GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.Tech. INDUSTRIAL BIOTECHNOLOGY (FULL TIME)

SI.	Course	CA CA			End	Total	Hours/Week					
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С		
		ſ	THEORY									
1	22BBS307	Transform Calculus and Partial Differential Equations (<i>Common</i> to Civil & IBT)	BS	40	60	100	3	1	0	4		
2	22BBS308	Cell Biology	BS	40	60	100	3	0	0	3		
3	22BES306	Process Calculations and Heat transfer	ES	40	60	100	3	1	0	4		
4	22BPC302	Industrial Microbiology	PC	40	60	100	3	0	0	3		
5	22BPC303	Biochemistry - II	PC	40	60	100	3	0	0	3		
6	22BPC304	Genetics	PC	40	60	100	3	0	0	3		
		PR	ACTICAL									
7	22BBS309	Cell biology Laboratory	BS	60	40	100	0	0	3	1.5		
8	22BPC305	Microbiology Laboratory	PC	60	40	100	0	0	3	1.5		
9	22BPC306	Biochemistry Laboratory	PC	60	40	100	0	0	3	1.5		
			TOTAL	420	480	900	18	2	9	24.5		

THIRD SEMESTER

FOURTH SEMESTER

SI.	Course			CA	End	Total	H	Iour	s/We	ek	
No	Code	Course Title Cate		de Course Title Category Marks Sen		Sem Marks	Marks	L	Т	Р	С
THEORY											
1	22BES407	Fluid Mechanics	ES	40	60	100	3	0	0	3	
2	22BPC407	Molecular Biology	PC	40	60	100	3	0	0	3	
3	22BPC408	Biochemical Thermodynamics	Biochemical Thermodynamics PC 40 60 100 3						0	3	
4	22BPC409	Enzyme Engineering and TechnologyPC40601003							0	3	
		THEORY COURSE WI	TH PRACT	ICAL CO	MPONE	NT					
5	22BPC410	Analytical Techniques in Biotechnology	РС	50	50	100	3	0	2	4	
		PI	RACTICAL								
6	22BES408	Engineering Exploration	ES	60	40	100	0	0	3	1.5	
7	22BES409	Chemical Engineering Laboratory	Chemical Engineering FS 60 40 1		100	0	0	3	1.5		
8	22BPC411	Molecular Biology Laboratory							3	1.5	
			TOTAL	390	410	800	15	0	11	20.5	

TRANSFORMCALCULUSAND PARTIAL DIFFERENTIAL EQUATIONS (CommontoCiviland IBTBranches)

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	BS	3	1	0	4

G									
Course	To be familiar with Fourier Series. To gain the knowledge	of solving Boundary value							
Objectives	problems. To be familiar with Laplace and Inverse La	place transforms to solve							
	ordinary differential equations. To acquire knowledge on	Fourier transforms.To be							
	familiar with Z-transform to solve difference equations.								
UNIT – I	FOURIER SERIES	9 Periods							
Dirichlet's C	onditions - General Fourier series - Odd and even functions	- Half range Sine and Cosine							
series -Root	Mean Square Value- Parseval's Identity on Fourier series-Ha	armonic Analysis							
UNIT – II	BOUNDARY VALUE PROBLEMS	9 Periods							
Classification	n of PDE – Method of separation of variables - Fourier series	s solutions of onedimensional							
wave equati	on – One dimensional equation of heat conduction	- Steady state solutionof							
twodimensio	nal equation of heat conduction (Infinite Stripes in cartesian	n coordinates only).							
UNIT – III	LAPLACE TRANSFORMS	9 Periods							
Laplace tran	sform -Sufficient condition for existence -Transform of	elementary functions -Basic							
properties -	Transforms of derivatives and integrals of functions -L	Derivatives and integrals of							
	Fransforms of unit step function and impulse functions -Tra								
	ace transform -Statement of Convolution theorem -Initia								
	linear ordinary differential equation of second order with	constant coefficients using							
	formation techniques.								
UNIT – IV	FOURIER TRANSFORMS	9 Periods							
StatementofF	ourierintegralTheorem–Fouriertransformpair–FourierSinean	dCosineTransforms-							
	Fransforms of Simple functions – Convolution Theorem – Pa								
UNIT – V	Z TRANSFORMS	9 Periods							
Z-transforms	- Elementary properties - Convergence of Z-transforms - Ini	tial and Final value theorems							
	- Inverse Z-transform using partial fraction and convolution theorem– Formation of difference								
	equations - Solution to difference equations of second order with constant coefficients using Z-								
transform.	-	_							
Contact Per	iods:								
Lecture: 45	Periods Tutorial: 15 Periods Practical: 0 Periods T	otal: 60 Periods							

TEXT BOOK:

1 Veerarajan. T. **"Transforms and partial Differential equations"**, Tata Mc GrawHill Publishing Co., New Delhi. 2015.

2 B.S.Grewal., "HigherEngineeringMathematics", KhannaPublishers, NewDelhi, 44th Edition, 2018.

REFERENCES

1	Kandasamy, ThilagavathyandGunavathy., "EngineeringMathematics" for IIIS emester, S. Chand
	&Co, Ramnagar, New Delhi.
2	N.P.Bali andManish Goyal, "Transformsand partial Differentialequations", University
	Science Press, New Delhi, 2010.
3	VeerarajanT., "EngineeringMathematics" forSemesterI&II,TataMcGrawHillEducation (India)
	Pvt Ltd., New Delhi, Third Edition 2012.
4	Erwinkreyszig, "AdvancedEngineeringMathematics" ,9 th Edition,JohnWiley&Sons,2006.

	COURSE OUTCOMES: On completion of the course, the students will be able to:					
CO1	Express the periodic functions arising in the study of engineering problems as sine and cosine series.	K3				
CO2	Solve the Partial Differential Equations arising in engineering problems like Wave, Heat flow and Laplace equation in steady state (Cartesian coordinates) using Fourier series.	К3				
CO3	Apply Laplace transform technique to solve the given integral equations and ordinary differential equations.	K3				
CO4	Find Fourier Transforms, infinite Fourier Sine & Cosine transforms.	K3				
CO5	Apply Z - transform technique to solve difference equations	K3				

a) CO and H	a) CO and PO Mapping													
COs/POs	PO	PO	PO	PO	PO	PO	PO 7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
	I	2	3	4	5	6	7			10	11	12		
CO1	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	1	1
CO3	3	2	-	I	-	-	-	-	-	I	-	-	1	1
CO4	3	2	-	-	-	-	-	-	-	-	-	-	-	1
CO5	3	2	-	-	-	-	-	-	-	-	-	-	-	-
22BBS307	3	2	-	-	-	-	-	-	-	-	-	-	1	1
1 - Slight, 2	- Mo	derate	3 - 5	Substa	ntial									
b) CO and	Key I	Perfor	manc	e Ind	icato	rs Ma	pping	5						
CO1	1.1	.1, 1.1	.2,1.3	.1,1.4	.1,2.1	.2, 2.1	.3, 2.2	2.1, 2.2	2.2, 2.2	.3, 2.4	.1			
CO2	CO2 1.1.1, 1.1.2,1.2.1, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.4.1													
CO3	CO3 1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1													
CO4	1.1	.1, 1.1	.2, 1.3	3.1, 1.	4.1, 2	.1.2, 2	2.1.3, 2	2.2.1, 2	2.2.2, 2	.2.3, 2	.4.1			
CO5	1.1	.1, 1.1	.2, 1.3	3.1, 1.	4.1, 2	.1.2, 2	2.1.3, 2	2.2.1, 2	2.2.2, 2	.2.3, 2	.2.4, 2	.4.1		

ASSESSMEN	NT PATTERN –	THEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20	30	50	-	-	-	100
CAT2	20	30	50	-	-	-	100
Individual							
Assessment							
1 /Case	20	20	50				100
Study 1/	20	30	50	-	-	-	100
Seminar 1 /							
Project1							
Individual							
Assessment							
2 /Case	20	30	50				100
Study 2/	20	50	50	-	-	-	100
Seminar 2 /							
Project 2							
ESE	20	30	50	-	-	-	100

22BBS308

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
BIOCHEMISTRY-I	BS	3	0	0	3

Course Objectives	To Gain the insights of cell structure and cell division ,understand the composition of extracellular matrix, cell junction and cell adhesion.Get familiarized with the various transport mechanisms and understand the different types of receptor and signal transduction and familiarized with the techniques to study cell line						
UNIT – I	CELL STRUCTURE AND FUNCTION OF THE ORGANELLES 9 Period						
membrane pro	Structure of Prokaryotic and Eukaryotic cells their organelles, principles of membrane organization, membrane proteins, types of cell division, mitosis & meiosis, cell cycle and molecules that control cell cycle. Cell cycle check points.						
UNIT – II	EXTRACELLULAR MATRIX AND CELL JUNCTIONS	9 Periods					
filaments, act molecules(CA)		cell adhesion					
UNIT – III	TRANSPORT ACROSS BIOMEMBRANES	9 Periods					
	ve transport, permeases, Co- transport - symport, antiport, .types of ATPa P type pumps, voltage and ligand gated channels, endocytosis and exoc						
entry of virus a	and toxins into cells.	y 10515. 1110de 01					
entry of virus a UNIT – IV		9 Periods					
UNIT – IV Cytosolic, nucl endocrine mod phosphates and	and toxins into cells. RECEPTORS AND SIGNAL TRANSDUCTION lear and membrane bound receptors with examples, autocrine, paracr les of action Signal amplification, role of secondary messengers- cyclic A l cyclic GMP; G proteins - role in signal transduction, calcium ion flux and transduction.	9 Periods ine and AMP, inositol tri					
UNIT – IV Cytosolic, nucl endocrine mod phosphates and	and toxins into cells. RECEPTORS AND SIGNAL TRANSDUCTION lear and membrane bound receptors with examples, autocrine, paracr lear of action Signal amplification, role of secondary messengers- cyclic A	9 Periods ine and AMP, inositol tri					

cytometry, Morphology and identification of cells using microscopic studies like SEM, TEM, Confocal Microscopy. Localization of proteins in cells – Immunostaining. Contact Periods:

Lecture: 45 Periods Tutorial:0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

1	Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, Keith; Walter, P., (eds) c2002: "Molecular
	Biology of the Cell", Garland Science, New York and London.
2	Darnell J, Lodish H, Baltimore D, "Molecular Cell Biology", W.H.Freeman; 8th edition, 2016
3	Brai De Robertis& De Robertis, "Cell Biology", Fourth edition, 2007
4	Geoffrey M. Cooper and Robert E. Hausman,"The Cell: A Molecular Approach", ASM Press and
	Sinauer Associates, Fifth Edition, 2009.

REFERENCES:

1	James D.Watson, "Molecular Biology of the Cell", Third edition, 2004.
2	Channarayappa, " <i>Cell biology</i> ", Universities Press, 2010
3	Rastogi.S.C, "Cell biology", New Age International publishers, 2005
4	https://www.ncbi.nlm.nih.gov/books
5	http://www.di.uq.edu.au/sparqglossary#b
6	https://cellbiology.med.unsw.edu.au
7	https://micro.magnet.fsu.edu

	SE OUTCOMES: apletion of the course, the students will be able to:	Bloom's Taxonomy Mapped				
CO1	D1 Understand the structural organization of the cell and cell division.					
CO2	Familiarize with extracellular matrix, cell junction, cell adhesion.	K1				
CO3	Understand the various transport mechanism in the cell.	K2				
CO4	Get familiarized with the type of receptors and signal transduction pathways.	K2				
CO5	Familiarize with the techniques for cytometry analysis.	K3				

a) CO and PO Mapping														
COs / POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
0037103	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	-	-	-	-	-	-	-	-	-	-	1	-
CO2	1	1	-	-	-	-	-	-	-	-	-	-	1	-
CO3	1	1	-	-	-	-	-	-	-	-	-	-	1	-
CO4	1	1	-	-	-	-	-	-	-	-	-	-	1	-
CO5	1	1	-	1	1	1	-	-	-	-	-	-	1	1
22BBS308	1	1	-	1	1	1	-	-	-	-	-	-	1	1
1 – Slight, 2 –	Moder	ate, 3 -	– Subs	tantial										
b) CO and Ke	y Perf	ormai	nce In	dicato	rs Maj	pping								
CO1	1.2.1	,2.2.2												
CO2	1.2.1	,2.2.2												
CO3	1.2.1	1.2.1,2.2.2												
CO4		1.2.1,2.2.2												
CO5	1.2.1	,4.1.2,4	4.1.3,5	.1.2										

ASSESSMEN	T PATTERN						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	70	30	-	-	-	-	100
CAT2	60	40					100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40	60	-	-	-	-	100
ESE	50	50	-	-	-	-	100

22BES306

PREREQUISITES	CATEGORY	L	Т	P	С
NIL	ES	3	1	0	4

Course	The primary aim of this course is to train the students in the fundamental principles of								
Objectives	material balance, energy balances and various heat transfer methods to develop								
	solutions for the problems encountered in chemical engineering.								
UNIT – I	BASICS OF BIOCHEMICAL CALCULATIONS 9+3 periods								

Dimensions and Units: Dimensions and Systems of units - fundamental and derived quantities, Dimensional equation. Different ways of expression of units of quantities and unit conversion. Composition conversion- atomic weight, molecular weight, equivalent weight, molar concept, mole percent, weight percent, volume percent, molarity, molality, normality, etc., Basics of unit operations and unit processes involved in biotechnology industries and its applications.

8, 1								
UNIT – II	MATERIAL BALANCE	9+3 periods						
Process flow sheet, degrees of freedom, Overall and component balances; material balances without								
and with chem	and with chemical reactions; recycle, by pass and purge streams; Unsteady state material balance.							
UNIT – III	ENERGY BALANCE	9+3 periods						
Fundamentals	of energy balance calculations-Concepts of heat capacity, latent hea	t, sensible heat,						
enthalpy chan	ge, Standard heat of reaction, the heat of mixing and dissolution of sol	lids, Hess's law,						
and Humidity	calculations. Energy balance with and without chemical reactions.							
UNIT – IV	CONDUCTION AND CONVECTION	9+3 periods						
Introduction -	Mode of heat transfer; Conduction - Basic concepts of conduction i	n solids, liquids						
and gases – O	ne dimensional heat conduction – Critical and optimum insulation thick	cness. Principles						
of convection	of convection – Equations of forced and free convection. Combined heat transfer coefficients by							
convection and	d conduction. Unsteady state heat transfer fundamentals.							
LINITT V	PADIATION AND HEAT EXCHANCEDS	0 3 parioda						

UNIT - VRADIATION AND HEAT EXCHANGERS9+3 periodsBasic laws of heat transfer by radiation – black body and gray body concepts – solar radiations –
combined heat transfer coefficients by convection and radiation. Principle and working of Heat
Transfer equipment – Double pipe, Shell & tube and Plate type heat exchanger, Overall & Individual
heat transfer co-efficient, LMTD.

Contact Periods:

Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60Periods

TEXT BOOK

1	K.V. Narayanan, B.Lakshmikutty, "Stoichiometry and Process calculations", Prentice hall of
	India, 2nd edition. 2017.
2	YunusCengel, "Heat and Mass Transfer – Fundamentals & Applications", McGraw-Hill, 2019.

REFERENCES

1	Bhatt B.I and VoraS.M. "Stoichiometry", Tata McGraw-Hill, New Delhi, 4 th Edition.2010.										
2	O.A.Hougen, K.M.Watson, R.A.Ragatz, "Chemical Process Principles Part-I: Material										
	andEnergy Balances", CBS Publishers, 2018										
3	C. J. Geankoplis, "Transport Processes and separation process principles (includes										
	unitOperations)", Pearson Education Limited, 2013.										
4	Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt"Principle of										
	Heat and Mass Transfer", John Wiley, 2019.										

	RSE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's TaxonomyMapped
	Develop a fundamental understanding of the engineering unit conversions and Stoichiometry for doing balance calculations.	K1
CO2	Have a comprehensive understanding and be able to perform engineering calculations basedon material balances.	K2
CO3	Establish mathematical methodologies for the computation of energy balances.	K2
CO4	Understand the basic laws of heat transfer & to develop solutions for the problem involving steady state & transient heat conduction in simple geometries.	K1
CO5	Calculate heat transfer by conduction, convection & thermal radiation realistic cases.	K2

a)CO and P	a)CO and PO Mapping													
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2	1	1	-	-	-	-	-	-	-	-	-	3	1
CO2	3	1	1	-	-	-	-	-	-	-	-	-	3	1
CO3	3	1	1	-	-	-	-	-	-	-	-	-	3	1
CO4	2	1	1	-	-	-	-	-	-	-	-	-	3	1
CO5	3	1	1	-	-	-	-	-	-	-	-	-	3	1
22BES306	3	1	1	-	-	-	-	-	-	-	-	-	3	1
1-Slight, $2-$	– Mod	erate,	$3-Su^2$	bstanti	al									
b) CO and F	Key Pe	rform	ance I	ndicat	tors M	lappin	g							
CO1	1.1.1	, 1.2.1	, 1.4.1,	2.1.2,	2.1.3,	3.2.1								
CO2	1.1.1	, 1.2.1	, 1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	3.2.1						
CO3	1.1.1	1.1.1, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 3.2.1												
CO4	1.1.1	1.1.1, 1.2.1, 1.4.1, 2.1.2, 2.1.3, 3.2.1												
CO5	1.1.1	, 1.2.1	, 1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	3.2.1						

ASSESSMEN	ASSESSMENT PATTERN – THEORY											
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total					
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%					
Category*												
CAT1	30	70	-	-	-	-	100					
CAT2	30	70	-	-	-	-	100					
Individual												
Assessment												
1 /Case	50	50			-	-	100					
Study 1/	50		-	-			100					
Seminar 1 /												
Project1												
Individual												
Assessment												
2 /Case	50	50					100					
Study 2/	50	50	-	-	-	-	100					
Seminar 2 /												
Project 2												
ESE	30	70	-	-	-	-	100					

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	0	0	3

Course	To Understand the classification, microscopic examination, staini										
Objectives	microorganisms, nutritional media types, growth, control of micro or										
	developknowledge about the industrial fermentation process and	production of									
	modern biotechnology products.										
UNIT – I	BASIC MICROBIOLOGY	9 Periods									
	microbiology, Classification and nomenclature of microorganism										
	of microorganisms- light and electron microscopy; Staining techni	ques – simple,									
differential &	special staining; Colony morphology and arrangement of bacterial cells.										
UNIT – II	GROWTH AND CONTROL OF MICROORGANISMS	9 Periods									
Nutritional re-	quirements of bacteria and different media used for bacterial culture; I	solation of pure									
culture (Sprea	d Plate, Streak Plate, Pour Plate); Growth curve and different methods	to quantify the									
	vth; Physical control of microorganisms (dry and moist heat sterili										
	emical control of microorganisms (Phenolics, alcohol, aldehydes,										
	nary ammonium salts, sterilizing gases)-evaluation of antimicrobial agen										
	interactions, anti-bacterial, anti-fungal and anti-viral agents, mod	e of action of									
antibiotics and its resistance.											
UNIT – III	INDUSTRIAL FERMENTATION PROCESS	9 Periods									
Historical ov	erview of industrial fermentation process -traditional and modern	Biotechnology.									
Commercial p	otential of Biotechnology products in India. Industrial Fermentation- r	nicroorganisms,									
mode of opera	tion, fermentation processes-pictorial representation.										
UNIT – IV	PRODUCTION OF PRIMARY & SECONDARY	9 Periods									
	METABOLITES										
	primary metabolites- Organic acids (citric acid & acetic acid); amino										
	whan) and alcohols (ethanol &butanol), Production of secondary metabol										
(penicillin & s	streptomycin), vitamins (Vit B12 and Vit B2), enzymes (proteases & amy	vlases).									
	DRODUCTION OF MODERN DIOTECHNOLOCY	0 Domio da									
UNIT – V	PRODUCTION OF MODERN BIOTECHNOLOGY PRODUCTS	9 Periods									
Production of	recombinant proteins having therapeutic and diagnostic applications	(insulin human									
	one), Production of recombinant vaccines (Hepatitis B vaccine, ch										
v	monoclonal antibodies.	iotera vacenie),									
Contact Perio											
Lecture: 45 P		riods									
Lecture: 45 I		11005									
TEXT BOOK	ζ.										
	M, Harley JP, Klein DA, " Microbiology", 4 th Edition, Wm. C. Brown Pu	ublishers 2010									
I I TESCOUL	m_1 , maney m_1 , m_2 , m_1 , m_2 , m_2 , m_3 , m_4 , m_1 , m_2 , m_1 , m_2 , m_1 , m_2 , m_1 , m_2 , m_2 , m_3 , m_1 , m_2 , m_2 , m_2 , m_3 , m_2 , m_2 , m_2 , m_3 , m_2 , m	<i>Dusners</i> , 2010.									

2 Waites, M.J., Morgan, N.L., Rockey, J.S., Higton, G., "Industrial Microbiology: An Introduction", Blackwell, 2001.

REFERENCES:

111	
1	Pelczar MJ, Chan ECS and Krein NR, "Microbiology", McGraw Hill Education, 5 th Edition,
	2001.
2	Lee, S.Y., Nielsen, J. and Stephanopoulos, G., "Industrial Biotechnology: Products and
	Processes", John Wiley & Sons, 2016.
3	Cruger, W., Cruger, A ., "A Textbook of Industrial Microbiology", Panima Publishing
	<i>Corporation</i> , 2 nd <i>Edition</i> , 2005.
4	Pandey, A., Negi, S., Soccol, C.R., "Current Developments in Biotechnology and
	Bioengineering: Production, isolation and purification of industrial products". Elsevier, 2016.
5	Okafor, N., "Modern Industrial Microbiology and Biotechnology", CRC Press, 2007.

	COURSE OUTCOMES: On completion of the course, the students will be able to:						
CO1	Understand the classification, microscopic examination and staining methods of microorganisms	K1					
CO2	Differentiate the types of nutritional media, growth pattern and control of micro organisms	K2					
CO3	Develop knowledge about the industrial fermentation process.	K2					
CO4	Identify the importance of microbes and their role in production of primary and secondary metabolites.	К3					
CO5	Explore the microbial process for production of modern biotechnology products.	K3					

a)CO and PO Mapping														
COs/POs	PO 1	PO PO<												
CO1	1													
CO2														
CO3	1 2 2 1								1					
CO4	1 2 2 1								1					
CO5	CO5 1 2 2								1					
22BPC302	22BPC302 1 2 2 1								1					
1 – Slight, 2 – Moderate, 3 – Substantial														
b) CO and Key Performance Indicators Mapping														
CO1	1.2.1,2.2.2													
	1.2.1,2.2.2													
CO3	1.2.1,2	.2.2, 2	.2.3,2.	2.4										
CO4	1.2.1,2	.2.2, 2	.2.3,2.	2.4										
CO5	1.2.1,2	.2.2, 2	.2.3,2.	2.4										

ASSESSME	NT PATTERN -	- THEORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	50	50	-	-	-	-	100
CAT2	20	30	50	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	30	30	-	-	-	100

22BPC303

BIOCHEMISTRY-II

SEMESTER III

Chemistry for Biotechnology Biochemistry-IPC3003	PREREQUISITES	CATEGORY	L	Т	P	С
Dischemistry	Chemistry for Biotechnology Biochemistry-I	РС	3	0	0	3

Course Objectives	F												
UNIT – I													
Metabolism concepts-Glycolysis, TCA cycle, pentose phosphate &glyoxalate shunt, Respiratory chain- Oxidative Phosphorylation and Photophosphorylation. Metabolic disorders associated with carbohydrates.													
UNIT – II	LIPID METABOLISM	9 Periods											
Fatty acid synthesis and oxidative degradation, Triacylglycerol, phospholipid biosynthesis and degradation; Cholesterol biosynthesis. Metabolic disorders associated with lipids.													
UNIT - IIINUCLEIC ACID METABOLISM9 Periods													
Biosynthesis of nucleotides, denovo and salvage pathways for purines, denovo and salvage pathways for pyrimidines, Regulation of purine and pyrimidine synthesis, Degradation of nucleotides, Metabolic disorders associated with nucleic acids.													
UNIT – IV	UNIT – IV AMINO ACID METABOLISM 9 Periods												
Nitrogen metabolism, Biosynthesis of six essential amino acids (Met, Thr, Lys, Ile, Val, Leu) and aromatic amino acids. Urea cycle, Metabolic disorders associated with chain and aromatic amino acid degradation.													
UNIT – V	PROTEIN FOLDING & TARGETING	9 Periods											
ONTI - VPROTEIN FOLDING & TARGETING9 PeriodsProtein folding: Levinthal paradox, Anfinsen's experiment, cooperativity in protein folding, free energy landscape of protein folding and pathways of protein folding, molten globule state, chaperons, Protein targeting, signal sequence, secretion; targeting of organelle proteins, Protein degradation, receptor-mediated endocytosis, turnover.9 PeriodsContact Periods: 													

TEXT BOOKS

1	APA. Nelson, D. L., & Cox, M. M., "Lehninger's —Principles of Biochemistry", 7 ^h Edition,
	Macmillan, 2017.
2	Voet, Donald, Judith G. Voet, and Charlotte W. Pratt, "Fundamentals of Biochemistry: Life at the Molecular Level", 5th Edition, Wiley., 2016.

REFERENCES:

1	Shawn O. Farrell and Mary K. Campbell, "Biochemistry", 8th Edition, Brooks/Cole, 2013
2	Satyanarayana, U. and U. Chakerapani, "Biochemistry" 3rd Rev. Edition, Books & Allied
	(P) Ltd., 2006.
3	Victor W. Rodwell; David Bender; Kathleen M. Botham; Peter J. Kennelly; P. Anthony Weil.,
	"Harper's Illustrated Biochemistry", 31st Edition, McGraw-Hill Education, 2018.
4	Berg, J.M., Tymoczko, J.L., Stryer, L., "Biochemistry", 9th Edition, WH Freeman, 2019.

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the metabolic pathways of Carbohydrates, amino acids, nucleic acids and lipids.	K1
CO2	Fathom the complex relationship between biochemical pathways within living cells	K1
CO3	Know the metabolic disorders associated with biochemical metabolisms	K2
CO4	Understand the mechanism of protein targeting and transport	K2
CO5	Grasp the protein folding mechanism	K2

a) CO and PO Mapping														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO2	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO3	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO4	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO5	1	1	-	-	-	-	-	-	-	-	-	-	3	1
22BPC303	22BPC303 1 1 3							1						
1 – Slight, 2 – Moderate, 3 – Substantial														
b) CO and Key Performance Indicators Mapping														
CO1	1.4.1,	2.1.3												
CO2	1.4.1,	2.1.3												
CO3	1.4.1,	2.1.3,												
CO4	1.4.1,	2.1.3												
CO5	1.4.1,	2.1.3,												

ASSESSMEN	T PATTERN – T	THEORY					
Test / Bloom's	Remembering (K1) %	Understan ding (K2)	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		%					
CAT1	70	30	-	-	-	-	100
CAT2	40	60	-	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100
ESE	60	40	-	-	-	-	100

22BPC304

PREREQUIS	SITES	CATEGORY	L	Т	P	С				
	NIL	PC	3	0	0	3				
Course	To give an understanding on the fundamentals									
Objectives	relevance in disease and therapy. To describe									
	chromosome structure function and understand	Ų								
	applications. To apply the Hardy-Weinberg Law i			on g	eneti	ics for				
	gene frequency, sex linkage, equilibrium, and heter	ozygote frequenc	сy.							
UNIT – I	BACTERIAL GENETICS					eriods				
	in merozygotes- plasmids and episomes, Recombi	nation in bacteria	a, T	rans	form	nation,				
	Conjugation – mapping.				0.5					
UNIT – II	CLASSICAL GENETICS					eriods				
	nciples and experiments, segregation, multiple a									
• • •	eractions, epistasis and sex chromosomes, sex determ	nination, dosage	com	pen	satio	n, sex				
	edigree analysis.				0.0	· .				
UNIT – III	APPLIED GENETICS					eriods				
	organization, structure and variation in prokaryotes a									
	d lampbrush, deletion, inversion, translocation, dup									
	aneuploidy, euploidy, polyploidy, Ames test, ka									
A	rossing over – cytological basis of crossing over, chi interference, somatic cell hybridization.	omosome mappi	ng –	· two) and	i three				
	POPULATION GENETICS				0 D	eriods				
	erg equilibrium, Extensions of Hardy- Weinberg equ	ulibrium Dandar	n m	otin	-					
•	g, Population analysis, Models for population gene									
	ion and Sociobiology, Eugenics.	and a mutation a	nu r	Ingi	atioi	1 5120,				
UNIT – V	GENETIC DISEASES				0 P/	eriods				
Inborn error		mochromatosis,	Cv	stic		orosis,				
Hypogonadot		Achondroplasia,	•			onuria,				
	Disease, Cystic fibrosis, Hemoglobinopathies, A			•						
Obesity, Type 2 diabetes, Psychiatric disease, Including missing heritability, Autism.										
Contact Peri			•							
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods										
20000101 40 1				-0.40						

TEXT BOOK

1	Gardner, E.J, Simmons, M.J, and Snustad, D.P., "Principles of Genetics", 8 Edition,
	JohnWiley& Sons, Singapore,2015.
2	Strickberger, M.W., "Genetics", 3rd Edition, Prentice Hall of India, New Delhi, 2015.
3	Klug, W.S. and Cummings, M.R., "Concepts of Genetics", Pearson Education, New Delhi, 2019

REFERENCES

1	Tamarin, R.H., "Principles of Genetics", Tata McGraw Hill, New Delhi, 2002.
2	De Robertis, E. D. P. and De Robertis, E. M. F., "Cell and Molecular Biology", 8 th Edition, Lippincott Williams & Wilkins, New York, USA,2010.

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
	Understand the fundamentals of bacterial genetics.	K1
CO2	Understand classical mendelian genetics in inheritance of genes.	K1
CO3	Apply concepts of genetics in chromosomal mapping	K2
CO4	Know population based on concepts of population genetics.	K2
CO5	Understand various genetic disorders and their genetic basis.	K2

a) CO ai	nd P	O Ma	pping												
COs/PC	Os	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO2		1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO3		1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO4		1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO5		1	1	-	-	-	-	-	-	-	-	-	-	3	1
22BPC3	804	1	1	-	-	-	-	-	-	-	-	-	-	3	1
1 – Sligh	ıt, 2 -	- Mod	erate, 3	3 – Suł	ostantia	al									
b) CO at	nd K	Key Pe	rform	ance I	ndicat	ors M	apping	5							
CO1	1.4.	1, 2.1.	3												
CO2	1.4.	1, 2.1.	3												
CO3	203 1.4.1, 2.1.3														
CO4	1.4.	1, 2.1.	3												
CO5	1.4.	1, 2.1.	3												

ASSESSMEN	ASSESSMENT PATTERN – THEORY											
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total					
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%					
Category*												
CAT1	50	50	-	-	-	-	100					
CAT2	40	60	-	-	-	-	100					
Individual												
Assessment 1												
/Case Study	60	40	-	-	-	-	100					
1/ Seminar 1												
/ Project1												
Individual												
Assessment 2												
/Case Study	30	70	-	-	-	-	100					
2/ Seminar 2												
/ Project 2												
ESE	50	50	-	-	-	-	100					

SEMESTER III

PREREQU	ISITES	CATEGORY	L	Т	Р	С				
NIL	BS 0 0 3 1.									
Course	Students are able to handle and operate light micro									
Objectives	preparation and staining techniques. Students are able	to study the diff	eren	t cel	l div	vision				
	stages.									
LIST OF E	EXPERIMENTS									
1.	Principles of microscopy, phase contrast and fluoresce	ent microscopy								
2.	Identification of given plant, animal and bacterial ce	ells and their cor	npo	nent	s by					
۷.	microscopy									
3.	IdentificationofcellsinabloodsmearusingLeishmanst	ain.								
4.	Identification of cells in abloods mear using Giemsastain	ing.								
5.	IdentificationofcellsinabloodsmearHaemotoxylinEo	sinStaining.								
6.	CountingofRBCs and WBCs usingHaemocytometer									
7.	Study of Osmosis andTonicity of blood cells.									
8.	Study of Cell viability using TryphanBlueAssay									
9.	Separationandidentificationofperipheral bloodmono	nuclearcellsfron	ıblo	od.						
10.	Identificationofmeiosiscelldivisioningrasshoppertes	tis.								
11.	Staining of differentstagesofmitosisinAlliumcepa(O	nion) root tip.								
12.	Immunostaining of cells									
Contact Per	Contact Periods:									
Lecture: 0 I	Periods Tutorial: 0 Periods Practical: 45 Per	riods Total: 45	Per	riods	5					

REFERENCES:

1 De Robertis& De Robertis, *Cell biology*, W B Saunders Co publications, 4th edition, 2007.

	COURSE OUTCOMES: On completion of the course, the students will be able to:				
CO1	Operateandidentifytheparts and functionofmicroscope.	K3			
CO2	Preparetheslidesformicroscopicexaminations.	K3			
CO3	Performdifferentstainingtechniquestoidentifybloodcells	K3			
CO4	Interpret the different stages of celldivision using microscope.	K3			
CO5	Workasateamtointerpretpracticaldata.	K3			

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PO	PO1	PSO	PSO
05/105	1	2	3	4	5	6	7	8	9	10	11	2	1	2
CO1	-	-	-	2	-	-	-	-	-	-	-	-	3	1
CO2	-	-	-	1	-	-	-	-	-	-	-	-	3	1
CO3	-	-	-	3	-	-	-	-	-	-	-	-	3	1
CO4	-	-	-	2	-	-	-	-	-	-	-	-	3	1
CO5	-	-	-	-	-	-	-	-	2	-	-	-	3	1
22BBS309	-	-	-	2	-	-	-	-	2	-	-	-	3	1
1 - Slight, 2	-Mod	erate,	3 – Su	bstanti	al									
b) CO and	Key Pe	rform	ance]	[ndicat	tors M	apping	5							
CO1	4.1.1, 4	4.1.2,4	.2.1											
CO2	4.2.1													
CO3	4.1.1, 4.1.2, 4.2.1, 4.3.1													
CO4	4.2.1, 4.3.1													
CO5														

22BPC305

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	0	0	3	1.5

Course	To demonstrate the proper safety procedures, parts & functions of microscope, staining
Objectives	techniques for microorganism identification, culture media preparation and growth
Ū	pattern of bacteria.
LISTOF E	XPERIMENTS
1.	Laboratorysafetyandsterilizationtechniques
2.	Microscopic Methods-IdentificationofMicroorganisms
3.	Stainingtechniques-simple and differential staining (Gram staining), lacto phenol and
	acid fast staining
4.	Identification of fungal morphology by lactophenol cotton blue staining
5.	Preparationofculture media-nutrientbroth, nutrientagar-slant preparation
6.	Culturingofmicroorganismsinbrothandinplates (pourplates, streakplatesand spread plate
	techniques)
7.	Preparation of selective media using MacConkey agar.
8.	Serial Dilutionmethod
9.	Biochemical Tests for bacterial identification
10.	MotilityTest-Hangingdroptechnique
11.	Antibiotic sensitivityassay-DiscDiffusionmethod
12.	Preservationofbacterialcultures-lyophilization& glycerol stock
13.	Study of bacterial growth curve.
Contact Per	iods:
Lecture: 0 P	eriods Tutorial: 0 Periods Practical: 45Periods Total: 45 Periods

TEXT BOOK:

1 James G. Cappuccino & Natalie, "Microbiology, A Laboratory manual", Pearson Education Publishers, 6th edition, 2004.

2 Waites, M.J., Morgan, N.L., Rockey, J.S., Higton, G., "Industrial Microbiology: An Introduction", Blackwell, 2001.

REFERENCES:

1 *Harsha S,* **"Biotechnology Procedures and Experiments Handbook",** *Infinity Science Press,* 2007.

COU	RSE OUTCOMES:	Bloom's Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
CO1	Identify and demonstrate the proper safety procedures concerning lab safety.	K3
CO2	Identify the parts & functions of microscope.	K3
CO3	Perform different staining techniques to identify microorganisms.	K3
CO4	Identify the purpose & principle associated with different media types used	K3
	in lab.	
CO5	Demonstrate the preservation methods and growth pattern of bacteria.	K3

a) CO and I	a) CO and PO Mapping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
05/105	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO2	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO3	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO4	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO5	1	-	-	2	-	-	-	-	-	-	-	-	2	1
22BPC305	1	-	-	2	-	-	-	-	-	-	-	-	2	1
1 - Slight, 2	-Mod	erate,	$3-Su^2$	bstanti	al									
b) CO and I	Key Pe	rform	ance I	ndicat	tors M	lappin	g							
CO1	1.2.1,	4.1.1,4	4.1.2											
CO2	1.2.1, 4.1.1, 4.1.2, 4.2.1													
CO3	1.2.1, 4.1.1, 4.1.2, 4.2.1, 4.3.1													
CO4	1.2.1,	1.2.1, 4.1.1, 4.1.2, 4.2.1, 4.3.1												
CO5	1.2.1,	4.1.1,4	4.1.2, 4	.2.1,4.	3.1									

22BPC306

BIOCHEMISTY LABORATORY

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	P	С
Chemistry for Biotechnology Chemistry Laboratory	РС	0	0	3	1.5

Course Objectives	Train the students on qualitative and quantitative analysis of basic biomolecules.										
Experiment No.	EXPERIMENTS										
1.	Units, Volume/Weight measurements, concentrations, Sensitivity, Specificity, Precision and Accuracy.										
2.	Preparation of buffers and Titration curves of amino acids.										
3.	Qualitative tests for carbohydrates.										
4.	Quantitative tests for reducing sugars.										
5.	Qualitative tests for Amino Acids.										
6.	Quantitative tests for Protein.										
7.	Estimation of Nucleic acids : Test for ribose and deoxyribose.										
8.	Estimation of glucose by GOD-POD method.										
9.	Quantitative tests for Cholesterol.										
10.	Determination of isoelectric point of casein.										
Contact Perio	ds:										
Lecture:0 Per	iods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods										

REFERENCES

1	David. T. Plummer, "An Introduction to Practical Biochemistry", McGraw – Hill, 3rd edition.,
	2017
2	Benjamin F. Lasseter, "Biochemistry in the Lab A Manual for Undergraduates", 1st Edition,
	CRC Press, 2019.
3	Andreas Hofmann, Samuel Clokie, "Wilson And Walker's Principles And Techniques Of
	Biochemistry And Molecular Biology", 8th Edition, Wiley, 2018.

COUI	RSE OUTCOMES:	Bloom's Taxonomy
On con	mpletion of the course, the students will be able to:	Mapped
CO1	Prepare reagents accurately and reproducibly for experiments	K3
CO2	Operate pH meter, weighing balance, colorimeter and spectrophotometer	K3
CO3	Do the experiments for isolation and extraction of any bioactive compounds	K3
CO4	Identify and quantify the bio molecules (Carbohydrate, Protein, Nucleic acid, Lipids) in any	K3
CO5	Understand the practical accession behind preparation and separation of various biomolecules	K3

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO	PSO	PSO
COS/POS	1 2 3	3	4	5	6	7	8	9	10	1	12	1	2	
CO1	-	I	-	2	-	-	-	I	-	-	-	-	3	1
CO2	-	I	-	1	-	-	-	I	-	-	-	-	3	1
CO3	-	-	-	4	-	-	-	-	-	-	-	-	3	1
CO4	-	-	-	2	-	-	-	I	-	-	-	-	3	1
CO5	-	I	-	1	-	-	-	I	-	-	-	-	3	1
22BPC306	-	-	-	2	-	-	-	I	-	-	-	-	3	1
1 - Slight, 2	– Mod	erate, 1	$3-Su^{\dagger}$	bstanti	al									
b) CO and H	Key Pe	rform	ance I	ndicat	tors M	lappin	g							
CO1	4.2.1	, 4.3.1												
CO2	4.2.1													
CO3	4.1.1, 4.1.2, 4.2.1, 4.3.1													
CO4	4.2.1	, 4.3.1												
CO5	4.1.4	,												

22BES407

FLUID MECHANICS

SEMESTER IV

PREREQUISITES	CATEGORY	L	Т	Р	С
Differential Equations and Numerical Methods	ES	3	0	0	3

Course Objectives														
UNIT – I	INTRODUCTION	9 periods												
Properties of f		- Fluid behavior												
	Newtonian and non-Newtonian fluids, Types of flow - lam													
steady,unstead	ly, non uniform and uniform flows - compressible and incompressible fl	luids, Similitude												
-relationship b	etween dimensional analysis and similitude													
UNIT – II	FLUID DYNAMICS	9 periods												
	uation, Bernoulli's equation, boundary layer condition, form drag,													
coefficient – la	aminar and turbulent flow through closed conduit velocity profiles, pipes	s, tubes, fittings,												
valves, friction	n factor for smooth and rough pipes, head losses due to friction in pipes	and fittings.												
UNIT – III	FLUID FLOW MEASURMENT AND PUMPING	9 periods												
	EQUIPMENTS													
	Venturimeter, Pitot tube, Rota meter, weirs and notches, hot wire anemo													
•	meter, current meter, magnetic flow meter, pressure measurement by	manometers, U-												
	ial and inclined manometers.													
· · ·	s, selection and specifications, positive displacement pumps, reciprocati ugal pumps - characteristics curve of pumps – fans and compressors	ng pump, rotary												
UNIT – IV	FLUIDIZATION AND PACKED BEDS	9 periods												
	ypes – fluidized beds, properties of fluidized beds, continuous fluidizati													
	cked beds – pressure drop, flooding and loading. Mixing & agitation													
UNIT – V	MECHANICAL OPERATIONS	9 periods												
	r equipments – operations and their classification, Energy and power													
	ing, open and closed circuit operations - techniques of size analysis – di													
	solids, conveyors and elevators.													
Contact Perio														
Lecture: 45 I		: 45 Periods												
TEXT BOOK	-													

TEXT BOOK:

1	McCabe Smith and Harriott, "Unit Operations of Chemical Engineering", 7 th Edition, Tata
	McGraw-Hill company, 2022.
0	
2	Geankoplis C.J, "Transport Processes and Unit Operations", 3 rd Edition, Prentice Hall of

REFERENCES :

1	Frank M. White, "Fluid Mechanics", 8th Edition, Tata McGraw-Hill company, 2017.
2	J. M. Coulson, J. F. Richardson and R. K. Sinnott, "Chemical Engineering. Vol I & II", 6 th
	Edition, Butterworth-Heinemann Ltd, 1999.
3	Bansal R K, "Fluid mechanics and Hydraulic machines" , 10 th Edition, Lakshmi publications
	(P) Ltd, New Delhi, 2019.

	COURSE OUTCOMES: On completion of the course, the students will be able to:						
CO1	Understand stress – strain relationship in fluids and analyse fluid flow problems.	K1					
CO2	To apply Bernoulli principle and measure pressure drop in flow systems	K3					
CO3	Describe the function and performance of flow metering devices.	K5					
CO4	Determine minimum fluidization velocity in fluidized bed.	K4					
CO5	Present characteristics of particulate solids, Principles of size reduction and screening, crushing and grinding equipment.	K2					

a) CO and	a) CO and PO Mapping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	1	2	1	2
CO1	-	1	1	1	1	-	-	-	-	-	-	1	3	2
CO2	1	1	-	1	-	2	1	-	1	-	1	1	3	2
CO3	-	1	1	I	1	2	-	-	-	-	-	-	2	3
CO4	1	1	1	1	-	-	-	-	1	-	-	1	3	2
CO5	-	1	1	1	-	-	1	-	-	1	1	1	3	2
22BES40 7	1	1	1	1	1	1	1	-	1	1	1	1	3	2
1 - Slight, 2	2 - Mc	derate	e, 3 - 8	Substa	ntial									
b) CO and	Key F	Perfor	mance	e Indio	cators	Map	oing							
CO1	2	.2.3, 2		3.2,3.	1.6, 4.	1.4, 5.	1.1,							
CO2	1	.2.1, 2	.1.3, 4	.3.1, 6	5.2.1, 7	7.2.2,								
CO3	CO3 2.2.2, 2.4.1, 3.1.1, 3.2.2, 5.3.2, 6.2.1													
CO4	1	1.2.1, 2.1.3, 2.3.2, 3.2.3, 4.3.3												
CO5	2	.1.2, 2	.4.2, 3	.2.1, 4	.2.2, 7	7.2.2								

ASSESSMEN	T PATTERN – T	THEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20	20	20	20	20	-	100
CAT2	20	20	20	20	20	-	100
Individual							
Assessment	30						
1 /Case		30	20		20	_	100
Study 1/		50	20	-	20	-	100
Seminar 1 /							
Project1							
Individual							
Assessment							
2 /Case	30	30	20		20		100
Study 2/	30	50	20	-	20	-	100
Seminar 2 /							
Project 2							
ESE	40	30	20	_	10	-	100

22BPC407

PREREQUISITES	CATEGORY	L	Т	Р	С
Microbiology	PC	3	0	0	3
Cell Biology					

Course	To learn the fundamental aspects of nucleic acids, the principle and pr	rocess of DNA				
Objectives	replication, transcription and translation and to study the basics of reg					
Objectives	expression, mutation and DNA repair.	diation of gene				
UNIT – I	CHEMISTRY OF NUCLEIC ACIDS	9 Periods				
	as genetic material; Structure and physico chemical properties of eleme					
	v structure of DNA: Chemical and structural qualities of 3',5'-Phosp					
	ucture of DNA: Watson & Crick model, Chargaff's rule, X-ray diffrac					
	stabilizes DNA structure, Conformational variants of double helical					
	riple helix, Quadruple helix, Reversible denaturation and hyperchromic					
structure of	DNA: DNA supercoiling, Conformation of DNA and RNA; cla	asses of RNA;				
Organization of	of eukaryotic chromosome – c0t value.					
UNIT – II	DNA REPLICATION	9 Periods				
- Overview of	differences in prokaryotic and eukaryotic DNA replication, Rules of r	replication in all				
	enzymology; DNA replication: Meselson& Stahl experiment, bi-d					
	kazaki fragments; Replication in prokaryotes - D-loop and rolling					
	plication of linear viral DNA. Replication of telomeres in eukaryotes. In	hibitors of DNA				
replication.						
UNIT – III	TRANSCRIPTION	9 Periods				
	ase- RNA replicase (Virus), Transcription in prokaryotes and eukary					
	omoters and enhancers; transcription factors; nuclear RNA splicing	mechanisms –				
	mRNA; ribozymes; RNA - editing.					
UNIT – IV	TRANSLATION	9 Periods				
	f genetic code; Salient features of genetic code - Wobble hypothes					
	eukaryotic; protein synthesis; post translational processing; Protein targ					
UNIT – V	MUTATION – REPAIR AND REGULATION OF GENE	9 Periods				
<u> </u>	EXPRESSION					
	Regulation of genes - replication- transcription & translation factors; Lac and trp operon; Mutation-					
	sversion- artificial & natural mutation; suppressor mutation; Repair of I	JNA.				
Contact Perio Lecture: 45 P		• •				
I ANTINA /15 D	amada – Tutamali () Variada – Vraatiaali () Variada – Tatali (15 Va	NNO d a				

TEXT BOOK

1	David Friefelder, "Molecular Biology", Narosa Publ. House.2 nd edition, 1999.
2.	Harvey Lodish, Arnold Berk, S.L Zipursky, Paul Matsudaira, David Baltimore and James Danell
	"Molecular Cell Biology",4 th Edition, New York: W.H Freeman and company, 2016.

REFERENCES

1	Malacinski, G.M., Freifelder's "Essentials of Molecular Biology", 4 th edition, Nasora						
	Publishing House, New Delhi, 2015.						
2	Watson J.D., Hopkins W.H., Roberts J.W., Steitz J.A., Weiner A.M., "Molecular Biology of the						
	Gene", McGraw Hill,2 nd Edition, 1986.						
3	Waston, B.B, & Gann, L.L, "Watson Molecular Biology of the Gene", 7 th Edition, Pearson						

- Education, 2014.
 Weaver, R..., *"Molecular Biology"*, 3 rd Edition, McGraw Hill, 2011
 Benjamin L., *"Genes IX"*, 9th Edition, Jones & Bartlett Publishers Inc. 2013.

COU	COURSE OUTCOMES:					
On co	mpletion of the course, the students will be able to:	Mapped				
CO1	Understand the basic structure and biochemistry of nucleic acids	K1				
CO2	Comprehend the principle of DNA replication	K1				
CO3	Get familiarize with the process of transcription and RNA processing.	K2				
CO4	Become aware of the process of protein synthesis.	K2				
CO5	Understand the regulatory mechanism of molecular biology.	K1				

a) CO and	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	3	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	2
CO3	1	2	3	-	-	-	-	-	-	-	-	-	3	2
CO4	-	3	2	-	2	-	-	-	-	-	-	-	2	3
CO5	-	1	3	-	2	-	-	-	-	-	-	2	2	3
22BPC407	3	3	3	-	2	-	-	-	-	-	-	2	3	3
b) CO and	Key Pe	rforma	nce In	dicator	s Map	ping								
CO1	1.2.1, 2	.4.3												
CO2	3.1.5													
CO3	3.1.4,3.1.5,													
CO4	5.1.2.													
CO5	12.1.1,1	12.1.2												

ASSESSMEN	ASSESSMENT PATTERN – THEORY											
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total %					
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %						
Category*												
CAT1	70	30	-	-	-	-	100					
CAT2	40	60	-	-	-	-	100					
Individual												
Assessment	50											
1 /Case		50					100					
Study 1/	50	50	-	-	-	-	100					
Seminar 1 /												
Project1												
Individual												
Assessment												
2 /Case	30	70					100					
Study 2/	50	70	-	-	-	-	100					
Seminar 2 /												
Project 2												
ESE	60	40	-	_	_	-	100					

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	0	0	3

Course Objectives	To expound theory and fundamentals behind the thermodynamics im biological processes. The students will be able to design & solve physi problems encountered in chemical and biochemical industries by apply thermodynamics laws.	cal and chemical				
UNIT – I	THERMODYNAMIC LAW AND PROPERTIES OF FLUIDS	9 Periods				
properties of	hermodynamics; a generalized balance equation and conserved quanti fluids exhibiting non ideal behavior; estimation of thermodynamic state; calculations involving actual property exchanges; Maxwell'	properties using				
UNIT – II	SOLUTION THERMODYNAMICS	9 Periods				
and dilute sol	properties; Chemical potential, Fugacity and fugacity coefficient in solutions; Activity in solutions and activity coefficient; Gibbs-Duhem ecresidual properties of mixtures.					
UNIT – III	PHASE EQUILIBRIA	9 Periods				
	ase equilibria; VLE calculations for binary and multi component syste solid-solid equilibria.	ms; liquid-liquid				
UNIT – IV	CHEMICAL REACTION EQUILIBRIA	9 Periods				
temperature an	Equilibrium criteria for homogeneous chemical reactions; evaluation of equilibrium constant; effect of temperature and pressure on equilibrium constant; calculation of equilibrium conversion and yields for single and multiple reactions.					
UNIT – V	THERMODYNAMIC DESCRIPTION OF MICROBIAL GROWTH AND PRODUCT FORMATION	9 Periods				
the Operationa	ics of microbial growth stoichiometry thermodynamics of maintenance, al Stoichiometry of a growth process at Different growth rates, Includin Pirt Relation for Electron Donor, thermodynamics and stoichiometr ds:	ng Heat using				
Lecture:45 Pe		riods				
TEXT BOOK						

TEXT BOOKS:

1	Smith J.M., Van Ness H.C., Abbott M.M., 'Introduction to Chemical Engineering
	Thermodynamics', McGraw-Hill, 8th edition, 2018.
2	Narayanan K.V,'A Text Book of Chemical Engineering Thermodynamics', Prentice Hall of
	India, 2 nd edition, 2013.
3	Christiana D Smolke, 'The Metabolic Pathway Engineering Handbook Fundamentals', CRC
	Press Taylor & Francis, 1 st edition, 2010.

REFERENCES:

1	Hougen O.A., Watson K.M., and Ragatz R.A., ' <i>Chemical Process Principles Part II</i> ', Wiley & Sons, 2 nd edition. 2004.	John
2	Stanley I. Sandler ' <i>Chemical, Biochemical, and Engineering Thermodynamics</i> ', John W Sons, 5 th edition, 2017.	Viley

COUR	COURSE OUTCOMES:				
On con	mpletion of the course, the students will be able to:	Mapped			
CO1	Illustrate the application of thermodynamics in design & operation of process industries.	K1			
CO2	Design & solve problem in realistic cases by applying thermodynamics concepts.	K1			
CO3	Estimate thermodynamic properties of substances in gas and liquid states	K2			
CO4	Interpret the phase equilibria concepts in multi-component systems	K2			
CO5	Understand about biochemical equilibrium and able to calculate the kinetics of biological systems.	K2			

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
05/105	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	-	2	-	-	-	-	-	-	-	-	1	1
CO2	2	1	-	2	-	-	-	-	-	-	-	-	1	1
CO3	2	2	-	2	1	2	-	-	-	-	-	-	1	1
CO4	2	2	-	2	-	-	-	-	-	-	-	-	1	1
CO5	2	2	-	2	-	2	-	-	-	-	-	-	1	1
22BPC	2	2		2	1	2							1	1
408	2	2		2	1	2	-	-	-	_	_	-	1	1
1 - Slight, 2	-Moc	lerate,	3-Su	bstanti	al									
b) CO and	Key Pe	erforn	nance l	[ndicat	tors M	apping	5							
CO1	1.2.1,	1.3.1,1	.4.1,2.	1.2,2.1	.3, 2.1.	3,2.2.2	,2.3.2,2	2.4.4,4	.1.1,4.1	1.4,4.3	.3			
CO2	2 1.2.1, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.1.3, 2.2.2, 2.2.3, 4.1.1, 4.1.2, 4.3.2													
CO3	3 1.2.1, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.1.3, 2.2.2, 2.3.2, 2.4.4, 4.1.1, 4.1.2, 4.1.4, 4.2.1, 4.3.1, 5.3.1, 6.1.1													
CO4	4 1.2.1, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.1.3, 2.2.2, 2.3.2, 2.4.4, 4.1.1, 4.1.2, 4.1.4, 4.2.1, 4.3.1.													
CO5	1.2.1, 1.3.1,1.4.1,2.1.2,2.1.3, 2.1.3,2.2.2,2.3.2,2.4.4,4.1.1,4.1.2,4.1.4,4.2.1,4.3.1,6.2.1													

ASSESSMENT	ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
Unit test - 1	20	20	-	20	40	-	100						
Unit test - 2	20	20	-	20	40	-	100						
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	_	-	100						
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100						
ESE	20	20	-	30	30	-	100						

22BPC409

SEMESTER IV

PREREQUISITES	CATEGORY	L	Т	Р	С
BIOCHEMISTRY-I BIOCHEMISTRY-II	РС	3	0	0	3

Course	Students are able to understand the basic enzyme catalysis and kinetics	. Get to know
Objectives	about different immobilization methods. Students able to familiarize w	ith different
	enzyme assay and also about enzyme applications	
UNIT – I	INTRODUCTION TO ENZYMES	9 Periods
Enzymes-Intr	oduction-active site, concept of active site, co factors, co enzymes-exan	nples, Lock and
Key Hypothes	sis, Induced fit hypothesis, Classification of enzymes, Mechanism of cat	alysis-acid base
catalysis, elec	ctrostatic catalysis, covalent catalysis, Enzyme catalysis, Theory of ca	talysis-collision
state theory, the	ransition state theory, Enzyme activity and specific activity, role of entro	py in catalysis
UNIT – II	ENZYME KINETICS	9 Periods
Kinetics of e	enzyme catalyzed reaction-MichaelisMenten equation, Briggs Haldan	e modification,
Significance of	of Km kcat, Vmax. Linear plots-Line weaver burk plot, Eadiehofstee plot	t. Mechanism of
Bimolecular	reaction, Inhibition-types of enzyme inhibition-competitive, uncon	mpetitive, non-
competitive r	nixed, allosteric inhibition. Allosteric enzymes-Monod Wyman Changeu	x Model
competitive, i	inted, unosterie innortion i mosterie enzymes monou () jinun enungeu	
UNIT – III	ENZYME IMMOBILISATION	9 Periods
UNIT – III Enzyme imme	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti	9 Periods ion, entrapment,
UNIT – III Enzyme imme encapsulation	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application	9 Periods ion, entrapment,
UNIT – III Enzyme imme encapsulation	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application dustries. case studies	9 Periods ion, entrapment,
UNIT – III Enzyme imme encapsulation enzymes in in UNIT – IV	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application of dustries. case studies ENZYME CHARACTERIZATION AND PURIFICATION	9 Periods ion, entrapment, of immobilized 9 Periods
UNIT – III Enzyme imme encapsulation enzymes in in UNIT – IV	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application dustries. case studies ENZYME CHARACTERIZATION AND PURIFICATION ad purification of enzymes from microbial, plant and animal source	9 Periods ion, entrapment, of immobilized 9 Periods es, methods of
UNIT – III Enzyme imme encapsulation enzymes in in UNIT – IV Extraction an precipitation,	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application of dustries. case studies ENZYME CHARACTERIZATION AND PURIFICATION nd purification of enzymes from microbial, plant and animal source dialysis, filtration, chromatography – methods-ion-exchange, so	9 Periods ion, entrapment, of immobilized 9 Periods es, methods of size exclusion,
UNIT – III Enzyme imme encapsulation enzymes in in UNIT – IV Extraction an precipitation,	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application dustries. case studies ENZYME CHARACTERIZATION AND PURIFICATION ad purification of enzymes from microbial, plant and animal source	9 Periods ion, entrapment, of immobilized 9 Periods es, methods of size exclusion,
UNIT – III Enzyme imme encapsulation enzymes in in UNIT – IV Extraction an precipitation,	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application of dustries. case studies ENZYME CHARACTERIZATION AND PURIFICATION nd purification of enzymes from microbial, plant and animal source dialysis, filtration, chromatography – methods-ion-exchange, so interaction, Affinity chromatography, HPLC, Molecular weight determined	9 Periods ion, entrapment, of immobilized 9 Periods es, methods of size exclusion,
UNIT – III Enzyme imme encapsulation enzymes in in UNIT – IV Extraction an precipitation, hydrophobic	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application of dustries. case studies ENZYME CHARACTERIZATION AND PURIFICATION nd purification of enzymes from microbial, plant and animal source dialysis, filtration, chromatography – methods-ion-exchange, so interaction, Affinity chromatography, HPLC, Molecular weight determined	9 Periods ion, entrapment, of immobilized 9 Periods es, methods of size exclusion, ermination-SDS
UNIT – III Enzyme imme encapsulation enzymes in in UNIT – IV Extraction an precipitation, hydrophobic PAGE, Native UNIT – V	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application of dustries. case studies ENZYME CHARACTERIZATION AND PURIFICATION ad purification of enzymes from microbial, plant and animal source dialysis, filtration, chromatography – methods-ion-exchange, so interaction, Affinity chromatography, HPLC, Molecular weight dete PAGE	9 Periods ion, entrapment, of immobilized 9 Periods es, methods of size exclusion, ermination-SDS 9 Periods
UNIT – III Enzyme imme encapsulation enzymes in in UNIT – IV Extraction an precipitation, hydrophobic PAGE, Native UNIT – V Types of Enz	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application of dustries. case studies ENZYME CHARACTERIZATION AND PURIFICATION ad purification of enzymes from microbial, plant and animal source dialysis, filtration, chromatography – methods-ion-exchange, so interaction, Affinity chromatography, HPLC, Molecular weight dete PAGE ENZYME ASSAYS AND APPLICATIONS	9 Periods ion, entrapment, of immobilized 9 Periods es, methods of size exclusion, ermination-SDS 9 Periods , Immuno assay
UNIT – III Enzyme imme encapsulation enzymes in in UNIT – IV Extraction an precipitation, hydrophobic PAGE, Native UNIT – V Types of Enzymethods, art	ENZYME IMMOBILISATION obilization- Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application of dustries. case studies ENZYME CHARACTERIZATION AND PURIFICATION ad purification of enzymes from microbial, plant and animal source dialysis, filtration, chromatography – methods-ion-exchange, so interaction, Affinity chromatography, HPLC, Molecular weight dete PAGE ENZYME ASSAYS AND APPLICATIONS yme assays- End point methods, kinetic methods, coupled kinetic assay	9 Periods ion, entrapment, of immobilized 9 Periods es, methods of size exclusion, ermination-SDS 9 Periods , Immuno assay ation in food
UNIT – III Enzyme imme encapsulation enzymes in in UNIT – IV Extraction an precipitation, hydrophobic PAGE, Native UNIT – V Types of Enzymethods, art	ENZYME IMMOBILISATION obilization - Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application of dustries. case studies ENZYME CHARACTERIZATION AND PURIFICATION ad purification of enzymes from microbial, plant and animal source dialysis, filtration, chromatography – methods-ion-exchange, so interaction, Affinity chromatography, HPLC, Molecular weight dete PAGE ENZYME ASSAYS AND APPLICATIONS yme assays- End point methods, kinetic methods, coupled kinetic assay tificial enzymes. Application of enzymes as Biosensors, Application	9 Periods ion, entrapment, of immobilized 9 Periods es, methods of size exclusion, ermination-SDS 9 Periods , Immuno assay ation in food
UNIT – III Enzyme imme encapsulation enzymes in in UNIT – IV Extraction an precipitation, hydrophobic PAGE, Native UNIT – V Types of Enzymethods, art	ENZYME IMMOBILISATION obilization - Physical and Chemical methods Physical methods-Adsorpti . Chemical methods-covalent bonding, cross linking. Application of dustries. case studies ENZYME CHARACTERIZATION AND PURIFICATION and purification of enzymes from microbial, plant and animal source dialysis, filtration, chromatography – methods-ion-exchange, so interaction, Affinity chromatography, HPLC, Molecular weight dete PAGE ENZYME ASSAYS AND APPLICATIONS yme assays- End point methods, kinetic methods, coupled kinetic assay tificial enzymes.Application of enzymes as Biosensors, Application industries, foodindustries, Biopharmaceutical industries, tanning indust	9 Periods ion, entrapment, of immobilized 9 Periods es, methods of size exclusion, ermination-SDS 9 Periods , Immuno assay ation in food

TEXT BOOK

1	Trevor Palmer, "Enzymes", Affiliated East West Press Pvt Ltd, New Delhi, 2004.
2	Harvey W. Blanch, Douglas S. Clark, "Biochemical Engineering", Marcel Dekker Inc, 2002
3	B. Sivasankar, "Bioseparations: Principles and Technique", Prentice-Hall of India Pvt.Ltd, 2007

REFERENCES

1	James M Lee, Biochemical Engineering, Prentice Hall of India, USA, 2009.
2	James. E. David F. Bailey & amp; Ollis, Biochemical Engineering Fundamentals, McGraw Hill,
	2011.
0	

3 Rufus O. Okotore, *Essentials of Enzymology*, Xlibris Corporation, 2015

	COURSE OUTCOMES: On completion of the course, the students will be able to:				
CO1	Understand the basics of enzymes and mechanism of enzyme catalysis	K1			
CO2	Familiarize with the enzyme kinetics and apply to solve problems in enzyme kinetics	К3			
CO3	Familiarize with the different types of enzyme immobilisation and its applications	K1			
CO4	Analyze the different methods for enzyme extraction and purification.	K4			
CO5	Understand the different assay procedures for enzymes and get familiarize with the different enzyme applications	K1			

a) CO and I	PO Maj	pping												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	1	-	-	1	-	1	-	-	-	1	-
CO2	1	-	2	-	2	-	1	1	1	-	2	-	-	2
CO3	1	-	1	2	-	-	-	3	1	-	1	-	-	3
CO4	1	2	2	-	-	1	-	2	-	-	-	-	1	-
CO5	1	-	I	-	-	-	-	2	1	1	2	-	-	3
22BPC409	1	1	2	2	2	1	1	2	1	1	2	-	1	3
1 - Slight, 2	- Mod	erate, 3	- Subs	tantial										
b) CO and l	Key Pe	rforma	nce ind	licator	s mapp	oing								
CO1	1.2.1,	1.3.1, 2	2.3.1, 4	.1.1										
CO2	1.1.1, 3.1.1, 5.1.1													
CO3	1.2.1, 4.2.1, 1.1.2													
CO4	1.2.1, 2.2.1, 3.1.1, 5.1.2													
CO5	1.3.1,	2.1.1												

ASSESSMEN	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	60	30	10	-	-	-	100					
CAT2	40	30	30	-	-	-	100					
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100					
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	40	30	-	-	-	100					
ËSE	40	30	30	-	-	-	100					

22BPC410 ANALYTICAL TECHNIQUES IN BIOTECHNOLOGY SEM

SEMESTER IV

PREREQUISITES	CATEGORY	L	Т	Р	С
Engineering Physics Chemistry for Biotechnology	РС	3	0	2	4

Course objectives	To enable the students to understand and to get familiarized with analytical instruments to solve researchproblems and to enable them to interpret the analytical data and research findings based on the know from thiscourse.					
UNIT – I	BASICS OF MEASUREMENT	9+6 Periods				
	of analytical methods – calibration of instrumental methods – electrica to noise ratio; Properties of electromagnetic radiations and their interaction					
UNIT – II	MOLECULAR SPECTROSCOPY	9+6 Periods				
law, IR spectr	light spectroscopy-Qualitative and Quantitative absorption Measureme oscopy, Raman spectroscopy, NMR spectroscopy, X- ray crystallog and applications; Atomic Absorption spectroscopy, Mass Spectroscopy.	graphy- principle,				
UNIT – III	ELECTROPHORESIS	9+6 Periods				
proteins by SD	le of electrophoresis, support media (Agarose and Polyacrylamide gels, S-PAGE gradient gels, Isoelectric Focusing, Two Dimensional PAGE, ing agarose gel, PFGE, Capillary Electrophoresis.					
UNIT – IV	CHROMATOGRAPHY	9+6 Periods				
	es of chromatography, TLC and Column chromatography, matrix matography, Ion Exchange Chromatography, Gel Exclusion Chromatography.					
UNIT – V	THERMAL METHODS	9+6 Periods				
Differential Thermal Analysis techniques - instrumentation & application, DTA curve. Differential Scanning Calorimetry - Instrumentation & Application, Instrumentation, Thermogravimetry – Instrumentation & Application, TGcurve. Biosensors – Components, Types						
Contact Period Lecture: 45 Per		riods				

LIST OF EXPERIMENTS

- Precision and Validity in an instrument.
- Validation of Lambert-Beer's law usingKMnO₄.
- Determination of concentration of the Iron content present in the tablet using atomic absorption spectrometry.
- Raman spectroscopy Identification of functional groups
- Data interpretation of FTIR spectra
- Demonstration on the working of XRD
- Determination of the concentration of Na and Ca using flamephotometer.
- Separation of amino acids byTLC.
- Column chromatographic analysis of chlorophyll
- Separation of compounds using High Performance Liquidchromatography
- Gel filtration Size based separation of proteins

TEXT BOOK:

1	Willard H.W., Merritt L.L., Dean J.A. & Settle F.A" <i>Instrumental Methods of Analysis</i> ", East West Publishers, 7 th Edition.2004
2	Skoog, D.A., F. James Holler and Stanky, R. Crouch" <i>Instrumental Methods of Analysis</i> ". Cengage LearningIndia Pvt. Ltd., 7 th edition, 2020.

REFERENCES:

1	Harrison, R.G., Todd, P., Rudge, S.R. and Petrides, B.B. " <i>Bioseparations: Science and Engineering</i> ", Oxford University Press,2015.
2	Wilson K. and Walker J." <i>Principles and Techniques of Biochemistry and Molecular Biology</i> ", Cambridge University Press,8th Edition, 2018.
3	J. Jayaraman. <i>"Laboratory Manaual in Biochemistry"</i> ,1st Edition., New Age International Publications, 2007
4	R. F. Boye, Modern experimentl Biochemistry, Pearson India, 2002

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To understand the basic principles of measurement and calibration in analytical methods.	K2
CO2	To impart knowledge on the working principles of spectroscopic instruments.	K1
CO3	To instill knowledge on the separation of biomolecules such as nucleic acids and proteins by electrophoresis and chromatography methods.	К3
CO4	To describe the thermal behavior of thebioproducts and components of a biosensor.	K3
CO5	To develop a protocol to identify and determine the concentration of a analyte by analytical instruments.	K6

a) CO and	a) CO and PO Mapping													
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
CO 1	2	1	1	1	-	-	-	-	-	-	2	1	1	1
CO 2	2	1	1	1	-	-	-	-	-	-	-	1	1	-
CO 3	2	1	-	1	-	-	-	-	-	-	-	I	-	-
CO 4	1	-	-	I	-	-	-	-	-	-	-	I	-	I
CO 5	-	-	-	I	1	2	-	-	-	-	-	I	-	-
22BPC410	2	1	1	1	1	2	-	-	-	-	2	1	1	1
1 - Slight, 2	2 - Mo	derate	$, 3 - S^{-1}$	ubstan	tial									
b) CO and	l Key	Perfo	rman	ce Ind	licato	rs Ma	pping	5						
CO1	1.1,1	.2,1.3	,1.4,2.1	1,2.2,2	.3,2.4,	3.1, 3.2	2,4.1,4	.2,11.2	2,11.3,	12.3				
CO2	2 1.1,1.2,1.3,1.4,2.1,2.2, 2.3,2.4, 3.2,4.1,4.2,12.2,12.3													
CO3	CO3 1.1,1.3,1.4,2.1, 2.2,2.4,4.1													
CO4	1.1													
CO5	1.2													

ASSESSMENT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applyin g (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	14	10	2	10	12	2	100		
CAT2	10	12	4	10	10	4	100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	30	5	5	-	-	100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	5	5	_	-	-	100		
ESE	40	30	30	-	-	-	100		

22BES408

ENGINEERING EXPLORATION

SEMESTER IV

PREREQUIS	ITES	CATEGORY	L	Т	Р	C			
NIL				ES	0	0	3	1.5	
COURSEThe objective of the course is to provide an introduction to the engineering field. ItOBJECTIVEdesigned to help the student to learn about engineering and how it is useful in oueveryday life.									
MODULE 1		DUCTION				15	Peri	ods	
scientist and e	ngineer ne	ing and Engineering eds and wants, vario for the 21 st century en	ous disciplines	of engineering, sor					
MODULE 2	ENGIN	EERING DESIGN				15	Peri	ods	
Problem defini	tion, Idea	t, Knowledge within generation through br ating, text/analysis,	rain storming a	nd researching, solu	ution c				
MODULE 3	ENGIN	EERING DISCIPL	INES			15	15 Periods		
Choose solutio <u>GUIDELINES</u> • Practica • Multi-di • Groups • Each gro as indivi • The stud	roblem, Da n, Design, <u>5</u> l based lean sciplinary/ can select t pup has a fa idual studer lents have t	ta gathering through Implementation of th ming carrying credits Multi-focus group of o work on specific ta aculty coordinator/Ins	e design, Deve f 3-4 students. sks, or projects structor who wi l at the end of s	lop Prototype/Mode related to real worl ill guide/evaluate th semester.	el. ld prot e over	blems. all gro	oup as	s we	
Contact Perio		utorial: 0 Periods	Practical: 4		tal: 45		_		

REFERENCES:

1	Ryan A Brown, Joshua W. Brown and Michael Berkihiser: "Engineering Fundamentals:
	Design, Principles, and Careers", Goodheart-Willcox Publisher, Second edition, 2014.
2	Saeed Moaveni, "Engineering Fundamentals: An Introduction to Engineering", Cengage
	learning, Fourth Edition, 2011.

	TRSE OUTCOMES completion of the course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Explain technological and engineering development, change and impacts of engineering	K2
CO2	Complete initial steps (Define a problem list criteria and constraints, Brainstorm potential solutions and document ideas) in engineering designs	K3
CO3	Communicate possible solutions through drawings and prepare project reports.	K3
CO4	Draw sketches to a Design problem.	K3
CO5	Apply the concept of engineering fundamentals in Industrial Biotechnology	K3

a) CO and	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	1	3	1	2	-	1	2	1	1	1	1	3
CO2	2	-	1	3	1	2	-	1	2	1	1	1	1	3
CO3	2	-	1	3	1	2	-	1	2	1	1	1	1	3
CO4	2	-	1	3	1	2	-	1	2	1	1	1	1	3
CO5	2	-	1	3	1	2	-	1	2	1	1	1	1	3
22BES408	2	-	1	3	1	2	-	1	2	1	1	1	1	3
b) CO and	Key Pe	rforma	nce In	dicato	ors maj	pping								
CO1	1.2.1, 1 9.1.1, 9					· ·	· ·	· ·	· ·	· ·	3, 4.3.4	, 5.1.1	, 6.2.1, 8	8.1.1,
CO2	1.2.1, 1 9.1.1, 9		-	-	-	-	-	-	-	-	3, 4.3.4	, 5.1.1	, 6.2.1, 8	3.1.1,
CO3	1.2.1, 1 9.1.1, 9		-	-	-	-	-	-	-	-	3, 4.3.4	, 5.1.1	, 6.2.1, 8	8.1.1,
CO4	1.2.1, 1 9.1.1, 9					· ·	· ·	· ·	· ·	· ·	3, 4.3.4	, 5.1.1	, 6.2.1, 8	8.1.1,
CO5	1.2.1, 1 9.1.1, 9		-	-	-	-	-	-	-	-	3, 4.3.4	, <u>5.1.1</u>	, 6.2.1, 8	8.1.1,

22BES409

CHEMICAL ENGINEERING LABORATORY

SEMESTER IV

PREREQUISITES	CATEGORY	L	Т	P	С
Fluid Mechanics	ES	0	0	3	1.5
Process calculations and Heat transfer					

Course	To learn chemical engineering principles and their practical applications in the areas of
Objectives	fluid mechanics, Heat transfer, mass transfer and particle mechanics.
-	
LISTOF E	XPERIMENTS
1.	Flow measurement using Venturimeter, Orificemeter for liquids
2.	Studies on flow behavior and friction loss in Fluidized bed.
3.	Product size distribution analysis using Roll Crusher
4.	Product size distribution analysis using Ball Mill
5.	Studies on Simple Distillation.
6.	Calculations of filter and medium resistances in Leaf filter apparatus
7.	Adsorption Equilibria
8.	Leaching
9.	Liquid-Liquid Equilibria
10	Batch drying
11	Batch sedimentation
12	Double Pipe Heat exchanger
13	Determination of effect of temperature on reaction rate content
Contact Per	iods
Lecture: 0 P	Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

TEXT BOOKS

1	YunusCengel, "Heat and Mass Transfer – Fundamentals & Applications", McGraw-Hill, 5 th
	edition. 2015.
2	Geankoplis C.J, "Transport Processes and Unit Operations", Prentice Hall of India, 4 th edition.
	2003.

COU	Bloom's Taxonomy	
On co	Mapped	
CO1	Able to calculate pressure and flow rate of liquid	K3
CO2	Find out the efficiencies of filtration and distillation range.	K3
CO3	Calculate the heat exchange limitation.	K3
CO4	Separate soluble components by using liquid equilibria.	K3
CO5	Knowledge on the basic principles of chemical engineering.	K3

a) CO and PO Mapping														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO2	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO3	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO4	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO5	1	-	-	2	-	-	-	-	-	-	-	-	2	1
22BES40 9	1	-	-	2	-	-	-	-	-	-	-	-	2	1
1 - Slight, 2	2 - Mo	derate	$, 3 - S^{-1}$	ubstan	tial									
b) CO and	Key P	Perform	nance	Indica	ators N	Mappi	ng							
CO1	1.2.1	, 4.1.1	,4.1.2											
CO2	1.2.1, 4.1.1, 4.1.2, 4.2.1													
CO3	1.2.1, 4.1.1, 4.1.2, 4.2.1, 4.3.1													
CO4	1.2.1	, 4.1.1	,4.1.2,	4.2.1,4	1.3.1									
CO5	1.2.1	, 4.1.1	,4.1.2,	4.2.1,4	1.3.1									

PREREQUISITES	CATEGORY	L	Τ	Р	С
Microbiology Lab	DC	•	0	2	15
Cell biology Lab	PC	U	U	3	1.5

Course	To provide hands on experience in performing basic and advanced molecular biology										
Objectives	techniques and to introduce students to the theory behind in each technique and to										
	describe common applications of each methodology in biological research.										

LIST OF EXPERIMENTS

- 1. DNA Extraction from plant cells.
- 2. DNA Extraction from animal cells.
- 3. DNA Extraction from Human blood.
- 4. DNA Extraction from bacterial cell.
- 5. Qualitative Analysis of Genomic DNA
- 6. Quantitative Analysis of DNA.
- 7. Isolation of total RNA from bacteria.
- 8. Qualitative analysis of RNA.
- 9. Quantitative analysis of RNA.
- 10. Plasmid Extraction from bacterial cell.
- 11. Elution of DNA from Agarose gel.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

REFERENCE BOOK

1 Sambrook J and Russell DM, "Molecular Cloning: A Laboratory Manual", 2014.

COURSE OUTCOMES: On completion of the course, the students will be able to:									
CO1	Understand the principles underlying in the techniques of molecular biology .	K3							
CO2	2 Analyze the applications of these techniques.								
CO3	3 Carry out lab experiments and interpret the results.								
CO4	Take safety precautions on usage of hazardous chemicals in case of	K3							
	emergency.								

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
05/105	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	-	-	-	-	-	-	-	-	-	-	-	3	1
CO2	3	-	-	I	-	-	-	1	-	1	-	-	3	2
CO3	1	3	2	-	2	-	-	-	-	-	-	-	3	2
CO4	-	3	3	-	3	-	-	-	-	-	-	3	2	3
22BPC41	3	3	3		3							3	3	3
1	5	3	3	-	5	-	-	-	-	-	-	5	5	5
1 - Slight, 2	2 – Mo	derate	$, 3 - S^{-1}$	ubstan	tial									
b) CO and	Key P	Perform	nance	Indica	ators N	Aappi	ng							
CO1	1.2.1,	1.4.1,												
CO2	2.4.3,3.1.5													
CO3	3.1.4,3.1.5,4.3.2													
CO4	5.1.2,8.2.1,8.2.2													