

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum & Syllabus For

B.E. (ELECTRONICS AND COMMUNICATION ENGINEERING)

(Part Time)

2023

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS

GOVERNMENT COLLEGE OF TECHNOLOGY

THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0423 - 2433355

E.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University)

Coimbatore - 641 013

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- > To achieve academic excellence through innovative teaching and learning practices.
- > To enhance employability and entrepreneurship.
- > To improve the research competence to address societal needs.
- > To inculcate a culture that supports and reinforces ethical, professional behaviours

for a harmonious and prosperous society.

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution affiliated to Anna University)

Coimbatore - 641 013

DEPARTMENT OF ELECTRONICS AND COMMUNICATIONENGINEERING

VISION AND MISSION OF THE DEPARTMENT

VISION

The vision of ECE department is to become pioneer in higher learning and research and to produce creative solution to societal needs.

MISSION

- 1. To provide excellence in education, research and public service.
- 2. To provide quality education and to make the students entrepreneur and employable.
- 3. Continuous upgradation of techniques for reaching heights of excellence in a global perspective.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E & ELECTRONICS AND COMMUNICATION ENGINEERING (Part Time)

Sl.	Course		СА	End	Total]	Hours	lours/Week	
No.	Code	Course Title	Marks	Sem Marks	Marks	L	Т	Р	С
		T	HEORY	-				-	
1	23PTL1Z1	Applied Mathematics I	40	60	100	3	0	0	3
2	23PTL1Z2	Environmental Science and Engineering	40	60	100	3	0	0	3
3	23PTL103	Electric Circuits and Electron Devices	40	60	100	3	0	0	3
4	23PTL104	C Programming	40	60	100	3	0	0	3
	PRACTICAL								
5	23PTL105	C Programming Laboratory	60	40	100	0	0	3	1.5
		TOTAL	230	280	500	12	0	3	13.5

FIRST SEMESTER

SECOND SEMESTER

		1. S. S. S. S.	2.00 1.2	1	1				
Sl.	Course	Course Title	CA	End	Total		Hour	·s/W	eek
No.	Code		Marks	Sem	Marks	L	Т	Р	С
				Marks					
		THE	ORY						
1	23PTL2Z1	APPLIED MATHEMATICS II	40	60	100	3	0	0	3
2	23PTL202	LECTRONIC CIRCUITS	40	60	100	3	0	0	3
3	23PTL203	NALOG INTEGRATED CIRCUITS	40	60	100	3	0	0	3
4	23PTL204	IGITAL SYSTEM DESIGN	40	60	100	3	0	0	3
5	23PTL205	ANALOG AND DIGITAL INTEGRATED CIRCUITS LABORATORY	60	40	100	0	0	3	1.5
		TOTAL			500	12	0	3	13.5

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E & ELECTRONICS AND COMMUNICATION ENGINEERING (Part Time)

Sl.	Course	Course Title	CA	End	Total		H	lours	s/Week
No.	Code		Marks	Sem Marks	Marks	L	Т	Р	С
		THEC	DRY						
1	23PTL301	CONTINUOUS TIME SIGNALS AND SYSTEMS	40	60	100	3	0	0	3
2	23PTL302	DISCRETE TIME SIGNALS AND SYSTEMS	40	60	100	3	0	0	3
3	23PTL303	ANALOG COMMUNICATION	40	60	100	3	0	0	3
4	23PTL304	MICROPROCESSORS AND MICROCONTROLLERS	40	60	100	3	0	0	3
5	23PTL305	ELECTROMAGNETIC FIELDS	40	60	100	3	0	0	3
	1	TOTAL	200	300	500	15	0	0	15

THIRD SEMESTER

FOURTH SEMESTER

Sl.	Course	Course Title	CA	End	Total		H	ours	/Week
No.	Code		Marks	Sem Marks	Marks	L	Т	Р	С
		THEC	DRY						
1	23PTL401	DIGITAL SIGNAL PROCESSING	40	60	100	3	0	0	3
2	23PTL402	DIGITAL COMMUNICATION	40	60	100	3	0	0	3
3	23PTL403	NETWORKS AND TRANSMISSION LINES	40	60	100	3	0	0	3
4	23PTL404	COMPUTER COMMUNICATION	40	60	100	3	0	0	3
		PRACTICAL							
5	23PTL405	COMMUNICATION SYSTEMS LABORATORY	60	40	100	0	0	3	1.5
		TOTAL	220	280	500	12	0	3	13.5

FIFTH SEMESTER

SI.	Course	Course Title	CA	End	Total		H	ours,	/Week
No.	Code		Marks	Sem Marks	Marks	L	Т	Р	С
		THE	ORY						
1	23PTL501	COMPUTER ARCHITECTURE ANDORGANIZATION	40	60	100	3	0	0	3
2	23PTL502	EMBEDDED SYSTEMS	40	60	100	3	0	0	3
3	23PTL503	CONTROL SYSTEMS	40	60	100	3	0	0	3
4	23PTL504	ANTENNAS AND WAVE PROPAGATION	40	60	100	3	0	0	3
5	23PTL5XX	ELECTIVE – I	40	60	100	3	0	0	3
		TOTAL	200	300	500	15	0	0	15

SIXTH SEMESTER

Sl.	Course	Course Title	CA	End	Total		Н	ours	/Week
No.	Code		Marks	Sem Marks	Marks	L	Т	Р	С
		THEC	DRY						
1	23PTL601	VLSI DESIGN	40	60	100	3	0	0	3
2	23PTL602	MICROWAVE ENGINEERING	40	60	100	3	0	0	3
3	23PTL603	WIRELESS COMMUNICATION	40	60	100	3	0	0	3
4	23PTL6XX	ELECTIVE – II	40	60	100	3	0	0	3
	PRACTICAL								
5	23PTL604	EMBEDDED AND VLSI LABORATORY	60	40	100	0	0	3	1.5
		TOTAL	220	280	500	12	0	3	13.5

SEVENTH SEMESTER

CI	6				The start		Hou	rs/Week	
Sl. No.	Course Code	Course Title	CA Marks	End Sem Marks	Total Marks	L	Т	Р	С
		THEC	ORY						
1	23PTL7Z1	HUMAN VALUES AND ETHICS	40	60	100	3	0	0	3
2	23PTL702	FIBER OPTIC COMMUNICATION	40	60	100	3	0	0	3
3	23PTL703	INTERNET OF THINGS	40	60	100	3	0	0	3
4	23PTL7Z2	MANAGEMENT THEORY AND PRACTICE	40	60	100	3	0	0	3
5	23PTL7XX	ELECTIVE – III	40	60	100	3	0	0	3
	•	TOTAL	200	300	500	15	0	0	15

EIGHTH SEMESTER

SI.	Course	Course Title	CA	End	Total		H	lours	/Week
No.	Code		Marks	Sem Marks	Marks	L	Т	Р	С
	THEORY								
1	23PTL8XX	ELECTIVE – IV	40	60	100	3	0	0	3
2	23PTL8XX	ELECTIVE – V	40	60	100	3	0	0	3
		PRACTIO	CAL						
3	23PTL801	PROJECT WORK	60	40	100	0	0	12	6
		TOTAL	140	160	300	6	0	12	12

			Cred	its p	er Sen	nester	ſ	Total no of
Ι	II	III	IV	V	VI	VII	VIII	credits
13.5	13.5	15	13.5	15	13.5	15	12	111

Sl.	Course	Course Title	CA	End	Total	Н	ours/	'Wee	k
No.	Code		Marks	Sem	Marks	L	Т	Р	С
				Marks					
		ELECTIVE I		-					
1	23PTL5E1	SATELLITE COMMUNICATION	40	60	100	3	0	0	3
2	23PTL5E2	INFORMATION THEORY AND CODING	40	60	100	3	0	0	3
3	23PTL5E3	NEURAL NETWORKS	40	60	100	3	0	0	3
4	23PTL5E4	AUTOMOTIVE ELECTRONICS	40	60	100	3	0	0	3
5	23PTL5E5	DIGITAL IMAGE PROCESSING	40	60	100	3	0	0	3
		ELECTIVE II							
1	23PTL6E1	MEASUREMENT AND INSTRUMENTATION	40	60	100	3	0	0	3
2	23PTL6E2	DEEP LEARNING	40	60	100	3	0	0	3
3	23PTL6E3	LOW POWER VLSI	40	60	100	3	0	0	3
4	23PTL6E4	ERROR CONTROL CODING	40	60	100	3	0	0	3
5	23PTL6E5	MICROWAVE INTEGRATED CIRCUITS	40	60	100	3	0	0	3
		ELECTIVE III						1	
1	23PTL7E1	SOFT COMPUTING	40	60	100	3	0	0	3
2	23PTL7E2	DSP ARCHITECTURE AND PROGRAMMING	40	60	100	3	0	0	3
3	23PTL7E3	HIGH SPEED NETWORKS	40	60	100	3	0	0	3
4	23PTL7E4	MEMS	40	60	100	3	0	0	3
5	23PTL7E5	POWER ELECTRONICS	40	60	100	3	0	0	3
		ELECTIVE IV		1	5			1	
					100				
1	23PTL8E1	BIO-MEDICAL ELECTRONICS	40	60	100	3	0	0	3
2		MACHINE LEARNING	40	60	100	3	0	0	3
3	23PTL8E3	SOFTWARE DEFINED RADIO	40	60	100	3	0	0	3
4	23PTL8E4	COMPUTER VISION	40	60	100	3	0	0	3
5	23PTL8E5	CRYPTOGRAPHY AND NETWORK SECURITY	40	60	100	3	0	0	3
		ELECTIVE V		ST.					
1	23PTL8E6	MULTIMEDIA COMPRESSION TECHNIQUES	40	60	100	3	0	0	3
2	23PTL8E7	DISPLAY SYSTEMS	40	60	100	3	0	0	3
3	23PTL8E8	SMART SENSORS	40	60	100	3	0	0	3
4	23PTL8E9	INDUSTRIAL IOT AND INDUSTRIAL 4.0	40	60	100	3	0	0	3
5	23PTL8E10	ADHOC AND WIRELESS SENSOR NETWORKS	40	60	100	3	0	0	3

LIST OF ELECTIVE

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course	This course mainly deals with topics such as linear algebra, single	variable
Objectives	calculus and numerical methods and plays an important role in th	e
	understanding of engineering science.	
UNIT – I	LINEAR ALGEBRA	9 Periods
Consistency of	f System of Linear Equations, Eigenvalues and eigenvectors, Diagor	alization of
matrices by o	rthogonal transformation, Cayley-Hamilton Theorem, Quadratic for	m to canonical
forms.		
UNIT – II	DIFFERENTIAL CALCULUS	9 Periods
Radius of cur	vature, Centre of curvature, Circle of curvature , Evolutes of a curve	e, Envelopes
UNIT – III	INTEGRAL CALCULUS	9 Periods
Evaluation of	definite and improper integrals, Applications: surface area and volu	ume of
revolution (C	artesian coordinates only).	
UNIT – IV	NUMERICAL SOLUTION OF EQUATIONS	9 Periods
Algebraic and	Transcendental equation: Fixed point iteration method, Bisection	method,
Newton-Raph	son method, Simultaneous equation: Gauss elimination method, Ga	uss-Jordan
method, Gaus	s Seidal method.	
UNIT – V	NUMERICAL INTERPOLATION	9 Periods
Equal interva	l: Newton's forward and Backward difference interpolation formula	ie, Gauss
forward and	Backward difference interpolation formulae, Unequal interval: Lagr	ange's
interpolation	Newton's divided difference interpolation.	
Contact Peri	ods:	
	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 60 P	

TEXT BOOK

1	VeerarajanT., "Engineering Mathematics I", Tata McGraw-Hill Education(India)Pvt. Ltd, New
	Delhi,2015.
2	P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3nd
	Edition, Reprint 2013.

REFERENCE BOOK

1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44thEdition, 2017.
2	David C.Lay, "Linear Algebra and Its Application", PearsonPublishers, 6thEdition,2021.
3	Howard Anton, "Elementry Linear Algebra" ,11 th Edition,WileyPublication, 2013.
4	Narayanan.S and Manicavachagom Pillai. T.K. – CalculasVol I and Vol II,S.chand& Co, Sixth
	Edition, 2014.
5	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5th Edition, 2015.
	Ward Cheney, David Kincaid, "Numerical Methods and Computin"g, Cengage Learning,
	Delhi, 7 th Edition 2013.
6	Jain R.K. and Iyengar S.R.K., - Advanced Engineering Mathematics, NarosaPublicaitons,
	Eighth Edition, 2012.

COU	Bloom's					
On co	mpletion of the course, the students will be able to:	Mapped				
C01	Use the essential tool of matrices and linear algebra in a comprehensive	К3				
	manner.					
C02	Explain the fallouts of circle of curvature, evolute and envelops that is fundamental to application of analysis to Engineering problems.	К3				
CO3	Interpret the integral calculus to notions of definite and to improper integrals. Apart from some other applications they will have a basic understanding of Beta and Gamma functions.	К3				
CO4	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	К3				
CO5	Derive numerical methods for various mathematical operations and tasks, such as interpolation, differentiation, integration, the solution of linear and nonlinear equations.	К3				

PREREQUISITES	L	Т	Р	C
NIL	3	0	0	3

	The course is aimed at creating awareness among the students and	also inseminates the					
Objectives	ojectives critical ideas of preserving environment.						
UNIT – I	ENVIRONMENTAL ENERGY RESOURCES	9 Periods					
Food-effects	of modern agriculture, fertilizers, pesticides, eutrophication & biomag	gnifications-Energy					
resources: re	newable resources - Hydro Energy, Solar & Wind. Non-renewable res	ources – Coal and					
Petroleum - h	narnessing methods.						
UNIT – II	ECO SYSTEM AND BIODIVERSITY	9 Periods					
Eco system a	nd its components - biotic and abiotic components. Biodiversity: type	s and values of					
biodiversity,	hot spots of biodiversity, endangered and endemic species, conservat	tion of biodiversity:					
In situ and ex	situ conservation. Threats to biodiversity-destruction of habitat, hab	oit fragmentation,					
hunting, over	exploitation and man-wildlife conflicts. The IUCN red list categories.						
UNIT – III	ENVIRONMENTAL POLLUTION	9 Periods					
Air pollution,	classification of air pollutants - sources, effects and control of gaseou	us pollutants SO ₂ ,					
NO ₂ , H ₂ S, CO,	CO_2 and particulates. Water pollution - classification of water polluta	nts, organic and					
inorganic pollutants, sources, effects and control of water pollution. Noise pollution - decibel scale,							
inorganic pol	lutants, sources, effects and control of water pollution. Noise pollutio	n - decibel scale,					
	lutants, sources, effects and control of water pollution. Noise pollutio :ts and control.	n - decibel scale,					
		n - decibel scale, 9 Periods					
sources, effec	ts and control.	9 Periods					
sources, effec UNIT – IV Global warm	ts and control. ENVIRONMENTAL THREATS	9 Periods use effect, Acid rain-					
sources, effec UNIT – IV Global warm effects and co	ts and control. ENVIRONMENTAL THREATS ing-measure to check global warming - impacts of enhanced Greenho	9 Periods use effect, Acid rain-					
sources, effec UNIT – IV Global warm effects and co	ets and control. ENVIRONMENTAL THREATS ing-measure to check global warming - impacts of enhanced Greenho ontrol of acid rain, ozone layer depletion- effects of ozone depletion, d	9 Periods use effect, Acid rain-					
sources, effect UNIT – IV Global warms effects and co - flood, droug UNIT – V	ts and control. ENVIRONMENTAL THREATS ing-measure to check global warming - impacts of enhanced Greenho ontrol of acid rain, ozone layer depletion- effects of ozone depletion, d th, earthquake and tsunami.	9 Periods use effect, Acid rain- lisaster managemen 9 Periods					
sources, effec UNIT – IV Global warm effects and co - flood, droug UNIT – V Water conser	ts and control. ENVIRONMENTAL THREATS ing-measure to check global warming - impacts of enhanced Greenho ontrol of acid rain, ozone layer depletion- effects of ozone depletion, d th, earthquake and tsunami. SOCIAL ISSUES AND ENVIRONMENT	9 Periods use effect, Acid rain- lisaster managemen 9 Periods ol Act, Wild life					
sources, effect UNIT – IV Global warms effects and co - flood, droug UNIT – V Water conser Protection Ac	ets and control. ENVIRONMENTAL THREATS ing-measure to check global warming - impacts of enhanced Greenho ontrol of acid rain, ozone layer depletion- effects of ozone depletion, d oht, earthquake and tsunami. SOCIAL ISSUES AND ENVIRONMENT rvation, rain water harvesting, e-waste management, Pollution Control	9 Periods use effect, Acid rain- lisaster managemen 9 Periods ol Act, Wild life opulation among					
sources, effect UNIT – IV Global warm effects and co - flood, droug UNIT – V Water conser Protection Ac nations, popu	ets and control. ENVIRONMENTAL THREATS ing-measure to check global warming - impacts of enhanced Greenho ontrol of acid rain, ozone layer depletion- effects of ozone depletion, d oht, earthquake and tsunami. SOCIAL ISSUES AND ENVIRONMENT evation, rain water harvesting, e-waste management, Pollution Contro ct. Population growth- exponential and logistic growth, variation in point	9 Periods use effect, Acid rain- lisaster managemen 9 Periods ol Act, Wild life opulation among					
sources, effect UNIT – IV Global warm effects and co - flood, droug UNIT – V Water conser Protection Ac nations, popu	ets and control. ENVIRONMENTAL THREATS ing-measure to check global warming - impacts of enhanced Greenho ontrol of acid rain, ozone layer depletion- effects of ozone depletion, d tht, earthquake and tsunami. SOCIAL ISSUES AND ENVIRONMENT vation, rain water harvesting, e-waste management, Pollution Contro ct. Population growth- exponential and logistic growth, variation in pollation policy. Women and Child welfare programs. Role of informatic ealth, COVID-19 - effects and preventive measures.	9 Periods use effect, Acid rain- lisaster management 9 Periods ol Act, Wild life opulation among					

TEXT BOOK:

1	Sharma J.P., "Environmental Studies" , 4th Edition, University Science Press, New Delhi 2016.
2	AnubhaKaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New age
	International Publishers, New Delhi, 2021.

1	A k de, "Environmental Chemistry" , eight edition, new age international publishers, 2017.
2	G. Tyler miller and scott e. Spoolman, "Environmental Science" , cengage learning indiapvt, ltd, delhi,
	2014.
3	ErachBharucha, "Textbook of Environmental Studies", Universities Press(I) Pvt, Ltd, Hydrabad,
	2015.
4	Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 3rd Edition, Pearson
	Education, 2015.

COUR	SE OUTCOMES:	Bloom's Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
C01	Recognize and understand about the various environmental energy resources and the effective utility of modern agriculture.	К2
CO2	Acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.	K2
CO3	Be aware of the sources of various types of pollution, their ill effects and preventive methods.	К2
CO4	Identify and take the preventive measures to control the environmental threats and effects of Global warming, Ozone depletion, Acid rain, and natural disasters.	К2
C05	Demonstrate an idea to save water and other issues like COVID -19.	K2

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course 1. To learn the basic of circuit analysis and transient resonance in RLC circuits.						
Objectives	ctives 2. To learn functions and features of semiconductor devices.					
UNIT – I	CIRCUIT ANALYSIS TECHNIQUES	9 Periods				
R, L and C – I	rrent and voltage laws – series and parallel connection of indepe Network Theorems – Thevenin, Superposition, Norton, Maximun Star-delta conversion.					
UNIT – II	TRANSIENT RESONANCE IN RLC CIRCUITS	9 Periods				
	and RLC circuits and their responses to pulse and sinusoidal inj arallel and series resonances – Q factor – single tuned and doubl					
UNIT –III	SEMICONDUCTOR DIODES	9 Periods				
structure -	Review of intrinsic & extrinsic semiconductors – Theory of PN junction diode – Energy band structure – current equation – space charge and diffusion capacitances – effect of temperature and breakdown mechanism – Zener diode and its characteristics.					
UNIT –IV	TRANSISTORS	9 Periods				
comparison o Channel and F	Principle of operation of PNP and NPN transistors – study of CE, CB and CC configurations and comparison of their characteristics – Breakdown in transistors – operation and comparison of N-Channel and P-Channel JFET – drain current equation – MOSFET – Enhancement and depletion types – structure and operation – comparison of BJT with MOSFET – thermal effect on MOSFET.					
UNIT – V	SPECIAL SEMICONDUCTOR DEVICES	9 Periods				
equivalent r Photoconduc Contact Perio	les – PIN diode, varactor diode – SCR characteristics and nodel – UJT – Diac and Triac – Laser, CCD, Photodiode, etive and Photovoltaic cells – LED, LCD. Ods Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Peri	Phototransistor,				

 Joseph A. Edminister, Mahmood, Nahri, "Electric Circuits" – Shaum series, Tata McGraw Hill, (2001).
 S. Salivahanan, N. Suresh kumar and A. Vallavanraj, "Electronic Devices and Circuits", Tata McGraw Hill, 2 Edition, (2008)
 David A. Bell, "Electronic Devices and Circuits", Oxford University Press, 5 Edition, (2008).

REFERENCE BOOK :

-	1	Robert	Т.	Paynter,	"Introducing	Electronics	Devices	and	Circuits",
		Pearson	Educ	ation, (200	5).				
2	2	William	Н. Н	ayt, J.V. Jac	k, E. Kemmebly	and steven M.	Durbin, " En	gineer	ing Circuit
		Analysis	Analysis",Tata McGraw Hill, 6 Edition, 2002.						
~ ~ ~	3	J. Millmo 2 Editior		•	tyebranta Jit, " E	lectronic Devi	ices & Circ	uits",Ta	ata McGraw Hill,

COUR	SE OUTCOMES:	Bloom's
	Taxonomy	
On con	mpletion of the course, the students will be able to:	Mapped
C01	Understand laws, theorems of circuit analysis	K1
CO2	Explain transient resonance in RLC circuits	K2
CO3	Learn Semiconductor diode characteristics	K2
CO4	Learn JFET and MOSFET transistor characteristics	К2
C05	Understand special semiconductor devices Characteristics	K1

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course	The students will be able to acquire knowledge about the b	asic concepts of
Objectives	Computer and programming fundamentals, Data types in C a	nd Flow control
	statements, Functions, Arrays, Pointers and Strings, Bit	wise Operators,
	Preprocessor Directives, Structures and Unions, List Processing, I	nput and Output.
UNIT – I	COMPUTER AND PROGRAMMING FUNDAMENTALS	9 Periods
Computer fund	amentals – Evolution, classification, Anatomy of a computer: CPU, I	Memory, I/O –
Introduction to	software – Generation and classification of programming language	es – Compiling –
Linking and loa	iding a program – Translator – loader – linker – develop a program	– software
Development –	Introduction to OS – Types of OS – Algorithms – Structured program	mming concept.
UNIT – II	DATA TYPES AND FLOW OF CONTROL	9 Periods
An overview o	f C – Programming and Preparation – Program Output – Variable	es – Expressions,
and Assignmen	nt, The use of #include, printf(), scanf() – Lexical elements, ope	rators and the C
systems – The	fundamental data types – Flow of control.	
UNIT – III	FUNCTIONS, ARRAYS, POINTERS AND STRINGS	9 Periods
Functions and	storage classes - 1D Arrays – Pointers – Call by reference – Relatior	iship between
Arrays and Po	inters - Pointer arithmetic and element size - Arrays as func	tion argument –
Dynamic Memo	ory allocation – Strings – String handing functions – Multidimension	nal Arrays.
UNIT – IV	ARRAY OF POINTERS, BITWISE OPERATORS,	9 Periods
	PREPROCESSOR DIRECTIVES	
Arrays of Point	ers – Arguments to main () - Ragged Arrays – Functions as Argume	ents – Arrays of
Pointers to Fu	nctions - Type qualifiersBitwise operators and expressions - M	Aasks – Software
tools – Packing	and unpacking – Enumeration types – The preprocessor directives	5.
UNIT – V	STRUCTURES AND UNIONS, I/O AND FILE OPERATIONS	9 Periods
Structures and	Unions - Operator precedence and associativity - Bit fields - A	ccessing bits and
bytes - Input a	nd Output functions – File Processing Functions – Environment v	variables – Use of
make and toucl	h.	
Contact Period	ds:	
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods

TEXT BOOK:

1	Pradip Dey, Manas Ghosh, "Computer Fundamentals and Programming in C", Second Edition,
	Oxford University Press, 2013.
2	Al Kelley, Ira Pohl, "A Book on C-Programming in C", Fourth Edition, Addison Wesley, 2001.

REFERENCE BOOK :

1	Yashavant P. Kanetkar, "Let Us C", 14th edition, BPB Publications, 2016.
2	Herbert Schildt., "C: The Complete Reference", Fourth Edition. McGraw Hill Education, 2017.
3	Brian W. Kernighan and Dennis Ritchie, " The C Programming Language ", Second Edition, Prentice Hall Software Series, 1988.
4	E. Balagurusamy, " Programming in Ansi C ", 6th Edition Tata McGraw-Hill Education, 2012

	RSE OUTCOMES: Impletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain the fundamental of computers programming and Design algorithm for solving the given problem statement.	К3
CO2	Reproduce and explain the operation of various data types and flow control statements	K2
CO3	Design and Compute programs using functions, arrays, pointers and strings	КЗ
C04	Illustrate the different right storage classes, preprocessor directives, bitwise operators in programs	К2
C05	Describe the concept of structures, unions and files in C programming.	K2

23PTL105

PREREQUISITES	L	Т	Р	С
NIL	0	0	3	1.5

	The students will be able to write program and compile C programming using,
Course	Data types and Flow control statements, Functions, Arrays, Pointers and Strings,
Objecti	ves Dynamic memory allocation and command line arguments, Files, Structures and
	Unions.
LIST OF	EXPERIMENTS:
1 0	Dperators , Expressions and IO formatting
2 D	Decision Making and Looping
3 A	Arrays and Strings
4 F	Functions and Recursion
5 P	Pointers
6 E	Dynamic Memory Allocation
7 S	Structures
8 U	Jnions
9 F	7iles
10 0	Command line arguments
11 N	Aini Project
Contact	t Periods:
Lecture	e: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

REFERENCES :

1	Yashavant P. Kanetkar, " Let Us C ", 14th edition, BPB Publications, 2016.
2	Herbert Schildt., "C: The Complete Reference", Fourth Edition. McGraw Hill Education, 2017.
3	Brian W. Kernighan and Dennis Ritchie, "The C Programming Language", Second Edition,
	Prentice Hall Software Series, 1988.
4	E. Balagurusamy, "Programming in Ansi C", 6th Edition Tata McGraw-Hill Education, 2012

	RSE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Reproduce and explain the operation of various data types and flow control statements using simple programming.	K2
CO2	Write programs using functions, arrays, pointers and strings.	К3
C03	Write programs using dynamic memory allocation	КЗ
C04	Implement programs using command line arguments, structures, unions, and files	K4
C05	Develop applications using C.	K5

APPLIED MATHEMATICS II

(Common to Mech, EEE & ECE)

PREREQUISITES	L	Т	Р	С
NIL	3	0	0	3

Course	To focus on differential equations and Numerical Techniques which is	s important
Objectives	for comprehending engineering science.	-
UNIT – I	ORDINARY DIFFERENTIAL EQUATIONS	9 Periods
Higher order line	ar differential equations with constant coefficients -variable coefficier	nts: Cauchy-
Euler equation, Ca	auchy-Legendre equation-Method of variation of parameters.	
UNIT – II	PARTIAL DIFFERENTIAL EQUATIONS	9 Periods
Formation of part	ial differential equations – First order partial differential equations – Sta	ndard types
and Lagrange's li	near equation - Homogeneous linear partial differential equations of	second and
higher order with	constant coefficients.	
UNIT – III	NUMERICAL DIFFERENTIATION AND INTEGRATION	9 Periods
Numerical Differ	rentiation (using Newton's interpolation formula) – Numerical	integration:
Trapezoidal rule	and Simpson's rules (Both single and double integrals.	
UNIT – IV	NUMERICAL SOLUTION OF FIRST ORDINARY DIFFERENTIAL	9 Periods
ONIT = IV	EQUATIONS	9 Perious
Single Step Meth	ods : Taylor's series method-Euler's and modified Euler's methods-Ri	unge- Kutta
· ·	ods : Taylor's series method-Euler's and modified Euler's methods-Ri order Multi Step methods - Milne's and Adam's predicator-corrector m	•
· ·	•	0
method of fourth UNIT – V	order Multi Step methods - Milne's and Adam's predicator-corrector m	ethods 9 Periods
method of fourth UNIT – V Finite difference	order Multi Step methods - Milne's and Adam's predicator-corrector monotone NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS	ethods 9 Periods mplicit and
method of fourth UNIT – V Finite difference explicit methods	order Multi Step methods - Milne's and Adam's predicator-corrector m NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS solution of two dimensional Laplace equation and Poisson equation-	ethods 9 Periods mplicit and
method of fourth UNIT – V Finite difference explicit methods	order Multi Step methods - Milne's and Adam's predicator-corrector monoporter MUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS solution of two dimensional Laplace equation and Poisson equation- I for one dimensional heat equation (Bender-Schmidt and Cranl difference explicit method for one dimensional wave equation.	ethods 9 Periods mplicit and

1	Veerarajan.T, "Engineering Mathematics", Tata McGraw Hill Education (India) Private Limited,
	New Delhi, 2018.
2	P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3nd
	Edition, Reprint 2013.

1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44thEdition, 2018.		
2	SrimantaPal, "Numerical Methods Principles, Analyses and Algorithms", Oxford University Press,		
	New Delhi, I st Edition 2009.		
3	Raisinghania.MD, "Ordinary And Partial Differential Equations", 20th Edition, S.		
	ChandPublishing,2020		
4	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5 th Edition, 2015.		
5	S.Larsson and V.Thomee, "Partial Differential Equations with Numerical Methods", Springer,		
	2003.		

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
^	Obtain the knowledge for solving higher order linear differential equation with constant and variable coefficient techniques and simultaneous differential equation.	К3
C02	Understand the knowledge of partial differential equations (PDEs), modeling; demonstrate accurate and efficient use of Lagrange's techniques.	КЗ
CO3	Demonstrate and understanding of common numerical methods and how they are used to obtain approximate solutions to polynomial and transcendental equations.	K3
C04	Construct one-step and linear multistep methods for the numerical solution of initial-value problems for ordinary differential equations.	КЗ
C05	Acquire the knowledge of principles for designing numerical schemes for PDEs in particular finite difference schemes.	КЗ

ELECTRONIC CIRCUITS

SEMESTER II

PREREQUISITES	CATEGORY	L	Τ	Р	С
NIL	PC	3	0	0	3

Course	To understand the functions and response of Basic Electronic circuit	S		
Objective	L L			
UNIT – I	BJT AND FET AMPLIFIER	9 Periods		
Small Signal H	Iybrid π equivalent circuit of BJT – Early effect -CE, CC and CB ampli	fiers AC Load		
	Darlington Amplifier - Bootstrap technique - Cascade, Cascode config	gurations - FET		
AMPLIFIERS.C	S, CD and CG amplifiers- BiCMOS circuits.			
UNIT – II	FREQUENCY RESPONSE OF BJT AND FET AMPLIFIERS	9 Periods		
-	ency Considerations- Low and High Frequency response of BJT and F	-		
	current gain - cut off frequency – $f\alpha,f\beta$ and unity gain bandwidth	– Miller Effect		
Capacitance-M	Iultistage Frequency Effects.			
UNIT – III	FEEDBACK AMPLIFIERS AND OSCILLATORS	9 Periods		
	cepts- effect of feedback on gain stability, distortion, bandwidth, in			
-	Types of feedback amplifiers-stability-Gain and Phase mar			
-	. OSCILLATORS: Barkhausen criterion for oscillation - Hartley & Colpit	tťs oscillators –		
crystal oscillat				
UNIT – IV	TUNED AMPLIFIERS AND WAVE SHAPING CIRCUITS	9 Periods		
	uned amplifiers – capacitor coupled single tuned amplifier – double tu			
	ading single tuned and double tuned amplifiers on bandwidth -			
	tability of tuned amplifiers. WAVE SHAPING CIRCUITS: Pulse circuits	-RC integrator		
and differentia	ator circuits – diode clampers and clippers.			
UNIT – V	POWER SUPPLIES AND POWER AMPLIFIERS	9 Periods		
	power supply - HW & FW Rectifiers - Filters- Voltage regulators			
-	witched mode power supply (SMPS) - Regulated DC Power Supply.Po	-		
	Class A-Class B-Class AB-Class C-Power MOSFET-Temperature Effect- Class AB Power amplifier			
using MOSFET				
Contact Perio Lecture: 45 H				
	Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe			

TEXT BOOK

1	Donald. A. Neamen, Electronic Circuits Analysis and Design, 3rd Edition, Mc Graw Hill
	Education (India) Private Ltd., 2010.
2	Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory", 11th Edition,
	Pearson Education, 2013.

1	Millman J, Halkias.C.andSathyabradaJit, Electronic Devices and Circuits, 4th Edition, Mc Graw
	Hill Education (India) Private Ltd., 2015.
2	Salivahanan and N. Suresh Kumar, Electronic Devices and Circuits, 4th Edition, , Mc Graw Hill
	Education (India) Private Ltd., 2017.
3	Floyd, Electronic Devices, Ninth Edition, Pearson Education, 2012.
4	David A. Bell, Electronic Devices & Circuits, 5th Edition, Oxford University Press, 2008.
5	Anwar A. Khan and Kanchan K. Dey, A First Course on Electronics, PHI, 2006.
6	Rashid M, Microelectronics Circuits, Thomson Learning, 2007.

23PTL203	ANALOG INTEGRATED CIRCUITS	SEMESTER II

PREREQUISITES	CATEGORY	L	Т	Р	С
ELECTRON DEVICES AND CIRCUITS	PC	3	0	0	3

Course	Upon completion of this course, the students will be feasily and the	b .			
Course					
Objective	 To understand the characteristics and applications of Operation 	· ·			
	data converters and operation and applications of special fun	ction ICs.			
UNIT – I	BASICS OF OPERATIONAL AMPLIFIERS	9 Periods			
	nplifier-Differential mode gain, common mode gain and CMRR -curren				
	or - Building blocks of 741 operational amplifier-I/O stages, gain				
	ge of 741op-amp -Characteristics of an Ideal and practical - Operation				
amp parame	ters, DC & AC performance characteristics- frequency respons	e – frequency			
compensation					
UNIT – II	APPLICATIONS OF OPERATIONAL AMPLIFIERS	9 Periods			
Linear appli	cations: voltage follower - inverting, non-inverting amplifiers-sur	mming, scaling,			
averaging an	plifiers-instrumentation amplifiers-difference amplifier Nonlinear	applications:			
Integrator-dif	ferentiator-precision half wave & full wave rectifiers- peak detector	-sample & hold			
circuit-log &	anti-log amplifiers. Open loop applications: Comparator-zero cro	ssing detector-			
Window deteo	tor-Schmitt trigger.				
UNIT – III	OSCILLATORS AND MULTIVIBRATORS	9 Periods			
Barkhausen o	riterion- loop gain -Design of Oscillators: RC phase shift oscillato	r- Wien bridge			
oscillator Square wave generator - Triangular wave generator-Saw tooth wave generator - IC 555					
timer: Function	onal block diagram and description of Astable & Mono-stable multi-	vibrators using			
IC555 –Applic	ations: Missing pulse detector, PWM, FSK generator, Schmitt trigger.				
UNIT – IV	ACTIVE FILTERS AND DATA CONVERTERS	9 Periods			
	- Sallen-Key filter structure- Design of I order and II order Butterwo				
pass, High pa	ss, Band pass filters- Switched capacitor filter- Data Converters: D	/A converter -			
specifications	- weighted resistor type, Voltage Mode and Current-Mode R 2R	Ladder types -			
switches for D	/A converters, high speed sample-and-hold circuits- A/D Converters -	- specifications -			
Flash type – C	ounter type - Successive Approximation type - Dual Slope type A/D con	nverters.			
UNIT – V	PLL AND SPECIAL FUNCTION ICS	9 Periods			
Operation of	the basic PLL, Closed loop analysis, Voltage controlled oscillator, Mo	onolithic PLL IC			
565, applicat	ion of PLL for AM detection, FM detection, FSK demodulation	and Frequency			
synthesizing -	IC Voltage regulators – Three terminal fixed and adjustable voltage reg	gulators - IC 723			
general purpo	se regulator - Voltage to Frequency converter- Audio Power amplifier	IC.			
Contact Perio	ods:				
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 I	Periods			
TEXT BOOKS					

TEXT BOOKS:

	1	D.RoyChoudhry and Shail Jain, "Linear Integrated Circuits", New Age International Pvt. Ltd.,4th	
		Edition 2010	
		Ramakant A. Gayakwad, "OP-AMPs and Linear Integrated Circuits", 4th Edition, Prentice Hall /	
L		Pearson Education, 2015.	

1	Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", 4th
	Edition, Tata McGraw-Hill, 2014
2	Gray and Meyer, "Analysis and Design of Analog Integrated Circuits", Wiley International,
	2009.
3	S.Salivahanan and V.S. Kanchana Bhaaskaran, "Linear Integrated Circuits", Tata McGraw Hill
	Publishing company Ltd, 1st Edition, 2009.
4	Somanathan Nair, "Linear Integrated Circuits, Analysis, Design and Applications", Wiley India
	Publishers, 1st Edition, 2009

PREREQUISITES	CATEGORY	L	Τ	Р	C
NIL	РС	3	0	0	3

Course	Course To understand the theoretical and design aspects of digital circuits for designing					
Objective	ective digital system					
UNIT - I	- I DIGITAL FUNDAMENTALS 9 Periods					
-	ms - Decimal, Binary, Octal, Hexadecimal, 1's and 2's complements,					
-	, Gray, Alphanumeric codes, Boolean theorems, Logic gates, University	•				
	product of sums, Min terms and Max terms, Karnaugh map Minimiza	0				
▲	thod of minimization. Introduction to Verilog HDL.	don and Quine-				
UNIT - II	COMBINATIONAL CIRCUIT DESIGN	9 Periods				
0	and Full Adders, Half and Full Subtractors, Binary Parallel Adder - C					
•	dder, Binary Multiplier, Multiplexer, Demultiplexer, Magnitude Compa	•				
Encoder, Prior		arator, Decouer,				
		0 Dorio da				
UNIT - III	SYNCHRONOUS SEQUENTIAL CIRCUITS	9 Periods				
	, JK, T, D, Master/Slave. FF operation and excitation tables, Triggering					
	of clocked sequential circuits - Moore/Mealy models, state mini					
	rcuit implementation. Design of Counters- Ripple Counters: Binary,					
	inters-Counter for Random Sequence - Shift registers: -Universal	Shift Register-				
	counters-Ring counter-Johnson counter.					
UNIT - IV	ASYNCHRONOUS SEQUENTIAL CIRCUITS	9 Periods				
	Design of Asynchronous Sequential Circuits-Reduction of Flow Tal					
	es, state reduction, output specifications, cycles and races, race free					
Hazards: Esse	ntial Hazards, Pulse mode sequential circuits, Design of Hazard free	e circuits- Clock				
skews.						
UNIT - V	MEMORY AND PROGRAMMABLE LOGIC DEVICES	9 Periods				
Basic memory	Basic memory structure: ROM – PROM, EPROM, EEPROM, EAPROM, RAM: Static and dynamic RAM -					
Programmable Logic Devices: Programmable Logic Array (PLA) - Programmable Array Logic (PAL)						
- Field Programmable Gate Arrays (FPGA) - Implementation of combinational logic circuits using						
PLA, PAL,CPLD's. TTL and CMOS Logic families.						
	Contact Periods:					
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods				

TEXT BOOK

1	1 M.Morris R.Mano and Michael D.Ciletti," Digital Design", 4 th Edition, Pearson Education,2011.			
2	M.Morris R.Mano and Michael D.Ciletti, "Digital Design: With an Introduction to the Verilog			
	HDL", 5 th Edition, Pearson Education, 2013.			

1	Charles H.Roth., "Fundamentals of Logic Design", 6thEdition,Thomson Learning, 2013
2	Thomas L. Floyd, "Digital Fundamentals",10thEdition, Pearson Education Inc,2011
3	S.Salivahanan and S.Arivazhagan, "Digital Electronics', Ist Edition, Vikas Publishing House pvt
	Ltd,2012.
4	Anil K.Maini, " Digital Electronics" , Wiley, 2014.8
5	Soumitra Kumar Mandal, "Digital Electronics", McGraw Hill Education Private Limited, 2016.

ANALOG AND DIGITAL INTEGRATED CIRCUITS LABORATORY

PREREQUISITES	CATEGORY	L	Т	Р	С
ANALOG CIRCUITS AND DIGITAL CIRCUTS DESIGN	РС	0	0	3	1.5

Course	To Design and construct analog circuits using ICs 741 and 555, Digital Circuits
Objective	using Logic gates, Flip Flops and MSI devices.
	LIST OF EXPERIMENTS
	ANALOG IC EXPERIMENTS
	1. DC and AC Characteristics of OP-AMP.
	2. Simple Applications of OP-AMP – Inverting and non-inverting Amplifier,
	Voltage Follower, Adder, Integrator and Differentiator.
	3. Design and testing of Oscillators, Comparator and Schmitt Trigger Circuit.
	4. Design and Testing of Astable and mono-stable Multivibrator using 555 Timer IC.
	DIGITAL IC EXPERIMENTS
PRACTICALS	5. Design and implementation of combinational circuits using basic gates for arbitrary functions, code converters.
	6. Design and implementation of Half/Full Adder and Subtractor using Logic Gates.
	 7. Design and implementation of combinational circuits using MSI devices: (i) 4 – bit binary adder / subtractor (ii) Parity generator / checker
	(iii) Magnitude Comparator (iv) Application using multiplexers
	8. Verification of Flip-Flops.
	9. Design and Testing of Shift register, synchronous and asynchronous
	Counters.
Contact Periods: Lecture: 0 Period	s Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods
Lecture. o renou	is rutorial or critous rratucal 45 rerious rotal 45 rerious

1.	D. Roy Choudhry and Shail Jain, "Linear Integrated Circuits", New Age International Pvt.
	Ltd.,4th Edition 2010.
2.	Ramakant A. Gayakwad, "OP-AMPs and Linear Integrated Circuits", 4th Edition, Prentice Hall
	/ Pearson Education, 2015.
3.	Morris Mano, "Digital Design", 4th Edition, Pearson Education, 2011.
4.	A.Anand Kumar, "Fundamentals of Digital Circuits", 2nd Edition, PHI Learning Pvt. Ltd,
	NewDelhi,2011.

CONTINUOUS TIME SIGNALS AND SYSTEMS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	3	0	0	3

Course To analyse the Continuous Time signals and systems using Continuous Time Fourier					
ective Series, Fourier Transform and Laplace Transform.					
UNIT – I INTRODUCTION TO CONTINUOUS TIME SIGNALS AND SYSTEMS 9 Periods					
Introduction to Continuous Time (CT) signals - step, ramp, impulse, exponential, sinusoidal signals,					
Representation of CT signals by Standard signals - signal operations classification of CT signals -					
periodic and aperiodic signals, random signals, energy and power signals, even and odd signals-					
linear time invariant CT systems - basic system properties: linear time invariant, causality, BIBO					
stability					
UNIT - II ANALYSIS OF CONTINUOUS TIME SIGNALS USING CONTINUOUS 9 Periods					
TIME FOURIER SERIES					
Fourier series representation of Continuous Time Periodic signals - Convergence of the Fourier					
series - Properties of continuous time Fourier series - Fourier series and LTI systems.					
UNIT – III ANALYSIS OF CONTINUOUS TIME SIGNALS USING CONTINUOUS 9 Periods TIME FOURIER TRANSFORM					
Fourier transform representation of continuous time aperiodic signals - Convergence of Fourier					
transform - Fourier transform for periodic signals - Properties of continuous time Fourier					
transform - convolution integrals - Analysis and Characterization of LTI systems using Fourier					
Transform.					
UNIT - IV ANALYSIS OF CONTINUOUS TIME SIGNALS USING LAPLACE 9 Periods					
TRANSFORM					
Laplace Transform - Region of Convergence of Laplace Transform - Inverse Laplace Transform -					
Properties of Laplace Transform - Relation between Laplace transform and Fourier transform -					
Analysis and Characterization of LTI systems using Laplace transform.					
UNIT - V SYSTEM FUNCTION ALGEBRA AND BLOCK DIAGRAM 9 Periods REPRESENTATIONS					
Unilateral Laplace transform and its properties - Inverse Unilateral Laplace transform - Solving					
Differential equations using Unilateral Laplace transform - System functions for Interconnections of					
continuous time LTI systems - Block diagrams representations for causal LTI systems described by					
differential equations and Rational system functions.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					
TEXT BOOK:					

1	Oppenheim, Willsky and Hamid, "Signals and Systems" , 2nd Edition, Pearson Education, New
	Delhi, 2015.
2	Simon Haykin and Barry Van Veen, "Signals and Systems" , Second Edition, Wiley, New Delhi,
	2002.

1	B. P. Lathi, "Principles of Linear Systems and Signals", 2nd Edition, Oxford, 2009.
2	M. J. Roberts, "Signals and Systems Analysis using Transform methods and MATLAB", McGraw-
	Hill Education, 2018.
3	John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007.
4	Hwei Hsu, "Schaum's Outline Series Signals and systems", Second Edition, TMH, 2011.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Classify Continuous time signals and systems based on various	K3
	Characteristics and decomposition for easier analysis.	
CO2	Determine frequency components of Continuous time periodic signals and	К3
	obtain the frequency response of the Continuous time LTI systems	
CO3	Determine frequency components of Continuous time Aperiodic signals and	К3
	obtain the frequency response of the Continuous time LTI systems	
C04	Determine and analyze the causality and stability of Continuous time LTI	К3
	systems from their impulse responses.	
C05	Analyze Continuous time LTI systems and realize with various structures	K4

DISCRETE TIME SIGNALS AND SYSTEMS

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	PC	3	0	0	3

Course	Course To analyse the Discrete Time signals and systems using Discrete Time Fourier				
Objective	ective Series, Discrete Time Fourier Transform and Z Transform.				
UNIT – I	INTRODUCTION TO DISCRETE TIME SIGNALS AND SYSTEMS	9 Periods			
	to Discrete Time (DT) signals - step, ramp, impulse, exponential, si	•			
	n of DT signals by Standard signals - signal operations - classificatio				
	aperiodic signals, random signals, energy and power signals, even a				
linear time in stability.	variant DT systems - basic system properties: linear time invariant	, causality, BIBO			
UNIT – II	ANALYSIS OF DISCRETE TIME SIGNALS USING DISCRETE TIME FOURIER SERIES	9 Periods			
Fourier series	representation of Discrete Time Periodic signals - Convergence of th	e Fourier series -			
Properties of o	discrete time Fourier series – Discrete Time Fourier series and LTI sy	stems.			
UNIT – III	ANALYSIS OF DISCRETE TIME SIGNALS USING DISCRETE	9 Periods			
	TIME FOURIER TRANSFORM				
	form representation of discrete time aperiodic signals -Discret				
	periodic signals - Properties of Discrete Time Fourier Transform - co				
-	Property - Duality - Systems characterized by Linear constant coef	ficient difference			
equations.					
UNIT – IV	ANALYSIS OF DISCRETE TIME SIGNALS	9 Periods			
	npling of CT signals- Aliasing, Reconstruction of CT signal from				
	Properties of Z Transform - Region of Convergence of Z Transf				
	Relation between Laplace transform and Z transform - Analysis and	Characterization			
	s using Z transform.				
UNIT – V	UNILATERAL Z TRANSFORM, SYSTEM FUNCTION ALGEBRA	9 Periods			
	AND BLOCK DIAGRAM REPRESENTATIONS				
	ransform and its properties - Inverse Unilateral Z transform - So				
	ng Unilateral Z transform - System functions for Interconnections of I				
systems - Block diagrams representations for causal LTI systems described by difference equations					
	ystem functions.				
Contact Periods:					
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods			
TEXT BOOK:					
1 Onnenhein	n, Willsky and Hamid, "Signals and Systems" , 2nd Edition, Pearson Edi	ication New			

T	oppennenn, whisky and hanna, signals and systems , 2nd Earton, Pearson Education, New
	Delhi, 2015.
2	Simon Haykin and Barry Van Veen, "Signals and Systems" , Second Edition, Wiley, New Delhi,
	2002.

1	B. P. Lathi, "Principles of Linear Systems and Signals", 2nd Edition, Oxford, 2009.
2	M. J. Roberts, "Signals and Systems Analysis using Transform methods and MATLAB",
	McGraw- Hill Education, 2018.
3	John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007.
4	Hwei Hsu, "Schaum's Outline Series Signals and systems" , Second Edition, TMH, 2011.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Classify Discrete time signals and systems based on various Characteristics and decomposition for easier analysis. metal semiconductor devices	К3
CO2	Determine frequency components of Discrete time periodic signals and obtain the frequency response of the Continuous time LTI systems	К3
CO3	Determine frequency components of Discrete time Aperiodic signals and obtain the frequency response of the Continuous time LTI systems	К3
CO4	Determine and analyze the causality and stability of Discrete time LTI systems from their impulse responses.	К3
C05	Analyze Discrete time LTI systems and realize with various structures	K4

ANALOG COMMUNICATION

9 Periods

PREREQUISITES	CATEGORY	L	Т	Р	С
CONTINUOUS TIME SIGNALS AND SYSTEMS	PC	3	0	0	3
DISCRETE TIME SIGNALS AND SYSTEMS					

Course
ObjectiveTo understand the concepts of Analog modulation schemes and to impart
knowledge about baseband signal processing techniques.

UNIT - IAMPLITUDE MODULATION SYSTEMS9 PeriodsNeed for modulation - Amplitude Modulation - DSBFC, DSBSC, SSB, VSB - Modulation index,
Spectra, Power relations and Bandwidth Requirements - AM Generation and detection- DSBSC
Generation and detection - SSB Generation and detection - VSB Generation -Hilbert transform,
Comparison of AM systems. Block diagram of AM broadcasting transmitters- Low Level and High
Level transmitters.

UNIT - IIANGLE MODULATION SYSTEMS9 PeriodsPhase and Frequency Modulation - Single tone, Narrow Band and Wideband FM - Modulation index,
Spectra, Power relations and Transmission Bandwidth - FM Generation: Direct method and Indirect
method of FM Generation - Demodulation of FM Signal Balanced Slope detector - FM Discriminator
- PLL as FM Demodulator - Stereo FM- FM Transmitter.9 Periods

UNIT – III NOISE THEORY

Gaussian Process - Central limit theorem - Noise sources and types - Noise Figure- Noise temperature - Noise in cascaded systems - Representation of Narrow band noise - In-phase and Quadrature components - Envelope and Phase components - Properties of Narrow band noise.

UNIT - IVPERFORMANCE OF CW MODULATION SYSTEMS9 PeriodsSuper heterolyne Radio receiver and its characteristic; SNR; Noise in DSBSC systems using
coherent detection; Noise in AM system using envelope detection - Noise in FM system1Capture
effect - FM threshold effect; Pre-emphasis and De-emphasis in FM; Comparison of performances,
FDM.9 PeriodsUNIT - VSAMPLING & WAVEFORM CODING9 Periods

UNIT - VSAMPLING & WAVEFORM CODING9 PeriodsLow pass sampling theorem - Aliasing - Signal Reconstruction-Quantization - Uniform & Non
uniform quantization - quantization noise - Pulse Modulation-PAM, PPM, PDM, PCM - Prediction
filtering and DPCM - Delta Modulation - Delta Sigma Modulation - ADPCM & ADM principles - Linear
Predictive Coding - TDM - Digital Multiplexers.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

1	Simon Haykin, "Communication Systems", John Wiley & sons, NY, 4th Edition, 2001.
2	Kennedy G, "Electronic Communication systems", Tata McGraw Hill, New Delhi, 2009.

1	B.P.Lathi, "Modern Digital and Analog Communication Systems",3rd Edition, Oxford University
	Press, 2007.
2	Dennis Roddy & John Coolen, "Electronic Communication", (IV Ed.), Prentice Hall of India, 2014.
3	H P Hsu, Schaum Outline Series - "Analog and Digital Communications" TMH 2006.
4	Herbert Taub& Donald L Schilling – "Principles of Communication Systems" (3rd Edition) –
	Tata McGraw Hill, 2008.
5	J.G.Proakis, M.Salehi, "Fundamentals of Communication Systems", Pearson Education 2006

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Apply transforms for signal modulation techniques.	K3
C02	Develop the architecture of communication system for analog modulation techniques	К3
CO3	Explore the different types of noise sources	K2
CO4	Apply the concepts of random process in the analysis of performance of AM and FM systems	K4
C05	Discuss the process of sampling, quantization and coding that are fundamentals to the digital transmission of analog signals	К2

MICROPROCESSORS AND MICROCONTROLLERS

PREREQUISITES	CATEGORY	L	Т	Р	С
DIGITAL SYSTEM DESIGN	PC	3	0	0	3

Course Objectives					
UNIT – I	8086 MICROPROCESSORS	9 Periods			
Introduction to 8086 - Microprocessor architecture - Addressing modes - Instruction set and assembler directives - Assembly language programming - Modular Programming - Linking and Relocation - Stacks - Procedures - Macros - Interrupts and interrupt service routines - Byte and String Manipulation.					
UNIT – II	8086 SYSTEM BUS STRUCTURE	9 Periods			
programming	 Basic configurations - System bus timing - System design u Introduction to Multiprogramming - System Bus Structure - Co-processor, closely coupled and loosely Coupled configurations essors. 	- Multiprocessor			
UNIT – III	I/O INTERFACING	9 Periods			
interface - D/A	Facing and I/O interfacing - Parallel communication interface - Seria A and A/D Interface - Timer - Keyboard /display controller - Inter er - Programming and applications Case studies: Traffic Light cont lay interface.	rupt controller -			
UNIT – IV	MICROCONTROLLER	9 Periods			
	f 8051 - Special Function Registers(SFRs) - I/O Pins Ports and res - Addressing modes - Types of Addressing Modes - Assembly langua				
UNIT – V	INTERFACING MICROCONTROLLER	9 Periods			
Interfacing - A		pper Motor and M processors.			
TEXT BOOK:					
Yu-Cheng Liu, Glenn A.Gibson, — Microcomputer Systems: "The 8086 / 8088 Family - Architecture, Programming and Design ", Second Edition, Prentice Hall of India, 2007.					
2 Mohamed A					
	Embedded Systems: Using Assembly and C ", Second Edition, Pearson education, 2011.				
REFERENCES:					
1 Doughlas V. 2012.	.Hall,-"Microprocessors and Interfacing, Programming and Hardy	ware", TMH,			

- ² A.K.Ray, K.M.Bhurchandi, **"Advanced Microprocessors and Peripherals",** 3rd edition, Tata McGraw-Hill, 2012
- ³ Krishna Kanth, "Microprocessor and Microcontroller Architecture, Programming and System Design using 8085, 8086, 8051", Prentice Hall of India, 2011.
 ⁴ Kenneth I Avala "The 8051 Microcontroller" 3rdedition Thompson Delmar Learning 2007 J
- ⁴ Kenneth J.Ayala, **"The 8051 Microcontroller"**, 3rdedition, Thompson Delmar Learning, 2007, New Delhi.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
C01	Discuss the basic concepts of 8086 processor .	K2
CO2	Explain the 8086 Bus structure.	K2
CO3	Illustrate the I/O Interfacing.	K3
C04	Discuss the 8051 Microcontroller architecture.	К2
C05	Illustrate the Microcontroller interfacing.	К3

ELECTROMAGNETIC FIELDS

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	3	0	0	3

Course	To apply Maxwell's equations of electrostatic field and magn	etostatic field to		
Objective	To upply many on 5 equations of electrostatic neta and magnetostatic neta to			
	behavior of time-varying electromagnetic field in different			
	the average power transmission.	meula anu miu		
UNIT – I	COORDINATE SYSTEMS	9 Periods		
	ra - Coordinate Systems: Cartesian - Cylindrical - Spherical coordinat			
0	tributions - Electric field intensity due to various charge distributions a charge. Electric field due to charged given law ring. Electric field due			
	e charge - Electric filed due to charged circular ring - Electric field du			
	ectric Field - Coulomb's Law - Electric flux density and dielectric c	constant - Gauss s		
UNIT – II	ion of Gauss's law.	9 Periods		
	ELECTROSTATIC FIELDS			
	st equation - Divergence theorem - Electric potential due to point,			
	es - Conductors in static electric field, Dielectrics in static electric fi			
	nd V - Energy density - Boundary conditions in electrostatic fields	- Capacitance of		
· ·	s - Capacitance of coaxial cable - Laplace and Poisson's equations.			
UNIT – III	MAGNETOSTATIC FILEDS	9 Periods		
Magnetic Fie	lds and its properties-Biot Savart's Law- Ampere's Circuital Law	<i>w</i> -Applications of		
	cuital law-Magnetic flux density and Maxwell's Equations-Magnetic			
Magnetic Bou	ndary Conditions-inductance and Mutual Inductance-Energy Stored	in magnetic field		
UNIT – IV	MAXWELL'S EQUATION FOR TIME VARYING FIELDS	9 Periods		
Faraday's lav	v - Equation of continuity - Inconsistency of Ampere's law - M	odified Ampere's		
circuital law	for time varying fields - Displacement current and displacement	current density -		
Maxwell's equ	lation of time varying field - Boundary conditions for time varying fie	elds.		
UNIT – V	ELECTROMAGNETIC WAVES	9 Periods		
Uniform plan	e waves - Wave equation for conducting medium - Uniform plane	wave in dielectric		
medium - Reflection of uniform plane wave - Normal incidence - Polarization of uniform plane				
waves - Poynting vector and Poynting theorem.				
Contact Periods:				
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Period	ls		
TEXT BOOK:				
	O.Sadiku. "Elements of Electromagnetics" . 7th Edition. Oxford Unive	maity proce 2021		
\perp <i>Mathew.</i> N	.U.SUUIKU. EIEMENIS OF EIECLFOINDUNELICS . 7 LA EULION. UXIOPA UNIVE	ISHV DIPSS ZUZT		

Mathew.N.O.Sadiku, "Elements of Electromagnetics", 7th Edition, Oxford University press, 2021.
 William H.Hayt,"Engineering Electromagnetics", 8th Edition, Tata McGraw-Hill, 2012.
 REFERENCES:

 Edward.C.Jordan & Keith.G.Balmain,"Electromagnetic Waves and Radiating Systems", 2nd Edition, Prentice Hall of India,2009.
 David K.Cheng, "Field and Wave Electromagnetics", 2nd Edition, Pearson Education, 2013
 U.A.Bakshi & A.V. Bakshi, "Electromagnetic Waves and Transmission Lines", Technical Publications, Pune, 2009.

 Rajeev Bansal, "Fundamentals of Engineering Electromagnetics", Taylor & Francis, 2018

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Apply the knowledge of co-ordinate systems to Electric fields	К3
CO2	Explain the concepts of Electrostatic fields.	K2
CO3	Explain the concepts of Magnetostatic fields.	K2
CO4	Apply the Maxwell's equation solution to Time varying fields.	К3
C05	Discuss the characteristics of Electromagnetic wave propagation in Uniform plane.	K2

DIGITAL SIGNAL PROCESSING

PREREQUISITES	CATEGORY	L	Т	Р	С
CONTINUOUS TIME SIGNALS AND SYSTEMS	PC	3	0	0	3
DISCRETE TIME SIGNALS AND SYSTEMS					

CourseTo study DFT, digital filter design algorithms, finite word length effects, multi rateObjectivesignal processing and architecture of Digital signal processor.

UNIT - IDISCRETE FOURIER TRANSFORM9 PeriodsReview of discrete-time signals and systems - DFT and its properties, FFT algorithm1Decimation in
Time Algorithm - Decimation in Frequency - Computation of Inverse DFT using FFT and its
application to convolution. Sectioned convolution - Overlap add and overlap save methods.

UNIT - IIINFINITE IMPULSE RESPONSE DIGITAL FILTERS9 PeriodsDesign of analog Butterworth and Chebyshev Filters - Frequency transformation in analog domain -
Design of IIR digital filters - Impulse invariance technique, Bilinear transformation - Realization of
IIR filters - Direct, cascade and parallel forms.9 Periods

UNIT – III FINITE IMPULSE RESPONSE DIGITAL FILTERS

9 Periods

Symmetric and Anti-symmetric FIR filters - Linear phase FIR filters - FIR Design using Fourier series method - window method - rectangular, Hamming and Hanning windows - Frequency sampling method - Realization of FIR filters - Linear phase, Traversal structures - comparison of FIR and IIR filters.

UNIT – IV	FINITE WORD LENGTH EFFECTS AND MULTI-RATE SIGNAL	9 Periods
	PROCESSING	

Fixed point and floating-point number representations - Comparison - Quantization Error - Quantization Noise Power - Finite word length effects - Signal scaling - Introduction to Multi -rate signal processing Decimation - Interpolation - multistage implementation - Application.

UNIT - VDIGITAL SIGNAL PROCESSOR9 PeriodsHarvard and modified Harvard architectures - architecture of C6X processors - Features of C67Xprocessor - Internal architecture - CPU - General Purpose register files - Functional Units andoperation - data paths - Control registers - Functional Units and instructions - Parallel and pipelineoperations - Interrupts.

Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

1	John G Proakis and Manolakis, "Digital Signal Processing Principles, Algorithms and Applications", Pearson, Fourth Edition, 2007.
	B. Venkataramani, M. Bhaskar, " Digital Signal Processor Architecture, Programming and Applications" Second Edition, 2011

1	Johny R. Johnson, "Introduction to Digital Signal Processing", PHI, 2008
2	E.C. Ifeachor and B.W. Jervis, "Digital signal processing – A Practical approach" , Prentice Hall, 2011
3	S.K. Mitra, "Digital Signal Processing, A Computer Based approach" , Tata McGrawHill, 2011 fourth international edition
4	Monson H. Hayes, "Statistical Digital Signal Processing and Modeling" , John Wiley and Sons Inc., New York, 2006.
5	Rulph Chassaing, "Digital Signal Processing and Applications with the C6713 and C6416DSK",

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Solve problems using DFT & FFT algorithms	К3
CO2	Design and realize digital IIR filters	К3
CO3	Design and realize digital FIR filters	К3
C04	Understand finite word length effects and have an exposure to Multirate signal processing and its applications.	К2
C05	Explain Digital signal Processor families and architecture	K2

PREREQUISITI	es.	CATEGORY	L	Т	Р	С			
	CONTINUOUS TIME SIGNALS AND SYSTEMS PC				0	3			
DISCRETE TIME SIGNALS AND SYSTEMS									
	Course To understand the various source coding theorems, Channel coding theorem usin								
Objective	Objective information theory, impart knowledge in the basics of error control coding, spread								
	spectrum techniques, baseband and pass band dig	ital transmission	1						
UNIT – I	INFORMATION THEORY		-	9 Periods					
	nformation - Entropy - Source coding theorem -								
	rministic, noiseless channel - BEC, BSC - Mutual								
	ley law - Arithmetic coding - Shannon-Fano cod	ing, Huffman Co	ding,	Run	len	igth			
coding, LZW a			1						
UNIT – II	ERROR CONTROL CODING TECHNIQUES			9 Per					
	g theorem - Linear block codes - Hamming codes - (Cyclic codes - Cor	ivolu	tiona	al Co	des			
- Viterbi deco	0								
UNIT – III	BASEBAND TRANSMISSION		9 Periods			5			
Line codes - I	Properties - Power Spectral Density of Unipolar /	Polar RZ & NRZ	Z - Bi	pola	r NF	₹Z -			
Manchester -	ISI - Nyquist criterion for distortionless transmiss	sion - Pulse shap	oing -	Cor	rela	tive			
	attern - Equalization.	-	0						
UNIT – IV	BANDPASS SIGNALING		9	9 Per	iod	s			
Introduction t	o Band Pass Sampling theorem - Geometric represe	entation of signal	s - M	L det	ecti	on -			
Correlator an	d matched filter detection - Generation and det	ection, BER and	l Pov	ver :	spec	tral			
Density of BPS	SK, BFSK,QPSK,MSK - Structure of non-coherent rec	eivers generation	1 and	dete	ctio	n of			
BFSK, DPSK –	Comparison - M-ary PSK, M-ary FSK - Principles of (QAM.							
UNIT – V	SYNCHRONISATION AND SPREAD SPECTRUM T	ECHNIQUES	9) Per	iod	5			
Carrier, frame and symbol/Chip synchronization techniques, Spread Spectrum - PN Sequences,									
Direct Sequence and Frequency Hopping Spread Spectrum Systems, BER Analysis, Processing gain									
and Jamming	and Jamming Margin.								
Contact Perio	Contact Periods:								
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods								
TEXT BOOK:	TEXT BOOK:								

1S. Haykin, "Digital Communications", John Wiley, 20152B.P.Lathi, "Modern Digital and Analog Communication Systems", Third edition, Oxford 2

University Press 2007.

1	S.P.Eugene Xavier, "Statistical theory of Communication", New Age International Private
1	Limited, 2008.
2	H P Hsu, Schaum Outline Series, "Analog and Digital Communications", TMH 2006.
3	J.G Proakis, "Digital Communication", Fifth edition, Tata Mc Graw Hill Company, 2008.
4	Herbert Taub & Donald L Schilling – "Principles of Communication Systems" Third Edition
4	Tata McGraw Hill, 2008.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Relate the notion of Entropy and mutual information to source coding theorem and channel capacity	K3
CO2	Apply error control coding techniques to find the error detection and correction capability of codes	K3
CO3	Summarize the various baseband processing techniques	K2
CO4	Explain the spectral characteristics of band pass signaling schemes and their noise performance	K2
C05	Describe the concept of synchronization, spread spectrum systems	K2

NETWORKS AND TRANSMISSION LINES

PREREQUISITI	Γς.	CATEGORY	L	Т	Р	С				
	CTRIC CIRCUITS AND ELECTRON DEVICES	PC	3	0	0	3				
		ĨĞ		v	v	5				
Course To understand the basic concepts of two port networks, synthesis network and										
Objectives familiarize the concepts of transmission lines.										
UNIT – I TWO PORT NETWORKS 9 Periods										
	work Parameters: Z, Y, ABCD and Hybrid Parameter									
	es, Parallel - Symmetrical networks: T and PI eq									
	impedance and propagation constant - Asymmetric		age a	ind I	tera	tive				
	Image transfer constant and iterative transfer consta	nt.	_							
UNIT – II	PASSIVE NETWORKS			9 Per						
	ters - m derived filters - Composite filters - Desig		Serie	s and	d sh	unt				
	nmetrical and asymmetrical attenuators - T and PI s	ections.	г							
UNIT – III	PASSIVE NETWORK SYNTHESIS		Ģ) Per	iods	S				
Hurwitz polyr	nomials - positive real functions - Driving point fur	nction synthesis	- LC	imn	nitta	nce				
functions - RC	impedance/admittance functions - RL admittance/i	mpedance funct	tions	- Fos	ter a	and				
Cauer forms o	f RC,RL and LC networks.									
UNIT – IV	TRANSMISSION LINE THEORY		C) Per	iods	s				
Line paramete	ers and transmission constants - Transmission line	equation-Physic								
	Infinite line - Input and transfer impedance - Wave									
-										
			r -	line Loading - Reflection phenomena-Reflection loss and insertion loss - Skin and proximity effect-						
T and PI equivalent of transmission lines.9 PeriodsUNIT - VLINE AT RADIO FREQUENCIES9 Periods										
UNIT – V	LINE AT RADIO FREQUENCIES		Ģ) Per	iods	s				
	_	– Standing Wav								
Parameters of	open wire line and co-axial line at high frequencies	– Standing Wav on between VSV	es-Sta	andir	ıg w	vave				
Parameters of ratio- Input in	open wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relation	on between VSV	es-Sta VR ar	andir 1d re	ıg w flect	vave tion				
Parameters of ratio- Input in coefficient-Qu	open wire line and co-axial line at high frequencies	on between VSV	es-Sta VR ar	andir 1d re	ıg w flect	vave tion				
Parameters of ratio- Input in	open wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relationarter wave transformer- Single and double stub	on between VSV	es-Sta VR ar	andir 1d re	ıg w flect	vave tion				
Parameters of ratio- Input ir coefficient-Qu applications.	open wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relationarter wave transformer- Single and double stub ods:	on between VSV matching- Smi	es-Sta VR ar th ch	andir 1d re 1art	ıg w flect	vave tion				
Parameters of ratio- Input ir coefficient-Qu applications. Contact Perio	open wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relationarter wave transformer- Single and double stub ods:	on between VSV matching- Smi	es-Sta VR ar th ch	andir 1d re 1art	ıg w flect	vave tion				
Parameters of ratio- Input ir coefficient-Qu applications. Contact Perio Lecture: 45 P TEXT BOOK:	open wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relatic arter wave transformer- Single and double stub ods: eriods Tutorial: 0 Periods Practical: 0 Perio	on between VSV matching- Smi ds Total: 45 F	es-Sta VR ar th ch	andir 1d re 1art ds	ng w flect and	vave tion its				
Parameters of ratio- Input in coefficient-Qu applications. Contact Perio Lecture: 45 P TEXT BOOK:	open wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relatio arter wave transformer- Single and double stub ods: eriods Tutorial: 0 Periods Practical: 0 Perio	on between VSV matching- Smi ds Total: 45 F	es-Sta VR ar th ch	andir 1d re 1art ds	ng w flect and	vave tion its				
Parameters of ratio- Input in coefficient-Qu applications. Contact Perio Lecture: 45 P TEXT BOOK: 1 Sudhahar. Hill, New D	Topen wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relation arter wave transformer- Single and double stub ods: eriods Tutorial: 0 Periods Practical: 0 Perio A, ShyammohanS.P, "Circuits and Networks: Analysis welhi, Fourth Edition, 2010.	on between VSV matching- Smi ds Total: 45 F s and Synthesis	es-Sta VR ar th ch	andir 1d re 1art ds	ng w flect and	vave tion its				
Parameters of ratio- Input in coefficient-Qu applications. Contact Perio Lecture: 45 P TEXT BOOK: 1 Sudhahar. Hill, New D 2 John D. Ryc	open wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relatio arter wave transformer- Single and double stub ods: eriods Tutorial: 0 Periods Practical: 0 Perio	on between VSV matching- Smi ds Total: 45 F s and Synthesis	es-Sta VR ar th ch	andir 1d re 1art ds	ng w flect and	vave tion its				
Parameters of ratio- Input in coefficient-Qu applications. Contact Perio Lecture: 45 P TEXT BOOK: 1 Sudhahar.4 Hill, New D 2 John D. Ryo REFERENCES:	Topen wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relation arter wave transformer- Single and double stub ods: eriods Tutorial: 0 Periods Practical: 0 Perio A, ShyammohanS.P, "Circuits and Networks: Analysis elhi, Fourth Edition, 2010. der, "Networks, Lines and Fields", PHI, 2nd edition, 2	on between VSV matching- Smi ds Total: 45 F s and Synthesis	es-Sta VR ar th ch	andir nd re nart ds	ng w flect and <i>Gra</i> v	vave tion its				
Parameters of ratio- Input ir coefficient-Qu applications. Contact Perio Lecture: 45 P TEXT BOOK: 1 Sudhahar. 1 Sudhahar. 2 John D. Ryc REFERENCES:	Topen wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relation arter wave transformer- Single and double stub ods: eriods Tutorial: 0 Periods Practical: 0 Perio A, ShyammohanS.P, "Circuits and Networks: Analysis belhi, Fourth Edition, 2010. Her, "Networks, Lines and Fields", PHI, 2nd edition, 2 tha, "Transmission Lines and Network", Satya Prakas	on between VSV matching- Smi ds Total: 45 F s and Synthesis	es-Sta VR ar th ch	andir nd re nart ds	ng w flect and <i>Gra</i> v	vave tion its				
Parameters of ratio- Input in coefficient-Qu applications. Contact Perio Lecture: 45 P Sudhahar.1 All, New D 2 John D. Ryc REFERENCES: 1 Umesh Sini Delhi,2012	Topen wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relation arter wave transformer- Single and double stub ods: eriods Tutorial: 0 Periods Practical: 0 Perio A, ShyammohanS.P, "Circuits and Networks: Analysis belhi, Fourth Edition, 2010. Her, "Networks, Lines and Fields", PHI, 2nd edition, 2 ha, "Transmission Lines and Network", Satya Prakas	on between VSV matching- Smi ds Total: 45 F s and Synthesis 009 shan Publishing of	es-Sta VR ar th ch Period	andir nd re nart ds any,	ng w flect and Grav	vave tion its				
Parameters of ratio- Input in coefficient-Qu applications. Contact Perior Lecture: 45 P 3 3 4 3 3 4 3 2 3 3 3 3 3 3 3 3 3 3 3 3	Topen wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relationarter wave transformer- Single and double stub ods: eriods Tutorial: 0 Periods Practical: 0 Perio A, ShyammohanS.P, "Circuits and Networks: Analysis elhi, Fourth Edition, 2010. der, "Networks, Lines and Fields", PHI, 2nd edition, 2 ha, "Transmission Lines and Network", Satya Prakas and A.K. Chakraborty, "Network Analysis and Synthe hury D., "Networks and Systems," New Age Internat	on between VSV matching- Smi ds Total: 45 F s and Synthesis 009 Shan Publishing of esis", McGraw H	es-Sta VR ar th ch Perio <i>", Tat</i> <i>Comp</i>	andir nd re nart ds any, tediti	ng w flect and Grav	vave tion its				
Parameters of ratio- Input in coefficient-Qu applications. Contact Perio Lecture: 45 P Sudhahar. 1 3 3 3 3 3 1 3 1 1 1 1 1 1 1 1 1 1 1	Topen wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relationarter wave transformer- Single and double stub ods: eriods Tutorial: 0 Periods Practical: 0 Perio A, ShyammohanS.P, "Circuits and Networks: Analysis elhi, Fourth Edition, 2010. der, "Networks, Lines and Fields", PHI, 2nd edition, 2 ha, "Transmission Lines and Network", Satya Prakas and A.K. Chakraborty, "Network Analysis and Synthe hury D., "Networks and Systems," New Age Internat	on between VSV matching- Smi ds Total: 45 F s and Synthesis 009 shan Publishing cesis", McGraw H. ional Publishers,	es-Sta VR ar th ch Perio <i>", Tat</i> <i>Comp</i>	andir nd re nart ds any, tediti	ng w flect and Grav	vave tion its				
Parameters of ratio- Input in coefficient-Qu applications. Contact Perior Lecture: 45 P TEXT BOOK: 1 Sudhahar. 1 Sudhahar. 1 John D. Ryc 2 John D. Ryc REFERENCES: 1 Umesh Sini Delhi,2012 2 S.P. Ghosh 2010. 3 Roy, Choura reprint, 20 4 M.E. VanVo	Topen wire line and co-axial line at high frequencies npedance of open and short circuited lines- Relation arter wave transformer- Single and double stub ods: eriods Tutorial: 0 Periods Practical: 0 Perio A, ShyammohanS.P, "Circuits and Networks: Analysis Pelhi, Fourth Edition, 2010. Ner, "Networks, Lines and Fields", PHI, 2nd edition, 2 ha, "Transmission Lines and Network", Satya Prakas and A.K. Chakraborty, "Network Analysis and Synthe Thury D., "Networks and Systems," New Age Internation (Hury D., "Networks and Systems," New Age Internation (Herner, "Networks Analysis, INDIA PEARSON," 3rd "Electromagnetic Field theory and Transmission Internation (Herner)	on between VSV matching- Smi ds Total: 45 F s and Synthesis 009 shan Publishing of esis", McGraw H ional Publishers, edition, 2015.	es-Sta VR ar th ch Period ", Tat Comp ill, 1st 2nde	andir nd re nart ds any, teditio	ng w flect and Grav New on	ww				

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
C01	Compute the network parameters and recollect the symmetrical and asymmetrical networks.	К2
CO2	Design the various passive networks.	К3
CO3	Synthesize an electric network using driving point functions.	К3
C04	Derive the transmission line equation and loading effect.	K2
C05	Illustrate the line behaviour at radio frequencies and stub matching techniques.	К3

COMPUTER COMMUNICATION

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	РС	3	0	0	3

Course To gain knowledge about the network layers and familiarize with the functions and							
Objective	ctive protocols of each layer of TCP/IP protocol suite.						
UNIT – I	APPLICATION LAYER	9 Periods					
	omputer Networking - Layered Architecture - ISO/OSI Model - Inter						
(TCP/IP) - App	olication Layer Protocols - HTTP - FTP - Telnet - Email - DNS - Socket						
UNIT – II	TRANSPORT LAYER	9 Periods					
End to End P	rotocols - Connectionless Transport Protocols - User Datagram I	Protocol (UDP) -					
Reliable Data	Fransfer - Connection Oriented Transport Protocols - Transmission	Control Protocol					
(TCP) - Flow	Control - Congestion Control - Transport Layer Alternatives (RI	PC) - Real Time					
Transport pro	tocol.						
UNIT – III	NETWORK LAYER	9 Periods					
Mask(VLSM) - Translation - E	ocol - IPV4 Packet Format - IP Addressing - Subnetting - Variable Classless Inter Domain Routing (CIDR) - Private Addressing - N 300TP/DHCP - ICMP - Router - Routing Principles - Distance Vector ting - (OSPF) - Path Vector Routing (BGP) - IPV6 - Quality of Service	letwork Address Routing - (RIP) -					
UNIT – IV	DATA LINK LAYER	9 Periods					
Link Layer - F	Framing - Addressing - Error Detection and Correction - Multiple	Access Protocols					
Address Resol	ution Protocol (ARP) - Ethernet Basics - CSMA/CD - Frame Forn	nat - Switching -					
Types (datagr	am, virtual) - Hubs, Bridges, Switches - Virtual LAN (VLAN) - Wir	eless LAN (IEEE					
802.11) - WAN	l Technologies - ATM - Frame Relay - MPLS.						
UNIT – V	DATA COMMUNICATIONS	9 Periods					
Transmission	- Impairments - Bandwidth Limitations - Modulation - Freque	ncy Spectrum -					
Multiplexing -	Encoding Techniques - Transmission Media - Copper - Fiber -	Optical - Radio					
(wireless) - Ca	ble Pinouts - Crossover - Straight Through - Rollover.						
Contact Perio	ds:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

TEXT BOOK:

1	Behrouz A. Forouzan and Firouz Mosharraf, "Computer Networks a Top Down Approach", Tata
	McGraw-Hill, 1st Edition, 2011.
2	James F. Kurose, Keith W. Ross, "Computer Networking, A Top-Down Approach Featuring the
2	Internet", 6th Edition, Pearson Education, 2012.

1	Larry L. Peterson, Bruce S. Davie, "Computer Networks: A Systems Approach" , 5th Edition, Morgan Kaufmann Publishers Inc., 2011.
	Morgan Kaufmann Publishers Inc., 2011.
2	William Stallings, "Data and Computer Communications" , 10th Edition, Pearson Education, 2014.
3	Nader F. Mir, "Computer and Communication Networks", 2nd Edition, Prentice Hall, 2015
3	Nader F. Mir, Computer and Communication Networks, 2nd Edition, Prentice Hall, 2015

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
C01	Gain Knowledge about application layer Protocols.	K1
C02	Discuss the protocols and Congestion control algorithms in Transport layer protocols.	K2
C03	Gain knowledge about various internet protocols and apply the networking algorithms.	K3
C04	Describe protocol in data link layer and error detection and correction methods.	K3
C05	Explain the concepts of data communications in computer network.	K2

COMMUNICATION SYSTEMS LABORATORY

PREREQUISITE	S	CATEGORY	L	Т	Р	С
	NIL	РС	0	0	3	1.5
Course To understand the role of each module present in the communication lin						
Objective includes various Analog modulation and Digital modulation technic						
	ontrol coding te	chnie	ques,	Spi	read	
	spectrum techniques and Equalizer					
	Simulation using MATLAB/SIMULINK/ SDR equ	uivalent (OR) H	ardv	vare		
	LIST of EXPERIMENTS:					
	1. Amplitude Modulation and Demodulation					
	2. Frequency Modulation and Demodulation					
	3. ASK, FSK, PSK and DPSK schemes					
	4. Natural sampling and Flat top sampling					
PRACTICALS	5. Time Division Multiplexing					
I IUIUIIUIIU	6. Pulse Code Modulation and Demodulation					
	7. Delta Modulation and Demodulation					
	8. Line coding schemes.					
	9. Error control coding using Linear Block Codes a	nd Convolutiona	l cod	les		
	10.Shannon Fano coding and Huffmann coding					
	11. Code Division Multiplexing					
	12. Equalization – Zero Forcing & LMS algorithms					
Contact Period	Contact Periods:					
Lecture: 0 Peri	ods Tutorial: 0 Periods Practical: 45 Periods	Total: 45 Perio	ods			

-	ohn G.Proakis, "Contemporary Communication Systems Using MATLAB", 3 ⁴ learning, 2013.	rd Edition, Cengage			
2	Wayne Tomasi, "Laboratory Manual to Electronic Communications Systems" Pearson, 2000.				
	https://forums.ni.com/t5/Curriculum-and-Labs-for/Analog-Digital-Communications-Systems- with-LabVIEW-Experiments/ta-p/3513761				
	RSE OUTCOMES: n completion of the course, the students will be able to:	Bloom's Taxonomy Mapped			
CO 1	Ability to experimentally analyze the performance of various kinds of Analog modulation techniquesand Digital modulation techniquesused incommunication systems	K4			
CO2	2 Ability to experimentally analyze the performance of sampling, Time Division Multiplexing and line coding formatsin Digitalcommunication systems	К4			
CO3	Ability to experimentally analyze the performance of various kinds of error control coding schemes used inDigital communication systems	К4			
CO4	Ability to understand the code division multiplexing and equalizer performance by applying various equalization algorithms	К4			
COS	Ability to experimentally analyze the performance of various kinds of source coding techniques used in Digital communication systems	K4			

COMPUTER ARCHITECTURE AND ORGANIZATION

			v		
PREREQUISITES	CATEGORY	L	Т	Р	Γ
NIL	PC	3	0	0	

ORY	L	Т	Р	С
	3	0	0	3

Course	To compute the basic artifictic structure, pipelinea execution, paranensin				
Objectives	bjectives and multi-core processors along with the memory hierarchies, cache				
	memories and virtual memories and different ways of comn	nunication with			
	I/O devices.				
UNIT – I	BASIC STRUCTURE OF A COMPUTER	9 Periods			
Functional un	its - Basic operational concepts of a Computer - Performance Issue	es - Execution of			
Instructions i	n the Computer - Operations - Operands - Instruction and instruct	tion sequencing -			
Logical operat	ions - Decision making - Addressing modes .				
UNIT – II	ARITHMETIC FOR COMPUTERS	9 Periods			
Arithmetic and	d Logic Unit (ALU) - Addition and Subtraction - Signed and unsigned	d Multiplication -			
Division - Floa	ating Point Representation - Floating Point addition and subtracti	on - Sub word			
Parallelism.					
UNIT – III	PROCESSOR AND CONTROL UNIT	9 Periods			
	mplementation - Building a Data path - Control Implementation Sch				
Pipelined data	path and control - Handling Data Hazards & Control Hazards - Excep	otions.			
UNIT – IV	PARALLELISM	9 Periods			
Parallel proce	ssing challenges - Flynn's classification - SISD, MIMD, SIMD, SI	PMD and Vector			
	- Hardware multithreading - Multi-core processors and other				
	rs - Introduction to Graphics Processing Units, Clusters, Warehouse	Scale Computers			
and other Mes	sage - Passing Multiprocessors.				
UNIT – V	MEMORY & I/O SYSTEMS	9 Periods			
	Memory Hierarchy - memory technologies - cache memory - measuring and improving cache				
	performance - virtual memory, TLBs - Accessing I/O Devices - Interrupts - Direct Memory Access -				
	- Bus operation - Arbitration - Interface circuits - USB.				
	Contact Periods:				
Lecture: 45 Pe	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

TEXT BOOK:

1	William Stallings, "Computer Organization and Architecture – Designing for Performance" , Eighth Edition, Pearson Education, 2019.
2	Carl Hamacher, ZvonkoVranesic, SafwatZaky, "Computer Organization" , McGraw-Hill, Fifth Edition, Reprint 2016

1	John P. Hayes, "Computer Architecture and Organization" , Third Edition, Tata McGraw Hill, 2012
2	John L. Hennessey and David A. Patterson, "Computer Architecture – A Quantitative Approach" , Morgan Kaufmann / Elsevier Publishers, Fifth Edition, 2017
3	BehroozParahami, "Computer Architecture", Oxford University Press, Eighth Impression, 2011
4	David A. Patterson and John L. Hennessy, "Computer Architecture-A Quantitative Approach" , Elsevier, a division of reed India Private Limited, Fifth edition, 2012.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:		
C01	Explain the basics structure of computers, operations and	K2	
	instructions.		
CO2	Design arithmetic and logic unit in a computer.	К3	
CO3	Describe the concepts of Data path and Control Path.	K2	
C04	Discuss the pipelined execution and parallel processing architectures.	K2	
C05	Illustrate the various memory systems and I/O communication	K2	

EMBEDDED SYSTEMS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	3	0	0	3

Common		1 . 1		
Course Objective	To rearri the busic concepts of embedded systems, program design and			
UNIT – I	INTRODUCTION TO EMBEDDED SYSTEM DESIGN	9 Periods		
Complex system	ms and microprocessors - Characteristics and challenges of embe	dded computing		
system - Embe	edded system design process - Requirements, Specification, Arch	itectural Design,		
Designing Hard	lware and Software Components, System Integration, - Formalism f	or system Design		
- Structural De	escription, Behavioral Description, Design example: Model train o	controller, Alarm		
Controller.				
UNIT – II	ARM CORTEX M4	9 Periods		
Introduction to	o cortex M4 – Features - ARM Architecture - Block diagram - oper	ation modes and		
states – Regist	ers - Memory system - Exception and Interrupts - Instruction S	et - Low Power		
Characteristics				
UNIT – III	EMBEDDED PROGRAMMING	9 Periods		
Components for	or embedded programs - Models of programs - Assembly, linkir	ng and loading -		
Compilation te	chniques - Program level performance analysis - Software performa	nce optimization		
- Program lev	el energy and power analysis and optimization - Analysis and	optimization of		
program size -	Program validation and testing.			
UNIT – IV	INTERFACING WITH ARM CORTEX	9 Periods		
ARM Cortex ST	M32F controller - Configuring GPIO Ports - Switches and LEDs - LC	D Display -ADC -		
DAC - Pulse wi	dth Modulation - DMA - Serial Communication USART.			
UNIT – V	RTOS BASED EMBEDDED SYSTEM DESIGN	9 Periods		
Operating System Basics - Types of Operating Systems - Tasks, Process and Threads -				
Multiprocessing and Multitasking - Task Scheduling - Inter process Communication mechanisms -				
Evaluating Operating system Performance - Power Optimization Strategies for Process.				
Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

TEXT BOOK:

1	Marilyn Wolf, "Computers as Components - Principles of Embedded Computing System Design" ,Third Edition "Morgan Kaufmann Publisher,2012.
2	https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415- stm32f407-advanced -arm-based-32-bitmcus-stmicroelectronics.pdf.

1	Shibu K.V, "Introduction to Embedded Systems", McGraw Hill.2014.
2	Dr. Mark Fisher, ARM Cortex M4 Cook Book, Packt Publishing, 2016.
3	Raj Kamal, "Embedded Systems-Architecture, Programming and Design" , 3 editions, TMH.2015
4	Lyla, "Embedded Systems" , Pearson, 2013. 5. David E. Simon, "An Embedded Software Primer", Pearson Education, 2000.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
C01	Explain the concepts of embedded systems.	K2
CO2	Interpret the Architecture and features of ARM CORTEX controller	K2
CO3	Explain the interfacing of ARM Cortex	K2
C04	Illustrate the code for constructing a system	К3
C05	Demonstrate the concepts of Real Time operating system	K2

CONTROL SYSTEMS

PREREQUISITES		CATEGORY	L	Т	Р	С	
NIL PC			3	0	0	3	
Course	To acquire knowledge in the modeling of t	he system, an	alyze	e tin	ne a	and	
Objectives	frequency response, stability and state variable	es of the system	1.				
UNIT – I	MODELING OF CONTROL SYSTEMS		9 Periods			5	
- Transfer fun	s of Control System - Open loop and Closed loop syst ction, Modeling of Electrical systems - Block diagra ason's gain formula.					gnal	
UNIT – II	TIME RESPONSE ANALYSIS			9 Per	riods	5	
	Time response analysis - First Order Systems - Impulse and Step Response analysis of second order systems - Steady state errors - P, PI, PD and PID Controllers.						
UNIT – III	FREQUENCY RESPONSE ANALYSIS			9 Per	riods	5	
	Frequency Response - Bode Plot, Polar Plot, Nyquist Plot - Series, Parallel, series - parallel Compensators - Design of Lead and Lag Compensators.						
UNIT - IV STABILITY ANALYSIS			9 Periods			5	
Stability - Routh - Hurwitz Criterion, Root Locus Technique - Construction of Root Locus - Application of Root Locus Diagram - Nyquist Stability Criterion - Relative Stability.							
UNIT – V	UNIT - V STATE SPACE ANALYSIS 9 Periods					5	
Concepts of State variable and State space model - State space representation of Continuous Time systems - Transfer function from State model - State transition matrix - Kalman's test of Controllability and Observability.							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

TEXT BOOK:

1	J.Nagrath and M.Gopal, "Control Systems Engineering" , New Age International Publishers, 7th Edition, 2021.
2	A.Nagoor Kani, "Control Systems", RBA Publications, 3rd Edition, 2015.

1	A.Nagoor Kani, "Advanced Control Theory", CBS Publishers and Distributors, 3rd Edition, 2020.			
2	M.Gopal, "Control System – Principles and Design", Tata McGraw Hill, 4th Edition, 2012			
3	Ogata K, "Modern Control Engineering", PHI Publishers, 5th Edition, 2010.			
4	Richard C. Dorf & Robert H. Bishop, "Modern Control Systems", Prentice Hall, 12th	edition, 2010.		
5	B. C. Kuo, "Digital Control Systems", Oxford University Press, 2/e, Indian Edition, 2	012.		
COUR: Upon o	Bloom's Taxonomy Mapped			
C01	Describe the differential equation and transfer function of the system	K2		
CO2	Analyze time response specifications	К3		
CO3	Analyze the frequency domain response	К3		
C04	Examine the stability of the system	К3		
C05	Develop state space model of the system	K2		

ANTENNAS AND WAVE PROPAGATION

PREREQUISITE	S	CATEGORY	L	Т	Р	С		
ELECTROMAGNETIC FIELDS PC				0	0	3		
Course	To design and analyze various types of antennas and arrays, fearn							
Objective	bjective measurements of antenna parameters and understand characteristics of a					f a		
	wave propagation in free space.							
UNIT – I	FUNDAMENTALS OF RADIATION			9 Per	iods			
Antenna Para	meters: Radiation mechanism - current distribu	ution on a thin	wir	e an	tenn	a -		
Radiation Patt	ern, Beam solid angle, Radiation intensity, Radiatior	n Power density,	Dire	ctivi	ty, G	ain,		
Effective aper	ture, Effective height, Polarization, Bandwidth, B	eam width, ant	enna	imp	edaı	ice,		
Duality of Ant	ennas. Radiation: Retarded potentials - Radiation f	ields of oscillati	ng d	ipole	, Pov	ver		
radiated by a c	current element, short antennas, Radiation from Half	f wave Dipole.						
UNIT – II	ANTENNA ARRAYS			9 Per				
	array - N-element Linear arrays, Pattern multiplic							
	nd side array, End fire array, Evaluation of null di				-			
	Binomial arrays, - Log periodic dipole array - Phase	ed array - Yagi-U	da ai	ray -	Fol	ded		
A A	lance matching		[-				
UNIT – III	APERTURE AND SLOT ANTENNAS			9 Per	iods			
Induction and	Equivalence Theorems - Field of a secondary source	ce - Radiation fro	om o	pen e	end	of a		
co-axial line -	Radiation through an Aperture - Fraunhofer and Fre	esnel Diffraction	- Ra	diati	on fr	om		
	tic Horns - Rectangular Horn Antennas - Conical							
	ot Antennas in Flat Sheets - Edge Diffraction - B	abinets Principl	e -Ir	nped	ance	e of		
	ry Sheets - Impedance of Slot Antennas .							
UNIT – IV	SPECIAL ANTENNAS			9 Per				
	nas - Design of Monofilar Axial mode and norma							
	ver radiated, Radiation Resistance and directivity Re							
	or - Paraboloidal reflector - Feed methods - Micro-st	ripe Antennas -	Cell	towe	er Tr	ees		
	Antennas - Mobile station Antennas.			<u> </u>				
UNIT – V	WAVE PROPAGATION AND ANTENNA MEASURE			9 Per				
Modes of propagation - Structure of atmosphere - Characteristics of different ionized regions - Sky								
	tion - Effects of the earth's magnetic field on ionos			-	-			
Virtual height - Maximum usable frequency - Critical angle - Skip distance - Space wave								
propagation - Duct propagation. Measurement of Radiation Pattern - Beam Width - Gain - Directivity - Polarization- Input impedance - SWR method - Reflection coefficient-VSWR - Antenna								
Test Ranges: Elevated ranges - Ground reflection ranges - Anechoic chambers & absorbing								
materials - Compact Antenna Test Ranges.								
Contact Periods:								
Lecture: 45 Per		Total: 45 Period	S					
<u>.</u>								
TEXT BOOK:								
Edward C	Iordon Keith & Balmain "Flectromagnetic Waves o	and Dadiating S	vetor	nc"	Doar	ion		

1	Edward C. Jordon , Keith G. Balmain , "Electromagnetic Waves and Radiating Systems" ,Pearson 2nd Edition,2015

2 Prasad.K.D, "Antennas and Wave Propagation", Sathya Prakashan, 3rd Edition, 2009

1	Constantine A. Balanis, "Antenna Theory-Analysis and Design", 3rdedition, Wiley-India, 2010
2	R.E.Collin, "Antennas and Radio wave Propagation", McGraw Hill,2002
3	Jhon D Kraus , "Antennas" ,2nd Edition McGraw Hill, 1988
4	H.Sizun , "Radio Wave Propagation for Telecommunication Applications" , First Indian Reprint, Springer Publications, 2007.

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Explain and analyze the radiation characteristics of dipole.	K2
CO2	Discuss the design and radiation pattern of antenna arrays.	К3
CO3	Describe and analyze Aperture and Slot antennas	К3
C04	Describe the radiation characteristics and design of special antennas.	K2
C05	Explain the various modes of radio wave propagations and measurement procedure of antenna parameters.	К2

VLSI DESIGN

SEMESTER VI

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	3	0	0	3

Course ObjectivesTo introduce various aspects of CMOS logic and CMOS logic networks to realize the VLSI system components.					
UNIT – I	IT - I CMOS LOGIC DESIGN 9 Periods				
VLSI Design Flow - MOSFET Switches - Basic Logic Gates in CMOS - Complex Logic Gates in CMOS - Transmission Gate Circuits - Stick Diagram and Layout Design Rules - Layout of Basic Structures - Physical structure of MOSFETs - CMOS Layers – FinFET – VI Charateristics of FinFET.					
UNIT – II	CHARACTERISTICS AND ANALYSIS OF CMOS LOGIC	9 Periods			

MOS Threshold Voltage Equation - nFET Current-Voltage Equations - The FET RC Model -DC Characteristics of the CMOS Inverter - Switching Characteristics - Power Dissipation -Transient Response - Analysis of Complex Logic Gates.

UNIT - IIIDESIGNING HIGH-SPEED CMOS LOGIC NETWORKS9 PeriodsGate delays- driving large capacitive loads - Logical effort - Advanced Logic Circuits: Pseudo-
NMOS - Tri-state - clocked CMOS- dynamic and dual rail logic - Domino logic - CPL - DCVSPG -
DPL. Timing Issues : Timing Classification Of Digital System, Synchronous Design.9 Periods

UNIT - IVVLSI CLOCKING AND TESTING9 PeriodsVLSI clocking: CMOS clocking styles - Pipelined systems - Clock generation and distribution. VLSI
testing -need for testing - manufacturing test principles - design strategies for test - chip level and
system level test techniques.9 Periods

UNIT - VSYSTEM DESIGN AND ADVANCED TECHNOLOGIES9 PeriodsVerilog structures - Multiplexers - Binary Decoders - Comparators - Priority Encoders - Latches -
Flip-Flops and Registers - SRAM - DRAM and Flash Memories. Advanced technologies: Giga-scale
dilemma, Short channel effects, High-k, Metal Gate Technology.9 Periods

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK :

Uyemura, John P, "Introduction to VLSI Circuits and Systems", Wiley & Sons, 8th Reprint 2009
 N. Weste et. al., "CMOS VLSI Design", Third Edition, Pearson Education, 2013.

	REFERENCES.				
1 J	Jan M. Rabaey, "Digital Integrated Circuits: A Design Perspective", PHI, Second Edition, 2012.				
2 <i>F</i>	R. Jacob Baker, "CMOS: Circuit Design, Layout, and Simulation", Wiley-IEEE, Revised Second				
ŀ	Edition, 2008.				
3 J	Pucknell, " Basic VLSI Design ", Prentice Hall, 2006.				
4 5	Sung-Mo Kang & Yusuf Leblebici, "CMOS Digital Integrated Circuits And	alysis And Design",			
1	Mcgraw-Hill, 2022.				
COU	RSE OUTCOMES:	Bloom's Taxonomy			
Upor	n completion of the course, the students will be able to:	Mapped			
C01		К2			
01	Construct the complex logic circuits with MOSFETs	K2			
C02	Explain the characteristics and analyze the characteristics of CMOS logic	К3			
CO3	Design the high-speed CMOS Logic Networks	К2			
C04	Use clocking styles to design basic VLSI system and illustrate the	K2			
	testing principles for the device under test.				
C05	Design the basic digital blocks and understand the advanced	К3			
	technologies.				
		<u>.</u>			

MICROWAVE ENGINEERING

PREREQUISITES	CATEGORY	L	Т	Р	С
ELECTROMAGNETIC FIELDS	PC	3	0	0	3
NETWORKS AND TRANSMISSION LINES					

Course Objective	To analyze the microwave networks behavior, understand microwave active and passive devices and acquire knowled networks.	
UNIT – I	MICROWAVE SOURCES AND AMPLIFICATION	9 Periods
Microwave Vacuu	encies (IEEE Standards) - High frequency limitations of conve m Tubes: Reflex Klystron Oscillator - Two cavity Klystron amplifier - : Gunn effect diode - Gunn Oscillator - Tunnel diode	
UNIT – II	MICROWAVE NETWORK ANALYSIS AND PASSIVE DEVICES	9 Periods
	ormulation of Scattering (S) matrix - Properties of S parameters - Tes orks - Properties of ferromagnetic materials, principle of faraday's p ase Shifter.	
UNIT – III	MICROWAVE POWER DIVIDERS	9 Periods

S-matrix analysis of E-Plane Tee, H-Plane Tee, Magic Tee, Two-hole directional coupler. T junction and resistive power divider, Rat Race Coupler. Microstrip transmission Lines: effective dielectric constant-characteristic impedance-losses-Quality factor.

UNIT – IV	IMPEDANCE MATCHING TECHNIQUES	9 Periods
Smith chart - Con	cept of impedance matching - Quarter-wave transformer - Smith C	hart solutions to
matching with lur	nped elements (L networks), Micro strip Line Matching Networks.	
UNIT – V	MICROWAVE MEASUREMENTS	9 Periods

Microwave measurements: Guide wavelength, unknown frequency, unknown impedance reflection coefficient and low and high VSWR.

Case Study: Microwave Oven Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

1	David M. Pozar, "Microwave Engineering", Wiley India (P) Ltd, New Delhi, 4th edition, 2012.
2	Annapurna Das and Sisir K Das, "Microwave Engineering", Tata McGraw Hill Publishing
2	Company Ltd, New Delhi, 2017.

1	Samuel Y. Liao, "Microwave Devices and Circuits", Prentice Hall of International Ltd, 4 th edition, 2009.
2	Reinhold Ludwig and Gene Bogdanov, " RF Circuit Design: Theory and Applications ", Pearson Education Inc., 2 nd edition, 2011.
3	S. Rao, "Microwave Engineering", Prentice Hall of India, 2 nd edition, 2015.
4	Thomas H Lee, " Planar Microwave Engineering: A Practical Guide to Theory, Measurements and Circuits ", Cambridge University Press, 2004.
5	Robert E Colin, "Foundations for Microwave Engineering", John Wiley & Sons, 2010

	OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain the various sources of microwave generation and amplification procedures.	K2
CO2	Formulate S matrix of microwave components and test for its various properties	К3
CO3	Discuss the function and role of microwave power divider networks	К2
CO4	Design impedance matching networks using Smith chart	К3
CO5	Describe the operation of RF amplifiers and discuss the procedure of Microwave measurements.	К2

23PTL60	3

WIRELESS COMMUNICATION

SEMESTER VI

PREREQUISITES	CATEGORY	L	Т	Р	С
ANALOG COMMUNICATION	PC	3	0	0	3
DIGITAL COMMUNICATION					

Course	To understand the Collular Architecture concept hobind me	hile propagation
Objective	To understand the Cellular Architecture, concept behind mo	
objective	various multipath mitigation techniques, multi antenna and V	wireless systems.
UNIT – I	CELLULAR ARCHITECTURE	9 Periods
Introduction	to 2G Cellular Networks and 3G Wireless Networks – Cellular Conc	ept: Introduction –
Frequency Re	euse – Channel Assignment Strategies –Handoff Strategies – Interf	erence and System
Capacity –Tru	unking and Grade of Service –Improving Coverage and Capacity i	n Cellular Systems.
Multiple Acce	ss Techniques: FDMA, TDMA, CDMA, OFDMA.	
UNIT – II	MOBILE RADIO PROPAGATION	9 Periods
Free Space P	ropagation Model –Reflection – Ground Reflection Model – Diffrac	ction – Scattering –
Practical Link	x Budget Design – Small Scale Multipath Propagation – Time dispe	rsion Parameters –
Coherence Ba	andwidth – Doppler Spread and Coherence Time – Fading Effect	s due to Multipath
Time Delay S	pread and Doppler Spread.	
UNIT – III	MULTIPATH MITIGATION TECHNIQUES	9 Periods
	– Adaptive Equalizer – Linear and Nonlinear Equalization – Zero F	
	m - Recursive Least Square Algorithm -Diversity: Micro and	
	of Signals - Error Probability in Fading Channels with Diversity	Reception -RAKE
Receiver.		
UNIT – IV	MULTIANTENNA SYSTEMS	9 Periods
UNIT – IV Smart Anten	nas - Multiple Input Multiple Output Systems - System Mode	el - Channel State
UNIT – IV Smart Anten Information	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru	el - Channel State cture - Diversity -
UNIT - IV Smart Anten Information Tradeoffs be	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing -	el - Channel State cture - Diversity - Multiuser MIMO -
UNIT - IV Smart Anten Information Tradeoffs be Performance	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems
UNIT - IV Smart Anten Information Tradeoffs be Performance and Quantize	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input singl	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems
UNIT – IV Smart Anten Information Tradeoffs be Performance and Quantize input and Mu	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input sing Iti Output Systems.	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems le output and Multi
UNIT - IV Smart Anten Information Tradeoffs be Performance and Quantize input and Mu UNIT - V	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input sing Iti Output Systems. WIRELESS SYSTEMS	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems e output and Multi 9 Periods
UNIT - IV Smart Anten Information Tradeoffs be Performance and Quantize input and Mu UNIT - V Global System	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input single lti Output Systems. WIRELESS SYSTEMS n for Mobile Communications -System Overview -The Air Inter	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems le output and Multi 9 Periods face - Logical and
UNIT - IV Smart Anten Information Tradeoffs be Performance and Quantize input and Mu UNIT - V Global Syster Physical Cha	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input singl lti Output Systems. WIRELESS SYSTEMS n for Mobile Communications -System Overview -The Air Inter nnel – Synchronization – Coding -Establishing a Connection	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems le output and Multi 9 Periods face - Logical and and Handover -
UNIT - IV Smart Anten Information Tradeoffs be Performance and Quantize input and Mu UNIT - V Global System Physical Cha WiMAX/IEEE	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input sing Iti Output Systems. WIRELESS SYSTEMS n for Mobile Communications -System Overview -The Air Inter nnel – Synchronization – Coding -Establishing a Connection 802.16 - System Overview - Modulation and Coding - Logical and	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems le output and Multi 9 Periods face - Logical and and Handover - Physical Channels -
UNIT - IV Smart Anten Information Tradeoffs be Performance and Quantize input and Mu UNIT - V Global Systen Physical Cha WiMAX/IEEE Multiple-Ante	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input sing Iti Output Systems. WIRELESS SYSTEMS n for Mobile Communications -System Overview -The Air Inter nnel – Synchronization – Coding -Establishing a Connection 802.16 - System Overview - Modulation and Coding - Logical and enna Techniques - Link Control - Wireless Local Area Network – Intr	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems le output and Multi 9 Periods face - Logical and and Handover - Physical Channels -
UNIT - IV Smart Anten Information Tradeoffs be Performance and Quantize input and Mu UNIT - V Global Systen Physical Cha WiMAX/IEEE Multiple-Ante 5G communic	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space-Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input sing lti Output Systems. WIRELESS SYSTEMS n for Mobile Communications -System Overview -The Air Inter nnel – Synchronization – Coding -Establishing a Connection 802.16 - System Overview - Modulation and Coding - Logical and enna Techniques - Link Control - Wireless Local Area Network – Intr ration systems.	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems le output and Multi 9 Periods face - Logical and and Handover - Physical Channels -
UNIT - IV Smart Anten Information Tradeoffs be Performance and Quantize input and Mu UNIT - V Global Syster Physical Cha WiMAX/IEEE Multiple-Ante 5G communic	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input sing lti Output Systems. WIRELESS SYSTEMS n for Mobile Communications -System Overview -The Air Inter nnel – Synchronization – Coding -Establishing a Connection 802.16 - System Overview - Modulation and Coding - Logical and enna Techniques - Link Control - Wireless Local Area Network – Intr station systems. ds:	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems le output and Multi 9 Periods face - Logical and and Handover - Physical Channels - roduction to 4G and
UNIT - IV Smart Anten Information Tradeoffs be Performance and Quantize input and Mu UNIT - V Global Systen Physical Cha WiMAX/IEEE Multiple-Ante 5G communic	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input sing lti Output Systems. WIRELESS SYSTEMS n for Mobile Communications -System Overview -The Air Inter nnel – Synchronization – Coding -Establishing a Connection 802.16 - System Overview - Modulation and Coding - Logical and enna Techniques - Link Control - Wireless Local Area Network – Intr station systems. ds:	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems le output and Multi 9 Periods face - Logical and and Handover - Physical Channels - roduction to 4G and
UNIT - IV Smart Anten Information Tradeoffs be Performance and Quantize input and Mu UNIT - V Global System Physical Cha WiMAX/IEEE Multiple-Ante 5G communic Contact Perior Lecture: 45 Perior	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input sing lti Output Systems. WIRELESS SYSTEMS n for Mobile Communications -System Overview -The Air Inter nnel – Synchronization – Coding -Establishing a Connection 802.16 - System Overview - Modulation and Coding - Logical and enna Techniques - Link Control - Wireless Local Area Network – Intr station systems. ds:	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems le output and Multi 9 Periods face - Logical and and Handover - Physical Channels - roduction to 4G and
UNIT - IV Smart Anten Information Tradeoffs be Performance and Quantize input and Mu UNIT - V Global System Physical Cha WiMAX/IEEE Multiple-Ante 5G communic Contact Perior Lecture: 45 Perior TEXT BOOK :	nas - Multiple Input Multiple Output Systems - System Mode - Capacity - Impact of the Channel - Layered Space–Time Stru tween Diversity, Beamforming Gain, and Spatial Multiplexing - Limits - Scheduling - Linear Precoding – Uplink and Downlink - Cl d Feedback - Base Station Cooperation. NOMO in Single input sing lti Output Systems. WIRELESS SYSTEMS n for Mobile Communications -System Overview -The Air Inter nnel – Synchronization – Coding -Establishing a Connection 802.16 - System Overview - Modulation and Coding - Logical and enna Techniques - Link Control - Wireless Local Area Network – Intr station systems. ds:	el - Channel State cture - Diversity - Multiuser MIMO - osed-Loop Systems le output and Multi 9 Periods face - Logical and and Handover - Physical Channels - roduction to 4G and

2 Andreas.F. Molisch, "Wireless Communications", Second Edition, John Wiley – India, 2011. REFERENCES:

- Simon Haykin, Michael Moher, David Koilpillai, "Modern Wireless Communications", First Edition, Pearson Education 2013.
 David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge
- University Press, 2005.
- 3 Jochen Schiller, **"Mobile Communications"**, Second Edition, Pearson Education 2012.

4 Upena Dalal, "Wireless Communication", Oxford University Press, 2009.

5 Vincent W. S. Wong, Robert Schober, Derrick Wing Kwan Ng, Li-Chun Wang, **"Key Technologies**

for 5G Wireless Systems", Cambridge University Press, 2017.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Characterize wireless channels and understand the concept of cellular system	К2
CO2	Describe the mobile radio propagation.	K2
CO3	Compare multipath mitigation techniques and interpret their performance	К2
CO4	Design and implement systems with transmit/receive diversity and MIMO systems and analyze their performance	К3
C05	Conversant with the latest trends in Wireless Systems.	K2

EMBEDDED AND VLSI LABORATORY

PREREQUISITES	CATEGORY	L	Т	Р	С
DIGITAL SYSTEM DESIGN	PC	0	0	3	1.5
EMBEDDED SYSTEMS					

I H 1 2	applications using ARM processor. LIST of EXPERIMENTS: PART 1: EMBEDDED DESIGN 1. Interfacing 8 Bit LED and Switch. 2. Implementation of Buzzer Interface using IDE environment. 3. Display a message in a 2 line x 16 Characters LCD display. 4. Simple interrupt handler and setting up a timer.
H 1 2	 PART 1: EMBEDDED DESIGN 1. Interfacing 8 Bit LED and Switch. 2. Implementation of Buzzer Interface using IDE environment. 3. Display a message in a 2 line x 16 Characters LCD display.
PRACTICALS I a 2 4 4	 Shiple interrupt nature and setting up a timer. Interfacing ADC, DAC and Matrix Keypad. Generation of PWM. PART 2: DIGITAL SUB-SYSTEM AND IC DESIGN Study of basic combinational circuits, code converters, adders, multipliers and ALUs. Study of sequential circuits, flipflops, memories, shift registers and counters. Design and simulation of basic gates and Flip-Flops using CMOS. Layout & Circuit Simulation of CMOS Inverter and Universal logic gates and perform the transient analysis.
Contact Periods:	
Lecture: 0 Period	

1	J Bhasker, "A verilog HDL Primer" , BS Publication, 2017		
2	Charles H.Roth, "Fundamentals of Logic Design", Cengage, 2019		
3	N. Weste et. al., "CMOS VLSI Design", Third Edition, Pearson Education,2013.		
4	R. Jacob Baker, "CMOS: Circuit Design, Layout, and Simulation", Wiley-IEEE, Re	evised Second	
	Edition, 2008.		
5	Andrew N.Sloss Dominic Symes Chris Wright, "ARM System Developer's Guide D	esigning and	
	Optimizing System Software", Elsevier Inc 2010.		
6	JosephYiu ,"The Definitive Guide to the ARM Cortex-M", Elsevier- Newness, 201	4	
	COURSE OUTCOMES: Bloom's		
Upon completion of the course, the students will be able to:		Taxonomy Mapped	
CO	1 Develop an ARM CORTEX M4 based Assembly Language Programs	K4	
CO	2 Develop embedded C programs to implement the functions of On-chip	K4	
	peripherals of ARM CORTEX M4 processor.		
CO	3 Demonstrate C programs to interface ADC and DAC	K4	
CO	4 Develop embedded C programs to handle interrupts and timer in ARM	K4	
	processor.		
CO	5 Demonstrate real time clock and serial data transfer.	K4	

23PTL7Z1	HUMAN VALUES AND ETHICS	SEMESTER
23F1L/21	HUMAN VALUES AND ETHILS	VII

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	HSMC	3	0	0	3

Course Objective	To understand the need and importance of physical, emotional nearth and social				
UNIT – I	BEING GOOD AND RESPONSIBLE	9 Periods			
Others - Li	lues and Ethics - Integrity - Work Ethics - Service Learning - Civic V ving Peacefully - Caring - Sharing - Honesty - Courage - Valuing Tin nt - Empathy - Self - Confidence - Character.	-			
UNIT – II	ENGINEERING AS SOCIAL EXPERIMENTATION	9 Periods			
dilemmas · Engineers a	g Ethics: Senses of 'Engineering Ethics' - variety of moral issued - types - moral autonomy - Models of Professional Roles. Engineering as as responsible Experimenters - Research Ethics - Codes of Ethics - Indus utlook on Law - Case studies: Chernobyl disaster and Titanic disaster.	Experimentation -			
UNIT – III	ADDICTION AND HEALTH	9 Periods			
Prevention Transmitte	are - Alcoholism: Ethical values, causes, impact, laws, prevention – Ill e of Suicides; Sexual Health: Prevention and impact of pre-marital pregr d Diseases. Drug Abuse: Abuse of different types of legal and illegal dru pact, laws and prevention	nancy and Sexually			
UNIT – IV	PROFESSIONAL ETHICS	9 Periods			
	Abuse of Technologies: Hacking and other cybercrimes, Addiction to mobile phone usage, Video games and Social networking websites.				
UNIT – V	GLOBAL ISSUES	9 Periods			
Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers - consulting engineers - engineers as expert witnesses and advisors - Code of Conduct - Corporate Social Responsibility Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK:

1	Mike W Martin and Roland Schinzinger, "Ethics in Engineering", McGraw-Hill, New York, 4 th Edition, 2017.
2	Govindarajan M, Natarajan S and Senthil Kumar VS, "Engineering Ethics" , Prentice Hall of India, New Delhi, 2013.

1	Dhaliwal, K.K, "Gandhian Philosophy of Ethics: A Study of Relationship between his
T	Presupposition and Precepts", Writers Choice, New Delhi, India, 2016.
2	Jayshree suresh, B.S.Raghavan,"Human values and professional ethics" S.Chand&;company Ltd,
2	New Delhi, 2ndEdition, 2007.
3	L.A. and Pagliaro, A.M, "Handbook of Child and Adolescent Drug and Substance Abuse:
4	Pandey, P. K(2012), "Sexual Harassment and Law in India", Lambert Publishers, Germany 2012.
5	Kiran D.R, " Professional ethics and Human values ," Tata McGraw Hill, New Delhi, 2007.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand and appreciate the ethical issues faced by an individual in profession, society and polity.	K2
C02	Learn about Engineering Ethics and case studies	К2
C03	Understand the negative health impacts of certain unhealthy behaviors	K2
CO4	Appreciate the need and importance of physical, emotional health and social health.	K2
C05	Get familiar with the global issues.	К2

FIBER OPTIC COMMUNICATION

SEMESTER VII

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	3	0	0	3

Course	To gain knowledge in the optical communication systems and o	optical fibers, to			
Objective					
	construction of optical systems and to gain knowledge				
	technologies.				
UNIT – I	INTRODUCTION	9 Periods			
Evolution of	of fiber optical system - Elements of Optical Fiber Systems - EM Spectru	m, Total Internal			
Reflection ·	- Choice of operating wavelength - Mode theory - Single Mode Fiber, M	ulti-mode Fiber -			
Step index	fiber, Graded Index Fiber - Numerical Aperture - Signal degrada	ation in fibers -			
Dispersion	, Attenuation, Bending loss and propagation loss - Advantages and app	lications of fiber			
optic trans	mission systems.				
UNIT – II	OPTICAL SOURCES	9 Periods			
Spontaneor	us and Stimulated emission - Optical sources - Light Emitting Die	ode (LED) - V-I			
characteris	tics of LED - Laser Diode - V-I and P-I characteristics of Laser Diode - Ru	uby laser - He-Ne			
laser - Splic	cing technique - Optical fiber connectors and couplers.				
UNIT – III	OPTICAL DETECTORS	9 Periods			
Photo dete	ectors - Photodiode and V-I characteristics of Photodiode, Avalanche	photomultiplier			
tubes - Pho budget.	oto detector noise - Signal to Noise ratio - BER calculation - Power budg	get and Rise time			
UNIT – IV	SYSTEM CONFIGURATIONS	9 Periods			
Optical an	ıplifiers - Erbium Doped Fiber Amplifier (EDFA), Raman Amplifi	er- Multiplexing			
strategies ·	- Wavelength Division Multiplexing (WDM) - Dense Wavelength Divis	ion Multiplexing			
(DWDM).	(DWDM).				
	ADVANCES IN OPTICAL FIBER SYSTEMS	9 Periods			
UNIT – V					
	us Optical Network / Synchronous Digital Hierarchy (SONET/SDH				
Synchrono					
Synchrono	us Optical Network / Synchronous Digital Hierarchy (SONET/SDH tworks - Optical switches - Optical fiber LAN link - Optical CDMA.				

TEXT BOOK:

1	Keiser G, "Optical Fiber Communications", McGraw Hill, New Delhi, Fifth edition, 2014.
2	John M. Senior, "Optical Fiber Communications Principles and Practice", PHI, New Delhi, Third
	edition, 2009.

1	G.P. Agrawal, "Fiber optic Communication Systems", John Wiley and sons, Fourth Edition, 2011.		
2	Franz J.H. Jain V.K, " Optical Communication, Components and systems ", Narosa publications,		
2	New Delhi, 2000.		
3	Gower, J " Optical Communication Systems ", PHI, New Delhi, Second edition, Fifth reprint, 2001.		
4	K. Mynbaev and Lowell L Scheiner, "Fiber Optic Communication Technology", Prentice Hall		
4	2001.		
5	V.S.Bagad, "Optical Fiber Communication", Technical Publications, Pune, Fifth edition, 2023.		

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Recognize the structures, types of optical fibers and applications of optical Communication systems.	К2
CO2	Explain the principles of optical sources and can able to design optical transmitter.	К2
CO3	Apply the ideologies of optical detectors and analyze the functioning of optical receivers.	К3
CO4	Acquire knowledge about the losses in the fiber and to analyze the functioning of optical components.	К2
C05	Illustrate the advances in optical fiber system.	K2

INTERNET OF THINGS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	0	0	3

Course	To learn about the fundamentals of Internet of Things and apply	y the concept of			
Objective	Internet of Things in real world scenario.	_			
UNIT – I	FUNDAMENTALS OF IOT	9 Periods			
Introductio	n - Characteristics - Physical design - Protocols-Logical design - Enablin	ng technologies -			
IoT levels -	Domain specific IoTs - IoT vs M2M.				
UNIT – II	IOT DESIGN METHODOLOGY	9 Periods			
IoT System	Management with NETCONF - YANG, SNMP, NETOPEER - IoT design	n methodology -			
Specificatio	ons - Integration and Application Development.				
UNIT – III	IOT COMPONENTS	9 Periods			
Sensors and	d Actuators: Definition, Types of Sensors, Types of Actuators - Example	es and Working -			
Communication modules - Zigbee - Wi-Fi - RFID Principles and Components.					
	ation modules - Zigbee - Wi-ri - Krib rimeiples and components.				
UNIT – IV	BUILDING IOT WITH HARDWARE PLATFORMS	9 Periods			
UNIT – IV					
UNIT – IV Platform -	BUILDING IOT WITH HARDWARE PLATFORMS				
UNIT – IV Platform -	BUILDING IOT WITH HARDWARE PLATFORMS Arduino Board details, IDE programming - Raspberry Pi - Interfaces a				
UNIT – IV Platform with Python UNIT – V	BUILDING IOT WITH HARDWARE PLATFORMS Arduino Board details, IDE programming - Raspberry Pi - Interfaces a n Programming.	nd Raspberry Pi 9 Periods			
UNIT – IV Platform - with Python UNIT – V Various Rea	BUILDING IOT WITH HARDWARE PLATFORMS Arduino Board details, IDE programming - Raspberry Pi - Interfaces a n Programming. CASE STUDIES AND ADVANCED TOPICS	nd Raspberry Pi 9 Periods ent - Agriculture			
UNIT – IV Platform - with Python UNIT – V Various Rea - Connectir	BUILDING IOT WITH HARDWARE PLATFORMS Arduino Board details, IDE programming - Raspberry Pi - Interfaces a n Programming. CASE STUDIES AND ADVANCED TOPICS al time applications of IoT- Home Automation - Smart Cities - Environm	nd Raspberry Pi 9 Periods ent - Agriculture			
UNIT - IV Platform - with Python UNIT - V Various Rea - Connectin	BUILDING IOT WITH HARDWARE PLATFORMS Arduino Board details, IDE programming - Raspberry Pi - Interfaces a n Programming. CASE STUDIES AND ADVANCED TOPICS al time applications of IoT- Home Automation - Smart Cities - Environming IoT to cloud -Cloud storage for IoT - Designing a RESTful web AP to Data Analytics for IoT - Software & Management Tools for IoT iods:	nd Raspberry Pi 9 Periods eent - Agriculture			

TEXT BOOK:

1	ArshdeepBahga, Vijay Madisetti, " Internet of Things-A hands-on approach ", Universities Press,2015
2	Olivier Hersent, David Boswarthick, and Omar Elloumi, — " The Internet of Things: Key Applications and Protocols". Wiley Publications-2011

1	Marco Schwartz, "Internet of Things with the Arduino", Yun, Packt Publishing.		
2	Hakima Chaouchi "The Internet of Things: connecting objects to the web" John Wiley & Sons, 2013		
3	Massimo Banzi- Getting Started with Arduino · O'Reilly Media Publishing, 3rd E	dition, 2015	
4	Matt Richardson and Shawn Wallace - <i>Getting Started with Raspberry Pi-</i> O'Rea Publishing, 3rd Edition, 2016	illy Media	
	COURSE OUTCOMES: Upon completion of the course, the students will be able to:		
CO	1 Explain the main concepts, key technologies, strength and limitations of IoT.	К2	
CO	2 Design and analyze various IOT applications	К3	
CO	3 Familiarize the IoT Components	K2	
CO	⁴ Design a portable IoT using Arduino/Equivalent boards and relevant protocols	К3	
CO	5 Apply data analytics and use cloud offerings related to real time scenario.	К3	

23PTL7Z2

MANAGEMENT THEORY AND PRACTICE

PREREQUIS	ITES	CATEGORY	L	Т	Р	С
NIL HSMC		3	0	0	3	
Course	To develop an understanding of the relationship aspect of management and			l to		
Objective cultivate the skills needed to face the difficulties in management			t of	peo	ple a	and
other resources.					_	
UNIT – I	BASICS OF MANAGEMENT THOUGHT			9 Pei	riods	;
Evolution o	f Management - Definition - Levels - Principles - Differ	ences with admin	nistr	atior	1 - R	oles
of Manager	s - Social Responsibility of Business - External environ	nment of busines	ss - I	Mana	igem	ient
Ethics.					-	
UNIT – II	PLANNING			9 Pei	riods	;
Nature - In	nportance - Types - Steps - Management by Objective	es - Strategic pla	annii	ng p	roce	ss -
Decision m	aking - Types of decisions - Steps in rational decision	making - Decisio	on m	akin	g un	der
uncertainty		-			-	
UNIT – III	ORGANIZING			9 Pei	riods	;
Formal and	l Informal organization - Span of Management - Depa	artmentalisation	- Li	ne a	nd S	taff
authority, I	Decentralization and Delegation of authority - Effective	ve organization a	and (orga	nizat	tion
culture.						
UNIT – IV	STAFFING AND LEADING			9 Pei	riods	;
Importance	and need for staffing - Manpower Planning - Recr	uitment - Sourc	ces, i	nter	nal	and
external so	urces of recruitment, Leadership theories and its chara	acteristics, Funct	ions	of a	Lea	der,
Communica	ation - Importance, Purpose, Process, Barriers, Principle	es of effective cor	nmu	nica	tion.	
UNIT – V	CONTROLLING			9 Pei	riods	;
Steps in a	Control Process, Need for control system, Benefit	s of Control, Fe	eedb	ack	loop	o of
Managemei	nt control - Types of Control techniques - Overall and Pr	reventive control	l.			
Contact Per	iods:					
Lecture: 45	Periods Tutorial: 0 Periods Practical: 0 Periods	Total: 45 Periods				

TEXT BOOK:

- 1Harold Koontz, Weihrich, "Essential of Management", 11th Edition, Tata McGraw Hill New Delhi2020.
- 2 Tripathy P.C and Reddy P.N "**Principles of Management**", 7th Edition, McGraw Hill 2021.

	1	Joseph Massie, " Essentials of Management ", Prentice Hall of India, New Delhi 2010.					
	2 Prasad, L.M., "Principles and Practice of Management", Sultan Chand and Sons, New Delhi 2010						
•	3	Stoner, Freeman and Gilbert, "Management", 6th Edition, Pearson Education, New Delhi, 2018					
4	4	R.K. Chopra and Puneet Mohan, " Principles & Practice of Management ", Sun India Publications, 2020.					

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain basic terminology and concepts for Management theory.	K2
CO2	Handle planning and decision making under uncertainity.	K2
CO3	Demonstrate the ability to apply selected Management frameworks to real world business situations for problem-solving purposes.	К3
C04	Illustrate the leadership theories and effective communication.	K2
CO5	Demonstrate business caliber online communications and proficient participation in group discussion forums.	К3

SATELLITE COMMUNICATION

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

techniques used in satellite systems for various applications.			
UNIT – I SATELLITE ORBITS AND TRAJECTORIES	9 Periods		
Kepler's Laws, orbital parameters, orbit perturbations, geo stationary and non	Geo-stationary		
orbits - Look Angle Determination - Limits of visibility - Earth eclipse satellite outage - Launching orbits - Satellite Launch Vehicle.	e - Sun transit		
UNIT – II SPACE SEGMENT	9 Periods		
Spacecraft Technology - Structure, Primary power, Attitude and Orbit control, S Thermal control and Propulsion, communication subsystems, Telemetry, command-Transponders Antenna Subsystem.			
UNIT – III LINK DESIGN	9 Periods		
Basic transmission theory - System Noise temperature and G/T ratio - Noise fig temperature - G/T ration for Earth Station Link budgets - Uplink and Do calculations, Design for a specified C/N ratio with GEO and LEO examples - At Rain effects on link performance.	wnlink budget		
UNIT – IV MULTIPLE ACCESS AND CODING TECHNIQUES	9 Periods		
Modulation and Multiplexing: Voice, Data, Video, Analog - digital transmission system, Digital video Broadcast, Multiple access : Frequency division Multiple access (FDMA) - Time division Multiple access (TDMA) - Onboard Processing systems - Demand access Multiple access (DAMA) and Permanently assigned Multiple access (PAMA) - Code division Multiple access (CDMA) – compression - encryption			
UNIT – V APPLICATIONS	9 Periods		
Remote sensing - Navigation - Scientific and military application - VSAT: Network architecture, Access Control protocols and techniques, VSAT Earth stations - Satellite Mobile Telephony - Global star - DBS/DTH Television - GPS - Weather satellites - Maritime satellites. Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods			

TEXT BOOK :

1	Dennis Roddy, "Satellite Communications", 4th Edition, Mc Graw Hill, 2017.
n	Pratt T, Bostian C and Allnutt J, "Satellite Communications", John Wiley and Sons, 3rd Edition,
Z	2021.

1	Pritchard W L, Suyderhoud H G and Nelson R A, "Satellite Communication System
	Engineering", 2nd Edition, Prentice Hall, 2013.
2	Anil K. Mani, Varsha Agrawal, "Satellite technology: Principles and Applications", 2nd
	Edition, Wiley India Pvt.Ltd., 2015.
3	Tri. T. Ha, "Digital Satellite Communications", 2nd Edition, McGraw Hill, 2017.
4	Madhavendra Richharia, Leslie David Westbrook, "Satellite systems for Personal
	Applications", John Wiley, 2010.
5	Manojit Mithra , " Satellite Communication ", Prentice Hall,2005.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
C01	Identify the different orbital parameters and summarize the types of satellite orbits and determine the orbital parameters.	K3
C02	Classify the different subsystems used in satellite communication to build a space segment.	K2
CO3	Determine the link design for the signal-to-noise ratio.	К3
CO4	Explain the different multiplexing techniques used in satellite systems for various applications.	K2
C05	Apply the link design for signal-to-noise ratio and multiplexing techniques for various satellite applications.	K2

INFORMATION THEORY AND CODING

PREREQUISITES	CATEGORY	T	т	D	C
T REREQUISITES	CATEGORI	L	1	1	L
NIL	PE	3	0	0	3

Course	To study the several source coding techniques, entropy in t	the context of			
Objectives	data compression and Network information theory.				
UNIT – I	QUANTITATIVE STUDY OF INFORMATION	9 Periods			
-	ties, Entropy, Kullback - Leibler distance, Mutual information, Boun				
	ation, Cramer Rao inequality, Second law of thermodynamics, Suffic	ient statistic,			
Entropy rates	of a Stochastic process.				
UNIT – II	SOURCE CODING: TEXT, AUDIO AND SPEECH	9 Periods			
Text: Adapti	ve Huffman Coding, Arithmetic Coding, LZW algorithm - Aud	io: Perceptual			
coding, Mask	king techniques, Psychoacoustic model, MEG Audio layers I,II,	III, Dolby AC3			
- Speech: Cha	annel Vocoder, Linear Predictive Coding.	-			
UNIT – III	COMPRESSION TECHNIQUES	9 Periods			
Principles - Te	ext compression - Static Huffman Coding - Dynamic Huffman coding	- Arithmetic			
coding - Imag	e Compression - Graphics Interchange format - Tagged Image File Fo	ormat -			
Digitized docu	iments - Introduction to JPEG standards				
UNIT – IV	AUDIO AND VIDEO CODING	9 Periods			
Linear Predic	tive coding - code excited LPC - Perceptual coding, MPEG audio code	ers - Dolby			
audio coders ·	- Video compression - Principles - Introduction to H.261 & MPEG Vid	deo standards.			
UNIT – V	NETWORK INFORMATION THEORY	9 Periods			
Gaussian mult	tiple user channels, Multiple access channel, Encoding of correlated	sources,			
Broadcast channel, Relay channel, Source coding and rate distortion with side information,					
General multi-terminal networks.					
Contact Periods:					
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK :

1	R Bose, "Information Theory	y, Coding and Crypto	o graphy ", TMH	2007.		
C	Fred Hassall, "Multimedia	Communications:	Applications,	Networks,	Protocols	and
2	Standards", Pearson Educat	ion Asia, 2002				

1	K Sayood, "Introduction to Data Compression" Third Edition, Elsevier 2006.			
2	S Gravano, "Introduction to Error Control Codes", Oxford University Press 2007			
3	Amitabha Bhattacharya, " Digital Communication ", TMH 2006			
4	Thomas Cover, Joy Thomas, "Elements of Information Theory", Wiley, 2006.			
5	David Mackay,"Information Theory, Interference &Learning Algorithms", Ca	mbridge		
	University,Press, Ist Edition, 2002.			
COURSE OUTCOMES: Bloom's				
Up	Upon completion of the course, the students will be able to: Taxonomy			
		Mapped		
CO	Discuss the basic information theoretic concepts	K2		
CO	2 Apply the fundamentals of information theory to source coding	K3		
CO	3 Summarize the principle of compression techniques	K2		
CO	Explain the concepts of audio and video coder	K2		
CO	5 Describe the fundamentals of Network information theory	K2		

NEURAL NETWORKS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To cover the fundamentals of neural networks as well as some advanced				
Objective	topics such as recurrent neural networks, long short term	memory cells			
	and convolutional neural networks.	-			
UNIT – I	BASICS OF NEURAL NETWORKS	9 Periods			
Basic Neural	Network: Perceptron; Multi-layer Perceptron; Back propagation; Sto	chastic			
gradient desc	ent; Universal approximation theorem; Applications in imaging such	as for			
denoising.					
UNIT – II	AUTO ENCODERS	9 Periods			
Auto-encoder	s: Auto-encoder; Denoising auto-encoder; Sparse auto-encoder; Va	riational auto-			
encoder; App	lications in imaging such as segnet and image generation				
UNIT – III	CONVOLUTIONAL NEURAL NETWORKS (CNN)	9 Periods			
CNN Archited	tures - Convolution - Pooling Layers - Transfer Learning - Imag	e Classificatior			
	er Learning - Recurrent and Recursive Nets - Recurrent Neural Ne				
Recurrent Ne	tworks - Recursive Neural Networks - LeNet, Alex Net - Applications				
UNIT – IV	DEEP GENERATIVE MODELS AND ADVERSARIAL NETWORK	9 Periods			
Deep Generat	ive Models: Restricted Boltzmann machine; Deep Boltzmann mach	ine; Recurrent			
Image Densit	ty Estimators (RIDE); PixelRNN and PixelCNN; Plug – and - P	lay generative			
networks. Ge	nerative Adversarial Network (GAN): GAN; Deep Convolutional GA	N; Conditiona			
GAN; Applicat	tions.				
UNIT – V	APPLICATIONS OF DEEP LEARNING	9 Periods			
	entation - Object Detection - Automatic Image Captioning - Image g				
Generative adversarial networks - Video to Text with LSTM models - Attention models for					
Computer Vision - Case Study: Named Entity Recognition - Opinion Mining using Recurrent					
Neural Networks - Parsing and Sentiment Analysis using Recursive Neural Networks - Sentence					
Classification using Convolutional Neural Networks - Dialogue Generation with LSTMs.					
Contact Perio		-			
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	de			

TEXT BOOK :

1	Ian J. Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning" , MIT Press, 2017.
2	Navin Kumar Manaswi, " Deep Learning with Applications Using Python ", Apress, 2018.

1	Phil Kim, "Matlab Deep Learning: With Machine Learning, Neural Networks and Artificial
	Intelligence", Apress, 2017.
2	RagavVenkatesan, Baoxin Li, "Convolutional Neural Networks in Visual Computing", CRC
	Press, 2018.
3	Francois Chollet, "Deep Learning with Python", Manning Publications, 2018.
4	Stanford CS231n,"Convolutional Neural Networks for Visual Recognition",
	http://cs231n.stanford.edu/
5	Michael Nielsen, "Neural Networks and Deep
	Learning",http://neuralnetworksanddeeplearning.com/
6	Hugo Larochelle," Online course on Neural Network",
	http://info.usherbrooke.ca/hlarochelle/neural_networks/content.html
7	Joshua F. Wiley, "R Deep Learning Essentials" , Packt Publications, 2016.
8	Phil Kim, "Matlab Deep Learning: With Machine Learning, Neural Networks and Artificial
	Intelligence", Apress, 2017.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the basics of neural network	K2
CO2	Explain the auto decoders and CNN	K2
CO3	Gain knowledge on Deep Generative Models and Adversarial Network	K3
C04	Apply the knowledge of deep learning to application	К3
C05	Explain real world applications such as object recognition and Computer Vision, image and video processing, text analytic and other types of classifiers.	КЗ

AUTOMOTIVE ELECTRONICS

PREREQUISITES	CATEGORY	L	Т	Р	C
NIL	PE	3	0	0	3

Course Objective	10 dequire in depth knowledge of an embedded system in automotive			
UNIT – I	ELECTRONICS IN AUTOMOTIVE SYSTEMS	9 Periods		
Overview of Automotive Mechanical systems- Need for Automotive Electronics System – Overview of vehicle electronic systems - Basic electrical components and their operation in an automobile- Power train subsystem: Starting systems, Charging systems, Ignition systems, Electronic fuel control - Chassis subsystem: ABS, TCS and ESP - Comfort and safety subsystems: Night vision, airbags, Seatbelt Tensioners, Cruise Control- Lane-departure-				
warning, Par UNIT – II	HARDWARE AND SOFTWARE MODULES	9 Periods		
Getting start	odule - Introduction to an embedded board -components - Softward ed: Creating new project, creating new files, adding files to project, mulation of a project.			
UNIT – III	EMBEDDED SYSTEM PROGRAMMING AND DEBUGGING	9 Periods		
•	stem Programming - Up-loaders- ISP - ROM Emulators - In-Circuces: BDM and JTAG.	it Emulators -		
UNIT – IV	EMBEDDED SYSTEM IN AUTOMOTIVE APPLICATIONS	9 Periods		
Engine management systems - Gasoline/ Diesel systems, various sensors used in system - Electronic transmission control - Vehicle safety system - Electronic control of braking and traction- Body electronics - Infotainment systems - Navigation systems - System level tests - Software calibration using engine and vehicle dynamometers - Environmental tests for Electronic Control Unit.				
UNIT – V	EMBEDDED SYSTEM COMMUNICATION PROTOCOLS	9 Periods		
Introduction to control networking - Communication protocols in embedded systems - SPI, I 2C, USB - Vehicle communication protocols - Introduction to CAN, LIN, FLEXRAY, MOST, KWP2000.				
Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods				

TEXT BOOK :

	Denton.T, "Automobile Electrical and Electronic Systems", Edward Arnold Publishers, 4 th Edition 2012.
2	Nicholas Navit, "Automotive Embedded System Handbook", CRC press, 2009.

1	Robert Bosch GmbH, "Automotive Handbook", John Wiley & Sons, 6th Edition, 2004.
2	Knowles.D, "Automotive Electronic and Computer Controlled Ignition Systems", Prentice
	Hall,1998.
3	William B. Ribbens, "Learning Automotive Electronics", Newnes Publishing, 6th Edition 2003
4	Joerg Schaeuffele, Thomas Zurawka - "Automotive Software Engineering- Principles,
	Processes, Methods and Tools ", SAE Publications,2005.

COUR Upon	Bloom's Taxonomy Mapped	
C01	Familiarize the electrical and electronic components used in an automotive systems.	K2
CO2	Design and implement projects using Embedded hardware and software.	К3
CO3	Explore programming and debugging skills.	K2
C04	Apply knowledge of an embedded system in automotive electronics.	К3
C05	Explain embedded system and vehicle communication protocols.	K2

DIGITAL IMAGE PROCESSING

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

-									
Course	i so conceptualize the image processing fundamentals and algorithms for								
Objective	Objective real time applications, Image Restoration and Reconstruction.								
UNIT - I IMAGE FORMATION AND ENHANCEMENT 9 Periods									
Human visua	Human visual system - Sampling and Quantization - Color fundamentals - Spatial domain								
processing -	Simple image operations - Point wise intensity transformation	is - Histogram							
processing -	Linear and non-linear noise smoothening - Sharpening - Derivative	es - Laplacian -							
Combining sp	atial enhancement methods								
UNIT – II	FREQUENCY TRANSFORMS AND APPLICATIONS	9 Periods							
	main processing - 2-D transforms: DFT, DCT, and DWT - Properti								
	ing techniques - sub band coding of image compression - Codi	ng techniques:							
Huffman, Run	length and Block transform - JPEG - Performance metrics.								
UNIT – III	IMAGE RESTORATION AND RECONSTRUCTION	9 Periods							
Image degrad	lation - Noise models - Image observation models- Spatial filterin	g: mean filters,							
order statisti	cs filters, adaptive filters - Inverse filtering - Wiener filtering - Co	nstrained least							
squares filter	ing. Image Reconstruction from projections - Radon transform and i	ts Application							
UNIT – IV	SEGMENTATION AND FEATURE EXTRACTION	9 Periods							
Edge detectio	n: Gradient operators - edge linking and boundary detection: Global	processing via							
Hough transfe	orms, Graph theoretic techniques - Thresholding techniques - K-mea	ans Clustering -							
Feature extra	action: Boundary feature descriptors - Region feature descripte	ors - Principal							
•	SIFT. Object Recognition applications								
UNIT – V	IMAGE COMPRESSION	9 Periods							
	ression - Redundancy - interpixel and psycho visual - Lossless								
predictive and entropy - Lossy Compression - Predictive and transform coding - Discrete Cosine									
Transform - Compression standards - JPEG and JPEG 2000. Discrete Wavelet transform and its									
properties.									
	Contact Periods:								
Lecture: 45 Pe	Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods								

TEXT BOOK :

1	Gonzalez R.C., Woods R.E., "Digital Image Processing", Fourth Edition, Pearson, 2017.
	Jayaraman S., Esakkirajan S., Veerakumar T., " Digital Image Processing ", Tata McGraw Hill, 2011.

1 J.	1 J.C. Russ," The Image Processing Handbook ", (5/e), CRC, 2006.									
2 A	2 A.K.Jain," Fundamentals of Digital Image Processing", PHI,2016.									
	COURSE OUTCOMES:Bloom'Upon completion of the course, the students will be able to:TaxonorMapped									
C01	Explain the Digital Image fundamentals.	K2								
C02	Apply Image Transforms to image processing applications.	K3								
CO3	Explain efficient Image enhancement and Restoration algorithms.	K2								
C04	Illustrate on Image segmentation and representation schemes.	K2								
C05	Describe basic image coding schemes and image compression standards.	K2								

23PTL6E1

MEASUREMENT AND INSTRUMENTATION

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To acquire knowledge in the measurements transducer disp	law and recording							
Objective	To acquire knowledge in the measurements, transducer, display and recording systems.								
-									
UNIT – I	BASICS OF MEASUREMENT	9 Periods							
	Measurement Systems - Instrumentation - Significance of measurements - Static and Dynamic								
Characteristic	s of Instruments - Errors in Measurements - Calibration and Standa	rds-Principle and							
types of Analo	og Voltmeters and Ammeters- D'Arsonval galvanometer.								
UNIT – II	TRANSDUCERS	9 Periods							
Classification	of Transducers - Resistive transducers - Strain gauges, Thermistor	, RTD - Inductive							
transducers -	LVDT, RVDT - Capacitive Transducers – Hall Effect - Piezoelectric transducer	rs - Thermocouple							
- IC sensors.									
UNIT – III	SIGNAL CONDITIONING AND SIGNAL ANALYZERS	9 Periods							
DC bridge - V	Vheatstone, Kelvin - AC bridge - Maxwell, Hay and Schering. Spec	ctrum Analyzers -							
Wave analyz	ers - Resonant wave analyzer, Heterodyne wave analyzer - Hai	rmonic distortion							
analyzers - Lo	gic Analyzer.								
UNIT – IV	DIGITAL INSTRUMENTS	9 Periods							
Digital instru	ments-Classification of Digital instruments - Digital frequency	meter – Period							
measurement	, Time interval measurement - Digital Voltmeter (DVM) - Accuracy a	and Resolution in							
DVM - Freque	ncy counter - DMM.								
UNIT – V	DATA DISPLAY AND RECORDING SYSTEMS	9 Periods							
Dual trace os	cilloscope - Digital Storage, Analog Storage and Mixed Signal Oscillo	scope. Analog and							
Digital Recorders - Virtual Instrumentation - Block diagram and Architecture - Applications in									
various fields.									
Contact Periods:									
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									

TEXT BOOK :

1	Albert	D.Helfrick	and	William	D.	Cooper,	"Moderi	n Electronic	Instrumentation	and
1	Measu	rement Teci	hniqu	es ", Prenti	ice H	Iall of Indi	a, 2007.			
		whney, " Cou It Rai Publis			cal	And Ele	ctronic N	Measurement	And Instrumenta	tion",

RE	FERE	NCES :					
1	John P. Bentley, "Principles of Measurement Systems", 4th edition, pearson Education Lin						
	2005	5.					
2	A.K.J	lain," Fundamentals of Digital Image Processing", PHI,2016.					
3	Erne	est.O. Doebelin and Dhanesh. N. manik, " Measurement systems " ,5th edition, M	cGraw-Hill, 2007.				
4	Bou	wens,A.J, " Digital Instrumentation ", Tata Mc-Graw Hill, 1986.					
5	Davi	id A.Bell, "Electronic Instrumentation and Measurements", 2nd edition, PHI,	2007.				
CO	URSE	OUTCOMES:	Bloom's				
Up	on co	mpletion of the course, the students will be able to:	Taxonomy				
			Mapped				
(201	Explain the standards, characteristics and errors of measurements	K2				
(202	Summarize the principle and working of different transducers	K2				
(203	Construct DC and AC bridges and analyze the signals using Waveform	К3				
		analyzers					
(CO4	Identify instruments for the measurement of different quantities.	K2				
(CO5	Discuss the recent advancements in the displays device technology.	K2				

DEEP LEARNING

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To cover the fundamentals and advanced topics in Deep Learning.	
Objective UNIT – I	PROBLEM SOLVING	9 Periods
Introduction to A	M - AI Applications - Problem solving agents - search algorithms - u	ninformed search
strategies - Heur	istic search strategies - Local search and optimization problems - ad	versarial search -
constraint satisfa	action problems (CSP).	
UNIT – II	PROBABILISTIC REASONING	9 Periods
Acting under	ncertainty - Bayesian inference - naïve bayes models. Probabil	istic reasoning -
Bayesian networ	ks - exact inference in BN - approximate inference in BN - causal net	works.
UNIT – III	SUPERVISED LEARNING	9 Periods
variables, Bayes function - Proba	machine learning - Linear Regression Models: Least squares, s ian linear regression, gradient descent, Linear Classification Mod bilistic discriminative model - Logistic regression, Probabilistic ge kimum margin classifier - Support vector machine, Decision Tree, Ra	els: Discriminant enerative model -
UNIT – IV	ENSEMBLE TECHNIQUES AND UNSUPERVISED LEARNING	9 Periods
boosting, stackin	iple learners: Model combination schemes, Voting, Ensemble Lea g, Unsupervised learning: K-means, Instance Based Learning: KNN, ectation maximization.	arning - bagging,
UNIT – V	NEURAL NETWORKS	9 Periods
optimization - st networks - Unit	ultilayer perceptron, activation functions, network training - s tochastic gradient descent, error backpropagation, from shallow r saturation (aka the vanishing gradient problem) - ReLU, hyperp tion, regularization, dropout. ds Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	networks to deep

TEXT BOOK :

1	Stuart Russell and Peter Norvig, "Artificial Intelligence – A Modern Approach" , Fourth Edition, Pearson Education, 2021.
2	EthemAlpaydin, "Introduction to Machine Learning" , MIT Press, Fourth Edition, 2020.

1	Dan W. Patterson, "Introduction to Artificial Intelligence and Expert Syste	e ms" , Pearson					
	Education,2007						
2	Kevin Night, Elaine Rich, and Nair B., "Artificial Intelligence" , McGraw Hill, 2008						
3	3 Christopher M. Bishop, "Pattern Recognition and Machine Learning" , Springer, 2006.						
4	Tom Mitchell, "Machine Learning" , McGraw Hill, 3rd Edition,1997.						
5	Charu C. Aggarwal, "Data Classification Algorithms and Applications", CRC Pres	rs, 2014					
6	6 Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning", MIT Press, 2016						
COURS	COURSE OUTCOMES: Bloom's						
Upon c	completion of the course, the students will be able to:	Taxonomy					
		Mapped					
C01	Understand the basics of neural network	К2					
CO2	Explain the auto decoders and CNN	K2					
CO3	Gain knowledge on Deep Generative Models and Adversarial Network	K2					
CO4	Apply the knowledge of deep learning to application	К3					
C05	Explain real world applications such as object recognition and Computer	К2					
	Vision, image and video processing, text analytic and other types of classifiers.						

LOW POWER VLSI

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To understand the low power design at architecture, a	lgorithm and						
Objective	system level design.							
UNIT – I	INTRODUCTION & SIMULATION POWER ANALYSIS	9 Periods						
Need for low	power VLSI chips, sources of power dissipation Device & technology	impact on low						
power, impac	t of technology scaling, technology & device innovation, Power est	imation, SPICE						
circuit simula	tors, gate level logic simulation, capacitive power estimation, stat	tic power, gate						
	level capacitance estimation, architecture level analysis, Monte-Carlo simulation							
UNIT – II	PROBABILISTIC POWER ANALYSIS & CIRCUIT LEVEL,	9 Periods						
	LOGIC LEVEL DESIGN							
Random logic	signals, probability & frequency, probabilistic power analysis tec	hniques, signal						
entropy, low	power design, Power consumption in circuits, Flip-Flops & Latche	es design, high						
capacitance r	nodes, low power digital cells library, Gate reorganization, signa	al gating, logic						
encoding, stat	e machine encoding, pre-computation logic.							
UNIT – III	LOW POWER ARCHITECTURE & SYSTEMS	9 Periods						
		9 renous						
Power & per	formance management, switching activity reduction, parallel arc							
-	formance management, switching activity reduction, parallel arc	hitecture with						
voltage reduc	· · · ·	hitecture with						
voltage reduc	tion, flow graph transformation, low power arithmetic component	hitecture with						
voltage reduc memory desig UNIT – IV	ction, flow graph transformation, low power arithmetic componen gn, Low-Power ROM and RAM Technologies.	chitecture with hts, low power 9 Periods						
voltage reduc memory desig UNIT - IV Power dissip	ction, flow graph transformation, low power arithmetic componen gn, Low-Power ROM and RAM Technologies. LOW POWER CLOCK DISTRIBUTION	chitecture with hts, low power 9 Periods						
voltage reduc memory desig UNIT - IV Power dissip	tion, flow graph transformation, low power arithmetic component gn, Low-Power ROM and RAM Technologies. LOW POWER CLOCK DISTRIBUTION ation in clock distribution, single driver vs distributed buffers,	chitecture with hts, low power 9 Periods						
voltage reduc memory desig UNIT – IV Power dissip tolerable skew UNIT – V	tion, flow graph transformation, low power arithmetic component gn, Low-Power ROM and RAM Technologies. LOW POWER CLOCK DISTRIBUTION ation in clock distribution, single driver vs distributed buffers, v, chip & package co-design technique of clock network.	chitecture with hts, low power 9 Periods zero skew vs 9 Periods						
voltage reduc memory desig UNIT – IV Power dissip tolerable skew UNIT – V	tion, flow graph transformation, low power arithmetic component gn, Low-Power ROM and RAM Technologies. LOW POWER CLOCK DISTRIBUTION ation in clock distribution, single driver vs distributed buffers, v, chip & package co-design technique of clock network. ALGORITHM & ARCHITECTURAL LEVEL METHODOLOGIES design flow, algorithmic level analysis & optimization, arch	chitecture with hts, low power 9 Periods zero skew vs 9 Periods						
voltage reduc memory desig UNIT - IV Power dissip tolerable skew UNIT - V Introduction,	tion, flow graph transformation, low power arithmetic component gn, Low-Power ROM and RAM Technologies. LOW POWER CLOCK DISTRIBUTION ation in clock distribution, single driver vs distributed buffers, v, chip & package co-design technique of clock network. ALGORITHM & ARCHITECTURAL LEVEL METHODOLOGIES design flow, algorithmic level analysis & optimization, arch synthesis ds:	chitecture with hts, low power 9 Periods zero skew vs 9 Periods hitectural level						
voltage reduc memory desig UNIT – IV Power dissip tolerable skew UNIT – V Introduction, estimation & s	tion, flow graph transformation, low power arithmetic component gn, Low-Power ROM and RAM Technologies. LOW POWER CLOCK DISTRIBUTION ation in clock distribution, single driver vs distributed buffers, v, chip & package co-design technique of clock network. ALGORITHM & ARCHITECTURAL LEVEL METHODOLOGIES design flow, algorithmic level analysis & optimization, arch synthesis ds:	chitecture with hts, low power 9 Periods zero skew vs 9 Periods itectural level						

TEXT BOOK :

- 1 Kaushik Roy and Sharat Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley, 2000
- 2 Gary K. Yeap, "Practical Low Power Digital VLSI Design", KAP, 2002

1	1 Rabaey, Pedram, "Low power design methodologies", Kluwer Academic, 1997							
2	A.P.Chandrakasan, R.W.Broadersen, "Low Power Digital CMOS Design", Kluw	ver, Springer US,						
	2012.							
3	Sung-Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated Circuits – Analys	sis and Design",						
	ТМН, 2011.							
4	G. Narendra and A. Chandrakasan, "Leakage in Nanometer CMOS Technology	o gies" , Springer,						
	2005.							
CO	COURSE OUTCOMES: Bloom's							
Up	on completion of the course, the students will be able to:	Taxonomy						
		Mapped						
CO	1 Describe the need of low newer and simulation newer analysis	К2						
CC	Analyze the probabilistic power analysis and circuit, logic level design	K3						
CC	²³ Infer low power architecture & systems	K2						
CC	14 Illustrate the low power clock distribution	K2						
CC	5 Explain algorithm and architectural level methodologies for low power	K2						

ERROR CONTROL CODING

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

-		_						
Course	To provide a comprehensive introduction to error corre	ection coding,						
Objective	including both classical block- and trellis-based codes ar	nd the recent						
	developments in Space time codes, iteratively decoded c	odes such as						
	turbo codes and low-density parity-check codes.							
UNIT – I	LINEAR BLOCK CODES AND CONVOLUTIONAL CODES	9 Periods						
Review of mo	Review of modern algebra - Galois fields - Linear block codes - encoding and decoding - Cyclic							
codes - Nonb	inary codes. Convolutional codes - Generator sequences - Structur	ral properties -						
ML decoding	- Viterbi decoding- Sequential decoding.							
UNIT – II	LDPC CODES	9 Periods						
LDPC Codes:	Construction and Notation - Tanner Graph - Decoding of LDPC Cod	es - EXIT Chart						
	es - Irregular LDPC codes - LDPC codes in 5G.							
UNIT – III	TRELLIS CODES	9 Periods						
Modulation codes - Trellis coded modulation - Lattice type Trellis codes - Geometrically uniform								
	trellis codes - Decoding of modulation codes.							
	Decoding of modulation codes.							
	Decoding of modulation codes. TURBO CODES	9 Periods						
trellis codes - UNIT – IV	TURBO CODES							
trellis codes - UNIT - IV Turbo codes								
trellis codes - UNIT - IV Turbo codes	TURBO CODES - Turbo decoder – Interleaver - MAP and log MAP decoders –							
trellis codes - UNIT - IV Turbo codes decoding - Op UNIT - V	TURBO CODES - Turbo decoder – Interleaver - MAP and log MAP decoders – timum decoding of turbo codes.	Iterative turbo 9 Periods						
trellis codes - UNIT - IV Turbo codes decoding - Op UNIT - V Space-time co	TURBO CODES- Turbo decoder – Interleaver - MAP and log MAP decoders – timum decoding of turbo codes.SPACE TIME CODES	Iterative turbo 9 Periods						
trellis codes - UNIT - IV Turbo codes decoding - Op UNIT - V Space-time co	TURBO CODES- Turbo decoder – Interleaver - MAP and log MAP decoders – timum decoding of turbo codes.SPACE TIME CODESodes - MIMO systems - Space-time block codes (STBC) – decoding des-Decoding of Space-time Trellis codes.	Iterative turbo 9 Periods						
trellis codes - UNIT - IV Turbo codes decoding - Op UNIT - V Space-time co time trellis co	TURBO CODES - Turbo decoder – Interleaver - MAP and log MAP decoders – timum decoding of turbo codes. SPACE TIME CODES odes - MIMO systems - Space-time block codes (STBC) – decoding des-Decoding of Space-time Trellis codes. ds:	Iterative turbo 9 Periods of STBC-Space-						

TEXT BOOK :

- 1 S.Lin&D.J.Costello, "Error Control Coding (2/e)", Pearson, 2005.
- 2 Tood.K.Moon "Error Correcting Codes" A John Wiley & Sons, INC, Publication

1	B.Vucetic&J.Yuan, " Turbo codes ", Kluwer, 2000.						
2	2 C.B.Schlegel&L.C.Perez, "Trellis and Turbo Coding", Wiley,2004.						
3	3 B.Vucetic&J.yuan, " Space-Time Coding ", Wiley, 2003.						
4	4 H. Jafarkhani, "Space-time coding: Theory & Practice" , Cambridge University Press, 2005.						
CO	Bloom's						
Up	Upon completion of the course, the students will be able to:						
		Mapped					
CO	1 Examine the arithmetic of Galois fields as well as linear block, cyclic, and	К3					
	convolutional codes						
CO	2 Discuss the construction of LDPC codes	K2					
CO	3 Explain the encoding and decoding of Trellis coded modulation	K2					
CO	4 Apply the encoding and decoding methods of Turbo codes	К3					
CO	5 Apply the encoding and decoding methods of Space time codes	К3					

MICROWAVE INTEGRATED CIRCUITS

PREREQUISIT	ES	CATEGORY	L	Т	Р	C	
	NIL	PE	3	0	0	3	
Course	To have a depth knowledge on building block	ocks of micr	owa	ave	inte	grated	
Objective	circuits.						
UNIT – I	PLANAR TRANSMISSION LINES AND COMPON	ENTS		9	9 Per	riods	
Review of Transmission line theory – S parameters-Transmission line equations – reflection							
coefficient – V	/SWR – Microstrip lines: Structure, waves in micro	strip, Quasi-T	ГЕМ	app	roxir	nation,	
Coupled lines	: Even mode and odd mode analysis - Strip line - S	Slot line – Cop	lana	ar wa	aveg	uide	
UNIT – II	IMPEDANCE MATCHING NETWORKS			9	9 Per	riods	
Circuit Repre	sentation of two port RF/Microwave Networks: I	low Frequenc	cy Pa	aram	eter	s, High	
Frequency Pa	rameters, Transmission Matrix, ZY Smith Chart, I	Design of Mat	chin	g Ciı	·cuit	s using	
Lumped Elem	ients.						
UNIT – III	MICROWAVE FILTERS				9 Per	riods	
Basic RLC Se	eries and Parallel resonators – RF Filter design	n using Insei	rtion	Lo	ss n	nethod:	
Butterworth,	Chebyshev and Linear Phase: LPF, HPF, BPF and B	SF – Design o	f filt	ers			
UNIT – IV	MICROWAVE AMPLIFIERS			Ģ	9 Per	riods	
Characteristic	cs of microwave transistors – Two Port Power G	ains - Stabili	ty c	onsi	dera	tions –	
Input and Ou	ıtput Stability circles – Unconditional Stability –	Design for l	Maxi	imun	n Ga	in and	
Specified Gair	1						
UNIT – V	MICROWAVE OSCILLATORS			9	9 Per	riods	
Oscillators: 0	scillation conditions – Basic oscillator model – F	eedback osci	llato	or de	esign	–High	
frequency os	cillator configurations – Voltage controlled oscilla	ator – Gunn e	elem	ent	oscil	lator –	
Design and st	ability considerations of Microwave Transistor Os	cillators.					
Contact Perio							
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Period	ls Total: 45 I	Perio	ods			
L							

TEXT BOOK :

					vave Engin				Guide	to T	'heory,
1	¹ Measurements and Circuits", Cambridge University Press, 2004.										
2	Reinhold	Ludwi	g and	Gene	Bogdanov,	" RF	Circuit	t Desig	n: Tl	heory	and
2	² Reinhold Ludwig and Gene Bogdanov, " RF Circuit Design: Theory and Applications", Pearson Education Inc., 2 nd edition, 2011.										

1	Jia Sheng Hong, M. J. Lancaster, "Microstrip Filters for RF/Microwave Applications", John				
	Wiley & Sons, 2011				
2	David M. Pozar, "Microwave Engineering", Wiley India (P) Ltd, New Delhi, 4th	edition, 2012.			
3	Annapurna Das and Sisir K Das, "Microwave Engineering", Tata	McGraw Hill			
	PublishingCompany Ltd, New Delhi, 2017.				
4	Samuel Y. Liao, "Microwave Devices and Circuits", Prentice Hall of Intern	national Ltd, 4 th			
	edition, 2009.				
5	Robert E Colin, "Foundations for Microwave Engineering", John Wiley & Sons	s, 2010			
CO	URSE OUTCOMES:	Bloom's			
Up	Taxonomy				
		Mapped			
CO		K2			
CO	2 Design impedance matching networks for MICs	К3			
CO	3 Design microwave filters for given specifications	К3			
CO	4 Design microwave amplifiers to meet out the requirements	K2			
CO	5 Design oscillator circuit and monolithic MICs	K2			

SOFT COMPUTING

PREREQUISIT	ES	CATEGORY	L	Т	Р	С	
	NIL	PE	3	0	0	3	
Course To learn various soft computing techniques like neural networks, genetic							
Objective	algorithms, and fuzzy systems, and apply	these techni	que	s in	rea	l-time	
	problem solving.						
UNIT – I	INTRODUCTION TO SOFT COMPUTING			ģ) Per	iods	
Introduction	- Artificial Intelligence - Artificial Neural Netwo	orks - Fuzzy	Sys	tems	s - C	Genetic	
Algorithm an	d Evolutionary Programming-Swarm Intelligent S	ystems - Clas	sific	atior	of <i>I</i>	ANNs -	
McCulloch an	d Pitts Neuron Model - Learning Rules: Hebbian a	nd Delta - Pe	rcep	tron	Net	work -	
Adaline Netw	ork - Madaline Network.						
UNIT – II	NEURAL NETWORKS			-	9 Per		
1 1 0	tion Neural Networks - Kohonen Neural Network	0		•			
	ural Network - Hopfield Neural Network - Bi-d						
-	onance Theory Neural Networks - Support Ve	ector Machin	es -	Spi	ke N	leuron	
Models.				1			
UNIT – III	FUZZY SYSTEM			Ç) Per	inds	
Introduction to Fuzzy Logic, Classical Sets and Fuzzy Sets - Classical Relations and Fuzzy							
				ons	and	Fuzzy	
Relations - M	embership Functions – De-fuzzification - Fuzzy A	rithmetic an	d Fu	ons zzy	and Meas	Fuzzy	
Relations - M		rithmetic an	d Fu	ons zzy	and Meas	Fuzzy	
Relations - M	embership Functions – De-fuzzification - Fuzzy A	rithmetic an	d Fu	ons zzy iking	and Meas	Fuzzy sures -	
Relations - M Fuzzy Rule Ba UNIT – IV	embership Functions – De-fuzzification - Fuzzy A use and Approximate Reasoning - Introduction to F	Arithmetic an Fuzzy Decisio	d Fu n Ma	ons zzy iking	and Meas Per	Fuzzy sures - iods	
Relations - M Fuzzy Rule Ba UNIT - IV Genetic algori	embership Functions – De-fuzzification - Fuzzy A use and Approximate Reasoning - Introduction to F GENETIC ALGORITHM	Fuzzy Decision - operators -	d Fu n Ma Gene	ons zzy iking c erati	and Meas Per onal	Fuzzy sures - iods cycle -	
Relations - M Fuzzy Rule Ba UNIT - IV Genetic algoristopping cond	embership Functions – De-fuzzification - Fuzzy A use and Approximate Reasoning - Introduction to F GENETIC ALGORITHM ithm and search space - general genetic algorithm	Fuzzy Decision - operators -	d Fu n Ma Gene	ons zzy king eration rel op	and Meas 9 Per onal otimi	Fuzzy sures - iods cycle - ization	
Relations - M Fuzzy Rule Ba UNIT - IV Genetic algor stopping cond - real life prob UNIT - V	embership Functions – De-fuzzification - Fuzzy A ase and Approximate Reasoning - Introduction to F GENETIC ALGORITHM ithm and search space - general genetic algorithm dition - constraints - classification - genetic progra blem - advances in GA. HYBRID TECHNIQUES	Fuzzy Decision - operators - umming - mul	d Fu n Ma Gene tilev	ons zzy king eratio eratio el op	and Meas Per onal otimi	Fuzzy sures - iods cycle - ization iods	
Relations - M Fuzzy Rule Ba UNIT - IV Genetic algori stopping cond - real life prol UNIT - V Hybrid System	embership Functions – De-fuzzification - Fuzzy A ase and Approximate Reasoning - Introduction to F GENETIC ALGORITHM ithm and search space - general genetic algorithm lition - constraints - classification - genetic progra olem - advances in GA. HYBRID TECHNIQUES ns - Neural Networks, Fuzzy Logic and Genetic - G	Fuzzy Decisio - operators - umming - mul	d Fu n Ma Gene tilev	ons zzy iking erationer rel op geten Deten	and Meas 9 Per onal otimi	Fuzzy sures - iods cycle - ization iods ation -	
Relations - M Fuzzy Rule Ba UNIT - IV Genetic algor stopping cond - real life prol UNIT - V Hybrid Systen LR-Type Fuzz	embership Functions – De-fuzzification - Fuzzy A ase and Approximate Reasoning - Introduction to F GENETIC ALGORITHM Ithm and search space - general genetic algorithm dition - constraints - classification - genetic progra olem - advances in GA. HYBRID TECHNIQUES ns - Neural Networks, Fuzzy Logic and Genetic - G zy Numbers - Fuzzy Neuron - Fuzzy BP Archite	Arithmetic an Fuzzy Decision - operators - amming - mul A Based Wei ecture - Lear	d Fu n Ma Gene tilev ght I ning	ons zzy king eratio rel op eration Deten in l	and Meas Per onal otimi Per rmin	Fuzzy sures - iods cycle - ization iods ation - y BP -	
Relations - M Fuzzy Rule Ba UNIT - IV Genetic algori stopping cond - real life prob UNIT - V Hybrid System LR-Type Fuzz Inference by	embership Functions – De-fuzzification - Fuzzy A ise and Approximate Reasoning - Introduction to F GENETIC ALGORITHM ithm and search space - general genetic algorithm dition - constraints - classification - genetic progra olem - advances in GA. HYBRID TECHNIQUES ns - Neural Networks, Fuzzy Logic and Genetic - G zy Numbers - Fuzzy Neuron - Fuzzy BP Archite Fuzzy BP - Fuzzy ArtMap: A Brief Introduction - So	Arithmetic an Fuzzy Decision - operators - amming - mul A Based Wei ecture - Lear	d Fu n Ma Gene tilev ght I ning	ons zzy king eratio rel op eration Deten in l	and Meas Per onal otimi Per rmin	Fuzzy sures - iods cycle - ization iods ation - y BP -	
Relations - M Fuzzy Rule Ba UNIT - IV Genetic algori stopping cond - real life prol UNIT - V Hybrid System LR-Type Fuzz Inference by L Logic Control	embership Functions – De-fuzzification - Fuzzy A see and Approximate Reasoning - Introduction to F GENETIC ALGORITHM ithm and search space - general genetic algorithm dition - constraints - classification - genetic progra olem - advances in GA. HYBRID TECHNIQUES ns - Neural Networks, Fuzzy Logic and Genetic - G zy Numbers - Fuzzy Neuron - Fuzzy BP Archite Fuzzy BP - Fuzzy ArtMap: A Brief Introduction - So ler Design - Fuzzy Logic Controller.	Arithmetic an Fuzzy Decision - operators - amming - mul A Based Wei ecture - Lear	d Fu n Ma Gene tilev ght I ning	ons zzy king eratio rel op eration Deten in l	and Meas Per onal otimi Per rmin	Fuzzy sures - iods cycle - ization iods ation - y BP -	
Relations - M Fuzzy Rule Ba UNIT - IV Genetic algor stopping cond - real life prol UNIT - V Hybrid Syster LR-Type Fuzz Inference by L Logic Control Contact Period	embership Functions – De-fuzzification - Fuzzy A ase and Approximate Reasoning - Introduction to F GENETIC ALGORITHM Ithm and search space - general genetic algorithm dition - constraints - classification - genetic progra- olem - advances in GA. HYBRID TECHNIQUES ns - Neural Networks, Fuzzy Logic and Genetic - G zy Numbers - Fuzzy Neuron - Fuzzy BP Archite Fuzzy BP - Fuzzy ArtMap: A Brief Introduction - So ler Design - Fuzzy Logic Controller. ds:	Arithmetic an Fuzzy Decisio - operators - amming - mul A Based Wei ecture - Lear ft Computing	d Fu n Ma Gene tilev ght I ning Too	ons zzy iking eratio rel op eratio rel op Oeter in 1 is - (and Meas Per onal otimi Per rmin	Fuzzy sures - iods cycle - ization iods ation - y BP -	
Relations - M Fuzzy Rule Ba UNIT - IV Genetic algori stopping cond - real life prol UNIT - V Hybrid System LR-Type Fuzz Inference by L Logic Control	embership Functions – De-fuzzification - Fuzzy A ase and Approximate Reasoning - Introduction to F GENETIC ALGORITHM Ithm and search space - general genetic algorithm dition - constraints - classification - genetic progra- olem - advances in GA. HYBRID TECHNIQUES ns - Neural Networks, Fuzzy Logic and Genetic - G zy Numbers - Fuzzy Neuron - Fuzzy BP Archite Fuzzy BP - Fuzzy ArtMap: A Brief Introduction - So ler Design - Fuzzy Logic Controller. ds:	Arithmetic an Fuzzy Decisio - operators - amming - mul A Based Wei ecture - Lear ft Computing	d Fu n Ma Gene tilev ght I ning Too	ons zzy iking eratio rel op eratio rel op Oeter in 1 is - (and Meas Per onal otimi Per rmin	Fuzzy sures - iods cycle - ization iods ation - y BP -	

TEXT BOOK :

1	S.Rajasekaran,	G.A.Vijayalakshmi	Pai,	"Neural	Networks,	Fuzzy	Logic	and	Genetic
T	Algorithm, Synthesis and Applications", PHI Learning Pvt.Ltd., 2017.								
2	S.N.Sivanandam and S.N.Deepa, " Principles of Soft Computing ", Wiley India Pvt Ltd, 2011.								

1	Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, "Neuro-Fuzzy and Soft Computing",
	Prentice-Hall of India, 2002.
2	George J. Klir, Ute St. Clair, Bo Yuan, "Fuzzy Set Theory: Foundations and Applications",
	Prentice Hall, 1997.
3	David E. Goldberg, "Genetic Algorithm in Search Optimization and Machine Learning"
	Pearson Education India, 2013.
4	JamesA.Freeman, David M. Skapura, "Neural Networks Algorithms, Applications, and
	Programming Techniques", Pearson Education India, 1991.
5	Kwang H.Lee, "First course on Fuzzy Theory and Applications", Springer, 2005

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:		
C01	Explain the fundamentals of various soft computing techniques.	К3	
CO2	Acquire In-depth knowledge about neural networks.	К3	
CO3	Discuss the basic concept of fuzzy system.	K2	
C04	Describe the process involved in genetic algorithms.	K2	
C05	Summarize the different hybrid soft computing techniques	K2	

DSP ARCHITECTURE AND PROGRAMMING

DDEDEOIIISITES	CATTOODY	-	m	n	
PREREQUISITES	CATEGORY	L	Т	P	C
NIL	PE	3	0	0	3

Course	To Understand the Fundamental blocks of TMS32007xArchit	tocture and to				
Objective	is alient					
,	implement various DSP Algorithms.					
UNIT – I	FUNDAMENTALS OF PROGRAMMABLE DSPs	9 Periods				
VonNeumann	, Harvard Architecture, Modified Harvard and VLIW Architecture	- Modified Bus				
Structures an	d Memory access in P-DSPs - Multiple access memory, Multi - p	orted memory,				
Pipelining - Sp	pecial Addressing modes in P- DSPs - Onchip Peripherals - Computa	tional accuracy				
in DSP proces	sor - MAC.					
UNIT – II	TMS320C67x DSP ARCHITECTURE	9 Periods				
TMS320 DSP	Family Overview - TMS320C6000 DSP Family Overview - TMS	S320C67x DSP				
Features - TN	4S320C67x DSP Architecture - Central Processing Unit (CPU),Int	ternal Memory				
Memory and P	eripheral.					
UNIT – III	TMS320C67x CPU DATAPATHS AND CONTROL	9 Periods				
General - Pur	pose Register Files - Functional Units - Register File Cross - Mem	ory, Load, and				
Store Paths -	Data Address Paths - Control Register File - Instruction Operation a	and Execution -				
Parallel Oper	ations - Conditional Operations - Resource Constraints - Addre	essing Modes -				
Instruction Co	ompatibility.	U U				
UNIT – IV	TMS320C67x PIPELINE AND INTERRUPTS	9 Periods				
Pipeline Oper	ration - Pipeline Execution of Instruction Types - Functional Uni	t Constraints -				
Performance	Considerations - Interrupts - Overview - Globally Enabling	and Disabling				
-	ndividual Interrupt Control - Interrupt Detection and Processing	- Performance				
	ns - Programming Considerations					
UNIT – V	IMPLEMENTATION OF BASIC DSP ALGORITHMS	9 Periods				
-	Study of time complexity of DFT and FFT algorithm ,Use of FFT for filtering long data sequence,					
IIR and FIR I	IIR and FIR Filters, Interpolation, Decimation, Wavelet filter					
Contact Period	ts:					
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ds				

TEXT BOOK:

1	DigitalSignalProcessors, "Architecture, Programming and Applications" –
	B.VenkataRamaniandM.Bhaskar,TMH,2004.

1	"DigitalSignalProcessing"–JonathamStein,JohnWiley,2005				
2	AvtarSingh and S. Srinivasan" Digital Signal Processing – Implementations using DSP				
	Microprocessors", cengage Learning India Private Limited, Delhi 2012				
3	AvtarSinghandS.Srinivasan" DigitalSignalProcessing", ThomsonPublications	,2004.			
4	Lapsleyetal.S.Chand&Co"DSPProcessorFundamentals,Architectures&Features	u res ",2000.			
COI	JRSE OUTCOMES:	Bloom's			
Upo	Upon completion of the course, the students will be able to: Taxonomy				
		Mapped			
C01	Understand the Fundamentals of Programmable DSPs	K2			
CO2	Understand various components of DSP Architecture	K2			
CO3	In depth knowledge on CPU Data Paths and Control	K2			
C04	Understand various concepts Pipeline and Interrupts	K2			
CO5	i Implement various DSP Algorithms	К3			

HIGH SPEED NETWORKS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	To inginight the reactives of amerene teenhologies involved in high opeed						
UNIT – I	HIGH SPEED NETWORKS	9 Periods					
Frame Relay	Frame Relay Networks - Asynchronous transfer mode - ATM Protocol Architecture, ATM logical						
Connection, A	ATM Cell - ATM Service Categories - AAL, High Speed LANs: Fast	t Ethernet, Gigabit					
Ethernet, Fibe	r Channel - Wireless LANs: applications, requirements - Architecture of	of 802.11.					
UNIT – II	CONGESTION AND TRAFFIC MANAGEMENT	9 Periods					
Queuing Analy	vsis - Queuing Models - Single Server Queues - Effects of Congestion -	Congestion Control					
- Traffic Mana	gement - Congestion Control in Packet Switching Networks - Frame Re	elay Congestion.					
UNIT – III	TCP AND ATM CONGESTION CONTROL	9 Periods					
TCP Flow con	trol - TCP Congestion Control - Retransmission - Timer Management	- Exponential RTO					
backoff - KAF	RN's Algorithm - Window management - Performance of TCP over	ATM. Traffic and					
Congestion co	ontrol in ATM - Requirements - Attributes - Traffic Management F	rame work, Traffic					
Control - ABR	traffic Management - ABR rate control, RM cell formats, ABR Capacit	y allocations - GFR					
traffic manage	ement.						
UNIT – IV	INTEGRATED AND DIFFERENTIATED SERVICES	9 Periods					
Integrated Ser	rvices Architecture - Approach, Components, Services - Queuing Disci	oline, FQ, PS, BRFQ,					
GPS, WFQ - Ra	ndom Early Detection, Differentiated Services.						
UNIT – V	PROTOCOLS FOR QoS SUPPORT	9 Periods					

RSVP - Goals and Characteristics, Data Flow, RSVP operations, Protocol Mechanisms - Multiprotocol Label Switching - Operations, Label Stacking, Protocol details - RTP - Protocol Architecture, Data Transfer Protocol, RTCP.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

1	William Stallings, "HIGH SPEED NETWORKS AND INTERNETS", Second Edition, Pearson Education,	
	2002.	
2	IrvanPepelnjk, Jim Guichard, Jeff Apcar, "MPLS and VPN architecture", Cisco Press, Volume 1 and 2,	
	2003.	

1	Jean warland and Pravin Wadaja, "High Performance Communication Networks", 2nd Edition,
	Jean Harcourt Asia Pvt. Ltd.,2001.
2	Andrew S. Tanenbaum, "Computer networks", PHI Private limited, New Delhi.
3	Abhijit S. Pandya, Ercan Sea, "ATM Technology for Broad Band Telecommunication Networks",
	CRC Press, New York, 2004.
4	Tere Parnell, "Guide to Building High-speed Networks", Osborne/McGraw-Hill, 1998, 0072119578,
	9780072119572.
5	Sumit Kasera, Pankaj Sethi, " ATM Networks", Tata Mc Graw- Hill, New Delhi , 2000

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
C01	Familiarize about ATM and Frame relay	K2
CO2	Discuss the effects of congestion and identify the different Queueing models	К3
CO3	Identify techniques to support real-time traffic and congestion control	K2
CO4	Describe the integrated and differentiated services	K2
C05	Interpret protocols for different levels of quality of service (QoS)	K2

MEMS

PREREQUISITE	S	CATEGORY	L	Т	Р	С
\	NIL	PE	3	0	0	3
Course	To learn the fabrication process in MEM	S and acquir	e k	nov	ledg	ge on
Objective	various sensors and actuators.					
UNIT – I	INTRODUCTION			9	Peri	ods
	rro Electro Mechanical Systems (MEMS) - ME					
	rinsic Characteristics of MEMS - Transducers -		ME	MS p	roce	sses -
New Materials	- Stress and strain analysis - Flexural beam bend	ing.				
UNIT – II	MEMS FABRICATION			9	Peri	ods
MEMS fabrica	tion processes: Review of IC fabrication	process. Micr	oma	achir	ing:	Bulk
Micromachinin	g - Dry and Wet etching - Surface micromach	ining - Depos	itior	n, Ev	apor	ation,
	taxial growth - Deep Reaction ion etching - LIGA	process.				
UNIT – III	ELECTROSTATIC SENSORS			9	Peri	ods
	Electrostatic sensors - Parallel plate capacitors - Applications - Interdigitated Finger capacitor -					
	vices - Micro Grippers - Micro Motors - Thermal	U	\ctu	atio	ı: Th	ermal
	ermal couples - Thermal resistors - Thermal Bi	morph.				
UNIT – IV	MAGNETOSTATIC SENSORS			9	Peri	ods
	sensors - Piezoresistive sensor materials - A					
	low sensors - Piezoelectric sensors and act	-			effe	ects -
<u> </u>	aterials - Applications to Inertia , Acoustic, Tacti	le and Flow ser	isor			
UNIT – V	APPLICATION CASE STUDIES			9	Peri	ods
Application case studies: MEMS Scanners, Grating Light Valve (GLV), Optical switching,						
Capacitive Micromachined Ultrasonic Transducers (CMUT), Air bag system, Micromotors,						
Scanning Probe Microscopy.						
Contact Periods:						
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
L						
TEXT BOOKS:						

TEXT BOOKS:

1	ChangLiu, "Foundations of MEMS", Pearson Education Inc., 2nd edition 2006.					
2	Stephen D Senturia, "Microsystem Design", Springer Publication,1st edition 2007.					
RE	FERENCES:					
1	JulianW.Gardner,VijayK.Varadan,OsamaO.AwadelKarim,"Microsensors ME	MS and				
	Smart Devices", JohnWiby & sons Ltd., 5th edition 2014.					
2	Rai-Choudhury P. " MEMS and MOEMS Technology and Applications ", PHI Limited, 1 st edition2009.	Learning Private				
3	MarcFMadou, "Fundamentals of MicroFabrication", CRCPress, 2nd Edition, 2002					
4	Tai Ran Hsu, "MEMS & Micro systems Design and Manufacture" 2nd edition	Tata				
	McGrawHill, New Delhi, 2002.					
CO	URSE OUTCOMES:	Bloom's				
Up	on completion of the course, the students will be able to:	Taxonomy				
		Mapped				
CO	1 Explain the basic concepts of MEMS.	K2				
CO	2 Describe the process involved in MEMS fabrication.	K2				
CO	3 Summarize the different electrostatic sensors	К2				
CO	4 Analyse the various magnetostatic sensors.	К3				
CO	5 Illustrate the case studies of MEMS.	K2				

POWER ELECTRONICS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Lecture: 45 Periods Tutorial:0 Periods Practical: 0 Periods Total: 45 Periods						
motor drives - Contact Period	Solid state relays - Microelectronic relays.					
	DC motor drives-Induction and Synchronous motor drives - Switched reluctance and brushless					
UNIT – V	APPLICATIONS	9 Periods				
	ent source inverter.					
	e wave operation of the inverter, Series inverter, Parallel inve	rter and Bridge				
	of single - phase voltage source inverter, switch states and insta					
UNIT – IV	SINGLE PHASE INVERTER	9 Periods				
- Step - up, ste	p down & step up - down chopper, chopper configuration - AC Chop					
DC Chopper : I	Elementary chopper with an active switch and diode, Duty ratio and	Average voltage				
UNIT – III	DC CHOPPER AND AC CHOPPER	9 Periods				
Single Phase Controlled rectifiers - Half wave controlled rectifier with R load and Fu controlled rectifier with R load - AC Voltage controllers, Single phase cyclo converter.						
UNIT – II	CONTROLLED RECTIFIERS AND AC VOLTAGE CONTROLLERS	9 Periods				
SCR characteristics - Two transistor analogy - Methods of turning on and turning off - Oth members of SCR family - Series and parallel connection of SCRs - Thyristor protection. Oth semiconductor devices: Power MOSFETs, GTOs, IGBT.						
UNIT – I	SEMICONDUCTOR POWER DEVICES	9 Periods				
Objective	power converters for the drives and to study the series & parallel protection circuits.	llel connections and				
Course	To acquire knowledge about the power converters for various loads,	to implement the				

TEXT BOOKS:

- 1 P.C. Sen, "PowerElectronics", TataMcGraw-Hill, 2017.
- 2 Muhammad H.Rashid, **"Power Electronics Circuits , Devices and Applications"**, 3rd Edition, Prentice Hall of India, 2004.

1	S.N. Singh, Text Book of Power Electronics, DhanpathRai & Co., New Delhi, 2000.					
2	M.D.Singh,K.B.Khanchandani," PowerElectronics ",TataMcGraw-Hill,1998.					
3	B.K.Bose, "ModernPowerElectronics", JaicoPublishingHouse, 1999.					
4	Ned Mohan, Tore M.Undeland, William P.Robbins, " Power Electronics, Converters, Applications and Design ", John Wiley & Sons, 1994.					
	COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
CO	¹ Understand the details of switching devices	K2				
CO	2 Explain the use of thyristors in different types of rectifier circuits and Controllers	K2				
CO	3 Interpret the operation of DC-DC up – down choppers	K2				
CO	4 Discuss the different modulation techniques to the operation of single-phase voltage source inverters	K2				
CO	5 Discuss the operation of thyristors to various applications	K2				

BIO - MEDICAL ELECTRONICS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Objectiven1thUNIT - IPCell and its structuresystem, neurousBasic componentultrasonic transdUNIT - IIEElectrodes - LimitE	o gain knowledge about the various physiological parameters b onelectrical and the methods of recording and also the metho hese parameters. PHYSIOLOGY AND TRANSDUCERS cture - Resting and Action potential - Nervous system: Strue - synapse - transmitters and neural communication - Cardiov ts of a biomedical system. Transducers - selection criteria ucers, Temperature measurements, Fibre optic temperature sen LECTRO-PHYSIOLOGICAL MEASUERMENTS b and surface electrodes - Amplifiers; Preamplifiers - difference rs - Isolation amplifier. Physiological measurements - ECG, EEG, prding methods - Typical waveforms. Electrical safety in medi	d of transmitting 9 Periods cture of nervous vascular system - - Piezo electric, isors. 9 Periods ntial amplifiers - EMG, ERG - Lead			
thUNIT - ICell and its structuresystem, neurousBasic componentultrasonic transdUNIT - IIElectrodes - Limit	hese parameters. HYSIOLOGY AND TRANSDUCERS cture - Resting and Action potential - Nervous system: Strue - synapse - transmitters and neural communication - Cardiov ts of a biomedical system. Transducers - selection criteria ucers, Temperature measurements, Fibre optic temperature sem LECTRO-PHYSIOLOGICAL MEASUERMENTS b and surface electrodes - Amplifiers; Preamplifiers - different rs - Isolation amplifier. Physiological measurements - ECG, EEG,	9 Periods cture of nervous vascular system - - Piezo electric, sors. 9 Periods ntial amplifiers - EMG, ERG - Lead			
Cell and its stru- system, neurons Basic component ultrasonic transd UNIT – II E Electrodes - Lim	cture - Resting and Action potential - Nervous system: Structure - synapse - transmitters and neural communication - Cardiovers of a biomedical system. Transducers - selection criteria ucers, Temperature measurements, Fibre optic temperature sent ELECTRO-PHYSIOLOGICAL MEASUERMENTS b and surface electrodes - Amplifiers; Preamplifiers - differents - Isolation amplifier. Physiological measurements - ECG, EEG,	cture of nervous vascular system - - Piezo electric, sors. 9 Periods ntial amplifiers - EMG, ERG - Lead			
system, neurons Basic component ultrasonic transd UNIT – II E Electrodes - Lim	 synapse - transmitters and neural communication - Cardiov ts of a biomedical system. Transducers - selection criteria ucers, Temperature measurements, Fibre optic temperature sen LECTRO-PHYSIOLOGICAL MEASUERMENTS b and surface electrodes - Amplifiers; Preamplifiers - different rs - Isolation amplifier. Physiological measurements - ECG, EEG, 	vascular system - - Piezo electric, isors. 9 Periods ntial amplifiers - EMG, ERG - Lead			
Basic component ultrasonic transd UNIT – II E Electrodes - Lim	ts of a biomedical system. Transducers - selection criteria ucers, Temperature measurements, Fibre optic temperature sen LECTRO-PHYSIOLOGICAL MEASUERMENTS b and surface electrodes - Amplifiers; Preamplifiers - different rs - Isolation amplifier. Physiological measurements - ECG, EEG,	- Piezo electric, asors. 9 Periods ntial amplifiers - EMG, ERG - Lead			
ultrasonic transdUNIT – IIElectrodes - Limit	ucers, Temperature measurements, Fibre optic temperature sen LECTRO-PHYSIOLOGICAL MEASUERMENTS b and surface electrodes - Amplifiers; Preamplifiers - different rs - Isolation amplifier. Physiological measurements - ECG, EEG,	sors. 9 Periods ntial amplifiers - EMG, ERG - Lead			
UNIT – II Electrodes - Lim	LECTRO-PHYSIOLOGICAL MEASUERMENTS b and surface electrodes - Amplifiers; Preamplifiers - differe rs - Isolation amplifier. Physiological measurements - ECG, EEG,	9 Periods ntial amplifiers - EMG, ERG - Lead			
Electrodes - Lim	b and surface electrodes - Amplifiers; Preamplifiers - differe rs - Isolation amplifier. Physiological measurements - ECG, EEG,	ntial amplifiers - EMG, ERG - Lead			
	rs - Isolation amplifier. Physiological measurements - ECG, EEG,	EMG, ERG - Lead			
chonnon amplifica					
chopper amplifie	ording methods - Typical waveforms. Electrical safety in medi	cal anvironment			
systems and reco		cai environment.			
shock hazards - le	eakage current				
UNIT – III 🛛 🛛	ION-ELECTRICAL PARAMETER MEASUREMENTS	9 Periods			
Measurement of l	blood pressure - cardiac output - heart rate - heart sounds - puln	nonary function			
measurements -	spirometer - blood gas analysers - pH of blood - measuremen	t of blood pCO2,			
pO2, fingertip oxy	/meter.				
UNIT – IV M	IEDICAL IMAGING AND BIOTELEMETRY	9 Periods			
Computer Tomog	raphy - Magnetic Resonance Imaging - Real time Ultrasound Sc	anner - M mode -			
Different types of	of biotelemetry systems and patient monitoring - Wireless	telemetry, single			
channel, multi-ch	annel, multi patient and implantable telemetry systems				
UNIT – V A	SSISTING AND THERAPEUTIC EQUIPMENTS	9 Periods			
Pacemakers - Ex	ternal and Internal pacemakers - Defibrillators - DC defibrilla	ator, Implantable			
defibrillators - Ventillators - Surgical diathermy, safety aspects in Electro surgical units -					
Lithotripsy.					
	Contact Periods: 45Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods				

TEXT BOOK:

1	Khandpur R.S., "Handbook of Bio-medical Instrumentation" Tata McGraw Hill, New
	Delhi, 2nd edition 2015.
2	Leslie Cromwell, Fred J. Weibell, Erich A.Pfeiffer, "Bio-medical Instrumentation and

1	M. Arumugam, "Bio-medical instrumentation", Anuradha Agencies, 2012
2	L.A. Geddes and L.E. Baker, "Principles of Applied Bio-medical instrumentation", John
	Wiley & Sons, 2017
3	J. Webster "Medical Instrumentation", 3rd Edition, Wiley India Edition, 2017

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Describe the electrode behavior and circuit models.	K2
CO2	Discuss the fundamentals of Bio potential recording.	К2
CO3	Design various bio amplifiers.	К3
C04	Interpret the various nonelectrical physiological parameters.	K2
C05	Interpret the various biochemical parameters.	K2

MACHINE LEARNING

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To Learn the basic concepts of Problem solving, Probabilis	tic reasoning.				
Objective						
concepts.						
UNIT – I	INTRODUCTION	9 Periods				
Introduction- V	Vell-Posed learning problems, Basic concepts, Designing a learning	system, Issues				
	rning. Types of machine learning: Learning associations, Superv	-				
Classification a	nd Regression Trees, Support vector machines - Model Selectio	n and feature				
selection – Deci	sion trees Ensemble methods : Bagging - Boosting - Real-world appl	ications.				
UNIT – II	UNSUPERVISED LEARNING	9 Periods				
	learning : Clustering, Instance-based learning- K-nearest Neig					
weighted regr	ession, Radial Basis Function - EM- Mixtures of Gaussians-	The Curse of				
	Dimensionality Reduction -Factor analysis -Principal Compone	ent Analysis -				
Probabilistic PCA Independent components analysis.						
UNIT - III PROBABILISTIC GRAPHICAL MODELS 9 Periods						
	els -Undirected graphical models-Markov Random Fields -Direc					
	esian Networks -Conditional independence properties -Inferen					
Generalization WEKA.	-Hidden Markov Models – Machine learning tools – R, Scikit Learn, C)ctave, BigML ,				
UNIT – IV	REINFORCEMENT LEARNING	9 Periods				
Reinforcement	Learning - Introduction -Elements of Reinforcement Learning - Le	earning Task –				
Qlearning – k-a	rmed Bandit Elements – Model-Based learning – Value Iteration – F	olicy iteration				
– Temporal Diff	ference Learning - Exploration Strategies – non-deterministic reward	ds and actions				
UNIT – V	ADVANCED MACHINE LEARNING	9 Periods				
	o learning theory - Modeling structured outputs: multi-label					
	Conditional Random Fields (CRFs) - Spectral clustering- Semi-super	•				
	tion systems - Active Learning - Learning from streaming data, on	line-learning -				
Deep learning.						
Contact Periods:						
Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods						

TEXT BOOK:

1 Tom Mitchell, "Machine Learning", McGraw-Hill, 1997.

2 *Richard Sutton and Andrew Barto, "Reinforcement Learning: An Introduction", MIT Press,* 1998.

1	Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2006			
2	Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012			
3	Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning" ,			
	Second Edition, Springer, 2011.			
4	Ethem Alpaydin, "Introduction to Machine Learning", Third Edition, MIT Press, 2014.			

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	The knowledge about basic concepts, fundamental issues and challenges of machine learning algorithms	K2
CO2	Discuss the paradigms of supervised learning and un-supervised machine learning	К3
CO3	Describe the Probabilistic graphical Models	K2
C04	Design the architecture of reinforcement learning algorithms and machine learning algorithms.	К3
C05	Explain advanced Machine learning concepts	K2

SOFTWARE DEFINED RADIO

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To provide a comprehensive introduction to Software Defin	ed Radio and					
Objective	Cognitive Radio concepts.						
UNIT – I	INTRODUCTION TO SOFTWARE-DEFINED RADIO AND	9 Periods					
	COGNITIVE RADIO						
Evolution of	Software Defined Radio and Cognitive radio: goals, benefi	ts, definitions,					
architectures,	relations with other radios, issues, enabling technologies, ra	adio frequency					
spectrum and	regulations.						
UNIT – II	SDR ARCHITECTURE	9 Periods					
Essential fund	tions of the software radio, basic SDR, hardware architecture, Comp	outational					
processing r	esources, software architecture, top level component interfa	aces, interface					
topologies am	long plug and play modules						
UNIT - III INTRODUCTION TO COGNITIVE RADIOS 9 Periods							
Marking radio	o self-aware, cognitive techniques – position awareness, environmer	nt awareness in					
Cognitive rad	ios, optimization of radio resources, Artificial Intelligence Technique	es.					
UNIT – IV	UNIT - IV COGNITIVE RADIO ARCHITECTURE 9 Periods						
Cognitive Rad	io - functions, components and design rules, Cognition cycle - orient	, plan, decide					
and act pha	ses, Inference Hierarchy, Architecture maps, Building the Co	ognitive Radio					
Architecture of	on Software defined Radio Architecture						
UNIT - V NEXT GENERATION WIRELESS NETWORK 9 Periods							
The XG Network architecture, spectrum sensing, spectrum management, spectrum mobility,							
spectrum sha	ring, upper layer issues, cross – layer design.						
Contact Period	ls:						
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ds					

TEXT BOOKS:

1	JosephMitolaIII,"Software Radio Architecture: Object-Oriented Approaches to
	Wireless System Engineering", John Wiley & Sons Ltd. 2000.
2	Bruce A. Fette, "Cognitive Radio Technology", Elsevier, 2009.

1	SimonHaykin, "Cognitive Radio: Brain -Empowered Wireless Communications", IEEE
	Journal on selected areas in communications, Feb 2005.
2	ThomasW.Rondeau, Charles W. Bostain, "Artificial Intelligence in Wireless
	Communication", ARTECH HOUSE .2009.
3	Markus Dillinger, KambizMadani, Nancy Alonistioti, "Software Defined Radio", John
	Wiley, 2003.
4	HuseyinArslan, "Cognitive Radio, SDR and Adaptive System", Springer, 2007.
5	Alexander M. Wyglinski, Maziarnekovee, Y. Thomas Hu, "Cognitive Radio
	Communication and Networks", Elsevier, 2010.
6	Ian F. Akyildiz, Won – Yeol Lee, Mehmet C. Vuran, ShantidevMohanty, "Next generation
	dynamic spectrum access / cognitive radio wireless networks: A Survey" Elsevier
	Computer Networks, May 2006.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	
C01	Summarize requirements, benefits for Software Defined Radio and Cognitive Radio	K2
C02	Describe the architecture of SDR	K2
CO3	Explain the basics of Cognitive radio	K2
C04	Discuss the architecture of Cognitive radio	K2
C05	Explain the wireless networks based on Cognitive radios	K2

COMPUTER VISION

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course	To gain knowledge in the recent advances in algorithmic tec	hniques, of Image	
Objective	processing, Geometric techniques and Machine learning.	1 / 0	
UNIT – I	IMAGE REPRESENTATION	9 Periods	
-	sion- Image representation and image analysis tasks - Image	-	
0	properties – color images – Data structures for Image Analysis – Le	evels of image data	
representatio	n – Traditional and Hierarchical image data structures.		
UNIT – II	FEATURE DETECTION, MATCHING AND SEGMENTATION	9 Periods	
Points and pa	tches – Edges – Lines – Segmentation – Active contours – Split and	merge – Mean shift	
and mode find	ling – Normalized cuts – Graph cuts and energy-based methods.		
UNIT – III	IMAGE FORMATION AND PROCESSING	9 Periods	
Geometric pr	imitives and transformations – Photometric image formation – Th	ne digital camera –	
Point operato	rs – Linear filtering – More neighborhood operators – Fourier tran	sforms – Pyramids	
and wavelets	– Geometric transformations – Global optimization.		
UNIT – IV	3D RECONSTRUCTION	9 Periods	
Shape from X	K – Active range finding – Surface representations – Point-base	d representations-	
Volumetric re	presentations - Model-based reconstruction - Recovering texture	naps and albedos.	
UNIT – V	IMAGE BASED RENDERING AND RECOGNITION	9 Periods	
View interpol	View interpolation Layered depth images - Light fields and Lumigraphs - Environment mattes -		
Video-based	Video-based rendering-Object detection – Face recognition – Instance recognition – Category		
recognition -	Context and scene understanding- Recognition databases and test s	ets.	
Contact Period			
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	ds	

TEXT BOOK:

	1	Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer- Texts in
		Computer Science, Second Edition, 2022.
Ī	2	D. A. Forsyth, J. Ponce," Computer Vision: A Modern Approach", Pearson Education, Second
		Edition, 2015.

1	Richard Hartley and Andrew Zisserman, "Multiple View Geometry in Computer Vision",
	Second Edition, Cambridge University Press, March 2004.
2	Christopher M. Bishop,"Pattern Recognition and Machine Learning", Springer, 2016.
3	E. R. Davies, "Computer and Machine Vision", Fourth Edition, Academic Press, 2012

COURSE OUTCOMES: Upon completion of the course, the students will be able to:		Bloom's Taxonomy Mapped
C01	Translate the geometric techniques in computer vision	К2
C02	Discuss the concepts of image classification, detection, and segmentation.	К3
CO3	Discuss the tenchinques of image formation and processing	К2
CO4	Explain the concepts of 3D-Reconstruction.	К2
C05	Explain the concepts of image based rendering and recongination	K2

CRYPTOGRAPHY AND NETWORK SECURITY

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

UNIT - I INTRODUCTION	9 Periods		
Circle contract and data consists in today's communication con-			
Significance of network and data security in today's communication scena	ario – Overall		
Classification - Model of network security – Security attacks, services and mechan	isms –Modular		
Arithmetic – Linear congruence - Substitution ciphers – Transposition ciphers			
UNIT – II MODERN SYMMETRIC KEY CIPHERS	9 Periods		
Algebraic structures – GF(2 ⁿ) fields- Modern block ciphers – Modern stream c	iphers – DES –		
AES – uses of modern block ciphers and stream cipher	-		
UNIT – III ASYMMETRIC KEY ENCIPHERMENT	9 Periods		
Mathematics of cryptography – Primality Testing – Factorization – Chinese Rema	Mathematics of cryptography – Primality Testing – Factorization – Chinese Remainder Theorem		
– Quadratic – Exponentiation & Logarithm – RSA, Rabin – Elliptic curve Cryptogra	iphy		
UNIT - IV INTEGRITY AUTHENTICATION AND KEY MANAGEMENT	9 Periods		
Message integrity – message authentication – SHA-512 -Digital signature Standa	rd– Kerberos –		
symmetric key management - public key distribution - steganography, Diffi	e Hellman key		
exchange.			
UNIT - V NETWORK SECURITY	9 Periods		
Security at the Application Layer: E-mail – PGP – S/MIME – Security at the transport layer: SSL			
and TLS – Security at the network layer: IPsec, System Security: Intruders – viruses – Firewalls.			
Contact Periods:			
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods			

TEXT BOOK :

1	William Stallings,"Cryptography and Network security: Principles and practice", , Pearson
	Education, 7th Edition ,2017
2	Behrouz A. Ferouzan, "Cryptography & Network Security", , Tata McGraw- Hill Education, 5th Edition, 2011

1	James.F.Kurose and Keith.W.Ross,"Computer Networking-A Top-Down-Approach,Sixth
	Edition.
2	Doughlas.E.Comer, Computer Networks and Internets with Internet Applications ,Fourth
	Edition.
3	Charlie Kaufman, Radia Perlman, and Mike Speciner, Network Security: private
	Communication in a public world, Prentice Hall, ISBN 0-13-046019-2
4	C K Shyamala, N Harini and Dr. T R Padmanabhan: Cryptography and Network Security,
	Wiley India Pvt.Ltd

	OUTCOMES: npletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain the issues, scope and significance of various security mechanisms and services applicable to communication networks.	K2
CO2	Interpret modern symmetric key ciphers to various cryptographic applications.	К2
CO3	Outline the various cryptographic techniques used in asymmetric key encipherment	К2
C04	Apply various authentication, key management schemes to enhance security and inspect the system security	К3
C05	Examine the applications of cryptography in application, transport and network layers.	К3

MULTIMEDIA COMPRESSION TECHNIQUES

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

L'AURCA	To comparing the continue multimedia comparents t		
Course Objective	To summarize the various multimedia components, to		
objective	compression techniques and describe the various au	alo and video	
	compression standards.		
UNIT – I	MULTIMEDIA COMPONENTS	9 Periods	
	mponents and their characteristics – Multimedia software, editir ats: GIF, PNG, JPEG, TIFF, Windows BMP, PS and PDF, Applications	0 0	
UNIT – II	TEXT AND IMAGE COMPRESSION	9 Periods	
Compression principles-Source encoders and destination encoders-Lossless and lossy compression-Entropy encoding -Source encoding- Text compression -Static Huffman coding, Dynamic Huffman coding - Arithmetic coding - Lempel Ziv-Welsh Compression-Lossy Image Compression standard: JPEG.			
UNIT – III	AUDIO AND VIDEO COMPRESSION	9 Periods	
	ssion: ADPCM, Vocoders –Channel vocoder, Linear Predictive Codi al coding. Video compression: H.261, H.263, MPEG 1, 2, 4 and 7.	ing, Code Excited	
UNIT – IV	MULTIMEDIA COMMUNICATION AND NETWORKING	9 Periods	
TCP and UDP - Internet teleph	s of Computer Communication Networks - Network Layer: IP – Protocols for multimedia transmission and interaction: HTTP, R nony: H.323, SIP-QoS and QoE for multimedia communication-	TP, RTCP, RTSP-	
TCP and UDP -	Protocols for multimedia transmission and interaction: HTTP, R nony: H.323, SIP-QoS and QoE for multimedia communication	TP, RTCP, RTSP-	
TCP and UDP - Internet teleph differentiated s	Protocols for multimedia transmission and interaction: HTTP, R nony: H.323, SIP-QoS and QoE for multimedia communication services.	TP, RTCP, RTSP- Integrated and	

TEXT BOOK:

1	Li, Ze-Nian, Drew, Mark S, and Liu, Jiangchuan, "Fundamentals of Multimedia", 3rd edition,
	Springer International Publishing, 2022.
2	Fred Halshall,"Multimedia Communication - Applications, Networks, Protocols and
	Standards", Pearson Education, 2013.

1	Kurose and W. Ross, "Computer networking? A Top down Approach", 7th Edition, Pearson
	education, 2017.
2	Tay Vaughan, "Multimedia: Making It Work", 9th edition, Tata McGraw Hill, 2014.
3	KR. Rao,Z S Bojkovic, D A Milovanovic, "Multimedia Communication Systems : Techniques,
	Standards and Networks", Pearson Education,2007.
4	R.Steimnetz, K. Nahrstedt, "Multimedia Computing, Communications and Applications", 1st
	Edition, Pearson Education, 1995.
5	Ranjan Parekh, "Principles of Multimedia", 2nd Edition, Tata McGraw Hill, 2012.

	OUTCOMES: npletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Explain the various the multimedia components.	K2
CO2	Discuss the principles of image and text compression.	K2
CO3	Discuss the audio and video compression techniques.	K2
C04	Interpret the multimedia networking protocols.	K2
CO5	Describe the cloud computing and AR techniques in multimedia.	К2

DISPLAY SYSTEMS

PREREQUISIT	ES	CATEGORY	L	Т	Р	С
NIL PE		3	0	0	3	
Course	To understand the basics of the display systems a	nd to illustrat	e the			
Objective	current design practices of the display systems.					
UNIT – I	INTRODUCTION			9 Pe	riod	S
Properties of	Light - Vision and Perception - Light detection	and sensitivi	ty of	eye	s - L	ight
sources-stand	lard and advanced measurement procedures - Ur	its and defini	tion-	wide	viev	ving
-	ng of thin films - Patterning - Photo lithography -	-	eom	etry,	Arra	y of
	solution, Aspect ratios, color depth, standard defir	iition.				
UNIT – II	DISPLAY TECHNOLOGIES				riod	
	Active matrix driving technology - Direct driving					0
	n Displays - Plasma display - Application ,Display t	echnology dep	enda			
UNIT – III	LCD DISPLAYS				riod	-
	f Display devices - Energy aspects of displays - T					
	s - Liquid crystal molecules and geometries - Tw					
	Backlight and transrefelective types - LCD Pane	l - Panel inter	facir	ng -	micr	o to
Gigantic displ						
UNIT – IV	ELECTRO LUMINESCENT DISPLAYS			9 Pe	riod	5
	scence from inorganic PN Junction diode - Display	-			<u> </u>	
	ng - panel interfacing - Electroluminescence from	•				anic
	es - Green technologies in displays - Low power co	nsumption - A	pplic			
UNIT - V ADVANCED DISPLAY DEVICES 9 Periods					5	
Next generati	on of Flexible Displays - 3D Displays, MEMS Base	d Displays - A	utost	eros	copi	c 3D
cinema technology - Quantum dot - based displays - Hybrid displays - Cost effective display						
marketing.						
Contact Perio	ls:					
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Period	s Total: 45 Pe	rinde	2		

TEXT BOOKS:

1	L.W. Mackonald & A.C. Lowe, "Display Systems, Design and Applications", Wiley, 2003.
2	Janglin Chen,Wayne Cranton,Mark Fihn,"Handbook of Visual Display Technology",Springer
	Publication

1	Peter A. Keller, "Electronic Display Measurement: Concepts, Techniques, and
	Instrumentation", Wiley-Inter science, 1997.
2	Peter J.Collings and Michael Hird,"Introduction to Liquid crystals", Taylor and Francis.
3	E.H. Stupp &M. S. Brennesholtz, "Projection Displays", Wiley,1999
4	Recent literature in Display Systems

	E OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
C01	Understand the technical requirement of different types of display	K2
	systems	
CO2	Explain the various Technology used in display systems	K2
CO3	Summarize the operation of TFTs and LCD displays.	К3
C04	Explain the various kinds of Electroluminescent display	K2
C05	Discuss the advancements in the display device technology.	K2

SMART SENSORS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course Objective	To learn the different types of sensors, smart sensors, interf with MCU and their applications.	rfacing sensors				
UNIT – I	DISPLACEMENT, FORCE AND PRESSURE SENSORS	9 Periods				
Definition, C	lassification & selection of sensors, Measurement of displa	cement using				
	r, LVDT & Optical Encoder, Measurement of force using strain gauge	, Measurement				
of pressure us	sing LVDT based diaphragm & piezoelectric sensor.					
UNIT – II	TEMPERATURE, POSITION, FLOW AND LEVEL SENSORS	9 Periods				
sensors, Prox	e & RTD, Concept of thermal imaging, Measurement of position us imity sensors: Inductive & Capacitive, Use of proximity sensor as sensor, Flow Sensors: Ultrasonic & Laser, Level Sensors: Ultrasonic	accelerometer				
UNIT – III	SMART SENSORS	9 Periods				
calibration, S	cture of smart sensors & its components, Characteristic of smar elf-testing & self-communicating, Application of smart sensors: A pmobile engine control.					
UNIT – IV	INTERFACING SENSOR INFORMATION AND MCU	9 Periods				
-	and Signal Conditioning, Integrated Signal Conditioning, Digital co for Sensor Interface, Techniques and System Consideration, Sensor					
UNIT – V	COMMUNICATION FOR SMART SENSORS	9 Periods				
Automotive F	Protocols - Industrial Networks - Home Automation - MCU Proto	cols - Wireless				
Data Commu Play.	Data Communications- RF Sensing, Telemetry. Standards: IEEE 1451, STIM, Smart Plug-and-Play.					
Contact Perio						
Lecture: 45 Pe	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK:

- 1 D.Patranabis, -Sensors and Transducers, Second Edition, Prentice Hall of India, 2005.
- 2 Randy Frank, -**Understanding Smart Sensors**, Third Edition, Artech House Publishers, 2013.

1	Jacob Fraden, "Hand Book of Modern Sensors: physics, Designs and Applications", 2015,				
	3rd				
	edit	ion, Springer, New York.			
2	Jon.	S. Wilson, "Sensor Technology Hand Book", 2011, 1st edition, Elsevier, Netho	erland.		
3	Sab	rieSolomon," SensorsHandbook ,"2ndeditionMcGrawHill,1998.			
4	Y.L.	Lin, "Smart Sensors and Systems", Springer, 2017.			
		E OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped		
(201	Explain the applications of various sensors and transducers available for physiological and cellular measurements.	K2		
(202	Discuss and design the different types of sensors, electrodes, signal conditioning circuits for acquiring and recording various physiological parameters.	К3		
(203	Gain knowledge about the working of Chemical Biosensors.	K2		
(CO4	Narrate the operation of optical sensors and radiation detectors.	К2		
(CO5	Depict the principles of working of various Biological Sensors.	K2		

INDUSTRIAL IOT AND INDUSTRIAL 4.0

PREREQUISITES CATEGORY L						С
	NIL PE 3			0	0	3
Course	To study the fundamentals of Industry 4.0	, Industrial inte	erne	et o	f th	ings
Objective and apply the concept of industrial internet of things in r			rea	l w	orld	
	scenario.	-				
UNIT – I	INTRODUCTION TO INDUSTRIAL 4.0			9 P	erio	ds
Overview of	Internet of Things and IIOT- Introduction to I	ndustry 4.0 –Evo	luti	on	- De	esign
requirements	, Drivers, Impacts and applications - Sustainal	oility assessment	of	ind	ustr	ies -
	v - Industrial Internet Systems - Cyber Physi					
Industrial Pro	cesses - Functional and Operational Viewpoint.					
UNIT – II	INDUSTRIAL INTERNET OF THINGS			9 P	erio	ds
IIOT Archite	cture – IIOT Requirements - IIoT Business I	Model: Categoriz	atio	n-]	Busi	ness
opportunities	- Reference Architecture of IIoT - Key technolog	gies: Augmented	Rea	lity	- Vi	rtual
-	ificial Intelligence - Introduction to Sensors- Cl	naracteristics- Ca	tego	ories	5- Si	mart
Sensor-Actua						
UNIT – III	INDUSTRIAL DATA TRANSMISSION				erio	
	to Industrial Data Transmission - Fieldbus, Pro					
	M - Communication protocols - Types: 802.15.4, 2	Zigbee, 6LoWPAN	, H <i>I</i>	ART,	Ζv	/ave,
	IFC- Industrial Data Acquisition - PLC- SCADA.		-			
UNIT – IV	IOT ANALYTICS				erio	
	to IIoT -IoT Analytics - Big Data Analytics - Softw					
	Learning and Data Science in Industries - Cloud and FOG Computing- Industrial IoT: Security.					
UNIT - V IIOT APPLICATION 9 Periods						
	T- Application Domains: Healthcare Applicat					-
	and Quality Control -Plant Safety and Security - Si	mart factories and	l Sm	lart	Citie	es.
Contact Perio		1. m.u.l 45 p. 1				
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Perio	as Total: 45 Perio	ods			

TEXT BOOK:

1	Sudip Misra, Chandana Roy, Anandarup Mukherjee, "Introduction to Industrial Internet of
	Tings and Industry 4.0", CRC Press, 1st edition, 2021
2	Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", Apress, 2017.

1	ArshdeepBahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities
	Press,
	2015.
2	Marco Schwartz, —Internet of Things with the Arduino Yun, Packt Publishing.
3	Hakima Chaouchi "The Internet of Things: connecting objects to the web" John Wiley&
	Sons, 2013
4	Massimo Banzi- Getting Started with Arduino · O'Reilly Media Publishing, 3rd Edition, 2015
5	Matt Richardson and Shawn Wallace- Getting Started with Raspberry Pi- O'Reilly Media
	Publishing, 3rd Edition, 2016

COUR Upon	Bloom's Taxonomy Mapped	
C01	Discuss the IoT, IIoT differences and key technology enablers for IIoT	K2
CO2	Explain the architecture of IIoT	K2
CO3	Assimilate various protocols used for IIoT	K2
C04	Comprehend the role of AI in IIoT based system	K2
C05	Identify IoT use cases in various industries and recognize the IoT project implementation modalities	К3

ADHOC AND WIRELESS SENSOR NETWORKS

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PE	3	0	0	3

Course							
Objective protocols, sensor network security issues and network simulator to							
UNIT – I	NETWORKS – INTRODUCION AND ROUTING	9 Periods					
Elements of V	/ireless Networks, Issues in Ad hoc wireless networks, Issues in Desi	gning a Routing					
Protocol for	Wireless Networks, Classifications of Routing Protocols, Table	Driven Routing					
Protocols - Destination Sequenced Distance Vector (DSDV), On-Demand Routing protocols - Ad hoc							
On-Demand D	Distance Vector Routing (AODV)						
UNIT – II	SENSOR NETWORKS-INTRODUCTION & ARCHITECTURES	9 Periods					
Challenges for	Wireless Sensor Networks, Enabling Technologies for Wireless Senso	r Networks,					
WSN applie	cation examples, Single-Node Architecture - Hardware	Components,					
Energy,Consu	mption of Sensor Nodes, Network Architecture - Sensor Netw	vork Scenarios,					
Transceiver D	esign Considerations, Optimization Goals and Figures of Merit.						
UNIT – III	WSN NETWORKING CONCEPTS AND PROTOCOLS	9 Periods					
	s for Wireless Sensor Networks, Low Duty Cycle Protocols and Wake						
	ediation Device Protocol, Contention based protocols - PAMAS, S						
-	EACH, IEEE 802.15.4 MAC protocol, Routing Protocols Energy Ef	ficient Routing,					
-	d Issues in Transport layer protocol.						
UNIT – IV	SENSOR NETWORK SECURITY	9 Periods					
	rity Requirements, Issues and Challenges in Security Provisioning, Net						
	wise attacks in wireless sensor networks, possible solutions for jamm	U. 1 U.					
	tack, flooding attack. Key Distribution and Management, Secure Re	outing – SPINS,					
reliability req	uirements in sensor networks.						
UNIT – V	SENSOR NETWORK PLATFORMS AND TOOLS	9 Periods					
	Hardware – Berkeley Motes, Programming Challenges, Node-level sof						
•	C, CONTIKIOS, Node-level Simulators - NS2 and its extension to see						
	M, Programming beyond individual nodes – State centric programmins	5					
Contact Period							
Lecture: 45 Pe TEXT BOOK :	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						
	n Murthy and B. S. Manoj, "Ad Hoc Wireless Networks Architectures	and Protocola"					
	all, PTR, 2004.	unu Frotocois ,					
	rl , Andreas willig," Protocol and Architecture for Wireless Sensor 1	Notworks" John					
•	cation, Jan 2006.						
REFERENCES :	cution, jun 2000.						
	Leonidas Guibas, "Wireless Sensor Networks: an information proces	ssina					
	, Elsevier publication, 2004.						
	iz, W. Su, Sankarasubramaniam, E. Cayirci, " Wireless sensor netwo	rks: a Survey"					
5	networks, Elsevier, 2002, 394 - 422						
	Perkins, "Ad Hoc Networking", Addison Wesley, 2000.						
	hraby, Daniel Minoli and Taieb Znati, Wireless Sensor Network	s: Technology					
	Protocols and Applications, Wiley Inter science A John Wiley & sons, Inc., Publication, 2007.						
1.0000015							

COUF Upon	Bloom's Taxonomy Mapped	
C01	Summarize the challenges and issues in the wireless Ad Hoc network and its protocol.	К2
CO2	Interpret network architecture and its components	K2
CO3	Summarize the features of MAC & Routing protocols for WSN	К3
C04	Describe the basic concept of network security.	K2
C05	Explain the various WSN platforms and tool.	K2