GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.E. CIVIL ENGINEERING (FULL TIME) 2022 REGULATIONS

THIRD SEMESTER

Sl.	Course	urse G CA		End	Total		Hour	urs/Week		
No	Code Course Title C		Course Title Category		Sem. Marks	Marks	L	T	P	C
			THEOR	RY						
1	22CBS307	Transform Calculus and Partial Differential Equations (Common to Civil & IBT)	BS	40	60	100	3	1	0	4
2	22CES307	Mechanics of Fluids	ES	40	60	100	3	0	0	3
3	22CES308	Engineering Geology	ES	40	60	100	3	0	0	3
4	22CPC301	Mechanics of Solids I	PC	40	60	100	3	0	0	3
5	22CPC303	Surveying	PC	40	60	100	3	0	0	3
		THEORY WIT	TH PRACTI	CAL CO	MPONE	NT				
6	22CPC302	Construction Materials and Technology	PC	50	50	100	2	0	2	3
			PRACTIC	CAL)					
7	22CES309	Materials Testing Laboratory	ES	60	40	100	0	0	3	1.5
8	22CPC304	Survey Laboratory	PC	60	40	100	0	0	3	1.5
		TOTAL		370	430	800	17	1	8	22

FOURTH SEMESTER

Sl.	Course	/As.	X.	CA	End	Total		Hours		ek
No	Code	Course Title	Category M		Sem. Marks	Marks	L	T	P	C
		1	THEOR	Y						
1	22CES410	Applied Hydraulics and Fluid Machinery	ES	40	60	100	3	0	0	3
2	22CPC405	Mechanics of Solids II	PC	40	60	100	3	0	0	3
3	22CPC406	Concrete Technology	PC	40	60	100	3	0	0	3
4	22CPC407	Design of Reinforced Concrete Elements	PC	40	60	100	3	0	0	3
5	22CPC408	Water Supply Engineering	PC	40	60	100	3	0	0	3
6	22CMC4Z2	Constitution of India (Common to all branches)	MC	40	60	100	3	0	0	0
			PRACTIO	CAL						
7	22CES411	Fluid Mechanics and Machinery Laboratory	ES	60	40	100	0	0	3	1.5
8	22CES412	Engineering Exploration	ES	60	40	100	0	0	3	1.5
9	22CPC409	Environmental Engineering Laboratory	PC	60	40	100	0	0	3	1.5
TOTAL 420 480 900 18 0 9										19.5

DIFFERENTIAL EQUATIONS	TRANSFORM CALCULUS AND PARTIAL DIFFERENTIAL EQUATIONS (Common to Civil and IBT Branches)										
PREREQUISITES											
NIL BS 3											
Course Objectives To be familiar with Fourier Series. To gain the knowledge of solving Boundary value problems. To be familiar with Laplace and Inverse Laplace transforms to solve ordinary differential equations. To acquire knowledge on Fourier transforms. To be familiar with Z-transform to solve difference equations.											
UNIT – I FOURIER SERIES				9 Per	riods						
Dirichlet's Conditions – General Fourier series – Odd and even function	•	Sine an	d Cos	ine ser	ries –						
Root Mean Square Value- Parseval's Identity on Fourier series-Harmo	onic Analysis										
UNIT – II BOUNDARY VALUE PROBLEMS											
Classification of PDE – Method of separation of variables - Fourier s	eries solutions of	of one d	limens	sional v	wave						
equation - One dimensional equation of heat conduction - Steady star	te solution of tv	vo dime	nsiona	al equ	ation						
of heat conduction (Infinite Stripes in cartesian coordinates only).											
UNIT – III LAPLACE TRANSFORMS				9 Per							
Laplace transform – Sufficient condition for existence – Transform of	elementary fun	ctions –	- Basic	e prope	erties						
-Transforms of derivatives and integrals of functions - Derivatives and	•										
unit step function and impulse functions - Transform of periodic t											
Statement of Convolution theorem – Initial and final value theorems			linary	differe	ential						
equation of second order with constant coefficients using Laplace trans	sformation tech	niques.									
UNIT – IV FOURIER TRANSFORMS				9 Per	riods						
Statement of Fourier integral Theorem - Fourier transform pair-I	Fourier Sine ar	nd Cosi	ne Tr	ansfori	ms –						
Properties – Transforms of Simple functions – Convolution Theorem – Parseval's Identity.											
				9 Pei	riode						
UNIT - V Z TRANSFORMS											
Z-transforms - Elementary properties -Convergence of Z-transform				theore	ms -						
11 A 1 M-5-4W (S-4W)				theore	ms -						
Z-transforms - Elementary properties -Convergence of Z-transform	n– Formation o	f differ	ence o	theore	ms -						

1	Veerarajan. T., "Transforms and partial Differential equations", Tata McGrawHill Publishing Co., New
	Delhi. 2015.
2	B.S.Grewal., "Higher Engineering Mathematics", Khanna Publishers, NewDelhi, 44 th Edition, 2018.

REFERENCES

1	Kandasamy, Thilagavathy and Gunavathy., "Engineering Mathematics" for III Semester, S. Chand & Co,
	Ramnagar, New Delhi.
2	N.P.Bali and Manish Goyal., "Transforms and partial Differential equations", University Science Press,
	New Delhi, 2010.
3	Veerarajan T., "Engineering Mathematics" for Semester I&II, Tata McGraw Hill Education (India) Pvt.
	Ltd., New Delhi, Third Edition 2012.
4	Erwinkreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & Sons, 2006.

COURS	SE OUTCOMES:	Bloom's Taxonomy
On com	pletion of the course, the students will be able to:	Mapped
CO1	Express the periodic functions arising in the study of engineering problems as sine and cosine series.	K3
CO2	Solve the Partial Differential Equations arising in engineering problems like Wave, Heat flow and Laplace equation in steady state (Cartesian coordinates) using Fourier series.	К3
CO3	Apply Laplace transform technique to solve the given integral equations and ordinary differential equations.	К3
CO4	Find Fourier Transforms, infinite Fourier Sine and Cosine transforms.	К3
CO5	Apply Z - transform technique to solve difference equations	K3

a) CO and	a) CO and PO Mapping														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	-	1	1	1
CO2	3	2	-	-	-	-	-	-	-	-	-	-	1	1	1
CO3	3	2	-	-	-	-	-	-	-	-	-	-	1	1	1
CO4	3	2	-	-	-	-		004	-	-	-	-	1	1	1
CO5	3	2	-	-	- 60-		2	25	W 2002	0.	-	-	1	2	1
22CBS307	3	2	-	-	- (6	V	2000		1) -	-	-	-	1	1
1 – Slight, 2 – Moderate, 3 – Substantial															

b) CO a	b) CO and Key Performance Indicators Mapping							
CO1	1.1.1, 1.1.2,1.3.1,1.4.1,2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1							
CO2	1.1.1, 1.1.2,1.21, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.4.1							
CO3	1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1							
CO4	1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1							
CO5	1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.4.1							

ASSESSMENT	ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %					
Category*												
CAT1	20	30	50	-	-	-	100					
CAT2	20	30	50	-	-	-	100					
Individual				-	-	-						
Assessment 1/ Case Study 1/ Seminar 1/ Project1	20	30	50				100					
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	20	30	50	-	-	-	100					
ESE	20	30	50	-	-	-	100					

22CES307	MES	TER	ш									
PREREQUI	SITES	CATEGORY	L	T	P	С						
NIL												
Course Objectives To impart the knowledge on properties and behavior of fluid at static and dynamic conditions solve various fluid flow problems.												
UNIT – I	BASICCONCEPTS ANDFLUIDSTATICS				9 P	eriods						
Properties of	f fluids- Density, specific gravity, viscosity, surface tens	sion, capillarity,	, comp	oressi	bility	, bulk						
modulus. Flu	id statics - Pascal's Law - Pressure measurement - Manon	neters. Hydrosta	tic for	ces o	n pla	ne and						
curved surfac	ees -Stability of floating bodies - Buoyancy-Metacentre and	metacentric heig	ght-sim	ple p	roble	ms.						
UNIT – II	PRINCIPLES OF MASS					Periods						
Eulerian Vs.	Lagrangian descriptions - Classification of fluid flow - S	tream line, patl	h line	and	streak	dine –						
Continuity e	quation - Velocity - Acceleration of a fluid particle - tar	ngential, normal	l, loca	land	conv	ective						
acceleration-	Velocity potential and stream functions - Free and Forced vo.	rtex flow.										
UNIT – III	PRINCIPLE OF ENERGY				9 P	eriods						
Energy and	its forms, Energy equation - Euler's and Bernoulli's eq	uation – Appli	cation	s - V	/entu	rimeter,						
Orificemeter	and Pitot tube - Flow over Notches and Weirs.											
	FLOW THROUGH CONDUITS					eriods						
Laminar flow	in pipes and between parallel plates - Hagen Poiseuille eq	uation for flow	throug	h cire	cular	pipes -						
Turbulent flo	w - Reynolds experiment - Frictional loss in pipe- Darcy - V	Weisbach equati	on - H	ydro	dynar	nically						
smooth and rough boundaries, velocity distributions for turbulent flow in smooth and rough pipes.												
UNIT - V BOUNDARY LAYER AND FLOW AROUND IMMERSED BODIES 9 Periods												
Boundary lay	yer - Definition - Boundary layer thickness - Displacement	nt, energy and	mome	ntum	thick	mess -						
Boundary lay	er separation - Flow around immersed objects - Drag and lift	on immersed b	odies -	- Mag	gnus e	effect.						
Contact Peri	Contact Periods: Lecture:45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods											

- 1 R.K.Bansal, "Fluid Mechanics and Hydraulic Machines", LaxmiPublications(P)Ltd., NewDelhi, 2019.
- P.N.ModiandS.M.Seth, "HydraulicsandFluidMechanics,IncludingHydraulicMachines", StandardBookHous e, NewDelhi, 2015.

REFERENCES:

1	K.L.Kumar, "EngineeringFluid Mechanics", Eurasia Publishing House(P)Ltd., New Delhi, 2020.
2	R.K.Rajput, "A Text Book of Fluid Mechanics and Hydraulic Machines", S.Chand and Company,
	NewDelhi, 2015.
3	A.K.Jain, "Fluid Mechanics", Khanna Publishers, New Delhi, 2021.
4	M.K.Natarajan" Principles of Fluid Mechanics ", Anuradha Agencies,Vidayal Karuppur,Kumbakonam,
	2008

COUR	SE OUTCOMES:	Bloom's			
		Taxonomy			
On completion of the course, the students will be able to:					
CO1	Identify the properties of fluids and fluid statics	K2			
CO2	Apply the continuity equation for solving fluid flow problems.	K3			
CO3	Apply the principles of Euler's equation and Bernoulli's equation in real situation of	K3			
	fluid problems				
CO4	Examine the fluid flow behavior for laminar and turbulent flows.	K3			
CO5	Analyze the boundary layer separation drag and lift on immersed bodies.	K3			

a) CO a	nd PO	Map	ping												
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO	PSO3
POs														2	
CO1	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
CO2	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
CO3	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
CO4	3	2	1	1	1	1	-	-	-	-	1	-	2	1	-
CO5	3	2	1	1	1	-	-	-	-	-	-	-	2	-	-
22CES	3	2	1	1	1								2		
307	3	2	1	1	1	-	-	-	-	_	-	-	2	-	_
1 – Sligh	t, 2 - 1	Modera	ate, 3 –	- Subst	antial										
b) CO a	nd Key	y Perfo	orman	ce Ind	icator	s Map	ping								
CO1	1.1.2	1.2.1,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	2.2.2, 2	2.3.2, 2	2.4.1, 3.	1.1, 3.2	.1, 3.2.3	3, 4.1.4,	5.3.1	
CO2	1.1.2	1.2.1,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	2.2.2, 2	2.3.2, 2	2.4.1, 3.	1.1, 3.2	.1, 3.2.3	3, 4.1.4,	5.3.1	
CO3	1.1.2	, 1.2.1,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	2.2.2, 2	2.3.2, 2	2.4.1, 3.	1.1, 3.2	.1, 3.2.3	3, 4.1.4,	5.3.1	
CO4	1.1.2	1.2.1,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	2.2.2, 2	2.3.2, 2	2.4.1, 3.	1.1, 3.2	.1, 3.2.3	3, 4.1.4,	5.3.1	
CO5	1.1.2.	1.2.1,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	$2.\overline{2.2, 2}$	$2.\overline{3.2, 2}$	2.4.1, 3.	1.1, 3.2	.1, 3.2.3	3, 4.1.4,	5.3.1	

Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	7/			100
CAT2	40	40	20	- //			100
Individual Assessment 1 / Case Study 1/ Seminar 1/ Project1	40	40	20				100
Individual Assessment 2 / Case Study 2/ Seminar 2/ Project 2	40	40	20				100
ESE	40	40	20				100

22CES308	ENGINEERING GEOLOGY		9	SEM	EST	ER III
PREREQUIS	ITES	CATEGORY	L	T	P	C
	NIL	ES	3	0	0	3
Course Objectives	This course will familiarize the students on the ro engineering, apart from learning the methods of surf geological, geophysical and remote sensing methods.					
UNIT – I	INTRODUCTION AND GEOMORPHOLOGY				9	Periods
composition — their Engineer	ip between Geology and civil engineering — Branch Concept of Plate tectonics, Geological processes, agents ing significance - Volcano — Landforms, Materials and ock — Geological work of ground water.	and kinds – Weath	nerin	g, w	ind, r	ivers and
UNIT – II	MINERALOGY				g	Periods
Felspar family Coal and Oil at UNIT – III Formation of 1	Chemical properties of minerals – Study of the following, Biotite, Muscovite, Calcite, Magnesite, Ore minerals – and natural gas – Clay minerals – Properties and their ecor PETROLOGY AND GEOTECHNICAL PROPERT Igneous rocks, Sedimentary rocks and Metamorphic rocks	Hematite, Magne nomic uses. IES OF ROCKS eks, Texture and S	tite,	Bau ture,	xite, 0 9 Class	Graphite, Periods Sification
Sandstone, Lir Marble, Slate,	ng properties of Granite, Pegmatite, Dolerite and Basalt., nestone and Shale. Agents, kinds and Engineering proper Gneiss and schist. Influence on strength of rocks. Roca, QD), Geological Strength Index (GSI).	erties of metamor	phic	rocl	ks - (Quartzite,
UNIT – IV	STRUCTURAL GEOLOGY & ELEMENTS OF SE	ISMOLOGY			9	Periods
Structural featu Seismic waves	ds Dip and Strike - Uses of Clinometer compass - Ourses - Folds, Faults and Joints - their engineering signification and seismographs, Elastic rebound theory, Mercelli's equake Zones in India -Engineering Considerations.	cance Earthquake	es –	Caus	es an	d effects,
UNIT – V	GEOLOGICAL INVESTIGATIONS FOR ENGINE STRUCTURES AND GEOHAZARDS	ERING			9	Periods
Geophysical in	restigations pertaining to the constructions of Dam and eventions - Seismic and electrical resistivity method vention - Sea erosion and coastal protection, Tsunami -	ds and data interp	oreta	tion.	Land	dslides –

Contact Periods: Lecture: 45 Period

- 1 Parbin Singh, "Engineering and General Geology", Katson Publication House, 2015.
- 2 Varghese, P.C., "Engineering Geology for Civil Engineering" PHI Learning Private Limited, New Delhi, 2012.

Tutorial: 0 Period

Practical: 0 Period

Total: 45 Periods

REFERENCES.

	K	EFERENCES:
-	1	F.G.Bell. "Fundamentals of Engineering Geology", B.S. Publications. Hyderabad 2011.
	2	N. Chenna Kesavulu. "Textbook of Engineering Geology", Macmillan India Ltd., 2009.
	3	A.B.Roy , "Fundamentals of Geology", Narosa Publication, 2010.
	4	S.M.Mathur, "Elements of Geology", PHI learning private limited New Delhi 2011.
	5	Bangar.K.M, "Principles of Engineering Geology", Standard Publishers & Distributors, 1705-B, Naisarak,
		Delhi,2010.

	SE OUTCOMES: apletion of the course, the students will be able to:	Bloom's Taxonom yMapped
CO1	Know the internal structure of earth and its relation to volcanism and the various geological agents.	K2
CO2	Identify the properties and uses of Minerals.	K1
CO3	Identify the formation and Engineering properties of rocks.	K2
CO4	Apply fundamental knowledge in structural geology like fault, fold and Joints	К3
CO5	Use all the geological knowledge in design and construction of major civil engineering structures, in addition to mitigating geological hazards such as earthquakes, landslides and Tsunami that affect civil engineering structures.	K2

a) CO a	nd PO	Mapp	ing												
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	2	-	-	-	-	-	1	-	-	-	-	-	1	2	-
CO2	2	-	-	-	-	-	-	-	-	-	-	-	1	1	-
CO3	2	-	-	-	-	1	-	-	-	3	-	-	1	2	-
CO4	-	1	-	3	-	1	1	2	-	3	1	1	1	2	-
CO5	-	1	1	3	1 2	2	2	2	1	<u> </u>	1	1	1	2	-
22CES	2	1	1	3	1		0.00	2		3	1	1	1	2	
308		1	1	3	1) 3	1	1	1	2	-
1 – Sligh	t, 2-N	/Iodera	te, 3 –	Substa	ntial				-1						
b) CO ar	nd Key	Perfo	rmano	e Indi	cators	Mapp	ing	77	7	7					
CO1	1.2.1,	1.3.1,1	.2.2,1.	4.1,2.1	.2,3.1.	1,7.1.1	,7.1.2	_/	1	53					
CO2	1.3.1,	1.2.1,2	2.1.2,2.	2.2,3.1	.1,7.1.	1,7.1.2			12/	N .					
CO3	1.2.1,	1.2.1,2.1.2, 2.2.2,3.1.1, 3.1.5, 6.1.1,6.2.2,7.1.1, 7.1.2													
CO4	1.3.1,	1.3.1,2.1.2,3.1.5 ,6.1.1,6.2.2,7.1.1,7.1.2,7.2.2,9.1.1													
CO5	1.3.1.	1.4.1,2	2.1.2,3.	1.1,6.1	.1,6.2.	2,7.1.1	, , 7.1.	2,7.2.2	9.1.1	k.					

		600		A199			
ASSESSMENT	PATTERN - TI	HEORY					
Test / Bloom's	Rememberin	Understanding	Applying	Analyzing	Evaluatin	Creating	Total
Category*	g (K1) %	(K2) %	(K3) %	(K4) %	g (K5) %	(K6) %	%
CAT1	50	50					100
CAT2	40	40	20				100
Individual	40	40	20				100
Assessment 1/							
Case Study 1/							
Seminar 1/							
Project1							
Individual	40	40	20				100
Assessment 2/							
Case Study 2/							
Seminar 2/							
Project 2							
ESE	40	40	20				100

22CPC301	MECHANICS OF SOLIDS I		SI	MES	TER	III
PREREQUISI	TES	CATEGORY	L	T	P	C
ENGIN	EERING MECHANICS	PC	3	0	0	3
Course	To understand the concepts and the behavior of Engineer	ing materials un	der the	actio	on of a	axial,
Objectives	bending and twisting forces in order to evaluate the streng	gth of the materia	ls.			
UNIT – I	STRESS, STRAIN AND DEFORMATION OF SOLII	OS			9 Per	riods
Steel, Concrete	Mechanical properties of materials – Hooke's law – Stres – Principle of superposition - Deformation of simple, ic constants - Volumetric strains – Thermal Stresses and	compound bars	and 1	oars c	of Va	rying
	nce – Stresses due to Impact and Suddenly Applied Lo					
	due to internal pressure.					
UNIT – II	SHEAR FORCE AND BENDING MOMENT IN BEA	MS			9 Per	riods
Beams and Bene	ding – supports and loads - Shear Force and Bending Mon		r dete	rmina		
	ween Rate of Loading, Shear Force, Bending Moment – Po	U				
UNIT – III	BENDING AND SHEAR STRESSES IN BEAMS				9 Per	riods
Theory of Simp	ole Bending – Analysis of Beams for Stresses - Stress I	Distribution at a	Cross	Sect	ion di	ue to
Bending Mome	nt and Shear Force for determinate beams - Flitched Be	ams - Combine	d Dire	ect an	d Ber	nding
Stresses - Cond	ition for No Tension in a section – Strain Energy due to Fl	exure, Transvers	e Shea	ar - S	hear S	tress
Distribution.						
UNIT – IV	TORSION				9 Per	riods
Theory of Tors	ion - Stresses and Deformations in Solid and Hollow C	ircular Shafts –	Strair	Ene	rgy dı	ue to
Torsion - Com	pined bending moment and torsion of shafts - Power tran	nsmitted to shaft	- Sh	aft in	series	and
parallel – Closed	d and Open Coiled helical springs - Leaf Springs - springs	in series and par	allel.			
UNIT – V	COMPLEX STRESSES AND TRUSS				9 Per	riods
State of Stress	in two dimensions - Stresses on inclined planes - Prir	cipal Stresses a	nd Pri	ncipa	1 Plar	ies –
Maximum shear	stress-Principal Strains and Direction - Mohr's circle met	hod.				
Analysis of pin	jointed plane determinate trusses by method of joints and	method of section	ns – A	nalys	is of s	space
truss by tension	coefficient method.					
Contact Period	s: Lecture: 45 Periods Tutorial: 0 Periods Practical:	0 Periods To	tal: 4	5 Peri	oho	

- 1 Rajput R.K. "Strength of Materials (Mechanics of Solids", S.Chand & company Ltd., New Delhi, 7th edition, 2018.
- 2 Rattan S.S., "Strength of Materials", Tata McGraw Hill Education Pvt .Ltd., New Delhi, 2017.

REFERENCES:

Singh. D.K., "Strength of Materials", Ane Books Pvt Ltd., New Delhi, 2021.
 Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2015.
 Beer. F.P. & Johnston. E.R. "Mechanics of Materials", Tata McGraw Hill, 8th Edition, New Delhi 2019.
 Vazirani. V.N, Ratwani. M.M, Duggal .S.K "Analysis of Structures: Analysis, Design and Detailing of Structures-Vol.1", Khanna Publishers, New Delhi 2014.

COUR	RSE OUTCOMES:	Bloom's
		Taxonomy
On cor	mpletion of the course, the students will be able to:	Mapped
CO1	Describe the fundamental concepts of stress, strain and their deformations under axial loads.	K2
CO2	Draw shearforceandbending momentdiagrams for different loadings on the determinate beams	K3
CO3	Sketch the distribution of stresses for various cross sections subjected to transverse loadings.	K3
CO4	Apply elastic theory of torsion in designing of shafts and helical springs.	K3
CO5	Analyse the determinate trusses and 2D stress elements.	К3

COCKE INTICCENTION MITHIN.															
a) CO a	nd PO	Mapp	oing												
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	0	0	0	0	0	0	0	0	0	3	3	2
CO2	3	2	1	1	0	0	0	0	0	0	0	0	3	3	2
CO3	3	3	1	1	0	0	0	0	0	0	0	0	3	3	2
CO4	3	3	1	0	0	0	0	0	0	0	0	0	3	3	2
CO5	3	2	1	1	0	0	0	0	0	0	0	0	3	3	2
22CPC	3	3	1	1	0	0	0	0	0	0	0	0	3	3	2.
301	3	י	1	1	U	U	U	U	U	U	U	U	3	3	
1 – Sligh	t, 2 - N	/Iodera	te, 3 –	Substa	ntial										
b) CO aı	nd Key	Perfo	rmano	e Indi	cators	Mapp	ing								
CO1	1.1.1,	1.2.1,	1.3.1,1	.4.1,2.	1.1,2.1	.2,2.1.	3,2.2.1	,2.2.3,2	2.3.1,2.	3.2,2.4.	1,3.1.1,3	3.1.3,3.2	2.1,3.4.1		
CO2	1.1.1,	1.2.1,	1.3.1,1	.4.1,2.	1.1,2.1	.2,2.1.	3,2.2.1	,2.2.3,2	2.3.1,2.	4.1,2.4.	4,3.1.1,3	3.1.3,3.2	2.1,3.4.1	,4.3.3	
CO3	1.1.1,	1.2.1,	1.3.1,1	.4.1,2.	1.1,2.1	.2,2.1.	3,2.2.1	,2.2.3,2	2.3.1,2.	3.2,2.4.	1,2.4.4,3	3.1.1,3.1	1.3,3.2.1	,3.4.1,4.	.3.3
CO4	1.1.1,	1.2.1,	1.3.1,1	.4.1,2.	1.1,2.1	.2,2.1.	3,2.2.1	,2.2.3,2	2.3.1,2.	3.2,2.4.	1,2.4.4,3	3.1.1,3.1	1.3,3.2.1	,3.4.1	
CO5	1.1.1,	1.2.1,	1.3.1,1	.4.1,2.	1.1,2.1	.2,2.1.	3,2.2.1	,2.2.3,2	2.3.1,2.	3.2,2.4.	1,,3.1.1,	3.1.3,3.	2.1,3.4.1	1,4.3.3	

ASSESSMENT	T PATTERN – T	THEORY	evenous.				
Test / Bloom's	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Tota 1 %
Category*		99	AND THE PARTY OF				
CAT1	20	80					100
CAT2	20	80	Ja Pa				100
Individual	10	90		: If			100
Assessment 1/							
Case Study 1/		// A		1			
Seminar 1 /		1 8	ALIE STATE OF THE	11			
Project1		a g		N.			
Individual	10	90		763			100
Assessment 2/							
Case Study 2/		4000	000	1500			
Seminar 2/		180	Vb .800	37			
Project 2							
ESE	20	80					100

22CPC302	CONSTRUCTION MATERIALS AND TECH	INOLOGY	S	EME	STE	R III		
PREREQUISI	TES	CATEGORY	L	T	P	C		
	NIL	PC	2	0	2	3		
Course Objectives	To learn the properties, applications and testing proceder construction practices for different types of structural elements.		ion 1	nater	ials a	nd the		
UNIT – I	CONSTRUCTION MATERIALS			(6+6 p	eriods		
Properties, com	ition, types and tests: Stones – Bricks – Hollow blocks - Concrete- Timber – Wood products							
- Structural steel and high tensile steel - Ferrous and non ferrous metal - Glass - Polymer products - Green								

UNIT – II MASONRY AND PLASTERING

6+6 periods

Stone masonry – Brick masonry – Composite masonry – Types of wall – Arches and Lintels. Plastering - Materials and Methods of plastering – Types of plastering – Tools for plastering – Preparation and uses of cement mortar–Defects in plastering–pointing.

UNIT – III FLOORING AND ROOFING

6+6 periods

Floors – Requirements of good floor – Floor finishing materials – Classifications – Terrazzo flooring – Cement concrete flooring–Suitability of floors for various applications. Damp Proof Course– Causes and effect of dampness – Materials and Methods of damp proofing – Anti-termite treatment.

Roofs-Roofing materials - Requirements - Types - Pitched roof - Flat roof - Flat and Ribbed slab. Ramps and Escalators.

UNIT – IV DOORS, WINDOWS AND PAINTING

6+6 periods

Doors and Windows-Types - Fixtures and Fastening - Ventilators.

Painting – Paints and painting – Classification of paints – Painting on new and old surfaces of steel, timber and masonry wall –Defects in painting.

UNIT - V CONSTRUCTION PRACTICES

6+6 periods

Centering and shuttering – Formwork – Scaffolding – Plumbing Services.

Market forms of steel – Fabrication and erection of steel trusses – Frames – Launching girders. Housing Modernization – Construction of tall structures – Lift modernization – Automation in construction – Introduction to sustainable practices – Concept of carbon footprint.

Contact Periods: Lecture: 30 Periods Tutorial: 0 Periods Practical: 30 Periods Total: 60 Periods

TEXT BOOKS:

materials.

- 1 Punmia.B.C, Ashok Kumar Jain and Arun Kumar Jain, "Building construction", Laxmi Publications Pvt.Ltd., 2016.
- 2 Bindra.S.P and Arora.S.P, "Building construction", Dhanpat Rai Publication Pvt.Ltd., 2010.

REFERENCES:

Edward Allen, Joseph Iano, "Fundamentals of Building Construction: Materials and Methods", Wiley Publishers, 2014.
 Maden Mehta, "Building Construction", Pearson Education Publishers, 2016.
 Varghese P.C., "Building Construction", Prentice Hall of India, 2012.
 Rangwala, "Building construction", Charotar Publishing House Pvt.Ltd., 2016.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
On co	impletion of the course, the students will be able to:	Mapped
CO1	Select the suitable materials for building construction	K2
CO2	Acquire knowledge on different masonry and plastering works.	K2
CO3	Select the suitable type of floors, roofs, stairs and dampness preventing methods for	K2
	practical applications.	
CO4	Apply knowledge for selection of doors, windows paints and materials for buildings.	K2
CO5	Know the different construction practices existing in construction field.	K2

	SOUNDE TIME TO THE														
a) CO and	a) CO and PO Mapping														
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO1	3	2	1	1	0	3	3	3	2	2	0	3	2	2	2
CO2	3	1	1	1	0	3	3	3	2	2	0	3	2	1	2
CO3	3	1	1	1	0	3	3	3	2	2	0	3	2	1	2
CO4	3	1	1	1	0	3	3	3	2	2	0	3	2	1	2
CO5	3	2	1	1	1	3	3	3	3	2	0	3	2	1	2
22CPC3	2	2	1	1	1	2	2	2	2	2	0	2	2	2	
02															
1 – Slight, 2 – Moderate, 3 – Substantial															
b) CO and	Key I	Perfori	mance	Indic	ators I	Mappi	ng								
CO1	1.	2, 1.3,	1.4, 2.	1, 2.2,	2.4, 3.	1, 3.2,	3.4, 4.	.1, 4.3,	6.1, 6	.2, 7.1,	7.2, 8.1	, 8.2, 9.	1, 9.2, 1	0.1, 10.	2,
	10).3, 12.	1, 12.2	2, 12.3											
CO2	1.	2, 1.3,	1.4, 2.	1, 2.2,	2.4, 3.	1, 3.2,	3.4, 4.	.1, 4.3,	6.1, 6	.2, 7.1,	7.2, 8.1	, 8.2, 9.	1, 9.2, 1	0.1, 10.	2,
	10	0.3, 12.	1, 12.2	2, 12.3											
CO3	1.	2, 1.3,	1.4, 2.	1, 2.2,	2.4, 3.	1, 3.2,	3.4, 4.	.1, 4.3,	6.1, 6	.2, 7.1,	7.2, 8.1	, 8.2, 9.	1, 9.2, 1	0.1, 10.	2,
	10	0.3, 12.	1, 12.2	2, 12.3											
CO4	1.	2, 1.3,	1.4, 2.	1, 2.2,	2.4, 3.	1, 3.2,	3.4, 4.	.1, 4.3,	6.1, 6	.2, 7.1,	7.2, 8.1	, 8.2, 9.	1, 9.2, 1	0.1, 10.	2,
	10	0.3, 12.	1, 12.2	2, 12.3											
CO5	1.	2, 1.3,	1.4, 2.	1, 2.2,	2.4, 3.	1, 3.2,	3.4, 4.	.1, 4.3,	6.1, 6	.2, 7.1,	7.2, 8.1	, 8.2, 9.	1, 9.2, 1	0.1, 10.	2,
	1.0	2 12	1 12 2	122			Cel	· ·							

		Cy	Saute Mr.	(ST)							
ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %				
Category*	8 ()	3 \ /			8 \ /	,					
CAT1	40	60		. //			100				
CAT2	40	60	a Since				100				
Individual	40	60					100				
Assessment 1/		A	S.	1/2							
Case Study 1/		998	10	260							
Seminar 1 /											
Project1			100	DIS110							
Individual	40	60	200				100				
Assessment 2/											
Case Study 2/											
Seminar 2 /											
Project 2											
ESE	40	60					100				

22CPC30	SURVEYING		SE	SEMESTER III				
PREREQUIS	ITES	CATEGORY	L	T	P	C		
NIL	L PC					3		
Course Objectives								
UNIT – I	INTRODUCTION, CHAIN SURVEYING AND COMP SURVEYING		9 Periods					

Definition- Principles - Classification - Field and Office work - Scales - Conventional Signs.

Chain Survey - Instruments - Ranging - Types - Obstacles in Chaining - Chain and Tape corrections - Setting out Perpendiculars.

Prismatic Compass – Surveyor's Compass – Working and use of compass - Bearing – Systems and Conversions – Computation of angles from bearing - Local Attraction - Magnetic Declination – Dip – Traversing – Adjustment of error.

UNIT – II LEVELLING AND CONTOURING

9 Periods

Basic Terms - Types of Level – Fundamental Axes - Levelling staff – Bench Marks – Temporary and Permanent Adjustments – Types of Levelling - Curvature and Refraction correction – Reciprocal Levelling – Calculation of Areas and Volumes.

Contouring – Characteristics and Uses of Contours – Methods of contouring.

UNIT – III THEODOLITE SURVEYING AND TACHEOMETRIC SURVEYING

9 Periods

Theodolite – types – Terms - Temporary and Permanent Adjustments – Measurement of Horizontal Angles by Repetition and Reiteration – Closing Error and Distribution – Omitted measurements. Tacheometric surveying – Stadia method - fixed hair method - Determination of constants of the tacheometer - use of anallactic lens - distance and elevation formula for inclined sights with vertical and normal holding staff – movable hair method - Tangential method - subtense bar method.

UNIT – IV CURVES AND HYDROGRAPHIC SURVEYING

9 Periods

Simple curves – elements - Setting out of curves - Linear and angular methods - Compound and Reverse curves - elements.

Shore line survey—Sounding—Equipments—Locating Sounding-Reduction.

UNIT – V TRIANGULATION AND MODERN SURVEYING INSTRUMENTS

9 Periods

 $Vertical \ and \ horizontal \ control \ - \ Triangulation-classification - Intervisibility \ - \ Triangulation \ Figures - \ Strength \ of figure \ - Signals \ and \ Towers \ - \ Base \ line \ measurements \ - \ Satellite \ stations \ and \ reduction \ to \ centre.$

Trigonometrical Levelling - Geodetical observations - Curvature correction - Refraction correction - Axis signal correction - Difference in elevation.

Total Station – Principle – classification - working. Applications of Drone Surveying.

GPS - Developments - Basic Concepts - Segments - Applications.

Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOKS:

- 1 Punmia B.C, Ashok K Jain, Arun K Jain. "Surveying, Vol. I &II", Lakshmi Publications, 2017.
- 2 Kanetkar.T.P,and Kulkarni.S.V, "Surveying and Levelling, Vol. I & II", Pune Vidyarthi Griha Prakashan,2014.

REFERENCES:

1 Basak N.N, "Surveying and Levelling", Tata McGraw-Hill, Publishing Company, 2nd edition,2014.

2 BhavikattiS.S, "Surveying and Levelling, Vol.1&II", I.K. International Pvt. Ltd., 2010.

3 Duggal S.K. "Surveying, Vol.1&II", Tata McGraw-Hill Publishing Company,2017.

4 Charles D Ghilani, Paul R Wolf., "Elementary Surveying", Prentice Hall,2012.

5 Chandra A.M., "Plane Surveying", New Age International Pvt. Ltd, 2015.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
On con	npletion of the course, the students will be able to:	Mapped
CO1	Calculate linear and angular measurements using compass and chain.	K2
CO2	Interpret level data using different types of levelling techniques and plot contour map by various contouring methods.	K2
CO3	Determine the horizontal distances, vertical distances and area by using theodolite and tacheometer.	К3
CO4	Set out the curves using survey instruments and apply the principles of hydrographic surveying.	К3
CO5	Execute triangulation method, Trigonometric levelling and apply modern surveying principles and techniques.	K2

COURSE ARTICULATION MATRIX:															
a) CO	and PO	Mapp	ing												
COs/P	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
Os															
CO1	2	3	-	3	3	-	-	-	-	-	-	2	1	2	2
CO2	2	3	•	3	3	-	-	-	•	-	-	2	-	2	2
CO3	3	3	-	3	3	-	-	-	-	-	-	2	-	2	2
CO4	3	3	-	3	3	-	-	-	-	-	-	2	1	2	2
CO5	3	3	-	3	3	-	-	544 5 50	-	-	-	2	1	2	2
22CP C303	3	3	-	3	3	7.51	1	0 3	12.00	·@ -	-	2	1	2	2
1 – Slig	ht, 2 – N	/lodera	te, 3 –	Substa	ntial	V		Tree?	5 <u>6</u> (V			<u> </u>	<u> </u>		l .
b) CO a	and Key	Perfo	rmano	e Indi	cators	Mapp	ing		-1						
CO1	1.1.2,	1.2.1,	1.3.1,1	.4.1,2.	1.1,2.1	.2,2.1.3	3,2.2.1	,2.2.2,	2.2.3, 2	2.4.1, 2.	4.2, 2.4	.3, 4.1.1	, 4.1.2,	4.1.3, 4.	1.4,
	4.2.1,	4.2.2,	4.3.1,4	1.3.2, 4	.3.3, 4	.3.4, 5.	1.1, 5.	1.2, 5.2	2.1, 5.2	.2, 5.3.1	, 5.3.2,	12.2.1,	12.2.2,	12.3.1, 1	12.3.2
CO2	1.1.2.	1.2.1,	1.3.1,1	.4.1,2.	1.1,2.1	.2,2.1.3	3,2.2.1	2.2.2.	2.2.3, 2	2.4.1, 2.	4.2, 2.4	3, 4.1.1	, 4.1.2,	4.1.3, 4.	1.4,
	4.2.1,	4.2.2,	4.3.1,4	4.3.2, 4	.3.3, 4	.3.4, 5.	1.1, 5.	1.2, 5.2	2.1, 5.2	.2, 5.3.1	, 5.3.2,	12.2.1,	12.2.2,	12.3.1, 1	12.3.2
CO3						- 10	0.18	TALL STREET				-	, 4.1.2,		
		-		-	-	1.0	ALPA -		1				12.2.2,		
CO4							10.00						, 4.1.2,		
	4.2.1,	4.2.2,	4.3.1,4	1.3.2, 4	.3.3, 4	.3.4, 5.	1.1, 5.	1.2, 5.2	2.1, 5.2	.2, 5.3.1	, 5.3.2,	12.2.1,	12.2.2,	12.3.1, 1	12.3.2
CO5													, 4.1.2,		
			,				ALL I SPECIAL PROPERTY.	C 3 Cult-Care 10	ACCUPATION OF THE PARTY OF THE	4.00	,		12.2.2,		

ASSESSMENT I	PATTERN – TH	EORY					
Test / Bloom's Category*	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6)	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1/ Case Study 1/ Seminar 1/ Project1	40	40	20	-	-	-	100
Individual Assessment 2/ Case Study 2/ Seminar 2/ Project 2	40	40	20	-	-	-	100
ESE	40	40	20	-	-	-	100

22CES309	MATERIALS TESTING LABORATOR	YY	SEMESTER III						
PREREQUIS	ITES	CATEGORY	L	T	P	C			
	NIL ES								
NIL ES 0 0 3 1. Course Objectives To deal with experimental determination and evaluation of mechanical characteristics and behaviour of construction materials and to familiarize experimental procedures and common measurement instruments, equipment and devices.									
	LIST OF EXPERIMENTS								

- LIST OF EAFERIVIENTS
- 1. Mechanical properties of mild steel rod as per IS Code 1608 (2005)
- 2. Mechanical properties of tor steel rod as per IS Code 1786 (2008)
- 3. Weight per running metre of steel rod
- 4. Tension and compression test on springs.
- 5. Test on Bricks: Visual observation, Compression test, Water absorption test and Efflorescence test as per IS 3495-1 to 4 (1992)
- 6. Hardness test on different metals.
- 7. Deflection test on simply supported beams (for different metals).
- 8. Deflection test on cantilever beams (for different metals).
- 9. Bending test on rolled steel joist
- 10. Flexure test on tiles
- 11. Charpy and Izod Impact Test
- 12. Compression test on Hallow/Concrete Blocks

Contact Periods: Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

COU	RSE OUTCOMES:	Bloom's
	東	Taxonomy
On co	ompletion of the course, the students will be able to:	Mapped
CO1	Determinethetensilestrength ofmaterials	K3
CO2	Obtain bending properties of structural materials	K3
CO3	Determinethehardness propertiesofthematerials	K3
CO4	Predict the compressive strength of the materials	K3
CO5	Obtaintheimpact andtorsionalstrengthofthematerials	K3

a) CO	and PC) Map	ping												
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO 3
CO1	2	-	1	3	-	1	-	-	1	ı	-	-	1	1	ı
CO2	2	-	1	3	-	•	-	-	1	1	-	-	1	1	ı
CO3	2	-	1	3	-	•	-	-	1	1	-	-	1	1	ı
CO4	2	-	1	3	-	1	-	-	ı	ı	-	-	1	1	ı
CO5	2	-	1	3	-	1	-	-	ı	ı	-	-	1	1	ı
22CE S309	2	-	1	3	-	-	-	-	-	-	-	-	1	1	-
1 – Slig	ght, $2-1$	Modera	ate, 3 -	- Subst	antial										
b) CO	and Ke	y Perf	orman	ce Ind	licator	s Map	ping								
CO1	1.3.1	,1.4.1	,3.1.4,4	4.1.1,4	.1.2,4.	1.3,4.1	.4,4.2.	1							
CO2	1.3.1	,1.4.1	,3.1.4,4	4.1.1,4	.1.2,4.	1.3,4.1	.4,4.2.	1							
CO3	1.3.1	,1.4.1	,3.1.4,4	4.1.1,4	.1.2,4.	1.3,4.1	.4,4.2.	1							
CO4	1.3.1	1.3.1,1.4.1 ,3.1.4,4.1.1,4.1.2,4.1.3,4.1.4,4.2.1													
CO5	1.3.1	,1.4.1	,3.1.4,4	4.1.1,4	.1.2,4.	1.3,4.1	.4,4.2.	1							

22CPC304	SURVEY LABORATORY		S	SEMESTER III					
PREREQUISI	PREREQUISITES CATEGORY								
N]	NIL PC								
Course Objectives	Course To deal with different surveying methods and measure the distances,								

LIST OF EXPERIMENTS

- 1. Chain Surveying Open and Closed Traversing
- 2. Compass Surveying Intersection method
- 3. Compass Surveying Traversing
- 4. Plane table surveying –Introduction- Intersection method
- 5. Levelling –Differential Levelling and Fly Levelling
- 6. Measurement of horizontal angles by Repetition and Reiteration methods.
- 7. Height and Distance Single Plane method and Double Plane method.
- 8. Tacheometric Surveying Stadia, Tangential method and Subtense bar method
- 9. Total Station Surveying.
- 10. Setting out of foundation and Curves

Contact Periods: Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

	RSE OUTCOMES:	Bloom's Taxonomy
CO1	mpletion of the course, the students will be able to: Effectively handlethesurveyinginstrumentslikeChain,Compass,planetable,Dumpy level	Mapped K3
COI	and Theodolite.	KJ
CO2	Accurately measuredistances, areas, angles and levels using survey instruments.	K3
CO3	Calculate the levels and distances in the field for various works.	K3
CO4	Setout foundations and curves for various Civil Engineering projects.	K3
CO5	Handle and measure using advanced surveying instruments like Total Station.	K3

a) CO and	a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	-	1	2	-	-	-	-	-	-	-	-	1	1	-
CO2	2	-	1	2	1	-	-	-	-	-	-	-	1	1	-
CO3	2	-	1	2	1	-	-	-	-	-	-	-	1	1	-
CO4	2	-	1	2	1	-	-	-	-	-	-	-	1	1	-
CO5	2	-	1	2	1	-	-	-	-	-	-	-	1	1	-
22CPC30	2	_	1	2	1	_	_	_	_	-	_	_	1	1	-
4			•		•								•	•	
1 - Slight, 2	-Mod	erate, 3	-Subs	stantial											
b) CO and l	Key Pe	rforma	nce In	dicator	s Map	ping									
CO1	1.2.1,	1.3.1,1	.4.1 ,3.	1.1,4.1.	1,4.1.2	,4.1.3,4	.1.4,4.2	2.1.4.3.	1						
CO2	1.2.1,	1.3.1,1	.4.1 ,3.	1.1,4.1.	1,4.1.2	,4.1.3,4	.1.4,4.2	2.1.4.3.	1,5.1.1						
CO3	1.2.1,	1.2.1,1.3.1,1.4.1,3.1.1,4.1.1,4.1.2,4.1.3,4.1.4,4.2.1.4.3.1,5.1.1													
CO4	1.2.1,	1.3.1,1	.4.1 ,3.	1.1,4.1.	1,4.1.2	,4.1.3,4	.1.4,4.2	2.1.4.3.	1,5.1.1						
CO5	1.2.1.	1.3.1.1	.4.1 .3.	1.1,4.1.	1,4.1.2	4.1.3.4	.1.4.4.2	2.1.4.3.	1.5.1.1						

22CES410	APPLIED HYDRAULICS AND FLUIDMACH	INERY	SE	MES	STE	R IV					
PREREQUIS		CATEGORY	L	T	P	C					
MECHA	ANICS OF FLUIDS	ES	3	0	0	3					
Course	To understand the performance of pumps and turbines	, open channel h	ydraul	ics v	vith	different					
Objectives	ves types of flow, dimensional analysis and impulse momentum principle for the performance of										
	hydraulics machines.										
UNIT – I	OPENCHANNELFLOW				9	Periods					
Uniform flow	- Velocity measurement - Manning's and Chezy's form	ula – Roughness	coeff	icier	its -	Critical					
depth and crit	ical velocity - Most economical sections - Wide open cha	nnel - Specific	energ	y cu	rve -	Critical					
flow - Dynam	ic equations of gradually varied flow - Assumptions - Char	racteristics of flo	w prof	iles	- Dra	w down					
and back wate	r curves - Hydraulic jump - Types - Energy dissipation.										
UNIT – II	DIMENSIONALANALYSIS					Periods					
Units and Dir	nensions - Dimensional Homogeneity -Rayleigh's and Bu	ckingham metho	ods – I	Von-	dime	ensional					
numbers – Mo	odel study and Similitude-scale effects and distorted model	- Applications	of mod	els s	tudy.	•					
UNIT – III	MOMENTUMPRINCIPLE	L 11			9	Periods					
_	entum Principle and equation - Impact of Jet – force exerted	No. 100 July 1974 - 1									
surfaces for s	tationary and moving vanes- Angular momentum principl	e - Inlet and ou	tlet ve	locit	y tri	angles –					
Applications of	of impulse momentum principle.										
UNIT – IV	TURBINES	D: 110			9	Periods					
Turbines – Cla	assification – Impulse and Reaction Turbines – Tangential f	low, radial flow	and ax	cial f	low 1	turbines-					
work done an	d efficiency - draft tube and cavitation - Selection of Tur	bines-operating	charac	teris	tic c	urves of					
turbines- Spec	ific speed- Runaway Speed.										
UNIT – V	PUMPS					Periods					
_	sifications of pumps -Centrifugal pump -Work done an	•		-		_					
Suction Head	- Cavitation in Pumps - multistage Pumps. Reciprocati	ng pump -Work	done	and	Effi	ciency -					
negative slip -	air vessels - indicator diagram–Working of Jet Pump and \boldsymbol{s}										
Contact Perio	ods: Lecture: 45 Periods Tutorial: 0 Periods Practic	al: 0 Periods	Total:	45	Peri	ods					

TEXT BOOK

- 1 P.N.Modi and S.N.Seth, "Hydraulics and Fluid Mechanics, Including Hydraulic Machines", Standard Book House, NewDelhi, 2015.
- 2 R.K.Bansal, "Fluid Mechanics and Hydraulic Machines", Laxmi Publications (P) Ltd., NewDelhi, 2018.

REFERENCES

Subramanya K., "Flow In Open channels", Tata McGraw-Hill Publishing Company, 2015.
 S.Ramamurtham and R.Narayanan, "Hydraulics Fluid Mechanics and Fluid Machines" Dhanpat Rai Publishing Company(P) Limited, 2014.
 R.K.Rajput, "A Text Book of Fluid Mechanics and Hydraulic Machines", S.Chand and Company, NewDelhi, 2015.
 D.S.Kumar, "Fluid Mechanics and Fluid Power Engineering", S.K.Kataria & Sons, NewDelhi, 2012.

COU	RSE OUTCOMES:	Bloom's
0		Taxonomy
On co	empletion of the course, the students will be able to:	Mapped
CO1	GaininsightknowledgeonOpenchannelhydraulics andtosolvepracticalproblems.	K2,K3
CO2	Apply the concepts of dimensional analysis for fluid flow problems	K3
CO3	Apply the impulsemomentumprincipleforthedetermination of hydrodynamic forces.	K3
CO4	Analyze the performance of turbines and design of turbines.	K3
CO5	Analyze the performance of pumps and design of pumps.	K3

a) CO an	d PO	Mappir	ıg												
COs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
/ POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	0	1	0	0	0	0	0	0	0	0	0	2	1
CO2	2	1	0	1	0	0	0	0	0	0	0	0	0	2	1
CO3	2	1	0	1	0	0	0	0	0	0	0	0	0	2	1
CO4	2	1	1	3	0	0	0	0	0	0	0	0	0	2	1
CO5	2	1	1	3	0	0	0	0	0	0	0	0	0	2	1
22CES	2	1	1	3	0	0	0	0	0	0	0	0	0	2	1
410	2	1	1	3	O	U	U	U	U	U	U	U	U	2	1
1 - Slight	2-M	oderate	s , $3 - S\iota$	ıbstanti	ial										
b) CO an	d Key	Perfori	mance	Indica	tors M	apping	5								
CO1	1.1.1,	1.3.1,	1.4.1, 2	.1.3, 2.	2.3, 2.3	3.1, 2.4	.1, 4.1.2	2							
CO2	1.3.1,	1.4.1,	2.1.3, 2	.2.3, 2.	3.1, 2.4	4.1, 4.1	.2								
CO3	1.2.1,	1.3.1,	1.4.1, 2	.1.3, 2.	2.3, 2.3	3.1, 4.1	.2								
CO4	1.1.1,	.1.1, 1.3.1,2.1.2,2.1.3, 2.3.2, 3.2.2, 3.4.2, 4.1.1, 4.1.3, 4.1.4, 4.2.1, 4.3.1, 4.3.3													
CO5	1.1.1,	1.3.1,	2.1.2, 2	.1.3, 2.	3.2, 3.2	2.2, 3.4	.2, 4.1.	1, 4.1.3	, 4.1.4,	4.2.1,	1.3.1, 4.	3.3			

Test / Bloom's	Rememberin	Understanding	Applying	Analyzing	Evaluatin	Creating	Total
Category*	g (K1) %	(K2) %	(K3) %	(K4) %	g (K5) %	(K6) %	%
CAT1	20	50	30	(15)			100
CAT2	20	50	30				100
Individual	20	50	30	7			100
Assessment 1/			3	//			
Case Study 1/				16			
Seminar 1 /				//			
Project1		// é\		//			
Individual	20	50	30	. 1			100
Assessment 2/		A W	100	V/a			
Case Study 2/		80E 100		Z639			
Seminar 2/			-				
Project 2		11100	2000-60	U10			
ESE	20	50	30	2/			100

22CPC405	MECHANICS OF SOLIDS II			SEM	IEST	ER I	V			
PREREQUISIT	TES	CATEGO	RY	L	T	P	С			
	MECHANICS OF SOLIDS I	PC		3	0	0	3			
Course	To study the different methods used for beam deflection	n analysis,	analy	sis o	f Inc	letern	ninate			
Objectives	beams, unsymmetrical bending, columns, theory of elastic	c failures an	d stre	ss in	thick					
UNIT – I	DEFLECTION OF BEAMS						riods			
_	nation for elastic curve - Double Integration Method -	Macaulay's	Met	hod -	- Mo	ment	Area			
Method – Conju	gate Beam Method – Stepped beams									
UNIT – II	STATICALLY INDETERMINATE BEAMS						riods			
Propped Cantile	ver Beams - Fixed Beams - Method of Consistent Deform	nation – Con	itinuo	us B	eams	– The	eorem			
of Three Mome	nts - Calculation of reactions, Bending Moments and Sh	ear Force –	Shea	r Foi	ce ar	nd Be	nding			
Moment Diagram	ms (for all Types of Loadings, Couple).									
UNIT – III	INDETERMINATE TRUSSES AND COLUMNS						riods			
Analysis of Pla	ne trusses with maximum two redundant members - Tr	usses with	lack	of fit	- T	empe	rature			
effects. Member	rs Subjected to Axial Load - eccentric load - Slendernes	s Ratio – E	and C	ondit	ions -	– Buo	ckling			
Load for Colum	ns - Euler's Theory - Assumptions and Limitations - Ra	ankine - Go	rdon	Form	ıula -	- Emp	oirical			
Formula – Straig	ght Line Formula – Columns Subjected to Eccentric Loadin	ng.								
UNIT – IV	UNSYMMETRICAL BENDING AND SHEAR CENT	TRE				9 Pe	riods			
Stresses due to	Unsymmetrical Bending of Beams for Symmetrical Section	ons – Mom	ent of	f Iner	tia –	Prod	uct of			
Inertia – Princip	al Moment of Inertia - Shear Centre - Definition - Shear C	Centre for S	ection	ıs Sy	mme	rical	about			
One Axis	Apple to Daniel William P. Company									
UNIT – V	THICK CYLINDERS AND THEORIES OF ELASTI	C FAILUR	E			9 Pe	riods			
Lame's Equation	n – Hoop Stress and Radial Stress Distribution – Compour	nd Cylinders	s - W	ire V	Jound	l Cyli	nders			
– Shrink Fit.										
Theories of Elastic Failure - Factor of Safety - Graphical Representation of Theories for Two Dimensional										
Stress System.										
Contact Period	Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									

1	Vaidyanathan.R, Perumal. P and Lingeswari.S, "Mechanics of Solids and Structures, Volume I", Laxmi
	Publications Pvt Ltd, Chennai, 2017.

2 L.S.Negi, "Strength of Materials", Tata McGraw Hill Education Pvt.Ltd, 2010.

REFERENCES:

1	Robert L. Mott, "Applied Strength of Materials", PHI Learning Pvt Ltd., New Delhi, 2009
2	Ferdin and Beer, E.Russell Johnston and John Dewolf, "Mechanics of Materials", McGraw Hill
	Education, 2015.
3	L.S. Srinath, "Strength of Materials", Macmillan Publishers India, 2000.
4	Bansal RK "Strength of Materials", Laxmi Publications, New Delhi, 2010.
5	Jhunarkar.S.B. and Shah.H.J, "Mechanics of Structures", Vol. I, Charotar Publishing House, New
	Delhi,2016.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
On cor	mpletion of the course, the students will be able to:	Mapped
CO1	To impart knowledge on deflection of beams in various situations using different methods.	K3
CO2	To identify the behaviour of statically indeterminate beams	K3
CO3	To recognize the behaviour of columns with different end conditions.	K3
CO4	To develop and understand the concepts of unsymmetrical bending of beams and shear	К3
	centre.	
CO5	To understand the theory thick cylinders and the theory of elastic failures.	K3

a) CO and	PO Ma	pping													
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	1	1	-	-	-	1	-	-	-	1	1	1
CO2	3	3	2	2	1	-	-	1	1	-	-	-	-	2	ı
CO3	3	2	2	1	1	1	-	-	1	-	-	-	1	-	1
CO4	3	1	2	1	-	-	-	-	1	-	-	-	1	1	-
CO5	3	1	2	-	-	1	-	-	1	-	-	-	-	1	-
22CPC405	3	2	2	1	1	1	-	-	1	-	-	-	1	1	-
1 – Slight, 2	- Mod	erate, 3	3 – Sub	stantia	ıl										
b) CO and I	Key Pe	rforma	ance Iı	ndicate	ors Ma	pping									
CO1						*		,			1.3, 2.4.	4, 3.1.1,	3.1.3, 3	.1.5, 3.1.0	5,
		3.2.3, 3				•									
CO2											1.1, 2.4.	3, 2.4.4,	3.1.1, 3	.1.3, 3.1.	5,
		3.2.1, 3		-											
CO3	1.1.1,	1.2.1, 1	.3.1, 1.4	4.1, 2.1	.1, 2.1.	2, 2.1.3	, 2.3.1,	2.3.2, 2	2.4.1, 2	.4.3, 2.4	.4, 3.1.	1, 3.1.3,	3.2.3, 3	4.1, 5.1.2	2,
	5.2.1,	5.2.2, 5	.3.1, 9.	1.2											
CO4	1.1.1,	1.2.1, 1	.3.1, 1.4	4.1, 2.1	.1, 2.3.	1, 2.4.1	, 3.1.1,	3.1.3, 3	3.1.5, 3	.2.3, 5.1	.1, 5.1.	2, 5.2.1,	5.2.2, 5	3.1, 9.1.2	2
CO5	1.1.1,	1.2.1, 1	.3.1, 1.4	4.1, 2.1	.3, 2.3.	2, 2.4.4	, 3.1.1,	3.1.3, 3	3.1.5, 3	.1.6, 3.2	2.1, 3.2.	3, 3.3.1,	3.4.1, 4	1.1, 4.1.2	2,
	4.2.1,	4.3.2, 4	.3.3, 4.3	3.4, 5.2	.1, 5.3.	1, 9.1.2		wall and	9000)					
					M.	V)59	70 m	U.C.	N,						

		- 402	a control of				
ASSESSMENT	PATTERN – T	THEORY					
Test / Bloom's	Rememberin g (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6)	Total %
Category*				1		%	
CAT1	30	40	30	//			100
CAT2	20	40	40				100
Individual	30	40	30	N.			100
Assessment 1/		all m	- 10	900			
Case Study 1/							
Seminar 1/		QUIT DO	000-0	:010			
Project1		15.2	Ub accept	37			
Individual	20	40	40				100
Assessment 2/							
Case Study 2/							
Seminar 2/							
Project 2							
ESE	30	40	30				100

22CPC406	CONCRETE TECHNOLOGY SEMESTER IV									
PREREQUISI	ΓES	CATEGOI	RY	L	T	P	C			
CONSTR	CONSTRUCTION MATERIALS AND TECHNOLOGY PC 3 0 0									
Course Objectives To understand about various concrete making materials, the properties of fresh and hardened concrete, special concrete and mixdesignforconcrete.										
UNIT – I	INGREDIENTSOFCONCRETE					9 per	riods			
Cement – const	ituents - Hydration - Tests on cement - Types of cement -	 Aggregates 	- pro	oper	ties a	and u	ses –			
Classification of	f aggregates – Properties and test on aggregates – gradation	n – Quality o	of wat	er –	Adr	nixtu	res –			
Chemical Admi	xtures and mineral admixtures.									
UNIT – II	CONCRETING OPERATIONS					9 pei	riods			
Concreting oper	ations: Batching, mixing, transportation, placing, compacti	on, curing ar	nd fini	ishir	ng of	conc	rete.			
Forms for Conc	reting: Different types of formworks for beams, slabs, co	lumns, mate	rial u	sed	for f	ormv	vork,			
requirement of	good form work. Stripping time for removal of formwork	s as per IS45	56 - 2	2000	pro	visio	n for			
different structu	iral members. Water Proofing: Importance and need of	water proof	ing. I	Metl	nods	of v	vater			
proofing and materials used for water proofing. Joints in Concrete Construction: Types of joints, joining old										
and new concrete. Methods of joining, materials used for filling joints.										
UNIT – III PROPERTIESOFCONCRETE 9 periods										
Properties of fresh concrete – Workability – Segregation – Bleeding – Test for fresh concrete properties –										

UNIT - IV MIX DESIGN AND QUALITYCONTROLOFCONCRETE

structural properties of concrete - Non-Destructive Test.

9 periods

Quality Control - Frequency of sampling – Statistical analysis of test results – standard deviation – Coefficient of variation – Characteristic strength – Acceptance and rejection Criteria – Importance ofwater cement ratio – Importance of cover to concrete. Nominal mixes – Design Mixes – factors influencing the design mix – Mix Design by ACI method, ARE method and DOE method.

Properties of hardened concrete – Strength – Stress – Strain characteristics – Modulus of Elasticity – Shrinkage – Creep – Thermal properties – Permeability – Test for hardened concrete properties – Introduction to micro

UNIT - V SPECIAL CONCRETES AND CONCRETING METHODS

9 periods

High Performance Concrete – Lightweight Concrete – Self Compacting Concrete – Polymer Concrete – Fibre Reinforced Concrete - 3D printing of concrete.

Special Concreting Methods: Pumped Concrete, Ready mix Concrete, Under-water Concrete, Hot and Cold weather Concreting, Precast Concrete, Pre-placed Concrete.

Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOKS:

- 1 Shetty M.S and Jain A.K, "Concrete Technology Theory and Practice", S.Chand & Company, New Delhi, 2018.
- 2 | Santha kumar A.R, "Concrete Technology", S. Chand Publishers, 2018.

REFERENCES:

1/1	ELEKENCES:						
1	Gambhir M.L, "Concrete Technology - Theory and Practice", Tata Mc-Graw Hill Company, 2013.						
2	IS 10262 –2019, Concrete Mix Proportioning – Guidelines.						
3	ACI 211.1-91, Standard Practice for Selecting Proportions for Normal, Heavy weight and Mass						
	Concrete, American Concrete Institute.						
4	NevilleA.M "Properties of Concrete", Pearson Education India,,2012						
5	Povindar K. Mehta, Paulo J. M. Monteiro, "Concrete: Microstructure, Properties, and Materials",						
	Mc-Graw Hill Company, 2014.						

	RSE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Identify the properties and role of ingredients like cement, aggregate,	K2
	admixtures in concrete.	
CO2	Choose the suitable formwork and methods of concrete production for construction.	K2
CO3	Infer the behavior of fresh and hardened concrete.	K2
CO4	Proportion the concrete using various mix design concepts.	K2
CO5	Select appropriate type of concrete for specific requirements.	K2

	COURSE ARTICULATION WATERA.														
a) CO	and P	<u>О Мар</u>	ping												
COs/	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO1	PSO1	PSO	PSO3
POs											1	2		2	
CO1	3	2	1	1	0	3	3	3	2	3	0	3	2	3	2
CO2	3	1	1	1	0	3	3	3	3	3	0	3	2	3	2
CO3	3	1	1	1	0	3	3	3	2	2	0	3	2	2	1
CO4	3	1	1	1	0	3	3	3	2	3	1	3	2	2	1
CO5	3	2	1	1	1	3	3	3	2	2	1	3	2	3	2
22CP	3	2	1	1	1	3	3	3	3	3	1	3	2	3	2
C406					- 2	0.000	9	130		6					
1 – Slig	ght, 2 –	Moder	ate, 3 –	- Substa	ntial	6	0.00	BL 18	1						
b) CO	and K	ey Perf	orman	ce Indi	cators	Mappi	ing	TONE,		9					
CO1	1.2, 1.	.3, 1.4,	2.1, 2.2	2, 2.4, 3	3.1, 3.2,	3.4, 4.	1, 4.3,	6.1, 6.2	2, 7.1, 7	.2, 8.1,	8.2, 9.1	1, 9.2, 1	0.1, 10.	2, 10.3,	11.2,
	12.1,	12.2, 12	2.3			100									
CO2	1.2, 1.	.3, 1.4,	2.1, 2.2	2, 2.4, 3	3.1, 3.2,	3.4, 4.	1, 4.3,	6.1, 6.2	2, 7.1, 7	.2, 8.1,	8.2, 9.1	1, 9.2, 1	0.1, 10.	2, 10.3,	11.2,
	12.1,	12.2, 12	2.3			11			-						
CO3	1.2, 1.	.3, 1.4,	2.1, 2.2	2, 2.4, 3	3.1, 3.2,	3.4, 4.	1, 4.3,	6.1, 6.2	2, 7.1, 7	.2, 8.1,	8.2, 9.1	, 9.2, 1	0.1, 10.	2, 10.3,	11.2,
	12.1,	12.2, 12	2.3			11 .	8								
CO4			-	2, 2.4, 3	.1, 3.2,	3.4, 4.	1, 4.3,	6.1, 6.2	2, 7.1, 7	.2, 8.1,	8.2, 9.1	, 9.2, 1	0.1, 10.	2, 10.3,	11.2,
		12.2, 12			8	188	1100	7	NA.	je .					
CO5			-	2, 2.4, 3	3.1, 3.2,	3.4, 4.	1, 4.3,	6.1, 6.2	2, 7.1, 7	'.2, 8.1,	8.2, 9.1	, 9.2, 1	0.1, 10.	2, 10.3,	11.2,
	12.1,	12.2, 12	2.3		- 8		0 52	60	DC 110	/					

ASSESSMEN'	Γ PATTERN – TI	HEORY (Times N	ew Roman, S	Size 11)			
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
Category*	, , ,	, ,	, ,	, ,		, ,	
CAT1	40	60					100
CAT2	40	60					100
Individual	40	60					100
Assessment							
1/ Case Study							
1/ Seminar 1/							
Project1							
Individual	40	60					100
Assessment							
2/ Case Study							
2/ Seminar 2/							
Project 2							
ESE	40	60					100

22CPC407	DESIGN OF REINFORCED CONCRETE ELEMI	ESTER IV									
PREREQUISIT	ΓES	CATE	GORY	L	T	P	C				
MECHA	MECHANICS OF SOLIDS I PC 3										
Course Objectives Understand the behavior and design of reinforced concrete components and systems subjected to gravity loads according to INDIAN STANDARD building code requirements											
UNIT – I	REINFORCEDCONCRETEMATERIALS					Perio					
	R.C structures - Review of basic material properties -					-					
Objectives of st	ructural Design- Stages in RCC structural design proces	s for a b	uilding	- Typ	oes o	f loa	d on				
structures and le	oad combinations -Load transfer in framed structures - I	Design pl	nilosopł	nies -	- Bas	sic de	esign				
concepts -work	ing stress, ultimate load and limit state methods - A	nalysis: 1	Momen	t of	resis	tance	for				
Rectangular bea	ms.										
UNIT – II	LIMIT STATE DESIGN OF BEAMS					Perio					
Design of singly	y and doubly reinforced rectangular and flanged beams -	Design of	f beams	for	bend	ing, s	shear				
and torsion - bor	nd and anchorage – deflection.										
UNIT – III	LIMIT STATE DESIGN OF SLABS& STAIRS					Perio					
Behaviour of on	ne way and two way slabs - Design and detailing of one	way and	two wa	iy re	ctang	ular	slabs				
subjected to unit	formly distributed load - Design of lintel - lintel cum sunsh	nade – St	airs - L	oads	on S	tairc	ase –				
Design of Dog	legged staircase.										
UNIT – IV	LIMIT STATE DESIGN OF COLUMNS					Perio					
	columns - Axial, uniaxial and biaxial bending - Braced an	d unbrace	ed colui	nns -	Orie	entatio	on of				
columns in buildings - Design of columns – Use of interaction charts.											
UNIT – V	LIMIT STATE DESIGN OF FOOTINGS					Perio					
	ncentric and eccentric footing - Design of axially loaded so	quare and	rectang	ular	pad a	nd sl	oped				
	isolated footing – Design of wall footing.										
Contact Period	Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods										

1	Pillai, S. U.andMenon, D, "Reinforced Concrete Design", Tata McGraw Hill, 2021
2	SubramanianN, "Design of Reinforced Concrete Structures", Oxford University Press, 2014.

REFERENCES:

	EREITCES:
1	VargheseP.C, "Limit State Design of Reinforced Concrete", Prentice hall of India Pvt.Ltd., 2008
2	Dayaratnam P., "Design of Reinforced Concrete Structures", Oxford & IBH publishing Co.
	Pvt.Ltd.,2018.
3	Shah V.L and Karve S.R, "Limit State Theory and Design of Reinforced Concrete", Structures
	Publications, 2018.
4	Krishnaraju N, "Design of Reinforced Concrete Structures", CBS Publishers and Distributors PvtLtd,
	2019.
5	IS: 456-2000 (R2016), "Plain and Reinforced Concrete - Code of practice".
6	SP: 16-1980, "Design Aids for Reinforced Concrete to IS 456:(1978)".
7	IS: 875-2015, "Code of Practice for design loads for buildings and structures".
8	SP: 34-1987, "Handbook on Concrete Reinforcement and Detailing".

	RSE OUTCOMES: unpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply theconceptsofworkingstress method and limitstatemethods and estimate the design loads on various structural elements.	K2
CO2	Analyse and Designthe beams using Limit State Method.	K3
CO3	Designofrectangularslabsandstaircasesbylimitstatemethod and prepare detailing drawing.	К3
CO4	Designthecolumnssubjectedtobothaxialandeccentricloads	К3
CO5	Designloadedwallandisolatedfootings.	K3

a) CO a	nd PO	Mapp	oing					•						•	•
COs/PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
S															
CO1	2	1	1	1		2				1					
CO2	2	2	1	1		2			1	1				2	2
CO3	2	2	1	1		2			1	1				2	2
CO4	2	2	1	1		2			1	1				2	2
CO5	2	2	1	1		2			1	1				2	2
22CPC	_	_	1	1		2	CV"	hum	0	4				2	_
407	2	2	1	1		2	000	0	B 0183//d	10				2	2
1 – Sligh	t, 2-N	Modera	ite, 3 –	Substa	antial	V	927	THE P	OS V	1					
b) (CO and	d Key	Perfor	mance	e Indic	ators l	Mappi	ng	-						
CO1	1.2.1,	, 1.4.1,	2.1.3,	3.1.4,	3.2.3, 4	4.1.1, 4	.1.2, 6	.2.1, 10).1.1, 1	0.3.1					
CO2	1.1.2.	1.3.1,	1.4.1,	2.1.1,	2.1.2, 2	2.1.3, 2	.2.3, 2	.3.1, 2.	4.4, 3.	1.4, 3.2.	3, 3.4.2	4.1.2, 6	5.2.1, 9.3	3.1, 10.1	.1,
	10.3.		Í	Ź	ŕ			SUZ				•	,	•	ĺ
CO3	1.1.2.	1.3.1,	1.4.1,	2.1.1,	2.1.2, 2	2.1.3, 2	.2.3, 2	.3.1, 2.	4.4, 3.	1.4, 3.2.	3, 3.4.2	4.1.2, 6	5.2.1, 9.3	3.1, 10.1	.1,
	10.3.	·	,	,	,	11	2/8			11		,	,	,	,
CO4	1.1.2.	1.3.1.	1.4.1,	2.1.1.	2.1.2, 2	2.1.3, 2	.2.3, 2	.3.1, 2.	4.4, 3.	1.4, 3.2.	3, 3.4.2	4.1.2, 6	5.2.1, 9.3	3.1, 10.1	.1,
	10.3.		,	,	,	J.B.	K	- 1	11 18	V.B.		,	,	•	•
CO5	1.1.2.	1.3.1.	1.4.1.	2.1.1.	2.1.2. 2	2.1.3. 2	.2.3. 2	.3.1. 2.	4.4. 3.	1.4. 3.2.	3, 3,4,2	4.1.2. 6	5.2.1. 9.3	3.1, 10.1	.1.
	10.3.	·	,	, .	, -	CE:Mrs		-			- ,	, , .	,	,	. ,

ASSESSMENT I	ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Rememberi ng (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	30	30	40	-	-	-	100		
CAT2	30	30	40	-	-	-	100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	25	50	25	-	-	100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	25	50	25	-	-	100		
ESE	30	30	40	-	-	-	100		

22CPC408	WATER SUPPLY ENGINEERING SEMESTER								
PREREQUISITES CATEGORY L									
NIL PC 3									
Course Objectives	To conversant with sources of water, demand of water, che Conveyance of Water. To expose the students to understart processes and distribution of water supply								
UNIT – I	QUANTITY OF WATER AND SOURCES OF WATE	ER				9 Per	riods		
Introduction of	Public water supply system - Planning, Objectives, Des	sign period,	Popu	ulatio	on fo	recas	ting;		
Water demand -	Sources of water and their characteristics, Surface and Great	oundwater –	Impo	undi	ng R	eserv	oir –		
Development an	d selection of source – Source Water quality.								
UNIT – II	QUALITY OF WATER AND TRANSPORTATION					9 Per	riods		
Quality of water	- sampling - Characterization - Significance -analysis of v	vater - water	born	ne di	sease	s - qu	ıality		
standards of wat	er as per IS 10500. Intakes - types - intake tower - Transpo	ortation of w	ater -	type	es of	cond	uits -		
Hydraulics of p	pipe flow - design - materials of pressure pipes - pip	e corrosion	- Th	heori	ies, e	effect	and		
prevention- Lay	ing, jointing and testing of pipe lines. Pumps - Types of pur	mps - pumpi	ng st	atior	ıs.				
UNIT – III	WATER TREATMENT					9 Per	riods		
Objectives – Un	it operations and processes - Principles, functions, and de	esign of wat	er tre	eatm	ent p	lant ı	ınits,		
aerators, flash i	nixers, Coagulation and flocculation - Clarifloccuator -	Plate and	tube	sett	lers	- Pul	sator		
clarifier -Rapid	and slow sand filters - Disinfection - Residue Manage	ment -Cons	tructi	ion,	Oper	ration	and		
Maintenance of	treatment units- Recent advances.								
UNIT – IV	ADVANCED WATER TREATMENT					9 Per	riods		
Water softening	- Desalination - R.O. Plant - demineralization - Adsor	rption - Ion	excl	nang	e - 1	Memb	rane		
Systems - RO	Reject Management - Iron and Manganese removal -	-Fluoridatio	n and	d D	efluo	ridati	on -		
Construction, O	peration and Maintenance of treatment units – Recent adva	ances.							
UNIT – V	WATER DISTRIBUTION SYSTEM					9 Per	riods		
Distribution of	water - requirements of good distribution system - metho	d of distribu	ıtion	syst	em -	layo	uts of		
distribution syst	em - Requirements of water distribution - Components -	Selection of	f pipe	e ma	teria	l – Se	ervice		
reservoirs - Fu	nctions - Network design - Analysis of distribution n	etworks - (Comp	uter	app	licatio	ons –		
	- Leak detection. Principles of design of water supply in bu								
Fixtures and fitti	ngs, systems of plumbing and types of plumbing.								
Contact Period	s: Lecture: 45 Periods Tutorial: 0 Periods Practical	: 0 Periods	Tota	al: 4	5 Pe	riods			

	1	Garg. S. K., "Water Supply Engineering", Khanna Publishers, Delhi, 2014.
ſ	2	Punmia B.C. Jain A.K and Jain A.K. "Water Supply Engineering" Laxmi Publications, New Delhi 2014.

REFERENCES:

1	Dr. P.N. Modi., "Water Supply Engineering Volume" Rajson Publications, New Delhi, 2018.
2	D. Lal&A.K. Upadhyay, "Water Supply and Waste Water Engineering" S. K. Kataria& Sons, 2013
3	Mackenzie L Davis., "Water and Waste Water Engineering Design Principles and Practice", McGraw
	Hill book education, 2010.
4	NPTEL "Water and Waste Water Engineering" by Dr.P.Bose, IIT Kanpur.

COUR	COURSE OUTCOMES:						
		Taxonomy					
On cor	On completion of the course, the students will be able to:						
CO1	Know the principles of water supply and characteristics of water.	K1, K2					
CO2	Attain knowledge on quality of water and its conveyance.	K1, K2					
CO3	Acquire knowledgeon various water treatment units.	K1, K2					
CO4	Get clear knowledge about advanced water treatments	K1, K2					
CO5	Know the distribution and supply of water	K1, K2					

	a) C	O and I	PO Ma	apping	5										
COs/	PO	PO2	PO	PO	PO	PO	PO	PO	PO	PO10	PO11	PO12	PSO1	PSO2	PSO3
POs	1		3	4	5	6	7	8	9						
CO1	2	1				1	2						1	2	2
CO2	2	2	1			1	2						2	2	2
CO3	2	1	2			1	2						2	2	2
CO4	1	2	2			1	2						2	2	2
CO5	1	1	1			1	2						2	2	2
22CP	2	2	2			1	2						2	2	2
C408															
	1 - S	light, 2 -	– Mod	erate,	3 – Su	bstant	ial								
	b) C() and K	Key Pe	rform	ance l	Indica	tors N	Iappi i	ıg						
CO1	1.2.1	, 1.3.1,1	1.4.1, 2	2.1.3,2	.4.3,6.	1.1,7.1	1.1,7.1	.2,7.2.	29-						
CO2	1.2.1	, 1.3.1,1	1.4.1, 2	2.1.3,2	.2.3, 2	.3.1, 2	.4.3,3.	1.4, 3.	1.6,3.3	3.1, 6.1.	1, 7.1.1,	7.1.2,7.	2.2		
CO3	1.2.1, 1.3.1,1.4.1, 2.1.3,2.4.3,, 3.1.4, 3.1.6,3.3.1,3.2.3, 6.1.1, 7.1.1,7.1.2,7.2.2														
CO4	1.2.1, 1.3.1,1.4.1, 2.1.3,2.2.3, 2.3.1, 2.4.3, 3.1.4, 3.1.6, 3.2.3,3.3.1, 5.1.1, 6.1.1, 7.1.1,7.1.2,7.2.2														
CO5	1.2.1	, 1.3.1,1	.4.1, 2	2.1.3,2	.4.3, 3	.1.4, 3	.1.6,3.	3.1, 6.	1.1, 7.	2.2, 7.1	.1,7.1.2,	7.2.2			

ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Rememberi ng (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
Category*		al la	100	N. L.							
CAT1	40	60	~	2.698			100				
CAT2	40	60					100				
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	40	60	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				100				
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40	60					100				
ESE	40	60					100				

22CMC4	SEN	MES	ΓER	IV			
PREREQU	ISITES	CA	ГЕGORY	L	T	P	С
	NIL		MC	3	0	0	0
Course	The objective of the course is to familiarize the students on	the rol	e nowers and	1 fund	ctions	s of I	ndian

Course Objectives The objective of the course is to familiarize the students on the role, powers and functions of Indian government. Also understand the recent acts in India.

UNIT- I INTRODUCTION ANDEMERGENCY PROVISIONS

9 Periods

Historical Background: The Company rule, The Crown rule - Constituent Assembly: Composition, Objectives - Preamble and Salient features of the Indian Constitution - Fundamental Rights, Fundamental Duties, Directive Principles of state policy, Emergency Provisions - National Emergency, President Rule, Financial Emergency.

UNIT- II SYSTEM OF GOVERNMENT

9 Periods

Parliamentary system: merits, demerits, reasons for adopting parliamentary system – Federal system: Evaluation of federal features –Centre-State relations: Legislative, Administrative and Financial relations – Local Government: Panchayati Raj and urban local government.

UNIT- III UNION AND STATE GOVERNMENT

9 Periods

President of India: Election, Powers and functions - Prime Minister and Cabinet: Structure and functions - Governor: Powers and functions - Chief Minister and Council of Ministers: Functions.

UNIT- IV ORGANS OF GOVERNANCE AND RECENT ACTS

9 Periods

Parliament: LokSabha and RajyaSabha, Composition and powers - State Legislative Assembly and Legislative Council: Composition and powers - Judicial System in India: Structure and features - Supreme Court and High Court: Composition, Jurisdiction, Recent acts in significance-RTI, Citizenship act, POCSO Act.

UNIT- V POLITICAL DYNAMICS

9 Periods

Political parties: Party system, Recognition of National and State parties – Elections: Electoral system and reforms – Pressure groups – National Integration: Obstacles, National Integration Council – Foreign Policy: Principles and Objectives.

Contact Periods: Lecture: 45 Period Tutorial: 0 Period Practical: 0 Period Total: 45 Periods

TEXT BOOKS:

	1	National portal of India, "The Constitution of India" (Full Text), https://legislative.gov.in/constitution-of-india
ſ	2	Dr. R. P. Ambedkar "The Constitution of India" Sudhir Prakashan 2020

REFERENCES:

1	Durga Das Basu, "Introduction to the Constitution of India, LexisNexis, 2022
2	P.M.Bakshi, "The Constitution of India", LexisNexis, 2020
3	Subash C Kashyap, "Our Parliament", National Book Trust, 2021
4	Subash C Kashyap, "Our Political System", National Book Trust, 2011

	COURSE OUTCOMES: On completion of the course, the students will be able to:					
CO1	Know the evolution of Indian Constitution and its basic premises.	K1				
CO2	Explain the system of governance in India.	K2				
CO3	Describe the structure of Union and State Governments	K2				
CO4	Obtain the knowledgeof functions of Legislature and Judiciary	K1				
CO5	Know the political system of India	K1				

50

50

Assessment 2 /Case Study 2/ Seminar 2 / Project 2 ESE

a) CO and P	O Ma	pping	Ţ												
COs/	PO	РО	PO	PO4	PO5	PO	PO	PO	PO	PO1	PO1	PO1	PSO1	PSO	PSC
POs	1	2	3			6	7	8	9	0	1	2		2	3
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
CO2	-	-	-	-	-	1	-	1	1	-	-	-	-	-	1
CO3	-	-	-	-	-	2	-	1	1	-	-	-	-	-	1
CO4	-	-	-	-	-	1	-	1	2	-	-	-	-	-	1
CO5	-	-	-	-	-	2	-	2	1	-	-	-	-	-	-
22CMC4Z	-	-	-	-	-	1	-	1	1	-	-	-	-	-	1
2															
1 – Slight, 2 –	- Mod	erate, í	3 – Su	bstantia	al										
b) CO and K	Key Pe	erform	ance	Indicat	tors Ma	apping	g								
CO1	6.1.1	,6.2.1,	8.1.1,	8.2.1,8.	2.2,9.1.	.2									
CO2	6.1.1	,6.2.1,	8.1.1,	8.2.1,8.	2.2,9.1.	.2									
CO3	6.1.1	,6.2.1,	8.1.1,	8.2.1,8.	2.2										
CO4	6.1.1	,6.2.2,	9.1.2,	9.2.1											
CO5				9.1.2,9.	2.1										
				•											
ASSESSME				THEO	RY	- 6	Mussal	100							
Test /	Re	memb	erin	Unde	erstand	in .	Applyi	n A	nalyz	ing	Evalu	ating	Cre	atin	Total
Bloom's	g	(K1)	%	g (K2) %	1	g (K3)	000	(K4)	%	(K5)) %	g (I	(6)	%
Category*							%						9/	o	
CAT1		50			50	1	- 1	_	7		-		-	-	100
CAT2		50			50	0		20	//		-		-	-	100
Individual		50			50	1	100						-		100
Assessment					- 11	7		3),	1						
1 /Case					- //	ė.	1000	1/2	- 11						
Study 1/					- 11	8		1	11						
Seminar 1 /					Ja.	1		B.	W.						
D ' 41					808/	150	4	100	Z/95	e					
Projecti					200					6.					
Project1 Individual	1	50			50	T Con			E)			-		100

100

22CES411	FLUID MECHANICS AND MACHINERY LABO	ORATORY	SEN	AES'	TER	. IV
PREREQUISI	TES	CATEGORY	L	T	P	C
	MECHANICS OF FLUIDS	ES	0	0	3	1.5

Course	* To impart knowledge in solving problems occurring in a pipes due to losses, the
Objectives	verification of Bernoulli's theorem and its applications and conducting performance
	tests on different types of pumps and turbines.

LIST OF EXPERIMENTS:

- 1. Determination of Darcy's friction factor.
- 2. Verification of Bernoulli's Theorem.
- 3. Calibration of Venturimeter and Orifice meter.
- 4. Flow over V-Notch.
- 5. Flow through Mouthpiece.
- 6. Determination of velocity through Pitot tube.
- 7. Determination of Meta centric height.
- 8. Performance Study of Roto dynamic pumps:Centrifugal pump, Submersible pump and Jet pump.
- 9. Performance Study of Positive displacement pumps:Reciprocating pump, Gear oil pump and Single screw pump.
- 10. Load test on Pelton wheel, Francis turbine and Kaplan Turbine.

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Obtain the knowledge on conducting different type of experiments.	K2
CO2	Solve different problems in pipes due to losses.	K3
CO3	Verify the Bernoulli's theorem and its applications.	K3
CO4	Do performance tests on different types of pumps.	K3
CO5	Do performance tests on different types of turbines.	K3

a) CO and	a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO 1	PSO 2	PSO 3
	1	2	3	4	5	6	7	8	9	10	11	12			
CO1	0	1	0	0	0	0	0	0	0	0	0	0	0	2	1
CO2	2	2	0	2	1	0	1	0	0	0	0	0	0	2	1
CO3	1	2	0	2	0	0	0	0	0	0	0	0	0	2	1
CO4	0	1	0	2	1	0	1	0	0	0	0	0	0	2	1
CO5	0	1	0	2	1	0	1	0	0	0	0	0	0	2	1
22CES	2.	2	0	2	1	0	1	0	0	0	0	0	0	2	1
411	2	2	U		1	U	1	U	U	U	U	U	U	2	1
1 – Slight, 2	2 - Mo	derate	4, 3 - S	Substar	ntial										
b) CO and	Key P	erfor	mance	Indic	ators	Mapp	ing								
CO1	2.3.2	, 2.4.2	,												
CO2	1.1.1	, 1.3.1	, 2.1.2	, 2.1.3	, 2.2.3	, 2.3.1	, 2.4.2	, 4.1.3	, 4.1.4	, 4.3.1	, 5.2.1	, 5.3.2	2, 7.1.1		
CO3	1.3.1	, 2.1.2	, 2.1.3	, 2.2.3	$, 2.\overline{3.1}$, 2.4.2	4.1.3	, 4.1.4	4.2.1	, 4.3.1					
CO4	2.1.2	, 2.1.3	, 2.3.1	, 2.4.2	, 4.1.3	, 4.2.1	, 4.3.1	, 4.3.3	, 5.2.1	, 5.3.2	, 7.1.1				
CO5	2.1.2	, 2.1.3	, 2.3.1	, 2.4.2	, 4.1.3	4.2.1	, 4.3.1	, 4.3.3	, 5.2.1	, 5.3.2	, 7.1.1				

22CES412	22CES412 ENGINEERING EXPLORATION							
PREREQUISIT	TES	CATEGO	RY	L	T	P	C	
	NIL	ES		0	0	3	1.5	

Course Objectives												
UNIT- I	INTRODUCTION	(15)										
engineer needs a	Introduction to Engineering and Engineering study: Difference between science and engineering, scientist and engineer needs and wants, various disciplines of engineering, some misconceptions of engineering, expectation for the 21 st century engineer and Graduate Attributes.											
UNIT- II	ENGINEERING DESIGN	(15)										
definition, Idea	quirement, Knowledge within Engineering disciplines, Engineering advancement generation through brain storming and researching, solution creation through evatext/analysis, final solution and design improvement.											
UNIT- III	ENGINEERING DISCIPLINES	(15)										
O	ng: Loads on Structures, Analysis of Structural elements, Design and detailing of											
	g and selection of construction materials. Analysis of water quality and checking i											
	and drinking purposes. Preparation of site layout using advanced Survey instrument	ts. Modeling										
of Hydraulic eler	ments.											

REFERENCES:

Contact Periods: Lecture: 0 Periods

Ryan A Brown, Joshua W. Brown and Michael Berkihiser: "Engineering Fundamentals: Design, Principles and Careers", Goodheart-Willcox Publisher, Second edition, 2014.

Tutorial: 0 Practical: 45 Periods

Total: 45 Periods

2 Saeed Moaveni, "Engineering Fundamentals: An Introduction to Engineering", Cengage learning, Fourth Edition, 2011.

COU	RSE OUTCOMES:	Bloom's
	8	Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
CO1	Explain technological and engineering development, change and impacts of	K2
	engineering	
CO2	Complete initial steps (Define a problem list criteria and constrains, Brainstorm	K3
	potential solutions and document ideas) in engineering designs	
CO3	Communicate possible solutions through drawings and prepare project report.	K3
CO4	Draw sketches to a Design problem.	K3
CO5	Apply the concept of engineering fundamentals in Civil, Mechanical, Electrical and	K3
	Computer Engineering.	

a) CO an	a) CO and PO Mapping COs/POs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	1	1	0	0	0	0	0	0	0	0	0	0	2	-
CO2	3	2	1	0	0	0	0	0	0	0	0	0	0	1	1
CO3	3	2	1	0	0	0	0	0	0	0	0	0	0	2	-
CO4	3	2	1	0	0	0	0	0	0	0	0	0	0	1	-
CO5	3	2	1	0	0	0	0	0	0	0	0	0	0	1	1
22CES412	3	2	1	0	0	0	0	0	0	0	0	0	0	1	1
1 – Slight,	2-N	Iodera	ite, 3 -	- Subs	tantial										
b) CO and	d Key	Perf	orman	ice In	dicato	rs Ma	pping	5							
CO1	1.1.2	2, 1.2.1	1, 1.3.	1, 2.2.	4, 6.1.	1, 7.1.	1, 7.2	.1							
CO2	2.1.1	, 2.2.3	3, 3.1.	1, 3.1.	2, 3.1.	6, 3.2.	1, 3.2	.2, 3.2	.3, 4.1	.1, 4.1.2	2, 4.2.2				
CO3	2.1.3	3, 3.2.1	1, 3.2.2	2, 3.2.	3, 3.4.	2, 4.3.	2, 4.3	$.3, \overline{4.3}$.4, 9.2	2.1, 9.3.1	1, 10.1.3	, 10.2.2	, 10.3.2,	11.3.2	
CO4	3.1.3	3, 5 <u>.</u> 1.1	1, 5.2.2	2											
CO5	1 1 1	1 1 2	2. 1 2.	1 1 3	$1\overline{14}$	$1 \ 2 \ 1$	1 4 3	1 72	2.82	2.912	2 10 1 1	11 3 2			

22CPC409	ENVIRONMENTAL ENGINEERING LABO	PRATORY	SE	EME	STE	R IV	
PREREQUISIT	PREREQUISITES CATEGORY						
	NIL	PC	0	0	3	1.5	

Course
Objectives

To Impart knowledge in sampling and analysis of procedures of water and waste water samples to identify the water and waste water characteristics.

LIST OF EXPERIMENTS

- 1. Sampling and preservation methods for water and wastewater (Demonstration only).
- 2. Determination of pH & Electrical Conductivity.
- 3. Determination of Turbidity.
- 4. Determination of Chlorides.
- 5. a) Determination of Total Hardness.
 - b) Determination of Calcium Hardness.
- 6. a) Determination of Alkalinity.
 - b) Determination of Acidity.
- 7. Determination of Sulphates.
- 8. Determination of Iron & Fluoride.
- 9. Estimation of Residual Chlorine.
- 10. Estimation of Solids.
 - a) Determination of Total Suspended solids.
 - b) Determination of Dissolved solids.
 - c) Determination of Fixed and Volatile solids.
 - d) Determination of Total solids.
- 11. Determination of Optimum Coagulant Dosage.
- 12. Determination of Dissolved Oxygen.
- 13. Determination of BOD.
- 14. Determination of COD.
- 15. Demonstrations of water quality parameters for construction purpose.

Contact Periods: Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45
Periods

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
On con	appletion of the course, the students will be able to:	Mapped
CO1	Interpret thesamplingandpreservation methodsofwaterandwastewater	K2
CO2	Correlate the physical properties of water and waste water.	K3
CO3	Correlate the chemical properties of water and waste water.	K3
CO4	Categorize thebiological properties of waterand wastewater.	K3
CO5	Categorizethe Micro-biologicalproperties ofwaterandwastewater.	K3

a) CO and	a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	0	1	1	2	1	2	0	0	0	2	0	0	0	1	0
CO2	2	2	1	2	0	2	1	0	0	0	0	0	0	1	0
CO3	2	1	1	2	0	2	2	0	0	0	0	0	0	1	0
CO4	2	1	1	2	0	2	2	0	0	0	0	0	0	1	0
CO5	1	1	1	2	0	2	1	0	0	0	0	0	0	1	0
22CPC	2.	1	1	2.	1	2.	2.	0	0	2	0	0	0	1	0
409		1	1		1			U	U		U	U	U	1	U
1 - Slight, 2	2 – Mo	derate	3 - S	ubstan	tial										
b) CO and	Key P	erfori	nance	Indica	ators I	Mappi	ng								
CO1	2.2.4	, 3.1.5	, 4.1.1,	,4.1.2,	4.3.1,	4.3.2,	4.3.4,	6.1.1,	10.1.1,	10.1.3	3				
CO2	1.2.1	,1.3.1,	1.4.1,2	2.1.3,2.	2.3,2.2	2.4,2.3	.1,2.3.	$2, \overline{2.4.1}$,3.1.4,	3.1.5,3	3.1.6,4	1.14.1	.2,4.1.3,4	4.1.4,4.3.2	2,7.1.2
CO3	1.2.1	,1.3.1,	2.1.2,2	2.2.3,2.	2.4,2.4	1.3,3.1	.4,3.1.	5,3.2.1	,3.2.3,	4.1.1,	4.1.2,4	.1.3,4.	1.4,4.2.1	,4.3.2,6.1	.1,7.2.2
CO4	1.2.1	,1.3.1,	2.1.2,2	2.4.3,3.	1.4,3.1	.5,3.2	.1,3.2.	3,4.1.1	,4.1.2,	4.1.3,4	1.2.1,4	3.3,6.	1.1,7.1.2,	7.2.2	
CO5	1.3.1	.2.2.3.	2.4.3.3	3.1.5.4.	1.1.4.1	.2.4.1	3.4.2.	1.7.1.2							

