

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013 PHONE 0422 - 2433355 FAX: +91 0422 - 2433355 E-mail: <u>coegct@gmail.com</u>

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E. CIVIL ENGINEERING (FULL TIME) 2022 REGULATIONS

SI.	Course			СА	End	Total		Hour	s/Wee	K
No	Code	Course Title	Category	Marks	Sem. Marks	Marks	L	Т	Р	С
			THEOR	XΥ						
1	22CBS307	Transform Calculus and Partial Differential Equations (<i>Common to</i> <i>Civil & IBT</i>)	BS	40	60	100	3	1	0	4
2	22CES307	Mechanics of Fluids	ES	40	60	100	3	0	0	3
3	22CES308	Engineering Geology	ES	40	60	100	3	0	0	3
4	22CPC301	Mechanics of Solids I	PC	40	60	100	3	0	0	3
5	22CPC303	Surveying	PC	40	60	100	3	0	0	3
		THEORY WIT	TH PRACTI	CAL CO	MPONE	NT				
6	22CPC302	Construction Materials and Technology	PC	50	50	100	2	0	2	3
			PRACTIC	CAL						
7	22CES309	Materials Testing Laboratory	ES	60	40	100	0	0	3	1.5
8	22CPC304	Survey Laboratory	PC	60	40	100	0	0	3	1.5
		TOTAL	A	370	430	800	17	1	8	22

THIRD SEMESTER

.

FOURTH SEMESTER

SI.	Course			CA	End	Total]	s/We	ek	
No	Code	Course Title	le Category		Sem. Marks	Marks	L	Т	Р	С
			THEORY	Y						
1	22CES410	Applied Hydraulics and Fluid Machinery	ES	40	60	100	3	0	0	3
2	22CPC405	Mechanics of Solids II	PC	40	60	100	3	0	0	3
3	22CPC406	Concrete Technology	PC	40	60	100	3	0	0	3
4	22CPC407	Design of Reinforced Concrete Elements	PC	40	60	100	3	0	0	3
5	22CPC408	Water Supply Engineering	PC	40	60	100	3	0	0	3
6	22CMC4Z2	Constitution of India (Common to all branches)	MC	40	60	100	3	0	0	0
			PRACTIC	AL						
7	22CES411	Fluid Mechanics and Machinery Laboratory	ES	60	40	100	0	0	3	1.5
8	22CES412	Engineering Exploration for Civil Engineering	ES	100	-	100	0	0	3	1.5
9	22CPC409	Environmental Engineering Laboratory	РС	60	40	100	0	0	3	1.5
		TOTAL		460	440	900	18	0	9	19.5

22CBS307	TRANSFORM CALCULUS AND PARTIAL DIFFERENTIAL EQUATIONS		SEN	AES	STER III				
	(Common to Civil and IBT Branches)						1		
PREREQUI			EGORY	L	Т	Р	C		
	NIL]	BS	3	1	0	4		
Course	To be familiar with Fourier Series. To gain the knowledge of sol	lving B	oundary v	value	prol	blem	s.		
Objectives	To be familiar with Laplace and Inverse Laplace transforms	to sol	ve ordin	ary	diffe	renti	al		
	equations.To acquire knowledge on Fourier transforms.To be far	niliar w	vith Z-tra	nsfor	m to	solv	/e		
	difference equations.								
UNIT – I	FOURIER SERIES				9	Peri	ods		
Dirichlet's Co	onditions - General Fourier series - Odd and even functions - Ha	lf range	e Sine and	d Co	sine	serie	s -		
Root Mean Se	quare Value- Parseval's Identity on Fourier series-Harmonic Analy	sis							
UNIT – II	BOUNDARY VALUE PROBLEMS					Peri			
Classification	of PDE - Method of separation of variables - Fourier series so	lutions	of one d	imen	sion	al w	ave		
equation – Or	ne dimensional equation of heat conduction - Steady state solution	n of two	o dimensi	onal	equ	atior	0		
heat conducti	on (Infinite Stripes in cartesian coordinates only).								
UNIT – III	LAPLACE TRANSFORMS					Peri			
Laplace trans	form - Sufficient condition for existence - Transform of elementa	arv func	tions B			. •			
		1 y 10110	-L	asic	prop	ertie	s -		
Transforms o	f derivatives and integrals of functions - Derivatives and integrals of								
step function	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I	of trans Laplace	forms - T transforr	ransf ns - S	orms State	s of u men	ıni t o		
step function	f derivatives and integrals of functions - Derivatives and integrals of	of trans Laplace	forms - T transforr	ransf ns - S	orms State	s of u men	ini t o		
step function Convolution	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I	of trans Laplace ordinar	forms - T transforr	ransf ns - S	orms State	s of u men	ini t of		
step function Convolution	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear	of trans Laplace ordinar	forms - T transforr	ransf ns - S	orms State equa	s of u men	t of		
step function Convolution second order UNIT – IV	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS	of trans Laplace ordinar	forms - T transforr y differe	ransf ns - S ntial	State equa	s of u men ⁻ ation Peri e	uni t o o ods		
step function Convolution second order UNIT – IV Statement of	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS Fourier integral Theorem – Fourier transform pair–Fourier Sine an	of trans Laplace ordinar	forms - T transforr y differe	ransf ns - S ntial	State equa	s of u men ⁻ ation Peri e	uni t o: o: ods		
step function Convolution second order UNIT – IV Statement of – Transforms	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS Fourier integral Theorem – Fourier transform pair–Fourier Sine an of Simple functions – Convolution Theorem – Parseval's Identity.	of trans Laplace ordinar	forms - T transforr y differe	ransf ns - S ntial	State equa 9] – Pro	s of u men ation Perio	unit t of ods ties		
step function Convolution second order UNIT – IV Statement of – Transforms UNIT – V	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS Fourier integral Theorem – Fourier transform pair–Fourier Sine an of Simple functions – Convolution Theorem – Parseval's Identity. Z TRANSFORMS	of trans Laplace ordinar	forms - T transforr y differe ne Transfo	ransf ns - S ntial	State equa 9 1 – Pro	s of u men ation Perio oper	uni t o: o ties		
step function Convolution second order UNIT – IV Statement of – Transforms UNIT – V Z-transforms	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS Fourier integral Theorem – Fourier transform pair–Fourier Sine an of Simple functions – Convolution Theorem – Parseval's Identity. Z TRANSFORMS - Elementary properties –Convergence of Z-transforms - Initial ar	of trans Laplace ordinar d Cosir	forms - T transforr y differe ne Transfo l value th	ransf ns - S ntial orms eorem	orms State equa 9 – Pro 9 ms -	s of u mentation Perio oper Perio Inve	uni t o: ods ties		
step function Convolution second order UNIT – IV Statement of – Transforms UNIT – V Z-transforms Z-transform	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS Fourier integral Theorem – Fourier transform pair–Fourier Sine an of Simple functions – Convolution Theorem – Parseval's Identity. Z TRANSFORMS - Elementary properties –Convergence of Z-transforms - Initial ar using partial fraction and convolution theorem– Formation of di	of trans Laplace ordinar d Cosir d Fina	forms - T transforr y differe ne Transfo l value th	ransf ns - S ntial orms eorem	orms State equa 9 – Pro 9 ms -	s of u mentation Perio oper Perio Inve	uni t o: ods ties		
step function Convolution second order UNIT – IV Statement of – Transforms UNIT – V Z-transforms Z-transform	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS Fourier integral Theorem – Fourier transform pair–Fourier Sine an of Simple functions – Convolution Theorem – Parseval's Identity. Z TRANSFORMS - Elementary properties –Convergence of Z-transforms - Initial ar using partial fraction and convolution theorem– Formation of di- nations of second order with constant coefficients using Z- transform ods :	of trans Laplace ordinar d Cosir d Fina ifferenc n	forms - T transforr y differe ne Transfo l value th e equatic	ransf ns - S ntial orms eorem	orms State equa 9 – Pro 9 ms -	s of u mentation Perio oper Perio Inve	unii t of ods ties		
step function Convolution second order UNIT – IV Statement of – Transforms UNIT – V Z-transforms Z-transform	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS Fourier integral Theorem – Fourier transform pair–Fourier Sine an of Simple functions – Convolution Theorem – Parseval's Identity. Z TRANSFORMS - Elementary properties –Convergence of Z-transforms - Initial ar using partial fraction and convolution theorem– Formation of di- nations of second order with constant coefficients using Z- transform ods :	of trans Laplace ordinar d Cosir d Fina ifferenc n	forms - T transforr y differe ne Transfo l value th e equatic	ransf ns - S ntial orms eorem	orms State equa 9 – Pro 9 ms -	s of u mentation Perio oper Perio Inve	unit t of ods ties		
step function Convolution second order UNIT – IV Statement of – Transforms UNIT – V Z-transforms Z-transform difference equ Contact Peri	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS Fourier integral Theorem – Fourier transform pair–Fourier Sine an of Simple functions – Convolution Theorem – Parseval's Identity. Z TRANSFORMS - Elementary properties –Convergence of Z-transforms - Initial ar using partial fraction and convolution theorem– Formation of di- nations of second order with constant coefficients using Z- transform ods:	of trans Laplace ordinar d Cosir d Fina ifferenc n	forms - T transforr y differe ne Transfo l value th e equatic	ransf ns - S ntial orms eorem	orms State equa 9 – Pro 9 ms -	s of u mentation Perio oper Perio Inve	unit t of ods ties		
step function Convolution second order UNIT – IV Statement of – Transforms UNIT – V Z-transforms Z-transform difference equ Contact Peri Lecture: 45	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS Fourier integral Theorem – Fourier transform pair–Fourier Sine an of Simple functions – Convolution Theorem – Parseval's Identity. Z TRANSFORMS - Elementary properties –Convergence of Z-transforms - Initial ar using partial fraction and convolution theorem– Formation of di- tations of second order with constant coefficients using Z- transform of s: Periods Tutorial: 15 Periods Practical: 0 Periods Total: 6	of trans Laplace ordinar d Cosir d Fina ifferenc n	forms - T transforr y differe ne Transfo l value th e equation	ransf ns - S ntial orms eorem	orms State equa 9] - Pr 9] ms - Solu	s of u men ation Perio oper Perio Inve	unii t of ods ties		
step function Convolution second order UNIT – IV Statement of – Transforms UNIT – V Z-transforms Z-transform difference equ Contact Peri Lecture: 45	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS Fourier integral Theorem – Fourier transform pair–Fourier Sine an of Simple functions – Convolution Theorem – Parseval's Identity. Z TRANSFORMS - Elementary properties –Convergence of Z-transforms - Initial ar using partial fraction and convolution theorem– Formation of di- nations of second order with constant coefficients using Z- transform ods: Periods Tutorial: 15 Periods Practical: 0 Periods Total: 6	of trans Laplace ordinar d Cosir d Fina ifferenc n	forms - T transforr y differe ne Transfo l value th e equation	ransf ns - S ntial orms eorem	orms State equa 9] - Pr 9] ms - Solu	s of u men ation Perio oper Perio Inve	unii t of ods ties		
step function Convolution second order UNIT – IV Statement of – Transforms UNIT – V Z-transforms Z-transforms difference equ Contact Peri Lecture: 45 EXT BOOKS 1 Veeraraja Delhi. 20	f derivatives and integrals of functions - Derivatives and integrals of and impulse functions – Transform of periodic functions. Inverse I theorem – Initial and final value theorems – Solution of linear with constant coefficients using Laplace transformation techniques. FOURIER TRANSFORMS Fourier integral Theorem – Fourier transform pair–Fourier Sine an of Simple functions – Convolution Theorem – Parseval's Identity. Z TRANSFORMS - Elementary properties –Convergence of Z-transforms - Initial ar using partial fraction and convolution theorem– Formation of di- tations of second order with constant coefficients using Z- transform ods: Periods Tutorial: 15 Periods Practical: 0 Periods Total: 6 C: un. T., "Transforms and partial Differential equations", Tata McGa	of trans Laplace ordinar d Cosir d Cosir nd Fina ifferenc n 50 Perio	forms - T transforr y differe ne Transfo l value th e equation ods	ransf ns - { ntial orms eorem ons -	orms State equa = 9] - Pr - 9] ms - Solu	s of u men ation Perio oper Perio Inve	unit t of ods ties		

2 B.S. Grewal., "Higher Engineering Mathematics", Khanna Publishers, NewDelhi, 44th Edition, 2018.

REFERENCES

1	Kandasamy, Thilagavathy and Gunavathy., "Engineering Mathematics" for III Semester, S. Chand & Co,
	Ramnagar, New Delhi.
2	N.P.Bali and Manish Goyal., "Transforms and partial Differential equations", University Science Press, New
	Delhi, 2010.
3	Veerarajan T., "Engineering Mathematics" for Semester I&II, Tata McGraw Hill Education (India) Pvt. Ltd.,
	New Delhi, Third Edition 2012.
4	Erwinkreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

	SE OUTCOMES: pletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Express the periodic functions arising in the study of engineering problems as sine and cosine series.	K3
CO2	Solve the Partial Differential Equations arising in engineering problems like Wave, Heat flow and Laplace equation in steady state (Cartesian coordinates) using Fourier series.	К3
CO3	Apply Laplace transform technique to solve the given integral equations and ordinary differential equations.	K3
CO4	Find Fourier Transforms, infinite Fourier Sine and Cosine transforms.	К3
CO5	Apply Z - transform technique to solve difference equations	K3

a) CO and	PO Ma	pping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
COS/POS	1 2 3 4 5 6 7		8	9	10	11	12	1	2	3					
CO1	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	3	2	-	-	-	-		0004	-	-	-	-	-	-	-
22CBS307	3	2	-	-			2	3	Callor		-	-	-	-	-
1 – Slight, 2 -	- Mode	rate, 3	– Subs	tantial	1		Venér	BIL 116	5	2					

b) CO and Key Performance Indicators Mapping											
CO1	1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1										
CO2	1.1.1, 1.1.2, 1.21, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.4.1										
CO3	1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1										
CO4	1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1										
CO5	1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.4.1										

ASSESSMENT	PATTERN – T	HEORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	20	30	50	-	-	-	100
CAT2	20	30	50	-	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project1	20	30	50	-	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	50	-	-	-	100
ESE	20	30	50	-	-	-	100

22CES307	MECHANICS OF FLUIDS		SEN	AES	ГER	III	
PREREQUI	SITES	CATEGORY	L	Т	Р	C	
NIL		ES	3	0	0	3	
Course Objectives	To impart the knowledge on properties and behavior of factors of the solve various fluid flow problems.	luid at static and dy	mamic	cone	ditior	is t	
UNIT – I	BASICCONCEPTS ANDFLUIDSTATICS			9 Periods			
modulus. Flu	' fluids- Density, specific gravity, viscosity, surface ten id statics – Pascal's Law - Pressure measurement – Manon es –Stability of floating bodies – Buoyancy–Metacentre and	meters. Hydrostatic	forces	on p	lane		
UNIT – II	PRINCIPLES OF MASS			9	9 Per	ioc	
acceleration-	uation – Velocity – Acceleration of a fluid particle - ta Velocity potential and stream functions – Free and Forced vo	•	ocal ai				
UNIT – III	PRINCIPLE OF ENERGY				9 Per		
	its forms, Energy equation – Euler's and Bernoulli's e and Pitot tube - Flow over Notches and Weirs.	quation – Applicat	ions -	Ven	iturin	net	
	FLOW THROUGH CONDUITS				9 Per		
Turbulent flo	in pipes and between parallel plates - Hagen Poiseuille ed w – Reynolds experiment – Frictional loss in pipe- Darcy – bugh boundaries, velocity distributions for turbulent flow in s	Weisbach equation	- Hydr				
UNIT – V	BOUNDARY LAYER AND FLOW AROUND IMMER			9) Per	ioc	
	ver - Definition – Boundary layer thickness - Displaceme er separation - Flow around immersed objects – Drag and lif						
Boundary la		Fotal: 45 Periods					
Boundary lay Boundary lay Contact Peri Lecture:45 F	eriods Tutorial: 0 Periods Practical: 0 Periods		wDelhi	i, 201	9.		

1	K.L.Kumar, "EngineeringFluid Mechanics", Eurasia Publishing House(P)Ltd., New Delhi, 2020.
2	R.K.Rajput, "A Text Book of Fluid Mechanics and Hydraulic Machines", S.Chand and Company,
	NewDelhi, 2015.
3	A.K.Jain, "Fluid Mechanics", Khanna Publishers, New Delhi, 2021.
4	M.K.Natarajan" Principles of Fluid Mechanics ", Anuradha Agencies, Vidayal Karuppur, Kumbakonam,
	2008

	SE OUTCOMES: appletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Identify the properties of fluids and fluid statics	K2
CO2	Apply the continuity equation for solving fluid flow problems.	К3
CO3	Apply the principles of Euler's equation and Bernoulli's equation in real situation of fluid problems	K3
CO4	Examine the fluid flow behavior for laminar and turbulent flows.	К3
CO5	Analyze the boundary layer separation drag and lift on immersed bodies.	K3

a) CO a	nd PO	Mapp	ing												
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
CO2	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
CO3	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
CO4	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
CO5	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
22CES 307	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
1 - Sligh	t, 2 - N	Ioderat	te, 3 –	Substa	ntial										
b) CO ai	ıd Key	Perfo	rmanc	e Indi	cators	Mappi	ing								
CO1	1.1.2,	1.2.1,	1.3.1,	1.4.1, 2	2.1.1, 2	.1.2, 2	.1.3, 2.	2.2, 2.3	3.2, 2.4	.1, 3.1.1	1, 3.2.1,	3.2.3, 4	.1.4, 5.3	.1	
CO2	1.1.2,	1.2.1,	1.3.1,	1.4.1, 2	2.1.1, 2	.1.2, 2	.1.3, 2.	2.2, 2.3	3.2, 2.4	.1, 3.1.1	1, 3.2.1,	3.2.3, 4	.1.4, 5.3	.1	
CO3	1.1.2,	1.2.1,	1.3.1,	1.4.1, 2	2.1.1, 2	.1.2, 2	.1.3, 2.	2.2, 2.3	3.2, 2.4	.1, 3.1.1	1, 3.2.1,	3.2.3, 4	.1.4, 5.3	.1	
CO4	1.1.2,	1.2.1,	1.3.1,	1.4.1, 2	2.1.1, 2	.1.2, 2	.1.3, 2.	2.2, 2.3	3.2, 2.4	1, 3.1.	1, 3.2.1,	3.2.3, 4	.1.4, 5.3	.1	
CO5	1.1.2,	1.2.1,	1.3.1,	1.4.1, 2	2.1.1, 2	.1.2, 2	.1.3, 2.	2.2, 2.3	3.2, 2.4	.1, 3.1.1	1, 3.2.1,	3.2.3, 4	.1.4, 5.3	.1	
						3 814	Bala Desau	Sol aur 116	6.62.630	10					

ASSESSMENT	PATTERN – TH	IEORY 💴	MARTER				
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	40	20				100
CAT2	40	40	20	//			100
Individual	40	40	20				100
Assessment 1 /							
Case Study 1/		A JA					
Seminar 1/		2					
Project1		94.40.00	0000	2010			
Individual	40	40	20 6	2			100
Assessment 2 /							
Case Study 2/							
Seminar 2/							
Project 2							
ESE	40	40	20				100

22CES308 SEMESTER III **ENGINEERING GEOLOGY** PREREQUISITES CATEGORY Т Р С L 3 3 ES 0 0 NIL Course This course will familiarize the students on the role and importance of geology in civil engineering, **Objectives** apart from learning the methods of surface and subsurface investigations using geological, geophysical and remote sensing methods. UNIT – I INTRODUCTION AND GEOMORPHOLOGY 9 Periods Interrelationship between Geology and civil engineering – Branches of Geology – Earth Structure and composition -Concept of Plate tectonics, Geological processes, agents and kinds - Weathering, wind, rivers and their Engineering significance - Volcano - Landforms, Materials and Types of Eruptions, Ground water - Properties of rock - Geological work of ground water. **MINERALOGY** UNIT – II 9 Periods Physical and Chemical properties of minerals – Study of the following rock forming minerals – Quartz family, Felspar family, Biotite, Muscovite, Calcite, Magnesite, Ore minerals - Hematite, Magnetite, Bauxite, Graphite, Coal and Oil and natural gas - Clay minerals - Properties and their economic uses. PETROLOGY AND GEOTECHNICAL PROPERTIES OF ROCKS UNIT – III 9 Periods Formation of Igneous rocks, Sedimentary rocks and Metamorphic rocks, Texture and Structure, Classification and Engineering properties of Granite, Pegmatite, Dolerite and Basalt., formation and Engineering properties of Sandstone, Limestone and Shale. Agents, kinds and Engineering properties of metamorphic rocks - Quartzite, Marble, Slate, Gneiss and schist. Influence on strength of rocks. Rock Mass Rating (RMR), Rock Quality Designation (RQD), Geological Strength Index (GSI). STRUCTURAL GEOLOGY & ELEMENTS OF SEISMOLOGY 9 Periods UNIT – IV Attitude of beds Dip and Strike - Uses of Clinometer compass - Outcrops - Geological maps - their uses -Structural features - Folds, Faults and Joints - their engineering significance. - Earthquakes - Causes and effects, Seismic waves and seismographs, Elastic rebound theory, Mercelli's scale of intensity, Magnitude - Richter's scale and Earthquake Zones in India -Engineering Considerations. UNIT – V **GEOLOGICAL INVESTIGATIONS FOR ENGINEERING STRUCTURES** 9 Periods AND GEOHAZARDS Geological investigations pertaining to the constructions of Dam and Reservoir, Tunnels and Road cuttings, Geophysical investigations - Seismic and electrical resistivity methods and data interpretation. Landslides - causes and prevention - Sea erosion and coastal protection, Tsunami - causes and mitigation. Case studies from India. **Contact Periods**: Lecture: 45 Period **Tutorial: 0 Period Practical: 0 Period Total: 45 Periods**

TEXT BOOKS:

1 Parbin Singh, "Engineering and General Geology", Katson Publication House, 2015.

2 Varghese, P.C., "Engineering Geology for Civil Engineering" PHI Learning Private Limited, New Delhi, 2012.

REFERENCES:

1	F.G.Bell. "Fundamentals of Engineering Geology", B.S. Publications. Hyderabad 2011.
2	N. Chenna Kesavulu. "Textbook of Engineering Geology", Macmillan India Ltd., 2009.
3	A.B.Roy, "Fundamentals of Geology", Narosa Publication, 2010.
4	S.M.Mathur, "Elements of Geology", PHI learning private limited New Delhi 2011.
5	Bangar.K.M, "Principles of Engineering Geology", Standard Publishers & Distributors, 1705-B, Naisarak,
	Delhi 2010

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Know the internal structure of earth and its relation to volcanism and the various geological agents.	K2
CO2	Identify the properties and uses of Minerals.	K1
CO3	Identify the formation and Engineering properties of rocks.	K2
CO4	Apply fundamental knowledge in structural geology like fault, fold and Joints	K3
CO5	Use all the geological knowledge in design and construction of major civil engineering structures, in addition to mitigating geological hazards such as earthquakes, landslides and Tsunami that affect civil engineering structures.	K2

a) CO a	nd PO	Mappi	ng												
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2	-	-	-	-	-	1	-	-	-	-	-	1	2	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-	1	1	-
CO3	2	-	-	-	-	1	-		-	3	-	-	1	2	-
CO4	-	1	-	3	-	1	Đ.	2.2	0000	3	1	1	1	2	-
CO5	-	1	1	3	1	$\left(2\right)$	2	2	うい	1	1	1	1	2	-
22CES 308	2	1	1	3	1) I	T	2		3	1	1	1	2	-
1 - Slight	t, 2 - N	loderate	e, $3 - S$	lubstan	tial			/	K //					•	
b) CO ar	d Key	Perfor	mance	Indica	ators N	lappin	ig 🔨								
CO1	1.2.1,	1.3.1,1	.2.2,1.4	.1,2.1.	2,3.1.1	,7.1.1,7	7.1.2								
CO2	1.3.1,1.2.1,2.1.2,2.2.2,3.1.1,7.1.1,7.1.2														
CO3	1.2.1,2.1.2, 2.2.2,3.1.1, 3.1.5, 6.1.1,6.2.2,7.1.1, 7.1.2														
CO4	1.3.1,2.1.2,3.1.5 ,6.1.1,6.2.2,7.1.1,7.1.2,7.2.2,9.1.1														
CO5	1.3.1,	1.4.1,2	.1.2,3.1	.1,6.1.	1,6.2.2	,7.1.1,	, 7.1.2,	7.2.2,9.	1.1.00)					
						D.	100	63101011	T						

ASSESSMENT	ASSESSMENT PATTERN – THEORY								
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total		
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%		
CAT1	50	50					100		
CAT2	40	40	20				100		
Individual	40	40	20				100		
Assessment 1/									
Case Study 1/									
Seminar 1/									
Project1									
Individual	40	40	20				100		
Assessment 2/									
Case Study 2/									
Seminar 2/									
Project 2									
ESE	40	40	20				100		

22CPC301

MECHANICS OF SOLIDS I

SEMESTER III

DEDEOLUGY	PEO	CATECODY	т	ar I	в	C		
PREREQUISI		CATEGORY	L	T	P	C		
	EERING MECHANICS	PC	3	0	0	3		
Course	To understand the concepts and the behavior of Engineering m		e actio	on of	faxi	ial,		
Objectives	bending and twisting forces in order to evaluate the strength of t	he materials.						
UNIT – I	STRESS, STRAIN AND DEFORMATION OF SOLIDS				eric			
	Mechanical properties of materials - Hooke's law - Stress Stra	•						
	- Principle of superposition - Deformation of simple, compound		-	-				
- Elastic consta	ants - Volumetric strains - Thermal Stresses and Strains - Stra	ain Energy due to	o Axi	al F	orce	e –		
Resilience – Str	resses due to Impact and Suddenly Applied Load. Stresses and de	eformation in thin	cylii	ndric	alsh	ıell		
due to internal p	pressure.							
UNIT – II	SHEAR FORCE AND BENDING MOMENT IN BEAMS			9 P	eric	ods		
Beams and Ben	ding - supports and loads - Shear Force and Bending Moment I	Diagrams for deter	rmina	te be	eam	<u>s</u> –		
Relationship bet	tween Rate of Loading, Shear Force, Bending Moment - Point of	Contra Flexure.						
UNIT – III	BENDING AND SHEAR STRESSES IN BEAMS			9 P	eric	ods		
Theory of Sim	ole Bending – Analysis of Beams for Stresses - Stress Distrib	oution at a Cross	Sect	ion	due	to		
Bending Mome	nt and Shear Force for determinate beams - Flitched Beams -	- Combined Dire	ect an	d B	endi	ing		
Stresses - Cond	lition for No Tension in a section – Strain Energy due to Flexure	, Transverse Shea	ar – S	hear	Str	ess		
Distribution.	Christian							
UNIT – IV	TORSION			9 P	eric	ods		
Theory of Tors	ion - Stresses and Deformations in Solid and Hollow Circula	r Shafts – Strain	Ene	rgy	due	to		
Torsion – Com	bined bending moment and torsion of shafts - Power transmitt	ed to shaft - Sha	aft in	seri	es a	and		
parallel – Close	d and Open Coiled helical springs – Leaf Springs – springs in seri	es and parallel.						
UNIT – V	COMPLEX STRESSES AND TRUSS	_		9 P	eric	ods		
State of Stress	in two dimensions - Stresses on inclined planes - Principal	Stresses and Pri	ncipa	l Pl	anes	s —		
	stress–Principal Strains and Direction – Mohr's circle method.		1					
	jointed plane determinate trusses by method of joints and metho	od of sections – A	nalys	sis of	f spa	ace		
• •	coefficient method.		2		1			
Contact Period								
	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							
	Contra and Co							
TEXT BOOKS:								
1 Rajput R.K.	1 Rajput R.K. "Strength of Materials (Mechanics of Solids", S.Chand & company Ltd., New Delhi, 7 th edition,							
2018.								
2 Rattan S.S.,	"Strength of Materials", Tata McGraw Hill Education Pvt .Ltd.,	New Delhi, 2017				_		
· · · ·								

REFERENCES:

1	Singh. D.K., "Strength of Materials", Ane Books Pvt Ltd., New Delhi, 2021.
2	Egor P Popov, "Engineering Mechanics of Solids", 2 nd edition, PHI Learning Pvt. Ltd., New Delhi, 2015.
3	Beer. F.P. & Johnston. E.R. "Mechanics of Materials", Tata McGraw Hill, 8th Edition, New Delhi 2019.
4	Vazirani. V.N, Ratwani. M.M, Duggal .S.K "Analysis of Structures: Analysis, Design and Detailing of
	Structures-Vol.1", Khanna Publishers, New Delhi 2014.

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Describe the fundamental concepts of stress, strain and their deformations under axial loads.	K2
CO2	Draw shearforceandbending momentdiagrams for different loadings on the determinate beams	K3
CO3	Sketch the distribution of stresses for various cross sections subjected to transverse loadings.	K3
CO4	Apply elastic theory of torsion in designing of shafts and helical springs.	K3
CO5	Analyse the determinate trusses and 2D stress elements.	K3

a) CO ai	a) CO and PO Mapping														
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	РО	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	0	0	0	0	0	0	0	0	0	3	3	2
CO2	3	2	1	1	0	0	0	0	0	0	0	0	3	3	2
CO3	3	3	1	1	0	0	0	0	0	0	0	0	3	3	2
CO4	3	3	1	0	0	0	0	0	0	0	0	0	3	3	2
CO5	3	2	1	1	0	0	0	0	0	0	0	0	3	3	2
22CPC 301	3	3	1	1	0	0	0	0	0	0	0	0	3	3	2
1 – Slight	t, 2 - N	loderat	e, $3 - 5$	lubstan	tial										
b) CO an	ıd Key	Perfor	mance	Indica	ators N	lappin	g								
CO1	1.1.1,	1.2.1,	1.3.1,1	.4.1,2.1	.1,2.1.2	2,2.1.3,	2.2.1,2	.2.3,2.3	3.1,2.3.2	2,2.4.1,3	.1.1,3.1.	3,3.2.1,	3.4.1		
CO2	1.1.1,	1.2.1,	1.3.1,1	.4.1,2.1	.1,2.1.2	2,2.1.3,	2.2.1,2	.2.3,2.3	3.1,2.4.	1,2.4.4,3	.1.1,3.1.	3,3.2.1,	3.4.1,4.3	.3	
CO3	3 1.1.1, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.4, 3.1.1, 3.1.3, 3.2.1, 3.4.1, 4.3.3														
CO4	1.1.1, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.4, 3.1.1, 3.1.3, 3.2.1, 3.4.1														
CO5	1.1.1, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 3.1.1, 3.1.3, 3.2.1, 3.4.1, 4.3.3														
AGEGG						-	ar	m		_					

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total				
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%				
CAT1	20	80	þ	7			100				
CAT2	20	80		//			100				
Individual	10	90					100				
Assessment 1/				//							
Case Study 1/		// 2		1							
Seminar 1 /		1 8									
Project1		AL X									
Individual	10	90					100				
Assessment 2/		QUITED		000							
Case Study 2/		TU	ULUB ADDRIE	57							
Seminar 2/		26									
Project 2											
ESE	20	80					100				

22CPC302	CONSTRUCTION MATERIALS AND TEC	HNOLOGY	SE	MES	TER	R III				
PREREQUISI	TES	CATEGORY	L	Т	Р	С				
	NIL	PC	2	0	2	3				
Course	To learn the properties, applications and testing proceed	lures of construction	on m	ateria	ls and	1 the				
Objectives	construction practices for different types of structural elements	nents.								
UNIT – I	T – I CONSTRUCTION MATERIALS									
Properties, comp	oosition, types &tests: Stones – Bricks – Timber – Wood pr	oducts – Glass - Pol	lymer	prod	ucts.					
UNIT – II	MASONRY AND PLASTERING				6 per	riods				
Stone masonry –	Brick masonry Composite masonry- Types of wall - Li	ntels. Plastering-M	ateria	als and	d Met	hods				
of plastering-Ty	pes of plastering - Defects in plastering-pointing.									
UNIT – III	FLOORING AND ROOFING				6 per	riods				
Floors-Floor fir	ishing materials – Classifications – Terrazzo flooring – C	Cement concrete flo	oorin	g - D	amp I	Proof				
Course- Causes	and effect of dampness - Materials and Methods of d	amp proofing - An	nti-tei	rmite	treatr	nent				
Roofs–Roofing	materials – Types – Pitched roof – Flat roof – Flat and Ribb	ed slab. Ramps and	Esca	lators.						
UNIT – IV	DOORS,WINDOWS AND PAINTING				6 per	riods				
Doors and Wind	lows- Types - Fixtures and Fastening - Ventilators. Paint	ing – Classification	of p	aints	– Pair	nting				
on new and old s	surfaces of steel, timber and masonry wall.									
UNIT – V	CONSTRUCTION PRACTICES				6 per	riods				
Centering and sl	huttering - Formwork - Scaffolding - Plumbing Service	s. Erection of stee	l trus	ses –	Fram	nes –				
Launching girde	rs – Automation in construction.									
LIST OF EXCH	-									
	ation and classification of stone materials.									
	g and water absorption test on stone as per Indian code.									
•	ssion test on hollow block.									
	n practice for arrangement of different brick masonry bond	s (Demonstration fo	or pra	ctice						
	ving for exam)									
	on practice on plastering works.									
	on of different flooring material from the field / laying of fl	oor tiles.								
,	rent types of roof & application – case study									
· •	on the types of roof selection and its material for different									
	ation and classification the different types of doors and wir	dow in the campus,	, disc	ussing	5					
its featur										
	ation of paints & utilization as per current market (inner &									
,	rvation and plot the existing plumbing service inside the ca	mpus.								
	on the different plumbing services and its appliances.									
	ady on recent technologies used in construction.									
Contact Periods										
Lecture: 30 Per	riods Tutorial: 0 Period Practical: 30 Periods	Total: 60 Period	S							

TEXT BOOKS:

1	Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, "Building construction", Laxmi Publications Pvt. Ltd., 2016.
2	Bindra S.P. and Arora S.P. "Building construction". DhanpatRai Publication Pyt. Ltd. 2010.

REFERENCES:

1	Edward Allen, Joseph Iano, "Fundamentals of Building Construction: Materials and Methods", Wiley Publishers, 2014.
2	Maden Mehta, "Building Construction", Pearson Education Publishers, 2016.

- Varghese P.C, "Building Construction", Prentice Hall of India, 2012.
 Rangwala, "Building construction", Charotar Publishing House Pvt. Ltd., 2016.

	RSE OUTCOMES:	Bloom's Taxonomy Mapped
On con	npletion of the course, the students will be able to:	
CO1	Select the suitable materials for building construction	K2
CO2	Outline the different types of masonry and plastering works.	K2
CO3	Select the suitable type of floors, roofs, stairs and dampness preventing methods	K2
	for practical applications.	
CO4	Apply knowledge to select suitable doors, windows and paints for buildings.	K2
CO5	Summarize the different construction practices existing in construction field.	K2

a) CO a	nd PO	Mapp	ing												
COs/P	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	0	3	3	3	2	2	0	3	2	2	2
CO2	3	1	1	1	0	3	3	3	2	2	0	3	2	1	2
CO3	3	1	1	1	0	3	3	3	2	2	0	3	2	1	2
CO4	3	1	1	1	0	3	3	3	2	2	0	3	2	1	2
CO5	3	2	1	1	1	3	3	3	3	2	0	3	2	1	2
22CPC	3	2	1	1	1	3.14	3	3	100g/16	2		3	2	2	2
302	3	Ζ.	1	1	1		19		N.B.			5	2	2	2
1 - Slight	t, 2 - N	Ioderat	te, 3 –	Substa	ntial		1		1						

b) CO and	Key Performance Indicators Mapping
CO1	1.2, 1.3, 1.4, 2.1, 2.2, 2.4, 3.1, 3.2, 3.4, 4.1, 4.3, 6.1, 6.2, 7.1, 7.2, 8.1, 8.2, 9.1, 9.2, 10.1, 10.2, 10.3,
	12.1, 12.2, 12.3
CO2	1.2, 1.3, 1.4, 2.1, 2.2, 2.4, 3.1, 3.2, 3.4, 4.1, 4.3, 6.1, 6.2, 7.1, 7.2, 8.1, 8.2, 9.1, 9.2, 10.1, 10.2, 10.3,
	12.1, 12.2, 12.3
CO3	1.2, 1.3, 1.4, 2.1, 2.2, 2.4, 3.1, 3.2, 3.4, 4.1, 4.3, 6.1, 6.2, 7.1, 7.2, 8.1, 8.2, 9.1, 9.2, 10.1, 10.2, 10.3, 12.1
	12.2, 12.3
CO4	1.2, 1.3, 1.4, 2.1, 2.2, 2.4, 3.1, 3.2, 3.4, 4.1, 4.3, 6.1, 6.2, 7.1, 7.2, 8.1, 8.2, 9.1, 9.2, 10.1, 10.2, 10.3,
	12.1, 12.2, 12.3
CO5	1.2, 1.3, 1.4, 2.1, 2.2, 2.4, 3.1, 3.2, 3.4, 4.1, 4.3, 6.1, 6.2, 7.1, 7.2, 8.1, 8.2, 9.1, 9.2, 10.1, 10.2, 10.3,
	12.1, 12.2, 12.3

ASSESSMENT I	PATTERN – TH	IEORY						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total	%
CAT1	40	60					100	
CAT2	40	60					100	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	40	60					100	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40	60					100	
ESE	40	60					100	

22CPC303	SURVEYING		SEMI	EST	ER I	Π
PREREQUIS	SITES	CATEGORY	L	Т	P	C
	NIL	РС	3	0	0	3
Course	To understand the basic principle and concepts of different surve	ying methods to	calcul	late	variou	ıs
Objectives	measurements using survey instruments.					
UNIT – I	INTRODUCTION, CHAIN SURVEYING AND COMPASS	SURVEYING			9 Per	iods
Definition- Pr	inciples - Classification – Field and Office work – Scales – Conve	ntional Signs.	l			
Chain Survey	- Instruments - Ranging - Types - Obstacles in Chaining - Chai	n and Tape corre	ections	s –S	etting	; out
Perpendicular	S.					
Prismatic Cor	npass - Surveyor's Compass - Working and use of compass - E	Bearing – Systen	ns and	l Co	nvers	ions
- Computatio	n of angles from bearing - Local Attraction - Magnetic Declination	on – Dip – Trave	rsing	- A	djustr	nent
of error.						
UNIT – II	LEVELLING AND CONTOURING			9) Per	iods
Basic Terms -	Types of Level – Fundamental Axes - Levelling staff – Bench	Marks – Tempor	ary a	nd F	Perma	nent
Adjustments -	- Types of Levelling - Curvature and Refraction correction - Re	ciprocal Levellin	ng – C	Calc	ulatio	n of
Areas and Vo	umes.					
Contouring –	Characteristics and Uses of Contours – Methods of contouring.					
UNIT – III	THEODOLITE SURVEYING AND TACHEOMETRIC SU	RVEYING			9 Per	iods
Theodolite -	types - Terms - Temporary and Permanent Adjustments - Mea	asurement of Ho	rizont	tal A	Angle	s by
Repetition and	1 Reiteration - Closing Error and Distribution - Omitted measur	ements. Tacheor	netric	sur	veyin	g
Stadia method	- fixed hair method - Determination of constants of the tacheome	ter - use of anall	actic l	ens	- dista	ance
	formula for inclined sights with vertical and normal holding staff					
	ense bar method.				U	
UNIT – IV	CURVES AND HYDROGRAPHIC SURVEYING				9 Per	iods
Simple curves	- elements - Setting out of curves - Linear and angular methods	s - Compound ar	nd Rev			
elements.		r				
	vey-Sounding-Equipments-Locating Sounding-Reduction.					
UNIT – V	TRIANGULATION AND MODERN SURVEYING INSTRU	MENTS			9 Per	iods
	orizontal control - Triangulation-classification - Intervisibility -		gures			
	s and Towers - Base line measurements - Satellite stations and red	e	0		8	
	al Levelling - Geodetical observations - Curvature correction -		ction	– A	xis si	gnal
-	ifference in elevation.					0
	- Principle – classification - working. Applications of Drone Surve	eving.				
	pments – Basic Concepts – Segments – Applications.	<i>j</i> 8 [.]				
Contact Peri						
Lecture: 45		5 Periods				
		o i citous				
ГЕХТ ВООК	5:					
1 Punmia B	.C, Ashok K Jain, Arun K Jain. "Surveying, Vol. I &II", Lakshmi	Publications, 20	17.			
2 Kanetkar. Prakasha	T.P,and Kulkarni.S.V, "Surveying and Levelling, Vol. I & n,2014.	II" , Pune Vidy	arthi	Gri	ha	
REFERENCE	S :					
	N, "Surveying and Levelling" , Tata McGraw-Hill, Publishing Con	ipany, 2 nd edition	1,2014	ł.		
	iS.S, "Surveying and Levelling, Vol.1&II" , I.K. International Pvt.					
00	K. "Surveying, Vol.1&II", Tata McGraw-Hill Publishing Compar, Ghilani Paul & Wolf "Flementary Surveying" Prentice Hall?					
4 Charles I	LI-NILANI PAUL & Wolt "HIAMANTARY SURVAYING" Prontico Hall)	1117				

4 Charles D Ghilani, Paul R Wolf., "Elementary Surveying", Prentice Hall,2012.
5 Chandra A.M., "Plane Surveying", New Age International Pvt. Ltd, 2015.

	SE OUTCOMES:	Bloom's Taxonomy Mapped
CO1	Calculate linear and angular measurements using compass and chain.	K2
CO2	Interpret level data using different types of levelling techniques and plot contour map by various contouring methods.	K2
CO3	Determine the horizontal distances, vertical distances and area by using theodolite and tacheometer.	K3
CO4	Set out the curves using survey instruments and apply the principles of hydrographic surveying.	K3
CO5	Execute triangulation method, Trigonometric levelling and apply modern surveying principles and techniques.	K2

a) CO	a) CO and PO Mapping														
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	3	-	3	3	-	-	-	-	-	-	2	1	2	2
CO2	2	3	-	3	3	-	-	-	-	-	-	2	-	2	2
CO3	3	3	-	3	3	-	-	-	-	-	-	2	-	2	2
CO4	3	3	-	3	3	-	-	unan.	-	-	-	2	1	2	2
CO5	3	3	-	3	3			L.	A 6-6-610/		-	2	1	2	2
22CP	3	3		3	3	5	6	Stores and	200	9		2	1	2	2
C303	3	3	-	5	3	7					-	2	1	2	2
1 - Slig	, ht, 2 –	Moder	ate, 3 -	- Subst	antial			-	Ę.	7/				•	
b) CO :	and Ke	y Perf	orman	ice Ind	licator	s Map	ping		Ā	([
CO1	1.1.2	2, 1.2.1	1,1.3.1,	1.4.1,2	.1.1,2.	1.2,2.1	.3,2.2.1	,2.2.2,	2.2.3,	2.4.1, 2.	4.2, 2.4	.3, 4.1.1	, 4.1.2, 4	4.1.3, 4.	1.4,
	4.2.	1, 4.2.2	2, 4.3.1	,4.3.2,	4.3.3, 4	4.3.4, 5	5.1.1, 5	.1.2, 5.	2.1, 5.2	2.2, 5.3.	1, 5.3.2,	12.2.1,	12.2.2,	12.3.1, 1	2.3.2
CO2	1.1.	2, 1.2.1	1,1.3.1,	1.4.1,2	.1.1,2.	1.2,2.1	.3,2.2.1	,2.2.2,	2.2.3,	2.4.1, 2.	4.2, 2.4	3, 4.1.1	, 4.1.2, 4	4.1.3, 4.	1.4,

 CO2
 1.1.2, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1, 2.4.2, 2.4.3, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.2.1, 4.2.2, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 5.1.1, 5.1.2, 5.2.1, 5.2.2, 5.3.1, 5.3.2, 12.2.1, 12.2.2, 12.3.1, 12.3.2

 CO3
 1.1.2, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1, 2.4.2, 2.4.3, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.2.1, 4.2.2, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 5.1.1, 5.1.2, 5.2.1, 5.2.2, 5.3.1, 5.3.2, 12.2.1, 12.2.2, 12.3.1, 12.3.2

 CO4
 1.1.2, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1, 2.4.2, 2.4.3, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.2.1, 4.2.2, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 5.1.1, 5.1.2, 5.2.1, 5.2.2, 5.3.1, 5.3.2, 12.2.1, 12.2.2, 12.3.1, 12.3.2

 CO4
 1.1.2, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1, 2.4.2, 2.4.3, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.2.1, 4.2.2, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 5.1.1, 5.1.2, 5.2.1, 5.2.2, 5.3.1, 5.3.2, 12.2.1, 12.2.2, 12.3.1, 12.3.2

 CO4
 1.1.2, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1, 2.4.2, 2.4.3, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.2.1, 4.2.2, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 5.1.1, 5.1.2, 5.2.1, 5.2.2, 5.3.1, 5.3.2, 12.2.1, 12.2.2, 12.3.1, 12.3.2

 CO5
 1.1.2, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1, 2.4.2, 2.4.3, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.2.1, 4.2.2, 4.3.1, 4.3.2, 4.3.3, 4.3.4, 5.1.1, 5.1.2, 5.2.1, 5.2.2, 5.3.1, 5.3.2, 12.2.1, 12.2.2, 12.3.1, 12.3.2

ASSESSMENT P	PATTERN – THE	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1/	40	40	20	-	-	-	100
Project1 Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	40	40	20	-	-	-	100
ESE	40	40	20	-	-	-	100

22CES309	MATERIALS TESTING LABORATO	RY	SEMESTER III						
PREREQUISI	TES	CATEGORY	L	Т	Р	С			
	NIL	ES	0	0	3	1.5			
Course	To deal with experimental determination and evalua	tion of mechanica	l cha	racte	ristics	and			
Objectives	behaviour of construction materials and to familiarize	experimental proc	edure	s an	d cor	nmon			
	measurement instruments, equipment and devices.								
LIST OF EXP	ERIMENTS								
1. Mechan	nical properties of mild steel rod as per IS Code 1608 (2005))							
2. Mechan	nical properties of tor steel rod as per IS Code 1786 (2008)								
3. Weight	per running metre of steel rod								
4. Tension	n and compression test on springs.								
5. Test on	Bricks: Visual observation, Compression test, Water absorption	ption test and Efflore	escen	ce tes	t as p	er IS			
3495-1	to 4 (1992)								
6. Hardne	ss test on different metals.								
7. Deflect	ion test on simply supported beams (for different metals).								
8. Deflect	ion test on cantilever beams (for different metals).								
9. Bendin	g test on rolled steel joist								
10. Flexure	e test on tiles								
11. Charpy	and Izod Impact Test								
12. Compre	ession test on Hallow/Concrete Blocks								
Contact Period	ls:								
Lecture: 0 Per	iods Tutorial: 0 Periods Practical: 45 Periods Total: 4	5 Periods							

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Determinethetensilestrength of materials	K3
CO2	Obtain bending properties of structural materials	К3
CO3	Determinethehardness propertiesofthematerials	К3
CO4	Predict the compressive strength of the materials	К3
CO5	Obtaintheimpact and torsional strength of the materials	К3

a) CO	and PO) Map	ping												
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	1	3	-	-	-	-	-	-	-	-	1	1	-
CO2	2	-	1	3	-	-	-	-	-	-	-	-	1	1	-
CO3	2	-	1	3	-	-	-	-	-	-	-	-	1	1	-
CO4	2	-	1	3	-	I	-	-	-	-	-	-	1	1	-
CO5	2	-	1	3	-	I	-	-	-	-	-	-	1	1	-
22CE S309	2	-	1	3	-	-	-	-	-	-	-	-	1	1	-
1 - Slig	ht, 2 –	Moder	ate, 3 -	- Subst	antial										
b) CO a	and Ke	y Perf	orman	ce Ind	icator	s Map	ping								
CO1	1.3.	1,1.4.1	,3.1.4,	4.1.1,4	.1.2,4.1	1.3,4.1	.4,4.2.1	l							
CO2	1.3.	1,1.4.1	,3.1.4,	4.1.1,4	.1.2,4.1	1.3,4.1	.4,4.2.1	l							
CO3	1.3.	1,1.4.1	,3.1.4,	4.1.1,4	.1.2,4.1	1.3,4.1	.4,4.2.1	l							
CO4	1.3.	1,1.4.1	,3.1.4,	4.1.1,4	.1.2,4.1	1.3,4.1	.4,4.2.1	l							
CO5	1.3.	1,1.4.1	,3.1.4,	4.1.1,4	.1.2,4.1	1.3,4.1	.4,4.2.1	[

22CPC304	SURVEY LABORATORY		SE	EMES	TER	(II						
PREREQUISIT	TES	CATEGORY	L	Т	Р	С						
NII	_	РС	0	0	3	1.5						
Course	re the distances,	areas	using	g diffe	erent							
Objectives	es.											
LIST OF EXPERIMENTS												
1. Chain Surv	eying – Open and Closed Traversing											
2. Compass St	urveying – Intersection method											
3. Compass St	urveying - Traversing											
4. Plane table	surveying –Introduction- Intersection method											
5. Levelling –	Differential Levelling and Fly Levelling											
6. Measureme	nt of horizontal angles by Repetition and Reiteration method	ods.										
7. Height and	Distance – Single Plane method and Double Plane method											
8. Tacheometr	ric Surveying – Stadia, Tangential method and Subtense ba	r method										
	n Surveying.											
10. Setting out	of foundation and Curves											
Contact Period												
Lastures 0 Day		1. 45 D										

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

COURSE OUTCOM

	RSE OUTCOMES:	Bloom's Taxonomy
On con	npletion of the course, the students will be able to:	Mapped
CO1	Effectively handle the surveying instruments like Chain, Compass, plane table, Dumpy	К3
	level and Theodolite.	IX.5
CO2	Accurately measure distances, areas, angles and levels using survey instruments.	K3
CO3	Calculate the levels and distances in the field for various works.	K3
CO4	Setout foundations and curves for various Civil Engineering projects.	K3
CO5	Handle and measure using advanced surveying instruments like Total Station.	K3

a) CO ai	nd PO	Mappi	ng			24		0	~						
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	1	2	-	-	-	-	-	-	-	-	1	1	-
CO2	2	-	1	2	1	-	-	-	-	-	-	-	1	1	-
CO3	2	-	1	2	1	-	-	-	-	-	-	-	1	1	-
CO4	2	-	1	2	1	-	-	-	-	-	-	-	1	1	-
CO5	2	-	1	2	1	-	-	-	-	-	-	-	1	1	-
22CPC	2		1	2	1		_	_	_	_	_	_	1	1	
304	2	-	1	4	1	-	-	_	_	-	-	_	T	1	-
1 – Slight	t, 2 - N	Ioderat	e, 3 – S	ubstant	tial										
b) CO an	id Key	Perfor	mance	Indica	tors M	lapping	5								
CO1	1.2.1,	1.3.1,1.	4.1 ,3.1	.1,4.1.	1,4.1.2,	4.1.3,4	.1.4,4.2	.1.4.3.1	l						
CO2	1.2.1,	1.3.1,1.	4.1 ,3.1	.1,4.1.	1,4.1.2,	4.1.3,4	.1.4,4.2	.1.4.3.1	1,5.1.1						
CO3	1.2.1,	1.3.1,1.	4.1 ,3.1	.1,4.1.	1,4.1.2,	4.1.3,4.	.1.4,4.2	.1.4.3.1	1,5.1.1						
CO4	1.2.1,	1.3.1,1.	4.1,3.1	.1,4.1.	1,4.1.2,	4.1.3,4	.1.4,4.2	.1.4.3.1	1,5.1.1						
CO5	1.2.1,	1.3.1,1.	4.1,3.1	.1,4.1.	1,4.1.2,	4.1.3,4	.1.4,4.2	.1.4.3.1	1,5.1.1						

22CES410 APPLIED HYDRAULICS AND FLUIDMACHINERY SEME PREPEOULSITES CATECODY L 1										
PREREQUISI	TES CATEGORY	l L	Т	Р	C					
MECHAN	NICS OF FLUIDS ES	3	0	0	3					
Course	To understand the performance of pumps and turbines, open channel hydrogenetic states and the performance of pumps and turbines and turbines are stated as the performance of pumps and turbines are stated as the performance of pumps and turbines are stated as the performance of pumps and turbines are stated as the performance of pumps and turbines are stated as the performance of pumps and turbines are stated as the performance of pumps and turbines are stated as the performance of pumps are stated as the performance of performan	aulics wit	h diff	erent	ype					
Objectives	of flow, dimensional analysis and impulse momentum principle for the	performan	ce of	hydra	ulic					
	machines.									
UNIT – I	OPENCHANNELFLOW			9 Per	·iod					
Uniform flow -	Velocity measurement - Manning's and Chezy's formula - Roughness co	efficients	- Cri	tical o	leptl					
and critical velo	ocity - Most economical sections - Wide open channel - Specific energy	gy curve -	Criti	cal fl	ow					
Dynamic equation	ons of gradually varied flow - Assumptions - Characteristics of flow profil	es - Draw	down	n and	bacl					
water curves - H	Iydraulic jump - Types – Energy dissipation									
UNIT – II	DIMENSIONALANALYSIS			9 Per	iod					
Units and Dime	ensions - Dimensional Homogeneity -Rayleigh's and Buckingham met	hods – N	on-di	mensi	ona					
numbers – Mod	lel study and Similitude-scale effects and distorted model - Applications of	models stu	udy.							
UNIT – III	MOMENTUMPRINCIPLE			9 Per	iod					
Impulse momen	tum Principle and equation - Impact of Jet - force exerted by a jet on no	rmal, incl	ined a	ind cu	irveo					
surfaces for sta	tionary and moving vanes- Angular momentum principle - Inlet and c	utlet velo	city t	riang	es -					
A			••••	8						
Applications of	impulse momentum principle.			8						
UNIT – IV	impulse momentum principle. TURBINES			9 Per	riods					
UNIT – IV				9 Per						
UNIT – IV Turbines – Clas	TURBINES	v and axia	ıl flov	9 Per	ines					
UNIT – IV Turbines – Clas work done and	TURBINES sification – Impulse and Reaction Turbines – Tangential flow, radial flow	v and axia	ıl flov	9 Per	ines					
UNIT – IV Turbines – Clas work done and turbines- Specifi	TURBINES sification – Impulse and Reaction Turbines – Tangential flow, radial flow efficiency - draft tube and cavitation - Selection of Turbines-operating	v and axia	ıl flov	9 Per	ines es o					
UNIT – IV Turbines – Clas work done and turbines- Specifi UNIT – V	TURBINES sification – Impulse and Reaction Turbines – Tangential flow, radial flow efficiency - draft tube and cavitation - Selection of Turbines-operating ic speed- Runaway Speed.	v and axia g characte	l flov ristic	9 Per v turb curve 9 Per	ines es o riod					
UNIT – IV Turbines – Clas work done and turbines- Specifi UNIT – V Pumps– Classifi	TURBINES sification – Impulse and Reaction Turbines – Tangential flow, radial flow efficiency - draft tube and cavitation - Selection of Turbines-operating ic speed- Runaway Speed. PUMPS	v and axia g characte ing - Net j	l flov ristic	9 Per v turb curve 9 Per ve Su	ines es o riod					
UNIT – IV Turbines – Clas work done and turbines- Specifi UNIT – V Pumps– Classifi Head - Cavitatio	TURBINES ssification – Impulse and Reaction Turbines – Tangential flow, radial flow efficiency - draft tube and cavitation - Selection of Turbines-operating ic speed- Runaway Speed. PUMPS ications of pumps –Centrifugal pump –Work done and Efficiency – Prime	v and axia g characte ing - Net j	l flov ristic	9 Per v turb curve 9 Per ve Su	ines es o riod					
UNIT – IV Turbines – Clas work done and turbines- Specifi UNIT – V Pumps– Classifi Head - Cavitatio vessels - indicato	TURBINES ssification – Impulse and Reaction Turbines – Tangential flow, radial flow efficiency - draft tube and cavitation - Selection of Turbines-operating ic speed- Runaway Speed. PUMPS ications of pumps –Centrifugal pump –Work done and Efficiency – Prime on in Pumps - multistage Pumps. Reciprocating pump -Work done and Efficiency for diagram–Working of Jet Pump and submersible pump.	v and axia g characte ing - Net j	l flov ristic	9 Per v turb curve 9 Per ve Su	ines es o riod					
UNIT – IV Turbines – Clas work done and turbines- Specifi UNIT – V Pumps– Classifi Head - Cavitatio	TURBINES ssification – Impulse and Reaction Turbines – Tangential flow, radial flow efficiency - draft tube and cavitation - Selection of Turbines-operating ic speed- Runaway Speed. PUMPS ications of pumps –Centrifugal pump –Work done and Efficiency – Prime on in Pumps - multistage Pumps. Reciprocating pump -Work done and Efficiency state or diagram–Working of Jet Pump and submersible pump. s:	v and axia g characte ing - Net j ciency - n	l flov ristic	9 Per v turb curve 9 Per ve Su	ines es o riod					
UNIT – IV Turbines – Clas work done and turbines- Specifi UNIT – V Pumps– Classifi Head - Cavitatio vessels - indicato	TURBINES ssification – Impulse and Reaction Turbines – Tangential flow, radial flow efficiency - draft tube and cavitation - Selection of Turbines-operating ic speed- Runaway Speed. PUMPS ications of pumps –Centrifugal pump –Work done and Efficiency – Prime on in Pumps - multistage Pumps. Reciprocating pump -Work done and Efficiency state or diagram–Working of Jet Pump and submersible pump. s:	v and axia g characte ing - Net j ciency - n	l flov ristic	9 Per v turb curve 9 Per ve Su	ines es o riod ction					
UNIT – IV Turbines – Clas work done and turbines- Specifi UNIT – V Pumps– Classifi Head - Cavitatio vessels - indicate Contact Periods Lecture: 45 Per	TURBINES ssification – Impulse and Reaction Turbines – Tangential flow, radial flow efficiency - draft tube and cavitation - Selection of Turbines-operating ic speed- Runaway Speed. PUMPS ications of pumps –Centrifugal pump –Work done and Efficiency – Prime on in Pumps - multistage Pumps. Reciprocating pump -Work done and Efficiency state or diagram–Working of Jet Pump and submersible pump. s: riods Tutorial: 0 Periods	v and axia g characte ing - Net j ciency - n s	I flov rristic positiv	9 Per v turb curve 9 Per ve Su ve Su e slip	ines o riod ction - ai					
UNIT – IV Turbines – Clas work done and turbines- Specifi UNIT – V Pumps– Classifi Head - Cavitatio vessels - indicate Contact Periods Lecture: 45 Per	TURBINES ssification – Impulse and Reaction Turbines – Tangential flow, radial flow efficiency - draft tube and cavitation - Selection of Turbines-operating ic speed- Runaway Speed. PUMPS ications of pumps –Centrifugal pump –Work done and Efficiency – Prime on in Pumps - multistage Pumps. Reciprocating pump -Work done and Efficiency – Si or diagram–Working of Jet Pump and submersible pump. s: riods Tutorial: 0 Periods Practical: 0 Periods md S.N.Seth, "Hydraulics and Fluid Mechanics, Including Hydraulic Machanics	v and axia g characte ing - Net j ciency - n s	I flov rristic positiv	9 Per v turb curve 9 Per ve Su ve Su e slip	ines es o riod ctio - ai					

2 R.K.Bansal, "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd., NewDelhi, 2018.

REFERENCES

- 1 Subramanya K., "Flow In Open channels", Tata McGraw-Hill Publishing Company, 2015.
- 2 S.Ramamurtham and R.Narayanan, **"Hydraulics Fluid Mechanics and Fluid Machines"** Dhanpat Rai Publishing Company(P) Limited, 2014.
- 3 *R.K.Rajput,* "A Text Book of Fluid Mechanics and Hydraulic Machines", S.Chand and Company, NewDelhi, 2015.
- 4 D.S.Kumar, "Fluid Mechanics and Fluid Power Engineering", S.K.Kataria & Sons, NewDelhi, 2012.

COU	RSE OUTCOMES:	Bloom's Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
CO1	GaininsightknowledgeonOpenchannelhydraulics and tosolve practical problems.	K2,K3
CO2	Apply the concepts of dimensional analysis for fluid flow problems	K3
CO3	Apply the impulsemomentumprinciple for the determination of hydrodynamic forces.	K3
CO4	Analyze the performance of turbines and design of turbines.	K3
CO5	Analyze the performance of pumps and design of pumps.	K3

a) CO and PO Mapping

			-												
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
/ POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	0	1	0	0	0	0	0	0	0	0	0	2	1
CO2	2	1	0	1	0	0	0	0	0	0	0	0	0	2	1
CO3	2	1	0	1	0	0	0	0	0	0	0	0	0	2	1
CO4	2	1	1	3	0	0	0	0	0	0	0	0	0	2	1
CO5	2	1	1	3	0	0	0	0	0	0	0	0	0	2	1
22CES	2	1	1	3	0	0	0	0	0	0	0	0	0	2	1
410	2	1	1	5	0	0	0	0	0	0	0	0	0	2	1
1 – Slight,	, 2 - M	oderate	$3 - S_{1}$	ubstant	ial										
b) CO an	d Key 🛛	Perfor	mance	Indica	tors M	apping	5								
CO1	1.1.1,	1.3.1,	1.4.1, 2	2.1.3, 2.	2.3, 2.3	3.1, 2.4	.1, 4.1.	2							
CO2	1.3.1,	1.4.1,	2.1.3, 2	2.2.3, 2.	3.1, 2.4	1.1, 4.1	.2								
CO3	1.2.1,	1.3.1,	1.4.1, 2	2.1.3, 2.	2.3, 2.3	3.1, 4.1	.2								
CO4	1.1.1,	1.3.1,2	2.1.2,2.	1.3, 2.3	.2, 3.2.	2, 3.4.2	2, 4.1.1	, 4.1.3,	4.1.4, 4	4.2.1, 4.	3.1, 4.3	.3			
CO5	1.1.1,	1.3.1, 2	2.1.2, 2	.1.3, 2.	3.2, 3.2	2.2, 3.4	.2, 4.1.	1, 4.1.3	, 4.1.4,	4.2.1, 4	4.3.1, 4.	3.3			

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	50	30	5			100
CAT2	20	50	30				100
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	20	50	30				100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	50	30				100
ESE	20	50	30	V			100

22CPC405	MECHANICS OF SOLIDS II		SEMESTER IV								
PREREQUISI	TES	CATEGORY	L	Т	Р	С					
	MECHANICS OF SOLIDS I	РС	3	0	0	3					
Course	To study the different methods used for beam deflection an				ate be	eams,					
Objectives	unsymmetrical bending, columns, theory of elastic failures a	and stress in thick c	ylind	ers.							
UNIT – I	DEFLECTION OF BEAMS				9 Pe	riods					
Differential Equation for elastic curve – Double Integration Method – Macaulay's Method – Moment Area Method –											
Conjugate Bear	n Method – Stepped beams										
UNIT – II STATICALLY INDETERMINATE BEAMS 9 Periods											
Propped Cantile	ever Beams - Fixed Beams - Method of Consistent Deformation	ation – Continuous	Bear	ns – T	heore	em of					
Three Moments	s - Calculation of reactions, Bending Moments and Shear Fo	orce – Shear Force	and H	Bendin	g Mo	ment					
Diagrams (for a	ll Types of Loadings, Couple).										
UNIT – III	INDETERMINATE TRUSSES AND COLUMNS				9 Pe	riods					
Analysis of Pla	ne trusses with maximum two redundant members - Trusse	es with lack of fit -	Ten	nperatu	ire ef	fects.					
Members Subje	ected to Axial Load - eccentric load - Slenderness Ratio	- End Conditions	– Bı	ickling	g Loa	d for					
Columns - Eul	er's Theory - Assumptions and Limitations - Rankine - C	Gordon Formula –	Emp	irical	Form	ula –					
Straight Line Fo	ormula – Columns Subjected to Eccentric Loading.										
UNIT – IV	UNSYMMETRICAL BENDING AND SHEAR CENTR	E			9 Pe	riods					
Stresses due to	Unsymmetrical Bending of Beams for Symmetrical Sections	- Moment of Inert	ia – I	Produc	t of Iı	nertia					
- Principal Mor	nent of Inertia - Shear Centre - Definition - Shear Centre for	Sections Symmetri	cal al	oout O	ne Ay	cis					
UNIT – V	THICK CYLINDERS AND THEORIES OF ELASTIC					riods					
Lame's Equation	on - Hoop Stress and Radial Stress Distribution - Compour	nd Cylinders – Wir	e Wo	ound C	ylind	ers –					
Shrink Fit.											
Theories of Ela	stic Failure - Factor of Safety - Graphical Representation	of Theories for Tw	o Di	mensio	onal S	Stress					
System.											
Contact Period											
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical:0 Periods Total:	45 Periods									
TEXT BOOKS		da and Cturestern	. Va	1	I " I						
-	an.R, Perumal. P and Lingeswari.S, "Mechanics of Soli s Pvt Ltd, Chennai, 2017.	us ana structures	, <i>V</i> 0	ume	I , L	лахті					
	STVILIU, Chennul, 2017.	1									

2 L.S.Negi, "Strength of Materials", Tata McGraw Hill Education Pvt.Ltd, 2010.

REFERENCES:

1	Robert L. Mott, "Applied Strength of Materials", PHI Learning Pvt Ltd., New Delhi, 2009
2	Ferdin and Beer, E.Russell Johnston and John Dewolf, "Mechanics of Materials", McGraw Hill
	Education, 2015.
3	L.S. Srinath, "Strength of Materials", Macmillan Publishers India, 2000.
4	Bansal RK "Strength of Materials", Laxmi Publications, New Delhi, 2010.
5	Jhunarkar.S.B. and Shah.H.J, "Mechanics of Structures", Vol. I, Charotar Publishing House, New Delhi, 2016.

	RSE OUTCOMES: npletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To impart knowledge on deflection of beams in various situations using different methods.	K3
CO2	To identify the behaviour of statically indeterminate beams	K3
CO3	To recognize the behaviour of columns with different end conditions.	K3
CO4	To develop and understand the concepts of unsymmetrical bending of beams and shear	K3
	centre.	
CO5	To understand the theory thick cylinders and the theory of elastic failures.	K3

a) CO and	a) CO and PO Mapping														
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	1	1	-	-	-	1	-	-	-	1	1	-
CO2	3	3	2	2	-	-	-	-	1	-	-	-	-	2	-
CO3	3	2	2	1	1	-	-	-	1	-	-	-	1	-	-
CO4	3	1	2	1	-	-	-	-	1	-	-	-	1	1	-
CO5	3	1	2	-	-	1	-	-	1	-	-	-	-	1	-
22CPC405	3	2	2	1	1	1	-	-	1	-	-	-	1	1	-
1 - Slight, 2	- Mod	erate, 3	8 – Sub	stantia	ıl			•			•		•	•	
b) CO and l	Key Pe	rforma	ance I	ndicat	ors Ma	apping	5								
CO1	1.1.1,	1.1.2, 1	.2.1, 1.	3.1, 1.4	.1, 2.1.	1, 2.1.2	, 2.1.3,	2.2.3, 2	2.3.1, 2	.4.1, 2.4	1.3, 2.4.	4, 3.1.1	, 3.1.3, 3	.1.5, 3.1.	6,
	3.2.1,	3.2.3, 3	.3.1, 3.	4.1, 4.1	.1, 4.3.	3, 4.3.4	, 5.2.1,	5.2.2, 0	5.1.1, 9	.1.2					
CO2	1.1.1,	1.2.1, 1	.3.1, 1.	4.1, 2.1	.1, 2.1.	2, 2.1.3	, 2.2.1,	2.2.3, 2	2.3.1, 2	.3.2, 2.4	4.1, 2.4.	3, 2.4.4	, 3.1.1, 3	.1.3, 3.1.	5,
	3.1.6,	3.2.1, 3	.2.3, 3.	3.1, 3.4	.1, 4.1.	1, 4.3.3	, 4.3.4,	5.1.1, 5	5.2.1, 9	.1.2					
CO3	1.1.1,	1.2.1, 1	.3.1, 1.	4.1, 2.1	.1, 2.1.	2, 2.1.3	, 2.3.1,	2.3.2, 2	2.4.1, 2	.4.3, 2.4	4.4, 3.1.	1, 3.1.3	, 3.2.3, 3	.4.1, 5.1.	2,
	5.2.1,	5.2.2, 5	.3.1, 9.	1.2											
CO4	1.1.1,	1.2.1, 1	.3.1, 1.	4.1, 2.1	.1, 2.3.	1, 2.4.1	, 3.1.1,	3.1.3, 3	3.1.5, 3	.2.3, 5.1	.1, 5.1.	2, 5.2.1	, 5.2.2, 5	.3.1, 9.1.	2
CO5	1.1.1,	1.2.1, 1	.3.1, 1.	4.1, 2.1	.3, 2.3.	2, 2.4.4	, 3.1.1,	3.1.3, 3	3.1.5, 3	.1.6, 3.2	2.1, 3.2.	3, 3.3.1	, 3.4.1, 4	.1.1, 4.1.	2,
	4.2.1,	4.3.2, 4	.3.3, 4.	3.4, 5.2	.1, 5.3.	1, 9.1.2	Brying	yr llib bill	50	/					

ASSESSMENT	PATTERN – TI	HEORY		7			
Test / Bloom's	Rememberin	Understanding	Applying	Analyzing	Evaluatin	Creating	Total
Category*	g (K1) %	(K2) %	(K3) %	(K4) %	g (K5) %	(K6) %	%
CAT1	30	40	30				100
CAT2	20	40 😞	40				100
Individual	30	40	30	×4.			100
Assessment 1/							
Case Study 1/		Querio a	Ser	100			
Seminar 1/		C.	143 00000	D.			
Project1							
Individual	20	40	40				100
Assessment 2/							
Case Study 2/							
Seminar 2/							
Project 2							
ESE	30	40	30				100

Contraction of the

y ser

22CPC406	CONCRETE TECHNOLOGY		SE	MEST	ΓER	IV
PREREQUISIT	ES	CATEGORY	L	Т	Р	С
=	TRUCTION MATERIALS AND TECHNOLOGY	РС	3	0	0	3
Course Objectives	To understand about various concrete making materials, the concrete, special concrete and mixdesignforconcrete.	properties of fro	esh a	nd ha	rden	ed
UNIT – I	INGREDIENTS OF CONCRETE			9	peri	ods
Classification of	tuents - Hydration – Tests on cement – Types of cement – A aggregates – Properties and test on aggregates – gradation – tures and mineral admixtures.		•	Admi		s –
for Concreting: I	tions: Batching, mixing, transportation, placing, compaction, cur Different types of formworks for beams, slabs, columns, materia . Stripping time for removal of formworks as per IS456 – 200	l used for formwo	ork, re	equire	ment	t of
members. Water	Proofing: Importance and need of water proofing. Methods of w loints in Concrete Construction: Types of joints, joining old and	ater proofing and	l mate	erials	used	for
		i new concrete. N	Tetho	45 01	John	·116,
materials used fo	r filling joints.					
materials used fo	r filling joints. PROPERTIES OF CONCRETE			9	peri	ods
UNIT – III Properties of free of hardened con Thermal propert	PROPERTIES OF CONCRETE sh concrete – Workability – Segregation – Bleeding – Test for fr crete – Strength – Stress – Strain characteristics – Modulus o ies – Permeability – Test for hardened concrete properties	f Elasticity – Sh	rinka	s – Pr ge – 9	opert Creej	ties p –
UNIT – III Properties of free of hardened con Thermal propert	PROPERTIES OF CONCRETE sh concrete – Workability – Segregation – Bleeding – Test for fi crete – Strength – Stress – Strain characteristics – Modulus o	f Elasticity – Sh – Introduction t	rinka	s – Pr ge – (cro st	opert Creej	ties p – ıral
UNIT – III Properties of free of hardened con Thermal propert properties of con UNIT – IV Quality Control variation – Cha Importance of co	PROPERTIES OF CONCRETE sh concrete – Workability – Segregation – Bleeding – Test for fi crete – Strength – Stress – Strain characteristics – Modulus o ies – Permeability – Test for hardened concrete properties crete - Non-Destructive Test.	f Elasticity – Sh – Introduction t standard deviation mportance ofwat	rinka o mio on – o er ce	s – Pr ge – G cro st 9 Coeffi	opert Creep tructu peri icient ratio	ties p – ural ods t of p –
UNIT – III Properties of free of hardened con Thermal propert properties of con UNIT – IV Quality Control variation – Cha Importance of co	PROPERTIES OF CONCRETE Sh concrete – Workability – Segregation – Bleeding – Test for fictorete – Strength – Stress – Strain characteristics – Modulus of ies – Permeability – Test for hardened concrete properties crete - Non-Destructive Test. MIX DESIGN AND QUALITYCONTROLOFCONCRETE - Frequency of sampling – Statistical analysis of test results – racteristic strength – Acceptance and rejection Criteria – Inver to concrete. Nominal mixes – Design Mixes – factors influence	f Elasticity – Sh – Introduction t standard deviation mportance of wat encing the design	rinka o mio on – o er ce	s – Pr ge – 0 cro st 9 Coeffi ement – Mix	opert Creep tructu peri icient ratio	ties p – ural ods t of c – sign

Shetty M.S and Jain A.K, "Concrete Technology - Theory and Practice", S.Chand & Company, New Delhi, 2018.
 Santha kumar A.R, "Concrete Technology", S.Chand Publishers, 2018.

REFERENCES:

1	Gambhir M.L, "Concrete Technology - Theory and Practice", Tata Mc-Graw Hill Company, 2013.
2	IS 10262–2019, Concrete Mix Proportioning – Guidelines.
3	ACI 211.1-91, Standard Practice for Selecting Proportions for Normal, Heavy weight and Mass Concrete,
	American Concrete Institute.

4 NevilleA.M "Properties of Concrete", Pearson Education India,,2012

5 Povindar K. Mehta, Paulo J. M. Monteiro, "Concrete: Microstructure, Properties, and Materials", Mc-Graw Hill Company, 2014.

	RSE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Identify the properties and role of ingredients like cement, aggregate, admixtures in concrete.	K2
CO2	Choose the suitable formwork and methods of concrete production for construction.	K2
CO3	Infer the behavior of fresh and hardened concrete.	K2
CO4	Proportion the concrete using various mix design concepts.	K2
CO5	Select appropriate type of concrete for specific requirements.	K2

a) CO and I	PO Ma	apping													
COs/ POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	0	3	3	3	2	3	0	3	2	3	2
CO2	3	1	1	1	0	3	3	3	3	3	0	3	2	3	2
CO3	3	1	1	1	0	3	3	3	2	2	0	3	2	2	1
CO4	3	1	1	1	0	3	3	3	2	3	1	3	2	2	1
CO5	3	2	1	1	1	3	3	3	2	2	1	3	2	3	2
22CPC406	3	2	1	1	1	3	3	3	3	3	1	3	2	3	2
1 - Slight, 2	- Mod	erate, 3	3 - Sub	stantia	1										
b) CO and I	Key Pe	rform	ance Iı	ndicato	ors Ma	pping	- 10000	001							
CO1	1.2, 1	.3, 1.4,	, 2.1, 2	2, 2.4,	3.1, 3.	2, 3.4,	4.1, 4.	3, 6.1,	6.2, 7.1	, 7.2, 8	.1, 8.2,	9.1, 9.2	2, 10.1, 1	0.2, 10.3	3,
	11.2,	12.1, 1	2.2, 12	.3	7		மொழல்	21L 116 61	591	/					
CO2	1.2, 1	.3, 1.4,	, 2.1, 2	.2, 2.4,	3.1, 3.	2, 3.4,	4.1, 4.3	3, 6.1,	6.2, 7.1	, 7.2, 8	.1, 8.2,	9.1, 9.2	2, 10.1, 1	0.2, 10.3	3,
	11.2,	12.1, 1	2.2, 12	.3	6										
CO3	1.2, 1	.3, 1.4,	, 2.1, 2	.2, 2.4,	3.1, 3.	2, 3.4,	4.1, 4.3	3, 6.1,	6.2, 7.1	, 7.2, 8	.1, 8.2,	9.1, 9.2	2, 10.1, 1	0.2, 10.3	3,
	11.2,	12.1, 1	2.2, 12	2.3											
CO4	1.2, 1	.3, 1.4,	, 2.1, 2	.2, 2.4,	3.1, 3.	2, 3.4,	4.1, 4.3	3, 6.1,	6.2, 7.1	, 7.2, 8	.1, 8.2,	9.1, 9.2	2, 10.1, 1	0.2, 10.3	3,
		12.1, 1				1 6	1 Ens	13	1						
CO5					3.1, 3.	2, 3.4,	4.1, 4.	3, 6.1,	6.2, 7.1	, 7.2, 8	.1, 8.2,	9.1, 9.2	2, 10.1, 1	0.2, 10.3	3,
	11.2,	12.1, 1	2.2, 12	2.3	A	6	1								
						A A	14			Đ.					

ASSESSMENT	PATTERN – TH	EORY (Times New	w Roman, Siz	ze 11)			
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	40	60					100
CAT2	40	60					100
Individual	40	60					100
Assessment 1/							
Case Study 1/							
Seminar 1/							
Project1							
Individual	40	60					100
Assessment 2/							
Case Study 2/							
Seminar 2/							
Project 2							
ESE	40	60					100

22CPC407

DESIGN OF REINFORCED CONCRETE ELEMENTS

SEMESTER IV

PREREQUISI	TES	CATEGORY	L	Т	Р	С
MECHA	NICS OF SOLIDS I	РС	3	0	0	3
Course	Understand the behavior and design of reinforced conc	crete components and sy	ystems	subj	ected	1 to
Objectives	gravity loads according to INDIAN STANDARD build	· · ·	,	5		
UNIT – I	REINFORCEDCONCRETEMATERIALS			9 P	erioo	ls
Introduction to	R.C structures - Review of basic material properties - C	oncrete and Reinforcing	g steel	- Ob	jecti	ves
of structural De	sign- Stages in RCC structural design process for a build	ling- Types of load on	structu	ires a	nd lo	bad
combinations -l	Load transfer in framed structures - Design philosophies	- Basic design concep	ts –wo	orking	g stre	ss,
ultimate load an	d limit state methods - Analysis: Moment of resistance for	or Rectangular beams.				
UNIT – II	LIMIT STATE DESIGN OF BEAMS			9 P	erioo	ls
Design of singly	y and doubly reinforced rectangular and flanged beams	- Design of beams for	bendin	ng, sh	lear a	anc
torsion - bond an	nd anchorage – deflection.					
UNIT – III	LIMIT STATE DESIGN OF SLABS& STAIRS			9 P	erioo	ls
Behaviour of o	ne way and two way slabs - Design and detailing of	one way and two way	y recta	angul	ar sl	abs
subjected to uni	iformly distributed load - Design of lintel - lintel cum s	unshade – Stairs - Lo	oads or	n Sta	ircas	e -
Design of Dog	legged staircase.					
UNIT – IV	LIMIT STATE DESIGN OF COLUMNS			9 P	erioo	ls
Classification o	f columns - Axial, uniaxial and biaxial bending - Brace	ed and unbraced colum	ns - O	Prient	ation	0
columns in build	dings - Design of columns – Use of interaction charts.					
UNIT – V	LIMIT STATE DESIGN OF FOOTINGS			9 P	erioo	ls
Behaviour of co	oncentric and eccentric footing - Design of axially load	ed square and rectangu	lar pa	d and	l sloj	pec
isolated footing	– Design of wall footing.					
Contact Period						
Lecture: 45 Per	riods Tutorial: 0 Periods Practical: 0 Periods T	otal: 45 Periods				
TEXT BOOKS:						
1 Pillai, S. U.	and Menon, D," Reinforced Concrete Design" , Tata McC	Graw Hill, 2021				
	un N "Design of Deinforged Congress Structures" Oxfo		11			

2 Subramanian N, "Design of Reinforced Concrete Structures", Oxford University Press, 2014.

REFERENCES:

1	VargheseP.C, "Limit State Design of Reinforced Concrete", Prentice hall of India Pvt. Ltd., 2008
2	Dayaratnam P., "Design of Reinforced Concrete Structures", Oxford & IBH publishing Co. Pvt.Ltd., 2018.
3	Shah V.L and Karve S.R, "Limit State Theory and Design of Reinforced Concrete", Structures Publications,
	2018.
4	Krishnaraju N, "Design of Reinforced Concrete Structures", CBS Publishers and Distributors Pvt Ltd, 2019.
5	IS: 456-2000 (R2016), "Plain and Reinforced Concrete - Code of practice".
6	SP: 16-1980, "Design Aids for Reinforced Concrete to IS 456:(1978)".
7	IS: 875-2015, "Code of Practice for design loads for buildings and structures".
8	SP: 34-1987, "Handbook on Concrete Reinforcement and Detailing".

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply theconceptsofworkingstress method and limitstatemethods and estimate the design	K2
	loads on various structural elements.	
CO2	Analyse and Designthe beams using Limit State Method.	K3
CO3	Designofrectangularslabsandstaircasesbylimitstatemethod and prepare detailing drawing.	K3
CO4	Designthecolumnssubjectedtobothaxialandeccentricloads	K3
CO5	Designloadedwallandisolatedfootings.	K3

a) CO a	nd PO	Mappi	ing												
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2	1	1	1		2				1					
CO2	2	2	1	1		2			1	1				2	2
CO3	2	2	1	1		2			1	1				2	2
CO4	2	2	1	1		2			1	1				2	2
CO5	2	2	1	1		2	1	mm-M-	1	1				2	2
22CPC	2	2	1	1		2.815			6.048UT/	1				2	2
407	2	2	1	1		Ċ	695	10 01-10	222					2	2
1 - Slight	t, 2 - N	Ioderat	1e, 3-5	Substan	tial		1		X						
b) CO ar	nd Key	Perfo	rmance	e Indic	ators I	Mappir	ıg	1		//					
CO1	1.2.1,	1.4.1,	2.1.3, 3	3.1.4, 3	.2.3, 4.	1.1, 4.1	1.2, 6.2	.1, 10.1	.1, 10.	3.1					
CO2	1.1.2,	1.3.1,	1.4.1, 2	2.1.1, 2	.1.2, 2.	1.3, 2.2	2.3, 2.3	.1, 2.4.	4, 3.1.4	1, 3.2.3,	3.4.2, 4.	1.2, 6.2.	1, 9.3.1,	10.1.1, 1	0.3.1
CO3	1.1.2,	1.3.1,	1.4.1, 2	2.1.1, 2	.1.2, 2.	1.3, 2.2	2.3, 2.3	.1, 2.4.	4, 3.1.4	1, 3.2.3,	3.4.2, 4.	1.2, 6.2.	1, 9.3.1,	10.1.1, 1	0.3.1
CO4	1.1.2,	1.3.1,	1.4.1, 2	2.1.1, 2	.1.2, 2.	1.3, 2.2	2.3, 2.3	.1, 2.4.	4, 3.1.4	1, 3.2.3,	3.4.2, 4.	1.2, 6.2.	1, 9.3.1,	10.1.1, 1	0.3.1
CO5	1.1.2,	1.3.1,	1.4.1, 2	2.1.1, 2	.1.2, 2.	1.3, 2.2	2.3, 2.3	.1, 2.4.	4, 3.1.4	1, 3.2.3,	3.4.2, 4.	1.2, 6.2.	1, 9.3.1,	10.1.1, 1	0.3.1
						26	Contraction of the local diversity of the local diversity of the local diversity of the local diversity of the		- × /	200					

ASSESSMENT P	ATTERN – TH	EORY	50000	1010			
Test / Bloom's	Rememberi	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	ng (K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	30	30	40	-	-	-	100
CAT2	30	30	40	-	-	-	100
Individual							
Assessment 1							
/Case Study 1/	-	25	50	25	-	-	100
Seminar 1 /							
Project1							
Individual							
Assessment 2							
/Case Study 2/	-	25	50	25	-	-	100
Seminar 2 /							
Project 2							
ESE	30	30	40	-	-	-	100

22CPC408	WATER SUPPLY ENGINEERING		SE	MES	TER	IV
PREREQUISI	TES	CATEGORY	L	Т	Р	C
	NIL	РС	3	0	0	3
Course	To conversant with sources of water, demand of water, charact	teristics of water	and	Conve	eyance	e o:
Objectives	Water.To expose the students to understand the design of	of water Treatm	nent	proce	sses	and
	distribution of water supply					
UNIT – I	QUANTITY OF WATER AND SOURCES OF WATER			9) Peri	od
Introduction of	Public water supply system - Planning, Objectives, Design pe	riod, Population	fore	castin	ıg; Wa	ate
demand - Sour	rces of water and their characteristics, Surface and Groun	ndwater –Impou	nding	g Res	servoi	r-
Development an	d selection of source – Source Water quality.	_				
UNIT – II	QUALITY OF WATER AND TRANSPORTATION			9) Peri	od
Quality of wate	r - sampling - Characterization – Significance -analysis of wa	ter - water born	e dis	eases	- qua	lit
· ·	ter as per IS 10500. Intakes - types - intake tower - Transport					
	ipe flow - design - materials of pressure pipes - pipe corrosion					
	and testing of pipe lines. Pumps - Types of pumps - pumping sta			1		
UNIT – III	WATER TREATMENT			Ģ) Peri	od
\cup Diectives – Ui	nit operations and processes – Principles, functions, and desi	ign of water tre	atme	nt pla	ant ur	its
	nit operations and processes – Principles, functions, and desinitivers, Coagulation and flocculation – Clarifloccuator - Plate ar					
aerators, flash m	nixers, Coagulation and flocculation - Clarifloccuator - Plate ar	nd tube settlers -	Puls	ator c	larific	er -
aerators, flash m Rapid and slow	nixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct	nd tube settlers -	Puls	ator c	larific	er -
aerators, flash m Rapid and slow treatment units-	nixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances.	nd tube settlers -	Puls	ator c Iainte	clarifie enance	er - e o
aerators, flash m Rapid and slow treatment units- UNIT – IV	nixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances. ADVANCED WATER TREATMENT	nd tube settlers - ion, Operation a	Puls nd N	ator c Iainte	clarifie enance) Peri	er - e o od
aerators, flash m Rapid and slow treatment units- UNIT – IV Water softening	 hixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances. ADVANCED WATER TREATMENT - Desalination - R.O. Plant - demineralization – Adsorption - Io 	nd tube settlers - ion, Operation a on exchange - M	Puls and N	ator o Iainte	clarifie enance) Peri Systen	er - e o od ns
aerators, flash m Rapid and slow treatment units- UNIT – IV Water softening RO Reject Mana	 nixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances. ADVANCED WATER TREATMENT - Desalination - R.O. Plant - demineralization – Adsorption - Iongement - Iron and Manganese removal –Fluoridation and Defluered and the second s	nd tube settlers - ion, Operation a on exchange - M	Puls and N	ator o Iainte	clarifie enance) Peri Systen	er - e o od ns
aerators, flash m Rapid and slow treatment units- UNIT – IV Water softening RO Reject Mana and Maintenance	 nixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances. ADVANCED WATER TREATMENT Desalination - R.O. Plant - demineralization – Adsorption - Idagement - Iron and Manganese removal –Fluoridation and Deflue of treatment units – Recent advances. 	nd tube settlers - ion, Operation a on exchange - M	Puls and N	ator c Iainte grane S Ion , C	elarifie enance) Peri Systen Operat	er - e o od ns
aerators, flash m Rapid and slow treatment units- UNIT – IV Water softening RO Reject Mana and Maintenance UNIT – V	 nixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances. ADVANCED WATER TREATMENT Desalination - R.O. Plant - demineralization – Adsorption - Ic agement - Iron and Manganese removal –Fluoridation and Deflue of treatment units – Recent advances. WATER DISTRIBUTION SYSTEM 	nd tube settlers - ion, Operation a on exchange - M oridation - Cons	Puls nd N lemb tructi	ator c Iainte rane S Ion , C	elarific enance) Peri Systen Operat	er - e o od ns tion
aerators, flash m Rapid and slow treatment units- UNIT - IV Water softening RO Reject Mana and Maintenance UNIT - V Distribution of	 nixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances. ADVANCED WATER TREATMENT Desalination - R.O. Plant - demineralization – Adsorption - Idagement - Iron and Manganese removal –Fluoridation and Deflue of treatment units – Recent advances. WATER DISTRIBUTION SYSTEM water - requirements of good distribution system - method 	nd tube settlers - ion, Operation a on exchange - M oridation - Cons of distribution s	Puls and M lemb tructi	ator c Iainte rane S on , C m - 1	elarific enance) Peri System Dperat) Peri ayout	er e o od ns tio:
aerators, flash m Rapid and slow treatment units- UNIT – IV Water softening RO Reject Mana and Maintenance UNIT – V Distribution of distribution syst	 hixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances. ADVANCED WATER TREATMENT Desalination - R.O. Plant - demineralization – Adsorption - Idagement - Iron and Manganese removal –Fluoridation and Deflue of treatment units – Recent advances. WATER DISTRIBUTION SYSTEM water - requirements of good distribution system - method tem - Requirements of water distribution – Components – S 	nd tube settlers - ion, Operation a on exchange - M oridation - Cons of distribution s election of pipe	Puls and N lemb tructi syste mat	ator c Iainte rane S Ion , C [m - 1 erial	elarifie enance D Peri System Dperat D Peri ayout – Ser	er - e o od ns tion od s o vio
aerators, flash m Rapid and slow treatment units- UNIT - IV Water softening RO Reject Mana and Maintenance UNIT - V Distribution of distribution syst reservoirs - Fu	 nixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances. ADVANCED WATER TREATMENT Desalination - R.O. Plant - demineralization – Adsorption - Idagement - Iron and Manganese removal –Fluoridation and Deflue of treatment units – Recent advances. WATER DISTRIBUTION SYSTEM water - requirements of good distribution system - method tem - Requirements of water distribution – Components – Sunctions – Network design – Analysis of distribution network 	nd tube settlers - ion, Operation a on exchange - M oridation - Cons of distribution s election of pipe works - Comp	Puls and N lemb tructi syste mat uter	ator c Aainte rane S ion , C m - 1 erial appli	elarifie enance Deri Systen Operat Deri ayout – Ser cation	er - e o od ns tion od s o vio
aerators, flash m Rapid and slow treatment units- UNIT – IV Water softening RO Reject Mana and Maintenance UNIT – V Distribution of distribution syst reservoirs – Fu Appurtenances	 hixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances. ADVANCED WATER TREATMENT Desalination - R.O. Plant - demineralization – Adsorption - Idagement - Iron and Manganese removal –Fluoridation and Deflue of treatment units – Recent advances. WATER DISTRIBUTION SYSTEM water - requirements of good distribution system - method tem - Requirements of water distribution – Components – Sunctions – Network design – Analysis of distribution net – Leak detection. Principles of design of water supply in builded. 	nd tube settlers - ion, Operation a on exchange - M oridation - Cons of distribution s election of pipe works - Comp	Puls and N lemb tructi syste mat uter	ator c Aainte rane S ion , C m - 1 erial appli	elarifie enance Deri Systen Operat Deri ayout – Ser cation	er - e o od ns tion od s o vio
aerators, flash m Rapid and slow treatment units- UNIT – IV Water softening RO Reject Mana and Maintenance UNIT – V Distribution of distribution syst reservoirs – Fu Appurtenances – Fixtures and fitti	 nixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances. ADVANCED WATER TREATMENT Desalination - R.O. Plant - demineralization – Adsorption - Idagement - Iron and Manganese removal –Fluoridation and Deflue of treatment units – Recent advances. WATER DISTRIBUTION SYSTEM water - requirements of good distribution system - method tem - Requirements of water distribution – Components – Sunctions – Network design – Analysis of distribution net – Leak detection. Principles of design of water supply in buildings, systems of plumbing and types of plumbing. 	nd tube settlers - ion, Operation a on exchange - M oridation - Cons of distribution s election of pipe works - Comp	Puls and N lemb tructi syste mat uter	ator c Aainte rane S ion , C m - 1 erial appli	elarifie enance Deri Systen Operat Deri ayout – Ser cation	er - 2 0 od ns tion od s (vic us
aerators, flash m Rapid and slow treatment units- UNIT – IV Water softening RO Reject Mana and Maintenance UNIT – V Distribution of distribution syst reservoirs – Fu Appurtenances	 nixers, Coagulation and flocculation – Clarifloccuator - Plate ar sand filters - Disinfection - Residue Management –Construct Recent advances. ADVANCED WATER TREATMENT Desalination - R.O. Plant - demineralization – Adsorption - Idagement - Iron and Manganese removal –Fluoridation and Deflue of treatment units – Recent advances. WATER DISTRIBUTION SYSTEM water - requirements of good distribution system - method tem - Requirements of water distribution – Components – Sunctions – Network design – Analysis of distribution net – Leak detection. Principles of design of water supply in buildings, systems of plumbing and types of plumbing. 	nd tube settlers - ion, Operation a on exchange - M oridation - Cons of distribution s election of pipe works - Comp	Puls and M lemb: tructi syste mat uter ervic	ator c Aainte rane S ion , C m - 1 erial appli	elarifie enance Deri Systen Operat Deri ayout – Ser cation	er - 2 0 od ns tion od s od vic

Garg. S. K., "Water Supply Engineering", Khanna Publishers, Delhi, 2014.
 Punmia B.C, Jain A.K and Jain A.K, "Water Supply Engineering" Laxmi Publications, New Delhi 2014.

REFERENCES :

1	Dr. P.N. Modi., "Water Supply Engineering Volume" Rajson Publications, New Delhi, 2018.
2	D. Lal & A.K. Upadhyay, "Water Supply and Waste Water Engineering" S. K. Kataria & Sons, 2013
3	Mackenzie L Davis., "Water and Waste Water Engineering Design Principles and Practice", McGraw Hill
	book education, 2010.
4	NPTEL "Water and Waste Water Engineering" by Dr.P.Bose, IIT Kanpur.

COUR	COURSE OUTCOMES:							
On con	On completion of the course, the students will be able to:							
CO1	Know the principles of water supply and characteristics of water.	K1, K2						
CO2	Attain knowledge on quality of water and its conveyance.	K1, K2						
CO3	Acquire knowledge on various water treatment units.	K1, K2						
CO4	Get clear knowledge about advanced water treatments	K1, K2						
CO5	Know the distribution and supply of water	K1, K2						

COURSE ARTICULATION MATRIX: a) CO and PO Mapping

a) CO anu															
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	-	-	-	1	2	-	-	-	-	-	1	2	2
CO2	2	2	1	-	-	1	2	-	-	-	-	-	2	2	2
CO3	2	1	2	-	-	1	2	-	-	-	-	-	2	2	2
CO4	1	2	2	-	-	1	2	-	-	-	-	-	2	2	2
CO5	1	1	1	-	-	1	2	-	-	-	-	-	2	2	2
22CPC408	2	2	2	-	-	T	2	R	1	-	-	-	2	2	2
1 - Slight, 2	- Mod	lerate,	3 - Su	bstanti	al 🛛		Den 6 in (VI-116-61	3	/					
b) CO and I	Key Pe	erform	ance I	ndicat	ors M	apping		and a	X						
CO1	1.2.1	, 1.3.1,	1.4.1,	2.1.3,2	.4.3,6.	1.1,7.1	.1,7.1.	2,7.2.2	. 7						
CO2	1.2.1	, 1.3.1,	1.4.1,	2.1.3,2	.2.3, 2	.3.1, 2.	4.3,3.1	.4, 3.1	.6,3.3.	1, 6.1.1	, 7.1.1,	,7.1.2,7	.2.2		
CO3	1.2.1	, 1.3.1,	1.4.1,	2.1.3,2	.4.3,, 3	3.1.4, 3	.1.6,3.	3.1,3.2	.3, 6.1	.1, 7.1.	1,7.1.2,	7.2.2			
CO4	1.2.1	, 1.3.1,	1.4.1,	2.1.3,2	.2.3, 2	.3.1, 2.	4.3, 3.	1.4, 3.1	1.6, 3.2	2.3,3.3.	1, 5.1.1	, 6.1.1,	7.1.1,7.	1.2,7.2.	2
CO5	1.2.1	, 1.3.1,	1.4.1,	2.1.3,2	.4.3, 3	.1.4, 3.	1.6,3.3	6.1, 6.1	.1, 7.2	.2, 7.1.	1,7.1.2,	7.2.2			

Test / Bloom's	Rememberin	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	g (K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	40	60					100
CAT2	40	60					100
Individual	40	60					100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual	40	60					100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	40	60					100

22CMC4Z2	CONSTITUTION OF INDIA (Common to all Branches)		SEMESTER IV					
PREREQUISIT	ES	CATEGORY	L	Т	Р	С		
	NIL	МС	3	0	0	0		
Course	The objective of the course is to familiarize the students on	the role, powers a	and fi	ıncti	ons c	of		
Objectives	Indian government. Also understand the recent acts in India							
UNIT- I	INTRODUCTION ANDEMERGENCY PROVISIONS			(9 Per	riods		
Historical Backg	round: The Company rule, The Crown rule - Constituent As	ssembly: Compos	ition	, Obj	jectiv	ves -		
Preamble and Sa	lient features of the Indian Constitution - Fundamental Rig	hts, Fundamenta	l Dut	ies, I	Direc	tive		
Principles of state	e policy, Emergency Provisions - National Emergency, Presid	lent Rule, Financi	al Er	nerge	ency.			
UNIT- II	SYSTEM OF GOVERNMENT			(9 Pei	riods		
of federal featu	stem: merits, demerits, reasons for adopting parliamentary sy res –Centre-State relations: Legislative, Administrative schayati Raj and urban local government.	•	•					
UNIT- III		9 Periods						
	a: Election, Powers and functions - Prime Minister and G s and functions - Chief Minister and Council of Ministers: Fu		e an	d fur	nctio	1s –		
UNIT- IV	ORGANS OF GOVERNANCE AND RECENT ACTS			(9 Per	iods		
Parliament: Loks	Sabha and RajyaSabha, Composition and powers - State Le	egislative Assemb	oly a	nd L	egisl	ative		
Council: Compos	sition and powers - Judicial System in India: Structure and on, Jurisdiction, Recent acts in significance-RTI, Citizenship	features - Suprer	ne C		-			
UNIT- V	POLITICAL DYNAMICS			(9 Per	riods		
Political parties:	Party system, Recognition of National and State parties rre groups – National Integration: Obstacles, National Inte			l sys	stem	and		
Contact Periods		riods						
EXT BOOKS: 1 National poi india	tal of India, "The Constitution of India" (Full Text), http	s://legislative.gov	v.in/c	onsti	tutio	n-of-		

Dr.B.R.Ambedkar, "The Constitution of India", Sudhir Prakashan, 2020. 2

REFERENCES:

1	Durga Das Basu, "Introduction to the Constitution of India, LexisNexis, 2022
2	P.M.Bakshi, "The Constitution of India", LexisNexis, 2020
3	Subash C Kashyap, "Our Parliament", National Book Trust, 2021
4	Subash C Kashvap, " Our Political System ", National Book Trust, 2011

COURSE OUTCOMES:

	RSE OUTCOMES: npletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Know the evolution of Indian Constitution and its basic premises.	K1
CO2	Explain the system of governance in India.	K2
CO3	Describe the structure of Union and State Governments	K2
CO4	Obtain the knowledgeof functions of Legislature and Judiciary	K1
CO5	Know the political system of India	K1

a) CO and P	O Ma	pping													
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
CO2	-	-	-	-	-	1	-	1	1	-	-	-	-	-	1
CO3	-	-	-	-	-	2	-	1	1	-	-	-	-	-	1
CO4	-	-	-	-	-	1	-	1	2	-	-	-	-	-	1
CO5	-	-	-	-	-	2	-	2	1	-	-	-	-	-	-
22CMC4Z2	-	-	-	-	-	1	-	1	1	-	-	-	-	-	1
1 – Slight, 2 –	Mode	rate, 3	– Suł	ostantia	1										
b) CO and K	Ley Pe	rform	ance l	Indicat	ors Ma	pping									
CO1	6.1.1	,6.2.1,	8.1.1,8	3.2.1,8.2	2.2,9.1.	2									
CO2	6.1.1	,6.2.1,	8.1.1,8	3.2.1,8.2	2.2,9.1.	2									
CO3	6.1.1	.1.1,6.2.1,8.1.1,8.2.1,8.2.2													
CO4	6.1.1	,6.2.2,	9.1.2,9	9.2.1											
CO5	6.2.2	,8.1.1,	8.2.2,9	9.1.2,9.2	2.1										
						2	0	2							
ASSESSMEN					and the second s		ngin qui		(QY						
Test /		nembe	0		rstandi	0	pplyii	-	nalyz	0	Evalu	0		ating	Total
Bloom's	((K1) %	6	(K	(2) %		(K3) %	o	(K4) 9	%	(K5)%	(K6)%	%
Category*								7							
CAT1		50			50		ANTA	$\langle \rangle$	-		-	-		-	100
CAT2		50			50				11-		-	-		-	100
Individual					11	Å.									
Assessment 1					A	N.			V.						
/Case Study		50			50	13 64	-		<u>/</u>				-	-	100
•						39		52							
1/ Seminar 1					11111										
•						500		S12 23	57						
1/ Seminar 1					1	See.		S D	17						
1/ Seminar 1 / Project1								SP 2	17						
1/ Seminar 1 / Project1 Individual		50			50		-	222	17						100
1/ Seminar 1 / Project1 Individual Assessment 2		50			50									-	100
1/ Seminar 1 / Project1 Individual Assessment 2 /Case Study		50			50		-	all	17					-	100

22CES411	FLUID MECHANICS AND MACHINERY LABC	PRATORY	SE	MES	STER	R IV
PREREQUIS	SITES	CATEGORY	L	Т	Р	С
	22CES307 - MECHANICS OF FLUIDS	ES	0	0	3	1.5

Course*To impart knowledge in solving problems occurring in a pipes due to losses, the verificationObjectivesof Bernoulli's theorem and its applications and conducting performance tests on different
types of pumps and turbines.

LIST OF EXPERIMENTS:

- 1. Determination of Darcy's friction factor.
- 2. Verification of Bernoulli's Theorem.
- 3. Calibration of Venturimeter and Orifice meter.
- 4. Flow over V-Notch.
- 5. Flow through Mouthpiece.
- 6. Determination of velocity through Pitot tube.
- 7. Determination of Meta centric height.
- 8. Performance Study of Roto dynamic pumps:Centrifugal pump, Submersible pump and Jet pump.
- 9. Performance Study of Positive displacement pumps:Reciprocating pump, Gear oil pump and Single screw pump.
- 10. Load test on Pelton wheel, Francis turbine and Kaplan Turbine.

COURSE OUTCOMES:

	mpletion of the course, the students will be able to:	Taxonomy Mapped
CO1	Obtain the knowledge on conducting different type of experiments.	K2
CO2	Solve different problems in pipes due to losses.	K3
CO3	Verify the Bernoulli's theorem and its applications.	К3
CO4	Do performance tests on different types of pumps.	K3
CO5	Do performance tests on different types of turbines.	К3

Rloom's

a) CO and	PO N	Aappi	ng			A.		6 100	S	7					
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO 2	PSO 3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	0	1	0	0	0	0	0	0	0	0	0	0	0	2	1
CO2	2	2	0	2	1	0	1	0	0	0	0	0	0	2	1
CO3	1	2	0	2	0	0	0	0	0	0	0	0	0	2	1
CO4	0	1	0	2	1	0	1	0	0	0	0	0	0	2	1
CO5	0	1	0	2	1	0	1	0	0	0	0	0	0	2	1
22CES	2	2	0	2	1	0	1	0	0	0	0	0	0	2	1
411		2	Ū	2	1	U	1	U	U	Ŭ	Ŭ	Ū	Ū	2	1
1 - Slight, 2	2 - Mc	oderate	e, 3-5	Substa	ntial										
b) CO and	Key I	Perfor	manc	e Indi	cators	Map	ping								
CO1	2.3.2	, 2.4.2	2												
CO2	1.1.1	, 1.3.1	, 2.1.2	2, 2.1.3	3, 2.2.3	3, 2.3.	1, 2.4.2	2, 4.1.	3, 4.1.	4, 4.3.	1, 5.2.	1, 5.3.	2, 7.1.1		
CO3	1.3.1	, 2.1.2	2, 2.1.3	, 2.2.3	3, 2.3.1	, 2.4.2	2, 4.1.3	3, 4.1.4	4, 4.2.	1, 4.3.	1				
CO4	2.1.2	, 2.1.3	, 2.3.1	, 2.4.2	2, 4.1.3	3, 4.2.	1, 4.3.	1, 4.3.	3, 5.2.	1, 5.3.	2, 7.1.	1			
CO5	2.1.2	, 2.1.3	, 2.3.1	, 2.4.2	2, 4.1.3	3, 4.2.	1, 4.3.	1, 4.3.	3, 5.2.	1, 5.3.	2, 7.1.	1			

22CES412

(15)

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	ES	0	0	3	1.5

Course	The objective of the course is to provide an introduction to the engineering field. It is designed to									
Objectives	help the student to learn about engineering and how it is useful in our everyday life.									
UNIT- I	JNIT-I INTRODUCTION (15)									
Introduction to	Introduction to Engineering and Engineering study : Difference between science and engineering, scientist and									
engineer needs and wants, various disciplines of engineering, some misconceptions of engineering, expectation										
for the 21 st century engineer and Graduate Attributes.										
UNIT- II	ENGINEERINGDESIGN	(15)								

UNIT- II ENGINEERINGDESIGN

Engineering Requirement, Knowledge within Engineering disciplines, Engineering advancements, Problem definition, Idea generation through brainstorming and researching, solution creation through evaluating and communicating, text/analysis, final solution and design improvement.

UNIT- III ENGINEERINGDISCIPLINES

Civil Engineering: Loads on Structures, Analysis of Structural elements, Design and detailing of Structural elements. Testing and selection of construction materials. Analysis of water quality and checking its suitability for construction and drinking purposes. Preparation of site layout using advanced Survey instruments. Modeling of Hydraulic elements.

Contact Periods:

Lecture : 0 Period

Tutorial : 0 Period

Practical : 45 Periods

Total: 45 Periods

REFERENCES:

1	RyanABrown,	JoshuaW.	Brown	and .	Michael	Berkihiser:	"Engineering	Fundamentals:	Design,
	Principles and	Careers",	Goodhear	t-Willc	cox Publis	sher, Second ed	ition, 2014.		
2	SaeedMoaveni	, "Enginee	ring Fun	damer	ntals : A	In Introduction	n to Engineer	ing ", Cengage	learning,
	Fourth Edition	. 2011.		1	2000	CO OR DUUG			

COU	COURSEOUTCOMES:						
		Taxonomy					
On co	mpletion of the course, the students will be able to:	Mapped					
CO1	Explain technological and engineering development, change and impacts of	K2					
	engineering.						
CO2	Complete initial steps (Define a problem list criteria and constrains, Brainstorm	K3					
	Potential solutions and document ideas) in engineering designs.						
CO3	Communicate possible solutions through drawings and prepare project report.	K3					
CO4	Draw sketches to a Design problem.	К3					
CO5	Apply the concept of engineering fundamentals in Civil, Mechanical, Electrical and	К3					
	Computer Engineering.						

a)CO and I	PO Ma	apping	5												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	0	0	0	0	0	0	0	0	0	0	2	-
CO2	3	2	1	0	0	0	0	0	0	0	0	0	0	1	1
CO3	3	2	1	0	0	0	0	0	0	0	0	0	0	2	-
CO4	3	2	1	0	0	0	0	0	0	0	0	0	0	1	-
CO5	3	2	1	0	0	0	0	0	0	0	0	0	0	1	1
22CES412	3	2	1	0	0	0	0	0	0	0	0	0	0	1	1
1-Slight,2-	Mode	rate, 3	–Subs	tantia	1										
b)CO and I	Key Po	erforn	nance	Indic	ators	Mapp	oing								
CO1	1.1.2	2, 1.2.1	l, 1.3.1	1,2.2.4	, 6.1.1	1,7.1.1	,7.2.1								
CO2	2.1.1	,2.2.3	, 3.1.1	,3.1.2	, 3.1.6	, 3.2.1	,3.2.2	, 3.2.3	, 4.1.1	,4.1.2, 4	1.2.2				
CO3	2.1.3	,3.2.1	, 3.2.2	,3.2.3	, 3.4.2	,4.3.2,	,4.3.3,	4.3.4,	9.2.1,	9.3.1, 1	0.1.3, 10	0.2.2, 10).3.2,11.	3.2	
CO4	3.1.3	, 5.1.1	1,5.2.2												
CO5	1.1.1	,1.1.2	, 1.2.1	,1.3.1	, 1.4.1	, 2.1.1	,4.3.1	, 7.2.2	,8.2.2,	9.1.2, 1	0.1.1, 1	1.3.2			

22CPC409											
PREREQUIS	TES		CATEGORY	L	Т	Р	С				
	NIL		РС	0	0	3	1.5				
Course Objectives		n sampling and analysis of pro water and waste water charac		and v	vaste	water					
LIST OF EXP	ERIMENTS										
1. Sampling	and preservation method	ls for water and wastewater (I	Demonstration on	ly).							
2. Determin	ation of pH & Electrical	Conductivity.									
3. Determin	ation of Turbidity.										
4. Determin	ation of Chlorides.										
5. a) Deterr	nination of Total Hardnes	S.									
b) Deterr	nination of Calcium Hard	ness.									
6. a) Deterr	nination of Alkalinity.										
b) Deterr	nination of Acidity.	- NOTTO 14									
7. Determin	ation of Sulphates.	Byden Danster our up a rigune)								
8. Determin	ation of Iron & Fluoride.	Vorsinger V									
9. Estimatio	n of Residual Chlorine.										
10. Estimati	on of Solids.	Ň Ň I									
a) Deterr	nination of Total Suspend	led solids.									
b) Deterr	nination of Dissolved sol	ids.									
c) Deterr	nination of Fixed and Vol	atile solids.									
d) Deterr	nination of Total solids.		5								
11. Determ	nation of Optimum Coag	ulant Dosage.	/								
12. Determ	nation of Dissolved Oxy	gen.									
13. Determ	nation of BOD.										
14. Determ	nation of COD.										
15. Demon	strations of water quality	parameters for construction pu	urpose.								

Contact Periods:Lecture: 0 PeriodsTutorial: 0 PeriodsPractical: 45 PeriodsTotal: 45 Periods

	RSE OUTCOMES: npletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Interpret thesamplingandpreservation methodsofwaterandwastewater	K2
CO2	Correlate the physical properties of water and waste water.	К3
CO3	Correlate the chemical properties of water and waste water.	К3
CO4	Categorize thebiologicalproperties of waterand wastewater.	К3
CO5	Categorizethe Micro-biologicalproperties of water and wastewater.	К3

a) CO and PO Mapping															
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	0	1	1	2	1	2	0	0	0	2	0	0	0	1	0
CO2	2	2	1	2	0	2	1	0	0	0	0	0	0	1	0
CO3	2	1	1	2	0	2	2	0	0	0	0	0	0	1	0
CO4	2	1	1	2	0	2	2	0	0	0	0	0	0	1	0
CO5	1	1	1	2	0	2	1	0	0	0	0	0	0	1	0
22CPC 409	2	1	1	2	1	2	2	0	0	2	0	0	0	1	0
1 - Slight, 2	2 – Mo	derate,	$, 3 - S_{1}$	ubstant	tial										
b) CO and	Key P	erforn	nance	Indica	ntors N	Ларріі	ıg								
CO1	2.2.4	, 3.1.5,	4.1.1,	4.1.2,	4.3.1,4	4.3.2, 4	1.3.4, 6	5.1.1, 1	0.1.1,	10.1.3					
CO2	1.2.1	,1.3.1,1	1.4.1,2	.1.3,2.2	2.3,2.2	.4,2.3.	1,2.3.2	2,2.4.1,	3.1.4,3	.1.5,3	1.6,4.1	.14.1.2	2,4.1.3,4	1.4,4.3.2,	7.1.2
CO3	1.2.1	,1.3.1,2	2.1.2,2	.2.3,2.2	2.4,2.4	.3,3.1.	4,3.1.5	5,3.2.1,	3.2.3, 4	4.1.1,4	.1.2,4.	1.3,4.1	.4,4.2.1,4	4.3.2,6.1.1	1,7.2.2
CO4	1.2.1	,1.3.1,2	2.1.2,2	.4.3,3.	1.4,3.1	.5,3.2.	1,3.2.3	,4.1.1,	4.1.2,4	.1.3,4	2.1,4.3	3.3,6.1.	1,7.1.2,7	.2.2	
CO5	1.3.1	,2.2.3,2	2.4.3,3	.1.5,4.	1.1,4.1	.2,4.1.	3,4.2.1	,7.1.2							

