
divergence th	eorems - boundary and initial value problems.			
UNIT – II	CHARACTERISTIC MATRICES AND LOAD VECTORS	(9 Periods)		
	onal governing equation - structural and heat transfer problem			
	iation calculus – weighted residual methods – Galerkin method -			
generalized c	pordinate's approach - principle of minimization of potential energy			
UNIT – III	ONE DIMENSIONAL PROBLEMS	(9 Periods)		
Derivation of	shape functions, Stiffness matrices and force vectors -Assembly	y of Matrices -		
shape function	shape function characteristics - problems in axial load members, trusses, and heat transfer			
through comp	oosite walls and fins –Buckling of columns.			
UNIT – IV	TWO DIMENSIONAL PROBLEMS	(9 Periods)		
	shape functions for CST and LST triangular and rectangular eler			
	force vectors - Pascal's triangle- concept of plane stress and plain			
symmetry - St	ructural and heat transfer application - introduction to coupled fiel	d analysis.		
UNIT – V	HIGHER ORDER ELEMENTS	(9 Periods)		
Natural co-or	Natural co-ordinate systems – Isoparametric elements – Shape functions for isoparametric			
elements - One and two dimensions - Jacobian transformation - Serendipity and Lagrangian				
elements – Numerical integration - Matrix solution techniques.				
Contact Peri	Contact Periods:			
Lecture: 45 F	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45			
Periods				

TEXT BOOKS:

 Larry J. Segerlind, "Applied Finite element Analysis", John Wiley & Sons, 2010.
 Daryl L. Logan, "A First Course in the Finite Element Method", Thomson Learning, 5th Edition, 2016.

1	Singiresu S. Rao, "The Finite Element Method in Engineering", Butter Wort Heinemann, 5 th
	Edition, 2017.
2	J. N. Reddy, "An Introduction to Finite Element Method", McGraw Hill Education, 4 th Edition,
	2020.
3	Tirupathi R. Chandrupatla and Ashok D. Belegundu, "Introduction to Finite Element in
	Engineering", Pearson Education, 4 th Edition, 2021.
4	David V. Hutton, "Fundamentals of finite element Analysis", McGraw Hill Education, 2011.
5	P. Seshu, "Textbook of Finite Element Analysis", Prentice Hall of India, 2012.
6	Olek C. Zienkiewicz, "The Finite Element Method: Its Basis and Fundamentals",
	Butterworth-Heinemann Ltd, 7 th Edition, 2013.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Select appropriate mathematical techniques for solving Finite Element problems.	K1
CO2	Frame and solve strong and weak form equations for structural and non-structural problems.	К2
CO3	Follow systematic procedure to solve one dimensional problem.	K2
CO4	Derive equations for complex 2D problems and to solve simple 2D problems.	КЗ
C05	Formulate necessary matrices for 3D elements.	КЗ

DESIGN OF TRANSMISSION SYSTEMS (Use of Approved Design Data Book is permitted)

SEMESTER VI

L	Т	Р	С
3	0	0	3

Course To learn the techniques of finite element analysis to model and solve structural,				
Objectives thermal, dynamic problems in engineering.				
UNIT – I	DESIGN OF POWER TRANSMISSION ELEMENTS	(9 Periods)		
Selection of r	opes, Flat belt – V belt – ribbed V belt – selection of chains and sp	rockets – Ratchet		
and pawl me	chanism.			
UNIT – II	SPUR AND HELICAL GEARS	(9 Periods)		
Kinematics -	force analysis in gears - stress analysis - dynamic effects - ge	ear blank design -		
estimating ge	ear size, module and face width - power rating calculations base	d on strength and		
wear consid	erations, crossed helical gear terminology - estimating the si	ze of the pair of		
crossed-helic	al gears.			
UNIT – III	BEVEL AND WORM GEAR	(9 Periods)		
Straight beve	el gear: Tooth terminology, tooth forces and stresses, equivalent	t number of teeth,		
•	e dimensions of pair of straight bevel gears. Worm Gear: Meri			
Terminology	. Thermal Capacity, Materials-forces and stresses, efficiency, esti	mating the size of		
the worm gea				
UNIT – IV	DESIGN OF GEAR BOX	(9 Periods)		
	ogression - standard step ratio - ray diagram, kinematic layout			
	nstant mesh gear box - introduction to planetary gear box. Int	roduction to fluid		
couplings.	77			
UNIT – V	CAMS, CLUTCHES AND BRAKES	(9 Periods)		
	Types-pressure angle and under cutting base circle determi			
surface stresses. Design of plate clutches-axial clutches-cone clutches- introduction to Hydraulic				
clutch and electromagnetic clutches. Band and block brakes-external shoe brakes-Internal				
expanding shoe brake.				
Contact Periods:				
Lecture: 45	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods			

TEXT BOOKS:

1 V. B. Bhandari, "Design of Machine Elements", McGraw Hill Education, 2020.

2 Joseph Edward Shigley and Charles R. Mischke, "Mechanical Engineering Design", McGraw Hill Education, 2014.

1	R. C. Juvinal, "Fundamentals of Machine Components Design", John Wiely and Sons. 2016.
2	M. F. Spotts, Terry E. Shoup and L. E. Hornberge, "Design of Machine Elements", Pearson
	Education, 8 th Edition, 2013.
3	Robert L. Mott, "Machine Elements in Mechanical Design", Pearson, 2020.
4	Kurt M. Marshek and Robert C. Juvinall, "Machine Component Design", Wiley, 5th Edition,
	2012.
5	"Design Data Book", P.S.G. College of Technology, Coimbatore.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Select appropriate flexible transmission elements for machinery and equipments.	K1
CO2	Perform engineering analysis and estimate the required size and type of spur and helical gears.	К2
CO3	Perform engineering analysis and estimate the required size and type of bevel and worm gears.	К2
CO4	Design and develop gear box for various machinery and equipments.	КЗ
C05	Design Cams, friction clutches and brake components.	КЗ

23PTM60)3
2 31 1 100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

 L
 T
 P
 C

 3
 0
 0
 3

Course To study the mechatronics system and understanding the concepts of integration					
Objectives	Objectives and design of mechatronics system.				
UNIT – I	INTRODUCTION TO MECHTRONICS	(9 Periods)			
Introduction	- definition- mechatronic approach, integrated product design- ap	plication areas.			
Open and clo	sed loop control system - embedded systems - components overv	iew- actuators-			
hydraulic and	d pneumatic actuators - electrical Actuators - servo motor and a	stepper motor-			
mechanical ad	ctuation systems-selection of actuators.				
UNIT – II	SENSORS AND SIGNAL CONDITIONING	(9 Periods)			
Sensors-types	s- position-proximity-force-velocity-pressure -temperature -fluid	flow -optical -			
	ors-working principle-specification -application -selection of s				
	types of operational amplifiers -protection and filtering- Whea	atstone bridge-			
	ligital and digital-to-analogue converters.				
UNIT – III	SYSTEM MODELLING AND CONTROL SYSTEMS	(9 Periods)			
	models-Building blocks of mechanical, electrical, fluid and th				
	anslational systems, electro mechanical systems-linearity-hydrau				
	tinuous and discrete control process-two step mode, PI, PD, PID co	ntrollers, micro			
	gital controllers, PLC programming.	1			
-	MEMS and SMART MATERIALS	(9 Periods)			
	uction-economy of MEMS manufacturing-MEMS design-micro				
	nicro-fabrication techniques - LIGA Process- lithography, etching				
	to smart materials - Shape Memory Alloy- properties- working	ng principle of			
· •	and magneto strictive actuators.				
UNIT – V	APPLICATIONS AND CASE STUDIES	(9 Periods)			
Mechatronic systems from robotics manufacturing- consumer mechatronics products- surgical					
equipment - Introduction to artificial intelligence. Case studies-automated glue dispensing					
systemmechatronic design of a coin countermechatronic design of a robotic walking					
machine- automated mining shovel-automated air conditioner.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK:

1	W. Bolton, "Mechatronics" , Longman, 2 nd Edition, 2023.
2	Michael B. Histand and David G. Alciatore, "Introduction to Mechatronics and Measurement
	Systems", Tata McGraw Hill, 2 nd Edition, 2006.

1	D. A. Bradley, D. Dawson, N. C. Buru and A. J. Loader, "Mechatronics", Chapman and Hall,1993.
2	Dan S. Necsulescu, "Mechatronics" , Pearson Education, 2016.
3	Devdas Shetty and Richard A. Kolk, "Mechatronics System Design", PWS Publications, 2007.
4	A. Smaili and F. Mrad, "Mechatronics: Integrated Technologies for Intelligent Machines",
	Oxford University Press, 2008.

COUR	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
C01	Identify the key elements of mechatronics system and models	K1
CO2	Select appropriate sensors and transducers for industrial application.	К2
CO3	Integrate mechanical, electrical, electronics, control systems in the mechatronics system design	К3
C04	Select the proper smart material for mechatronics system.	К3
C05	Apply the principles of mechatronics in industrial needs	K4

L	Т	Р	С
0	0	3	1.5

Course	To understand and practice the real time industrial applications	of automation		
Objectives	1 11			
LIST OF EXH	PERIMENTS			
1. Design of	simple pneumatic circuit for direction control.			
2. Design of	electro pneumatic circuit for direction control.			
3. Design of	meter-in and meter-out circuit using electro pneumatics.			
4. Design of	sequential circuit using electro pneumatics.			
5. Design of	cascading circuit using electro pneumatics.			
6. Training o	6. Training on advanced 4 axis robotic arm for industrial operations.			
7. Study on t	7. Study on the components and working of IoT system.			
8. Programm	ning of LoRaWAN IoT trainer for different industrial operations.			
9. Study on t	9. Study on the components and working of machine vision system.			
10. Colour sorting applications using machine vision system.				
Contact per	riods:			
Lecture: 0 P	Period Tutorial: 0 Period Practical: 45 Periods Tota	al: 45 Periods		
COURSE OU	ITCOMFS	Bloom's		

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the basic concepts of process automation through practical	КЗ
001	experiments on pneumatic systems.	
CO2	Analyze and construct the automation circuits using electro pneumatics	K4
CO3	Construct the robotic systems for basic automation experiments.	КЗ
CO4	Understand the components and working of industrial IoT system.	К3
CO5	Operate the machine vision for industrial application	КЗ

L	Т	Р	С
3	0	0	3

Course	To provide an exposure to CAD CAM and understand the role	of computors in			
	To provide an exposure to CAD, CAM and understand the role of computers in modeling and manufacturing				
Objectives UNIT – I	modeling and manufacturing. INTRODUCTION	(0 Dariada)			
		(9 Periods)			
	s of CAD/CAM - Product cycle - Design process- sequential				
	Computer graphics – co-ordinate-systems - 2D and 3D transforma				
rotation, scali	ng, homogeneous coordinates - Line drawing algorithm –Clipping- p				
UNIT – II	GEOMETRIC MODELING	(9 Periods)			
Representatio	on of curves- Hermite curve- Bezier curve- B-Spline curves-rationa	l curves- Surface			
modeling – su	rface patch- Coons and bicubic patches- Bezier and B-spline surface	es. Solid Modeling			
techniques- C	SG and B-rep.				
UNIT – III	VISUAL REALISM AND CAD STANDARDS	(9 Periods)			
Model cleanu	p – visibility technique-sorting-coherence-hidden line removal algo	rithms Standards			
for computer	graphics- Data exchange standards - IGES, STEP, and CALS.				
UNIT – IV	GROUP TECHNOLOGY AND FMS	(9 Periods)			
Group Techno	logy (GT) - Part Families – Parts Classification and coding system -	- Production flow			
Analysis – Ce	llular Manufacturing - Computer Aided Process Planning – Varian	t and Generative			
Process Plann	ning Methods - Types of FMS - Flexibility - FMS Components - F.	MS Application –			
Benefits.	X				
UNIT – V	PRODUCTION PLANNING AND CONROL	(9 Periods)			
Aggregate Pro	Aggregate Production Planning and Master Production Schedule – Material Requirement Planning				
(MRP I) – Capacity Planning – Shop Floor Control – Inventory Control – EOQ, Introduction to					
(MRP I)– Cap					
• • •		, Introduction to			
• • •	oacity Planning – Shop Floor Control – Inventory Control – EOQ	, Introduction to			
Manufacturin	oacity Planning – Shop Floor Control – Inventory Control – EOQ g Resource Planning (MRP II) & Enterprise Resource Planni	, Introduction to			
Manufacturin Production Contact Perio	oacity Planning – Shop Floor Control – Inventory Control – EOQ g Resource Planning (MRP II) & Enterprise Resource Planni ods:	, Introduction to			
Manufacturin Production Contact Perio	bacity Planning – Shop Floor Control – Inventory Control – EOQ g Resource Planning (MRP II) & Enterprise Resource Planni pods:	, Introduction to ing (ERP), Lean			

TEXT BOOKS:

1	Mikell	Р.	Groover,	"Automation,	Production	Systems	and	Computer-Integrated
	Manufacturing", Pearson Education, 2016.							
2	2 P. Radhakrishnan and S. Subramanyan, "CAD/CAM/CIM", New Age International (P) Ltd, 2023.							

1	Donald Hearn and M. Pauline Baker, "Computer Graphics" , Prentice Hall Inc., 2013.			
2	David Bedworth, "Computer Integrated Design and Manufacturing" , TMH, 1998.			
3	Ibrahim Zeid and R. Sivasubramanian, "CAD/CAM: Theory and Practices", McGraw Hill			
	Education, 2 nd Edition, 2009.			
4	Ulrich Sendler, "The Internet of Things: Industrie 4.0 Unleashed" , Springer, 1 st Edition, 2019.			

COUR Upon	Bloom's Taxonomy Mapped	
C01	Compute line, 2D and 3D transformation models.	КЗ
CO2	Generate mathematical representation of curves, surfaces and solids.	К3
CO3	Familiarize the visual realism and product data exchange techniques.	КЗ
C04	Apply knowledge on Group Technology and FMS in shop floor.	КЗ
C05	Get a comprehensive picture of Production Planning and control	K3

REFRIGERATION AND AIR CONDITIONING

(Use of Approved Refrigeration and Air conditioning Tables and Charts are Permitted)

SEMESTER VII

L	Т	Р	С
3	0	0	3

Courses	To enclose metions reference in and to desire the				
Course					
Objectives					
UNIT – I	REFRIGERATION CYCLES	(9 Periods)			
0	tion cycles - Reversed Carnot Cycle, Bell Coleman cycle				
-	Refrigeration Cycle, Compound Compression Refrigeration Cy	cles, and Cascade			
Refrigeration	Cycles.				
UNIT – II	VAPOUR ABSORPTION SYSTEM AND REFRIGERANTS	(9 Periods)			
Ammonia – V	Vater System, Lithium Bromide – Water System - Electrolux Refi	rigeration System,			
	efrigeration and Solar Refrigeration Systems. Refrigerants				
Classification	– Eco-Friendly Refrigerants				
UNIT – III	SYSTEM COMPONENTS	(9 Periods)			
Compressors	- Reciprocating, Rotary and Centrifugal Compressors, Evaporate	ors- Flooded, Dry			
Expansion, Sł	ell and Tube and Double Pipe Evaporators, Condensers – Air coo	oled, Water cooled			
and Evaporat	ive Condensers, Expansion Devices – Automatic, Capillary tube	and Thermostatic			
Expansion Va	lve.				
UNIT – IV	UNIT – IV DUCT DESIGN AND DISTRIBUTION (9 Periods)				
Air distributi	on systems – study of different types of duct systems, methods of	duct design, duct			
	purity – air cleaning methods.	U			
UNIT – V					
Psychrometry, Psychrometer, Psychometric processes, Moist Air behaviour, Effective					
Temperatures, Sensible Heat Factor ratio and Cooling Load Estimation for an Air-Conditioned					
Space.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45					
Periods	Periods				

TEXT BOOKS:

1	S. C. Arora and Domkundwar S., "Refrigeration and Airconditioning" , DhanpatRai & Sons			
	8 th Edition, 2021.			
2	P. N. Ananthanarayanan, "Basic Refrigeration and Air Conditioning", McGraw Hill			
	Education. 4 th Edition. 2013.			

1	Stocker, "Refrigeration and Air Conditioning", McGraw Hill Education, 2014.		
2	Manohar Prasad, "Refrigeration and Air Conditioning", Wiley Eastern Limited, 2004.		
3	R. K. Rajput, "Refrigeration and Air Conditioning" , S.K. Kataria & Sons, 2013.		
4	C. P. Arora, " Refrigeration and Air Conditioning ", McGraw Hill Education, 3 rd Edition,		
	2009.		
5	P. N. Ananthanarayanan, "Basic Refrigeration and Air Conditioning" , McGraw Hill		
	Education, 4 th Edition, 2013.		

COUR	Bloom's Taxonomy		
Upon	Upon completion of the course, the students will be able to:		
C01	Solve the problems on refrigeration cycle.	K2	
CO2	Analyze the vapor absorption refrigeration system.	КЗ	
CO3	Define the refrigeration system components.	K2	
C04	Design the duct geometry.	K4	
C05	Do the cooling load estimation.	K4	

SEMESTER VII

L	Т	Р	С
3	0	0	3

C		
Course	To learn the concept of linear and angular measuring instru	
Objectives	working principles of advanced devices used in metrology	•
	knowledge about the statistical quality control process, i	celiability and
	acceptance of sampling.	
UNIT – I	LINEAR AND ANGULAR MEASUREMENTS	(9 Periods)
•	ards - Length Measuring instruments - Vernier instruments - micr	•
	dicators, Bore gauges, Slip gauges, Comparators - Mechanical, Ele	
	tic, Optical Projector. Angle measuring instruments - Bevel pro	otractor, Spirit
level, Sine ba	r, Autocollimator, Angle Decker.	
UNIT – II	MAGNIFICATION AND FORM MEASUREMENT	(9 Periods)
Mechanical, (Optical, electrical, Pneumatic method of magnification. Gear toot	h terminology-
Methods of r	neasurements of run out, pitch, profile, lead, backlash, tooth th	iickness Screw
thread termin	nology- Measurement of effective diameter by two wire and three	wire methods
- errors in	threads - Measurement of pitch, profile errors and total com	iposite errors,
composite m	ethod of inspection - Parkinson gear tester - Measurement of s	surface finish -
Stylus probe	instruments - Tomlinson and Talysurf Instrument-Straightness	s, Flatness and
Roundness m	205 205	
UNIT – III	RECENT TRENDS IN METROLOGY	(9 Periods)
Precision ins	truments based on Laser- laser interferometer – Universal Measu	uring Machine-
	microscope - Coordinate Measuring Machine (CMM): need, const	
	Computer Aided Inspection, Machine Vision - Introduction to Na	
	icepts – Poka Yoke – Computer controlled systems used in inspecti	
UNIT – IV STATISTICAL QUALITY CONTROL (9 Periods)		
	uality and quality control, Quality of design and conformance, ba	
	lity and value of quality. Specification of quality, planning throug	
	information - significance of SQC - benefits and limitations of	
	Quality cost - quality engineering tools and techniques – Computer	
	cess capability – process capability studies – Construction and u	
charts.		
UNIT – V	RELIABILITY AND SAMPLING METHODS	(9 Periods)
	efinition, relationship of reliability with maintainability and avai	```
-	- bath tub curve, system reliability, reliability improvement. Samp	-
-	age inspection, basic concept of sampling inspection, Lot by	•••
probability of acceptance in single, double, multiple sampling techniques – OC curves –		
producers' risk and consumers' risk. Acceptable quality level, Lot Tolerance Percent		
Defective, Average Outgoing Quality Level concepts-standard sampling plans for AQL and		
LTPD.	orage cargoing quanty herer concepts standard sampling plan	s for free and
Contact Peri	ods	
Lecture: 45		al: 45 Periods
Letture, 45		ai. 75 i ci ious
TEXT BOOK	ç.	
I DAI DOON	Ji	

R. K. Jain, "Engineering Metrology", Khanna Publishers, 2022.
 Thomas G. Beckwith, Roy D. Marangoni and John H. Lienhard, "Mechanical Measurements", Pearson Education, 2020.

1	S. C. Gupta, "Engineering Metrology" , Dhanpat Rai Publications, 2018.
2	Douglas C. Montgomery, "Introduction to Statistical Quality Control" , John wiley & sons,
	2010.
3	Raghavendra and Krishnamurthy, "Engineering Metrology and Measurements", Oxford
	Higher Education, 2013.
4	A. K. Bewoor and V. A. Kulkarni, "Quality Control", Wiley India, 2009.
5	Jose A. Orosa, "Quality Control: Developments, Methods & Applications", Nova Science
	Publishers Inc, 2013.

COURSE	OUTCOMES:

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Apply the Knowledge to operate linear and angular measurement devices.	К3
CO2	Gain knowledge about the Magnification, comparators, and form measurements with effective communication.	K2
CO3	Understand the principles of advanced instruments used in Industries.	K4
C04	Learn about the concept of quality control and various control charts for the variables and attributes.	K4
C05	Apply the concept of reliability and various sampling methods for suitable applications.	K4

L	Т	Р	С
3	0	0	3

Course	To familiarize students with the concepts and techniques of robo	•
Objectives	its kinematics, programming and build confidence to choose	, evaluate and
	incorporate robots in engineering systems.	
UNIT – I	FUNDAMENTALS OF ROBOT	(9 Periods)
	tion, robot anatomy, work envelope, types and classification, j	
types of join	ts, robot parts and their functions, specifications, speed of mo	tion, pay load,
*	movement; Need for robots in Indian scenario, A view on Glo	bal and Indian
manufacture		
UNIT – II	ROBOT DRIVE SYSTEMS AND END EFFECTORS	(9 Periods)
Drives; hydra	aulic, pneumatic, mechanical, electrical, Servo motors, Stepper	motors, salient
features, app	olication, End effectors; types, Grippers; mechanical, pneuma	atic, hydraulic,
magnetic, vac	uum and limitations, Multiple grippers.	
UNIT – III	SENSORS AND MACHINE VISION	(9 Periods)
Requirements of sensors, principles, types and applications of: Proximity (Inductive, Hall		
effect, Capaci	tive, Ultrasonic and Optical) – Speed, Position (resolvers, optica	l encoders) –
Force – Torqu	e – Touch sensors, Introduction to Machine Vision; functions, ima	ge processing
and analysis,	training the vision system.	
UNIT – IV	DIRECT AND INVERSE KINEMATICS	(9 Periods)
Mathematica	representation of Robots - Position and orientation -	Homogeneous
transformatio	on- Various joints- Representation using the Denavit Hattenberg	g parameters -
Degrees of fre	eedom-Direct Kinematics - Inverse kinematics- SCARA robot.	
UNIT – V	APPLICATIONS, IMPLEMENTATION AND ROBOT	(9 Periods)
1	ECONOMICS	
Robot cell design; types, application of robots in processing, assembly, inspection, material		
handling in Automobile, Medical Nuclear Industries, Implementation of robots in industries;		
safety considerations for robot operations, safety codes, Economic analysis of robots; pay		
back and rate of return method.		
Contact Periods:		
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods		

TEXT BOOKS:

1	Nicholas Odrey, Mitchell Weiss, Mikell Groover, Roger Nagel, and Ashish Dutta, "Industrial
	Robotics: Technology, Programming and Applications ", McGraw-Hill Education, 2 nd
	Edition, 2017.
2	Ramachandran Nagarajan, "Introduction to Industrial Robotics" , Pearson Education, 1 st
	Edition. 2016.

1	Ashitava Ghoshal, "Robotics-Fundamental Concepts and Analysis", Oxford University
	Press, Sixth Edition, 2010.
2	R. K. Mittal and I. J. Nagrath, "Robotics and Control", Tata McGraw Hill, 2017.
3	S. K. Saha, "Introduction to Industrial Robotics", McGraw Hill Education, 2 nd Edition, 2017.
4	Rex Miller and Mark R. Miller, "Robots and Robotics: Principles, Systems, and Industrial
	Applications", McGraw Hill Education, 1st Edition, 2017.
5	K. K. Appu Kuttan, "Robotics" , I K International Publishing House Pvt. Ltd, 2013.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Select the robot for the various industrial applications.	КЗ
CO2	Control the robot actuation by selecting appropriate drives.	К3
C03	Analyse the role of the sensors, machine vision and manipulators in robotic System.	КЗ
C04	Evaluate the robot kinematics of a robot.	K4
C05	Employ the robots in industries and identify the social and economic challenges.	КЗ

L	Т	Р	С
3	0	0	3

Course	1 To understand and appreciate the othical issues found by a	n individual in	
Objectives	1. To understand and appreciate the ethical issues faced by a profession, society and polity.	n muividual m	
Objectives	2. To learn about Engineering Ethics and case studies.		
	5 5		
	3. To understand the negative health impacts of certain unhealthy		
	4. To appreciate the need and importance of physical, emotio social health.	nal health and	
	5. To get familiar with the global issues.		
UNIT – I	BEING GOOD AND RESPONSIBLE	(9 Periods)	
Morals, Values	s and Ethics - Integrity - Work Ethics - Service Learning - Civic Virt	ie - Respect for	
Others - Livir	ng Peacefully - Caring - Sharing - Honesty - Courage - Valuing Time	- Cooperation -	
Commitment	- Empathy - Self-Confidence – Character.		
UNIT – II	ENGINEERING AS SOCIAL EXPERIMENTATION	(9 Periods)	
Engineering I	Ethics: Senses of 'Engineering Ethics' - variety of moral issued - type	bes of inquiry -	
moral dilem	mas - moral autonomy - Models of Professional Roles. E	ngineering as	
-	tion – Engineers as responsible Experimenters – Research Ethics - Ce		
Industrial Sta	andards - A Balanced Outlook on Law – Case studies: Chernoby	yl disaster and	
Titanic disaster.			
UNIT - III ADDICTION AND HEALTH (9 Periods)			
	e - Alcoholism: Ethical values, causes, impact, laws, prevention		
0	revention of Suicides; Sexual Health: Prevention and impact	-	
	nd SexuallyTransmitted Diseases. Drug Abuse: Abuse of different types and the second	pes of legal and	
illegal drugs:	Ethical values, causes, impact, laws and prevention.		
UNIT – IV	PROFESSIONAL ETHICS	(9 Periods)	
	nnologies: Hacking and other cyber-crimes, Addiction to mobile pho	ne usage,	
Video games and social networking websites.			
UNIT – V	GLOBAL ISSUES	(9 Periods)	
Multinational corporations - Environmental ethics - computer ethics - weapons development -			
engineers as managers - consulting engineers - engineers as expert witnesses and advisors -			
Code of Conduct – Corporate Social Responsibility.			
Contact Periods:			
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods			

TEXT BOOK:

1	Mike W. Martin and Roland Schinzinger, "Ethics in Engineering" , McGraw-Hill, 4 th Edition, 2017.
2	M. Govindarajan, S. Natarajan and V. S. Senthil Kumar, "Engineering Ethics" , Prentice Hall India, 2013.

1	Kuldeep Kaur Dhaliwa., "Gandhian Philosophy of Ethics: A Study of Relationship between	
	his Presupposition and Precepts", Writers Choice, 2016.	
2	Jayshree suresh and B. S. Raghavan, "Human values and professional ethics", S Chand	
	Publishing, 3 rd Edition, 2003.	
3	Louis A. Pagliaro and Ann Marie Pagliaro, "Handbook of Child and Adolescent Drug and	
	Substance Abuse: Pharmacological, Developmental and Clinical Considerations", John	
	Wiley & Sons Inc, 2012.	
4	P. K. Pandey, "Sexual Harassment and Law in India" , Lambert Academic Publishing, 2012.	
5	D. R. Kiran, "Professional ethics and Human values", Tata McGraw Hill, 2007.	
6	Edmund G Seebauer and Robert L. Barry, "Fundamentals of Ethics for Scientists and	
	Engineers", Oxford University Press, 2008.	

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Follow sound morals and ethical values scrupulously to prove as good citizens.	К3
CO2	Assess the relevance of ethics and morals in engineering and to learn case studies.	К3
CO3	Describe the concept of addiction and how it will affect the physical and mental health.	K2
C04	Identify ethical concerns while using advanced technologies.	К2
C05	Judge the code of conduct, Environmental ethics and computer ethics.	К3

SEMESTER VIII

L	Т	Р	С
3	0	0	3

Course	To facilitate the understanding of total quality management princ	ciple, processes
Objectives	and to develop a product with the required quality at affordable	price with the
	satisfaction of customer.	
UNIT – I	QUALITY CONCEPTS	(9 Periods)
Introduction,	need for quality, evolution of quality, definitions of quality, produ	uct quality and
service qualit	ty; Basic concepts of TQM, TQM framework, contributions of Dem	ning, Juran and
Crosby. Barr	riers to TQM; Quality statements, customer focus, customer	orientation &
satisfaction, c	customer complaints, customer retention; costs to quality, case studi	es.
UNIT – II	TQM PRINCIPLES	(9 Periods)
TQM principl	es; leadership, strategic quality planning; Quality councils, employe	e involvement
motivation; l	Empowerment; Team and Teamwork; Quality circles, recognitio	n and reward
performance	appraisal; Continuous process improvement; PDCA cycle, 5S, Ka	izen,e-Kanban
Supplier part	nership, Partnering, Supplier rating & selection, Quality Awards.	
UNIT – III	STATISTICAL DDOCESS CONTDOL	(9 Periods)
	STATISTICAL PROCESS CONTROL	(9 renous)
The seven t	raditional tools of quality; New management tools; Statistical	fundamentals
The seven t population a	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri	fundamentals butes and its
The seven t population a applications,	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification,	fundamentals butes and its
The seven t population a applications,	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, g, service sector including IT.	fundamentals butes and its
The seven t population a applications, manufacturin UNIT IV	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, g, service sector including IT. TOOLS AND TECHNIQUES	fundamentals butes and its applications to (9 Periods)
The seven t population a applications, <u>manufacturin</u> UNIT IV Benchmarkin	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, ag, service sector including IT. TOOLS AND TECHNIQUES g needs and benefits, benchmarking process, Quality function depl	fundamentals butes and its applications to (9 Periods) oyment (QFD)
The seven t population a applications, manufacturin UNIT IV Benchmarkin house of qua	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, ag, service sector including IT. TOOLS AND TECHNIQUES g needs and benefits, benchmarking process, Quality function depl lity, Taguchi quality loss function, Total productive maintenance (T	fundamentals ibutes and its applications to (9 Periods) ioyment (QFD) (PM); pillars of
The seven t population a applications, manufacturin UNIT IV Benchmarkin house of qua TPM, Failure	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, ag, service sector including IT. TOOLS AND TECHNIQUES g needs and benefits, benchmarking process, Quality function depl	fundamentals ibutes and its applications to (9 Periods) ioyment (QFD) (PM); pillars of
The seven t population a applications, manufacturin UNIT IV Benchmarkin house of qua TPM, Failure studies.	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, og, service sector including IT. TOOLS AND TECHNIQUES g needs and benefits, benchmarking process, Quality function depl lity, Taguchi quality loss function, Total productive maintenance (T Mode Effective Analysis (FMEA); Failure rate, types of FMEA, stages	fundamentals butes and its applications to (9 Periods) oyment (QFD) (PM); pillars of s of FMEA, Case
The seven t population a applications, <u>manufacturin</u> UNIT IV Benchmarkin house of qua TPM, Failure studies. UNIT V	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, ag, service sector including IT. TOOLS AND TECHNIQUES g needs and benefits, benchmarking process, Quality function depl lity, Taguchi quality loss function, Total productive maintenance (T Mode Effective Analysis (FMEA); Failure rate, types of FMEA, stages QUALITY SYSTEMS	fundamentals ibutes and its applications to (9 Periods) loyment (QFD) (PM); pillars of s of FMEA, Case (9 Periods)
The seven t population a applications, manufacturin UNIT IV Benchmarkin house of qua TPM, Failure studies. UNIT V Introduction	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, ag, service sector including IT. TOOLS AND TECHNIQUES g needs and benefits, benchmarking process, Quality function depl lity, Taguchi quality loss function, Total productive maintenance (T Mode Effective Analysis (FMEA); Failure rate, types of FMEA, stages QUALITY SYSTEMS to ISO 9000 and other quality system; ISO 9001:2015 quality system	fundamentals ibutes and its applications to (9 Periods) ioyment (QFD) (PM); pillars of s of FMEA, Case (9 Periods) stem, elements
The seven t population a applications, manufacturin UNIT IV Benchmarkin house of qua TPM, Failure studies. UNIT V Introduction implementati	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, ag, service sector including IT. TOOLS AND TECHNIQUES g needs and benefits, benchmarking process, Quality function depl lity, Taguchi quality loss function, Total productive maintenance (T Mode Effective Analysis (FMEA); Failure rate, types of FMEA, stages QUALITY SYSTEMS to ISO 9000 and other quality system; ISO 9001:2015 quality system on of quality system, documentation, quality auditing, QS 900	fundamentals butes and its applications to (9 Periods) loyment (QFD) (PM); pillars of s of FMEA, Case (9 Periods) stem, elements 0, ISO 14000
The seven t population a applications, manufacturin UNIT IV Benchmarkin house of qua TPM, Failure studies. UNIT V Introduction implementati concept, req	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, ag, service sector including IT. TOOLS AND TECHNIQUES g needs and benefits, benchmarking process, Quality function depl lity, Taguchi quality loss function, Total productive maintenance (T Mode Effective Analysis (FMEA); Failure rate, types of FMEA, stages QUALITY SYSTEMS to ISO 9000 and other quality system; ISO 9001:2015 quality system, documentation, quality auditing, QS 900 uirements and benefits, integrating ISO 14000 with ISO 90	fundamentals butes and its applications to (9 Periods) loyment (QFD) (PM); pillars of s of FMEA, Case (9 Periods) stem, elements 0, ISO 14000
The seven t population a applications, <u>manufacturin</u> UNIT IV Benchmarkin house of qua TPM, Failure studies. UNIT V Introduction implementati concept, req IATF16949; I	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, ag, service sector including IT. TOOLS AND TECHNIQUES g needs and benefits, benchmarking process, Quality function depl lity, Taguchi quality loss function, Total productive maintenance (T Mode Effective Analysis (FMEA); Failure rate, types of FMEA, stages QUALITY SYSTEMS to ISO 9000 and other quality system; ISO 9001:2015 quality system on of quality system, documentation, quality auditing, QS 900 uirements and benefits, integrating ISO 14000 with ISO 90 mplementation of TQM in manufacturing industry.	fundamentals butes and its applications to (9 Periods) loyment (QFD) (PM); pillars of s of FMEA, Case (9 Periods) stem, elements 0, ISO 14000
The seven t population a applications, manufacturin UNIT IV Benchmarkin house of qua TPM, Failure studies. UNIT V Introduction implementati concept, req IATF16949; I Contact Peri	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, ag, service sector including IT. TOOLS AND TECHNIQUES g needs and benefits, benchmarking process, Quality function depl lity, Taguchi quality loss function, Total productive maintenance (T Mode Effective Analysis (FMEA); Failure rate, types of FMEA, stages QUALITY SYSTEMS to ISO 9000 and other quality system; ISO 9001:2015 quality system on of quality system, documentation, quality auditing, QS 900 uirements and benefits, integrating ISO 14000 with ISO 90 mplementation of TQM in manufacturing industry. ods :	fundamentals ibutes and its applications to (9 Periods) ioyment (QFD) (PM); pillars of s of FMEA, Case (9 Periods) stem, elements (0, ISO 14000) 00, ISO45000
The seven t population a applications, <u>manufacturin</u> UNIT IV Benchmarkin house of qua TPM, Failure studies. UNIT V Introduction implementati concept, req IATF16949; I	raditional tools of quality; New management tools; Statistical and sample, normal curve, control charts for variables, attri process capability; Six sigma, concepts, methodology, certification, ag, service sector including IT. TOOLS AND TECHNIQUES g needs and benefits, benchmarking process, Quality function depl lity, Taguchi quality loss function, Total productive maintenance (T Mode Effective Analysis (FMEA); Failure rate, types of FMEA, stages QUALITY SYSTEMS to ISO 9000 and other quality system; ISO 9001:2015 quality system on of quality system, documentation, quality auditing, QS 900 uirements and benefits, integrating ISO 14000 with ISO 90 mplementation of TQM in manufacturing industry. ods :	fundamentals butes and its applications to (9 Periods) loyment (QFD) (PM); pillars of s of FMEA, Case (9 Periods) stem, elements 0, ISO 14000

TEXT BOOK:

1	Besterfield Dale H., Besterfield Carol, Besterfield Glen H., Besterfield Mary and Urdhwareshe
	Hemant, "Total Quality Management" , Pearson Education, 5 th Edition, 2018.
2	Subburaj Ramasamy, "Total Quality Management", McGraw Hill Education, 2017.

1	James R. Evans and William M. Lindsay, "The Management and Control of Quality", South-
	Western, 2010.
2	Poornima M. Charantimath, "Total Quality Management", Pearson Education, 4th Edition,
	2022.
3	P. N. Mukherjee, "Total Quality Management", PHI Publishers, 2006.
4	B. Janakiraman and R. K. Gopal, "Total Quality Management" , Prentice Hall India, 1st Edition,
	2006.
5	Tapan K. Bose, "Total Quality Management", Pearson Education, 2010.
6	John L. Hradesky, "Total Quality Management Hand book", McGraw-Hill, 1995.

COURSE OUTCOMES:		Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the principle of strategic planning, Deming philosophy and leadership concepts in industries.	K2
CO2	Apply the principle of TQM in industries.	КЗ
CO3	Evaluate statistical process control in industries.	КЗ
C04	Select appropriate quality tools to meet industrial requirements.	КЗ
C05	Implement appropriate quality standards for industries.	К3

L	Т	Р	С
0	0	6	3

Course	To creat	e an opportun	nity fo	or a small te	eam	environment i	n applying	the knowledge
Objectives	learned	throughout	the	program	by	undertaking	problem	identification,
-	formulat	tion and solut	ion to	a small in	dust	rial problem.	-	

The students may be grouped into groups of about four members per group and work under a project supervisor. The device / system / component(s) to be fabricated / investigated / analyzed may be decided in consultation with the supervisor. An industrial expert may be included as an external supervisor. A project report to be submitted by the group and the fabricated model / investigation / analysis to be reviewed and evaluated continuously by a committee constituted by the head of the department.

Contact Periods: Lecture: 0 Periods Tutorial: 0 Periods Practical: 90 Periods Total: 90 Periods

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:			
C01	Model or simulate solutions to small engineering problems considering environmental issues.	K4		
C02	Apply the principles of mechanical engineering to solve engineering problems.	К3		
C03	CO3 Perform feasibility study and manage activities to complete task in specified duration.			
C04	Assign and undertake tasks in a team as per team discussion.	K1		
C05	Do presentation and write technical reports for effective communication within and outside the team.	K1		

L	Т	Р	С
3	0	0	3

Course	To educate the students with fundamental and advanced knowl	edge in the field of			
Objectives	additive manufacturing technology and associated aerospace,	_			
	medical and industrial applications.				
UNIT- I	INTRODUCTION	(9 Periods)			
	view Introduction to reverse engineering Traditional manu	_			
-	ed design (CAD) and manufacturing (CAM) and AM Different A	-			
	ess physics AM process chain Application level: Direct pr	_			
•••••	Rapid Tooling. Rapid Manufacturing; Indirect Processes - Ind	irect Prototyping.			
	g, Indirect Manufacturing.	(0 D : 1)			
UNIT- II	MATERIALS SCIENCE FOR AM Prials for Manufacturing -Multiple Materials -Metal AM Process	(9 Periods)			
ceramics -Shap	aterials -Biomaterials, Hierarchical Materials & Biomimetics be-Memory Materials, 4D Printing & Bio-active materials Role of non-equilibrium structure, Structure property relationship Gr e.	f solidification rate			
UNIT- III	SOFTWARE AND METHODS	(9 Periods)			
processing-3D	Additive Manufacturing (DfAM) - Software Tools vs. Require Scanning & the Scanning Process-Sculpting & Repairing data AM re detail on NURBS-Model Validation.				
UNIT- IV	POWDER BASED ADDITIVE MANUFACTURING SYSTEMS	(9 Periods)			
tension driven bed melting ba cost, optimal c	Transport phenomena models: temperature, fluid flow AM and composition, buoyancy driven tension driven free surface flow pool. Case studies: Numerical modeling of AM process, Powder bed melting based process, Droplet based printing process Residual stress, part fabrication time, cost, optimal orientation and optimal Defect in AM and role of transport Simulations (choice of parameter, Mo de! validation for different.				
UNIT- V	APPLICATIONS AND THE BUSINESS OF AM	(9 Periods)			
•	Light Manufacturing Process, Injection Molding, Casting, Mold-mail , Distributed Manufacturing, Mass Customization, Biomed	0			
Aerospace & Automotive Applications Architectural Engineering Food & Consumer Applications Personalized surgery Art, Fashion, Jewellery, Toys & Other Applications Intellectual Property Trade-offs of Open-Source vs Proprietary Systems, Gartner hype cycle viz 3D Printing. Total cost of ownership Business Considerations for Material Selection Commercialization Trends, Business Opportunities & Future Directions.					
Contact Perio					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods T	otal: 45 Periods			
TEXT BOOK:					
	e Kai and Leong Kah Fai, "Rapid Prototyping: Principles and	l Applications in			
	uring", World Scientific Publishing Co. Pte Ltd, 2000.				
2 Paul F. I	acobs, "Stereo-lithography and other RP & M Technolog				

2	Paul F.	Jacobs,	"Stereo-lithography	and	other	RP	&	М	Technologies:	from	Rapid
	Prototyp	oing to R	apid Tooling", ASME I	Press,	1996.						

1	Ian Gibson, David Rosen, Brent Stucker and Mahyar Khorasani "Additive manufacturing technologies" , Springer, 3 rd Edition, 2021.
1	<i>technologies"</i> , Springer, 3 rd Edition, 2021.
2	C. K. Chua, K. F. Leong and C. S. Lim, "Rapid prototyping: Principles and applications" , World Scientific Publishers, 2 nd Edition, 2010.
	Scientific Publishers, 2 nd Edition, 2010.
3	A. Gebhardt, "Rapid prototyping" , Hanser Gardener Publications, 2003.
4	L. W. Liou and F. W. Liou, "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2011.
4	prototype development", CRC Press, 2011.
5	P. D. Hilton and P. F. Jacobs, "Rapid Prototyping and Engineering applications: A tool box
	for prototype development", CRC press, 2005.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Describe the need and fundamentals of additive manufacturing (AM) systems.	K3
CO2	Create and analyse 2D and 3D models using CAD modelling software, discuss the fundamentals of reverse engineering and integrating with manufacturing systems.	КЗ
CO3	Describe various AM Technologies	К3
C04	Apply knowledge of powder based additive manufacturing techniques in the field of manufacturing and other fields.	КЗ
C05	To gain knowledge on application and the business of AM.	КЗ

23PTM5E2	DESIGN FOR MANUFACTURE	SEMESTER V
23P110562	(Use of Approved Design Data Book is permitted)	SEMESTER V

L	Т	Р	С
3	0	0	3

Course Understand the design principles and to know the designing concept of machin	ning					
Objectives component, injection moulding and sheet metal for manufacturing and to proc	uce					
eco-friendly manner.						
UNIT – I DESIGN PRINCIPLES FOR MANUFACTURABILITY (9 Period	ls)					
Process Capability and its Metrics - General Design Principles of Manufacturability - Mate	rial					
selection - Strength and Mechanical Factors- Geometric Tolerances, Surface Finish - Assen	ıbly					
Limits – Datum Features – Tolerance Stacks.						
UNIT – II FACTORS INFLUENCING FORM DESIGN (9 Period	ls)					
Influence Factors for Form Design -Physical factors - Size - Arrangement-Efficiency in Cast	ing,					
Welding, Forging, Rolling, Wire Drawing, Plastic Moulding and Pressure Die Casting.						
UNIT – III MACHINING COMPONENT DESIGN (9 Period	ls)					
Design Features to Facilitate Machining – Twist Drill – Drill Entry and Run Out- Counter Sunk H	ead					
Screws-Redesign of Casting based on Parting Line consideration - Pattern, Mould, Parting L						
Cast Holes-Cored Holes, Machined Holes, Identify the possible and probable Parting Line-De	sign					
for Economy, Clampability and Accessibility.						
UNIT – IV DESIGN FOR INJECTION MOULDING AND SHEET METALS (9 Period	ls)					
WORKING						
Design of Injection Moulding System - Materials- Estimation of Molding Cycle Time- De	sign					
Guidelines- Case Studies-Recent Trends in Injection Moulding. Dedicated Dies and Press -Work	ing,					
Press Selection, Turret Press Working, and Design Rules- Case Studies.						
UNIT – V DESIGN FOR ENVIRONMENT (9 Period	ls)					
Introduction to Environmental Objectives – Global Issues – Regional and Local Issues – Basic	DFE					
Methods – Design Guidelines – Lifecycle Assessment - Design to Minimize Material Usage – De	sign					
for Disassembly, Recyclability, Remanufacture and Energy Efficiency- Design to Regulations	for Disassembly, Recyclability, Remanufacture and Energy Efficiency- Design to Regulations and					
Standards.						
Contact Periods:						
	~					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Period	5					

TEXT BOOKS:

 Geoffrey Boothroyd, Peter Dewhurst, Winston A. Knight, "Product Design for Manufacture and Assembly", CRC Press, 3rd Edition, 2010.
 Henry W. Stoll, "Design for Manufacture: Principles and Practices", Independently Published, 2020.

1	Ramon Bakerjian, "Design for Manufacturability (v. 6) (Tool and Manufacturing Engineers'
	Handbook)", 1992.
2	James G. Bralla, "Design for Manufacturability Handbook", McGraw Hill Book Co., 2 nd Edition,
	1998.
3	G. E. Dieter, "Engineering Design: A Materials and Processing Approach", McGraw Hill
	Education, 1991.
4	Roy A. Lindberg, "Processes and Materials of Manufacture", Prentice-Hall India Publishers, 4th
	Edition, 1990.
5	S. Kalpakjian and S.R. Schmid, "Manufacturing Engineering and Technology", Pearson
	Publishers, 7 th Edition, 2013.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand and analyse the design principles for manufacturability.	K4
C02	Select the methods for productivity with considerations of influencing factors.	КЗ
CO3	Apply the design considerations for machining of the components.	K4
C04	Understand the component design for Casting and Sheet metal operations.	K4
CO5	Able to select the materials for the Eco-friendly machining Environment.	K4

L	Т	Р	С
3	0	0	3

Course	To classify the engine components and accessories, understand t	he concepts of	
Objectives	ctives steering, brakes and suspension systems and discuss the alternative energy		
	sources, hybrid and off-road vehicles.		
UNIT – I	VEHICLE STRUCTURE AND ENGINES	(9 Periods)	
Types of auto	mobiles, vehicle construction and different layouts, chassis, frame and	d body, Vehicle	
aerodynamics	s. Components of Engine – Functions and Materials - Cooling and Lubri	ication systems	
in Engine – T	urbo Chargers – Engine Emission Control by 3-Way Catalytic Control	ler - Electronic	
Engine Manag	gement System.		
UNIT – II	ENGINE AUXILIARY SYSTEMS	(9 Periods)	
Electronic con	ntrol of carburetion - Electronic fuel injection system – Mono-point ar	nd Multi - Point	
Injection Syst	tems - Construction, Operation and Maintenance of Lead Acid Batte	ery – Electrical	
systems - Ba	attery generator –Advanced starting system technology – Lighting	g and Ignition	
systems – Reg	gulators - Cut outs.		
UNIT – III	TRANSMISSION SYSTEMS	(9 Periods)	
	AD CAT THE CO. T. CONTINUES.		
Clutch – Type	es and Construction – Gear Boxes, Manual and Automatic – Gear shift	mechanisms –	
5 1	es and Construction – Gear Boxes, Manual and Automatic – Gear shift · Fluid flywheel - Torque converters– Propeller shaft – Slip Joint – Un		
Over Drives -	[10] M. M. Charles, and C. Santara, C. Santara, and A. Santara, and	iversal Joints –	
Over Drives -	- Fluid flywheel - Torque converters- Propeller shaft - Slip Joint - Un	iversal Joints -	
Over Drives - Differential an	- Fluid flywheel - Torque converters- Propeller shaft - Slip Joint - Un	iversal Joints –	
Over Drives – Differential and drive. UNIT – IV Steering Geor	Fluid flywheel - Torque converters– Propeller shaft – Slip Joint – Un nd Rear Axle – Hotchkiss Drive and Torque Tube Drive – Introduction STEERING, BRAKES AND SUSPENSION SYSTEMS metry and Types of steering gear box– Power Steering - Types o	iversal Joints – n to rear wheel (9 Periods) f Front Axle –	
Over Drives – Differential and drive. UNIT – IV Steering Geor Suspension s	 Fluid flywheel - Torque converters- Propeller shaft - Slip Joint - Un nd Rear Axle - Hotchkiss Drive and Torque Tube Drive - Introduction STEERING, BRAKES AND SUSPENSION SYSTEMS metry and Types of steering gear box- Power Steering - Types o ystems - Braking Systems - Types and Construction - Antilock Brack 	iversal Joints – n to rear wheel (9 Periods) f Front Axle – aking System –	
Over Drives – Differential and drive. UNIT – IV Steering Geor Suspension s	Fluid flywheel - Torque converters– Propeller shaft – Slip Joint – Un nd Rear Axle – Hotchkiss Drive and Torque Tube Drive – Introduction STEERING, BRAKES AND SUSPENSION SYSTEMS metry and Types of steering gear box– Power Steering - Types o	iversal Joints – n to rear wheel (9 Periods) f Front Axle – aking System –	
Over Drives – Differential and drive. UNIT – IV Steering Geor Suspension s	Fluid flywheel - Torque converters– Propeller shaft – Slip Joint – Un nd Rear Axle – Hotchkiss Drive and Torque Tube Drive – Introduction STEERING, BRAKES AND SUSPENSION SYSTEMS metry and Types of steering gear box– Power Steering - Types o ystems – Braking Systems – Types and Construction – Antilock Bra ake force distribution (EBD) and traction control - Wheels and rameters.	iversal Joints - n to rear wheel (9 Periods) f Front Axle - aking System -	
Over Drives – Differential and drive. UNIT – IV Steering Geor Suspension s Electronic br	Fluid flywheel - Torque converters– Propeller shaft – Slip Joint – Un nd Rear Axle – Hotchkiss Drive and Torque Tube Drive – Introduction STEERING, BRAKES AND SUSPENSION SYSTEMS metry and Types of steering gear box– Power Steering - Types of ystems – Braking Systems – Types and Construction – Antilock Bra ake force distribution (EBD) and traction control - Wheels and	iversal Joints - n to rear wheel (9 Periods) f Front Axle - aking System -	
Over Drives – Differential and drive. UNIT – IV Steering Geor Suspension s Electronic br Alignment Pa UNIT – V	Fluid flywheel - Torque converters– Propeller shaft – Slip Joint – Un nd Rear Axle – Hotchkiss Drive and Torque Tube Drive – Introduction STEERING, BRAKES AND SUSPENSION SYSTEMS metry and Types of steering gear box– Power Steering - Types o ystems – Braking Systems – Types and Construction – Antilock Bra ake force distribution (EBD) and traction control - Wheels and rameters.	iversal Joints - n to rear wheel (9 Periods) f Front Axle - aking System - Tyres - Wheel (9 Periods)	
Over Drives – Differential and drive. UNIT – IV Steering Geor Suspension s Electronic br Alignment Pa UNIT – V Use of Nature	 Fluid flywheel - Torque converters– Propeller shaft – Slip Joint – Un nd Rear Axle – Hotchkiss Drive and Torque Tube Drive – Introduction STEERING, BRAKES AND SUSPENSION SYSTEMS metry and Types of steering gear box– Power Steering - Types o ystems – Braking Systems – Types and Construction – Antilock Bracake force distribution (EBD) and traction control - Wheels and rameters. ALTERNATIVE ENERGY SOURCES 	iversal Joints - n to rear whee (9 Periods) f Front Axle - aking System - Tyres - Whee (9 Periods) d Hydrogen in	
Over Drives – Differential and drive. UNIT – IV Steering Geor Suspension s Electronic br Alignment Pa UNIT – V Use of Nature	 Fluid flywheel - Torque converters– Propeller shaft – Slip Joint – Un nd Rear Axle – Hotchkiss Drive and Torque Tube Drive – Introduction STEERING, BRAKES AND SUSPENSION SYSTEMS metry and Types of steering gear box– Power Steering - Types o ystems – Braking Systems – Types and Construction – Antilock Braake force distribution (EBD) and traction control - Wheels and rameters. ALTERNATIVE ENERGY SOURCES al Gas, Liquefied Petroleum Gas, Bio-diesel, Bio-ethanol, Alcohol an - Electric and Hybrid Vehicles, Fuel Cells – Introduction to off road vehicles 	iversal Joints - n to rear wheel (9 Periods) f Front Axle - aking System - Tyres - Wheel (9 Periods) d Hydrogen in	

TEXT BOOKS:

1	Kirpal Singh, "Automobile Engineering Vol. 1 & 2 ", Standard Publishers Distributors, 2020.
2	R. B. Gupta, "Automobile Engineering" , Satya Prakashan, 2024.

REFERENCES:

1	William Crouse and Donald Anglin, "Automotive Mechanics", McGraw Hill Education, 10 th
	Edition, 2017.
2	K. K. Ramalingam, "Automobile Engineering - theory and Practice", Scitech Publications,
	2011.
3	S. K. Gupta, "A Textbook of Automobile Engineering" , S. Chand Publishing, 2 nd Edition, 2020.
4	K. K. Jain and R. B. Asthana, "Automobile Engineering", McGraw Hill Education, 1 st Edition,
	2017.
5	C. P. Nakra, "Basic Automobile Engineering" , Dhanpat Rai Publishing Company, 2023.

	COMPANY OF A STATE AND A STAT	Bloom's Taxonomy Mapped
C01	Classify the engine components and accessories.	K2
CO2	Explain fuel supply and electrical systems.	КЗ
CO3	Explain the working principle of various transmission and control	КЗ
	systems.	
C04	Understand the concepts of steering, brakes and suspension systems	K2
CO5	Discuss the alternative energy sources, hybrid and off-road vehicles.	K4

COMPOSITE MATERIALS

SEMESTER V

L	Т	Р	С
3	0	0	3

Course	To impart the fundamentals of composite materials with different	reinforcement,		
Objectives	matrix materials and comprehend the types of manufacturing metho	ds for advance		
-	composite materials to meet various engineering requirements.			
UNIT – I	BASICS OF COMPOSITE MATERIALS	(9 Periods)		
Classification	and characteristics of composite materials - Mechanical behavior - I	Polymer matrix		
	Metal matrix composites - Ceramic matrix composites - Basic te			
	of laminated fiber - Reinforced composite materials - Current	and potential		
	Structural and Multifunctional - Applications of composite materials.			
UNIT – II	REINFORCEMENT AND MATRICES	(9 Periods)		
	es of fibers and resins – Glass – Boron – carbon – organic – ceramic -			
	de Reinforcements - Properties and applications of fibers - Roll of r			
	lection of matrix -Thermoset matrix -Thermoplastic matrix, Fiber	architecture -		
Natural Fiber				
UNIT – III	DESIGN OF COMPOSITE STRUCTURES	(9 Periods)		
Elements of Design - Steps in design process – Static, dynamic and stability analysis – Laminated				
composites plates - inter laminar stresses - stress distribution in fiber and the matrix - Design				
analysis stages - Material selection - Configuration selection - Laminate joints - Design				
	and design failure criteria.			
UNIT – IV	MANUFACTURING OF COMPOSITES	(9 Periods)		
	s terms – requirement and selection of constituents - Bagging films - M	01		
	molding - Pltrusion – pre-peg layer - Filament winding - Liquid com			
	esin film infusion - Elastic reservoir molding -Tube rolling - Forming	ng methods for		
-	c matrix composites.	(0.5. 1. 1.)		
UNIT – V	METAL, CERAMIC AND CARBON MATRIX COMPOSITES	(9 Periods)		
	composites (MMC) - Characteristics of MMC – Types – reinforcement e			
	e of mixtures – processing of MMC - Ceramic matrix composites (CM			
properties – sintering – cold and hot isostatic pressing - processing of CMC - Carbon matrix				
	Characteristics and constituents - Fabrication methods - Applications.			
Contact Peri				
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0 Periods Tota	al: 45 Periods		
TEXT BOOKS):			

1	Krishnan K. Chawla, "Composite Materials: Science and Engineering", Springer India, 3 rd
	Edition, 2015.
2	P. K. Mallick, "Fiber-Reinforced Composite materials: Manufacturing and Design", CRC
	Press, 3 rd Edition, 2019.

1	A. K. Bhargava, "Engineering Materials: Polymers, Ceramics and Composites", Prentice Hall
	India Learning Private Limited, 2004.
2	Michael W. Hyer, "Stress Analysis of Fiber-Reinforced Composite Materials", Destech Pubns Inc,
	2008.
3	Madhujit Mukhopadhyay, "Mechanics of Composite Materials and Structures", Universities
	Press, 2022.
4	Robert M. Jones, "Mechanics of Composite Materials", CRC Press, 2 nd Edition, 2018.
5	Ronald F. Gibson, "Principles of Composites Materials Mechanics", CRC Press, 4th Edition, 2016.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the mechanics and behavior of reinforced composite materials for specific applications and developing composite materials for sustainability.	K2
CO2	Formulate different types of reinforcement and matrices to develop new composite material for the various application.	КЗ
CO3	Design and manufacture post processing methods of composite structures and capable to perform various analysis	К3
C04	Execute different methods of manufacturing advanced composites to meet the innovate demand in engineering.	K2
C05	Fabricate metal matrix, ceramic matrix and carbon matrix composite for various engineering application to meet the societal demand.	K4

SEMESTER V

L	Т	Р	С
3	0	0	3

Course	To enrich the students with the knowledge on different indus	trial problems
Objectives	involving limited resources and strengthen the ability to choose	-
objectives	solution technique for solving the problems.	
UNIT – I	LINEAR MODELS	(9 Periods)
-	of Operations Research – Characteristics and phases of Operati	<u> </u>
	els – Linear Programming Problem – Formulation – Graphical me	
	ig M method – Two phase method – Duality formulation – Dual sin	
Solution by E		- p
UNIT – II	TRANSPORTATION AND ASSIGNMENT MODELS	(9 Periods)
Transportatio	on models – Optimal solution by North West Corner method – Least	. ,
	oximation Method – Optimality test – MODI method – Assign	
	Hungarian method – Unbalanced and maximization type of assign	
	alesman problem.	1
UNIT – III	NETWORK MODELS AND SEQUENCING PROBLEMS	(9 Periods)
Construction	of project networks – Network optimization algorithms – Shortest	route models –
	ning tree models - Maximum flow models - CPM and PERT netw	
path schedul	ing – Sequencing problems – n jobs through two machines – n jo	obs through m
machines – T	wo jobs through <i>m</i> machines.	-
UNIT – IV	INVENTORY MODELS AND QUEUE THEORY	(9 Periods)
Inventory – F	conomic order quantity models – Quantity discount models – Proba	bilistic models
- Safety stocl	and reorder point calculation – Queuing systems and structures –	Notations and
parameters -	Queuing models - Random number generation - Application of	simulation for
queuing and	naintenance.	
UNIT – V	DECISION AND REPLACEMENT MODELS	(9 Periods)
Decision mo	dels – Game theory – Two-person zero sum games – Graphi	cal solution –
	models - Economic life - Replacement of items that deteriorate with	
5	nge with time, not change with time - Optimum replacement poli	cy - Individual
and group re		
Contact Peri	ods:	
Lecture: 45 l	Periods Tutorial: 0 Periods Practical: 0 Periods Tot	al: 45 Periods

TEXT BOOK:

- 1 *H. A. Taha*, "Operation Research", Pearson Education, 10th Edition, 2017.
- 2 Hira and Gupta, **"Problems in Operations Research"**, S.Chand and Co., 2021.

1	J. K. Sharma, "Operations Research", Macmillan, 6th Edition, 2017.
2	Philip and Ravindran, "Operational Research", John Wiley, 2 nd Edition, 2007.
3	Wagner, " Operations Research ", Prentice Hall of India, 2000.
4	F. S. Hillier, G. J. Lieberman, B. Nag and P. Basu, "Operations Research", McGraw Hill, 11 th
	Edition, 2021.
5	G. Srinivasan, "Operations Research: Principles and Applications", Prentice Hall of India,
	3 rd Edition, 2017.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Apply linear programming models to domain specific situations and solve by appropriate solution techniques.	К3
CO2	Analyze the various methods under transportation model and apply the model for testing the closeness of their results to optimal results	K4
CO3	Apply the concepts of PERT and CPM networks and sequencing models for decision making and optimally managing projects	КЗ
C04	Analyze and apply appropriate inventory and queue theory techniques in domain specific situations.	К4
CO5	Make strategic decisions using decision and replacement models.	K6

L	Т	Р	С
3	0	0	3

Course	To introduce the process planning concepts, cost estimation	on for various	
Objectives	manufacturing process.		
UNIT- I	INTRODUCTION TO PROCESS PLANNING	(9 Periods)	
Aims and Obje	ctives, Place of process planning in Manufacturing cycle - Process a	and Production	
Planning. Draw	ing interpretation, Dimensional tolerance vs Production processes.		
UNIT- II	PROCESS PLANNING STEPS	(9 Periods)	
Design of a pr	ocess plan - Selection of production processes, tools and proce	ss parameters-	
0	l work holding devices, Selection of inspection devices and tools, De	0	
process plan. C	omputer-Aided Process Planning (CAPP) – Benefits, Architecture a	nd approaches.	
UNIT- III	INTRODUCTION TO COST ESTIMATION	(9 Periods)	
Importance, Types, Purpose, Components, Procedure, Classification of costs, Cost elements, Cost ladder, Overhead expenses, Break-even analysis - Concept, make or buy decision, assumptions, merits and demerits of breakeven analysis. Applications - Linear, multi product break-even analysis.			
UNIT- IV	PRODUCT LIFE CYCLE MANGEMENT AND PRODUCTION COST ESTIMATION	(9 Periods)	
Product life cycle management - Estimation of production cost for - cast components, welded components, forged components, powder metallurgy parts.			
UNIT- V	ESTIMATION OF MACHINING TIME AND COST	(9 Periods)	
Estimation of Machining time – Lathe operations, Drilling, Milling, Shaping, Planing and Grinding,			
Cost estimation for machining processes.			
Contact Periods:			
Lecture: 45 Pe	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods		

TEXT BOOK:

1	R. Panneerselvam and P. Sivasankaran, "Process Planning and Cost Estimation", PHI
	Learning (P) Ltd., 2015.
2	M. Adithan, "Process Planning and Cost Estimation", New Age International (P) Ltd., 2015.

1	Thomas E. Vollmann, "Manufacturing Planning and Control Systems", Galgotia
	Publications Pvt. Ltd., 1998.
2	Samuel Eilon, "Elements of Production Planning and Control", MacMillan, 1985.
3	R. Kesavan, C. Elanchezhian and B. Vijayaramanath, "Process Planning and Cost
	Estimation", New Age International (P) Ltd., 2019.
4	B. S. Narang and V. Kumar, "Production and Costing", Khanna Publishers, 2014.
5	T. R. Banga and S. C. Sharma, "Mechanical Estimating and Costing", Khanna Publishers, 2001.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Discuss the concept of process planning.	K2
CO2	Describe the steps involved in process planning.	КЗ
CO3	Discuss about cost estimation and Break-Even analysis.	КЗ
C04	Estimate the manufacturing cost for welded, forged components and powder metallurgy parts.	K4
C05	Calculate the machining time and cost for various machining processes.	КЗ

DESIGN OF JIGS, FIXTURES AND PRESS TOOLS (Use of Approved Design Data Book is permitted)

L	Т	Р	С
3	0	0	3

Course	To understand the concepts of press tool design and fixtu	are design for
Objectives	machining and forming systems.	
UNIT- I	LOCATING AND CLAMPING PRINCIPLES	(9 Periods)
Objectives of t	ool design- Function and advantages of Jigs and fixtures – Ba	sic elements –
principles of lo	ocation - Locating methods and devices - Redundant Location	– Principles of
clamping -Me	chanical actuation – Pneumatic and hydraulic actuation - St	andard parts-
Tolerances and	materials used.	
UNIT- II	DESIGN OF JIGS	(9 Periods)
Drill bushes –	different types of jigs – plate, latch, channel, box, angle plate, pos	t, turnover, pot
jigs - Automati	c drill jigs - Rack and pinion operated, air operated jigs – Commo	n defects in jig
design- design	and development of jigs for simple components.	
UNIT- III	DESIGN OF FIXTURES	(9 Periods)
fixtures, assem	nilling, boring, lathe and broaching fixtures - Grinding, plannin bly, Inspection and welding fixtures- modular fixtures - quick ch ts in fixture design -design and development of fixtures for simple o	ange fixtures -
UNIT- IV	PRESS ELEMENTS AND CUTTING DIE DESIGN	(9 Periods)
Press working terminology – types - presses and accessories - tonnage requirements - strip lay out calculations - shearing action - die and punch elements - strippers, knockouts, stops, pilots, selection of standard die sets - design and development of progressive and compound dies for blanking and piercing operations.		
UNIT- V	DESIGN OF FORMING AND MISCELLANEOUS DIES	(9 Periods)
Design and development of forming - bending and drawing dies - types - design considerations in		
forging - extrusion – recent trends in tool design – introduction to computer aids for sheet metal		
forming analysis.		
Contact Periods:		
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods To	tal: 45 Periods
τεντ βοοκ.		

TEXT BOOK:

1	P. H. Joshi, "Jigs and Fixtures", McGraw Hill Education, 3 rd Edition, 2017.
2	K. Venkataraman, "Design of Jigs, Fixtures and Press Tools" , Ane Books Pvt. Ltd., 2 nd Edition, 2022.

1	Cyril Donaldson, H. LeCain George, V. C. Goold and Joyjeet Ghose, "Tool Design" , McGraw Hill	
	Education, 5 th Edition, 2017.	
2	V. Balachandran, "Design of Jigs, Fixtures & Press Tools", Notion Press, 1st Edition, 2015.	
3	Edward G. Hoffman, "Jigs and Fixture Design", Delmar Publishers, 5th Edition, 2004.	
4	Franklin D. Jones, "Jig and Fixture Design: A Treatise Covering the Principles of Jig and	
	Fixture Design", Alpha Edition, 2020.	
5	P. H. Joshi, "Press Tools: Design and Construction" , S Chand & Company, 23 rd Edition, 2017.	

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Know about the about the locating and clamping principles of jigs and fixtures.	КЗ
CO2	Design and develop various types of jigs for given components.	К6
CO3	Design and develop various types of fixtures for given components.	K6
C04	Understand the working of press tools and solve problems in strip layout.	K5
C05	Apply the concepts of die design for forming operations	K5

SEMESTER VI

L	Т	Р	С
3	0	0	3

Course	To elucidate the technologies used for generation and utilization	of power from
Objectives renewable energy resources.		
UNIT- I	SOLAR ENERGY	(9 Periods)
Solar radiation	, solar spectra-latitude and longitude, calculation of angle of incide	
	constants, Photo voltaic: p-n junctions, Solar cells, PV systems, St	
-	ar power - Types of solar thermal collectors – Flat and concentra	
solar thermal a	pplications - Applications.	0
UNIT- II	WIND ENERGY	(9 Periods)
Wind energy	- Basic principle of wind energy conversion system, wind da	ta and energy
estimation, site	e selection, components of wind energy conversion systems, design	n consideration
of horizontal a	xis wind mill- merits and limitations- application.	
UNIT- III	BIOMASS ENERGY	(9 Periods)
Biomass. sour	ces of biomass, thermo-chemical and bio-chemical conversion	of biomass -
	fication, combustion and fermentation. Gasifiers – Up draft,	
	asifier. Digesters- Fixed and floating digester biogas plants, econor	
power generat	E I WE CAMELY I E I	
UNIT- IV	OCEAN AND GEOTHERMAL ENERGY	
2	OCEAN AND GEOTHERMAL ENERGY	(9 Periods)
	resources - Principles of ocean thermal energy conversion systems	,
Ocean energy i	17 N	- ocean therma
Ocean energy i	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energ	- ocean thermal
Ocean energy power plants Economics of C	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energ OTEC.	- ocean thermal gy conversion -
Ocean energy power plants Economics of C Definition and	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energ OTEC. classification of Geothermal resources, Utilization for electricity	- ocean thermal y conversion - generation and
Ocean energy of power plants Economics of O Definition and direct heating,	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energ OTEC.	- ocean thermal y conversion - generation and
Ocean energy of power plants Economics of O Definition and direct heating, generation.	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energ OTEC. classification of Geothermal resources, Utilization for electricity Wellhead power generating units. Overview of micro and mir	- ocean thermal gy conversion - generation and ni hydel power
Ocean energy of power plants Economics of O Definition and direct heating, generation. UNIT- V	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energ OTEC. classification of Geothermal resources, Utilization for electricity Wellhead power generating units. Overview of micro and mir RENEWABLE ENERGY POLICIES	- ocean thermal gy conversion - generation and hydel power (9 Periods)
Ocean energy of power plants Economics of O Definition and direct heating, generation. UNIT- V Renewable energy	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energy DTEC. classification of Geothermal resources, Utilization for electricity Wellhead power generating units. Overview of micro and mir RENEWABLE ENERGY POLICIES ergy policies - Feed-in tariffs, portfolio standards, policy targets,	- ocean therma y conversion generation and i hydel power (9 Periods) tax incentives,
Ocean energy of power plants Economics of O Definition and direct heating generation. UNIT- V Renewable energy	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energy OTEC. classification of Geothermal resources, Utilization for electricity Wellhead power generating units. Overview of micro and mir RENEWABLE ENERGY POLICIES ergy policies - Feed-in tariffs, portfolio standards, policy targets, andates. International policies for climate change and energy second	- ocean thermal gy conversion - generation and hi hydel power (9 Periods) tax incentives, urity. Economic
Ocean energy of power plants Economics of O Definition and direct heating, generation. UNIT- V Renewable energy and biofuels m analysis and co	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energy OTEC. classification of Geothermal resources, Utilization for electricity Wellhead power generating units. Overview of micro and mir RENEWABLE ENERGY POLICIES ergy policies - Feed-in tariffs, portfolio standards, policy targets, handates. International policies for climate change and energy secu omparisons, Life cycle analysis, financial analysis, cost of conserv	- ocean thermal gy conversion - generation and hi hydel power (9 Periods) tax incentives, urity. Economic
Ocean energy of power plants Economics of O Definition and direct heating, generation. UNIT- V Renewable energy and biofuels m analysis and co	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energy OTEC. classification of Geothermal resources, Utilization for electricity Wellhead power generating units. Overview of micro and mir RENEWABLE ENERGY POLICIES ergy policies - Feed-in tariffs, portfolio standards, policy targets, landates. International policies for climate change and energy secu omparisons, Life cycle analysis, financial analysis, cost of conserv ost assessment of supply technologies versus energy- Efficiency.	- ocean thermal gy conversion - generation and hi hydel power (9 Periods) tax incentives, urity. Economic
Ocean energy of power plants Economics of O Definition and direct heating, generation. UNIT- V Renewable end and biofuels m analysis and co externalities. O	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energy OTEC. classification of Geothermal resources, Utilization for electricity , Wellhead power generating units. Overview of micro and mir RENEWABLE ENERGY POLICIES ergy policies - Feed-in tariffs, portfolio standards, policy targets, andates. International policies for climate change and energy second omparisons, Life cycle analysis, financial analysis, cost of conserv ost assessment of supply technologies versus energy- Efficiency. ds :	- ocean thermal gy conversion - generation and hi hydel power (9 Periods) tax incentives, urity. Economic
Ocean energy of power plants Economics of O Definition and direct heating generation. UNIT- V Renewable energy and biofuels manalysis and co externalities. O Contact Perio	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energy OTEC. classification of Geothermal resources, Utilization for electricity , Wellhead power generating units. Overview of micro and mir RENEWABLE ENERGY POLICIES ergy policies - Feed-in tariffs, portfolio standards, policy targets, andates. International policies for climate change and energy second omparisons, Life cycle analysis, financial analysis, cost of conserv ost assessment of supply technologies versus energy- Efficiency. ds :	- ocean thermal gy conversion - generation and i hydel power (9 Periods) tax incentives, urity. Economic red energy, and
Ocean energy of power plants Economics of C Definition and direct heating, generation. UNIT- V Renewable energy and biofuels m analysis and c externalities. C Contact Perior Lecture: 45 Perior TEXT BOOK:	resources - Principles of ocean thermal energy conversion systems - Principles of ocean wave energy conversion and tidal energy OTEC. classification of Geothermal resources, Utilization for electricity , Wellhead power generating units. Overview of micro and mir RENEWABLE ENERGY POLICIES ergy policies - Feed-in tariffs, portfolio standards, policy targets, andates. International policies for climate change and energy second omparisons, Life cycle analysis, financial analysis, cost of conserv ost assessment of supply technologies versus energy- Efficiency. ds :	- ocean thermal gy conversion - generation and hi hydel power (9 Periods) tax incentives, urity. Economic red energy, and

T	o. D. hai, Hon conventional Linergy Sources , Manna I abisiters, 2022.
2	N. L. Panwar, Sunil L. Narnaware and Swati Narnaware, "Renewable Energy Sources", New
	India Publishing Agency, 2023.

Roland Wengenmayr and Thomas Buhrke, "Renewable energy: Sustainable energy
concepts for the future", Wiley-VCH, 1 st edition, 2008.
D. P. Kothari, K. C. Singal and Rakesh Ranjan, "Renewable Energy Sources and Emerging
Technologies", PHI Learning, 3 rd Edition, 2022.
Mehmet Kanoglu, Yunus A. Cengel and John M. Cimbala, "Fundamentals and Applications of
Renewable Energy", McGraw Hill, 1st Edition, 2020.
John Twidell, "Renewable Energy Resources" , Routledge, 4 th Edition, 2021.
M. K. Singh, "Renewable Sources of Energy", Alp Bools, 2009.
M. K. Singh, "Renewable Sources of Energy" , Alp Bools, 2009.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Realize the need for utilizing the energy from clean and sustainable energy resources.	K3
CO2	Describe the principles of operation of the broad spectrum of renewable energy technologies	КЗ
CO3	Analyze energy technologies from a systems perspective.	K3
CO4	Articulate the technical challenges for each of the renewable sources.	КЗ
C05	Discuss economic, technical and sustainability issues involved in the integration of renewable energy systems.	K4

GAS DYNAMICS AND JET PROPULSION (Use of Approved Gas Tables is permitted)

L	Т	Р	С
3	0	0	3

Course Objectives	To impart knowledge on behaviour of compressible flow and propulsion systems.		
UNIT- I	BASIC CONCEPTS AND ISENTROPIC FLOWS	(9 Periods)	
	omentum equations of compressible fluid flows - Stagnation state e – Effect of Mach number on compressibility – Isentropic flow th		
UNIT- II	FLOW THROUGH DUCTS	(9 Periods)	
Flows through	constant area ducts with heat transfer (Rayleigh flow) and Friction ng and Its Consequences, variation of flow properties.	· /	
UNIT- III	NORMAL AND OBLIQUE SHOCKS	(9 Periods)	
Governing equations – Variation of flow parameters across the normal and oblique shocks – Prandtl Meyer Flow around Concave and Convex Corners, Prandtl – Meyer relations – Applications.			
UNIT- IV	JET PROPULSION	(9 Periods)	
Theory of jet propulsion – Thrust equation – Thrust power and propulsive efficiency – Operating principle, cycle analysis and use of stagnation state performance of ram jet, turbojet, and turbofan and turbo prop engines.			
UNIT- V	SPACE PROPULSION	(9 Periods)	
Types of rocket engines: Solid, Liquid and Hybrid Propellant Rockets – Propellants-feeding systems – Ignition and combustion – Theory of rocket propulsion – Performance study – Staging – Terminal and characteristic velocity - Applications – space flights.			
Contact Perio Lecture: 45 Pe		tal: 45 Periods	

TEXT BOOK:

1	E. Rathakrishnan, "Gas Dynamics", Prentice Hall of India Private Limited, 2017.
2	S. M. Yahya, "Fundamentals of Compressible Flow: with Aircraft and Rocket Propulsion",
	New Age International Publishers, 6 th Edition, 2018.

1	V. Babu., "Fundamentals of Gas Dynamics" , Ane Books Pvt. Ltd., 2 nd Edition, 2021.
2	John D. Anderson, "Modern Compressible flow" , McGraw Hill Education, 3 rd Edition, 2017.
3	George P. Sutton, "Rocket Propulsion Elements", Wiley, 9th Edition, 2017.
4	James John, "Gas Dynamics" , Pearson, 3 rd Edition, 2006.
5	V. Babu, "Fundamentals of Gas Dynamics" , Springer, 2 nd Edition, 2021.

COURSE OUTCOMES:		Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Apply the concepts of isentropic flow in practical applications.	K3
CO2	Analyze the flow phenomena in ducts.	K3
CO3	Identify and analyze the normal and oblique shocks.	K4
C04	Design the jet propulsion engine systems.	K4
C05	Select and design space propulsion systems.	K4

L	Т	Р	С
3	0	0	3

Course	To study the welding processes, understanding of inspection met	hods of welded
Objectives	products and also helps to know the material considerations of thi	
UNIT – I	GAS, ARC AND RESISTANCE WELDING PROCESSES	(9 Periods)
	and characteristics - Welding processes and Methods - Arc weld	
	rodes - Gas metal arc welding – Flux cored arc welding – Submerge	
	Welding - Gas welding equipments, flame characteristics - Principle	
	t Welding - Seam welding, Seamless welding – Percussion welding.	
UNIT – II	SPECIAL WELDING PROCESSES	(9 Periods)
Ultrasonic w	elding - Explosive welding- diffusion welding - Friction weldi	ing - Plasma -
Transferred v	welding - Electron beam welding - Laser beam welding - Frictior	n stir welding -
Allied welding	g processes - Brazing and Soldering.	
UNIT – III	WELDING METALLURGY	(9 Periods)
Weld therma	l cycles - Heat Affected Zone (HAZ) - Weldability of carbon st	eels, Cast Iron,
Stainless ste	el, aluminum and its alloys, Copper, Titanium alloys, low al	loy steels and
Magnesium -	Hydrogen embrittlement – Pro and post weld heat Treatments.	
UNIT IV	WELDING OF SIMILAR AND DISSIMILAR METALS	(9 Periods)
	ar and dissimilar metals - welding of ceramics, composites, micro	
	Defects in weldments, mechanism - reasons and remedies of cold	d cracking - hot
× ×	eated cracking and lamellar tearing.	
UNIT V	DESIGN OF WELD JOINTS, WELDABILITY, INSPECTION AND	(9 Periods)
	TESTING OF WELDMENTS	
	d joints and problems – welding symbols - Testing of welds – quali	
- weldability	d joints and problems – welding symbols - Testing of welds – quali assessment and weldability tests - destructive and NDT evaluation	of weldments -
 weldability procedure for 	d joints and problems – welding symbols - Testing of welds – quali assessment and weldability tests - destructive and NDT evaluation • destructive testing - tensile, bending and toughness tests - magnet	of weldments -
 weldability procedure for X Ray, gamma 	d joints and problems – welding symbols - Testing of welds – quali assessment and weldability tests - destructive and NDT evaluation destructive testing - tensile, bending and toughness tests - magnet , ultrasonic and acoustic tests.	of weldments -
 weldability procedure for 	d joints and problems – welding symbols - Testing of welds – quali assessment and weldability tests - destructive and NDT evaluation destructive testing - tensile, bending and toughness tests - magnet , ultrasonic and acoustic tests. ods:	of weldments -

TEXT BOOK:

R. S. Parmer, "Welding Engineering and Technology", Khanna Publishers, 3rd Edition, 2013.
 O. P. Khanna, "A Text Book of Welding Technology", Dhanpat Rai Publications, 1st Edition, 2015.

1	S. V. Nadkarni, "Modern Arc Welding Technology" , Ador Welding Ltd, 2008.
2	Richard L. Little, "Welding and welding Technology", Tata McGraw Hill Education, 2017.
3	Larry F. Jeffus, "Welding: Principles and Applications", Delmar Cengage Learning, 7th
	Edition, 2011.
4	Howard B. Cary and Scott C. Helaer, "Modern Welding Technology", Pearson Education, 6th
	Edition, 2005.
5	Baldev Raj, V. Shankar and A. K. Bhaduri, "Welding Technology for Engineers", Alpha
	Science International Ltd., 2006.

COURSE OUTCOMES:		Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Provide the principle of the welding process for joints production to the machine products	K2
CO2	Operate the latest and special welding process for uncommon new and specialized components	К3
CO3	Evaluate the physical and chemical properties change due to the welding	К3
CO4	Join the different dissimilar materials as per requirement	К2
C05	Inspect its quality of welded portion of machine component.	K2

L	Т	Р	С
3	0	0	3

Course To provide knowledge on the CNC programming, material handling, application			
Objectives of robot and automated factory to manage the competitive manufacturing			
environment.			
UNIT - I INTRODUCTION (9 Periods)			
Introduction to Computer Integrated Manufacturing, computerized elements of a CIM system,			
Evolution of Computer Integrated Manufacturing, Nature and role of the elements of CIM			
System, Basic Elements of an Automated system - Advanced Automation Functions - Levels of			
Automation			
UNIT - II COMPUTER NUMERICAL CONTROL (9 Periods)			
Fundamentals of NC Technology - Basic Components of an NC System - NC Coordinate Systems-			
Motion Control Systems -Computers and Numerical Control - CNC Machine Control Unit - CNC			
Software - Distributed Numerical Control - Applications of NC-Machine Tool - Advantages and			
Disadvantages of NC -Analysis of Positioning Systems - Open-Loop Positioning Systems - Closed-			
Loop Positioning Systems - Precision in Positioning Systems.			
UNIT - III AUTOMATED MATERIAL HANDLING AND IDENTIFICATION (9 Periods)			
SYSTEMS			
Overview of material handling equipment's - Consideration in material handling system design			
- The 10 principles of Material handling, Material transport equipment, Automated Guided			
Vehicle system - Types & applications - Vehicle guidance technology - Vehicle management and			
safety. Automatic identification method- Bar code Technology, Radio frequency identification,			
Magnetic stripes, Optical Character Recognition, Machine Vision			
UNIT - IVMANUFACTURING AUTOMATION AND ROBOTICS(9 Periods)			
Data acquisition systems, virtual instrumentation, interfacing of sensors and actuators with PC,			
condition monitoring, adaptive control, PLC- basic programming, application in automation.			
Robot – Itoduction, Classification - Applications of Robo in industry.			
UNIT - VAUTOMATED FACTORY(9 Periods)			
Role of modern computer-based technologies-Industry 4.0- Artificial Intelligence - Machine			
Learning- Smart manufacturing- Digital manufacturing- Internet of Things- cloud based			
Manufacturing- function, application, benefit			
Contact Periods:			
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0Periods Total:45 Periods			
TEXT BOOK:			

- 1
 Mikell P. Groover, "Automation, Production Systems, and Computer-integrated Manufacturing", Pearson Education, 2018.

 2
 U.K. Shinemand, M. M. Bangl, and U. Kati, "Elemible Manufacturing Systems", New Action
- 2 H. K. Shivanand, M. M. Benal and V. Koti, **"Flexible Manufacturing System"**, New Age International Private Limited, 2nd Edition, 2016.

1	Roger Hannam, " Computer Integrated Manufacturing: From concepts to realisation",
	Addison-Wesley, 1997.
2	S. Kant Vajpayee, "Principles of Computer Integrated Manufacturing", Prentice Hall India,
	2007.
3	Gideon Halevi and Roland Weill, "Principles of Process Planning - A Logical Approach"
	Chapman & Hall, 1995.
4	P. Rao, N. Tewari and T. K. Kundra, "Computer Aided Manufacturing" , Tata McGraw Hill, 2000.

5	Alavudeen and Venkateshwaran, "Computer Integrated Manufacturing", PHI Learning Pvt. Ltd.,
	2013.
6	P. Radhakrishnan, S. Subramanian and V. Raju, "CAD/CAM/CIM", New Age International
	Publishers, 3 rd Edition, 2008.

COUR	SE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
C01	Familiarize the manufacturing activities inter relation with computers for plant operations	К2
CO2	Gain Knowledge on Numerical Control systems	К2
CO3	Choose appropriate material handling systems and automatic identification method	К3
C04	Apply knowledge on of automation and robot in industry	КЗ
CO5	Familiarize the concept of future automated factory	КЗ

L	Т	Р	С
3	0	0	3

_				
Course	To introduce the students about the basic product design p			
Objectives	mechanical aspects applying innovative thinking and fundamen	tals of mechanical		
	engineering.			
UNIT – I	DESIGN FUNDAMENTALS	(9 Periods)		
	nce of engineering design - types of design -the design proce			
	ycle issues in design – designing to codes and standards- societal			
engineering	design -generic product development process - various pl	hases of product		
development	-planning for products -establishing markets- market segme	nts- relevance of		
market resea	rch.			
UNIT – II	CUSTOMER ORIENTED DESIGN AND SOCIETAL	(9 Periods)		
	CONSIDERATIONS			
Identification	Identification of customer needs- customer requirements- Quality Function Deployment			
Product Desi	gn Specifications- Human Factors in Design – Ergonomics and A	esthetics. Societal		
consideration	n - Contracts - Product liability - Protecting intellectual prop	erty - Legal and		
ethical doma	ins - Codes of ethics - Ethical conflicts - Environment response	ible design-future		
trends in inte	eraction of engineering with society.			
UNIT – III	MATERIAL SELECTION PROCESSING AND DESIGN	(9 Periods)		
	ection Process - Economics - Cost Vs Performance - Weighted			
Value Analys	is – Role of Processing in Design – Classification of Manufacturing	g Process – Design		
for Manufac	ture – Design for Assembly –Designing for castings, Forging	, Metal Forming,		
N 1 · ·				
Machining an	d Welding – Residual Stresses – Fatigue, Fracture and Failure.			
UNIT – IV	DESIGN METHODS	(9 Periods)		
UNIT – IV		(9 Periods)		
UNIT – IV Creativity ar	DESIGN METHODS	(9 Periods) lesign concepts -		
UNIT – IV Creativity ar systematic n	DESIGN METHODS ad problem solving- creative thinking methods- generating d	(9 Periods) lesign concepts - decomposition –		
UNIT - IV Creativity ar systematic m functional re	DESIGN METHODS ad problem solving- creative thinking methods- generating d methods for designing –functional decomposition – physical	(9 Periods) lesign concepts - decomposition –		
UNIT - IV Creativity ar systematic m functional re	DESIGN METHODS ad problem solving- creative thinking methods- generating d nethods for designing –functional decomposition – physical presentation – morphological methods-TRIZ- axiomatic design -	(9 Periods) lesign concepts - decomposition –		
UNIT – IV Creativity ar systematic m functional re theory- utility UNIT – V	DESIGN METHODS ad problem solving- creative thinking methods- generating d nethods for designing –functional decomposition – physical presentation – morphological methods-TRIZ- axiomatic design - y theory –decision trees –concept evaluation methods.	(9 Periods) lesign concepts - decomposition – Decision making (9 Periods)		
UNIT – IV Creativity ar systematic m functional re theory- utility UNIT – V human factor	DESIGN METHODS ad problem solving- creative thinking methods- generating of nethods for designing –functional decomposition – physical presentation – morphological methods-TRIZ- axiomatic design - y theory –decision trees –concept evaluation methods. INDUSTRIAL DESIGN CONCEPTS	(9 Periods) lesign concepts - decomposition - Decision making (9 Periods) n for environment		
UNIT – IV Creativity ar systematic m functional re theory- utility UNIT – V human factor – prototyping	DESIGN METHODS ad problem solving- creative thinking methods- generating designing –functional decomposition – physical presentation – morphological methods-TRIZ- axiomatic design - y theory –decision trees –concept evaluation methods. INDUSTRIAL DESIGN CONCEPTS rs design –user friendly design – design for serviceability – design	(9 Periods) lesign concepts - decomposition - Decision making (9 Periods) n for environment ts - activity based		
UNIT – IV Creativity ar systematic m functional re theory- utility UNIT – V human factor – prototyping	DESIGN METHODS ad problem solving- creative thinking methods- generating of nethods for designing –functional decomposition – physical presentation – morphological methods-TRIZ- axiomatic design – y theory –decision trees –concept evaluation methods. INDUSTRIAL DESIGN CONCEPTS rs design –user friendly design – design for serviceability – design g and testing – cost evaluation –categories of cost –overhead cost hods of developing cost estimates – manufacturing cost –value ar	(9 Periods) lesign concepts - decomposition - Decision making (9 Periods) n for environment ts - activity based		
UNIT – IV Creativity ar systematic m functional re theory- utility UNIT – V human factor – prototyping costing – met Contact Peri	DESIGN METHODS ad problem solving- creative thinking methods- generating of methods for designing –functional decomposition – physical presentation – morphological methods-TRIZ- axiomatic design - y theory –decision trees –concept evaluation methods. INDUSTRIAL DESIGN CONCEPTS rs design –user friendly design – design for serviceability – design g and testing – cost evaluation –categories of cost –overhead cost hods of developing cost estimates – manufacturing cost –value ar ods:	(9 Periods) lesign concepts - decomposition - Decision making (9 Periods) n for environment ts - activity based		

TEXT BOOK:

1	Karl T. Ulrich, Steven D. Eppinger and Maria C. Yang, "Product Design and Development",
	McGraw Hill, 7th Edition, 2020.
2	Richard Crowson, " Product Design and Factory Development ", CRC Press, 1 st Edition, 2019.

REFERENCES:

Evaluation",

2 Mital, " **Product Development: A Structured Approach to Design and Manufacture**", Elsevier, 1st Edition, 2009.

3	Reatriz Costa	⁴ Product Design Process", Imaginary Cloud Limited, 2019.
5	Death 12 Costa,	Trouver Design Frocess , imaginary cloud Limited, 2019.

4 John Priest and Jose Sanchez, " **Product Development and Design for Manufacturing: A Collaborative Approach to Producibility and Reliability**", CRC Press, 2nd Edition, 2001.

- 5 A. K. Chitale and R. C. Gupta, "**Product Design and Manufacturing**", PHI Learning Pvt. Ltd., 2013.
- 6 Kevin Otto and Kristin Wood, "Product Design: Techniques in Reverse Engineering and New Product Development", Pearson, 1st Edition, 2001.

COUR	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
C01	Create new product based on mechanical design engineering.	K6
CO2	Design by incorporating concept, creativity, structural, manufacturing, esthetic etc.	К5
CO3	Understand contemporary issues and their impact on provided solution.	К5
C04	Solve open-ended problem belongs to design engineering that meet the requirements.	К5
C05	Understand by creating and developing design concepts and specifications.	K6

L	Т	Р	С
3	0	0	3

Course	To learn the economics of newer generation and the working	a of nowor plant			
Objectives	components.				
UNIT – I	HYDRO POWER PLANTS	(9 Periods)			
	ario – Global and National - Essential elements and classificatio	• •			
plants - Typi	ical layout and associated components - Selection of turbines	- Pumped storage			
plants.					
UNIT – II	THERMAL AND GAS TURBINE POWER PLANTS	(9 Periods)			
Cycle analysi	s - Layout of modern coal-based power plant. Super Critical Boi	lers - FBC Boilers.			
Subsystems -	- Water and Steam, Fuel and ash handling, Air and Gas, Draught s	ystem - Diesel and			
Gas Turbine	power plants- Layout and Functioning. Environmental impact and	d Control.			
UNIT – III	NUCLEAR POWER PLANTS	(9 Periods)			
Layout and	subsystems - Fuels and Nuclear reactions - Boiling Water Rea	actor, Pressurized			
Water Reacto	or, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled R	eactors – working			
and Compari	son. Safety measures - Environmental aspects.				
UNIT – IV	RENEWABLE ENERGY POWER PLANTS	(9 Periods)			
Solar power	plants – Photovoltaic and Thermal - Wind power plants – Vertic	cal and Horizontal			
axes Wind T	urbines - Biomass power plants – Gasification and combustion	- Tidal and Ocean			
Thermal Ene	Thermal Energy plants. Geothermal plants - Fuel cell – Types - Hybrid power plants.				
UNIT – V	ECONOMICS OF POWER GENERATION	(9 Periods)			
Load and load duration curves. Electricity billing - costing of electrical energy - Tariff					
structures - Economics of power plant - Fixed and variable cost - Payback period - Net Present					
Value, Internal Rate of Return - Emission calculation and carbon credit.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0Periods Total:45 Periods					
-					

TEXT BOOK:

1	P. K. Nag, "Power Plant Engineering", McGraw Hill, 4th Edition, 2017.
2	R. K. Rajput, " A Textbook of Power Plant Engineering", Laxmi Publications, 6th Edition,
	2019.

1	S. C. Arora and S. Domkundwar, "A Course in Power Plant Engineering", Dhanpat Rai and
	sons, 2014.
2	Paul Breeze, "Power Generation Technologies", Elsevier Ltd., 2014.
3	M. M. El-Wakil, " Power Plant Technology ", McGraw Hill, 1 st Edition, 2017.
4	G. Black, "Power Plant Engineering", CBS, 2005.
5	G. R. Nagpal, "Power Plant Engineering" , Khanna publishers, 2012.

COUR	Bloom's Taxonomy	
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the working of hydro-electric power plants.	K2
CO2	Analyze the working of conventional power plants such as thermal and gas Turbines.	K4
CO3	Understand the working of nuclear power plants and its functional components.	K2
C04	Understand the different types of renewable energy systems and its functional components.	K2
C05	Arrive at cost of power generation, electricity billing and rate of return on power plant investments.	К5

L	Т	Р	С
3	0	0	3

Course	To impart knowledge of the basic tools for numerical simulation	n of fluid flow and		
Objectives	heat transfer processes.			
UNIT – I	FUNDAMENTALS OF CFD	(9 Periods)		
Basics of CFD	D - conservation equation– mass, momentum and energy equation	ons - conservativ		
forms of the	equations and general description- classification into various ty	pes of equations		
elliptic, parab	bolic and hyperbolic - initial and boundary conditions - overv	view of numerica		
methods.				
UNIT – II	DISCRETIZATION AND FINITE DIFFERENCE METHOD	(9 Periods)		
Methods of de	eriving discretization equations – comparison of finite difference,	finite volume and		
finite element	t techniques - forward, backward and central difference schemes,	transient one- an		
two-dimensio	onal conduction – implicit, explicit and Crank Nicolson finite diffe	rence methods fo		
viscous flows - stability analysis and error estimation.				
VISCOUS HOWS				
UNIT – III	FINITE VOLUME METHOD	(9 Periods)		
UNIT – III				
UNIT – III Finite volume	FINITE VOLUME METHOD	problems - centra		
UNIT – III Finite volume upwind, hybr	FINITE VOLUME METHOD Formulation of steady one-dimensional convection and diffusion p	problems - centra ms - discretizatio		
UNIT – III Finite volume upwind, hybr equations for	FINITE VOLUME METHOD e formulation of steady one-dimensional convection and diffusion pride formulations and comparison for convection-diffusion problem	problems - centra ms - discretizatio pressure gradien		
UNIT – III Finite volume upwind, hybr equations for	FINITE VOLUME METHOD e formulation of steady one-dimensional convection and diffusion problem rid formulations and comparison for convection-diffusion problem two-dimensional convection and diffusion - representation of the ntinuity equation – momentum equations – pressure-velocity co	problems - centra ms - discretizatio pressure gradien		
UNIT – III Finite volume upwind, hybr equations for term and con	FINITE VOLUME METHOD e formulation of steady one-dimensional convection and diffusion problem rid formulations and comparison for convection-diffusion problem two-dimensional convection and diffusion - representation of the ntinuity equation – momentum equations – pressure-velocity co	problems - centra ms - discretization pressure gradien		
UNIT – III Finite volume upwind, hybr equations for term and con correction me UNIT – IV	FINITE VOLUME METHOD e formulation of steady one-dimensional convection and diffusion problem rid formulations and comparison for convection-diffusion problem two-dimensional convection and diffusion - representation of the national equation – momentum equations – pressure-velocity co ethods.	problems - centra ms - discretizatio pressure gradien upling - pressure (9 Periods)		
UNIT – III Finite volume upwind, hybr equations for term and con correction me UNIT – IV Types of tur	FINITE VOLUME METHOD e formulation of steady one-dimensional convection and diffusion problem rid formulations and comparison for convection-diffusion problem two-dimensional convection and diffusion - representation of the national equation - momentum equations - pressure-velocity co ethods. TURBULENCE MODELING	problems - centra ms - discretizatio pressure gradien upling - pressure (9 Periods) ged Navier-Stoke		
UNIT – III Finite volume upwind, hybr equations for term and con correction me UNIT – IV Types of turl equations – B	FINITE VOLUME METHOD e formulation of steady one-dimensional convection and diffusion problem rid formulations and comparison for convection-diffusion problem two-dimensional convection and diffusion - representation of the ntinuity equation – momentum equations – pressure-velocity co ethods. TURBULENCE MODELING bulence modeling– Reynolds time averaging – Reynolds-average	problems - centra ms - discretizatio pressure gradien upling - pressure (9 Periods) ged Navier-Stoke		
UNIT – III Finite volume upwind, hybr equations for term and con correction me UNIT – IV Types of turl equations – B	FINITE VOLUME METHODe formulation of steady one-dimensional convection and diffusion problemrid formulations and comparison for convection-diffusion problemtwo-dimensional convection and diffusion - representation of thentinuity equation – momentum equations – pressure-velocity coethods.TURBULENCE MODELINGbulence modeling– Reynolds time averaging – Reynolds-averagecoussinesq eddy viscosity approximation - zero equation model, or	problems - centra ms - discretizatio pressure gradien upling - pressure (9 Periods) ged Navier-Stoke		
UNIT – III Finite volume upwind, hybr equations for term and con correction me UNIT – IV Types of turl equations – B two equation UNIT – V	FINITE VOLUME METHODe formulation of steady one-dimensional convection and diffusion problemrid formulations and comparison for convection-diffusion problemtwo-dimensional convection and diffusion - representation of thentinuity equation - momentum equations - pressure-velocity coethods.TURBULENCE MODELINGbulence modeling - Reynolds time averaging - Reynolds-averagecoussinesq eddy viscosity approximation - zero equation model, orK-I models and advanced models.	problems - centra ms - discretizatio pressure gradien upling - pressure (9 Periods) ged Navier-Stoke ne equation mode (9 Periods)		
UNIT – III Finite volume upwind, hybr equations for term and con correction me UNIT – IV Types of turl equations – B two equation UNIT – V Choice of grid	FINITE VOLUME METHOD e formulation of steady one-dimensional convection and diffusion problem rid formulations and comparison for convection-diffusion problem two-dimensional convection and diffusion - representation of the ntinuity equation – momentum equations – pressure-velocity co ethods. TURBULENCE MODELING bulence modeling – Reynolds time averaging – Reynolds-average coussinesq eddy viscosity approximation - zero equation model, or K-I models and advanced models. GRID GENERATION	problems - centra ms - discretizatio pressure gradien upling - pressure (9 Periods) ged Navier-Stoke ne equation mode (9 Periods) nts, staggered an		
UNIT – III Finite volume upwind, hybr equations for term and con correction me UNIT – IV Types of turl equations – B two equation UNIT – V Choice of grid	FINITE VOLUME METHOD e formulation of steady one-dimensional convection and diffusion problem rid formulations and comparison for convection-diffusion problem two-dimensional convection and diffusion - representation of the ntinuity equation – momentum equations – pressure-velocity co ethods. TURBULENCE MODELING bulence modeling– Reynolds time averaging – Reynolds-average coussinesq eddy viscosity approximation - zero equation model, or K-I models and advanced models. GRID GENERATION d, grid-oriented velocity components, cartesian velocity compone	problems - centra ms - discretizatio pressure gradier upling - pressure (9 Periods) ged Navier-Stoke ne equation mode (9 Periods) nts, staggered an		
UNIT – III Finite volume upwind, hybr equations for term and con correction me UNIT – IV Types of turl equations – B two equation UNIT – V Choice of grid collocated gr unstructured	FINITE VOLUME METHOD e formulation of steady one-dimensional convection and diffusion problem rid formulations and comparison for convection-diffusion problem two-dimensional convection and diffusion - representation of the ntinuity equation – momentum equations – pressure-velocity co ethods. TURBULENCE MODELING bulence modeling– Reynolds time averaging – Reynolds-average coussinesq eddy viscosity approximation - zero equation model, or K-I models and advanced models. GRID GENERATION d, grid-oriented velocity components, cartesian velocity compone	problems - centra ms - discretizatio pressure gradier upling - pressure (9 Periods) ged Navier-Stoke ne equation mode (9 Periods) nts, staggered an		
UNIT – III Finite volume upwind, hybr equations for term and con correction me UNIT – IV Types of turl equations – B two equation UNIT – V Choice of grid collocated gr unstructured	FINITE VOLUME METHOD e formulation of steady one-dimensional convection and diffusion problem rid formulations and comparison for convection-diffusion problem two-dimensional convection and diffusion - representation of the ntinuity equation – momentum equations – pressure-velocity co ethods. TURBULENCE MODELING bulence modeling – Reynolds time averaging – Reynolds-average coussinesq eddy viscosity approximation - zero equation model, or K-I models and advanced models. GRID GENERATION d, grid-oriented velocity components, cartesian velocity compone rid arrangements, algebraic grid generation – differential generation.	problems - centra ms - discretizatio pressure gradier upling - pressure (9 Periods) ged Navier-Stoke ne equation mode (9 Periods) nts, staggered an		

TEXT BOOKS:

- 1 John D. Anderson Jr, **"Computational Fluid Dynamics: The Basics with Applications"**, McGraw Hill Education, Indian Edition, 2017.
- 2 *H. Versteeg and W. Malalasekera, "An Introduction to Computational Fluid Dynamics: The finite volume Method"*, *Pearson Education Limited*, 2nd Edition, 2007.

1	Dale A. Anderson, John C. Tannehill and Richard H. Pletcher, "Computational Fluid Mechanics		
	and Head Transfer", CRC Press, 3 rd Edition, 2014.		
2	K. Muralidhar and T. Sundararajan, "Computational Fluid Flow and Heat Transfer", Narosa		
	Publishing House, New Delhi, 2 nd Edition, 2014.		
3	T. J. Chung, "Computational Fluid Dynamics", Cambridge University Press, 2 nd Edition, 2014.		
4	Anil W. Date, "Introduction to Computational Fluid Dynamics", Cambridge University Press,		
	2005.		
5	J. N. Reddy and D. K. Gartling, "The Finite Element Method in Heat Transfer and Fluid		
	Dynamics", CRC Press, 3 rd Edition, 2010.		

COUR Upon	Bloom's Taxonomy Mapped	
C01	Appreciate different types of PDEs that arise in fluid flow and heat transfer problems.	K4
CO2	Evaluate different discretization techniques opted in CFD.	K5
CO3	Understand the various solutions for the techniques adopted.	K4
C04	Analyze the concepts of turbulence modeling.	K4
C05	Propose the concepts of grid generation.	K4

INDUSTRIAL ENGINEERING

SEMESTER VII

L	Т	Р	С
3	0	0	3

Course	To enable the students to apply engineering principles and quality	tools in the work
Objectives	environment and work collaboratively.	
UNIT – I	FORECASTING METHODS	(9 Periods)
Characteristic	s and Principles of forecasting - Qualitative methods - Delphi te	echnique, Market
Research – Ti	me-series analysis – Moving averages – Exponential smoothing met	hod – Regression
	asurement of forecast errors – Break Even analysis – Elements o	f Cost – Tutorial
problems.		
UNIT – II	FACILITIES PLANNING AND WORK STUDY	(9 Periods)
	of facilities planning – Engineering economic analysis – Facilities loc	
	uts – Computerized layout planning – Group Technology – Objectiv	
	dy – Time Study – Work Measurement Techniques – Principles of M	
5	v – Predetermined Motion Time System (PMTS) – Work Sampli	ng Techniques –
Ergonomics.		
UNIT – III	AGGREGATE PLANNING	(9 Periods)
	aggregate planning – Development of master production sche	
	aterials requirements planning (MRP-I) – Designing and managing t	
	g resources planning (MRP-II) – Enterprises resources planning (ER	
UNIT – IV	SCHEDULING OF OPERATIONS	(9 Periods)
	anning and scheduling - Scheduling techniques - Stages in sched	0 0
	expediting – Machine loading charts – Priority sequencing – Dyn	
	scheduling – Economic batch quantity – Scheduling in Repetitive, ba	atch and job shop
-	Resource balancing – Flexible manufacturing system.	$(0 \mathbf{D} \cdot \mathbf{d} \cdot \mathbf{d} \cdot \mathbf{d})$
UNIT – V	PROJECT MANAGEMENT	(9 Periods)
	projects – Project life cycle phase – Roles and responsibilities of	
	gement – Scope – Tools and techniques – Work Breakdown Struc	
	Project risk management – Identification of risks - Qualitative and	quantitative risk
	ntrol risks – Preparation of cost estimation.	
Contact Peri		al: 45 Periods
Lecture: 45 I	rerious i utoriai: o perious practicai: o perious i ota	ai: 45 Perious

TEXT BOOK:

- 1 R. Panneerselvam, "Production and Operations Management", Prentice Hall of India, 3rd Edition, 2012.
- 2 O. P. Khanna, "Industrial Engineering and Management", Dhanpat Rai Publications, 17th Edition, 2018.

1	T. E. Vollman, "Manufacturing Planning and Control systems", Galgotia Publications, 2004.
2	Elwood S. Buffa and Rakesh K. Sarin, "Modern Production and Operations Management",
	John Wiley and Sons, 8 th Edition, 2007.
3	Prasana Chandra, "Project Planning Analysis selection financing Implementation and
	Review", Tata Mc Graw Hill Publication, 7 th Edition, 2023.
4	C. Nadha Muni Reddy, "Industrial Engineering and Management", New Age International (P)
	Ltd., 2011.

COUF Upon	Bloom's Taxonomy Mapped	
C01	Apply forecasting tools to analyze the demand pattern and forecast the demand.	КЗ
CO2	Familiarize the various facilities' layouts and work study techniques.	K2
CO3	Understand the aggregate production planning.	K2
C04	Develop the best scheduling of operations in the workplace.	K6
C05	Analyze the risks involved in projects and control the risks.	K4

NON-TRADITIONAL MACHINING PROCESSES

SEMESTER VIII

L	Т	Р	С
3	0	0	3

Course	To inculcate specialized knowledge and skill in advanced manufac	turing processes
Objectives	with	curing processes
objectives	different newer production techniques, their process parameter	ers influence on
	performance during production of parts.	ers minuence on
UNIT – I	MODERN MACHINING PROCESSES	(9 Periods)
Need of mod	ern machining processes – classification and selection of technolo	ogy – mechanical
	prasive jet machining (AJM), water jet machining (WJM), ultrasonic r	
UNIT – II	CHEMICAL METAL REMOVAL PROCESSES	(9 Periods)
Principle - E	lectrochemical machining (ECM), electrochemical grinding (ECG)	electrochemical
deburring and	d honing – chemical machining (CHM).	
UNIT – III	THERMAL METAL REMOVAL PROCESSES	(9 Periods)
Electric disch	arge machining (EDM), wire cut electric discharge machining (WE	DM), Plasma arc
machining (P	AM), Electron beam machining (EBM), Laser beam machining (LBM), Ion beam
machining (IE	BM).	
UNIT – IV	FORMING PROCESSES AND FOUNDRY TECHNIQUES	(9 Periods)
Explosive for	ming, Electro – hydraulic forming, electro – magnetic forming, dy	napak machine -
high		
pressure mou	lding, squeeze casting, vacuum castings.	
UNIT – V	RAPID PROTOTYPING	(9 Periods)
Introduction	- advantages - limitations - principle - rapid prototyping sys	stems – stereo -
lithography (SLA), selective laser sintering (SLS), fused deposition modeling (FDM), laminated
object manufa	acturing (LOM), solid ground curing (SGC), three-dimensional print	ting - Application
of reverse		
engineering in	n rapid prototyping.	
Contact Peri	ods:	
Lecture: 45 F	Periods Tutorial: 0 Periods Practical: 0 Periods Tota	al: 45 Periods

TEXT BOOK:

1	Helmi	Youssef	and	Hassan	El-Hofy,	"Non-Traditional	and	Advanced	Machining
	Technol	ogies", C.	RC Pre	ess, 2 nd Edi	ition, 2020.				
2	M. Adith	an, "Unc	onver	ntional M	achining I	Processes", Atlantic	Publis	hers and Dis	tributors (P)
	Ltd., 201	8.							

1	P. C. Pandey, "Modern machining processes", Tata McGraw Hill publishing company Ltd., 2011.
2	Chee Kai Chua, Chu Sing Lim and Kah Fai Leong, "Rapid Prototyping: Principles and
	Applications", World Scientific Publishing Co. Private Ltd., 2010.
3	J. Paulo Davim, "Nontraditional Machining Processes: Research Advances", Springer, 2013.
4	Mahi Sahoo and Sam Sahu, "Principles of Metal Casting", McGraw Hill Education, 2017.
5	T. Jagadeesha, "Unconventional Machining Processes", TechSar Pvt. Ltd., 2016.

COUR Upon	Bloom's Taxonomy Mapped	
C01	Identify the need and application of non-contact latest machining processes resulting in quality and accuracy of parts.	КЗ
C02	Apply the knowledge for different ways of metal removal with suitable sources of chemical and electro-chemical energy.	K4
CO3	Discover different thermal energy for metal removal process and optimize appropriate process parameter for different techniques.	K4
C04	Identify different forming process and latest techniques in castings of components to meet the global demand.	КЗ
C05	Select and apply suitable forming process, different rapid prototyping techniques for suitable engineering application.	K4

MACHINE LEARNING FOR INTELLIGENT SYSTEMS

L	Т	Р	С
3	0	0	3

Course	To gain exposure on basic machine learning, clustering and segme	ntation methods,		
Objectives	fuzzy logic, neural networks, RNN and Reinforcement learning.			
UNIT – I	INTRODUCTION TO MACHINE LEARNING	(9 Periods)		
Philosophy of	Elearning in computers, Overview of different forms of learning, (Classifications vs.		
Regression, E	valuation metrics and loss functions in Classification, Evaluation	metrics and loss		
functions in R	egression, Applications of AI in Robotics.			
UNIT – II	CLUSTERING AND SEGMENTATION METHODS	(9 Periods)		
Introduction	to clustering, Types of Clustering, Agglomerative clustering, K-r	neans clustering,		
Mean Shift c	lustering, K-means clustering application study, Introduction to	o recognition, K-		
	bors algorithm, KNN Application case study, Principal component	t analysis (PCA),		
PCA Applicati	on case study in Feature Selection for Robot Guidance.			
UNIT – III	FUZZY LOGIC	(9 Periods)		
Introduction	to Fuzzy Sets, Classical and Fuzzy Sets, Overview of Classical S	ets, Membership		
	zy rule generation, Fuzzy rule generation, Operations on Fuzzy			
examples, Fu	zzy Arithmetic, Numerical examples, Fuzzy Logic, Fuzzificat	ion, Fuzzy Sets,		
Defuzzificatio	n, Application Case Study of Fuzzy Logic for Robotics Application			
UNIT – IV	NEURAL NETWORKS	(9 Periods)		
	Models of Neurons, ANN architecture, Learning rules, Multi-layer F	-		
	Introduction of Neuro-Fuzzy Systems, Architecture of Neuro	Fuzzy Networks,		
* *	ase Study of Neural Networks in Robotics			
UNIT – V	RNN AND REINFORCEMENT LEARNING	(9 Periods)		
Unfolding Cor	nputational Graphs, Recurrent neural networks, Application Case S	tudy of recurrent		
networks in Robotics, Reinforcement learning, Examples for reinforcement learning, Markov				
decision process, Major components of RL, Q-learning. Application Case Study of reinforcement				
learning in Ro				
	ods [,]			
Contact Perio				
Contact Perio Lecture: 45 F		al: 45 Periods		

TEXT BOOKS:

1	Ethem Alpaydin, "Introduction to Machine Learning (Adaptive Computation and Machine
	Learning Series)", The MIT Press, 4 th Edition, 2020.
2	Micheal Negnevitsky, "Artificial Intelligence: A Guide to Intelligent Systems", Addision Wesley,
	3 rd Edition, 2011.

1	Stephen Marsland, "Machine Learning: An Algorithmic Perspective", Chapman and Hall/CRC	
	Machine Learning and Pattern Recognition Series, 2 nd Edition, 2014.	
2	Tom M. Mitchell, "Machine Learning", McGraw Hill Education, 1st Edition, 2017.	
3	Trevor Hastie, Robert Tibshirani and Jerome Friedman, "The Elements of Statistical	
	<i>Learning</i> ", Springer, 2 nd Edition, 2017.	
4	Bruno Siciliano and Oussama Khatib, "Handbook of Robotics" , Springer, 2 nd Edition, 2016.	
5	Simon Haykin, "Neural Networks and Learning Machines: A Comprehensive Foundation",	
	Pearson, 3 rd Edition, 2016.	
6	Timothy J. Ross, "Fuzzy Logic with Engineering Applications", Wiley, 3rd Edition, 2011.	

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand basic machine learning techniques such as regression, classification	K2
CO2	Understand about clustering and segmentation	КЗ
CO3	Model a fuzzy logic system with fuzzification and defuzzification	КЗ
C04	Understand the concepts of neural networks and neuro fuzzy networks.	КЗ
CO5	Gain knowledge on Reinforcement learning.	КЗ

L	Т	Р	С
3	0	0	3

Course To provide knowledge on technologies used in Hybrid and Electric	c vehicles.
Objective	
UNIT – I INTRODUCTION	(9 Periods)
Introduction to electric and hybrid electric vehicles, History of hybrid and electric	ric vehicles, Social
and environmental importance of electric and hybrid electric vehicles Electrical	basics, Motor and
Generators.	
UNIT – II ELECTRIC DRIVE COMPONENTS	(9 Periods)
Introduction to electric drive components used in electric and hybrid vehicle	es, Electric motor
requirements, Direct Current (DC) motors (Brushed and Brushless), Power	converters, Drive
Controllers.	
UNIT – III DRIVETRAINS AND POWERFLOW	(9 Periods)
Basic concept of electric and hybrid traction, Introduction to various electric a	nd hybrid electric
drive train topologies, Advantages and disadvantages, Power flow control in e	lectric and hybrid
electric drive train topologies.	
UNIT – IV ENERGY STORAGE	(9 Periods)
Introduction to Energy Storage Requirements in Hybrid and Electric Vehicle	es, Battery based
energy storage and its analysis, Fuel Cell based energy storage and its analysis	s, Super Capacitor
based energy storage and its analysis. Flywheel based energy storage	and its analysis,
Hybridization of different energy storage devices.	•
UNIT – V REGENERATIVE BRAKING SYSTEM	(9 Periods)
Introduction and need of Regenerative Braking System, Advantages and disa	dvantages of RBS
Working of RBS, Concept of Regenerative Braking using Piezoelectric mate	rial, Using shock
absorbers vibration as energy harvesters.	
Contact Periods:	
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods To	tal: 45 Periods

1	1 Iqbal Hussain, "Electric & Hybrid Vehicles: Design Fun	ndamentals", CRC Press, 2 nd Edition,
	2021.	

2 James Larminie, **"Electric Vehicle Technology Explained"**, John Wiley & Sons, 2nd Edition, 2012.

1	Chris Mi and M. Abul Masrur, "Hybrid Electric Vehicles: Principles and Applications with
	Practical Perspectives ", Wiley, 2 nd Edition, 2017.
2	Mehrdad Ehsani, Yimin Gao, Sebastien E. Gay and Ali Emadi, "Modern Electric, Hybrid Electric,
	and Fuel Cell Vehicles: Fundamentals, Theory, and Design", CRC Press, 1st Edition, 2004.
3	Stefano Longo, Mehrdad Ehsani and Yimin Gao, "Modern Electric Hybrid Electric & Fuel Cell
	Vehicles", CRC Press, 2019.
4	Gianfranco Pistoia, "Electric and Hybrid Vehicles: Power Sources, Models, Sustainability,
	Infrastructure and the Market", Elsevier, 1 st Edition, 2010.
5	James D. Halderman and Curt Ward, "Electric and Hybrid Electric Vehicles", Pearson
	Education, 2023.

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
C01	Understand the importance of electric and hybrid vehicles.	K2
CO2	Suggest and specify the suitable motor based on the requirements.	КЗ
C03	Understand the working as well as to predict the errors and failures in drivetrain.	K4
C04	Select and design a particular and suitable energy storing device.	КЗ
CO5	Store and utilize the energy harvested from braking system.	K2

GREEN SUPPLY CHAIN MANAGEMENT

SEMSTER VIII

L	Т	Р	С
3	0	0	3

Course	To make the students learn and gain an awareness of the diffe	erent stakeholders
Objectives	involved in green supply chain management.	
UNIT – I	INTRODUCTION	(9 Periods)
Basic concept	s of green supply chain management - green supply chain framew	ork - the origins of
supply chains	s - the evolution of supply chains - from traditional to green supply	v chain - paradoxes
in green supp	ly chain.	
UNIT – II	BARRIERS AND GREEN PROCUREMENT	(9 Periods)
Internal barr	iers - external barriers - internal motivators and drivers - extern	nal motivators and
drivers - gree	n procurement - factors that contribute to increasing interest in gr	een procurement -
green procure	ement life cycle - barriers to broader adoption of green procureme	nt.
UNIT – III	GREEN PRODUCTION AND OUTBOUND LOGISTICS	(9 Periods)
Introduction	- green production design - green production stages - green tran	sportation - green
-	transportation/distribution - European union sustainability guid	delines - expected
benefits and o	challenges of green transportation/distribution.	
UNIT – IV	GREEN PACKAGING AND REVERSE LOGISTICS	(9 Periods)
	al labeling and labels - eco-label types - waste management a	
	e study: waste electrical and electronic equipment - case s	
construction	and demolition waste management - decision-making methodolog	ical framework for
construction	waste management.	1
UNIT – V	DECISION MAKING AND TECHNOLOGIES OF MARKETING	(9 Periods)
	to assessment methods - frameworks and methods - assessment i	
	for managing green practices - GrICT solutions - business intellig	gence - making ICT
solutions usir	ng green practices - ecoCycle: an easy life cycle analysis tool.	
Contact Peri	Lange Charles and States	
Lecture: 45 H	Periods Tutorial: 0 Periods Practical: 0 Periods To	otal: 45 Periods
	and Millington	

TEXT BOOKS:

- Joseph Sarkis and Yijie Dou "Green Supply Chain Management: A Concise Introduction", Routledge, 1st Edition, 2019.
 Mohammed Majeed, Kirti Agarwal and Ahmed Tijani, "Green Supply Chain Management",
- 2 Mohammed Majeed, Kirti Agarwal and Ahmed Tijani, **"Green Supply Chain Management"**, CRC Press, 2024.

1	Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis and Dimitris Folinas "Green Supply
	Chain Management", Routledge, 1 st Edition, 2019.
2	Venkatesh Ganapathy, "Introduction to Green Supply Chain Management", bookboon, 2024.
3	Joseph Sarkis and Yijie Dou, "Green Supply Chain Management: A Concise Introduction",
	Routledge, 2018.
4	Arunachalam Rajagopal, "Green Supply Chain Management: A Practical Approach",
	Replica, 2021.
5	Mehmood Khan, Matloub Hussain and Mian M. Ajmal, "Green Supply Chain Management for
	Sustainable Business Practice", IGI Global, 1st Edition, 2016.

	COMPARENTS IN THE SET UP: STATE AND ADDRESS AND ADDRESS	Bloom's Taxonomy Mapped
C01	Learn about green supply chain management from multiple perspectives.	КЗ
CO2	Identify the barriers and green procurement.	КЗ
CO3	Develop the green production, transportation and distribution.	КЗ
C04	Identify the environmental labeling and waste management and environmental policy.	КЗ
C05	Analyze and compile reports of decision making and various technologies of marketing.	K4

SEMSTER VIII

L	Т	Р	С
3	0	0	3

Course	To identify and apply the concepts of entrepreneurship and to b	ehave responsibly
Objectives	and ethically in their role of entrepreneurs in selection of the	e opportunity and
-	management of resources and utilization of the support from	Government and
	monetary institutions.	
UNIT – I	INTRODUCTION TO ENTREPRENEURSHIP	(9 Periods)
Evolution of	the concept of entrepreneurship, Characteristics of entreprene	eurs, Functions of
entrepreneur	s, Types of Entrepreneurs, Differences with managers, Growth of	entrepreneurship
in India, Rol	e of entrepreneurship in economic development, Factors aff	fecting growth o
entrepreneur	ship, Entrepreneurial competencies – Business model canvas.	
UNIT – II	START-UP OF ENTREPRENEURIAL VENTURES	(9 Periods)
Opportunity	identification and selection, Establishment of incubation centre	es, Formulation o
business plan	s, Project appraisal methods, Financing of ventures- Sources of fir	nance-Internal and
external sour	ces, Forms of ownership, Legal issues of setting of ventures- Pa	atents, Copyrights
trademarks.		
UNIT – III	SUPPORT SYSTEM FOR ENTREPRENEURS	(9 Periods)
	SOLLONI SISTEM FOR ENTREMEDRS	() I OIIOuoj
-	support for entrepreneurs- Commercial banks, Other financial ins	
Institutional s		titutions, Taxation
Institutional s benefits- Tax	support for entrepreneurs- Commercial banks, Other financial ins	titutions, Taxation tization of certain
Institutional s benefits- Tax preliminary e	support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amor	titutions, Taxation tization of certair
Institutional s benefits- Tax preliminary e	support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amor expenses, Important provisions of the Industrial Policy Resoluti	titutions, Taxation tization of certair
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag	Support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amor expenses, Important provisions of the Industrial Policy Resolution oduction to proposal writing. MANAGEMENT OF THE VENTURES gement- Leadership, Motivation, Communication, challenges cau	titutions, Taxation tization of certain on – Governmen (9 Periods) sed by workforce
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag diversity, Wo	Support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amor expenses, Important provisions of the Industrial Policy Resolution duction to proposal writing. MANAGEMENT OF THE VENTURES gement- Leadership, Motivation, Communication, challenges cau orking Capital Management- Assessment of working capital, Fac	titutions, Taxation tization of certain on – Governmen (9 Periods) sed by workforce ctors determining
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag diversity, Wo working capit	Support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amor expenses, Important provisions of the Industrial Policy Resolution duction to proposal writing. MANAGEMENT OF THE VENTURES gement- Leadership, Motivation, Communication, challenges cau orking Capital Management- Assessment of working capital, Fa- cal requirement, working capital cycle, Inventory Management- M	titutions, Taxation tization of certain on – Governmen (9 Periods) sed by workforce ctors determining
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag diversity, Wo working capit	Support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amor expenses, Important provisions of the Industrial Policy Resolution duction to proposal writing. MANAGEMENT OF THE VENTURES gement- Leadership, Motivation, Communication, challenges cau orking Capital Management- Assessment of working capital, Fa- cal requirement, working capital cycle, Inventory Management- M fethods of inventory management.	titutions, Taxation tization of certain on – Governmen (9 Periods) sed by workforce ctors determining lotives for holding
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag diversity, Wo working capit	Support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amor expenses, Important provisions of the Industrial Policy Resolution duction to proposal writing. MANAGEMENT OF THE VENTURES gement- Leadership, Motivation, Communication, challenges cau orking Capital Management- Assessment of working capital, Fa- cal requirement, working capital cycle, Inventory Management- M	titutions, Taxation tization of certain on – Governmen (9 Periods) sed by workforce ctors determining
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag diversity, Wo working capit inventories, M UNIT – V	Support for entrepreneurs- Commercial banks, Other financial instabilitation allowance, Amore expenses, Important provisions of the Industrial Policy Resolution to proposal writing. MANAGEMENT OF THE VENTURES gement- Leadership, Motivation, Communication, challenges causer of working capital Management- Assessment of working capital, Factal requirement, working capital cycle, Inventory Management- Mathematical cycle, Inventory Management- Mathematical cycle, STRATEGIES FOR GROWTH, SUCCESSION PLANNING, ENDING THE VENTURE	titutions, Taxation tization of certain on – Governmen (9 Periods) sed by workforce ctors determining lotives for holding (9 Periods)
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag diversity, Wo working capit inventories, M UNIT – V Growth stra	support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amore expenses, Important provisions of the Industrial Policy Resolution duction to proposal writing. MANAGEMENT OF THE VENTURES gement- Leadership, Motivation, Communication, challenges cau orking Capital Management- Assessment of working capital, Fa- tal requirement, working capital cycle, Inventory Management- M Iethods of inventory management. STRATEGIES FOR GROWTH, SUCCESSION PLANNING, ENDING THE VENTURE tegies- Penetration of market, Product development, Marl	titutions, Taxation tization of certain on – Governmen (9 Periods) sed by workforce ctors determining lotives for holding (9 Periods) ket development
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag diversity, Wo working capit inventories, M UNIT – V Growth stra Diversification	support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amor expenses, Important provisions of the Industrial Policy Resolution oduction to proposal writing. <u>MANAGEMENT OF THE VENTURES</u> gement- Leadership, Motivation, Communication, challenges cau orking Capital Management- Assessment of working capital, Fac- tal requirement, working capital cycle, Inventory Management- M tethods of inventory management. <u>STRATEGIES FOR GROWTH, SUCCESSION PLANNING, ENDING THE VENTURE</u> tegies- Penetration of market, Product development, Marl n, External sources for growth- Joint ventures, Acquisition	titutions, Taxation tization of certain on – Governmen (9 Periods) sed by workforce ctors determining (otives for holding (9 Periods) ket development ns, Mergers and
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag diversity, Wo working capit inventories, M UNIT – V Growth stra Diversification Franchising, S	support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amore expenses, Important provisions of the Industrial Policy Resolution duction to proposal writing. MANAGEMENT OF THE VENTURES gement- Leadership, Motivation, Communication, challenges cau orking Capital Management- Assessment of working capital, Fa- tal requirement, working capital cycle, Inventory Management- M Iethods of inventory management. STRATEGIES FOR GROWTH, SUCCESSION PLANNING, ENDING THE VENTURE tegies- Penetration of market, Product development, Marl	titutions, Taxation tization of certain on – Governmen (9 Periods) sed by workforce ctors determining (otives for holding (9 Periods) ket development ns, Mergers and
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag diversity, Wo working capit inventories, M UNIT – V Growth stra Diversification Franchising, S laws in India.	support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amor expenses, Important provisions of the Industrial Policy Resolution duction to proposal writing. <u>MANAGEMENT OF THE VENTURES</u> gement- Leadership, Motivation, Communication, challenges cau orking Capital Management- Assessment of working capital, Fa- tal requirement, working capital cycle, Inventory Management- M <u>Attends of inventory management.</u> STRATEGIES FOR GROWTH, SUCCESSION PLANNING, <u>ENDING THE VENTURE</u> tegies- Penetration of market, Product development, Marl n, External sources for growth- Joint ventures, Acquisition Succession planning- Transfer to family members, Selling the bus	titutions, Taxation tization of certain on – Governmen (9 Periods) sed by workforce ctors determining lotives for holding (9 Periods) ket development ns, Mergers and
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag diversity, Wo working capit inventories, M UNIT – V Growth stra Diversification Franchising, S laws in India. Contact Perio	support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amore expenses, Important provisions of the Industrial Policy Resolution oduction to proposal writing. <u>MANAGEMENT OF THE VENTURES</u> gement- Leadership, Motivation, Communication, challenges cau orking Capital Management- Assessment of working capital, Fa- tal requirement, working capital cycle, Inventory Management- M tethods of inventory management. <u>STRATEGIES FOR GROWTH, SUCCESSION PLANNING, ENDING THE VENTURE</u> tegies- Penetration of market, Product development, Marl n, External sources for growth- Joint ventures, Acquisition Succession planning- Transfer to family members, Selling the bus	titutions, Taxatior tization of certair on – Governmen (9 Periods) sed by workforce ctors determining lotives for holding (9 Periods) ket development ns, Mergers and siness, bankruptcy
Institutional s benefits- Tax preliminary e policies- Intro UNIT – IV People Manag diversity, Wo working capit inventories, M UNIT – V Growth stra Diversification Franchising, S laws in India.	support for entrepreneurs- Commercial banks, Other financial ins holiday, Investment allowance, Rehabilitation allowance, Amore expenses, Important provisions of the Industrial Policy Resolution oduction to proposal writing. <u>MANAGEMENT OF THE VENTURES</u> gement- Leadership, Motivation, Communication, challenges cau orking Capital Management- Assessment of working capital, Fa- tal requirement, working capital cycle, Inventory Management- M tethods of inventory management. <u>STRATEGIES FOR GROWTH, SUCCESSION PLANNING, ENDING THE VENTURE</u> tegies- Penetration of market, Product development, Marl n, External sources for growth- Joint ventures, Acquisition Succession planning- Transfer to family members, Selling the bus	titutions, Taxation tization of certain on – Governmen (9 Periods) sed by workforce ctors determining lotives for holding (9 Periods) ket development ns, Mergers and

TEXT BOOKS:

1	Sangeeta Sharma, "Entrepreneurship Development" , PHI Learning, 2 nd Revised edition, 2022.
2	M. L. Sharma, "Entrepreneurship Development and Management", Khanna Publishers, 1st
	Edition, 2021.

_						
1	Bruce R. Barringer and R. Duane Ireland, "Entrepreneurship – Successfully Launching New					
	Ventures", Pearson, 6 th Edition, 2018.					
2	Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd and Sabyasachi Sinha,					
	"Entrepreneurship" McGraw Hill Education, 11 th Edition, 2020.					
3	S. S. Khanka, "Entrepreneurial Development", S.Chand & Company Private Limited, 2015.					
4	Vasant Desai and Kulveen Kaur, "Entrepreneurship: Development and Management",					
	Himalaya Publishing House, 2015.					
5	R. K. Singal, "Entrepreneurship Development & Management", S K Kataria and Sons, 2013.					

COUR	SE OUTCOMES:	Bloom's Taxonomy		
Upon	Upon completion of the course, the students will be able to:			
C01	Provide an accurate self-analysis for an entrepreneurial career.	K2		
C02	Find an attractive market and decide on the most suitable source of finance for the same.	К3		
CO3	Design and develop an entrepreneurial venture that would enjoy the maximum support from financial institutions and the Government.	К3		
C04	Successfully meet the challenges of motivating and communicating with a diverse workforce.	КЗ		
C05	Find alternative strategies to save a venture that is unable to sustain on its own.	К3		

