

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum For

B. Tech. Industrial Biotechnology

(Full Time)

2022

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0422 - 2433355 e.mail: gctcoe@gct.ac.in

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- To achieve academic excellence through innovative teaching and learning practices.
- To enhance employability and entrepreneurship.
- To improve the research competence to address societal needs.
- To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

DEPARTMENT OF INDUSTRIAL BIOTECHNOLOGY

VISION AND MISSION

VISION

To achieve the highest caliber in Biotechnology research and innovation to develop intellectual leaders to meet out the societal, environmental, and industrial needs.

MISSION

To provide quality education with global competence and molding the students as technologically sound and ethically motivated technocrats through advanced skill based learning.

DEPARTMENT OF INDUSTRIAL BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The following Programmeeducational objectives are designed based on the department mission.

- **PEO 1**: Graduates will possess necessary skills and knowledge in the frontier areas of biotechnology.
- **PEO 2**: Graduates will be able to implement the engineering principles to biological systems for the development of industrial applications as well as entrepreneurship skills to start biotech industries.
- **PEO 3**: Graduates will think critically and creatively about the use of biotechnology to address local and global problems.
- **PEO 4**: Graduates will consider the social implication of their work as it affects the health, safety and environment of human population.
- **PEO 5**: Graduates will have adequate knowledge in various fields of biotechnology, enabling them to pursue higher education in relevant areas to enhance their professionalism.

DEPARTMENT OF INDUSTRIAL BIOTECHNOLOGY

PROGRAMME OUTCOMES (POs)

Students in the Industrial Biotechnology Programme should possess the following POs at the time of their graduation.

- **PO1 Engineering knowledge**: Apply the concepts of mathematics, science, engineering fundamentals to identify the solution of complex engineering problems.
- **Problem analysis**: Identify, formulate, review research literature and analyze complex engineering problems providing substantiated conclusions using basic principles of mathematics, Natural sciences and engineering sciences.
- **PO3 Design/development of solutions**: Design and develop processes to meet the emerging technological demands with suitable consideration of public health, the cultural, societal, and environmental safety.
- **PO4** Conduct investigations of complex problems: Conduct effective research including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
- **PO5 Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- PO6 The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge and need for sustainable development.
- **PO8 Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles to apply the strategies on one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12 Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological innovation.

DEPARTMENT OF INDUSTRIAL BIOTECHNOLOGY

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- **PSO 1:** Demonstrate competence in Biological sciences and technology courses to pursue higher education.
- **PSO 2:** Demonstrate an ability to acquire technical skills and work ethics to meet the industry needs and to become an entrepreneur.

GOVERNMENTCOLLEGE OF TECHNOLOGY, COIMBATORE-641 013 B.Tech. INDUSTRIAL BIOTECHNOLOGY (FULL TIME) FIRST SEMESTER

Sl.	Course	CourseTitle	Cotogowy	CA	End Sem	Total		Hou	rs/W	eek
No.	Code	CourseTitle	Category	Marks	Sem Marks	Marks	L	T	P	C
			THEORY							
	22BMC1Z0	Induction Programme	MC	-	-	-	-	-	-	0
1	22BHS1Z1	தமிழர் மரபு Heritage of Tamils	HSMC	40	60	100	1	0	0	1
2	22BHS1Z2	Values and Ethics	HSMC	40	60	100	3	0	0	3
3	22BBS1Z1	Linear Algebra and Calculus	BS	40	60	100	3	1	0	4
4	22BBS1Z2	Engineering Physics	BS	40	60	100	3	0	0	3
5	22BBS103	Chemistry for Biotechnology	BS	40	60	100	3	0	0	3
6	22BES101	Basics of Electrical and Electronics Engineering	ES	40	60	100	3	0	0	3
	1]	PRACTICAL							
7	22BHS1Z3	Cambridge English	HSMC	100	-	100	0	0	2	1
8	22BBS1Z4	Chemistry Laboratory	BS	60	40	100	0	0	3	1.5
9	22BES1Z2	Engineering Graphics	ES	60	40	100	1	0	4	3
			TOTAL	460	440	900	17	1	9	22.5

SECOND SEMESTER

Sl.	Course	// J	ALL	CA	End	Total	Н	ours	/We	ek
No.	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	C
	1		THEORY	200						
1	22BHS2Z4	தமிழரும் தொழில்நுட்பமும் Tamils and Technology	HSMC	40	60	100	1	0	0	1
2	22BHS2Z5	Professional English	HSMC	40	60	100	2	1	0	3
3	22BBS205	Differential Equations and Numerical Methods	BS	40	60	100	3	1	0	4
4	22BES203	Programming in C	ES	40	60	100	3	0	0	3
5	22BPC201	Biomolecules	PC	40	60	100	3	0	0	3
6	22BMC2Z1	Environmental Science and Engineering	MC	40	60	100	3	0	0	0
	22BNC201	NCC Credit Course Level-I (Optional)		100	-	100	3	0	0	3
		P	RACTICAL	ı						
7	22BBS2Z6	Physics Laboratory	BS	60	40	100	0	0	3	1.5
8	22BES2Z4	Workshop Practice	ES	60	40	100	0	0	3	1.5
9	22BES205	Programming in C Laboratory	ES	60	40	100	0	0	3	1.5
			TOTAL	420	480	900	15	2	9	18.5

THIRD SEMESTER

SI.	Course			CA	End	Total	Н	lour	s/W	eek
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	C
		Т	THEORY							
1	22BBS307	Transform Calculus and Partial Differential Equations (Common to Civil & IBT)	BS	40	60	100	3	1	0	4
2	22BBS308	Cell Biology	BS	40	60	100	3	0	0	3
3	22BES306	Process Calculations and Heat transfer	ES	40	60	100	3	1	0	4
4	22BPC302	Industrial Microbiology	PC	40	60	100	3	0	0	3
5	22BPC303	Biochemistry	PC	40	60	100	3	0	0	3
6	22BPC304	Genetics	PC	40	60	100	3	0	0	3
		PR	ACTICAL							
7	22BBS309	Cell biology Laboratory	BS	60	40	100	0	0	3	1.5
8	22BPC305	Microbiology Laboratory	PC	60	40	100	0	0	3	1.5
9	22BPC306	Biochemistry Laboratory	PC	60	40	100	0	0	3	1.5
			TOTAL	420	480	900	18	2	9	24.5

FOURTH SEMESTER

SI.	Course	// 8	SUD.	CA	End	Total	I	Iour	·s/We	eek
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	C
		820	THEORY	200						
1	22BES407	Fluid Mechanics	ES	40	60	100	3	0	0	3
2	22BPC407	Molecular Biology	PC	40	60	100	3	0	0	3
3	22BPC408	Biochemical Thermodynamics	PC	40	60	100	3	0	0	3
4	22BPC409	Enzyme Engineering and Technology	PC	40	60	100	3	0	0	3
		THEORY COURSE WI	TH PRACT	ICAL CO	MPONE	NT				
5	22BPC410	Analytical Techniques in Biotechnology	PC	50	50	100	3	0	2	4
		P	RACTICAL							
6	22BES408	Engineering Exploration For Industrial Biotechnology	ES	100	-	100	0	0	3	1.5
7	22BES409	Chemical Engineering Laboratory	ES	60	40	100	0	0	3	1.5
8	22BPC411	Molecular Biology Laboratory	PC	60	40	100	0	0	3	1.5
			TOTAL	430	370	800	15	0	11	20.5

FIFTH SEMESTER

SI.	Course			CA	End	Total	Н	ours	/We	ek
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	C
		r	THEORY							
1	22BES510	Mass Transfer operations	ES	40	60	100	3	1	0	4
2	22BPC512	Bioprocess Principles	PC	40	60	100	3	0	0	3
3	22BPC513	Genetic Engineering	PC	40	60	100	3	0	0	3
4	22BPC514	Protein Engineering	PC	40	60	100	3	0	0	3
5	22BPE\$XX	Professional Elective I	PE	40	60	100	3	0	0	3
6	22BMC5Z2	Constitution of India	MC	40	60	100	3	0	0	0
		PF	RACTICAL							
7	22BPC515	Bioprocess Laboratory I	PC	60	40	100	0	0	3	1.5
8	22BPC516	Genetic Engineering Laboratory	PC	60	40	100	0	0	3	1.5
		760	TOTAL	360	440	900	18	1	6	19
		199	WHITE AND							

SIXTH SEMESTER

SI.	Course		100	-CA	End	Total		Hot	ırs/We	ek		
No	Code	CourseTitle	Category	Marks	Sem Marks	Marks	L	Т	P	C		
			// ⊕\TE	IEORY	- 11							
1	22BES611	Chemical Reaction Engineering	ES	40	60	100	3	1	0	4		
2	22BPC617	Immunology	PC	40	60	100	3	0	0	3		
3	22BPC618	Bioprocess Engineering	PC	40	60	100	3	0	0	3		
4	Elective II											
5	5											
		THEORY CO	URSE WITH	I PRACT	ICAL CO	OMPONE	NT					
6	22BPC619	Bioinformatics	PC	50	50	100	3	0	2	4		
			PRA	CTICAL								
7	22BPC620	Bioprocess Engineering Laboratory	PC	60	40	100	0	0	3	1.5		
8	22BPC621	Immunology Laboratory	PC	60	40	100	0	0	3	1.5		
9	22BES612	Design Thinking for Industrial Biotechnology	ES	100	-	100	0	0	3	1.5		
			TOTAL	470	430	900	18	1	11	24.5		

SEVENTH SEMESTER

SI.	Course			CA	End	Total	H	lour	s/W	eek
No No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	С
			THEORY	,						
1	22BHS704	Safety and Quality Management in Biotechnology	HS	40	60	100	3	0	0	3
2	22BES713	Bioprocess Economics and Plant Design	ES	40	60	100	3	0	0	3
3	22BPC722	Downstream Processing	PC	40	60	100	3	0	0	3
4	22BPE\$XX	Professional Elective III	PE	40	60	100	3	0	0	3
5	22BPE\$XX	Professional Elective IV	PE	40	60	100	3	0	0	3
6	22BOE\$XX/ 22BPESXX	Open Elective II/Professional Elective VIII	OE/PE	40	60	100	3	0	0	3
			PRACTICA	L						
7	22BPC723	Downstream Processing Laboratory	PC	60	40	100	0	0	3	1.5
8	22BEE701	Engineering Projects in Community Service	EEC	60	40	100	0	0	4	2
9	22BEE702	Internship*	EEC	100		100	-	-	-	4
			TOTAL	360	440	800	18	0	7	25.5

EIGHTH SEMESTER

Sl.	Course	G Tria	8	CA	EndSem	Total	Н	lour	s/We	ek
No	Code	CourseTitle	Category	Marks	Marks	Marks	L	Т	P	C
			TH	EORY						
1	22BPE\$XX	Professional ElectiveV	PE	40	60	100	3	0	0	3
2	22BPE\$XX	Professional ElectiveVI	PE	40	60	100	3	0	0	3
			PRA	CTICAL						
3	22BEE803	Capstone Project	EEC	60	40	100	0	0	16	8
		TOTAL	CREDITS	140	160	300	6	0	16	14

INTERNSHIP / INDUSTRIAL TRAINING: 4Credits

Note:

* Internship of four consecutive weeks or two 2 consecutive weeks which are completed during the vacation of fourth (and/or) fifth (and/or) sixth semester shall be considered here.

TOTAL CREDITS: 169

HUMANITIES AND SOCIAL SCIENCE INCLUDING MANAGEMENT (HSMC)

SI.	Course			CA	End	Total		Hour	s/Week	
No	Code	CourseTitle	Category	Marks	Sem Marks	Marks	L	T	P	С
1	22BHS1Z1	தமிழர் மரபு Heritage of Tamils	HS	40	60	100	1	0	0	1
2	22BHSIZ2	ValuesandEthics	HS	40	60	100	3	0	0	3
3	22BHS1Z3	CambridgeEnglish	HS	100	-	100	0	0	2	1
4	22BHS2Z4	தமிழரும் தொழில்நுட்பமும் Tamils and Technology	HS	40	60	100	1	0	0	1
5	22BHS2Z5	Professional English	HS	40	60	100	2	1	0	3
6	22BHS704	Safety and Quality Management in Biotechnology	HS	40	60	100	3	0	0	3
								TO	TAL	12

BASIC SCIENCE (BS)

SI.	Course	G	a . 111055430	CA	End	Total		Hour	s/Wee	k
No	Code	CourseTitle	Category	Marks	Sem Marks	Marks	L	Т	P	C
1	22BBS1Z1	Linear Algebra and Calculus	BS	40	60	100	3	1	0	4
2	22BBS1Z2	Engineering Physics	BS	40	60	100	3	0	0	3
3	22BBS103	Chemistry for Biotechnology	BS	40	60	100	3	0	0	3
4	22BBS1Z4	Chemistry Laboratory	BS	60	40	100	0	0	3	1.5
5	22BBS205	Differential Equations and Numerical Methods	BS	40	60	100	3	1	0	4
6	22BBS2Z6	Physics Laboratory	BS	60	40	100	0	0	3	1.5
7	22BBS307	Transform Calculus and Partial Differential Equations	BS	40	60	100	3	1	0	4
8	22BBS308	Cell Biology	BS	40	60	100	3	0	0	3
9	22BBS309	Cell Biology Laboratory	BS	60	40	100	0	0	3	1.5
								TOT	ΓAL	25.5

ENGINEERING SCIENCE (ES)

Sl.	Course			CA	End	Total		Hour	s/Weel	k
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	С
1	22BES101	Basics of Electrical and Electronics Engineering	ES	40	60	100	3	0	0	3
2	22BES1Z2	Engineering Graphics	ES	60	40	100	1	0	4	3
3	22BES203	Programming in C	ES	40	60	100	3	0	0	3
4	22BES2Z4	Workshop Practice	ES	60	40	100	0	0	3	1.5
5	22BES205	Programming in C Laboratory	ES	60	40	100	0	0	3	1.5
6	22BES306	Process Calculations and Heat Transfer	ES	40	60	100	3	1	0	4
7	22BES407	Fluid Mechanics	ES	40	60	100	3	0	0	3
8	22BES408	Engineering Exploration for Industrial Biotechnology	ES	100	-	100	0	0	3	1.5
9	22BES409	Chemical Engineering Laboratory	ES	60	40	100	0	0	3	1.5
10	22BES510	Mass Transfer Operations	ES	40	60	100	3	1	0	4
11	22BES611	Chemical Reaction Engineering	ES	40	60	100	3	1	0	4
12	22BES612	Design Thinking for Industrial Biotechnology	ES	60	40	100	0	0	3	1.5
13	22BES713	Bioprocess Economics and Plant Design	ES	40	60	100	3	0	0	3
								TOT	ΓAL	34.5

PROFESSIONAL CORE (PC)

SI.	Course			CA	End	Total		Hour	·s/Weel	K
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	T	P	C
1	22BPC201	Biomolecules	PC	40	60	100	3	0	0	3
2	22BPC302	Industrial Microbiology	PC	40	60	100	3	0	0	3
3	22BPC303	Biochemistry	PC	40	60	100	3	0	0	3
4	22BPC304	Genetics	PC	40	60	100	3	0	0	3
5	22BPC305	Microbiology Laboratory	PC	60	40	100	0	0	3	1.5
6	22BPC306	Biochemistry Laboratory	PC	60	40	100	0	0	3	1.5
7	22BPC407	Molecular Biology	PC	40	60	100	3	0	0	3
8	22BPC408	Biochemical Thermodynamics	PC	40	60	100	3	0	0	3
9	22BPC409	Enzyme Engineering and Technology	PC	40	60	100	3	0	0	3
10	22BPC411	Molecular Biology Laboratory	PC	60	40	100	0	0	3	1.5
11	22BPC512	Bioprocess Principles	PC	40	60	100	3	0	0	3
12	22BPC513	Genetic Engineering	PC	40	60	100	3	0	0	3
13	22BPC514	Protein Engineering	PC	40	60	100	3	0	0	3
14	22BPC515	Bioprocess Laboratory I	PC	60	40	100	0	0	3	1.5
15	22BPC516	Genetic Engineering Laboratory	PC	60	40	100	0	0	3	1.5
16	22BPC617	Immunology	PC	40	60	100	3	0	0	3
17	22BPC618	Bioprocess Engineering	PC	40	60	100	3	0	0	3
18	22BPC620	Bioprocess Engineering Laboratory	g PC	60	40	100	0	0	3	1.5
19	22BPC621	Immunology Laboratory	PC	60	40	100	0	0	3	1.5
20	22BPC722	Downstream Processing	PC	40	60	100	3	0	0	3
21	22BPC723	Downstream Processing Laboratory	PC	60	40	100	0	0	3	1.5
		THEORY COURS	E WITH PR	ACTICA	L COMPO	ONENT				
22	22BPC410	Analytical Techniques in Biotechnology	PC	50	50	100	3	0	2	4
23	22BPC619	Bioinformatics	PC	50	50	100	3	0	2	4
		<u> </u>						TOT	AL	59

Professional Electives: Verticals

S.No.	Vertical I Medical Biotechnology	Vertical II rDNA Technology	Vertical III Bioprocess Technology	Vertical IV Quality and Regulatory Affairs	Vertical V Biosciences (Minor Degree)
1.	22BPE\$01 Immunotechnology	22BPE\$09 Genomics and Proteomics	22BPE\$17 Aspects of Biochemical Engineering	22BPE\$25 Clinical trials and health care policies in Biotechnology	22BPE\$33 Human Anatomy and Physiology
2.	22BPE\$02 Neurobiology and cognitive sciences	22BPE\$10 Metabolic Engineering	22BPE\$18 Fermentation Technology	22BPE\$26 Biotechnological products and its validation	22BPE\$34 Bioethics
3.	22BPE\$03 Molecular Pathogenesis	22BPE\$11 Plant Biotechnology	22BPE\$19 Food Process Engineering	22BPE\$27 Quality assurance and quality control in Biotechnology	22BPE\$35 Biomass and Bioenergy
4.	22BPE\$04 Cancer Biology	22BPE\$12 Animal Biotechnology	22BPE\$20 Bioreactor design and scale up process	22BPE\$28 Entrepreneurship and patent design	22BPE\$36 Environmental Biotechnology
5.	22BPE\$05 Biopharmaceutical Technology	22BPE\$13 Stem cells technology	22BPE\$21 Bioreactor consideration for recombinant products	22BPE\$29 Intellectual property rights in Biotechnology	22BPE\$37 Biopolymer technology
6.	22BPE\$06 Tissue Engineering	22BPE\$14 Marine Biotechnology	22BPE\$22 Bio process control and instrumentation	22BPE\$30 Biosafety and Hazard management	22BPE\$38 Nanobiotechnology
7.	22BPE\$07 Molecular forensics	22BPE\$15 Pharmacogenomics	22BPE\$23 Bioprocess modelling and simulation	22BPE\$31 Conservation economics	22BPE\$39 Biomass conversion and Biorefinery
8.	22BPE\$08 Medicinal chemistry	22BPE\$16 Genome editing	22BPE\$24 Solid State Bioprocessing	22BPE\$32 Chemical Process safety	22BPE\$40 Introduction to Biostatistics

PROFESSIONAL ELECTIVES (PE)

VERTICAL I - Medical Biotechnology

SI.	Course		CA	End		Total	Н	ours	/We	ek
No	Code	Course Title	Marks	Sem Marks	Category	Marks	L	T	P	C
1	22BPE\$01	Immunotechnology	40	60	PE	100	3	0	0	3
2	22BPE\$02	Neurobiology and cognitive sciences	40	60	PE	100	3	0	0	3
3	22BPE\$03	Molecular Pathogenesis	40	60	PE	100	3	0	0	3
4	22BPE\$04	Cancer Biology	40	60	PE	100	3	0	0	3
5	22BPE\$05	Biopharmaceutical Technology	40	60	PE	100	3	0	0	3
6	22BPE\$06	Tissue Engineering	40	60	PE	100	3	0	0	3
7	22BPE\$07	Molecular forensics	40	60	PE	100	3	0	0	3
8	22BPE\$08	Medicinal chemistry	40	60	PE	100	3	0	0	3

VERTICAL II - rDNA Technology

CL N.	Commo Codo	Comme Titale	MAN D	End	C-4	Total	Н	Hours/Week					
Sl. No	Course Code	Course Title	CA Marks	Sem Marks	Category	Marks	L	Т	P	C			
1	22BPE\$09	Genomics and Proteomics	40	60	PE	100	3	0	0	3			
2	22BPE\$10	Metabolic Engineering	40	60	PE	100	3	0	0	3			
3	22BPE\$11	Plant Biotechnology	40	60	PE	100	3	0	0	3			
4	22BPE\$12	Animal Biotechnology	40	60	PE	100	3	0	0	3			
5	22BPE\$13	Stem cells technology	40	60	PE	100	3	0	0	3			
6	22BPE\$14	Marine Biotechnology	40	60	PE	100	3	0	0	3			
7	22BPE\$15	Pharmacogenomics	40	60	PE	100	3	0	0	3			
8	22BPE\$16	Genome editing	40	60	PE	100	3	0	0	3			

VERTICAL III - Bioprocess Technology

Sl.	Course	Comes Title	CA	End	Catagory	Total	Н	ours	/We	ek
No	Code	Course Title	Marks	Sem Marks	Category	Marks	L	T	P	С
1	22BPE\$17	Aspects of Biochemical Engineering	40	60	PE	100	3	0	0	3
2	22BPE\$18	Fermentation Technology	40	60	PE	100	3	0	0	3
3	22BPE\$19	Food Process Engineering	40	60	PE	100	3	0	0	3
4	22BPE\$20	Bioreactor design and scale up process	40	60	PE	100	3	0	0	3
5	22BPE\$21	Bioreactor consideration for recombinant products	40	60	PE	100	3	0	0	3
6	22BPE\$22	Bio process control and instrumentation	40	60	PE	100	3	0	0	3
7	22BPE\$23	Bioprocess modelling and simulation	40	60	PE	100	3	0	0	3
8	22BPE\$24	Solid State Bioprocessing	40	60	PE	100	3	0	0	3

VERTICAL IV - Quality and Regulatory Affairs

Sl.	Course	Course Title	Viarks	Catagory	Total	Hours/Week				
No	Code	Course Title	Marks	Marks	Category	Marks	L	T	P	C
1	22BPE\$25	Clinical trials and health care policies in Biotechnology	40	60	PE	100	3	0	0	3
2	22BPE\$26	Biotechnological products and its validation	40	60	PE	100	3	0	0	3
3	22BPE\$27	Quality assurance and quality control in Biotechnology	40	60	PE	100	3	0	0	3
4	22BPE\$28	Entrepreneurship and patent design	40	60	PE	100	3	0	0	3
5	22BPE\$29	Intellectual property rights in Biotechnology	40	60	PE	100	3	0	0	3
6	22BPE\$30	Biosafety and Hazard management	40	60	PE	100	3	0	0	3
7	22BPE\$31	Conservation economics	40	60	PE	100	3	0	0	3
8	22BPE\$32	Chemical Process safety	40	60	PE	100	3	0	0	3

VERTICAL V - Biosciences (Minor Degree)

Sl.	Course	Course Title	CA	End Sem	Catagami	Total	Hours/Weel					
No	Code	Course Title	Marks	Marks	Category	Marks	L	T	P	C		
1	22BPE\$33	Human Anatomy and Physiology	40	60	PE	100	3	0	0	3		
2	22BPE\$34	Bioethics	40	60	PE	100	3	0	0	3		
3	22BPE\$35	Biomass and Bioenergy	40	60	PE	100	3	0	0	3		
4	22BPE\$36	Environmental Biotechnology	40	60	PE	100	3	0	0	3		
5	22BPE\$37	Biopolymer technology	40	60	PE	100	3	0	0	3		
6	22BPE\$38	Nanobiotechnology	40	60	PE	100	3	0	0	3		
7	22BPE\$39	Biomass conversion and Biorefinery	40	60	PE	100	3	0	0	3		
8	22BPE\$40	Introduction to Biostatistics	40	60	PE	100	3	0	0	3		

OPEN ELECTIVES (OE)

Sl.	Course	Course Title	Category	End	Total	Н	_	/We	ek	
No	Code			Marks	Sem Marks	Marks	L	T	P	C
1.	22COE\$01	Disaster Management and Mitigation	OE	40	60	100	3	0	0	3
2.	22COE\$02	Water Sanitation and Health	OE	40	60	100	3	0	0	3
3.	22MOE\$03	Nanotechnology and Surface Engineering	OE	40	60	100	3	0	0	3
4.	22MOE\$04	Industrial Safety Management	OE	40	60	100	3	0	0	3
5.	22EOE\$05	Renewable Power Generation Systems	OE	40	60	100	3	0	0	3
6.	22EOE\$06	Smart Grid Technology	OE	40	60	100	3	0	0	3
7.	22LOE\$07	CMOS VLSI Design	OE	40	60	100	3	0	0	3
8.	22LOE\$08	Mobile Communication	OE	40	60	100	3	0	0	3
9.	22POE\$09	Rapid Prototyping	OE	40	60	100	3	0	0	3
10	22POE\$10	Managerial Economics	OE	40	60	100	3	0	0	3
11.	22NOE\$11	Measurement and Control	OE	40	60	100	3	0	0	3
12.	22NOE\$12	Industrial Automation	OE	40	60	100	3	0	0	3
13.	22SOE\$13	Programming in Java	OE	40	60	100	3	0	0	3
14.	22SOE\$14	Network Essential	OE	40	60	100	3	0	0	3
15.	22I0E\$15	Video creation and	OE	40	60	100	3	0	0	3
		editing	300 T	GUD BY						
16.	22IOE\$16	Digital marketing	OE	40	60	100	3	0	0	3
17.	22BOE\$17	Principles Of Food	OE	40	60	100	3	0	0	3
		Technology								
18.	22BOE\$18	Biology For Engineers	OE	40	60	100	3	0	0	3

EMPLOYABILITY ENHANCEMENT COURSE (EEC)

Sl.	Course		CA		End	Total	Hours/Week					
No	Code	CourseTitle	Category	Marks	Sem Marks	Marks	L	Т	P	C		
1	22BEE701	Engineering Projects in Community Service	EEC	60	40	100	0	0	4	2		
2	22BEE702	Internship	EEC	100	-	100	-	-	-	4		
3	22BEE803	Capstone Project	EEC	60	40	100	0	0	16	8		

MANDATORY COURSE (MC)

Sl.	Course	Course		CA	End	Total	Hours/Week					
No	Code	CourseTitle	Category	Marks	Sem Marks	Marks	L	T	P	C		
1	22BMC1Z0	Induction Programme	MC	-	-	-	-		-	-		
2	22BMC2Z1	Environmental Science and Engineering	MC	40	60	100	3	0	0	0		
3	22BMC5Z2	Constitution of India	MC	40	60	100	3	0	0	0		

VALUE ADDED COURSE (VA)

Sl.	Course	C Tru		CA	End	Total		Hour	s/Wee	k
No	Code	CourseTitle	Category	Marks	Sem Marks	Marks	L	T	P	C
1		Swayam/NPTEL Courses	EEC	100	· ·	100	1	0	0	1
2		Coursera (Online Courses)	EEC	100	/ -	100	1	0	0	1
3	22BVA\$03	Research Publications	EEC	100	-	100	1	0	0	1
4	22BVA\$04	Next generation sequence Analysis	EEC	100	-	100	1	0	0	1
5	22BVA\$05	Patents & Copyrights	EEC	100	\\\ -	100	1	0	0	1
6	22BVA\$06	Vermicomposting	EEC	100	3	100	1	0	0	1
7	22BVA\$07	Mushroom cultivation	EEC	100	選 -	100	1	0	0	1
8	22BVA\$08	Pharmacovigilance	EEC	100	<i>)</i> -	100	1	0	0	1
9	22BVA\$09	Basics of Yoga for Youth Empowerment	EEC	100	-	100	1	0	0	1
10	22BVA\$10	Bioindustries trade and Policy regulations	EEC	100	-	100	1	0	0	1
11	22BVA\$11	Professional Skills and Career Readiness	EEC	100	-	100	0	0	2	1
12	22BVA\$12	Placement Training	EEC	100	-	100	0	0	2	1

$\frac{\text{CURRICULAM DESIGN FOR CBCS 2022 REGULATIONS}}{\text{FULL TIME B.TECH. INDUSTRIAL BIOTECHNOLOGY (UG)}}{\text{SUMMARY}}$

					Credit	s Per Se	meste	r					
SI. No.	Course Category	I	П	ш	IV	V	VI	VII	VIII	Internship/Industrial Training	Total Credits	Total Credits in %	Credit as per AICTE Model Curricula
1	HS/HSM C	5	4	-	-	-	-	3	-		12	7.10	12
2	BS	11.5	5.5	8.5	-	-	-	-	-	-	25.5	15.09	25
3	ES	6	6	4	6	4	5.5	3	-	-	34.5	20.41	24
4	PC	-	3	12	14.5	12	13	4.5	-	-	59	34.91	48
5	PE	-	-	-	96	3	3	6	6	-	18	10.65	18
6	OE	-	-	-	Y	62	3	3		-	6	3.55	18
7	EEC	-	-	-		-	= 14	2	8	4	14	8.28	15
8	MC	0	0	-	-)	0	-	Ā	11-	-	0	0	-
	Total	22.5	18.5	24.5	20.5	19	24.5	21.5	14	4	169	100	160

GOVERNMENTCOLLEGEOFTECHNOLOGY

(AnAutonomousInstitutionAffiliatedtoAnnaUniversity) Coimbatore-641013.

INDUSTRIAL BIOTECHNOLOGY

22BMC1Z0 INDUCTION PROGRAMME SEMESTER

Details of the Programme:

Day0: College Admission

Day1:Orientation Programme

Day2 Onwards: Induction Programme

Activities:

Physicalactivity, Playgroun d Events,
YogaPractices,
Literary, Proficiency modules,
TeamBuilding,
Lectures by Eminent people,
Familiarization to department,
Branch oriented information,
Motivational speakers,
Talent exposure,
Quiz completion,
Visit to local areas....etc.

22BHS1Z1	தமிழர்மரபு Heritage of Tamils (Common to all Branches)	SEMESTER I
----------	---	------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	HSMC	1	0	0	1

UNIT – I LANGUAGE AND LITERATURE

3 Periods

Language Families in India - Dravidian Languages - Tamil as a Classical Language - Classical Literature in Tamil - Secular Nature of Sangam Literature - Distributive Justice in Sangam Literature- Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

UNIT – II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE

3 Periods

Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple carmaking - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

UNIT – III FOLK AND MARTIAL ARTS

3 Periods

Therukoothu, Karagattam, VilluPattu, KaniyanKoothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT – IV THINAI CONCEPT OF TAMILS

3 Periods

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature-Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT - V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE

3 Periods

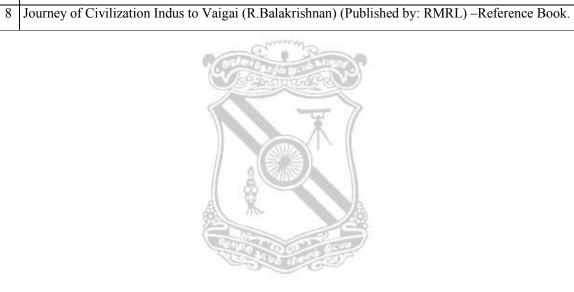
Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

Contact Periods:

Lecture: 15Periods

Tutorial:0 Periods

Practical:0Periods


Total: 15 Periods

TEXT BOOK:

- ¹ தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு : தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2 கணினித்தமிழ் முனைவர்இல.சுந்தரம். (விகடன்பிரசுரம்).
- ³ கீழடி வைகை நதிக்கரையில் சங்ககாலநகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4 பொருநை ஆற்றங்கரைநாகரிகம். (தொல்லியல்துறைவெளியீடு)

REFERENCES:

1	Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
	Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by:International Institute of Tamil Studies.
	Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies).
	The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by:International Institute of Tamil Studies.)
	Keeladi - 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
6	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: The Author)
	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)

22BHS1Z1	தமிழர்மரபு Heritage of Tamils (Common to all Branches)	SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	C
NIL	HSMC	1	0	0	1

அலகு I	மொழி மற்றும் இலக்கியம்	3 Periods
--------	------------------------	-----------

இந்திய மொழிக் குடும்பங்கள்- திராவிட மொழிகள்- தமிழ் ஒரு செம்மொழி- தமிழ் செவ்விலக்கியங்கள்–சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை-சங்கஇலக்கியத்தில் பகிர்தல்அறம்-திருக்குறளில் மேலாண்மைக் கருத்துக்கள்-தமிழ்க்காப்பியங்கள், தமிழகத்தில் சமண பௌத்தசமயங்களின் தாக்கம்-பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள்-சிற்றிலக்கியங்கள்-தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி-தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின்பங்களிப்பு

மரபு – பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை–சிற்பக்கலை

3 Periods

நடுகல் முதல் நவீன சிற்பங்கள் வரை – ஐம்பொன் சிலைகள்– பழங்குடியினர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள்-பொம்மைகள் – தேர் செய்யும்கலை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத்தெய்வங்கள்–குமரிமுனையில் திருவள்ளுவர்சிலை – இசைக்கருவிகள் – மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு.

அலகு III | நாட்டுப்புறக்கலைகள் மற்றும் வீர விளையாட்டுகள் | 3 Periods தெருக்கூத்து, கரகாட்டம் – வில்லுப்பாட்டு – கணியான்கூத்து – ஒயிலாட்டம் -தோல்பாவைக்கூத்து-சிலம்பாட்டம்–வளரி-புலியாட்டம்-தமிழர்களின் விளையாட்டுகள்.

அலகு IV தமிழர்களின் திணைக்கோட்பாடுகள்

3 Periods

தமிழகத்தின் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக்கோட்பாடுகள் – தமிழர்கள்போற்றிய அறக்கோட்பாடு–சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் –சங்ககால நகரங்களும் துறைமுகங்களும் – சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்தநாடுகளில்சோழர்களின்வெற்றி.

அலகு V இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின்பங்களிப்பு

3 Periods

இந்திய விடுதலை போரில் தமிழர்களின் பங்கு – இந்தியாவின் பிறப்பகுதிகளில் தமிழ்ப்பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில் சித்த மருத்துவத்தின் பங்கு – கல்வெட்டுகள், கையெழுத்துப்படிகள் - தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு. Contact Periods:

Lecture: 15 Periods Tutorial:0 Periods Practical:0Periods Total: 15 Periods

TEXT BOOK:

1	தமிழக வரலாறு – மக்களும் பண்பாடும் – கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு
	பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).

- 2 கணினித்தமிழ் முனைவர் இல.சுந்தரம் . (விகடன்பிரசுரம்).
- 3 கீழடி வைகை நதிக்கரையில் சங்ககால நகரநாகரிகம் (தொல்லியல்துறை வெளியீடு)
- 4 பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல்துறைவெளியீடு)

REFERENCES:

of Tamil Studies. 3 Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies). 4 The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by:International Institute of Tamil Studies.) Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)			
of Tamil Studies. 3 Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies). 4 The Contributions of the Tamils to Indian Culture (Dr.M. Valarmathi) (Published by:International Institute of Tamil Studies.) Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) 6 Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: Th Author) 7 Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)		1	Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
International Institute of Tamil Studies). 4 The Contributions of the Tamils to Indian Culture (Dr.M. Valarmathi) (Published by:International Institute of Tamil Studies.) Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) 6 Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: Th Author) 7 Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)		2	Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by:International Institute of Tamil Studies.
Institute of Tamil Studies.) Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: Th Author) Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)		3	
 5 Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) 6 Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: Th Author) 7 Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu) 		4	AV AV
Author) 7 Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)		5	
Educational Services Corporation, Tamil Nadu)	-	6	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: The Author)
8 Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.		7	
		8	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.

220115172	VALUES AND ETHICS	SEMESTER I
22DH51Z2	(Common to all Branches)	SEMESTERT

PREREQUISITES	CATEGORY	L	T	P	C
NIL	HSMC	3	0	0	3

Course Objectives	 To understand and appreciate the ethical issues faced by an individual in profession, society and polity To learn about Engineering Ethics and case studies To understand the negative health impacts of certain unhealthy behaviors 	
	4. To appreciate the need and importance of physical, emotio social health	nal health and
UNIT – I	5. To get familiar with the global issues BEING GOOD AND RESPONSIBLE	9 Periods

Morals, Values and Ethics - Integrity - Work Ethics - Service Learning - Civic Virtue - Respect for Others - Living Peacefully - Caring - Sharing - Honesty - Courage - Valuing Time - Cooperation - Commitment - Empathy - Self-Confidence - Character.

UNIT – II ENGINEERING AS SOCIAL EXPERIMENTATION

Engineering Ethics: Senses of 'Engineering Ethics' - variety of moral issued - types of inquiry - moral dilemmas - moral autonomy - Models of Professional Roles.

Engineering as Experimentation – Engineers as responsible Experimenters – Research Ethics - Codes of Ethics – Industrial Standards - A Balanced Outlook on Law – Case studies: Chernobyl disaster and Titanic disaster.

UNIT - III ADDICTIONANDHEALTH

9 Periods

9 Periods

Peerpressure-Alcoholism:Ethicalvalues,causes,impact,laws,prevention—illeffectsofsmoking-PreventionofSuicides;SexualHealth:Preventionandimpactofpre-

maritalpregnancyandSexuallyTransmittedDiseases.

Drug Abuse: Abuse of different types of legal and illegal drugs: Ethical values, causes, impact, laws and prevention.

UNIT – IV PROFESSIONALETHICS

9 Periods

Abuse of Technologies: Hacking and other cybercrimes, Addiction to mobile phone usage, Video games and Social networking websites.

UNIT – V GLOBAL ISSUES

9 Periods

Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers - consulting engineers - engineers as expert witnesses and advisors - Code of Conduct - Corporate Social Responsibility.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Mike W Martin and Roland Schinzinger, "Ethics in Engineering", 4th Edition, McGraw-Hill, New York 2017.
- 2 Govindarajan M, Natarajan S and Senthil Kumar VS, "Engineering Ethics", Prentice Hall of India, New Delhi. 2013.

REFERENCES:

_			
Ī	1	Dhaliwal, K.K, "Gandhian Philosophy of Ethics: A Study of Relationship between his	
		Presupposition and Precepts", Writers Choice, New Delhi, India, 2016.	
Ī	2	Jayshreesuresh, B.S.Raghavan, "Human values and professional ethics", S. Chand& company Ltd, New	
		Delhi, 2th Edition, 2007.	
	3	L.A. and Pagliaro, A.M, "Handbook of Child and Adolescent Drug and Substance Abuse:	
		Pharmacological, Developmental and Clinical Considerations", Wiley Publishers, U.S.A, 2012.	
	4	Pandey, P. K(2012), "Sexual Harassment and Law in India", Lambert Publishers, Germany, 2012.	
	5	Kiran D.R, "Professional ethics and Human values", Tata McGraw Hill, New Delhi, 2007.	
	6	Edmund G See Bauer and Robert L Barry, "Fundamentals of Ethics for Scientists and	
		Engineers", Oxford University Press, Oxford, 2001.	
	7	David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press, 2003.	
Ī	8	Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New	
		Delhi, 2004.	

COUL	RSE OUTCOMES:	Bloom's Taxonomy
		Mapped
Upon	completion of the course, the students will be able to:	
CO1	Follow sound morals and ethical values scrupulously to prove as good	К3
	citizens.	
CO2	Assess the relevance of ethics and morals in engineering and to learn case	K3
	studies.	
CO3	Describe the concept of addiction and how it will affect the physical and	K2
	mental health.	
CO4	Identify ethical concerns while using advanced technologies.	K2
CO5	Judge the code of conduct, Environmental ethics and computer ethics.	K3

COURSE ARTICULATION MATRIX

a) CO	a) CO and PO Mapping														
COs/	POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO2
		1	2	3	4	5	6	7.	8	9	10	11	12	1	
CO1		-	-	-	-	-	3	3	3	3	3	3	-	-	1
CC)2	-	ı	-	-	1	3	1	3	3	-	-	-	-	1
CC)3	-	-	-	-	-	3	1	3	3	2	3	-	-	1
CC)4	-	1	-	-	-	3	3	3	3	1	3	1	-	1
CC)5	-		-	-		3	3	3	3	-	1	3	-	1
22BHS	S1Z2	-	-	-	-	-	3	3	3	3	2	2	1	-	1
1 – Sli	1 – Slight, 2 – Moderate, 3 – Substantial														
b) CO	and k	Key Per	rforma	ance Ir	ıdicato	rs Ma	pping								
CO1	6.1.1	,6.2.1,7	7.1.1,7	1.2,7.2	2.1,7.2	2,8.1.1	L,8.2.1,	8.2.2,9	.1.1,9	1.2,9.	2.1,9.2	.2,9.2.3	3,9.2.4	,9.3.1,10	0.1.1,10.1
	.2, 10	0.1.3,10).2.1,10	0.2.2,1	0.3.1,1	0.3.2,	11.1.1,	11.1.2,	11.2.1	,11.3.	1				
CO2	6.1.1	,6.2.1,7	7.1.1,8	.1.1,8.2	2.1,8.2	2,9.1.1	L,9.1.2,	9.2.1,9	.2.2,9	2.3,9.	2.4,9.3	.1			
CO3	6.1.1	,6.2.1,7	7.1.1,8	.1.1,8.2	2.1,8.2	2,9.1.1	L,9.1.2,	9.2.1,9	.2.2,9	2.3,9.	2.4,9.3	.1,10.2	.1,10.3	3.1,10.3.	2,
	11.1.	1, 11.1	.2, 11.2	2.1, 11	.3.1										
CO4	6.1.1	,6.2.1,7	7.1.1,7	1.2,7.2	2.1,7.2	2,8.1.1	l,8.2.1,	8.2.2,9	.1.1,9	.12,9.2	.1,9.2.	2,9.2.3	,9.2.4,	9.3.1,10	.3.1,10.3.
	2, 11.	.1.1, 11	.1.2,1	1.2.1 <u>,</u> 1	1.3.1,1	1.3.2,1	2.1.1								
CO5	6.1.1	,6.2.1,7	7.1.1,7	1.2,7.2	2.1,7.2	2,8.1.1	L,8.2.1,	8.2.2,9	.1.1,9	1.2,9.	2.1,9.2	.2,9.2.3	3,9.2.4	,9.3.1,11	1.1.1,12.1
	.2,12	.2.1,12	.2.2,12	.3.1,12	2.3.2										

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
Category*										
CAT1	30	30	20	20	-	-	100			
CAT2	30	30	20	20	-	-	100			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	30	30	20	20	-	-	100			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	30	20	20	-	-	100			
ESE	30	30	20	20	-	-	100			

22BBS1Z1

LINEAR ALGEBRA AND CALCULUS

(Common to all Branches)

SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	C
NIL	BS	3	1	0	4

Commo	1 To acquire Imperdades of greature of agreetions	ai aamya1yaa							
Course	1.To acquire knowledge of system of equations,	eigenvalues,							
Objectives	eigenvectors, diagonalization of matrices and reduction of quadratic forms to canonical								
	forms.								
	2. To obtain the knowledge of analyze the functions using Limits and derivative								
	recognize the appropriate tools of differential calculus to solve applied problems.								
	3. To obtain the knowledge of definite and improper integration and recognize the								
	appropriate tools of Integral Calculus to solve applied problems								
	4.To develop the skills in solving the functions of several variables by pa	ırtial							
	derivatives.								
	5. To acquire knowledge of multiple integration and related applied prob	olems in							
	various geometry								
UNIT – I	LINEAR ALGEBRA	9+3 Periods							
	System of Linear Equations - Eigen values and eigenvectors - Diagonaliza								
matrices by ort	matrices by orthogonal transformation - Cayley-Hamilton Theorem - Quadratic to canonical forms.								
UNIT – II	DIFFERENTIAL CALCULUS	9+3 Periods							
	inuity of function - Rolle's theorem - Mean value theorems - Taylor's and								
	lication of Differential Calculus: Radius of curvature, Centre of curvature,	Circle of							
curvature and I	Evolutes of a curve.								
UNIT – III	INTEGRAL CALCULUS	9+3 Periods							
		Evaluation of definite integral by trigonometric substitution - Convergence and Divergence of improper							
integrals - Beta & Gamma functions and their properties - Applications of definite integrals to evaluate									
	nd volume of revolution (Cartesian coordinates only).								
surface areas at	nd volume of revolution (Cartesian coordinates only). PARTIAL DERIVATIVES AND ITS APPLICATIONS	ls to evaluate 9+3 Periods							
surface areas at	nd volume of revolution (Cartesian coordinates only).	ls to evaluate 9+3 Periods							
surface areas an UNIT – IV Partial derivati	nd volume of revolution (Cartesian coordinates only). PARTIAL DERIVATIVES AND ITS APPLICATIONS ves - total derivative - Taylor's series – Jacobians - Maxima, minima and sarange multipliers.	ls to evaluate 9+3 Periods							
surface areas an UNIT – IV Partial derivati	nd volume of revolution (Cartesian coordinates only). PARTIAL DERIVATIVES AND ITS APPLICATIONS ves - total derivative - Taylor's series – Jacobians - Maxima, minima and se	ls to evaluate 9+3 Periods							
surface areas and UNIT – IV Partial derivation Method of Lag UNIT – V	nd volume of revolution (Cartesian coordinates only). PARTIAL DERIVATIVES AND ITS APPLICATIONS ves - total derivative - Taylor's series – Jacobians - Maxima, minima and sarange multipliers.	9+3 Periods addle points - 9+3 Periods							
surface areas at UNIT – IV Partial derivati Method of Lag UNIT – V Double integra	nd volume of revolution (Cartesian coordinates only). PARTIAL DERIVATIVES AND ITS APPLICATIONS ves - total derivative - Taylor's series – Jacobians - Maxima, minima and sarange multipliers. MULTI VARIABLE INTEGRAL CALCULUS	9+3 Periods addle points - 9+3 Periods als - Triple							
surface areas and UNIT – IV Partial derivation Method of Lag UNIT – V Double integra Integrals - Volume	nd volume of revolution (Cartesian coordinates only). PARTIAL DERIVATIVES AND ITS APPLICATIONS ves - total derivative - Taylor's series – Jacobians - Maxima, minima and serange multipliers. MULTI VARIABLE INTEGRAL CALCULUS 1 - Area as double integral - change of order of integration in double integral	9+3 Periods addle points - 9+3 Periods als - Triple							
surface areas and UNIT – IV Partial derivation Method of Lag UNIT – V Double integra Integrals - Volume	nd volume of revolution (Cartesian coordinates only). PARTIAL DERIVATIVES AND ITS APPLICATIONS ves - total derivative - Taylor's series – Jacobians - Maxima, minima and sarange multipliers. MULTI VARIABLE INTEGRAL CALCULUS I - Area as double integral - change of order of integration in double integration as Triple Integral. Change of variables: Cartesian to polar, Spherical polarical polar coordinates.	9+3 Periods addle points - 9+3 Periods als - Triple							

TEXT BOOK

1	VeerarajanT., "Engineering Mathematics I", Tata McGraw-Hill Education(India)Pvt. Ltd, New
	Delhi, 2015.
7	Devid C. Lev. "Lingar Alaches and Its Application", Develop Dublishous Ch Edition 2021

2 David C.Lay, "Linear Algebra and Its Application", Pearson Publishers, 6th Edition, 2021.

REFERENCES

1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44 th Edition, 2017.
2	Howard Anton, "Elementry Linear Algebra" , 11 th Edition,Wiley Publication, 2013.
3	Narayanan.S and Manicavachagom Pillai. T.K. – "Calculas Vol I and Vol II", S.chand& Co, Sixth
	Edition, 2014.
4	H.K. Dass, "Advance Engineering Mathematics", S. Chand and company, Eleventh Edition,
	2015.
5	Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", NarosaPublicaitons,
	Eighth Edition, 2012.

	RSE OUTCOMES:	Bloom's Taxonomy Mapped				
Upon	Upon completion of the course, the students will be able to:					
CO1	Solve the linear system of equations, diagonalize matrix by orthogonal transformation and reduce quadratic form to canonical form.	K5				
CO2	Compare and contrast the ideas of continuity and differentiability and use them to solve engineering problems.	K5				
CO3	Acquire fluency in integration of one variable and apply them to find surface area and volumes.	K5				
CO4	Apply the techniques of partial derivatives in functions of several variables.	K5				
CO5	Use multiple integration for finding area, surface and volume of different geometry.	K5				

COURSE ARTICULATION MATRIX

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	1	-	-	-	-	-	-	-	1	-	1
CO2	3	3	1	1	-	-	-	-	-	-	-	1	-	1
CO3	3	3	1	1	-	-	-	-	-	-	-	1	-	1
CO4	3	3	1	1	-	111703254	205	-	-	-	-	1	-	1
CO5	3	3	1	1 200	-	T 0	13			-	-	1	-	1
22BBS1Z1	3	3	1	1 177	-	00000	gr 100	20	-	-	-	1	-	1
1 – Slight, 2 -	1 – Slight, 2 – Moderate, 3 – Substantial													

b) CO ar	o) CO and Key Performance Indicators Mapping								
CO1	1.1.1, 1.1.2, 2.1.1, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.3.1, 4.1.1, 4.1.2,								
	12.2.1								
CO2	1.1.1, 1.1.2, 2.1.1, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.3.1, 4.1.1, 4.1.2,								
	12.2.1								
CO3	1.1.1, 1.1.2, 2.1.1, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.3.1, 4.1.1, 4.1.2,								
	12.2.1 A								
CO4	1.1.1, 1.1.2, 2.1.1, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.3.1, 4.1.1, 4.1.2,								
	12.2.1								
CO5	1.1.1, 1.1.2, 2.1.1, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.3.1, 4.1.1, 4.1.2,								
	12.2.1								

ASSESSME	ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
Category*												
CAT1	20	40	30	10	=	-	100					
CAT2	20	40	30	10	-	-	100					
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	40	30	10	-	-	100					
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	40	30	10	-	-	100					
ESE	20	40	30	10	-	-	100					

22BBS1Z2	ENGINEERING PHYSICS (Common to all Branches)	SEMESTER I
	(Common to all Branches)	

PREREQUISITES	CATEGORY	L	T	P	C
NIL	BS	3	0	0	3

Course	1. To u	understand the basics about crystal systems and defects										
Objectives	optical fiber											
3. To solve problems in bending of beams												
	4. To solve quantum mechanical problems with the understanding of Quantum											
Principles												
	5. To 1	5. To understand the properties, production and applications of ultrasonic waves.										
UNIT - I CRYSTAL PHYSICS 9 Pc												
		ne and amorphous materials - Lattice - Unit Cell - Crystal system - I										
	_	cal lattice - d spacing in cubic lattice - Calculation of number of ato	1									
 Atomic radi 	ıs – Coord	dination number - Packing factor for SC, BCC, FCC and HCP struc	tures – Crystal									
defects - Poin	, line and	surface defects.										
UNIT – II	LASEF	R PHYSICS AND FIBER OPTICS	9 Periods									
Introduction-	Principle	of laser action - characteristics of laser - Spontaneous emission	n and Stimulated									
emission -Ei	stein's co	pefficients - population inversion - methods of achieving population	ation inversion -									
Optical Resor	ator -Typ	es of Lasers - Principle, construction and working of CO ₂ Laser	- applications of									
laser.		7										

Introduction – Basic Principles involved in fiber optics- Total internal reflection–Propagation of light through optical fiber –Derivation for Numerical Aperture and acceptance angle - fractional index change.

UNIT – III PROPERTIES OF MATTER

9 Perio

Elasticity- Hooke's law- stress-strain diagram - Factors affecting elasticity - Moment (Q) - Couple (Q) - Torque (Q) - Beam - Bending moment - Depression of a cantilever - Twisting Couple- Young's modulus by uniform bending - I shaped girders.

UNIT – IV QUANTUM PHYSICS AND APPLICATIONS

9 Periods

Limitations of classical Physics - Introduction to Quantum theory - Dual nature of matter and radiation-de-Broglie wavelength in terms of voltage, energy and temperature –Heisenberg's Uncertainty principle – verification – physical significance of a wave function- Schrödinger's Time independent and Time dependent wave equations — Particle in a one dimensional potential well - Scanning Electron Microscope (SEM)-Transmission Electron Microscope (TEM).

UNIT – V ULTRASONICS

9 Periods

Introduction - properties of ultrasonic waves - production of ultrasonic waves - Magnetostriction effect-Magnetostriction generator- Piezoelectric effect- Piezoelectric generator- Acoustic grating - Determination of wavelength and velocity of ultrasonic waves- cavitation - applications- ultrasonic drilling- ultrasonic welding- ultrasonic soldering and ultrasonic cleaning- Non- destructive Testing- Pulse echo system.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods

Total: 45 Periods

TEXT BOOK:

1	K. Rajagopal, "Engineering Physics", PHI Learning Private Limited, 2015.
	P. K. Palanisamy, "Engineering Physics-I", Scitech publications Private Limited, 2015.
3	M. Arumugam, "Engineering Physics", Anuradha Publishers, 2010.

REFERENCES:

1	Arthur Beiser, "Concepts of Modern Physics", Tata McGraw-Hill, 2010.
2	D. Halliday, R. Resnick and J. Walker, "Fundamentals of Physics", 6 th Edition, John Wiley and Sons,
	2001.
3	William T. Silfvast, "Laser Fundamentals", 2 nd Edition, Cambridge University Press, New York 2004.
4	M. N. Avadhanulu and P.G. Kshirsagar, "A Textbook of Engineering Physics", S. Chand and
	Company Ltd, 2010.
5	R. K. Gaur and S. L. Gupta, "Engineering Physics", Dhanpat Rai Publishers, 2009.

COU	RSEOUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Interpret the crystal structure and analyse the type of defect	K4
CO2	Explain the principle, characteristics, working and applications of laser and optical	K4
	fiber	
	Analyse and solve problems in laser and optical fiber	
CO3	Solve problems in bending of beams Apply the knowledge in construction of buildings	К3
CO4	Explain the importance of quantum mechanics Solve problems in basic quantum physics Apply the wave equations in real time problems	К3
CO5	Explain the properties and production of ultrasonic waves Apply ultrasonic waves for industrial problems	K3

COURSE ARTICULATION MATRIX

a) CO and PO Mapping															
COs/PO)s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1 2 2 1								1	-						
CO2		3	1	-	-	-	-	-	-	-	-	-	-	1	-
CO3		3	2	1	-	-	-	-	-	-	-	-	-	1	-
CO4		2	2	-	-	-	-	-	-	-	-	-	-	1	-
CO5		2	1	ı	ı	-	-	-	-	-	-	-	-	1	-
22BBS17	Z2	3	2	ı	ı	-	-	-	-	-	-	-	-	1	-
1 – Slight	, 2 –	Mode	rate, 3	– Sub	stantia	ıl									
b) CO an	d K	ey Per	rform	ance I	ndicat	ors M	appin	g							
CO1	1.1	.1, 1.2	.1, 1.3	1, 2.1.	1, 2.1.	3, 2.2.	.3, 2.3.	1, 2.4.	1						
CO2	1.1	.1, 1.2	.1, 1.3	1, 1.4.	1, 2.1.	1, 2.1.	3, 2.3.	1, 2.4.	1						
CO3	1.1	.1, 1.2	.1, 1.3	1, 1.4.	1, 2.1.	1, 2.1.	3, 2.2.	1, 2.2.	3, 2.2.	4, 2.3.	1, 2.4.1				
CO4	1.1	.1, 1.2	.1, 1.3	1, 2.1.	1, 2.1.	3, 2.2.	.3, 2.3.	1, 2.4.	1						
CO5	1.1	.1, 1.2	.1, 1.3	1, 2.1.	1, 2.1.	.3, 2.3	1, 2.4.	1							

ASSESSME	ASSESSMENT PATTERN – THEORY													
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
Category*	2.0	2.0	1.7	1.7	1.0		100							
CAT1	30	30	15	15	10	-	100							
CAT2	30	30	15	15	10	-	100							
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	40	40	20	-	-	-	100							
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40	40	20	-	-	-	100							
ESE	30	30	சிரல் 15 ^(க)	15	10	-	100							

22BBS103	CHEMISTRY FOR BIOTECHNOLOGY	SEMESTERI
22BBS103	CHEMISTRY FOR BIOTECHNOLOGY	SEMESTERI

PREREQUIS	ITES	CATEGORY	L	T	P	\mathbf{C}						
	NIL	BS	3	0	0	3						
Course	1. To acquaint the student with the principles of organic chemistry of nucleophilic and											
Objectives	electrophilic reactions.											
	2. To introduce about the concepts of stereochemistry and its configuration, synthesis and											
	important reactions of five- and six-member hetero cyclic compounds.											
	3. To inculcate sound understanding of preparations, properties of bio-molecules like carbohydrate, amino acids.											
	4. To acquire basic knowledge about the nuclear react	ions, transmutati	ons	and 1	few t	racer						
	techniques.											
	5. To impart the knowledge about the nanoparticles, in	ts preparations, p	rope	erties	, typ	es and						
	applications in various field.											
UNIT – I	BASIC PRINCIPLES OF ORGANIC CHEMISTI	RY			9 P	eriods						
Bonding in org	ganic molecules – inductive effect, electrometric effect	and mesomeric e	ffec	t –								
Intermediates of	of organic reactions: carbocation, free radicals and carb	ene – Nucleophi	lic s	ubsti	tutio	n –						
SN ₁ and SN ₂ , I	Electrophilic substitution – Elimination reaction– E_1 and											
UNIT – II	STEREOCHEMISTRYANDHETEROCYCLIC (eriods						
	m – classification – enantiomers and diastereosiomers											
	&L, R&S configuration) – Geometrical (E&Z configura					ls –						
pyrrole, pyridi	ne, quinoline and indole – aromaticity, synthesis and re	eactions of the co	mpo	unds	5.							
UNIT – III	INTRODUCTION TO BIO-MOLECULES	N.			9 P	eriods						
Basic principle	es - Bio-molecules, structure and properties of importan	nt bio-molecules:	Car	bohy	drat	es-						
classification,	structure of mono saccharides (Glucose &Fructose), Di	saccharides: Suc	rose	, Ma	ltose	: -						
	es: Starch, Cellulose, occurrence and functions – Prepar	ration, properties	and	uses	of a	mino						
acids and prote	eins.	7/90e										

UNIT – IV NUCLEAR CHEMISTRY

9 Periods

Nuclear fission (Nuclear reactor) and fusion (solar energy) – Nuclear reactions: Q value, cross sections, types of reactions, nuclear transmutations, radioactive techniques – tracer technique, neutron activation analysis – Radiolysis of water – G Value and applications of radioactivity.

UNIT – V NANOMATERIALS

9 Periods

Nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanorod and nanotube. Preparation of nanomaterials: chemical vapour deposition, electrochemical deposition. Applications of nanomaterials in medicine, agriculture and electronics.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

TEXT BOOKS:

- 1 Cox M. M. and Nelson D. L, Lehninger"Principles of Bio chemistry", W H Freernan and Co., New York, 2021.
- Jain. P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publications. Pvt. Ltd. New Delhi, 16th Edition, 2017

REFERENCES:

1	Robert Neilson Boyd, Saibalkanti Robert, Thornton Morrison " Organic Chemistry " kindle Edition 2014.
2	Murray, R.K, Kennelly P.J, Rodwell V.W, et al. "Harper's Illustrated Biochemistry", 29th Edition,
	McGraw–Hill, 2011
3	Charles P.Poole, Jr., Frank J.Owens"" Introduction to NanoTechnology", Wiley-India
	Edition, 2006.
4	Said SalaheldeenElnashaie, FiroozehDanafar, Hassan Hashemipour Rafsanjani "Nanotechnology for
	Chemical Engineers"1st Edition 2015, Kindle Edition.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Make the students conversant with the basic concepts in nucleophilic substitution, electrophilic substitution, and elimination reaction.	K2
CO2	Assign the different types of stereoisomerism, configurations preparations and properties of heterocyclic compounds.	К3
CO3	Apply the mechanism of organic reactions in synthesis of biomolecules.	K3
CO4	Recognize and apply the concepts of nuclear chemistry with different tracer techniques.	K3
CO5	Implement the basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for bio technological field.	K2

COURSE ARTICULATION MATRIX

						700.		200	111-					
a) CO and	PO Ma	pping				-		11	11					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
001					- 11	- &		The same	. 1					
CO1	2	-	1	-	- Al	-42	- 03	1 - 18	N/s	-	-	-	-	-
CO2	1	-	1	-	- 200	100	· -	1	Z62	-	-	-	1	-
CO3	2	1	1	-	(=	200	-	-		-	-	-	1	-
CO4	1	1	1	1	-	2	100	10	-	-	-	-	-	-
CO5	1	1	1	1	1	(20)		6	-	-	-	1	1	-
22BBS103	2	1	1	1	1	1	-	1	-	-	-	1	1	-
1 – Slight, 2	– Mod	erate, 3	– Subs	tantial										
b) CO and	Key Po	erform	ance In	dicato	rs Map	ping								
CO1	1.2.1,	1.4.1, 3	.1.3											
CO2	1.2.1,	3.1.3												
CO3	1.2.1,	1.3.1, 1	.4.1, 2.3	3.1, 3.1	.3, 3.1.	5	•		•	•			•	
CO4	1.2.1, 2	2.1.3, 2	.3.1, 3.1	1.3, 3.2	.3, 4.1.2	2, 4.1.3	, 6.2.1,	8.2.2	•	•			•	
CO5	1.2.1.2	2.4.2, 3	.1.3. 4.2	2.1. 4.3	.1. 5.1.2	2. 12.2.	3		<u> </u>					·

ASSESSMENT	PATTERN – TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Tota
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	1%
CAT1	20	40	20	20	-	-	100
CAT2	20	40	20	20	-	-	100
Individual	20	40	20	20	-	-	100
Assessment 1/							
Case Study 1/							
Seminar 1 /							
Project1							
Individual	20	40	20	20	-	-	100
Assessment 2/							
Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20	40	20	20	-	-	100

BASICS OF ELECTRICAL AND ELECTRONICS 22BES101 **ENGINEERING** SEMESTER I (Common to CIVIL, MECH, PRODN, CSE, IT & IBT Branches) **PREREQUISITES CATEGORY** P NIL 3 3 ES 0 0 1. To study the basic concepts of electric circuits, electronic devices and communication Course engineering. **Objectives** 2. To know the fundamentals of DC and AC machines. 3. To familiar with the basics of analog and digital electronics. 4. To understand the basics of house wiring. 5. To introduce the components of electrical installations and energy conservation. UNIT – I **ELECTRICAL CIRCUITS** 9 Periods

Electrical circuit elements (R,L and C) - Voltage and Current sources - Ohm's Law - Kirchoff laws - Time domain analysis of First order RL and RC circuits - Representation of sinusoidal waveforms - Average, RMS and Peak values - Phasor representation - Real, Reactive, Apparent power and power factor.

UNIT – II ELECTRICAL MACHINES AND MEASUREMENTS 9 Periods

Construction, Principle of Operation, basic equations and Types, Characteristics and Applications of DC generators, DC motors, Single phase Transformer, Single phase and Three phase Induction motor. Operating principles of Moving coil, Moving iron Instruments (Ammeter and Voltmeters).

UNIT – III ANALOG AND DIGITAL ELECTRONICS 9 Periods

Analog Electronics: Semiconductor devices – P-N junction diode, Zener diode, BJT, Operational amplifier – principle of operation, Characteristics and applications. Digital Electronics: Introduction to numbers systems, basic Boolean laws, reduction of Boolean expressions and implementation with logic gates.

UNIT – IV FUNDAMENTAL OF COMMUNICATION AND TRANSDUCERS 9 Periods

Types of Signals: Analog and Digital Signals – Modulation and Demodulation: Principles of Amplitude and Frequency Modulations – Resistive, Inductive, capacitive Transducers- Introduction.

UNIT – V	ELECTRICAL INSTALLATIONS AND ENERGY	9 Periods
	CONSERVATION	İ

Single phase and three phase system – phase, neutral and earth, basic house wiring -tools and components, different types of wiring - basic safety measures at home and industry – Energy efficient lamps - Energy billing. Introduction to UPS and SMPS.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 PeriodsPractical: 0 Periods Total: 45 Periods

TEXT BOOKS:

1	R.Muthusubramaniam, R.Salivaganan, Muralidharan K.A., "Basic Electrical and Electronics
	Engineering" Tata McGraw Hill, Second Edition 2010

2 Mittle V.N and Aravind Mittal, "Basic Electrical Engineering", Tata McGraw Hill, Second Edition, New Delhi, 2005

REFERENCES:

1	D.P.Kothari, I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010
2	Nagsarkar T.K and Sukhija M.S, "Basic Electrical Engineering", Oxford Press, 2005
3	E.Hughes, "Electrical and Electronics Technology", Pearson, 2010
4	MohmoodNahvi and Joseph A.Edminister, "Electric Circuits", Shaum Outline series, McGraw Hill, Sixth
	edition, 2014
5	Premkumar N and Gnanavadivel J, "Basic Electrical and Electronics Engineering", Anuradha
	Publishers, 4 th Edition, 2008
6	Allan S Morris, "Measurement and Instrumentation Principles" Elsevier, First Indian Edition, 2008.
7	S.L. Uppal, "Electrical Wiring Estimating and Costing", Khanna publishers, New Delhi, 2006.

	COURSE OUTCOMES:					
Upon con	apletion of the course, the students will be able to:					
CO1	Analyze the DC and AC circuits	K4				
CO2	Describe the operation and characteristics of electrical machines	K4				
CO3	Classify and compare various semiconductor devices and digital electronics	K3				
CO4	Infer the concept of communication engineering and Transducers.	K2				
CO5	Assemble and implement electrical wiring and electrical installations	K6				

a) CO and PO Manning

a) CO an	d PO	Mappi	ing					10,		9					
COs/POs		PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1		2	3	3	2	1	U		0	3	10	11	12	2	
CO2			2	3	2	1		2	1	_	-	-	+-	3	-
		2				100		7.1	25	-	-	-	-	_	-
CO3		3	2	3	2	1	-	-	-	-	1	-	-	2	-
CO4		2	3	3	2	-	-	3	-	-	-	-	1	2	-
CO5		2	2	3	2	-	-	-	-	-	-	-	-	3	-
22BES101	-	3	3	3	2	1	-	1	1	-	1	-	1	3	-
1 – Slight	$\frac{1}{1}$, $2 - 1$	Modera	te, 3 –	Substan	tial				•		•		•		
b) CO an	d Ke	y Perfo	rman	ce Indic	cators	Mapp	ing								
CO1	1.1.	1, 1.2.1	, 1.3.1,	2.1.1, 2	2.1.2, 2	2.1.3, 2	.2.3, 2.	3.1, 2.3	.2, 2.4.	1, 2.4.	2, 2.4.3	, 2.4.4, 3	3.1.1, 3	.1.2, 3.1	.3,
	3.1.4	4, 3.1.5	, 3.1.6,	3.2.1, 3	3.2.2, 3	.2.3, 3	.3.1, 3.	3.2, 3.4	.1, 3.4.	2, 4.1.	1, 4.1.2	4.1.3, 4	1.1.4, 4	.3.3, 5.2	.1,
	5.2.2	2.													
CO2	1.1.	1, 1.2.1	, 1.3.1,	2.1.1, 2	2.1.2, 2	2.1.3,2.	3.1, 2.3	3.2, 2.4	1, 2.4.2	2, 2.4.3	3, 2.4.4,	3.1.1, 3	.1.2, 3.	1.3, 3.1.	4,
	3.1.5	5, 3.1.6	3.2.1	3.2.2, 3	3.2.3, 3	3.1, 3	.3.2, 3.	4.1, 3.4	.2, 4.1.	1, 4.1.	2, 4.1.3	, 4.1.4, 4	1.3.1, 5	.2.1, 5.2	.2,
	7.2.	1, 7.2.2	, 8.1.1.	ĺ	ĺ					ĺ			Í		Í
CO3	1.1.	1, 1.2.1	, 1.3.1,	1.4.1, 2	2.1.1, 2	2.1.2, 2	.1.3, 2.	3.1, 2.3	.2, 2.4.	1, 2.4.	2, 2.4.3	, 2.4.4, 3	3.1.1, 3	.1.2, 3.1	.3,
						-			-	-				.2.1, 5.2	
	10.3									,		,			,
CO4	1.1.	1, 1.2.1	, 1.3.1.	2.1.1, 2	2.1.2, 2	2.1.3, 2	.2.3, 2.	3.1, 2.3	.2, 2.4.	1, 2.4.	2, 2.4.3	2.4.4, 3	3.1.1, 3	.1.2, 3.1	.3,
														.1.1, 7.1	
		1, 12.3.			, -	.,-	,	,	,	,	,	,,	, .	,	,
CO5		/			2.1.2. 2	1.3.2	3.1. 2	3.2. 2.4	1. 2.4	2. 2.4 3	3. 2.4.4	3.1.1.3	.1.2. 3	1.3, 3.1.	4.
						-			-	-		, 4.1.4, 4	-	,	-,
	٦.1.٠	j, j.1.0	, 5.4.1,	5.4.4, -	0.2.3, 3	0.0.1, 0	.೨.∠, ೨.	7.1, 3.4	.4,4.1.	.1, +.1.	۷, ٦.۱.۶	, 4.1.4, 5	r.J.J.		

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	30	30	40	-	ı	ı	100
CAT2	35	35	20	10	-	-	100
Individual	25	25	50		-	-	100
Assessment 1 /Case Study 1/							
Seminar 1 / Project1							
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	25	25	40	10	-	-	100
ESE	35	35	20	10	-	-	100

22BBS1Z4	CHEMISTRY LABORATORY	SEMESTERI
22DDS1Z4	(Common to all Branches)	SEMIESTERI

PREREQUISITES	CATEGORY	L	T	P	C
NIL	BS	0	0	3	1.5

COURSE OBJECTIVES:

To inculcate the practical applications of Chemistry to students and make them apply in the fields of engineering and technology.

LIST	OF EXPERIMENTS
1.	Estimation of hardness by EDTA method.
2	Conductometric titration of mixture of strong acid and weak acid using strong base.
3.	Estimation of chloride by Argentometric method.
4.	Potentiometric titration of ferrous iron by dichromate.
5.	Determination of Saponification value of an oil.
6.	Estimation of Iron by Spectrophotometry.
7.	Estimation of Dissolved Oxygen.
8.	Estimation of HCl by pH titration.
9.	Estimation of Copper in brass sample.
10.	Estimation of Manganese in Pyrolusite ore.
11.	Anodiziation of aluminium.
12.	Determination of corrosion rate and inhibitor efficiency of mild steel in acid media by weight
	loss method.
Conta	ct Periods:
Lectur	re: 0 PeriodsTutorial: 0 Periods Practical: 45 PeriodsTotal: 45 Periods

REFERENCE BOOKS:

1	A.O. Thomas, "Practical Chemistry", Scientific Book Centre, Cannanore, 2006.
2	Vogel's "Text book of Quantitative Analysis", Jeffery G H, Basset J. Menthom J, Denney R.C.,6 th
	Edition, EBS, 2009.

	E OUTCOMES: e completion of the course, the student will be able to	Bloom's Taxonomy Mapped
CO1	Analyze the quality of water samples with respect to their hardness and DO.	K3
CO2	Determine the amount of metal ions through potentiometric and spectroscopic techniques.	К3
CO3	Infer the strength of acid, mixtures of acids by pH meter and conductivity cell.	K3
CO4	Estimate the chloride, manganese and copper from various samples.	K3
CO5	Interpret the corrosion rate determination and anodizing method.	K2

a) CO and I	a) CO and PO Mapping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1	-	-	-	-	-	-	-	-	-	1	-
CO2	2	1	-	-	-	-	-	-	-	-	-	-	1	-
CO3	2	1	-	1	-	-	-	-	-	-	-	-	1	-
CO4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
CO5	2	1	1	1	-	-	1	-	-	-	-	-	-	-
22BBS1Z4	2	1	1	1	-	-	1	-	-	-	-	-	1	-

1 – Slight, 2 – Moderate, 3 – Substantial

b)	CO and	Key	Performance	Indicators	Mapping

CO1	1.1.1, 1.2.1, 2.3.1, 3.1.5
CO2	1.1.1, 1.2.1, 1.3.1, 2.1.2
CO3	1.1.1, 1.2.1, 2.1.3, 4.1.3
CO4	1.2.1, 1.3.1, 2.3.1
CO5	1.1.1, 1.2.1, 1.3.1, 2.3.1, 3.1.5, 4.2.1, 7.1.1

22BES1Z2 ENGINEERING GRAPHICS (Common toall Branches) SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	1	0	4	3

Course	1. To understand the geometrical constructions.			
Objectives	2. To study the various types of projections.			
_	3. To identify different section of solids.			
	4. To perform the development of surfaces and view of solids.			
	5. To familiarize with CAD packages.			
UNIT – I	GEOMETRICAL CONSTRUCTIONS AND PLANE CURVES	3+12 Periods		

Principles of Engineering Graphics and their significance - Basic geometrical constructions. Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Drawing of tangents and normal to the above curves.

UNIT – II ORTHOGRAPHIC PROJECTIONS

3+12 Periods

Introduction to Orthographic Projection - Conversion of pictorial views to orthographic views. Projection of points - Projection of straight lines with traces - Projection of planes (polygonal and circular surfaces) inclined to both the principal planes.

UNIT – III PROJECTION AND SECTION OF SOLIDS

3+12 Periods

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids, when the axis is inclined to both the principal planes by rotating object method. Sectioning of prisms, pyramids, cylinder and cone in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section.

UNIT – IV DEVELOPMENT OF SURFACES AND ISOMETRIC PROJECTIONS

3+12 Periods

Development of lateral surfaces of simple and sectioned solids – prisms, pyramids, cylinder and cone. Principles of isometric projection – isometric scale – isometric projections of simple solids and truncated solids - prisms, pyramids, cylinder, cone- combination of two solid objects in simple vertical positions.

UNIT – V COMPUTER AIDED DRAFTING

(3+12 Periods)

Introduction to computer aided drafting package to make 2D Drawings. Object Construction: Page layout – Layers and line types – Creating, editing and selecting the geometric objects. Mechanics: Viewing, annotating, hatching and dimensioning the drawing – Creating blocks and attributes. Drafting: Create 2D drawing. A number of chosen problems will be solved to illustrate the concepts clearly. (Demonstration purpose only, not to be included in examination).

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 75 Periods

TEXT BOOKS:

1	K. Venugopal, "Engineering Graphics", New Age International (P) Limited, 2016.
2	K.V.Natarajan, "A text book of Engineering Graphics", Dhanalakashmi Publishers, Chennai, 2016.

REFERENCES:

1	K.L.Narayana and P.Kannaiah, "Text book on Engineering Drawing", 2 nd Edition, SciTech Publications (India) Pvt. Ltd, Chennai, 2009.
2	N.S.Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University Press, New Delhi, 2015.
3	K.R.Gopalakrishna, "Engineering Drawing" (Vol. I&II combined), Subhas Publications, Bangalore, 2014.
4	Basant Agarwal and C.M.Agarwal, "Engineering Drawing", Tata McGraw Hill Publishers, New Delhi, 2013.
5	Kevin Lang and Alan J.Kalameja, "AutoCAD 2012 Tutor for Engineering Graphics", Cengage Learning Publishers, 1 st Edition, 2011.

COUI	COURSE OUTCOMES:						
Upon	completion of the course, the students will be able to:	Mapped					
CO1	Acquire on representing solids as per international standards.	K3					
CO2	Impart knowledge on different types of projections.	K3					
CO3	Generate and interrupt the true shape of section.	K3					
CO4	Develop the various surfaces according to the standards.	K3					
CO5	Know the concept of computers in drafting engineering diagrams.	K6					

						1 30	100	- /	X (1	12.2					
a) CO and PO Mapping															
-	/ DO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COs/ POs		1	2	3	4	5	6	7	8	9	10	11	12	1	2
(3	1	1	1	1	2	6	3	3.1	3	1	3	2	2	
(C O2	3	1	1	1 3	3	_ 2	- 1	3	331	3	1	3	1	2
(C O3	3	1	1	1 🕅		2	35	3	7/1	3	1	3	1	1
(C O 4	3	1	1	1	The	2	100	3	1	3	1	3	2	2
(C O 5	3	1	1	1	1	2	-	3	1	3	1	3	2	3
22B	ES1Z2	3	1	1	1	1	2	-	3	1	3	1	3	2	2
1 - S1	ight, $2 - N$	l oder	rate, 3	- Sub	stanti	al									
b) CC	and Key	Per	form	ance I	ndica	tors M	appin	g							
CO1	1.1.1, 1.2	2.1, 1	.3.1, 1	1.4.1, 2	2.1.3,	2.4.2, 3	3.1.2, 3	.1.4, 3	5.2.1,	1.3.3,	5.1.1,	6.2.1,	8.1.1,	8.2.1, 8.2	.2,
														2.2.2, 12.	
	12.3.2														
CO2	1.1.1, 1.2	2.1, 1	.3.1, 1	1.4.1, 2	2.1.3,	2.4.2, 3	3.1.2, 3	.1.4, 3	.2.1,	4.3.3,	5.1.1,	6.2.1,	8.1.1,	8.2.1, 8.2	.2,
		-	-					-	-		-			2.3.1, 12.	
CO3	1.1.1, 1.2														
		-	-					-	-		-			2.2.2, 12.	
	12.3.2	- ,	,		,	, , ,	. , .	, ,	,		, .	. ,	,	, .	,
CO4	1.1.1. 1.2	2.1. 1	.3.1. 1	1.4.1.2	2.1.3.	2.4.2. 3	3.1.2.	3.1.4.	3.2.1 .	4.3.3.	5.1.1.	6.2.1.	8.1.1.	8.2.1, 8.2	2.2.
		-	-							-				2.2.2, 12.	
	12.3.2	- , -			,	. , - • •	. ,	, -			,	. ,	, -	,	,
005	1.1.1, 1.2	2.1, 1	.3.1, 1	1.4.1, 2	2.1.3,	2.4.2, 3	3.1.2, 3	.1.4, 3	.2.1,	1.3.3,	5.1.1,	6.2.1,	8.1.1,	8.2.1, 8.2	.2,
CO5														2.3.1, 12.	
	7.4.1, 9.2	., 1	0.1.1,	10.2.	1, 10.2	∠.∠, 1U.	5.1, 10	.5.4, 1	1.3.1,	14.1.	1, 12.2	, 12	.4.4, 1	4.3.1, 14.	J.4

22BHS2Z4 தமிழரும் தொழில்நுட்பமும் SEMESTER II

PF	REREQUISITES	CATEGOR Y	L	T	P	С
	NIL	HSMC	1	0	0	1

UNIT – I WEAVING AND CERAMIC TECHNOLOGY

3 Periods

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW)– Graffiti on Potteries.

UNIT – II DESIGN AND CONSTRUCTION TECHNOLOGY

3 Periods

Designing and Structural construction House & Designs in household materials during Sangam Age-Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT – III MANUFACTURING TECHNOLOGY

3 Periods

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold-Coins as source of history - Minting of Coins – Beads making-industries Stone beads -Glass beads - Terracotta beads -Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT – IV AGRICULTURE AND IRRIGATION TECHNOLOGY

3 Periods

Dam, Tank, ponds, Sluice, Significance of KumizhiThoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT - V SCIENTIFIC TAMIL & TAMIL COMPUTING

3 Periods

Development of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Development of Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuvai Project.

Contact Periods:

Lecture: 15Periods

Tutorial:0 Periods

Practical:0Periods

Total: 15Periods

TEXT BOOK:

- ¹ தமிழகவரலாறு மக்களும்பண்பாடும் கே.கே. பிள்ளை (வெளியீடு:தமிழ்நாடுபாடநூல்மற்றும்கல்வியியல்பணிகள்கழகம்).
- 2 கணினித்தமிழ் முனைவர்இல.சுந்தரம் . (விகடன்பிரசுரம்).
- 3 கீழடி வைகைநதிக்கரையில்சங்ககாலநகரநாகரிகம் (தொல்லியல்துறைவெளியீடு)
- 4 பொருநை ஆற்றங்கரைநாகரிகம். (தொல்லியல்துறைவெளியீடு)

REFERENCES:

- 1 Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 2 Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by:International Institute of Tamil Studies.
- 3 Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies).
- 4 The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by:International Institute of Tamil Studies.)
- Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department
- 5 of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 6 Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: The Author)
- 7 Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 8 Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.

22BHS2Z4

தமிழரும் தொழில் நுட்பமும் TAMILS AND TECHNOLOGY (Common to all Branches)

SEMESTER II

PREREQUISITES	CATEGOR Y	L	T	P	C
NIL	HSMC	1	0	0	1

அலகு I நெசவு மற்றும் பானைத்தொழில்நுட்பம்

3 Periods

சங்க காலத்தில் நெசவுத்தொழில் – பானைத்தொழில்நுட்பம் – கருப்பு சிவப்பு பாண்டங்கள்– பாண்டங்களில் கீறல் குறியீடுகள்.

அலகு II வடிவமைப்புமற்றும்கட்டிடத்தொழில்நுட்பம்

3 Periods

சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் வீட்டுப்பொருட்களில் வடிவமைப்பு-சங்ககாலத்தில் கட்டுமானபொருட்களும் நடுகல்லும்–சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள்– மாமல்லபுரச் சிற்பங்களும், கோவில்களும்-சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத்தலங்கள்– நாயக்கர் காலக் கோயில்கள்-மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள்– பிரிட்டிஷ்காலத்தில்சென்னையில்இந்தோ-சாரோசெனிக்கட்டிடக்கலை.

அலகு III உற்பத்தித்தொழில்நுட்பம்

3 Periods

கப்பல் கட்டும் கலை – உலோகவியல் – இரும்புத்தொழிற்சாலை – இரும்பை உருக்குதல், எஃகு – வரலாற்றுச்சான்றுகளாக செம்பு மற்றும் தங்கநாணயங்கள் –நாணயங்கள் அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடிமணிகள் – சுடுமண்மணிகள் – சங்குமணிகள் – எலும்புத்துண்டுகள்–தொல்லியல்சான்றுகள் சிலப்பதிகாரத்தில் மணிகளின் வகைககள்.

அலகு IV வேளாண்மை மற்றும்நீர்ப்பாசனத்தொழில்நுட்பம்

3 Periods

miz, ஏரி, குளங்கள், மதகு – சோழர்காலக்குமுழித்தூம்பின் முக்கியத்துவம் – கால்நடை பராமரிப்பு – கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் – வேளாண்மை மற்றும் வேளாண்மைச்சார்ந்த செயல்பாடுகள் – கடல்சார்அறிவு – மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த பண்டைய அறிவு –அறிவுசார் சமூகம்.

^{அலகு m V அறிவியல்தமிழ்மற்றும் கணினித்தமிழ்}

3 Periods

அறிவியல் தமிழின் வளர்ச்சி - கணினித்தமிழ்வளர்ச்சி - தமிழ் நூல்களை மின்பதிப்பு செய்தல் – தமிழ் மென் பொருட்கள் உருவாக்கம் – தமிழ் இizயக்கல்விக்கழகம் – தமிழ்மின்நூலகம் – இizயத்தில் தமிழ் அகராதிகள் – சொற்குவைத்திட்டம். Contact Periods: Lecture: 15Periods Tutorial:0 Periods Practical:0Periods Total: 15Periods

TEXT BOOK:

- 1 தமிழகவரலாறு மக்களும்பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடுபாடநூல்மற்றும்கல்வியியல்பணிகள்கழகம்).
- 2 கணினித்தமிழ் முனைவர் இல.சுந்தரம் . (விகடன்பிரசுரம்).

- 3 கீழடி வைகை நதிக்கரையில் சங்ககாலநகரநாகரிகம் (தொல்லியல்துறை வெளியீடு)
- 4 பொருநை ஆற்றங்கரைநாகரிகம். (தொல்லியல்துறைவெளியீடு)

REFERENCES:

1	Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
2	Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by:International Institute of Tamil Studies.
3	Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies).
4	The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by:International Institute of Tamil Studies.)
5	Keeladi - 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
6	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: The Author)
7	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
8	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.

22BHS2Z5

PROFESSIONAL ENGLISH

(Common to all Branches)

SEMESTER II

PREREQUI	SITES	CATEGORY	L	T	P	C
	NIL	HSMC	2	1	0	3
	1 T 1 ' ' C11 4' '4'		LOI	 .	1 '11	

Course Objectives

- 1. To engage learners in meaningful language activities to improve their LSRW skills
- 2. To enhance learners' awareness of general rules of writing for specific audiences
- 3. To help learners understand the purpose, audience, contexts of different types of writing
- 4. To develop analytical thinking skills for problem solving in communicative contexts
- 5. To demonstrate an understanding of job applications and interviews for internship and placements

UNIT – I FUNDAMENTALS OF COMMUNICATION

9 Periods

Listening-Listening to Personal Introduction and Filling a form

Speaking - Self Introduction; Introducing someone in a formal context

Reading -Reading Biographies/ Autobiographies and E-mails relevant to technical contexts.

Writing - Writing Biographies/ Autobiographies; Drafting Professional E-mails.

Grammar - Present Tense (Simple Present, Present Progressive, Present Perfect, Present Perfect Continuous); Parts of Speech

Vocabulary - Word Formation with Prefixes; Antonyms; Portmanteau Words

UNIT - II SUMMATION AND PROBLEM SOLVING

9 Periods

Listening - Listening to Short-Stories / Personal Experiences/Watching Movies.

Speaking-Narrating Personal Experiences / Events and Short Stories

Reading - Reading Travelogues and Books.

Writing - Report on an event (Field Trip, Industrial Visit, Educational Tours etc.), Review on Books and Movies.

Grammar –Past Tense (Simple Past, Past Progressive, Past Perfect, Past Perfect Continuous); Impersonal Passive

Vocabulary - Word Formation with suffixes; Synonyms; Phrasal Verbs.

UNIT- III DESCRIPTION OF A PROCESS / PRODUCT

9 Periods

Listening - Listening to Digital Marketing Advertisements for Product / Process Descriptions

Speaking –Describing/Interpreting a Picture; Giving instructions to use the product.

Reading – Reading Advertisements, Gadget Reviews: User Manuals.

Writing - Writing Definitions; Product / Process Description; Transcoding; Content Writing

Grammar -Future Tense(Simple Future, future continuous, Future Perfect, Future Perfect Continuous); If Clauses

Vocabulary - Homonyms; Homophones, One Word Substitutes.

UNIT-IV EXPRESSION

9 Periods

Listening – Listening to/Watching Formal Job interviews or Celebrity Interviews

Speaking – Participating in a Face to Face or Virtual Interview (Job/Celebrity Interview), virtual interviews

Reading – Company profiles, Statement of Purpose, (SOP), Excerpts of interview with professionals from Newspaper, Magazine and other Resources

Writing – Job / Internship Application – Cover letter & Resume

Grammar – Question types: 'Wh' / Yes or No/ and Tags; Subject- Verb Agreement.

Vocabulary – Idiomatic Expressions

UNIT - V PUBLIC SPEAKING

9 Periods

Listening – Listening to Ceremonious Speeches on You Tube and Jotting down phrases

Speaking – Delivering Welcome Address; Introducing the Chief-Guest; Proposing Vote of Thank and Felicitation

Reading – Excerpts of Speeches from Newspaper, Magazines and Motivational Books

Writing – Drafting a Welcome Address, Introduction to the Chief-Guest, Vote of Thanks and Felicitation Grammar –Common Errors

Vocabulary – Commonly Confused Words

Contact Periods:

Lecture: 30 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

1	English for Science & Technology Cambridge University Press, 2021. Authored by Dr. VeenaSelvam,
	Dr. Sujatha Priyadarshini, Dr.Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani,
	Department of English, Anna University.
2	Communicative English, Global Publishers, Chennai 2017 by Dr.J.Anbazhagan Vijay

REFERENCES

1	Raman.Meenakshi,Sharma.Sangeeta(2019). Professional English. Oxford University Press. New Delhi.
2	Learning to Communicate – Dr. V. Chellammal, Allied Publishing House, New Delhi, 2003
3	Using English, Orient Blackswan, Chennai, 2017 by Board of Editors
4	OER(Authentic Open Educational Resources)

	etion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Participate in a basic communicative task.	К3
CO2	Analyse problems in order to arrive at feasible solutions and communicate them orally and in the written format.	K3
CO3	Describe a product or process or mechanism.	K2
CO4	Present their opinions in a planned and logical manner, and draft effective resumes in context of job search.	К3
CO5	Deliver speeches at formal functions.	K3

a) CO and PC) Map	ping												
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1			1			2			2	2				1
CO1	-	-	1	-	-	2	-	-	3	3	-	-	-	1
CO2	-	1	1	•	•	2	-	-	1	3	-	1	-	1
CO3	-	-	-	1	ı	-	-	-	-	3	-	-	-	1
CO4	-	-	1	-	-	-	-	-	2	3	-	-	-	1
CO5	-	-	-	-	-	-	-	-	2	2	-	-	-	1
22BHS2Z5	-	1	1	1	-	1	-	-	2	3	-	1	-	1
b) CO and 1	Key Pe	erform	ance l	Indica	tors M	[appin	g							
CO1	3.3.2	, 6.1.1,	, 9.2.1,	9.2.2,	9.2.3,	9.2.4,	9.3.1,	10.1.1, 1	10.1.2,	10.1.3	3, 10.2.	1, 10.2	2.2	
CO2	2.1.1	, 2.2.3,	, 2.2.4,	3.1.2,	6.2.1,	9.2.1,	10.1.1	, 10.1.2,	10.1.3	3, 10.2	.1, 10.2	2.2, 12	.3.1, 12.	3.2
CO3	4.1.1	, 10.1.:	1, 10.1	.2, 10.	1.3, 10).2.1, 1	0.2.2		•	•		•	•	
CO4	3.3.2	, 9.2.2,	, 9.2.3,	9.2.4,	9.3.1,	10.1.1	, 10.1.	2, 10.1.3	3, 10.2	.1, 10.	2.2	•	•	
CO5	9.2.2	, 9.2.3,	9.2.4,	10.1.1	l, 10.1	.3, 10.2	2.1, 10	.2.2					•	·

ASSESSMENT	PATTERN – TH	HEORY					
Test / Bloom's	Rememberin	Understandin	Applying	Analyzing	Evaluating	Creating	Tota
Category*	g (K1) %	g (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	1%
CAT1	-	12	88	-	-	-	100
CAT2	=	18	82	-	-	-	100
Individual							
Assessment 1/							
Case Study 1/	-	-	100	-	-	-	100
Seminar 1 /							
Project1							
Individual							
Assessment 2/							
Case Study 2/	-	-	100	-	-	-	100
Seminar 2 /							
Project 2							
ESE	-	20	80	-	-	-	100

22BBS205

DIFFERENTIAL EQUATIONS AND NUMERICAL METHODS

(Common to all Branches except CSE & IT)

SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	BS	3	1	0	4

Course Objectives

- 1. To gain knowledge of methods to solve higher order differential equations with constant and variable coefficients.
- 2. To be familiar with forming partial differential equations and solving partial differential equations of standard types of first order and homogeneous linear differential equations.
- 3. To be familiar with numerical interpolation, numerical differentiation and numerical integration.
- 4. To acquire the knowledge of numerical solution to first order ordinary differential equations using single and multi step techniques.
- 5. To gain the knowledge of numerical solution to second order partial differential equations using explicit and implicit methods.

UNIT – I ORDINARY DIFFERENTIAL EQUATIONS

9+3 Periods

Higher order linear differential equations with constant coefficients -variable coefficients: Cauchy-Euler equation, Cauchy-Legendre equation-Method of variation of parameters-Simultaneous first order linear equations with constant coefficients.

UNIT – II PARTIAL DIFFERENTIAL EQUATIONS

9+3 Periods

Formation of partial differential equations – First order partial differential equations – Standard types and Lagrange's type – Homogeneous linear partial differential equation of second and higher order with constant coefficients.

UNIT – III INTERPOLATION, NUMERICAL DIFFERENTIATION AND INTEGRATION

9+3 Periods

Solution of polynomial and transcendental equations: Newton-Raphson method-Interpolation with equal interval: Newton's forward and backward difference formulae-Interpolation with unequal intervals: Lagrange's formulae-Numerical Differentiation: Newton's formulae-Numerical integration: Trapezoidal rule and Simpson's 1/3rd and 3/8 rules.

UNIT – IV NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

9+3 Periods

First order ordinary differential equations: Taylor's series method-Euler and modified Euler's methods-Runge- Kutta method of fourth order -Milne's and Adam's predicator-corrector methods.

UNIT - V NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

9+3 Periods

Partial differential equations: Finite difference method for two dimensional Laplace equation and Poisson equation- Implicit and explicit methods for one dimensional heat equation (Bender-Schmidt and Crank-Nicholson methods)-Finite difference explicit method for wave equation.

Contact Periods:

Lecture: 45 Periods

Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

TEXT BOOK

- 1 Veerarajan.T, "Engineering Mathematics", Revised Edition 2018, McGraw Hill Education (India) Private Limited
- P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3rd Edition, Reprint 2013.

REFERENCES

1	B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.
2	SrimantaPal, "Numerical Methods Principles, Analyses and Algorithms", Oxford University Press, New
	Delhi, I st Edition 2009.
3	Raisinghania.MD, "Ordinary And Partial Differential Equations", 20th Edition, S.
	ChandPublishing,2020
4	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5 th Edition, 2015.
5	Ward Cheney, David Kincaid, "Numerical Methods and Computing, Cengage Learning, Delhi, 7 th
	Edition 2013.
6	S. Larsson, V. Thomee, "Partial Differential Equations with Numerical Methods", Springer, 2003.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Solve higher order linear differential equation with constant and variable coefficients and simultaneous differential equation.	K5
CO2	Form partial differential equations and find solutions of first and higher order partial differential equations.	K5
CO3	Obtain approximate solutions for transcendental equations and problems on interpolation, differentiation, integration.	K5
CO4	Find the numerical solutions of first order ordinary differential equations using single and multi step techniques.	K5
CO5	Solve second order partial differential equations using explicit and implicit methods.	K5

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	-	1	- 8	180	40	-	10	Z/20	-	1	3	-
CO2	3	3	-	1	- (6	-			•	1	3	-
CO3	3	3	-	1	- "	-		30	18 AL	100	-	1	3	-
CO4	3	3	-	1	-	-	0		6	-	-	1	3	-
CO5	3	3	-	1	-	-	-	-	-	-	-	1	3	-
22BBS205	3	3	-	1	-	-	-	-	-	-	-	1	3	-
1 – Slight, 2 -	1 – Slight, 2 – Moderate, 3 – Substantial													
b) CO and I	Key Per	form	ance I	ndicat	tors M	[appir	ıg							
CO1	1.1.1,	1.1.2,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	2.2.1	2.2.2	, 2.2.3	,2.2.4,	2.3.1, 2	.3.2, 2.4	.1,
	2.4.3,	4.1.1,	12.2.1	L										
CO2	1.1.1,	1.1.2,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	2.2.1	, 2.2.2	, 2.2.3	,2.2.4,	2.3.1, 2	.3.2, 2.4	.1,
	2.4.3,	4.1.1,	12.2.1	L										
CO3	1.1.1,	1.1.2,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	2.2.1	, 2.2.2	, 2.2.3	,2.2.4,	2.3.1, 2	.3.2, 2.4	.1,
	2.4.3,	4.1.1,	12.2.1	L										
CO4	1.1.1,	1.1.2,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	2.2.1	2.2.2	, 2.2.3	,2.2.4,	2.3.1, 2	.3.2, 2.4	.1,
	2.4.3,	4.1.1,	12.2.1	<u> </u>										
CO5	1.1.1,	1.1.2,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	2.2.1	2.2.2	, 2.2.3	,2.2.4,	2.3.1, 2	.3.2, 2.4	.1,
	2.4.3,	4.1.1,	12.2.1	L										

ASSESSMEN	NT PATTERN –	THEORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	20	40	20	20	-	-	100
CAT2	20	40	20	20	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	40	20	20	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	40	20	20	-	-	100
ESE	20	40	20	20	-	-	100

PROGRAMMING IN C 22BES203 (Common to all Branches except MECH &PRODN) SEMESTERII

PREREQUISITES	CATEGORY	L	T	P	С
NIL	ES	3	0	0	3

		10	
Course Objectives	To study the basic concepts of computer and p To understand the data types in C , flow control Pointers, Structures, Unions and File concepts in C.		
UNIT – I	COMPUTER AND PROGRAMMING FUNDAME	NTALS	(9 Periods)
Introduction to	lamentals – Evolution, classification, Anatomy of a comsoftware –Classification of programming languages – Coduction to OS – Types of OS.		2 -
UNIT – II	DATATYPES AND FLOW OF CONTROL	V 9 Carputer	(9 Periods)
	gramming – Algorithms – Structure of a C program – Vanput and Output statements – Tokens – Type Conversion		
UNIT – III	ARRAYS AND FUNCTIONS		(9 Periods)
•	O Arrays – Multidimensional Arrays – Strings – String h Array as function arguments – Storage Classes – Enumer	10.7	– Functions –
UNIT – IV	POINTERS		(9 Periods)
- Relationship	pointers – Pointers arithmetic – call by reference – Relabetween String and pointers – pointers to pointers – arraory allocation – Arguments to main().		
UNIT – V	STRUCTURES AND UNIONS, FILE OPERATION	NS	(9 Periods)
	irectives – Structures – Unions – Bit fields – Opening ar andom access to file of records.	nd closing a file –	Working with file
Contact Period Lecture: 45 Pe		s Total: 45 Per	iods

TEXT BOOK

1 PradipDey, Manas Ghosh, "Computer Fundamentals and Programming in C", Second Edition, Oxford University Press, 2018.

REFERENCES

1	Al Kelley, Ira Pohl, "A Book on C- Programming in C", Fourth Edition, Addison Wesley,
	2001.
2	Herbert Schildt, "C: The Complete Reference", Fourth Edition, McGraw Hill Education, 2017.
3	YashavantP.Kanetkar, "Let Us C", 15 th edition,BPB Publications,2016.
4	Brian W. Kernighan and Dennis Ritchie, "The C Programming Language", Second Edition, Prentice Hall
	Software Series, 2015.

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Articulate the basics of computer and evolution of programming languages.	K1
CO2	Write simple C programs using appropriate datatypes and control statements	K3
CO3	Write C programs using arrays, functions and enumerations	K3
CO4	Use pointers effectively to develop programs	K3
CO5	Create user defined datatypes using structures & union and effectively manipulate	K6
	them in file operations.	

COURSE P		_		AINIA	.									
a) CO and) CO and PO Mapping													
	Contract to the contract of th													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO	PSO1	PSO
										10	11	12		2
CO1	1	3	1	-	- 5	0-2	- ·		79	-	-	1	1	-
CO2	1	3	1	-	- 48	Lagran,	<u> </u>	泉	//-	-	-	1	1	-
CO3	1	3	1	-	-	-	ZIZ ZIZ	Z/1/	11-	-	-	1	1	-
CO4	1	3	1	-	- 0	// - 0		91-	11-	-	-	1	1	-
CO5	1	3	1	-	- /	/ - A		1/4	11	-	-	1	1	-
22BES203	1	3	1	-	- [- 99	1	6-10	s.J.	-	-	1	1	-
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial													
b) CO and	Key Pe	erforma	nce In	dicator	s Map	oing	Tar S	N. P.	110					

b) CO an	nd Key Performance Indicators Mapping
CO1	1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.2.4, 2.3.1, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.3, 12.2.1
CO2	1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.3, 3.2.3, 3.3.1, 12.1.2
CO3	1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.3, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.3, 3.2.3, 3.3.1,12.1.2
CO4	1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.3, 3.2.3, 3.3.1, 12.1.2,
CO5	1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.3, 3.2.3, 3.3.1, 12.1.2

ASSESSMENT PATTERN - THEORY											
Test / Bloom's Category*	Remember ing (K1)%	Understan ding (K2)%	Applying (K3)%	Analyzing (K4)	Evaluating (K5)%	Creating (K6)%	Total %				
CAT1	50	20	30	-	-	-	100				
CAT2	20	30	50	-	-	-	100				
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	50	-	50	-	-	-	100				
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	-	-	100	-	-	-	100				
ESE	20	30	50	-	-	-	100				

22BPC201	BIOMOLECULES	SEMESTER II
		i I

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

Course Objectives

- 1. To identify the different classes of polymeric biomolecules and their monomeric building blocks.
- 2. To comprehend the properties of carbohydrates proteins, lipids, and nucleic acids
- 3. To understand the functional properties of carbohydrates proteins, lipids, and nucleic acids in the biological system
- 4. To know the basic information on structural and cytoskeletal biomolecules
- 5. To determine the levels of protein structures and their stability

UNIT – I INTRODUCTION

9 periods

Covalent and non-covalent interactions in biological molecules, Water – properties of water, hydrophobic effect, Water as a reactant, pH buffers, Acid-base reactions in biochemical processes, Maintenance of blood pH, Versatility of carbon bonding, Some common functional groups of biomolecules.

UNIT – II CARBOHYDRATES

9 periods

Carbohydrates- Classification, Structure and Properties of Carbohydrates (Mono, Di, Oligo & Starch, glycogen and cellulose) - Mutarotation, Hexose derivatives, Reducing sugars, Glycosidic Bond, Conjugated carbohydrates; Proteoglycans - glycosaminoglycans and lipopolysaccharides -Bacterial lipopolysaccharides.

UNIT – III LIPIDS

9 periods

Structure and properties of lipids – Classification, (Fatty acids, Glycerolipids, Phospholipids, Glycolipids, Sphingolipids, Steroids), Structure of vitamins and non-peptide hormones.

UNIT – IV | NUCLEIC ACIDS

9 periods

Nucleic Acids – Structure of Purines, Pyrimidines, Nucleosides, Nucleotides, Ribonucleic acids – Structure and Classification, Deoxyribonucleic acids – Structure of DNA, Nucleoprotein complexes.

UNIT – V PROTEINS

9 periods

Classification of Amino acids, Structure and Properties of Amino acids-peptide bond, Classification of Proteins-Primary- Secondary structures-alpha helix, beta-sheet and turns, Tertiary and Quaternary structure of proteins, Fibrous and globular proteins, Ramachandran plot.

Contact Periods:

Lecture:45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

TEXT BOOKS

- 1 APA. Nelson, D. L., & Cox, M. M., "Lehninger's —Principles of Biochemistry", 7^h Edition, Macmillan, 2017.
- 2 Voet, Donald, Judith G. Voet, and Charlotte W. Pratt., Fundamentals of Biochemistry: Life at the Molecular Level", 5th Edition, Wiley., 2016.

REFERENCES

- 1 Victor W. Rodwell; David Bender; Kathleen M. Botham; Peter J. Kennelly; P. Anthony Weil., "Harper's Illustrated Biochemistry", 31st Edition, McGraw-Hill Education, 2018.
- 2 Berg, J.M., Tymoczko, J.L., Stryer, L., "Biochemistry", 9th Edition, WH Freeman, 2019.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Comprehend the role of chemistry in a biological system	K1
CO2	Classify bio-molecules based on their chemical properties	K1
CO3	Infer the structure and properties of macromolecules	K2
CO4	Interpret the levels of macromolecular organization	K2
CO5	Realize the significance of complex biomolecules	K2

a) CO and	PO N	Iappi	ng											
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	07	8	9	10	11	12	1	2
CO1	1	1		-	2	3/E	0		TO TO	-	-	-	3	1
CO2	1	1	-	-	7	all and a			1	-	-	-	3	1
CO3	1	1	1	_ 0	The same	-	-	GJT	77-	-	-	-	3	1
CO4	1	1	-	-	11-0	0-1	-	Λ-	(h) =	-	-	-	3	1
CO5	1	1	-	-	11-	1	We V	13	-	-	-	-	3	1
22BPC201	1	1	1	-	//-	0	(S)	-	// -	-	-	-	3	1
1 – Slight,	2-M	oderat	e, 3 –	Substa	ntial	8	-	M	1		•	•		
b) CO and	Key	Perfo	rman	ce Indi	icators	Мар	ping	0 1	/3.					
CO1 1.4	1.1, 2.1	1.3		3					256					
CO2 1.4	1.1, 2.1	1.3)	407		Yab	- ALU	0					
CO3 1.4	1.4.1, 2.1.3, 3.2.1													
CO4 1.4	1.1, 2.1	1.3												
CO5 1.4	1.1, 2.1	1.3												

ASSESSMENT	PATTERN – T	HEORY					
Test /	Remembering	U	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	60	40	-	-	-	-	100
CAT2	50	50	-	-	-	-	100
Individual	50	50	-	-	-	-	100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual	40	60	-	-	-	-	100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	50	50	-	-	-	-	50

22BMC2Z1 ENVIRONMENTAL SCIENCE AND ENGINEERING (Common to all Branches) SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	MC	3	0	0	0

Course Objectives 1. To study the modern agriculture related problems, natural resources and its harnessing methods. 2. To study the interrelationship between living organism and environment. 3. To educate the people about causes of pollutions and its controlling methods. 4. To impart the knowledge of various environmental threats and its consequences. 5. To study the various water conservation methods, Act, Population policy, Welfare

UNIT – I ENVIRONMENTAL ENERGY RESOURCES

9 Periods

Food-effects of modern agriculture, fertilizers, pesticides, eutrophication &biomagnifications-Energy resources: renewable resources - Hydro Energy, Solar & Wind. Non-renewable resources - Coal and Petroleum - harnessing methods.

UNIT – II ECO SYSTEM AND BIODIVERSITY

programs.

9 Periods

Eco system and its components - biotic and abiotic components. Biodiversity: types and values of biodiversity, hot spots of biodiversity, endangered and endemic species, conservation of biodiversity: In situ and ex situ conservation. Threats to biodiversity-destruction of habitat, habit fragmentation, hunting, over exploitation and man-wildlife conflicts. The IUCN red list categories.

UNIT – III ENVIRONMENTAL POLLUTION

9 Periods

Air pollution, classification of air pollutants – sources, effects and control of gaseous pollutants SO₂, NO₂, H₂S, CO, CO₂ and particulates. Water pollution - classification of water pollutants, organic and inorganic pollutants, sources, effects and control of water pollution. Noise pollution - decibel scale, sources, effects and control.

UNIT – IV ENVIRONMENTAL THREATS

9 Periods

Global warming-measure to check global warming - impacts of enhanced Greenhouse effect, Acid rain-effects and control of acid rain, ozone layer depletion- effects of ozone depletion, disaster management - flood, drought, earthquake and tsunami.

UNIT – V SOCIAL ISSUES AND ENVIRONMENT

9 Periods

Water conservation, rain water harvesting, e-waste management, Pollution Control Act, Wild life Protection Act. Population growth- exponential and logistic growth, variation in population among nations, population policy. Women and Child welfare programs. Role of information technology in human and health, COVID-19 - effects and preventive measures.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Sharma J.P., "Environmental Studies", 4th Edition, University Science Press, New Delhi 2016.
- 2 Anubha Kaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New Age International Publishers, New Delhi, 2021.

REFERENCES:

1	A K De, "Environmental Chemistry" , 8 th Edition, New Age International Publishers, 2017.
2	G. Tyler Miller and Scott E. Spoolman, "Environmental Science", Cengage Learning India Pvt, Ltd,
	Delhi, 2014.
3	ErachBharucha, "Textbook of Environmental Studies", Universities Press(I) Pvt, Ltd, Hyderabad,
	2015.
4	Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 3rd Edition, Pearson
	Education, 2015.

COUF	RSE OUTCOMES:	Bloom's Taxonomy Mapped		
Upon	Upon completion of the course, the students will be able to:			
CO1	Recognize and understand about the various environmental energy resources and the effective utility of modern agriculture.	K2		
CO2	Acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.	K2		
CO3	Be aware of the sources of various types of pollution, their ill effects and preventive methods.	K2		
CO4	Identify and take the preventive measures to control the environmental threats and effects of Global warming, Ozone depletion, Acid rain, and natural disasters.	K2		
CO5	Demonstrate an idea to save water and other issues like COVID -19.	K2		

г							77.70	K/UV		- 11						
a) CO an	d PC) Map	ping				00		10							
COs/PO	S	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
						Contract of	6									
CO1		2	1	1	1	7		3	15.0	7	-		-	1	-	-
CO2			-	1	-	-	300	3	6	-	-	-	-	1	-	-
CO3		2	1	1	1	-	-	3	-	-	-	-	-	2	-	-
CO4		2	1	1	1	-	-	3	-	-	-	-	-	1	-	-
CO5		-	1	1	1	-	2	3	-	-	-	1	-	2	-	-
22BMC2	Z 1	2	1	1	1	-	1	3	-	-	-	-	-	2	-	-
1 – Slight	, 2 –	Mode	rate, 3	– Subs	tantial											
b) CO an	d K	ey Per	rforma	nce In	dicato	rs Ma	pping									
CO1	1.2	.1,1.4.	1,2.1.2	,2.3.1,3	3.1.5,3.	2.1,4.3	.1,7.1.	1,7.1.2	,7.2.1							
CO2	3.1.	.5,7.1.	1,7.1.2	,7.2.1												
CO3	1.2	.1,1.3.	1,1.4.1	,2.1.2,2	2.3.1,3.	1.5,3.2	.1,4.1.	3,4.3.1	,7.1.1,7	7.1.2,7.	2.1					
CO4	1.2	.1,1.4.	1,2.1.2	,2.3.1,3	3.1.5,4.	1.3,4.3	.1,7.1.	1,7.1.2	,7.2.1,7	7.2.2						
CO5	2.1.	.2,2.2.	2,3.1.5	,4.1.3,4	4.3.1,6.	2.1,7.1	.1,7.1.	2,7.2.1	,7.2.2			<u> </u>		•	•	

ASSESSMENT	PATTERN – T	HEORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	20	40	20	20	-	-	100
CAT2	20	40	20	20	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	40	20	20	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	40	20	20	-	-	100
ESE	20	40	20	20	-	-	100

22PPC27/	PHYSICS LABORATORY	CEMECTED II
22BBS2Z6	(Common to all Branches)	SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	BS	0	0	3	1.5

Course	To impart practical knowledge on the concept of properties of matter
Objectives	and utilize the experimental techniques to measure the properties
	2. To impart practical knowledge on the modulii of elasticity
	3. To analyze the properties of semiconductors
	4. To learn practically the basic electronic concepts of transistor and logic gates
	 To realize the principle, concepts and working of a solar cell and study the properties of ferromagnetic material
	6. To understand the concept of quantum physics

S. No.	LABORATORY EXPERIMENTS									
1.	Determination of refractive index of the glass and given liquid – Spectrometer diffraction method.									
2.	Determination of Planck's constant.									
3.	Determination of Young's Modulus of the material in the form of bar – Cantilever Bending -Koenig's Method.									
4.	a) Particle size determination using diode laser.b) Determination of numerical aperture and acceptance angle in an optical fiber.									
5.	Hall effect - Determination of semiconductor parameters.									
6.	Determination of band gap of semiconductor material.									
7.	Determination of velocity of sound and compressibility of the given liquid-Ultrasonic Interferometer.									
8.	Determination of moment of inertia of disc and rigidity modulus of a wire-Torsional pendulum.									
9.	Transistor characteristics.									
10.	Solar cell characteristics.									
11.	Determination of Hysteresis losses in a Ferromagnetic material-B-H curve unit.									
12.	Logic Gates – Verification and Construction.									
	Contact Periods: Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods									

COUR	COURSE OUTCOMES:					
		Taxonomy				
Upon co	ompletion of the course, the students will be able to:	Mapped				
CO1						
	and numerical aperture of an optical fibre					
CO2	Measure the Young's and rigidity modulii of the given material	K5				
CO3	Determine the bandgap of a given semiconductor material and identify the type of semiconductor and its carrier concentration through Hall measurement	K5				
CO4	Analyze the characteristics of transistor and verify the truth table of logic gates	K4				
CO5	Measure the efficiency of a solar cell and energy loss associated with the ferromagnetic material by plotting B-H curve	K5				
CO6	Determine the Planck's constant and work function	K5				

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO5	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO6	3	2	-	-	-	-	-	-	-	-	-	-	1	-
22BBS2Z6	3	2	-	-		-	-	-	-	-	-	-	1	-
1 – Slight, 2	– Mode	erate, 3	– Subs	tantial										
b) CO and	Key Pe	rforma	ance In	dicato	rs Maj	pping								
CO1 1.1	.1, 1.1.2	2, 1.2.1	, 1.3.1,	2.1.1, 2	2.1.3, 2	2.4.1, 2.	4.2, 2.	4.3, 2.4	.4					
CO2 1.1	.1,1.1.2	, 1.2.1,	1.3.1,	2.1.1, 2	2.1.3, 2.	4.1, 2.4	4.2, 2.4	.3, 2.4	.4					
CO3 1.1	.1,1.1.2	, 1.2.1,	1.3.1,	2.1.1, 2	2.1.3, 2.	4.1, 2.4	4.2, 2.4	.3, 2.4	.4					
CO4 1.1	.1,1.1.2	, 1.2.1,	1.3.1,	2.1.1, 2	2.1.3, 2.	4.1, 2.	4.2, 2.4	.3, 2.4	.4					
CO5 1.1	.1, 1.1.2	2, 1.2.1	, 1.3.1,	2.1.1, 2	2.1.3, 2	2.4.1, 2.	4.2, 2.	4.3, 2.4	.4					
CO6 1.1	.1. 1.1.2	2. 1.2.1	1.3.1,	2.1.1.	2.1.3. 2	41.2	4.2. 2.	4.3. 2.4	.4					

22BES2Z4	WORKSHOP PRACTICE	SEMESTER II
22DE32Z4	(Common to all Branches)	SEIVILS I LIK II

PREREQUISTES	CATEGORY	L	T	P	C
NIL	ES	0	0	3	1.5

Course	1. To make various basic prototypes in the carpentry trade such as Half Lap
Objectives	joint, Lap Tee joint, Dovetail joint, Mortise & Tenon joint.
-	2. To make various welding joints such as Lap joint, Lap Tee joint, Edge joint,
	Butt joint and Corner joint.
	3. To make various moulds in foundry such as Cube, Straight pipe, V pulley,
	and Conical bush.
	4. To make various components using sheet metal such as Tray, Frustum of
	cone and Square box.
	5. To understand the working and identify the various components of CNC
	Machines.

LIST OF EXPERIMENTS

- 1. Introduction to use of tools and equipment's in Carpentry, Welding, Foundry and Sheet metal.
- 2. Safety aspects in Welding, Carpentry, Foundry and sheet metal.
- 3. Half Lap joint and Dovetail joint in Carpentry.
- 4. Welding of Lap joint and Butt joint and T-joint.
- 5. Preparation of Sand mould for Cube, Conical bush, Pipes and V pulley.
- 6. Fabrication of parts like Tray, Frustum of cone and Square box in sheet metal.
- 7.CNC Machines demonstration and lecture on working principle.
- 8. Electrical wiring and simple house wiring.

Contact periods:	II I		
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 45 Periods	Total: 45 Periods

	RSEOUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Safely Use tools and equipment's used in Carpentry, Welding, Foundry and Sheet	K2
	metal to create basic joints.	
CO2	Prepare sand mould for various basic pattern shapes.	K3
CO3	Fabricate parts like Tray, Frustum of cone and Square box in sheet metal.	K3
CO4	Practice on the Welding and Carpentry	K3
CO5	Demonstrate the working of CNC Machines.	K2

COURSE ARTICULATION MATRIX														
a) CO and PO Mapping														
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	2	2	3	2	1	3	1	2	3	3	2	3	-	2
CO2	2	2	3	2	1	3	3	2	3	3	2	3	-	2
CO3	2	2	3	2	1	3	3	2	3	3	2	3	-	2
CO4	2	2	3	2	1	3	3	2	3	3	2	3	-	2
CO5	2	2	3	2	3	-	-	2	3	3	2	2	-	2
22BES2Z4	2	2	3	2	2	3	2	2	3	3	2	3	-	2
1 – Slight, 2	– Mo	derate	+ 3 - S	ubstar	ntial									

b) CO and	Key Performance Indicators Mapping
CO1	1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.2.4, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1,3.3.2, 3.4.1, 4.1.1, 4.1.4, 4.2.1, 4.3.1, 5.2.2, 5.3.2,
	6.1.1,6.2.1,7.1.2, 8.2.1, 8.2.2, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4,9.3.1,10.1.1, 10.1.2,
	10.1.3, 10.2.1, 10.2.2, 10.3.1, 10.3.2, 11.1.1, 11.3.1, 12.1.1, 12.2.2, 12.3.1, 12.3.2
CO2	1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.2.4, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1,3.3.2, 3.4.1, 4.1.1, 4.1.4, 4.2.1, 4.3.1, 5.2.2, 5.3.2,
	6.1.1,6.2.1,7.1.1, 7.1.2, 7.2.2, 8.2.1, 8.2.2, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3.1,
	10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2, 10.3.1, 10.3.2, 11.1.1, 11.3.1, 12.1.1, 12.2.2, 12.3.1,
	12.3.2
CO3	1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.2.4, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1,3.3.2, 3.4.1, 4.1.1, 4.1.4, 4.2.1, 4.3.1, 5.2.2, 5.3.2,
	6.1.1,6.2.1,7.1.1, 7.1.2, 7.2.2, 8.2.1, 8.2.2, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3.1,
	10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2, 10.3.1, 10.3.2, 11.1.1, 11.3.1, 12.1.1, 12.2.2, 12.3.1,
	12.3.2
CO4	1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.2.4, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1,3.3.2, 3.4.1, 4.1.1, 4.1.4, 4.2.1, 4.3.1, 5.2.2, 5.3.2,
	6.1.1,6.2.1,7.1.1, 7.1.2, 7.2.2, 8.2.1, 8.2.2, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3.1,
	10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2, 10.3.1, 10.3.2, 11.1.1, 11.3.1, 12.1.1, 12.2.2, 12.3.1,
	12.3.2
CO5	1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.2.4, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1,3.3.2, 3.4.1, 4.1.1, 4.1.4, 4.2.1, 4.3.1,5.1.1, 5.1.2, 5.2.1,
	5.2.2, 5.3.2, 7.1.1, 7.2.2, 8.2.1, 8.2.2, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3.1, 10.1.1,
	10.1.2, 10.1.3, 10.2.1, 10.2.2, 10.3.1, 10.3.2, 11.1.1, 11.3.1, 12.2.2, 12.3.1, 12.3.2

22BES205

PROGRAMMING IN C LABORATORY

(Common to all Branches except Mech & Prodn)

SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	0	0	3	1.5

COURSE OBJECTIVES:

To understand the concepts like Data types, Flow control statements, Functions, Arrays, command line arguments, Pointer, Dynamic memory allocation, Preprocessor Directives, Structures, Unions and Files in C

EXER	CISES ILLUSTRATING THE FOLLOW	ING CONCEPTS:								
1	Operators, Expressions and IO formatting									
2	Decision Making and Looping									
3	Arrays and Strings									
4	Functions and Recursion	Functions and Recursion								
5	Pointers	7								
6	Dynamic Memory Allocation									
7	Command line arguments									
8	Preprocessor Directives									
9	Structures	A A								
10	Unions									
11	Files									
12	Mini Project									
Conta	ct periods:									
Lectur	re: 0 Periods Tutorial: 0 Periods	Practical: 45 Periods	Total: 45 Periods							

COUF	COURSE OUTCOMES:						
Upon completion of the course, the students will be able to:							
		Mapped					
CO1	Use appropriate data types and flow control statements to write C programs						
CO2	Write C programs using arrays, functions and command line arguments						
CO3	Write C programs using pointers, dynamic memory allocation and preprocess or	K6					
	directives						
CO4	Implement user defined data types using structures & union and effectively	K6					
	manipulate them in file operations.						
CO5	Develop simple applications using C	K6					

a) CO and PO Mapping														
COs/POs	PO	PO 2	PO	PSO	PSO									
	1		3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	1	1	-	-	-	-	-	-	-	-	1	-
CO2	2	3	1	1	-	-	-	-	-	-	-	-	1	-
CO3	2	3	1	1	-	-	-	-	-	-	-	-	1	-
CO4	2	3	1	1	-	-	-	-	-	-	-	-	1	-
CO5	2	3	2	1	-	-	-	-	3	3	-	-	1	-
22BES205	2	3	2	1	-	-	-	-	1	1	-	-	1	-

1 – Slight,	2-M	loderate,	3 –	Substantial
-------------	-----	-----------	-----	-------------

b) CO and	Key Performance Indicators Mapping
CO1	1.1.1, 1.3.1, 2.1.1,2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.2.3, 3.3.1, 4.1.1,
	4.1.2, 4.2.1
CO2	1.1.1, 1.3.1, 2.1.1,2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.2.3, 3.3.1, 4.1.1,
	4.1.2, 4.2.1
CO3	1.1.1, 1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.2.3, 3.3.1,
	4.1.1, 4.1.2, 4.2.1
CO4	1.1.1, 1.3.1, 2.1.1,2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.2.3, 3.3.1, 4.1.1, 4.1.2,
	4.2.1
CO5	1.1.1, 1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.1.5, 3.1.6,
	3.2.3, 3.3.1

22BBS307

TRANSFORM CALCULUS AND PARTIAL DIFFERENTIAL EQUATIONS

(CommontoCiviland IBTBranches)

SEMESTER III

PREREQUIS	ITES	CATEGORY	L	T	P	C					
NIL		BS	3	1	0	4					
						l					
Course Objectives To be familiar with Fourier Series. To gain the knowledge of solving Boundary objectives To be familiar with Laplace and Inverse Laplace transforms to solve or											
Objectives	roblems. To be familiar with Laplace and Inverse Laplace transforms to solve ordinary										
	ferential equations.To acquire knowledge on Fourier transforms.To be familiar with Z-										
	transform to solve difference equations.										
UNIT – I	FOURIER SERIES					eriods					
	nditions - General Fourier series - Odd and even fund		Sine	and (Cosin	e series –					
Root Mean Sq	uare Value- Parseval's Identity on Fourier series-Harn	nonic Analysis									
UNIT – II	BOUNDARY VALUE PROBLEMS					eriods					
	of PDE - Method of separation of variables - Fourie										
	e dimensional equation of heat conduction – Steady sta	ate solutionof two	dime	nsion	al eq	uation of					
	on (Infinite Stripes in cartesian coordinates only).										
UNIT – III	LAPLACE TRANSFORMS				9 Pe	winds					
	orm –Sufficient condition for existence –Transform o				ic pro	operties –					
Transforms of	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives a	nd integrals of tra	ansfo	ms -	ic pro Trans	operties – sforms of					
Transforms of unit step fund	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives action and impulse functions –Transform of periodic	and integrals of trace functions. Inve	ansfor	ms - aplac	ic pro Trans e tra	operties – sforms of nsform -					
Transforms of unit step fund Statement of	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives action and impulse functions –Transform of periodic Convolution theorem –Initial and final value theorem	and integrals of trace functions. Invense-Solution of lin	ansforrse L near c	rms - aplac ordina	ic pro Trans e tra	operties – sforms of nsform -					
Transforms of unit step fund Statement of equation of sec	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives action and impulse functions –Transform of periodic Convolution theorem –Initial and final value theorem cond order with constant coefficients using Laplace tra	and integrals of trace functions. Invense-Solution of lin	ansforrse L near c	rms - aplac ordina	ic pro Trans e tra ry di	operties – sforms of nsform - fferential					
Transforms of unit step fund Statement of equation of sec UNIT – IV	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives action and impulse functions –Transform of periodiconvolution theorem –Initial and final value theorem cond order with constant coefficients using Laplace transforms	and integrals of tractions. Inventor in the control of the control	ansforrse L near of iques	rms - aplac ordina	Transe transery di	operties – sforms of nsform - fferential					
Transforms of unit step fund Statement of equation of sec UNIT – IV	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives a ction and impulse functions –Transform of periodic Convolution theorem –Initial and final value theorem cond order with constant coefficients using Laplace transforms FOURIER TRANSFORMS purierintegral Theorem—Fourier transform pair—Fourier Signature 1.	nd integrals of tractions. Invense-Solution of linguistration technology in the control of the c	ansforrse L near of iques	rms - aplac ordina	Transe transery di	operties – sforms of nsform - fferential					
Transforms of unit step fund Statement of equation of sec UNIT – IV	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives action and impulse functions –Transform of periodiconvolution theorem –Initial and final value theorem cond order with constant coefficients using Laplace transforms	nd integrals of tractions. Invense-Solution of linguistration technology in the control of the c	ansforrse L near of iques	rms - aplac ordina	Transe transery di	operties – sforms of nsform - fferential					
Transforms of unit step fund Statement of equation of sec UNIT – IV StatementofForms of UNIT – V	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives a ction and impulse functions –Transform of periodic Convolution theorem –Initial and final value theorem cond order with constant coefficients using Laplace transforms transformed Fourier Transform Fourier Simple functions – Convolution Theorem – Parseval's ZTRANSFORMS	and integrals of trace functions. Invents—Solution of lines of the contraction of the contraction technology of the contraction	ansforms Langues	rms - aplac ordina s–pro	Transe transry di	operties – sforms of nsform - fferential eriods eriods					
Transforms of unit step fund Statement of equation of sec UNIT – IV StatementofForms of UNIT – V Z-transforms -	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives a ction and impulse functions –Transform of periodic Convolution theorem –Initial and final value theorem cond order with constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients are represented by the constant coefficients are represented by the coefficients are represented by the constant coefficients are represented by the coefficients are repr	and integrals of trace functions. Invents—Solution of linguistry in the contract of the contra	ansformear continues	aplacordina ordina s–pro	Transe transe transery di 9 Per pertie	pperties – sforms of nsform - fferential eriods es – eriods - Inverse					
Transforms of unit step fund Statement of equation of sec UNIT – IV StatementofForms of UNIT – V Z-transforms - Z-transform u	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives a ction and impulse functions –Transform of periodic Convolution theorem –Initial and final value theorem cond order with constant coefficients using Laplace transforms transforms—FourierSingle Fourier Transforms—FourierSingle functions – Convolution Theorem – Parseval's ZTRANSFORMS Elementary properties –Convergence of Z-transforms sing partial fraction and convolution theorem – Formatics—Format	nd integrals of trace functions. Invents—Solution of linear meandCosineTrans and Identity. Initial and Final action of difference of difference in the state of	ansformear continues	aplacordina ordina s–pro	Transe transe transery di 9 Per pertie	pperties – sforms of nsform - fferential eriods es – eriods - Inverse					
Transforms of unit step fund Statement of equation of sec UNIT – IV StatementofForms of UNIT – V Z-transforms - Z-transform u	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives a ction and impulse functions –Transform of periodic Convolution theorem –Initial and final value theorem cond order with constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients using Laplace transforms are represented by the constant coefficients are represented by the constant coefficients are represented by the coefficients are represented by the constant coefficients are represented by the coefficients are repr	nd integrals of trace functions. Invents—Solution of linear meandCosineTrans and Identity. Initial and Final action of difference of difference in the state of	ansformear continues	aplacordina ordina s–pro	Transe transe transery di 9 Per pertie	pperties – sforms of nsform - fferential eriods es – eriods - Inverse					
Transforms of unit step fund Statement of equation of sec UNIT – IV StatementofForms of UNIT – V Z-transforms - Z-transform u	orm –Sufficient condition for existence –Transform of derivatives and integrals of functions -Derivatives a ction and impulse functions –Transform of periodic Convolution theorem –Initial and final value theorem cond order with constant coefficients using Laplace transforms are transformed to the constant coefficients using Laplace transformed are transformed to the constant coefficients using Laplace transformed functions – Convolution Theorem – Parseval's ZTRANSFORMS Elementary properties –Convergence of Z-transforms aring partial fraction and convolution theorem – Formations of second order with constant coefficients using	nd integrals of trace functions. Invents—Solution of linear meandCosineTrans and Identity. Initial and Final action of difference of difference in the state of	ansformear continues	aplacordina ordina s–pro	Transe transe transery di	pperties – sforms of nsform - fferential eriods es – eriods - Inverse					

TEXT BOOK:

Lecture: 45 Periods

1	Veerarajan. T. "Transforms and partial Differential equations" , Tata Mc GrawHill Publishing Co., New Delhi. 2015.
2	B.S. Grewal., "HigherEngineeringMathematics", KhannaPublishers, NewDelhi, 44 th Edition, 2018.

Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

REFERENCES

1	Kandasamy, Thilagavathyand Gunavathy., "Engineering Mathematics" for III Semester, S. Chand & Co,
	Ramnagar, New Delhi.
2	N.P.Bali andManish Goyal, "Transformsand partial Differentialequations", University Science Press,
	New Delhi, 2010.
3	VeerarajanT., "EngineeringMathematics" for Semester I&II, TataMcGrawHillEducation (India) Pvt Ltd.,
	New Delhi, Third Edition 2012.
4	Erwinkreyszig, "AdvancedEngineeringMathematics", 9th Edition, John Wiley & Sons, 2006.

	COURSE OUTCOMES: On completion of the course, the students will be able to:						
CO1	Express the periodic functions arising in the study of engineering problems as sine and cosine series.	K3					
CO2	Solve the Partial Differential Equations arising in engineering problems like Wave, Heat flow and Laplace equation in steady state (Cartesian coordinates) using Fourier series.	K3					
CO3	Apply Laplace transform technique to solve the given integral equations and ordinary differential equations.	K3					
CO4	Find Fourier Transforms, infinite Fourier Sine &Cosine transforms.	К3					
CO5	Apply Z - transform technique to solve difference equations	K3					

COs/POs	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO1	PSO2
CO1	3	2	-	-	- 47	الساسلون في	10 - 15 co	W 10 5	- 37	-	-	-	1	-
CO2	3	2	-	-	- 1			CAROL		-	-	-	1	1
CO3	3	2	-	-	- 2	1-8	_	-	1	-	-	-	1	1
CO4	3	2	-	-	-)	100	-	-6	-//	-	-	-	-	1
CO5	3	2	-	-	-	1		/\	. H	-	-	-	-	-
22BBS307	3	2	-	-	-	// -	113		> <u>1</u>	-	-	-	1	1

b) CO and Ke	y Performance Indicators Mapping
CO1	1.1.1, 1.1.2,1.3.1,1.4.1,2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1
CO2	1.1.1, 1.1.2,1.2.1, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.4.1
CO3	1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1
CO4	1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1
CO5	1.1.1.1.2.1.3.1.1.4.1.2.1.2.2.1.3.2.2.1.2.2.2.2.2.3.2.2.4.2.4.1

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
Category*											
CAT1	20	30	50	-	-	ı	100				
CAT2	20	30	50	-	-	-	100				
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	30	50	-	-	-	100				
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	30	50	-	-	-	100				
ESE	20	30	50	-	-	-	100				

22BBS308	CELL BIOLOGY	SEMESTER III
----------	--------------	--------------

PREREQUISITES	CATEGORY	L	T	P	С
BIOMOLECULES	BS	3	0	0	3

UNIT – I	CELL STRUCTURE AND FUNCTION OF THE ORGANELLES	9 Periods
	transport mechanisms and understand the different types of retransduction and familiarized with the techniques to study cell line	eceptor and signal
Course Objectives	To Gain the insights of cell structure and cell division ,understand extracellular matrix, cell junction and cell adhesion.Get familiarize	ed with the various

Structure of Prokaryotic and Eukaryotic cells their organelles, principles of membrane organization, membrane proteins, types of cell division, mitosis & meiosis, cell cycle and molecules that control cell cycle. Cell cycle check points.

UNIT – II EXTRACELLULAR MATRIX AND CELL JUNCTIONS 9 Periods

Extra cellular matrix- composition, cytoskeletal proteins-Microfilaments, Microtubules, Intermediate filaments, actin-myosin interaction and its role. types of cell junctions and cell adhesion molecules(CAMs)

UNIT – III TRANSPORT ACROSS BIOMEMBRANES

Passive & active transport, permeases, Co- transport - symport, antiport, .types of ATPase pumps-Na K pump, V type, P type pumps, voltage and ligand gated channels, endocytosis and exocytosis. Mode of entry of virus and toxins into cells.

9 Periods

UNIT – IV RECEPTORS AND SIGNAL TRANSDUCTION 9 Periods

Cytosolic, nuclear and membrane bound receptors with examples, autocrine, paracrine and endocrine modes of action Signal amplification, role of secondary messengers- cyclic AMP, inositol tri phosphates and cyclic GMP; G proteins - role in signal transduction, calcium ion flux and its role in cell signaling, Tyrosine kinases and Serine Threonine kinases –examples and mechanism.

UNIT - V TECHNIQUES USED TO STUDY CELLS AND CELL LINES 9 Periods

Cell fractionation - Preparation of Nuclear, Mitochondrial & cytoplasmic fractions, Cell viability,flow cytometry, Morphology and identification of cells using microscopic studies like SEM, TEM, Confocal Microscopy. Localization of proteins in cells – Immunostaining.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, Keith; Walter, P., (eds) c2002: "*Molecular Biology of the Cell*", Garland Science, New York and London.
- 2 Darnell J, Lodish H, Baltimore D, "Molecular Cell Biology", W.H.Freeman; 8th edition, 2016
- Brai De Robertis& De Robertis, "Cell Biology", Fourth edition,2007
- 4 Geoffrey M. Cooper and Robert E. Hausman, "The Cell: A Molecular Approach", ASM Press and Sinauer Associates, Fifth Edition, 2009.

REFERENCES:

1	James D. Watson, "Molecular Biology of the Cell", Third edition, 2004.						
2	Channarayappa, "Cell biology", Universities Press, 2010						
3	Rastogi.S.C, "Cell biology", New Age International publishers, 2005						
4	https://www.ncbi.nlm.nih.gov/books						
5	http://www.di.uq.edu.au/sparqglossary#b						
6	https://cellbiology.med.unsw.edu.au						
7	https://micro.magnet.fsu.edu						

	COURSE OUTCOMES: On completion of the course, the students will be able to:					
CO1	CO1 Understand the structural organization of the cell and cell division.					
CO2	Familiarize with extracellular matrix, cell junction, cell adhesion.	K1				
CO3	Understand the various transport mechanism in the cell.	K2				
CO4	Get familiarized with the type of receptors and signal transduction pathways.	K2				
CO5	Familiarize with the techniques for cytometry analysis.	К3				

a) CO and PO	a) CO and PO Mapping													
COs / POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COSTIOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	-	1	-	-	-	-	-	-	-	-	1	-
CO2	1	1	-	-	-	-	-	-	-	-	-	-	1	-
CO3	1	1	-	-	-	-	-	-	-	-	-	-	1	-
CO4	1	1	ı	ı	-	-0	The same	No.	-	-	-	-	1	-
CO5	1	1	•	1	17	9.90 100	I district	16-11	315/1	-	-	-	1	1
22BBS308	1	1	•	1	1	112		FRE	V	-	-	-	1	1
1 - Slight, 2 - 1	Modera	ate, 3 –	- Subst	antial		1								
b) CO and Ke	y Perf	orman	ce Ind	icator	s Map	ping		TqJ.	77					
CO1	1.2.1	,2.2.2			1	M.	1	- 7	11					
CO2	CO2 1.2.1,2.2.2													
CO3 1.2.1,2.2.2														
CO4	CO4 1.2.1,2.2.2													
CO5 1.2.1,4.1.2,4.1.3,5.1.2														
	•		<u> </u>		(A)	1	le :	10		10	•	<u> </u>		•

		NO.	Chicaco	1200						
ASSESSMENT	ASSESSMENT PATTERN									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT1	70	30	_	-	-	-	100			
CAT2	60	40					100			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40	60	-	-	-	-	100			
ESE	50	50	-	-	-	-	100			

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	3	1	0	4

Course	The primary aim of this course is to train the students in the fundament	al princir	oles of						
Objectives	material balance, energy balances and various heat transfer methods to								
	for the problems encountered in chemical engineering.								
UNIT – I	BASICS OF BIOCHEMICAL CALCULATIONS	(9+3 periods						
Dimensions an	Dimensions and Units: Dimensions and Systems of units - fundamental and derived quantities, Dimensional								
equation. Diffe	erent ways of expression of units of quantities and unit conversion. Con	nposition	conversion-						
atomic weight	, molecular weight, equivalent weight, molar concept, mole percent, we	eight perc	ent, volume						
percent, molar	rity, molality, normality, etc., Basics of unit operations and unit pr	rocesses	involved in						
biotechnology	industries and its applications.								
UNIT – II	MATERIAL BALANCE		9+3 periods						
Process flow s	sheet, degrees of freedom, Overall and component balances; material l	oalances	without and						
with chemical	reactions; recycle, by pass and purge streams; Unsteady state material ba	alance.							
UNIT – III	ENERGY BALANCE		9+3 periods						
Fundamentals	of energy balance calculations-Concepts of heat capacity, latent heat, se	ensible he	at, enthalpy						
	ard heat of reaction, the heat of mixing and dissolution of solids, Hess	's law, ar	nd Humidity						
calculations. E	nergy balance with and without chemical reactions.								
UNIT – IV	CONDUCTION AND CONVECTION		9+3 periods						
	Mode of heat transfer; Conduction - Basic concepts of conduction i								
	dimensional heat conduction - Critical and optimum insulation thic								
	Equations of forced and free convection. Combined heat transfer coefficient	cients by	convection						
	and conduction. Unsteady state heat transfer fundamentals.								
UNIT – V	RADIATION AND HEAT EXCHANGERS		9+3 periods						
Basic laws of heat transfer by radiation – black body and gray body concepts – solar radiations – combined									
heat transfer coefficients by convection and radiation. Principle and working of Heat Transfer equipment –									
Double pipe, Shell & tube and Plate type heat exchanger, Overall & Individual heat transfer co-efficient,									
LMTD.									
Contact Perio									
Lecture: 45 P	eriods Tutorial: 15 Periods Practical: 0 Periods Total: 60Per	iods							

TEXT BOOK

1	K.V. Narayanan, B.Lakshmikutty, "Stoichiometry and Process calculations", Prentice hall of India, 2nd
	edition. 2017.
2	YunusCengel, "Heat and Mass Transfer – Fundamentals & Applications", McGraw-Hill, 2019.

REFERENCES

1	Bhatt B.I and VoraS.M. "Stoichiometry", Tata McGraw-Hill, New Delhi, 4 th Edition.2010.
2	O.A.Hougen, K.M.Watson, R.A.Ragatz, "Chemical Process Principles Part-I: Material and Energy
	Balances", CBS Publishers, 2018
3	C. J. Geankoplis, "Transport Processes and separation process principles (includes unitOperations)",
	Pearson Education Limited, 2013.
4	Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt" Principle of Heat and
	Mass Transfer", John Wiley,2019.

COUF	Bloom's		
On cor	Taxonomy Mapped		
CO1	Develop a fundamental understanding of the engineering unit conversions and Stoichiometry for doing balance calculations.	K1	
CO2	Have a comprehensive understanding and be able to perform engineering calculations basedon material balances.	K2	
CO3	Establish mathematical methodologies for the computation of energy balances.	K2	
CO4	Understand the basic laws of heat transfer & to develop solutions for the problem involving steady state & transient heat conduction in simple geometries.	K1	
CO5	Calculate heat transfer by conduction, convection & thermal radiation realistic cases.	K2	

a)CO and PO Mapping														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2	1	1	-	- ,		4	an m	2		-	-	3	1
CO2	3	1	1	-	- 1	(a si	2	100	S CORPUT	7/-	-	-	3	1
CO3	3	1	1	-	-				Sel V	100	-	-	3	1
CO4	2	1	1	-	-					-	-	-	3	1
CO5	3	1	1	-	-		-	-	7	7/ -	-	-	3	1
22BES306	3	1	1	-	-		9	-	1-1	(i) -	-	-	3	1
1 – Slight, 2 – Moderate, 3 – Substantial														
b) CO and Key Performance Indicators Mapping														
CO1	CO1 1.1.1, 1.2.1, 1.4.1, 2.1.2, 2.1.3, 3.2.1													
CO2	02 1.1.1, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 3.2.1													
CO3	1.1.1, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 3.2.1													
CO4	1.1.1, 1.2.1, 1.4.1, 2.1.2, 2.1.3, 3.2.1													
CO5 1.1.1, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 3.2.1														
		<u> </u>		<u>-</u>	<u>-</u>	16	54	0 (00)	(3)		<u>-</u>	<u>-</u>	•	•

ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	30	70	_	-	_	-	100				
CAT2	30	70	-	-	-	-	100				
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	,	-	100				
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100				
ESE	30	70	-	-	-	-	100				

22BPC302	INDUSTRIAL MICROBIOLOGY	SEMESTER III
22BPC302	INDUSTRIAL MICROBIOLOGY	SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

Course	To Understand the classification, microscopic examination, staini	ng methods of						
Objectives	microorganisms, nutritional media types, growth, control of micro o	rganisms and to						
	developknowledge about the industrial fermentation process and production of modern							
	biotechnology products.							
UNIT – I	BASIC MICROBIOLOGY	9 Periods						

History of microbiology, Classification and nomenclature of microorganism, microscopic examination of microorganisms- light and electron microscopy; Staining techniques – simple, differential & special staining; Colony morphology and arrangement of bacterial cells.

UNIT – II GROWTH AND CONTROL OF MICROORGANISMS 9 Periods

Nutritional requirements of bacteria and different media used for bacterial culture; Isolation of pure culture (Spread Plate, Streak Plate, Pour Plate); Growth curve and different methods to quantify the bacterial growth; Physical control of microorganisms (dry and moist heat sterilization, filtration, radiation)-Chemical control of microorganisms (Phenolics, alcohol, aldehydes, halogens, heavy metals, quaternary ammonium salts, sterilizing gases)-evaluation of antimicrobial agent effectiveness; Host-microbe interactions, antibacterial, anti-fungal and anti-viral agents, mode of action of antibiotics and its resistance.

UNIT – III INDUSTRIAL FERMENTATION PROCESS

9 Periods

Historical overview of industrial fermentation process -traditional and modern Biotechnology. Commercial potential of Biotechnology products in India. Industrial Fermentation- microorganisms, mode of operation, fermentation processes-pictorial representation.

UNIT – IV PRODUCTION OF PRIMARY & SECONDARY METABOLITES 9 Periods

Production of primary metabolites- Organic acids (citric acid & acetic acid); amino acids (glutamic acid & tryptophan) and alcohols (ethanol &butanol), Production of secondary metabolites- antibiotics: (penicillin & streptomycin), vitamins (Vit B₁₂ and Vit B₂), enzymes (proteases & amylases).

UNIT – V PRODUCTION OF MODERN BIOTECHNOLOGY PRODUCTS 9 Periods

Production of recombinant proteins having therapeutic and diagnostic applications (insulin, human growth hormone), Production of recombinant vaccines (Hepatitis B vaccine, cholera vaccine), production of monoclonal antibodies.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Prescott LM, Harley JP, Klein DA, "Microbiology", 4th Edition, Wm. C. Brown Publishers, 2010.
- Waites, M.J., Morgan, N.L., Rockey, J.S., Higton, G., "Industrial Microbiology: An Introduction", Blackwell, 2001.

REFERENCES:

- 1 Pelczar MJ, Chan ECS and Krein NR, "Microbiology", McGraw Hill Education, 5th Edition, 2001.
- 2 Lee, S.Y., Nielsen, J. and Stephanopoulos, G., "Industrial Biotechnology: Products and Processes", John Wiley & Sons, 2016.
- 3 Cruger, W., Cruger, A., "A Textbook of Industrial Microbiology", Panima Publishing Corporation, 2nd Edition, 2005.
- 4 Pandey, A., Negi, S., Soccol, C.R., "Current Developments in Biotechnology and Bioengineering: Production, isolation and purification of industrial products". Elsevier, 2016.
- 5 | Okafor, N., "Modern Industrial Microbiology and Biotechnology", CRC Press, 2007.

COU!	Bloom's Taxonomy			
On co	empletion of the course, the students will be able to:	Mapped		
CO1	Understand the classification, microscopic examination and staining methods	K1		
	of microorganisms			
CO2	CO2 Differentiate the types of nutritional media, growth pattern and control of micro			
	organisms			
CO3	Develop knowledge about the industrial fermentation process.	K2		
CO4	Identify the importance of microbes and their role in production of	K3		
	primary and secondary metabolites.			
CO5	Explore the microbial process for production of modern biotechnology	K3		
	products.			

a)CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PSO	PSO
COS/1 OS	1	2	3	4	5	6	7	8	9	10	11	2	1	2
CO1	1	2	-	-	-	-	-	-	-	-	-	-	2	1
CO2	1	2	-	-	-	-	-	-	-	-	-	-	2	1
CO3	1	2	-	-	- ,	-	23	S. Land)	-	-	-	2	1
CO4	1	2	-	-	- ((e u		100	CORP.	-	-	-	2	1
CO5	1	2	-	-	-	Y	5	10/4	7	9 -	-	-	2	1
22BPC302	1	2	-	-	-	1	-	-	1	.ee -	-	-	2	1
1 – Slight, 2	2 – Mod	lerate,	3 – Su	bstanti	al	100		-	J /	7				
b) CO and	Key Pe	rform	ance]	Indicat	tors M	apping	g	_ /	K //					
CO1	1.2.1,2	.2.2					VA	W.	100					
CO2	CO2 1.2.1,2.2.2													
CO3	CO3 1.2.1,2.2.2, 2.2.3,2.2.4													
CO4	CO4 1.2.1,2.2.2, 2.2.3,2.2.4													
CO5	1.2.1,2	.2.2, 2	.2.3,2.	2.4	ý	18	M			ADH .				

ASSESSME	NT PATTERN –	THEORY	10 E 180				
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	50	50	-	ı	-	-	100
CAT2	20	30	50	ı	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	1	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	30	30	-	-	-	100

SEMESTER III
S

PREREQUISITES	CATEGORY	L	T	P	C
Chemistry for Biotechnology	DC.	,	0	0	2
Biomolecules	PC	3	U	U	3

Course	To provide an insight into catabolic and anabolic metabolism of biomole	cules and the					
Objectives	mechanisms of protein folding and transportation						
TINITE I	CARROWED ATTEMET A DOLLOW	0 D . 1					
UNIT – I	CARBOHYDRATE METABOLISM	9 Periods					
	ncepts-Glycolysis, TCA cycle, pentose phosphate &glyoxalate shunt, Re						
Oxidative Phos	phorylation and Photophosphorylation. Metabolic disorders associated with	carbohydrates.					
UNIT – II	LIPID METABOLISM	9 Periods					
Fatty acid syntl	nesis and oxidative degradation, Triacylglycerol, phospholipid biosynthesis	and degradation;					
Cholesterol bio	synthesis. Metabolic disorders associated with lipids.						
UNIT – III	NUCLEIC ACID METABOLISM	9 Periods					
Biosynthesis of	f nucleotides, denovo and salvage pathways for purines, denovo and salva	ge pathways for					
	degulation of purine and pyrimidine synthesis, Degradation of nucleot						
	iated with nucleic acids.						
UNIT – IV	AMINO ACID METABOLISM	9 Periods					
Nitrogen metab	polism, Biosynthesis of six essential amino acids (Met, Thr, Lys, Ile, Val, Lo	eu) and aromatic					
amino acids. U	rea cycle, Metabolic disorders associated with chain and aromatic amino acid	d degradation.					
UNIT – V	PROTEIN FOLDING & TARGETING	9 Periods					
Protein folding	: Levinthal paradox, Anfinsen's experiment, cooperativity in protein folding	g, free energy					
landscape of protein folding and pathways of protein folding, molten globule state, chaperons, Protein							
targeting, signal sequence, secretion; targeting of organelle proteins, Protein degradation, receptor-							
mediated endocytosis, turnover.							
	Contact Periods:						
Lecture: 45 Pe	Al III	S					
	Licenses to Lettous Luculais of Citous Licenses Locale 43 Lettous						

TEXT BOOKS

1	APA. Nelson, D. L., & Cox, M. M., "Lehninger's —Principles of Biochemistry", 7 ^h Edition, Macmillan, 2017.
2	Voet, Donald, Judith G. Voet, and Charlotte W. Pratt, "Fundamentals of Biochemistry: Life at the Molecular Level", 5 th Edition, Wiley., 2016.

REFERENCES:

1	Shawn O. Farrell and Mary K. Campbell, " <i>Biochemistry</i> ", 8 th Edition, Brooks/Cole, 2013
2	Satyanarayana, U. and U. Chakerapani, "Biochemistry" 3rd Rev. Edition, Books & Allied
	(P) Ltd., 2006.
3	Victor W. Rodwell; David Bender; Kathleen M. Botham; Peter J. Kennelly; P. Anthony Weil., "Harper's
	Illustrated Biochemistry", 31st Edition, McGraw-Hill Education, 2018.
4	Berg, J.M., Tymoczko, J.L., Stryer, L., " <i>Biochemistry</i> ", 9 th Edition, WH Freeman, 2019.

	RSE OUTCOMES: Impletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	derstand the metabolic pathways of Carbohydrates, amino acids, nucleic acids and lipids.	
CO2	hom the complex relationship between biochemical pathways within living cells	K1
CO3	ow the metabolic disorders associated with biochemical metabolisms	K2
CO4	Understand the mechanism of protein targeting and transport	K2
CO5	Grasp the protein folding mechanism	K2

a) CO and P COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO2	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO3	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO4	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO5	1	1	-	-	-	-	-	-	-	-	-	-	3	1
22BPC303	1	1	-	-	-	-	W. W.	-	-	-	-	-	3	1
1 – Slight, 2	– Mode	rate, 3 -	– Subst	antial	60/		0	32	200					
b) CO and k	Key Per	formar	nce Ind	licator	Map _l	oing	சந்த முட		101					
CO1	1.4.1, 2	2.1.3				100	RUPTE	200						
CO2	1.4.1, 2	2.1.3												
CO3	1.4.1, 2	2.1.3,				0 1		9	//					
CO4	1.4.1, 2	2.1.3			1)	10		\mathcal{M}	10					
CO5	1.4.1, 2	2.1.3,				7		11.	11					
						ģ.			1					

ASSESSMENT	Γ PATTERN – TH	HEORY	W.	3			
Test / Bloom's Category*	Remembering (K1) %	Understan ding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	70	30	22 AND 181		-	-	100
CAT2	40	60	-	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100
ESE	60	40	-	-	-	-	100

22BPC304	GENETICS	SEMESTER III
----------	----------	--------------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	0	0	3

Course Objectives	To give an understanding on the fundamentals of conventional genetics in disease and therapy. To describe various genetic laws, learn the chron function and understand methodologies for cytogenetic applications. To Weinberg Law in analyzing population genetics for gene frequence equilibrium, and heterozygote frequency.	nosome structure apply the Hardy-
UNIT – I	BACTERIAL GENETICS	9 Periods
Fine structure	in merozygotes- plasmids and episomes, Recombination in bacteria,	Transformation,

Transduction, Conjugation – mapping.

UNIT – II CLASSICAL GENETICS

9 Periods

Mendel's Principles and experiments, segregation, multiple alleles – independent assortments, genotypic interactions, epistasis and sex chromosomes, sex determination, dosage compensation, sex linkage and pedigree analysis.

UNIT - III APPLIED GENETICS

9 Periods

Chromosome organization, structure and variation in prokaryotes and eukaryotes, Giant chromosomes – polytene and lampbrush, deletion, inversion, translocation, duplication. variation in chromosomal numbers – aneuploidy, euploidy, polyploidy, Ames test, karyotyping, Linkage-complete and incomplete, Crossing over – cytological basis of crossing over, chromosome mapping – two and three factor cross – interference, somatic cell hybridization.

UNIT – IV POPULATION GENETICS

9 Periods

Hardy-Weinberg equilibrium, Extensions of Hardy- Weinberg equilibrium, Random mating and non-random mating, Population analysis, Models for population genetics. Mutation and Migration size, Genetic variation and Sociobiology, Eugenics.

UNIT – V GENETIC DISEASES

9 Periods

Inborn errors of metabolism, Sickle cell anemia, Hemochromatosis, Cystic fibrosis, Hypogonadotropic hypogonadism, Gaucher's disease, Achondroplasia, Phenylketonuria, Huntington's Disease, Cystic fibrosis, Hemoglobinopathies, Age-related macular degeneration, Obesity, Type 2 diabetes, Psychiatric disease, Including missing heritability, Autism.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- Gardner, E.J, Simmons, M.J, and Snustad, D.P., "*Principles of Genetics*", 8 Edition, JohnWiley& Sons, Singapore,2015.
- 2 Strickberger, M.W., "Genetics", 3rd Edition, Prentice Hall of India, New Delhi, 2015.
- 3 Klug, W.S. and Cummings, M.R., "Concepts of Genetics", Pearson Education, New Delhi, 2019

REFERENCES

1	Tamarin, R.H., "Principles of Genetics", Tata McGraw Hill, New Delhi, 2002.
2	De Robertis, E. D. P. and De Robertis, E. M. F., "Cell and Molecular Biology", 8 th Edition,
	Lippincott Williams & Wilkins, New York, USA, 2010.

COU	RSE OUTCOMES:	Bloom's Taxonomy
On co	impletion of the course, the students will be able to:	Mapped
CO1	Understand the fundamentals of bacterial genetics.	K1
CO2	Understand classical mendelian genetics in inheritance of genes.	K1
CO3	Apply concepts of genetics in chromosomal mapping	K2
CO4	Know population based on concepts of population genetics.	K2
CO5	Understand various genetic disorders and their genetic basis.	K2

a) CO and	PO Map	ping												
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO2	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO3	1	1	-	-	-		2 - B	M.D.	-	-	-	-	3	1
CO4	1	1	-	-	- 47	8/11/40	V volumes	11 (F 5 1)	500/10	u -	-	-	3	1
CO5	1	1	-	-	- 0	V 150		17 CO		-	-	-	3	1
22BPC304	1	1	-	-	- 8				1	-	-	-	3	1
1 – Slight, 2	2 – Mode	rate, 3	– Subst	antial	6	6 4		- CpJ	- 77					
b) CO and	Key Per	formai	ice Ind	licators	Map	ping	10	- 7	- 11					
CO1 1	.4.1, 2.1.3	3				1	ATTE	MI.	8 1					
CO2 1	.4.1, 2.1.3	3			- 1	// .			11					
CO3 1	CO3 1.4.1, 2.1.3													
CO4 1	.4.1, 2.1.3	3			-	6	7	10 1						
CO5 1	.4.1, 2.1.	3			69	1 1	15	10	V. 64	10				

ASSESSMEN	T PATTERN – T	THEORY	00 000	Alcule			
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	50	50	-	-	-	-	100
CAT2	40	60	-	-	-	-	100
Individual							
Assessment 1							
/Case Study	60	40	-	-	-	-	100
1/ Seminar 1							
/ Project1							
Individual							
Assessment 2							
/Case Study	30	70	-	-	-	-	100
2/ Seminar 2							
/ Project 2							
ESE	50	50	-	-	-	-	100

22BBS309	CELL BIOLOGY LABORATORY	ATORY SE												
PREREQU	ISITES	CATEG	GORY	L	T	P	С							
NIL		BS	5	0	0	3	1.5							
Course Objectives	Students are able to handle and operate light microscope and familiarize with slide preparate and staining techniques. Students are able to study the different cell division stages.													
LIST OF I	EXPERIMENTS													
1.	Principles of microscopy, phase contrast and fluorescent n	nicroscop	y											
2.	Identification of given plant, animal and bacterial cells microscopy	Identification of given plant, animal and bacterial cells and their components by												
3.	Identification of cells in a blood smear using Leishman	stain.												
4.	Identification of cells in a blood smear using Giemsa stai													
5.	Identification of cells in a blood smear Haemotoxylin E	osin Stair	ning.											
6.	Counting of RBCs and WBCs using Haemocytometer													
7.	Study of Osmosis and Tonicity of blood cells.													
8.	Study of Cell viability using Tryphan Blue Assay													
9.	Separation and identification of peripheral blood monor	nuclear ce	ells fror	n blo	ood.									
10.	Identification of meiosis cell division in grasshopper tes	stis.												
11.	Staining of different stages of mitosis in Alliumcepa(Or	ion) root	tip.											
12.	Immunostaining of cells	9												
Contact Per Lecture: 0 l		Total:	45 Per	iods										

REFERENCES:

1 D	e Robertis& De Robertis, <i>Cell biology</i> , W B Saunders Co publications, 4th edition	, 2007.
	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Operate and identify the parts and function of microscope.	K3
CO2	Prepare the slides for microscopic examinations.	K3
CO3	Perform different staining techniques to identify blood cells	K3
CO4	Interpret the different stages of cell division using microscope.	K3
CO5	Work as a team to interpret practical data.	K3

CO5 Work as a team to interpret practical data. COURSE ARTICULATION MATRIX

a) CO and	a) CO and PO Mapping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PSO	PSO
CO3/1 O3	1	2	3	4	5	6	7	8	9	10	11	2	1	2
CO1	-	-	-	2	•	-	-	ı	-	-	-	-	3	1
CO2	-	1	-	1	-	-	-	ı	-	-	-	-	3	1
CO3	-	-	-	3	-	-	-		-	-	-	-	3	1
CO4	-	•	-	2	•	-	-	ı	-	-	-	-	3	1
CO5	-	-	-	-	-	-	-		2	-	-	-	3	1
22BBS309	-	•	-	2	•	-	-	ı	2	-	-	-	3	1
1 – Slight, 2	- Mod	erate,	3 – Su	bstanti	al									
b) CO and	Key Pe	rform	ance l	Indicat	tors M	apping	g							
CO1	4.1.1, 4	1.1.2,4	.2.1											
CO2	4.2.1													
CO3	4.1.1, 4.1.2, 4.2.1, 4.3.1													
CO4	4.2.1, 4	1.3.1												
CO5	9.2.1,9	,2.2,9.	2.3											

22BPC305	MICROBIOLOGY LABORATORY	SEMESTER III
22BPC305	MICROBIOLOGY LABORATORY	SEMESTER III

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	0	0	3	1.5

Course Objectives	To demonstrate the proper safety procedures, parts & functions of microscope, staining techniques for microorganism identification, culture media preparation and growth pattern of bacteria.
LISTOF EX	XPERIMENTS
1.	Laboratorysafetyandsterilizationtechniques.
2.	Microscopic Methods-IdentificationofMicroorganisms.
3.	Stainingtechniques—simple and differential staining (Gram staining), lacto phenol and acid fast staining
4.	Identification of fungal morphology by lactophenol cotton blue staining
5.	Preparationofculture media–nutrientbroth, nutrientagar-slant preparation
6.	Culturingofmicroorganismsinbrothandinplates (pourplates, streakplatesand spread plate techniques)
7.	Preparation of selective media using MacConkey agar.
8.	Serial Dilutionmethod
9.	Biochemical Tests for bacterial identification
10.	Motility Test-Hangingdroptechnique
11.	Antibiotic sensitivityassay-DiscDiffusionmethod
12.	Preservationofbacterialcultures-lyophilization& glycerol stock
13.	Study of bacterial growth curve.
Contact Per Lecture: 0 P	Al W

TEXT BOOK:

1	James G. Cappuccino & Natalie, "Microbiology, A Laboratory manual", Pearson Education
	Publishers, 6^{th} edition, 2004.
2	Waites, M.J., Morgan, N.L., Rockey, J.S., Higton, G., "Industrial Microbiology: An Introduction",
	Blackwell, 2001.

REFERENCES:

1 Harsha S, "Biotechnology Procedures and Experiments Handbook", Infinity Science Press, 2007.

COUI	RSE OUTCOMES:	Bloom's Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
CO1	Identify and demonstrate the proper safety procedures concerning lab safety.	K3
CO2	Identify the parts & functions of microscope.	K3
CO3	Perform different staining techniques to identify microorganisms.	K3
CO4	Identify the purpose & principle associated with different media types used in lab.	K3
CO5	Demonstrate the preservation methods and growth pattern of bacteria.	K3

CO-/DO-	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COs/POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO2	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO3	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO4	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO5	1	-	-	2	-	-	-	-	-	-	-	-	2	1
22BPC305	1	-	-	2	-	-	-	-	-	-	-	-	2	1
1 - Slight, 2	- Mod	lerate,	3 – Su	bstanti	al						•			
b) CO and	Key Pe	rform	ance I	ndica	tors M	appin	g							
CO1	1.2.1,	4.1.1,4	4.1.2											
CO2	1.2.1,	4.1.1,4	4.1.2,4	.2.1										
CO3	1.2.1,	4.1.1,4	4.1.2,4	.2.1,4.:	3.1									
CO4	1.2.1,	4.1.1,4	4.1.2, 4	1.2.1,4	.3.1									
CO5	1.2.1.	4.1.1.4	4.1.2.4	1.2.1.4	3.1									

22BPC306 BIOCHEMISTY LABORATORY SEMESTER III
--

PREREQUISITES	CATEGORY	L	T	P	C
Chemistry for Biotechnology	D.C.		0	2	1.5
Chemistry Laboratory	PC	U	U	3	1.5

Course Objectives	Train the students on qualitative and quantitative analysis of basic biomolecules.
Experiment No.	EXPERIMENTS
1.	Units, Volume/Weight measurements, concentrations, Sensitivity, Specificity, Precision
	and Accuracy.
2.	Preparation of buffers and Titration curves of amino acids.
3.	Qualitative tests for carbohydrates.
4.	Quantitative tests for reducing sugars.
5.	Qualitative tests for Amino Acids.
6.	Quantitative tests for Protein.
7.	Estimation of Nucleic acids: Test for ribose and deoxyribose.
8.	Estimation of glucose by GOD-POD method.
9.	Quantitative tests for Cholesterol.
10.	Determination of isoelectric point of casein.
Contact Periods:	
Lecture: 0 Periods	Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

REFERENCES

1	David. T. Plummer, "An Introduction to Practical Biochemistry", McGraw – Hill, 3 rd edition., 2017
2	Benjamin F. Lasseter, " <i>Biochemistry in the Lab A Manual for Undergraduates</i> ", 1 st Edition, CRC Press, 2019.
3	Andreas Hofmann, Samuel Clokie, "Wilson And Walker's Principles And Techniques Of Biochemistry And Molecular Biology", 8 th Edition, Wiley, 2018.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
On con	npletion of the course, the students will be able to:	Mapped
CO1	pare reagents accurately and reproducibly for experiments	K3
CO2	erate pH meter, weighing balance, colorimeter and spectrophotometer	K3
CO3	the experiments for isolation and extraction of any bioactive compounds	K3
CO4	Identify and quantify the bio molecules (Carbohydrate, Protein, Nucleic acid,	K3
	Lipids) in any	
CO5	Understand the practical accession behind preparation and separation of	K3
	various biomolecules	

CO5

4.1.4,

a) CO and F	a) CO and PO Mapping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO	PSO	PSO
COS/1 OS	1	2	3	4	5	6	7	8	9	10	1	12	1	2
CO1	-	-	-	2	-	-	-	-	-	-	-	-	3	1
CO2	-	-	-	1	-	-	-	-	-	-	-	-	3	1
CO3	-	-	-	4	-	-	-	-	-	-	-	-	3	1
CO4	-	-	-	2	-	-	-	-	-	-	-	-	3	1
CO5	-	-	-	1	-	-	-	-	-	-	-	-	3	1
22BPC306	-	-	-	2	-	-	-	-	-	-	-	-	3	1
1 – Slight, 2	– Mod	erate,	3 – Su	bstanti	al									
b) CO and I	Key Pe	rform	ance I	ndicat	tors M	Iappin	g							
CO1	4.2.1, 4.3.1													
CO2	4.2.1	4.2.1												
CO3	4.1.1	, 4.1.2	, 4.2.1,	4.3.1			197000	naziron.						
CO4	421	421 431												

22BES407	FLUID MECHANICS	SEMESTER IV

PREREQUISITES	CATEGORY	L	T	P	C
Differential Equations and Numerical Methods	ES	3	0	0	3

Course Objectives	Understand dynamics and properties of fluid flow, learn strong foundation of (flow measurements) and develop dynamic characteristics of fluid flow throu porous medium.	
UNIT – I	INTRODUCTION	9 periods

Properties of fluids, fluid statics, concept of shear stress, Newton's law of viscosity – Fluid behavior under shear, Newtonian and non-Newtonian fluids, Types of flow – laminar, turbulent, steady,unsteady, non uniform and uniform flows – compressible and incompressible fluids, Similitude -relationship between dimensional analysis and similitude

UNIT – II FLUID DYNAMICS

9 periods

Continuity equation, Bernoulli's equation, boundary layer condition, form drag, skin drag, drag coefficient – laminar and turbulent flow through closed conduit velocity profiles, pipes, tubes, fittings, valves, friction factor for smooth and rough pipes, head losses due to friction in pipes and fittings.

UNIT – III FLUID FLOW MEASURMENT AND PUMPING EQUIPMENTS

9 periods

Orifice meter, Venturimeter, Pitot tube, Rota meter, weirs and notches, hot wire anemometer,

displacement meter, current meter, magnetic flow meter, pressure measurement bymanometers, U-tube, differential and inclined manometers.

Pumps – types, selection and specifications, positive displacement pumps, reciprocating pump, rotary pumps, centrifugal pumps - characteristics curve of pumps – fans and compressors

UNIT – IV FLUIDIZATION AND PACKED BEDS

9 periods

Mechanisms, types – fluidized beds, properties of fluidized beds, continuous fluidization and application, packed beds – pressure drop, flooding and loading. Mixing & agitation

UNIT - V MECHANICAL OPERATIONS

9 periods

Size reduction equipments – operations and their classification, Energy and power requirements, Laws of crushing, open and closed circuit operations - techniques of size analysis – different methods for storage of solids, conveyors and elevators.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

TEXT BOOK:

- 1 McCabe Smith and Harriott, "Unit Operations of Chemical Engineering", 7th Edition, Tata McGraw-Hill company, 2022.
- Geankoplis C.J, "Transport Processes and Unit Operations", 3rd Edition, Prentice Hall of India, 2003.

REFERENCES:

1	Frank M. White, "Fluid Mechanics", 8 th Edition, Tata McGraw-Hill company, 2017.
2	J. M. Coulson, J. F. Richardson and R. K. Sinnott, "Chemical Engineering. Vol I & II", 6 th
	Edition, Butterworth-Heinemann Ltd, 1999.
3	Bansal R K, "Fluid mechanics and Hydraulic machines", 10 th Edition, Lakshmi publications
	(P) Ltd. Naw Dolli: 2010

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	derstand stress – strain relationship in fluids and analyse fluid flow problems.	K1
CO2	To apply Bernoulli principle and measure pressure drop in flow systems	K3
CO3	Describe the function and performance of flow metering devices.	K5
CO4	Determine minimum fluidization velocity in fluidized bed.	K4
CO5	Present characteristics of particulate solids, Principles of size reduction and	K2
	screening, crushing and grinding equipment.	

a) CO and l	PO Ma	pping												
COs/POs	PO1	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
		2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	-	1	1	1	1	-	-	ı	-	ı	ı	1	3	2
CO2	1	1	-	1	-	2	1	ı	1	ı	1	1	3	2
CO3	-	1	1	-	1	2	-		-	-	•	-	2	3
CO4	1	1	1	1	-	-	-0.000	G.	1	-	ı	1	3	2
CO5	-	1	1	1	- 40	-	10		9	1	1	1	3	2
22BES407	1	1	1	1	1 7	1	் தார்க்		1	1	1	1	3	2
1 – Slight, 2	- Mod	erate, 3	3 – Sub	stantia	1 8		ALUM.	STATE OF						
b) CO and l	Key Pe	rforma	ance Ir	dicato	rs Ma	pping								
CO1	2	.2.3, 2.	2.4,2.3	.2,3.1.0	5, 4.1.4	, 5.1.1	,	40						
CO2	1	.2.1, 2.	1.3, 4.3	3.1, 6.2	.1, 7.2.	.2,		$\sim \Lambda$	11					
CO3	2	.2.2, 2.	4.1, 3.1	1.1, 3.2	.2, 5.3	2, 6.2.	1/		- 11					
CO4	1	.2.1, 2.	1.3, 2.3	3.2, 3.2	.3, 4.3	.3	I E	7			•			•
CO5	2	.1.2, 2.	4.2, 3.2	$2.1, \overline{4.2}$	$.2, \overline{7.2}$.2	1	7						

ASSESSMEN	T PATTERN – T	THEORY	1100	7.60			
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*	20	20	20	20	20		100
CAT1	20	20	20	20	20	-	100
CAT2	20	20	20	20	20	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	30	30	20	-	20	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	30	20	-	20	-	100
ESE	40	30	20	-	10	-	100

22BPC407	MOLECULAR BIOLOGY	SEMESTER IV
----------	-------------------	-------------

PREREQUISITES	CATEGORY	L	T	P	C
Microbiology	PC	3	0	0	3
Cell Biology				l l	

Course	To learn the fundamental aspects of nucleic acids, the principle and process of DNA								
Objectives	replication, transcription and translation and to study the basics of regulation of gene								
	expression, mutation and DNA repair.	_							
UNIT – I	CHEMISTRY OF NUCLEIC ACIDS	9 Periods							

Nucleic acids as genetic material;Structure and physico chemical properties of elements in DNA and RNA, Primary structure of DNA: Chemical and structural qualities of 3',5'-Phosphodiester bond. Secondary Structure of DNA: Watson & Crick model, Chargaff's rule, X-ray diffraction analysis of DNA, Forces stabilizes DNA structure, Conformational variants of double helical DNA, Hogsteen base pairing, Triple helix, Quadruple helix, Reversible denaturation and hyperchromic effect. Tertiary structure of DNA: DNA supercoiling, Conformation of DNA and RNA; classes of RNA; Organization of eukaryotic chromosome – c0t value.

UNIT – II DNA REPLICATION

9 Periods

- Overview of differences in prokaryotic and eukaryotic DNA replication, Rules of replication in all nucleic acid; enzymology; DNA replication: Meselson& Stahl experiment, bi-directional DNA replication, Okazaki fragments; Replication in prokaryotes - D-loop and rolling circle mode of replication; replication of linear viral DNA. Replication of telomeres in eukaryotes. Inhibitors of DNA replication.

UNIT – III TRANSCRIPTION

9 Periods

RNA polymerase- RNA replicase (Virus), Transcription in prokaryotes and eukaryotes; Inhibitors; features of promoters and enhancers; transcription factors; nuclear RNA splicing mechanisms – tRNA- rRNA- mRNA; ribozymes; RNA - editing.

UNIT – IV TRANSLATION

9 Periods

Elucidation of genetic code; Salient features of genetic code - Wobble hypothesis; ribosomes – prokaryotic & eukaryotic; protein synthesis; post translational processing; Protein targeting.

UNIT - V MUTATION - REPAIR AND REGULATION OF GENE EXPRESSION

9 Periods

Regulation of genes – replication- transcription & translation factors; Lac and trp operon; Mutation– transition-transversion- artificial & natural mutation; suppressor mutation; Repair of DNA.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 David Friefelder, "*Molecular Biology*", Narosa Publ. House.2nd edition, 1999.
- 2. Harvey Lodish, Arnold Berk, S.L Zipursky, Paul Matsudaira, David Baltimore and James Danell *"Molecular Cell Biology"*,4 th Edition, New York: W.H Freeman and company, 2016.

REFERENCES

- Malacinski, G.M., Freifelder's *"Essentials of Molecular Biology"*, 4 th edition, Nasora Publishing House, New Delhi, 2015.
- Watson J.D., Hopkins W.H., Roberts J.W., Steitz J.A., Weiner A.M., "*Molecular Biology of the Gene*", McGraw Hill,2 nd Edition, 1986.
- Waston, B.B, & Gann, L.L, "Watson Molecular Biology of the Gene", 7 th Edition, Pearson Education, 2014.
- 4 Weaver, R.., "Molecular Biology", 3 rd Edition, McGraw Hill, 2011
- 5. Benjamin L., "Genes IX", 9th Edition, Jones & Bartlett Publishers Inc. 2013.

	RSE OUTCOMES: unpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
	derstand the basic structure and biochemistry of nucleic acids	K1
CO2	Comprehend the principle of DNA replication	K1
CO3	Get familiarize with the process of transcription and RNA processing.	K2
CO4	Become aware of the process of protein synthesis.	K2
CO5	Understand the regulatory mechanism of molecular biology.	K1

a) CO and	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	3	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	2
CO3	1	2	3	-	-	-	-	-	-	-	-	-	3	2
CO4	-	3	2	-	2	-	-	-	-	-	-	-	2	3
CO5	-	1	3	-	2	-		-	-	-	-	2	2	3
22BPC407	3	3	3	-	2	-9	•	2-	2	-	-	2	3	3
b) CO and	Key Pe	rforma	nce In	dicator	s Map	ping	சுத்த துட	6	97					
CO1	1.2.1, 2	.4.3				1000		TO SI						
CO2	3.1.5				1				de					
CO3	3.1.4,3.	1.5,				0 1		Call dis						
CO4	5.1.2.				1	10		Λ	110					
CO5	12.1.1,	12.1.2						100	1					
					- //	ě	F	7						

ASSESSME	NT PATTERN -	- THEORY	CORP.				
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	70	30	200	315110	-	-	100
CAT2	40	60		9	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100
ESE	60	40	-	-	-	-	100

22BPC408	BIOCHEMICAL THERMODYNAM	ICS	SEMESTER IV				
PREREQUISI	TES	CATEGORY	LII	' P	C		

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	0	0	3

Course Objectives To expound theory and fundamentals behind the thermodynamics implications in the biological processes. The students will be able to design & solve physical and chemical problems encountered in chemical and biochemical industries by applying fundamental thermodynamics laws.						
UNIT – I	THERMODYNAMIC LAW AND PROPERTIES OF FLUIDS	9 Periods				
properties of f	First Law of thermodynamics; a generalized balance equation and conserved quantities; Volumetric properties of fluids exhibiting non ideal behavior; estimation of thermodynamic properties using equations of state; calculations involving actual property exchanges; Maxwell's relations and applications.					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
UNIT – II	SOLUTION THERMODYNAMICS	9 Periods				
Partial molar p	SOLUTION THERMODYNAMICS properties; Chemical potential, Fugacity and fugacity coefficient in solutions; Activity in solutions and activity coefficient; Gibbs-Duhem equation properties of mixtures.	tions; Henrys law and				
Partial molar partial molar partial molar partial molar partial properties and residual properties with the partial molar partia	properties; Chemical potential, Fugacity and fugacity coefficient in solutions; Activity in solutions and activity coefficient; Gibbs-Duhem equation operties of mixtures. PHASE EQUILIBRIA	tions; Henrys law and n; Excess properties 9 Periods				
Partial molar p dilute solution and residual pr UNIT – III Criteria for p	properties; Chemical potential, Fugacity and fugacity coefficient in solutions; Activity in solutions and activity coefficient; Gibbs-Duhem equation operties of mixtures.	tions; Henrys law and n; Excess properties 9 Periods				
Partial molar p dilute solution and residual pr UNIT – III Criteria for p	properties; Chemical potential, Fugacity and fugacity coefficient in solutions; Activity in solutions and activity coefficient; Gibbs-Duhem equation roperties of mixtures. PHASE EQUILIBRIA hase equilibria; VLE calculations for binary and multi component so	tions; Henrys law and n; Excess properties 9 Periods				

single and multiple reactions.

THERMODYNAMIC DESCRIPTION OF MICROBIAL UNIT – V 9 Periods **GROWTH AND PRODUCT FORMATION**

Thermodynamics of microbial growth stoichiometry thermodynamics of maintenance, Calculation of the Operational Stoichiometry of a growth process at Different growth rates, Including Heat using the Herbert -Pirt Relation for Electron Donor, thermodynamics and stoichiometry of Product Formation

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOKS:

Francis, 1st edition, 2010.

1	Smith J.M., Van Ness H.C., Abbott M.M., 'Introduction to Chemical Engineering Thermodynamics', McGraw-Hill, 8 th edition, 2018.
2	Narayanan K.V, 'A Text Book of Chemical Engineering Thermodynamics', Prentice Hall of India, 2 nd edition, 2013.
3	Christiana D Smolke, 'The Metabolic Pathway Engineering Handbook Fundamentals', CRC Press Taylor &

REFERENCES:

	1	Hougen O.A., Watson K.M., and Ragatz R.A., 'Chemical Process Principles Part II', John Wiley & Sons, 2 nd edition. 2004.
		Stanley I. Sandler 'Chemical, Biochemical, and Engineering Thermodynamics', John Wiley Sons,
ı		5 th edition, 2017.

COURSE OUTCOMES: On completion of the course, the students will be abl	T	Bloom's axonomy Mapped
CO1 strate the application of thermodynamics		K1
industries.	and the second of the second	
CO2 sign & solve problem in realistic cases by app	llying thermodynamics concepts.	K1
CO3 Estimate thermodynamic properties of substa	ances in gas and liquid states	K2
CO4 Interpret the phase equilibria concepts in mu	lti-component systems	K2
CO5 Understand about biochemical equilibrium	and able to calculate the kinetics of	K2
biological systems.		

a) CO and P	O Map	ping					Hum	750 -						
COs/POs	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO1 2	PSO1	PSO2
CO1	2	2	-	2	ı	1	-	-	-	•	-	ı	1	1
CO2	2	1	-	2	1	-	-	-	-	•	-	ı	1	1
CO3	2	2	-	2	1	2	-	-	-	-	-	-	1	1
CO4	2	2	-	2	-	-	-	-	-	-	-	•	1	1
CO5	2	2	-	2	-	2	-	-	-	-	-	-	1	1
22BPC 408	2	2	-	2	1	2	1	-	-	-	-	-	1	1
1 – Slight, 2	– Mode	rate, 3	- Subs	tantial	Á	1 1	1	All) S					
b) CO and F	Key Per	forma	nce Inc	dicator	s Mapp	ing		- 30	200					
CO1	1.2.1, 1	.3.1,1.	4.1,2.1	.2,2.1.3	, 2.1.3,2	2.2.2,2.:	3.2,2.4.	4,4.1.1	,4.1.4,4	.3.3				
CO2	CO2 1.2.1, 1.3.1,1.4.1,2.1.2,2.1.3, 2.1.3,2.2.2,2.2.3,4.1.1,4.1.2,4.3.2													
CO3	CO3 1.2.1, 1.3.1,1.4.1,2.1.2,2.1.3, 2.1.3,2.2.2,2.3.2,2.4.4,4.1.1,4.1.2,4.1.4,4.2.1,4.3.1,5.3.1,6.1.1													
CO4														
CO5	1.2.1, 1	.3.1,1.	4.1,2.1	.2,2.1.3	, 2.1.3,2	2.2.2,2.	3.2, 2.4.	4,4.1.1	,4.1.2,4	.1.4,4.2	2.1,4.3	.1,6.2.1	•	

ASSESSMENT	PATTERN - TH	EORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzin	Evaluating	Creating	Tota
Category*	(K1) %	(K2) %	(K3) %	g (K4) %	(K5) %	(K6) %	l %
Unit test - 1	20	20	-	20	40	-	100
Unit test - 2	20	20	-	20	40	-	100
Individual							
Assessment 1							
/Case Study 1/	50	50	-	-	-	-	100
Seminar 1 /							
Project1							
Individual							
Assessment 2							
/Case Study 2/	30	70	-	-	-	-	100
Seminar 2 /							
Project 2							
ESE	20	20	-	30	30	-	100

22BPC409 ENZYME ENGINEERING AND TECHNOLOGY SEMESTER IV
--

PREREQUISITES	CATEGORY	L	T	P	С
BIOMOLECULES BIOCHEMISTRY	PC	3	0	0	3

		I						
	Students are able to understand the basic enzyme catalysis and kinetics. Ge							
•	lifferent immobilization methods. Students able to familiarize with different	nt enzyme assay						
	and also about enzyme applications							
	NTRODUCTION TO ENZYMES	9 Periods						
	ction-active site, concept of active site, co factors, co enzymes-example							
	ced fit hypothesis, Classification of enzymes, Mechanism of catalysis-act							
	lysis, covalent catalysis, Enzyme catalysis, Theory of catalysis-collisi	on state theory,						
	eory, Enzyme activity and specific activity, role of entropy in catalysis	200						
	ENZYME KINETICS	9 Periods						
	zyme catalyzed reaction-MichaelisMenten equation, Briggs Haldan							
	Km kcat,Vmax. Linear plots-Line weaver burk plot, Eadiehofstee plot							
	tion, Inhibition-types of enzyme inhibition-competitive, uncompetitive,	non-competitive,						
	inhibition. Allosteric enzymes-Monod Wyman Changeux Model							
	ENZYME IMMOBILISATION	9 Periods						
	lization- Physical and Chemical methods Physical methods-Adsorpt							
	nemical methods-covalent bonding, cross linking. Application of immobi	lized enzymes in						
industries. case st	1	NA.						
	ENZYME CHARACTERIZATION AND PURIFICATION	9 Periods						
	urification of enzymes from microbial, plant and animal sources, methods							
	n, chromatography - methods-ion-exchange, size exclusion, hydroph							
	ography, HPLC, Molecular weight determination-SDS PAGE, Native PAG	E						
	ENZYME ASSAYS AND APPLICATIONS	9 Periods						
	Types of Enzyme assays- End point methods, kinetic methods, coupled kinetic assay, Immuno assay							
methods, artificial enzymes. Application of enzymes as Biosensors, Application in food industries, textile								
industries, food industries, Biopharmaceutical industries, tanning industries								
Contact Periods:	Contact Periods:							
Lecture: 45 Peri	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

TEXT BOOK

1	Trevor Palmer, "Enzymes", Affiliated East West Press Pvt Ltd, New Delhi, 2004.
1	Trevol 1 aimer, Enzymes, Aimmated East West 11ess 1 vt Etd, New Delm, 2004.

- Harvey W. Blanch, Douglas S. Clark, "Biochemical Engineering", Marcel Dekker Inc, 2002
 B. Sivasankar, "Bioseparations: Principles and Technique", Prentice-Hall of India Pvt.Ltd, 2007

REFERENCES

1	James M Lee, <i>Biochemical Engineering</i> , Prentice Hall of India, USA, 2009.
2	James. E. David F. Bailey & Dllis, Biochemical Engineering Fundamentals, McGraw Hill,
	2011.
3	Rufus O. Okotore, <i>Essentials of Enzymology</i> , Xlibris Corporation, 2015

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	K1	
CO2	Familiarize with the enzyme kinetics and apply to solve problems in enzyme kinetics	К3
СОЗ	Familiarize with the different types of enzyme immobilisation and its applications	K1
CO4	Analyze the different methods for enzyme extraction and purification.	K4
CO5	Understand the different assay procedures for enzymes and get familiarize with the different enzyme applications	K1

a) CO and Po	O Map	ping												
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COS/FOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	-	1	-	-	1	-	1	-	-	-	1	-
CO2	1	-	2	-	2	-	1	1	1	-	2	-	-	2
CO3	1	-	1	2	-	-	-	3	1	-	1	-	-	3
CO4	1	2	2	-	-	- Or	Star	2	-	-	-	-	1	-
CO5	1	-	-	-	1/-89	and the same	F-9-75(1)	2	7 1	1	2	-	-	3
22BPC409	1	1	2	2	2	97		2	1	1	2	-	1	3
1 – Slight, 2 –	- Mode	rate, 3	– Subs	tantial	1				50					
b) CO and K	ey Per	forma	nce ind	licator	s mapp	oing	-	3 /	/					
CO1	1.2.1,	1.3.1,	2.3.1,	4.1.1		0 7			00					
CO2	1.1.1,	3.1.1,	5.1.1		- 11	N/E		1 . /						
CO3	1.2.1,	4.2.1,	1.1.2		1/	0/8								
CO4	1.2.1,	2.2.1,	3.1.1,	5.1.2		8		All I	1		•		•	
CO5	1 3 1	2 1 1			41	Q)	40	100	11					

CO5 | 1.3.1, 2.1.1 COURSE ARTICULATION MATRIX

ASSESSME	ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	60	30	10	-	-	-	100						
CAT2	40	30	30	-	-	-	100						
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100						
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	40	30	-	-	-	100						
ESE	40	30	30	-	-	-	100						

PREREQUISITES	CATEGORY	L	T	P	C
Engineering Physics Chemistry for Biotechnology	PC	3	0	2	4

Course objectives	enable the students to understand and to get familiarized with principle instruments to solve researchproblems and to enable them to interpredata and research findings based on the knowledge obtained from this	et the analytical
UNIT – I	BASICS OF MEASUREMENT	9+6 Periods

Classification of analytical methods – calibration of instrumental methods – electrical components and circuits -signal to noise ratio; Properties of electromagnetic radiations and their interaction withmatter.

UNIT – II MOLECULAR SPECTROSCOPY 9+6 Period

UV and visible light spectroscopy-Qualitative and Quantitative absorption Measurement, Beer- Lambert law, IR spectroscopy, Raman spectroscopy, NMR spectroscopy, X- ray crystallography— principle, instrumentation and applications; Atomic Absorption spectroscopy, Mass Spectroscopy.

UNIT – III ELECTROPHORESIS

9+6 Periods

General principle of electrophoresis, support media (Agarose and Polyacrylamide gels, Electrophoresis of proteins by SDS-PAGE gradient gels, Isoelectric Focusing, Two Dimensional PAGE, Electrophoresis of nucleic acids using agarose gel, PFGE, Capillary Electrophoresis.

UNIT – IV CHROMATOGRAPHY

9+6 Periods

Basic Principles of chromatography, TLC and Column chromatography, matrix materials, HPLC, Affinity chromatography, Ion Exchange Chromatography, Gel Exclusion Chromatography and Gas chromatography.

UNIT - V THERMAL METHODS

9+6 Periods

Differential Thermal Analysis techniques - instrumentation & application, DTA curve. Differential Scanning Calorimetry - Instrumentation & Application, Instrumentation, Thermogravimetry - Instrumentation & Application, TGcurve. Biosensors - Components, Types

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 30 Periods Total: 75 Periods

LIST OF EXPERIMENTS

- Precision and Validity in an instrument.
- Validation of Lambert-Beer's law using KMnO₄.
- Determination of concentration of the Iron content present in the tablet using atomic absorption spectrometry.
- Raman spectroscopy Identification of functional groups
- Data interpretation of FTIR spectra
- Demonstration on the working of XRD
- Determination of the concentration of Na and Ca using flame photometer.
- Separation of amino acids by TLC.
- Column chromatographic analysis of chlorophyll
- Separation of compounds using High Performance Liquid chromatography
- Gel filtration Size based separation of proteins

TEXT BOOK:

1	lard H.W., Merritt L.L., Dean J.A. & Settle F.A" Instrumental Methods of Analysis", East West
	Publishers, 7 th Edition.2004

2 bog, D.A., F. James Holler and Stanky, R. Crouch "Instrumental Methods of Analysis".
 Cengage LearningIndia Pvt. Ltd., 7th edition, 2020.

REFERENCES:

1	rrison, R.G., Todd, P., Rudge, S.R. and Petrides, B.B. "Bioseparations: Science and
	<i>Engineering</i> ", Oxford University Press,2015.
2	lson K. and Walker J. "Principles and Techniques of Biochemistry and Molecular Biology",
	Cambridge University Press,8th Edition, 2018.
3	ayaraman. "Laboratory Manual in Biochemistry", 1st Edition., New Age International
	Publications, 2007
4	R. F. Boye, Modern experimental Biochemistry, Pearson India, 2002

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To understand the basic principles of measurement and calibration in analytical methods.	K2
CO2	To impart knowledge on the working principles of spectroscopic instruments.	K1
CO3	instill knowledge on the separation of biomolecules such as nucleic acids and proteins by electrophoresis and chromatography methods.	К3
CO4	To describe the thermal behavior of thebioproducts and components of a biosensor.	К3
CO5	To develop a protocol to identify and determine the concentration of a analyze by analytical instruments.	K6

a) CO and	I PO I	Mapp	ing											
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
CO 1	2	1	1	1	-	-	-	-	-	-	2	1	1	1
CO 2	2	1	1	1	-	-	-	-	-	-	-	1	1	-
CO 3	2	1	-	1	-	-	-	-	-	-	-	-	Ī	-
CO 4	1	-	-		-	-	-	-	-	-	-	-	1	-
CO 5	-	-	-	-	1	2	-	-	-	-	-	-	-	-
22BPC410	2	1	1	1	1	2	-	-	-	-	2	1	1	1
1 – Slight, 2	2 – Mo	derate	3-S	ubstan	tial									
b) CO and	l Key	Perfo	rman	ce Inc	dicato	rs Ma	apping	7						
CO1	1.1,1	.2,1.3	,1.4,2.1	,2.2,2	.3,2.4,	3.1, 3.2	2,4.1,4	.2,11.2	2,11.3,	12.3				
CO2	1.1,1	.2,1.3	1.4,2.1	1,2.2, 2	2.3,2.4	, 3.2,4.	1,4.2,1	2.2,12	2.3					
CO3	1.1,1	.3,1.4	2.1, 2.	2,2.4,4	l.1									
CO4	1.1		•			•	•			•	•		•	
CO5														

ASSESSMENT	PATTERN - TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applyin g (K3)	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	14	10	2	10	12	2	100
CAT2	10	12	4	10	10	4	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	30	5	5	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	5	5	-	-	_	100
ESE	40	30	30	-	-	-	100

ENGINEERING EXPLORATION FOR INDUSTRIAL BIOTECHNOLOGY

SEMESTER IV

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	0	0	3	1.5

COURSE OBJECTIVE	The objective of the course is to provide an introduction to the engineer designed to help the student to learn about engineering and how it is everyday life.	_
UNIT-1	INTRODUCTION	15 Periods
Introduction to	Engineering and Engineering study. Difference between science an	d engineering

Introduction to Engineering and Engineering study: Difference between science and engineering, scientist and engineer needs and wants, various disciplines of engineering, some misconceptions of engineering, expectation for the 21st century engineer and Graduate Attributes.

UNIT-II	ENGINEERING DESIGN	15 Periods
		ı

Engineering Requirement, Knowledge within Engineering disciplines, Engineering advancements, Problem definition, Idea generation through brain storming and researching, solution creation through evaluating and communicating, text/analysis, final solution and design improvement.

UNIT-III	ENGINEERING DISCIPLINES	15 Periods
	The second of th	

INDUSTRIAL BIOTECHNOLOGY:

Defining the problem, Data gathering through literature, Specify requirements, Brainstorm, Evaluate, Choose solution, Design, Implementation of the design, Develop Prototype/Model.

GUIDELINES

- Practical based learning carrying credits.
- Multi-disciplinary/ Multi-focus group of 3-4 students.
- Groups can select to work on specific tasks, or projects related to real world problems.
- Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- The students have to display their project/model/product at the end of the semester.
- The progress of the course is evaluated based on class performance and final demonstration.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

REFERENCES:

1	Ryan A Brown, Joshua W. Brown and Michael Berkihiser: "Engineering Fundamentals:
	Design, Principles, and Careers ", Goodheart-Willcox Publisher, Second edition, 2014.
2	Saeed Moaveni, "Engineering Fundamentals: An Introduction to Engineering", Cengage
	learning, Fourth Edition, 2011.

	URSE OUTCOMES Completion of the course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Explain technological and engineering development, change and impacts of engineering	K2
CO2	Complete initial steps (Define a problem list criteria and constraints, Brainstorm potential solutions and document ideas) in engineering designs	К3
CO3	Communicate possible solutions through drawings and prepare project reports.	K3
CO4	Draw sketches to a Design problem.	K3
CO5	Apply the concept of engineering fundamentals in Industrial Biotechnology	K3

\ GO 1	DO 14													
a) CO and	PO Maj	pping												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	1	2	2	2	3	3	1	2	1	3
CO2	3	3	1	2	1	2	2	2	3	3	1	2	1	3
CO3	3	3	3	3	1	2	2	2	3	3	1	2	1	3
CO4	3	2	3	3	1	2	2	2	3	3	1	2	1	3
CO5	3	2	3	3	1	2	2	2	3	3	1	2	1	3
22BES408	3	3	3	3	1	2	2	2	3	3	1	2	1	3
b) CO and	Key Per	rforma	nce In	dicato	rs ma	pping								
CO1													4.1.1, 4	
						1.1, 6.2	.1, 7.1	.1, 7.1.	2, 8.1.	1, 9.1.1	1, 9.2.2	2, 9.2.3	9.3.1, 1	0.1.2,
	10.1.3,	11.3.1	, 12.1.	2, 12.3	.1	1000	2000							
CO2	1.2.1,	1.3.1, 1	.4.1, 2	.1.1, 2.	1.2, 2.2	2.1, 2.2	.2, 2.2	.3, 2.2.	4, 2.4.	4, 3.1.1	1, 3.1.4	, 3.1.6	4.1.1, 4	.1.3,
	4.1.4,	4.3.1, 4	.3.2, 4	.3.3, 4.	3.4, 5.	1.1, 6.2	.1, 7.1	.1, 7.1.	2, 8.1.	1, 9.1.1	1, 9.2.2	2, 9.2.3	9.3.1, 1	0.1.2,
	10.1.3,	11.3.1	, 12.1.	2, 12.3	.1		TOWN.		2					
CO3	1.2.1,	1.3.1, 1	.4.1, 2	.1.1, 2.	1.2, 2.2	2.1, 2.2	.2, 2.2	.3, 2.2.	4, 2.4.	4, 3.1.1	1, 3.1.4	, 3.1.6	4.1.1, 4	.1.3,
	4.1.4,	4.3.1, 4	.3.2, 4	.3.3, 4.	3.4, 5.	1.1, 6.2	.1, 7.1	.1, 7.1.	2, 8.1.	1, 9.1.	1, 9.2.2	, 9.2.3	9.3.1, 1	0.1.2,
	10.1.3,	11.3.1	, 12.1.	2, 12.3	.1	100	_/	1						
CO4	1.2.1,	1.3.1, 1	.4.1, 2	1.1, 2.	1.2, 2.2	2.1, 2.2	.2, 2.2	.3, 2.2.	4, 2.4.	4, 3.1.1	1, 3.1.4	, 3.1.6.	4.1.1, 4	.1.3,
													9.3.1, 1	
	10.1.3,	-	-			8			ľ	•			. ,	,
CO5						2.1, 2.2	.2, 2.2	.3, 2.2.	4, 2.4.	4, 3.1.1	1, 3.1.4	, 3.1.6.	4.1.1, 4	.1.3,
					475.76	1220			and the second				9.3.1, 1	
	10.1.3,	-	-		State State	6		5	=3	,			. ,	,

22BES409 CHEMICAL ENGINEERING LABORATORY	SEMESTER IV
--	-------------

PREREQUISITES	CATEGORY	L	T	P	C
Fluid Mechanics	EC	Λ	Λ	2	1.5
Process calculations and Heat transfer	ES	U	U	3	1.5

Course	To learn chemical engineering principles and their practical applications in the areas of
Objectives	fluid mechanics, Heat transfer, mass transfer and particle mechanics.
_	
LISTOF EX	XPERIMENTS
1.	Flow measurement using Venturimeter, Orificemeter for liquids
2.	Studies on flow behavior and friction loss in Fluidized bed.
3.	Product size distribution analysis using Roll Crusher
4.	Product size distribution analysis using Ball Mill
5.	Studies on Simple Distillation.
6.	Calculations of filter and medium resistances in Leaf filter apparatus
7.	Adsorption Equilibria
8.	Leaching
9.	Liquid-Liquid Equilibria
10	Batch drying
11	Batch sedimentation
12	Double Pipe Heat exchanger
13	Determination of effect of temperature on reaction rate content
Contact Peri	iods
Lecture: 0 P	eriods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

TEXT BOOKS

1	YunusCengel, " Heat and Mass Transfer – Fundamentals & Applications ", McGraw-Hill, 5 th edition.
	2015.
2	Geankoplis C.J, "Transport Processes and Unit Operations", Prentice Hall of India, 4th edition.
	2003.

COUI	RSE OUTCOMES:	Bloom's				
		Taxonomy Mapped				
On co	On completion of the course, the students will be able to:					
CO1	Able to calculate pressure and flow rate of liquid	K3				
CO2	Find out the efficiencies of filtration and distillation range.	K3				
CO3	Calculate the heat exchange limitation.	K3				
CO4	Separate soluble components by using liquid equilibria.	K3				
CO5	Knowledge on the basic principles of chemical engineering.	K3				

a) CO and P	a) CO and PO Mapping													
COs/POs	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO2	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO3	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO4	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO5	1	-	-	2	-	-	-	-	-	-	-	-	2	1
22BES409	1	-	-	2	-	-	-	-	-	-	-	-	2	1

1 – Slight, 2 – Mode	rate, 3 – Su	bstantial
----------------------	--------------	-----------

b) CO and l	Key Performance Indicators Mapping
CO1	1.2.1, 4.1.1,4.1.2
CO2	1.2.1, 4.1.1,4.1.2,4.2.1
CO3	1.2.1, 4.1.1,4.1.2,4.2.1,4.3.1
CO4	1.2.1, 4.1.1,4.1.2, 4.2.1,4.3.1
CO5	1.2.1, 4.1.1,4.1.2, 4.2.1,4.3.1

22BPC411 MOLECULAR BIOLOGY LABORATORY SEMESTER IV

PREREQUISITES	CATEGORY	L	T	P	C
Microbiology Lab	DC.	Λ	Λ	2	1.5
Cell biology Lab	PC	0	U	3	1.5

Course	To provide hands on experience in performing basic and advanced molecular biology
Objectives	techniques and to introduce students to the theory behind in each technique and to
	describe common applications of each methodology in biological research.

LIST OF EXPERIMENTS

- 1. DNA Extraction from plant cells.
- 2. DNA Extraction from animal cells.
- 3. DNA Extraction from Human blood.
- 4. DNA Extraction from bacterial cell.
- 5. Qualitative Analysis of Genomic DNA
- 6. Quantitative Analysis of DNA.
- 7. Isolation of total RNA from bacteria.
- 8. Qualitative analysis of RNA.
- 9. Quantitative analysis of RNA.
- 10. Plasmid Extraction from bacterial cell.
- 11. Elution of DNA from Agarose gel.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

REFERENCE BOOK

1	Sambrook J and Russell DM, "Molecular Cloning: A Laboratory Manual", 2014.									
C	Bloom's Taxonomy									
Oı	On completion of the course, the students will be able to:									
	and the same of th									
C	O1 derstand the principles underlying in the techniques of molecular biology.	K3								
C	O2 Analyze the applications of these techniques.	K3								
C	O3 Carry out lab experiments and interpret the results.	K3								
C	O4 Take safety precautions on usage of hazardous chemicals in case of	К3								
	emergency.									

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COS/POS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	-	-	-	-	-	-	-	-	-	-	-	3	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	2
CO3	1	3	2	-	2	-	-	-	-	-	-	-	3	2
CO4	-	3	3	-	3	-	-	-	-	-	-	3	2	3
22BPC411	3	3	3	-	3	-	-	-	-	-	-	3	3	3
1 – Slight, 2	2 – Mo	derate	$3 - S^{-1}$	ubstan	tial									
b) CO and	Key P	erfori	nance	Indica	ators N	Mappi	ng							
CO1	1.2.1,	1.4.1,												
CO2	2.4.3,	3.1.5												
CO3	3.1.4,3	3.1.5,4	.3.2											
CO4	5.1.2.8	8.2.1,8	.2.2											

22BES510	MASS TRANSFER OPERATIONS	SEMESTER V
----------	--------------------------	------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	3	1	0	4

Course To understand the basic laws of diffusion & to develop sol	lutions for the									
Objectives problem involving solid, liquids and gas systems. To design	s problem involving solid, liquids and gas systems. To design the absorption									
column for the separation processes in single and multistage i	modes and the									
process of distillation and to design the types of distillation colu	ımns. To know									
the principle and design features of extraction / leaching equi	pment used in									
process industries and learn technological methods in	design and									
troubleshooting of solid-fluid operations in process industries.										
UNIT – I DIFFUSION AND MASS TRANSFER	9+3 Periods									
Molecular diffusion in solids, liquids and gases; Inter-phase mass transfer	; theories to									
determine mass transfer coefficients; Analogies in Transport phenomenon										
UNIT – II GAS - LIQUID OPERATIONS	9+3 Periods									
Principles of gas absorption; Single and Multistage absorption; Absorption	with chemical									
reaction; Design principles of absorbers; Industrial absorption equipment	; HTU, NTU									
concepts.										
UNIT – III VAPOUR - LIQUID OPERATIONS	9+3 Periods									
Vapour-Liquid equilibria; Simple, Steam and Flash Distillation; Continuo	us distillation;									
McCabe - Thiele & enthalpy concentration method; Industrial distillation equi	ipment, HETP,									
HTU and NTU concepts.										
UNIT – IV EXTRACTION OPERATIONS	9+3 Periods									
Liquid-Liquid equilibria, Staged and continuous extraction, Solid-liquid equilibr	ria, Leaching									
principles, Equipment for extraction and leaching										
UNIT-V SOLID - FLUID OPERATIONS	9+3 Periods									
Adsorption equilibria - Types - Batch and fixed bed adsorption; Drying - M	Mechanism -									
Drying curves - Time of drying; Equipment for drying - Batch and continuous d										

TEXT BOOK

Contact Periods: Lecture: 45 Periods

1 Yunus Cengel, "*Heat and Mass Transfer – Fundamentals & Applications*", McGraw-Hill, 5th edition 2015.

Practical: 0 Periods Total: 60 Periods

2 Geankoplis C.J, "*Transport Processes and Unit Operations*", Prentice Hall of India, 4th edition 2003.

REFERENCES

- 1 Incropera F.P., "Fundamentals of Heat and Mass Transfer", John Wiley, 7th edition. 2011.
- 2 McCabe W.L., Smith J.C, "Unit Operations in Chemical Engineering", McGraw-Hill, 7th edition. 2014.
- 3 Treybal R.E, "Mass Transfer Operations", McGraw-Hill, 3rd edition. 1981.

Tutorial: 15 Periods

4 heiples of Mass transfer Operations, 6th edition, Nirali Prakashan publisher, 2017.

COUR	SE OUTCOMES:	Bloom's
Upon o	completion of the course, the students will be able to:	Taxonomy
		Mapped
	Understand the basic laws of diffusion & to develop solutions for the	K1
	problem involving solid, liquids and gas systems	
CO2	Design the absorption column for any complex separation processes	K1
CO3	Design and operate the various classes of distillation columns for V-L	K2
	operations	
CO4	Design the extraction / leaching equipment for L-L & S-L operations.	К3
CO5	Design the drying and adsorption equipment for S-F operations.	K3

a) CO and l	PO M	appi	ng											
COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	2	1	-	-	-	-	-	3	1	-	1	3	3
CO2	3	-	3	2	2	-		-	3	2	-	2	3	3
CO3	1	1	2	2	2	-	-	-	2	1	-	1	1	2
CO4	2	2	2	2	2	-	2	100	2	2	-	2	1	2
CO5	2	1	2	1	1	- 6	1 870	2	2	2	2	2	2	3
22BES510	3	2	2	2	2	-	2	91	3	2	2	2	1	3
1 – Slight, 2	2-M	loder	ate, 3	3 - Su	bstan	tial				-				
b) CO and	Key	Perf	form	ance l	Indic	ators	Mapp	oing	-	QI I	7/			
CO1	1.2.	1, 1.3	3.1,1.	4.1,2	.1.2,2	.1.3, 2	.1.3,2	.2.2,2	.3.2,2	.4.4,4.	1.1,4.3	3.3		
CO2	1.2.	1, 1.3	3.1,1.	4.1,2.	1.2,2.	1.3,4.	1.1,4.	1.2,4.3	3.2	10				
CO3	1.2.	1,1.3	.1,1.4	1.1,2.1	1.2,2.1	1.3,2.3	.2,2.4	.4,4.1	.1,4.1	.4,4.2.	1,4.3.1	,5.3.1,6	5.1.1	
CO4	1.2.	1, 1.3	3.1,1.	4.1,2	.1.2,2	.1.3, 2	.1.3,2	.4.4,4	.1.1,4	.1.2,4.	1.4,4.2	2.1,4.3.1	l.	
CO5	1.2.	1, 1.3	3.1,1.	4.1, 2	2.1.3,2	2.2.2,2	.3.2,2	.4.4,	4.1.4,4	4.2.1,4	.3.1,6.	2.1		

ASSESSMENT I	PATTERN – T	HEORY		3377			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	10	10	10	10	10	100
CAT2	50	10	10	10	10	10	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	20	20	20	10	10	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	20	20	20	10	10	100
ESE	20	20	20	20	20	-	100

22BPC512 BIOPROCESS PRINCIPLES SEMI	STER V
-------------------------------------	--------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

Course Objectives	To learn the basic principles of fermentation proces configuration and parts of a fermenter. To gain the knowled sterilization kinetics, metabolic stoichiometry and en understand microbial kinetics in batch, fed-batch and contin operation.	dge about the ergetics. To
UNIT – I	FERMENTATION PROCESSES AND BASIC CONFIGURATION OFFERMETER	9 Periods

General requirements of fermentation processes, Different types of fermentations and fermenters, Process flow sheeting, pictorial representation of fermenter, Basic configuration of fermenter and ancillaries, main physical and chemical parameters to be monitored and controlled in fermentation processes.

UNIT – II RAW MATERIALS AND MEDIA DESIGN FOR 9 Periods FERMENTATION PROCESS

Criteria for good medium, medium requirements for fermentation processes, carbon, nitrogen, minerals, vitamins and other complex nutrients, oxygen requirements, medium formulation of optimal growth and product formation, types of culture media, design of various commercial media for industrial fermentations – medium optimization methods-OFAT (One Factor at a Time), PB (Plackett and Burman), RSM (Response Surface Methodology).

UNIT – III | STERILIZATION KINETICS

9 Periods

Thermal death kinetics of microorganisms, batch and continuous heat sterilization of liquid media, filter sterilization of liquid media, sterilization of air, design of sterilization equipment for batch and continuous process.

UNIT – IV | METABOLIC STICHIOMETRY AND ENERGITICS

9 Periods

Stoichiometry of cell growth and product formation – Elemental balances, degrees of reduction of substrate and biomass and available electron balances, Yield coefficients of biomass and product formation, Maintenance coefficients, energetic analysis of microbial growth and product formation, Oxygen consumption and heat evolution in aerobic cultures, Thermodynamic efficiency of growth.

UNIT - V KINETICS OF MICROBIAL GROWTH AND PRODUCT 9 Periods FORMATION

Modes of operation – batch, fed-batch and continuous cultivation, Biomass estimation – Direct and Indirect methods. Simple unstructured kinetic models for microbial growth – Monod model, Growth of filamentous organisms and yeast, Product formation kinetics – Leudeking - Piret models, substrate and product inhibition on cell growth and product formation.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

1	Peter F. Stanbury, Stephen. J, Hall. A. Whitaker, "Principles of Fermentation
	Technology", Science & Technology Books, 2007.

- Shuler Michael. L, Fikret Kargi, "*Bioprocess Engineering*", Prentice Hall,2008.

 Doran M Pauline, "*Bioprocess Engineering Principles*", Elsevier, 2 nd Edition,2012.

REFERENCES

1	Bailey, James E, David F.Olli, "Biochemical Engineering Fundamentals", 2nd
	Edition. McGraw Hill,1986.
2	Blanch H. W, Clark D. S, "Biochemical Engineering", 2nd Edition, CRC Press, 2007.
3	Rajiv Dutt, "Fundamentals of Biochemical Engineering", Springer, 2008.
4	Ghasem D. Najaf pour, "Biochemical Engineering and Biotechnology", Elsevier,
	2007.
5.	Himmelbla.D.M, "Basic principles and calculations in chemical Engineering",
	6 th edition, Pearson education 2006.

	Chumb	
COU Upon	Bloom's Taxonomy Mapped	
CO1	Understand the general requirements of a fermentation process.	K2
CO2	Understand the basic configuration of a fermenter and its ancillaries.	K2
CO3	Demonstrate an ability to design good media.	К3
CO4	Explain the sterilization kinetics and design the sterilization equipment for batch and continuous process.	К3
CO5	Able to model microbial growth, substrate utilization and product formation.	К3

a) CO and	PO	Map	ping											
COs / POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	-	-	•	-	-	-	-	-	•	-	ı	3	1
CO2	3	-	-	-	-	-	-	-	-	-	-	ı	3	2
CO3	1	2	3	-	-	-	-	-	-	-	-	-	3	2
CO4	-	3	2	-	2	-	-	-	-	-	-	-	2	3
CO5	-	1	3	-	2	-	-	-	-	-	-	2	2	3
22BPC512	3	3	3	-	2	-	-	-	-	-	-	2	3	3
1 – Slight,														
b) CO and	Key	Perf	orma	nce I	ıdicat	ors M	appin	g						
CO1 1.2.1	1,2.2.	2												
CO2 1.2.1	1,2.2.	2												
CO3 1.2.1	1,2.2.	2												
CO4 1.2.1	·													
CO5 1.2.1	1,4.1.	2,4.1	.3,5.1	.2										

ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	70	30	-	-	-	-	100					
CAT2	60	40	-	-	-	-	100					
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	1	1	-	-	100					
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40	60	Grann B	8	-	-	100					
ESE	60	40	en so pr	· -	-	-	100					

22BPC513	GENETIC ENGINEERING	SEMESTER V
----------	---------------------	------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

Course	To impart the knowledge on various components and techniques used in						
Objectives	DNA manipulation. To introduce basic knowledge to construct various						
	recombinant proteins. To describe techniques to analyze clones. To						
	introduce Transgenic Technology for animals.						
UNIT – I	INTRODUCTION TO RECOMBINANT DNA	9 Periods					
	TECHNOLOGY						

Role of genes within cells; Genetic elements that control gene expression in Prokaryotes and Eukaryotes; Repressors and Promoters; Methods of creating recombinant molecules; Restriction and modifying enzymes- DNA polymerase, DNA ligase, Alkaline phosphatase – Inter and intra molecular ligation, Polynucleotide kinase, Terminal transferase and Exonuclease; Restriction mapping; Design of Linkers and Adaptors; Safety guidelines of recombinant DNA research.

UNIT – II CLONING AND EXPRESSION VECTORS

9 Periods

Plasmid vector: pBR322 and pUC, Host range – shuttle vectors, Plasmid compatibility, copy number regulation and TA cloning. Bacteriophage vector: λDNA vectors – Insertional and replacement vectors. Single strand DNA vectors: M13 phage vector and its applications. Combinatorial vectors: Cosmid and Phagemid. Artificial chromosomes: Bacterial and yeast artificial chromosomes. Insect and Mammalian vectors. Prokaryotic and Eukaryotic expression vectors.

UNIT – III CONSTRUCTION OF LIBRARIES

9 Periods

Construction of genomic and cDNA library: Methods, Limitations in cDNA library construction and full-length cDNA library construction. Screening of DNA libraries: Nucleic acid hybridization and PCR, Southwestern and Northwestern strategies, Immunochemical, protein-protein/ligand interaction, functional complementation/gain of function approaches. Differential cDNA library: Differential expression analysis and screening, Subtracted cDNA library, PCR based differential display analysis and difference cloning.

UNIT – IV POLYMERASE CHAIN REACTION

9 Periods

DNA amplification; primer synthesis; Taq polymerase; Types of PCR –Inverse PCR, Nested PCR, RACE PCR, RAPD-Taqman assay, Molecular beacons; site directed mutagenesis (Kunkel's Method) - Methods of nucleic acid sequencing: Sangers method. Pyrosequencing, Nanopore DNA sequencing, Next generation sequencing.

UNIT - V APPLICATIONS OF RECOMBINANT DNA 9 Periods TECHNOLOGY

Applications of recombinant technology in Agriculture, Pharmaceutical industry and Medicine; Knockout animals, Production of novel products, Antisense technology; Transgenic animals; Nuclear transfer eg. Dolly.; CRISPR-Cas9 editing.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- Old RW, Primrose SB "Principles of Gene Manipulation, An Introduction To Genetic Engineering", Blackwell Science Publications, 2013.
- 2. Brown T.A., (2017), Genomes 4, Bios Scientific Publishers Ltd, Oxford, 3rd edition

REFERENCES

- Primrose S.B., Twyman RM., (2006), Principles of Gene Manipulation and Genomics, 7th Edition, Blackwell Science.
 Glick B.R.,and Pasternick J.J., (2017), Molecular Biotechnology: Principles and Applications of Recombinant DNA, 5th Edition, ASM press, Eashington.
 Sathyanarayana U (2008) Biotechnology, Books & Allied (p) ltd.-Kolkata
- 4 Sambrook (Joseph) and Russell(David W), (2001), Molecular Cloning : A manual, Cold Spring Harbour Laboratory Press.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
	Understand the various tools and techniques used in creating rDNA technology.	Mapped K1					
CO2	Analyze the features of various types of cloning and expression vectors.	K3					
CO3	Understand the various methods to construct and screen DNA libraries.	K2					
	Apply suitable modern molecular techniques to amplify and sequence the gene.	K3					
CO5	Apply Genetic Engineering principles for the production of transgenics.	K3					

COURSE ARTICULATION MATRIX

a) CO and P	O M	appi	ng		8	18	M	7						
COs/POs	PO 1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	-	2	-	-	2	9		-	-	-	-	3	1
CO2	3	1	2	-	-	-	-	2	-	-	-	-	3	1
CO3	2	2	1	-	-	-	-	-	-	-	-	-	1	3
CO4	1	3	-	-	2	-	-	-	-	-	-	-	1	3
CO5	1	1	-	-	1	2	2	-	-	-	-	1	1	3
22BPC513	3	3	2	-	2	2	2	2	-	-	-	1	1	3

1 – Slight, 2 – Moderate, 3 – Substantial

b) CO and Key Performance Indicators Mapping

CO1	1.4.1, 3.1.5, 6.2.1
CO2	1.4.1, 2.1.3,3.1.5,8.2.2
CO3	1.4.1, 2.1.3,3.1.5,
CO4	1.4.1, 2.1.3, 5.2.2
CO5	1.4.1, 2.1.3,5.2.2,6.1.1,7.1.1,7.1.2

ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	70	30	-	-	-	-	100		
CAT2	20	20	60	-	-	-	100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100		
ESE	40	60	-	-	-	-	100		

22BPC514 PROTEIN ENGINEERING SE	MESTER V
---------------------------------	----------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

Course	To acquire knowledge on different bonds in protein and structure elucidat	ion methods.				
Objectives						
UNIT – I	JNIT – I BONDS IN PROTEIN & STRUCTURE ELUCIDATION 9 Periods					
Elucidation of	Covalent, Ionic, hydrogen, hydrophobic and vanderwaals interactions in protein structure. Elucidation of secondary structure- circular di-chroism; Elucidation of tertiary structure protein structure using X-ray diffraction and Nuclear Magnetic Resonance (NMR).					
UNIT – II	NIT – II POST TRANSLATIONAL MODIFICATION AND PEPTIDE 9 Periods					
	ANALYSIS					
Amino acids - molecular properties (size, solubility, charge, pKa), Post translational modification-						

modification at N-terminus and C-terminus, Glycosylation; Determination of amino acid composition, peptide sequencing - automated Edman method & mass-spectrometry, peptide synthesis, peptide mapping.

UNIT – III PROTEIN ARCHITECTURE

9 Periods

Primary structure, Secondary structures-alpha helix, beta sheet and turns. Super-secondary structure: Alpha-turn-alpha, beta-turn-beta (hairpin), beta-sheets, alpha-beta-alpha, topology diagrams, Tertiary structure – types of different domains (α, β) and (α / β) ; (α) domain – Coiled to coil structure and Four helix bundle; β domain – up and down, Greek key and jelly roll barrels; α / β domains – TIM barrel, Rossman fold and Horseshoe fold; Protein folding – role of molecular chaperones,

protein disulphide isomerase and peptidyl prolyl cis-trans isomerase; Quaternary structure- importanceexamples UNIT – IV

STRUCTURE-FUNCTION RELATIONSHIP

DNA-binding proteins: prokaryotic transcription factors, Helix-turn-Helix motif in DNA binding, trp repressor, Eucaryotic transcription factors, Zn fingers, helix-turn helix motifs in homeodomain, Leucine zippers, Membrane proteins and receptors:Bacteriorhodopsin and Photosynthetic reaction center, Immunoglobulins: IgG Light chain and heavy chain architecture, Enzymes: Serine proteases.

UNIT – V CASE STUDIES IN PROTEIN ENGINEERING

9 Periods

Advantages - protein data base analysis – methods to alter primary structure of proteins, examples of engineered proteins, thermal stability of T4-lysozyme, engineering proteins for post translational modification, Engineering oxygenases for environmental pollutant degradation, De novo protein design – principles and examples. Protein engineering for biomaterials- functionalization

Contact Periods:

Lecture: 45 Periods **Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods**

TEXT BOOK

- Branden C, Tooze, "Introduction to Protein Structure", Garland Publishing, NY, USA, Second Edition, 2012.
- 2 Creighton T.E., "Proteins: Structure and Molecular Properties", Second Edition, Freeman WH publishers, 1993

1	Lilia Alberghina., "Protein Engineering for Industrial Biotechnology", Lilia Alberghina,
	CRC Press, 2003.
2	Stefan Lutz, Uwe Theo Bornscheuer., " <i>Protein Engineering Handbook</i> ", Volume1, Wiley
	Publications, 2012.
3	Khudyakov YE, " <i>Medicinal Protein Engineering</i> ", CRC Press, First Edition, 2008.
4	Voet D and Voet G., "Biochemistry", John Wiley and Sons, Fourth edition, 2012

CO	URSE OUTCOMES:	Bloom's					
On	On completion of the course, the students will be able to:						
CO1	Acquire knowledge about the bonds and energies in protein and elucidation of protein structure.	K1					
CO2	Understand the basics of post translational modification and peptide analysis.	K1					
CO3	Understand the architecture of proteins	K1					
CO4	Elucidate the structure function relationship of proteins	K2					
CO5	Understand the basics and steps involved in protein engineering	K2					

						0	<0h	100	11					
a) CO and Po	O Map	ping		B	1 8	2	10	1	3					
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2	1	-	1	7	$\frac{5}{2}$	-	2:	-	-	-	-	3	1
CO2	1	1	-	-	7		-0	-	-	-	-	-	3	1
CO3	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO4	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO5	-	1	2	1	2	-	-	-	-	-	-	-	3	1
22BPC514	1	1	1	1	1	-	-	-	-	-	-	-	3	1
1 - Slight, 2 -														
b) CO and K	ey Per	formai	nce Inc	licato	rs Map	ping								
CO1	1.2.	1,1.3.1	,1.4.1,2	2.2.1,4.	.1.2,4.1	.3								
CO2	1.2.	.1, 2.1.3	3											
CO3 1.2.1, 1.3.1,2.1.3														
CO4 1.2.1, 1.3.1,2.1.3						•	•							
CO5	2.4.	1, 3.2.1	1,4.2.1,	5.2.1										
-							-							

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
			(K3) /0	(IX4) /0	(K3) /0	(KU) /0	
CAT1	50	50	-	-	-	-	100
CAT2	30	40	20	10	-	-	100
Individual							
Assessment 1							
/Case Study 1/	60	40	-	-	-	-	100
Seminar 1 /							
Project1							
Individual							
Assessment 2							
/Case Study 2/	30	50	10	10	-		100
Seminar 2 /							
Project 2							
ESE	30	40	20	10	-	-	100

22BMC5Z2 CONSTITUTION OF INDIA (Common to all Branches)	SEMESTER V
---	------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	MC	3	0	0	0

Course	*The objective of the course is to familiarize the students on the role, pov	vers and functions									
Objectives	of Indian government. Also understand the recent acts in India.										
UNIT- I	INTRODUCTION AND EMERGENCY PROVISIONS	(9 Periods)									
Objectives - Duties, Direc	Historical Background: The Company rule, The Crown rule - Constituent Assembly: Composition, Objectives - Preamble and Salient features of the Indian Constitution - Fundamental Rights, Fundamental Duties, Directive Principles of state policy, Emergency Provisions - National Emergency, President Rule, Financial Emergency.										
UNIT- II	SYSTEM OF GOVERNMENT	(9 Periods)									
Evaluation of	Parliamentary system: merits, demerits, reasons for adopting parliamentary system – Federal system: Evaluation of federal features – Centre-State relations: Legislative, Administrative and Financial relations – Local Government: Panchayat Raj and urban local government.										
UNIT- III	UNION AND STATE GOVERNMENT	(9 Periods)									
	India: Election, Powers and functions - Prime Minister and Cabinet: Struct Powers and functions - Chief Minister and Council of Ministers: Functions.	ure and functions									
UNIT- IV	ORGANS OF GOVERNANCE AND RECENT ACTS	(9 Periods)									
Legislative C	Lok Sabha and Rajya Sabha, Composition and powers - State Legislation Council: Composition and powers - Judicial System in India: Structure and fligh Court: Composition, Jurisdiction, Recent acts in significance-RTI	eatures - Supreme									
UNIT- V	POLITICAL DYNAMICS	(9 Periods)									
reforms – Pr	Political parties: Party system, Recognition of National and State parties – Elections: Electoral system and reforms – Pressure groups – National Integration: Obstacles, National Integration Council – Foreign Policy: Principles and Objectives.										
	Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods										

TEXT BOOK:

Γ	1	National portal of India, "The Constitution of India" (Full Text),
		https://legislative.gov.in/constitution-of-india
	2	Dr.B.R.Ambedkar, "The Constitution of India", SudhirPrakashan, 2020

REFERENCES:

1	Durga Das Basu, "Introduction to the Constitution of India, LexisNexis, 2022
2	P.M.Bakshi, "The Constitution of India", LexisNexis, 2020
3	Subash C Kashyap, "Our Parliament", National Book Trust, 2021
4	Subash C Kashyap, "Our Political System", National Book Trust, 2011

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
CO1	Know the evolution of Indian Constitution and its basic premises	K1					
CO2	Explain the system of governance in India.	K2					
CO3	Describe the structure of Union and State Governments	K2					
CO4	Obtain the knowledge of functions of Legislature and Judiciary	K1					
CO5	Know the political system of India	K1					

COURSE A	KIIC	ULA	HUN	WA.	IKIX									
a) CO and	PO N	Iappin	g											
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COS/POS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	-	-	-	-	-	Towns	A237 -	-	-	-	-	-	-	-
CO2	-	-	-	- 36	- Torn	21.	3	10	1	-	-	-	-	-
CO3	-	-	-	- 17	-	200	EUG SV	1	1	-	-	-	-	-
CO4	-	-	-	-			STATE OF	1	2	-	-	-	-	-
CO5	-	-	-	- 0	4-	2	-	2	1	-	-	-	-	-
22BMC5Z2	-	-	-	-	10	2	-9	1/	1	-	-	-	-	-
1 - Slight, 2	- Mo	derate	3 - S	ubsta	ntial	200		: [[:						
b) CO and k	Key Pe	erforn	nance	Indic	ators	Mappi	ng	11						
CO1	6.	1.1, 6.2	2.1, 8.1	.1, 8.2	2.1, 8.2	.2, 9.1.2	2	- 11						
CO2	6.	1.1, 6.2	2.1, 8.1	.1, 8.2	2.1, 8.2	.2, 9.1.2	2							
CO3	6.	1.1, 6.2	2.1, 8.1	.1, 8.2	2.1, 8.2	.2	10		1					
CO4	6.	1.1, 6.2	2.2, 9.1	.2, 9.2	2.1			18						
CO5	6.	2.2, 8.	1.1,8.2	.2, 9.1	.2, 9.2			CUID						

ASSESSMENT PATTERN – THEORY

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	-	-	-	-	100
CAT2	50	50		-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100
ESE	50	50	-	-	-	-	100

22BPC515	BIOPROCESS LABORATORY I	SEMESTER V
----------	-------------------------	------------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	0	0	3	1.5

Cours	se	To train and familiarize the students on enzyme kinetics studies, medium
Objec		optimization techniques, microbial growth kinetics and operation of
		fermenters.
List o	f Exper	iments
1.	Enzym	e kinetics – Determination of Michaelis Menten parameters
2.	Enzym	e activity – Effect of Temperature
3.	Enzym	e activity – Effect of pH
4.	Enzym	e inhibition kinetics
5.	Enzym	e immobilization – Gel entrapment/ Cross linking
6.	Mediur	n optimization by Plackett - Burman design
7.	Growth	n of bacteria - calculation of μ and Yield coefficient
8.	Growth	n of yeast - calculation of μ and Yield coefficient.
9.	Steriliz	ation Kinetics.
10.	Study o	of ancillaries and construction of bioreactor.
	act Peri	ods: eriods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

	Peter F. Stanbury, Stephen. J, Hall. A. Whitaker, " <i>Principles of Fermentation Tec</i> Science & Technology Books, 2007.	hnology",
-	Shuler Michael. L, Fikret Kargi, " <i>Bioprocess Engineering</i> ", Prentice Hall,2008.	
	Doran M Pauline, "Bioprocess Engineering Principles", Elsevier, 2 nd Edition, 201	12.
4	Bailey, James E, David F. Olli, "Biochemical Engineering Fundamentals", 2nd McGraw Hill,1986.	Edition.
4	Blanch H. W, Clark D. S, "Biochemical Engineering", 2nd Edition, CRC Press, 2	007.
(Ninfa. A.J, Ballou. D.P, "Fundamental Lab approaches for Biochemistry and Bio 2 nd Edition, Oxford University press, UK,1998.	technology",

COUI	RSE OUTCOMES:	Bloom's
Upon	Taxonomy Mapped	
CO1	Understand enzyme kinetics and Estimate Michaelis Menten	K2
	parameters.	
CO2	Learn the basic configuration of fermenter and its ancillaries.	K1
CO3	Analyze and estimate the growth kinetics of bacteria and yeast.	K4
CO4	Familiarize with medium optimization techniques.	K2
CO5	Understand sterilization kinetics	K2

a) CO and P	a) CO and PO Mapping													
COs / POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	ı	-	-	-	ı	-	ı	-	-	-	ı	3	1
CO2	3	í	-	-		ı	-	ı	-	•	-	ı	3	2
CO3	1	2	3	-	-	ı	-	ı	-	•	•	ı	3	2
CO4	-	3	2	-	2	ı	-	ı	-	•	-	•	2	1
CO5	-	1	3	-	2	ı	-	ı	-	-	-	1	2	3
22BPC515	3	3	3	-	2	-	-	-	-	_	_	2	3	2
1 - Slight, 2 - Slight	- Mo	derate	$\frac{1}{3}$	Subst	antial									
b) CO and K		erfori	nanc	e Ind	icator	s Map	ping							
CO1 1.2.1,2	2.2.2													
CO2 1.2.1,2	2.2.2													
CO3 1.2.1,2	2.2.2													
CO4 1.2.1,2	2.2.2													
CO5 1.2.1,4	1.1.2,4	4.1.3												

22BPC516	GENETIC ENGINEERING LABORA	ATORY	SEMESTER V					
PREREQUISI	TES	CATEGORY	L	T	P	C		
NIL		PC	0	0	3	1.5		

Course	To make the students to understand the basic genetic engineering techniques
Objectives	and learn about the identification and characterization of gene and protein.

List of Experiments

- 1. Isolation of Total DNA
- 2. Preparation of Plasmid DNA from bacterial cell.
- 3. Restriction digestion of DNA (single and Double digestion)
- 4. Ligation of DNA into expression vectors
- 5. Competent cell preparation
- 6. Transformation
- 7. Selection of Recombinants Blue white screening assay
- 8. Primer Designing using insilico approach.
- 9. PCR Amplification of genes.
- 10. Protein Profiling by SDS-PAGE
- 11. Western blot
- 12. RT-PCR

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

REFERENCES

- 1 Green MR and Sambrook J. "*Molecular Cloning: A Laboratory Manual*". 4th Edition, CSHL press, 2012.
- 2 Sambrook, Joseph and David W. Russell, 'The Condensed Protocols: From Molecular Cloning: A Laboratory Manual', Cold Spring Harbor, 2006.
- 3 Old RW, Primrose SB, "Principles Of Gene Manipulation, An Introduction To Genetic Engineering", Blackwell Science Publications, 1993.
- 4 Ansubel FM, Brent R, Kingston RE, Moore DD, "Current Protocols In Molecular Biology", Greene Publishing Associates, NY, 1988.

COU	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy
		Mapped
CO1	Understand the principles underlying in the techniques of genetic	K1
	engineering.	
CO2	Experience basic techniques of DNA isolation and manipulation	K2
CO3	Experience in selecting genetically transformed organisms for	К3
	downstream analysis.	
CO4	Experience basic techniques involved in analysis of gene expression at	K2
	nucleic acids and protein level	
CO5	Understand the recent advancements in genetic engineering and	K4
	about transgenic plants and animals.	

a) CO and P	O Ma	pping	5											
COs/POs	PO1	PO 2	PO 3	PO4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2	2	3	-		-	-	-		-	-	-	3	2
CO2	2	1	2	1	-	-	-	-	-	-	-	-	3	1
CO3	2	2	2	-	-	-	-	-	-	-	-	-	2	2
CO4	2	2	2	-	1	-	-	-	-	-	-	-	2	3
CO5	2	1	2	-	3	-	-	-	-		-	-	2	3
22BPC516	2	2	2	1	3	-	-	-	-	-	-	-	3	2
1 – Slight, 2 -	- Mod	lerate,	3-S	ubstar	ntial									
b) CO and K	ey Pe	rforn	nance	Indic	ators	Map	ping							
CO1	1.2.1,	, 1.4.1	,2.4.3											
CO2	2.4.3,	3.1.5												
CO3	3.1.4,	3.1.5,	4.3.2											
CO4	5.1.2,	8.2.1,	8.2.2											
COS	431	432	433	113	1 12	1 1 1	212							

22BES611 CHEMICAL REACTION ENGINEERING S	SEMESTER VI
--	-------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	3	1	0	4

Course	To impart the basic concepts in reaction kinetics, and Desig	gn experiments
Objectives	involving chemical reactors, and analyzing and interpreting d	ata. Also gives
	knowledge in design and sizing of industrial scale reactor or	n the basis of
	kinetic data obtained at lab scale.	
TINITED T	WINDSTON OF HOLLOCONIONS DE LORIONS	0.0

UNIT – I KINETICS OF HOMOGENOUS REACTIONS 9+3 periods

Classification of reactions, Types of rate expressions, Elementary and Non elementary reactions, Types of intermediates and searching for a mechanism in non elementary reactions, Temperature dependency of the rate constant based on Arrhenius, Collision and Transition state theories.

UNIT – II DATA ANALYSIS AND INTERPRETATION 9+3 periods

Differential and integral methods of analysis of rate data, Interpretation of rate data in constant and variable volume systems, Kinetics of irreversible, Parallel and Series reactions in constant volume batch reactor.

UNIT – III REACTOR DESIGN

9+3 periods

Ideal batch reactors – steady state MFR & PFR – holding time for flow systems; Design for single reactions - performance equations for single reactors – size comparison of single reactors – MFR vs PFR. Concept of space time and velocity. Size comparison of single reactors - Plug flow reactors in series and parallel, Mixed flow reactors of equal and different sizes in series.

UNIT – IV NON IDEAL FLOW

9+3 periods

Residence time distribution Function. Relationship among E, F and C curves - conversion from tracer information. Non-ideal flow models — Dispersion model and Tanks in series Model.

UNIT-V HETEROGENOUS REACTIONS

9+3 periods

Non catalytic fluid-solid systems: Kinetic models for non catalytic fluid-solid systems - Progressive conversion and Unreacted core Models. Development of rate expressions for various controlling regimes. Heterogeneous Catalysis: Kinetics and rate expressions for fluid-solid catalytic reactions. Langmuir Hinshelwood and Eley Rideal mechanisms for surface Reactions. Reaction and diffusion within porous catalysts. Concept of effectiveness factor.

Contact Periods:

Lecture: 45 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

TEXT BOOK

- 1 Levenspiel O, 'Chemical Reaction Engineering', John Wiley, 3rd Edition, 1999
- 2 Fogler H.S, 'Elements of Chemical Reaction Engineering', Prentice Hall of India, 4th edition, 2002.

- 1 Missen R.W., Mims C.A., Saville B.A., "Introduction to Chemical Reaction Engineering and Kinetics". John Wiley & Sons, 1st Edition, 1999.
- 2 Froment. G.F., Bischoff K.B., "Chemical Reactor Analysis and Design", John Wiley and Sons, 3rd Edition, 2010
- 3 James B.R., John G. E., "Chemical Reactor Analysis and Design Fundamentals", Nob Hill Publishers, 1st Edition, 2002
- 4 emical Reaction Engineering I, Nirali Publications 23rd Edition, 2016.

COUR	Bloom's Taxonomy					
On cor	On completion of the course, the students will be able to:					
CO1	Solve the kinetics of Homogeneous reactions.	K1				
CO2	Develop design aspects for different ideal reactors	K1				
CO3	Familiarity with applications of multiple reactions in process industries	K2				
CO4	Demonstrate non ideal flow in chemical reactors.	K3				
CO5	Design reactor for catalyzed reaction by understanding the	K3				
	heterogeneous chemical reactor system					

COURSE ARTICULATION MATRIX

a) CO and	a) CO and PO Mapping													
COs/ POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	2	1	-41	-8	1		D-1	3	1	-	1	3	3
CO2	3	-	3	2	2	-	All	1	3	2	-	2	3	3
CO3	1	1	2	2	2	_	- 3	3/4	2	1	-	1	1	2
CO4	1	2	-	1	2	6/	2	2 1	2	2	-	2	1	-
CO5	2	1	2	15	1	0.0	:00-18	517	2	2	2	2	2	-
22BES611	3	2	2	2	2	/	2	1	3	2	2	2	1	3

1 – Slight, 2 – Moderate, 3 – Substantial

	`	α		T7	D C	T 1.	7 .
ın			and	K AX	Performance	Indicators	Vianning
IU	•	\sim	' anu	1201	1 CHOH MANCC	muicators	Manning

- ,	The state of the s
CO1	1.2.1, 1.3.1,1.4.1,2.1.2,2.1.3, 2.1.3,2.2.2,2.3.2,2.4.4,4.1.1,4.1.4,4.3.3
CO2	1.2.1, 1.3.1,1.4.1,2.1.2,2.1.3, 2.2.2,2.2.3,4.1.1,4.1.2,4.3.2
CO3	1.2.1,1.3.1,1.4.1,2.1.2,2.1.3,2.1.3,2.2.2,2.3.2,2.4.4,4.1.1,4.1.4,4.2.1,4.3.1,5.3.1,6.1.1
CO4	1.2.1, 1.3.1,1.4.1,2.1.2,2.1.3, 2.1.3,2.4.4,4.1.1,4.1.2,4.1.4,4.2.1,4.3.1.
CO5	1.2.1.1.3.1.1.4.1.2.1.2.2.1.3.2.1.3.2.2.2.3.2.2.4.4.4.1.4.4.2.1.4.3.1.6.2.1

ASSESSMENT	SSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT1	50	10	10	10	10	10	100				
CAT2	50	10	10	10	10	10	100				
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	20	20	20	10	10	100				
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	20	20	20	10	10	100				
ESE	20	20	20	20	20	-	100				

22BPC617 IMMUNOLOGY	SEMESTER VI
---------------------	-------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

Course
Objectives

To learn the general concepts of immune system, immune organs and cells. To know about antigens and antibodies. To get familiarize with the mechanisms related to cell and antibody mediated immunity MHC and complement system. To know about the types of hypersensitivity reaction and also immune responses to different infectious agents. To understand autoimmunity, immunology behind graft acceptance and rejection and immunodeficiency diseases/disorders.

UNIT – I INTRODUCTION TO IMMUNE SYSTEM

9 Periods

Historical perspective, classification of immune system,innate immunity – four type of defensive barriers; Adaptive immunity – four characteristic attributes, Cells and organs of the immune system – hematopoiesis, Cells of immune system, organs of immune system.

UNIT – II ANTIGENS AND ANTIBODIES

9 Periods

Immunogenicity versus antigenicity, factors that influence immunogenicity, adjuvants, epitopes, haptens, pattern- recognition receptors. Basic structure of antibodies, immunoglobulin fine structure, and antibody mediated effector functions, antibody classes and biological activities, antigenic determinants on immunoglobulins. B-cell and T cell receptor. Immunoglobulin super family. Monoclonal antibodies. Antigen- antibody interaction: cross-reactivity, precipitation and agglutination.

UNIT - III HUMORAL AND CELLULAR IMMUNITY

9 Periods

Classification of T and B cells, T-cell maturation and thymus, T_H -cell activation, T-cell differentiation, cell death and T-cell populations, peripheral $\gamma\delta$ T cells. B-Cell maturation, activation and proliferation, humoral response, regulation of B-cell development. Cytokines, major histocompatibility complex, complements.

UNIT – IV HYPERSENSITIVE REACTIONS AND IMMUNE RESPONSE TO INFECTIOUS DISEASES

9 Periods

Gell and Coombs classification of hypersensitivity. Protective immune response to viral infections, bacterial infections, fungal infections, protozoan diseases, diseases caused by parasitic worms (Helminths) and emerging infectious disease.

UNIT-V AUTOIMMUNITY, TRANSPLANTATION IMMUNOLOGY AND IMMUNO DEFICIENCY

9 Periods

Organ specific and systemic auto immune diseases. Immunologic basis of graft rejection, clinical manifestation of graft rejection, general and specific immunosuppressive therapy, immune tolerance to allografts and clinical transplantation. Primary immunodeficiency, AIDS and other secondary immunodeficiencies.

Contact Periods:

Lecture:45Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

1	Delves PJ, Martin SJ, Burtn DR and Roitt IM, "Roitt's Essential Immunology", 13 th Edition,
	Wiley–Blackwell,2016.

OwenJA, Punt J and Stranford SA, "*Kuby Immunology*", Macmillan International,8thEdition, 2019.

1	Coico, Richard "Immunology: A Short Course" VIth Edition. John Wiley, 2008.
2	Robert R Rich, Thomas A Fleisher, William T Shearer, Harry Schroeder, Anthony J Frew, and
	Cornelia M Wey, " Clinical Immunology – Principles and Practive," Elsevier, 4 th Edition, 2013
3	Maurice R, G O'Gorman, and Albert D Donnnenberg, "Handbook of human Immunology",
	Second edition, CRC Press, 2008
4.	Chakravarthy AK," <i>Immunology</i> ",TataMcGraw-Hill,2006.

COUR Upon o	Bloom's Taxonomy Mapped	
CO1	Apply the general concepts of immune system and describe the cells and	K1
	organs of the immune system	
CO2	Apply the properties of antigens and antibodies, demonstrate various antigen-	K1
	antibody interactions	
CO3	Apply the concept of cell and antibody mediated immunity and outline the	K2
	mechanism of complement system	
CO4	Apply the mechanism behind hypersensitivity and molecular mechanisms	K3
	involved in pathogenesis of diseases caused by various pathogenic organisms	
CO5	Outline the mechanism behind transplantation immunology, concept of	K3
	autoimmunity and immunodeficiencies.	

a) CO and P	O Ma	pping						1/2						
COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	-	1	-	-	12	2	2	2	/ S	-	1	2	2	2
CO2	1	-	-	1	1		- =	2	3	3	2	2	1	3
CO3	1	1	-	-			W-3	1	1/	-	-	-	1	3
CO4	-	-	-	_	1	-540	7.00	2	3	3	1	1	1	3
CO5	-	2	-	1	3	-	-	-	-	-	-	-	2	2
22BPC617	1	1	-	1	2	2	2	2	3	3	2	2	2	3
1 – Slight, 2	– Mod	lerate,	3 – Si	ıbstant	ial									
b) CO and k	Key Pe	erform	ance	Indica	tors 1	Mappin	g							
CO1	1.2.1	, 2.1.1,	2.1.2	, 2.1.3	, 3.1.1	1, 3.1.2,	6.2.1,	7.1.2,	8.1.1,	9.1.1,	12.1.2			
CO2	1.2.1	, 2.1.1,	3.1.2	, 3.1.3	, 4.1.1	1, 6.1.1,	6.2.1,	10.1.1	, 10.1	.2, 10.3	3.1, 11	.1.2, 1	1.2.1	
CO3	1.2.1, 9.1.1, 9.2.1, 9.2.2, 10.1.2, 10.2.2													
CO4	9.1.1	9.1.1, 9.1.2, 9.2.1, 10.1.2, 10.2.2												
CO5	6.1.1	6.1.1, 6.2.1, 10.1.2, 10.3.1, 10.3.2												

ASSESSMENT	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	50	10	10	10	10	10	100					
CAT2	50	10	10	10	10	10	100					
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	20	20	20	10	10	100					
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	20	20	20	10	10	100					
ESE	50	10	10	10	10	10	100					

22BPC618	BIOPROCESS ENGINEERING	SEMESTER VI
----------	------------------------	-------------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	0	0	3

	To acquire the knowledge on design, performance stability analysis	, scale	up,
Objectives	monitoring and control of bioprocess.		
UNIT – I	DESIGN AND ANALYSIS OF BIOREACTORS	9 P	eriods

Bioreactors- Types- Design considerations; Design and operation of novel bioreactors-airlift- bubble column- packed bed and fluidized bed reactors; Bioreactors for animal and plant cell culture; Stability analysis of bioreactors; Design of continuous sterilizer.

UNIT – II BIOREACTOR SCALE – UP 9 Periods

Oxygen transfer in bioreactors - microbial oxygen demands; Mass transfer coefficients (k_La)-determination methods; mass transfer correlations; Regime analysis of bioreactor processes; Scale upgeometric and dynamic similarities- criteria for bioreactors based on oxygen transfer- power consumption and impeller tip speed.

UNIT – III MONITORING & CONTROL OF BIOPROCESSES 9 Periods

Bioprocess monitoring- modes- On-line measurement of physio-chemical and biochemical parameters; Methods of on-line and off-line biomass estimation; microbial calorimetry; Flow injection analysis; Computer based data acquisition- LabVIEW; Bioprocess control system- Feedback & Feedforward control – Types of controllers – proportional, derivative, integral and PID, tuning of controllers.

UNIT – IV MODELLING AND SIMULATION OF BIOPROCESSES 9 Periods

Overview of bioprocess modeling and simulation, Structured models for analysis of various bioprocess – compartmental models, models of cellular energetics and metabolism, single cell models, plasmid replication and plasmid stability model; Introduction to bioprocess simulation software-Dynamic simulation of batch - continuous and fed-batch system.

UNIT – V BIOREACTOR CONSIDERATION IN ENZYME SYSTEMS 9 Periods

Analysis of film and pore diffusion effects on kinetics of immobilized enzyme reactions; formulation of dimensionless groups (Damkohler number, Thiele modulus) and calculation of effectiveness factors; Kinetics of immobilized enzyme reactors – packed bed and fluidized bed.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Shuler, M.L., Kargi, F., DeLisa, M., "Bioprocess Engineering: Basic Concepts", 2nd Edition, Prentice Hall, 2017.
- 2 Doran, P.M., "Bioprocess Engineering Principles", 2ndEdition, Elsevier, 2013.

1	Blanch, H.W., Clark, D.S., "Biochemical Engineering", 2 nd Edition, CRC Press, 1997.
2	Bailey, J.E., Ollis, D.F., "Biochemical Engineering Fundamentals", 2 nd Edition, McGraw Hill,
	1986.
3	Dunn, I.J., Heinzle, E., Ingham, J., Přenosil, J.E., "Biological Reaction Engineering: Dynamic
	Modelling Fundamentals with Simulation Examples", 2 nd Edition, Wiley, 2005.
4	Katoh, S., Horiuchi, J.I., Yoshida, F., "Biochemical Engineering: A Textbook for Engineers,
	Chemists and Biologists", John Wiley & Sons, 2015.
5	Liu, S., "Bioprocess Engineering-Kinetics, Biosystems, Sustainability and Reactor Design",
	Elsevier, 2013.

COURSE OUTCOMES:	Bloom's Taxonomy
Upon completion of the course, the students will be able to:	Mapped
CO1 Design and analyze the performance of bioreactors.	K2
CO2 Scale up the bioreactors based on various criteria.	K2
CO3 Clearly understand the monitoring and control of bioprocess.	K2
CO4 Perform modeling and simulations of bioprocess using software	K3
CO5 Understand the immobilized enzyme kinetics and apply for enzyme bioreactor design	К3

a) CO and P	O Ma	pping	ξ			1	ATEL	XI)						
COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	2	3	2	2	99	1	D-7	6 -1	-	-	-	3	2
CO2	2	2	2	2	2	The	-	10		Š	-	-	3	2
CO3	2	-	-	3	3	-	-			8 -	-	-	2	3
CO4	2	2	-	3	2			53-	1010	/ -	-	-	2	3
CO5	2	1	-	2	-7	5.1V	7	1 (L	577		-	-	1	3
22BPC618	2	2	3	3	2				-	-	-	2	2	3
1 – Slight, 2	- Mo	derate	2, 3 - 5	Substan	tial									

b) CO and	b) CO and Key Performance Indicators Mapping							
CO1	1.2.1,2.2.2,3.1.1,3.2.2, 4.1.2,5.1.1							
CO2	1.2.1,2.2.2,3.1.1,3.2.2, 4.1.2,5.1.1							
CO3	1.2.1,4.1.2,5.1.1,5.2.1							
CO4	1.2.1,2.2.2, 4.1.4,5.1.1,6.1.1							
CO5	121222322341412511							

ASSESSMENT	PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	-	-	-	-	100
CAT2	-	50	50	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	10 -	-	-	100

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	2	4

Course	To learn the basics of Unix commands and Perl programming and to understand the								
Objectives	string alignment methods also to learn the methods to construct phylogenetic trees and								
	structure prediction.								
UNIT – I	UNIX AND PERL PROGRAMMING	9+6 periods							

Operating system - Components- Linux OS-working Environment -Basic UNIX commands - file, directory related commands –pipes and Filter; Perl – Introduction, Data types, variables, operators, Array operations, Hashes, Lists, control structures and file handling.

UNIT - II BIOLOGICAL DATABASES

9+6 periods

Databases – Introduction, Biological Databases – Primary databases – Nucleic acids – NCBI, EMBL, DDBJ. Proteins – PIR, Swissprot; Secondary databases – Prosite, prints, profile, Pfam; Structure databases-PDB, Structure classification databases – SCOP, CATH. Model organism databases, Metabolic pathway databases-KEGG.

UNIT – III PATTERN MATCHING & MACHINE LEARNING

9+6 periods

Alignment -pair wise sequence alignment - local and global alignment, Substitution matrices-PAM, BLOSUM; dynamic programming, dotplot analysis; database search tools - BLAST, FASTA; Multiple sequence alignment –Progressive alignment, Iterative method; Machine learning methods - Neural Networks, Hidden Markov models.

UNIT – IV PHYLOGENY

9+6 periods

Introduction to phylogeny terms; Molecular Clock theory -Jukes-Cantor and Kimura's model; phylogeny tree reconstruction methods- distance based-UPGMA, Neighbour Joining, Character based-Maximum Parsimony, Maximum Likelihood methods; Boot strapping technique

UNIT - V STRUCTURE PREDICTION AND DRUG DESIGN

9+6 periods

3D Structure prediction methods—Homology modeling, Threading, Ab-initio prediction; Micro array analysis—Principle and methods; Introduction to Computer Aided Drug Design (CADD).

PRACTICALS

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 30 Periods Total: 75 Periods

List of Experiments

- Perl Programming
- Biological Databases- Sequence Databases, Structure Databases, Specialized Databases; Data Retrieval tools and methods; Database file formats.
- Molecular visualization tools Rasmol, Cn3D and Swiss PDB Viewer.
- Pairwise alignment-dynamic programming NEEDLE and Water; Dotplot analysis
- Database similarity searching using Heuristic methods- BLAST, FASTA
- Multiple sequence alignment- CLUSTAL
- Protein sequence analysis -ExPASy proteomics tools
- Construction of Phylogenetic tree Maximum Parsimony & Maximum Likelihood method -NJ, UPGMA method - PHYLIP program
- Homology Modeling Homology modeling using SPDBV
- Model validation using Ramachandran plot, ProSA, Pro Check.
- Prediction of binding affinity of Ligand and Receptor using Docking studies

TEXT BOOK:

Γ	1	David. W. Mount. "Bioinformatics genome and sequence analysis", Cold Spring House
		Laboratory publications, 2 nd Edition. 2004

2 Rastogi,S.C., Mendiratta.N and Rastogi.P, "Bioinformatics – Methods & Applications: Genomics, Proteomics and Drug Discovery", Prentice Hall of India Learning Pvt (Ltd), India, 4th Edition, 2013

REFERENCES:

1	Andreas D. Baxevanis, "Bioinformatics, A Practical Guide to the Analysis of Genes and
	Proteins" , Wiley-Interscience, 3 rd Edition.2004
2	Teresa Attwood, "Introduction to Bioinformatics" , Pearson Education India, 1 st Edition. 2007
3	James Tisdall, "Beginning PERL for Bioinformatics", O'Reilly publishers, 2001.
4	Harshawardhan P Bal, "PERL programming for Bioinformatics", Tata Mc Graw Hill
	publications, 2003.
5	Arthur Lesk, "Introduction to Bioinformatics", Oxford University Press, 2 nd Edition, 2002.

	- Chumingo -	
COUR	Bloom's Taxonomy Mapped	
CO1	Gain expertise on UNIX operating system commands and Perl programming.	K2
CO2	Acquire knowledge on different biological databases and retrieve sequences	K1
	Demonstrate an ability to align the macromolecular string by dynamic programming and heuristic methods	K4
CO4	Construct and interpret the phylogenetic trees.	K4
CO5	Understand the methods for structure prediction of proteins and computer aided drug design and able to validate 3D structure	K5

a) CO and PC) Map	ping					-							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	_	_										_		_
CO1	1	2	-	3	2	-	-	-	2	-	-	1	2	1
CO2	1	2	-	2	2	-	-	-	-	-	-	1	1	1
CO3	1	1	1	2	3	-	1	-	-	-	-	1	1	
CO4	2	2	-	3	2	-	-	-	1	-	-	1	2	2
CO5	1	2	-	3	2	-	-	-	2	-	-	1	2	3
22BPC619	1	2	1	3	2	-	1	-	2	-	-	2	2	2
1 – Slight, 2 –	Moder	rate, 3 -	- Substa	ıntial										
b) CO and Ko	ey Perf	orman	ce Indi	icators	Map	ping								
CO1	3.2.1,	2.2.4, 2	2.4.2, 3	.2.3										
CO2	1.2.1,	1.2.1, 2.1.1, 2.2.4, 2.4.3, 2.4.4, 3.1.1, 3.4.2, 4.3.1, 4.3.3												
CO3		1.1.2, 2.2.1, 2.4.3, 4.1.3												
CO4		4.3.3, 5				•	•	•	•		•			
CO5	1.3.1,	2.4.2, 2	2.4.4, 4	3.1, 5.	3.1, 5	.3.2								

ASSESSMENT	ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	25	25	-	25	25	-	100						
CAT2	25	25	-	25	25	-	100						
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	25	25	-	25	25	-	100						
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	25	25	hanna-	25	25	-	100						
ESE	25	25		25	25	ī	100						

22BPC620	BIOPROCESS ENGINEERING LABORATORY	SEMESTER VI
----------	-----------------------------------	-------------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	0	0	3	1.5

Course	To possess hands on experience to understand the basic concepts involved in the
Objectives	bioprocess engineering such as sterilization, growth kinetics, RTD and rheology, mass
	transfer rate in fermentation process.

List of Experiments

- 1. Thermal death kinetics
- 2. Batch reactor kinetics estimation of reaction rate constant
- 3. Estimation of mass transfer coefficient for starch hydrolysis by immobilized amylase enzyme in packed bed reactor
- 4. Estimation of $k_L a$ dynamic gassing method in batch fermenter
- 5. Estimation of k_La sulphite oxidation method
- 6. Estimation of k_La power correlation method
- 7. Study of rheological property of fermentation broth.
- 8. Residence time distribution in CSTR
- 9. Residence time distribution in PFR
- 10. Production of primary metabolites in fermenter
- 11. Production of secondary metabolites in fermenter
- 12. Dynamic Simulation of Batch, Continuous and Fed batch reactor using Berkeley Madonna software

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 periods Total: 45 periods

REFERENCES

- 1 Shuler, M.L., Kargi, F., DeLisa, M., "Bioprocess Engineering: Basic Concepts", 2nd Edition, Prentice Hall, 2017.
- 2 Doran, P.M., "Bioprocess Engineering Principles", 2nd Edition, Elsevier, 2013.
- 3 Cutlip, M.B., and Shacham, M. "Problem solving in Chemical and Biochemical Engineering with Polymath, Excel, and Matlab", Prentice Hall, 2008.
- 4 Dunn, I.J., Heinzle, E., Ingham, J., Přenosil, J.E., "Biological Reaction Engineering: Dynamic Modelling Fundamentals with Simulation Examples", 2nd Edition, Wiley, 2005.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
	Design, analyze the growth kinetics in bioreactor and interpret the data meaningfully.	K3
CO2	Understand sterilization kinetics and its data interpretation	К3
	Estimate the residence time distribution in CSTR and PFR to demonstrate the non-ideality existence in reactors.	К3
CO4	Determine mass transfer coefficients and rheology in fermentation process	К3
CO5	Solve and simulate the bioreactor data using Berkeley Madonna software	K3

a) CO and F	a) CO and PO Mapping													
COs/POs	PO1	PO 2	PO3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2	2	3	-	-	-	-	-	-	-	-	-	3	2
CO2	2	1	2	1	-		100	707	-	-	-	-	3	1
CO3	2	2	2	-	100	3	5-0	10	7	S	-	-	2	2
CO4	2	2	2	-	10	3	<u>Anjio</u>) e	7	-	-	-	2	3
CO5	2	1	2	-	3	1		(B)		6	-	-	2	3
22BPC620	2	2	2	1	3	-	-	-	1	S -	-	-	3	2
1 - Slight, 2						0 4		9						
b) CO and					- 11	rs Ma	pping	$\sqrt{\Lambda}$		1				
CO1	1.2.1	,1.2.2	2, 2.2.2	2,3.1.1		7			. 1					
CO2	CO2 1.2.1,2.2.2,3.2.2,3.4.1,4.1.2													
CO3	1.2.1,2.2.2,3.2.2,3.4.1													
CO4	1.2.1,2.2.2, 3.2.2,5.1.1													
CO5	1.2.1	,2.2.2	,3.2.2,	3.4.1	,4.1.2,	5.1.1		- 1		19				

22BPC621 IMMUNOLOGY LABORATORY	SEMESTER VI
--------------------------------	-------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	0	0	3	1.5

Course Objectives		To perform different staining techniques to identify blood cells and cell division using microscope. To perform qualitative and quantitative analyses of antigens and antibodies
- ~j		and interpret the data based on pathological processes. To work as a team to perform and analyze practical methods.
List o	f Experi	ments
1.	Identifi	cation of Immune cells in a blood smear.
2.	Isolati	on of peripheral blood mononuclear cells.
3.	Separa	ation and preservation of serum from blood
4.	Agglu	tination reaction to determine blood group
5.	Testin	g of typhoid antigens by widal test.
6.	Immu	nodiffusion - Ouchterlony method
7.	Immu	nodiffusion - radial immunodiffusion
8.	Rocke	t Immunoelectrophoresis
9.	Count	ercurrent immunoelectrophoresis
10.	Enzyn	ne Linked Immuno Sorbent Assay (ELISA)

TEXT BOOK:

1 De I	Robertis &	& De Robertis,	"Cell Biology",	4 th edition, Lippincott, 2007.
2 Roitt	I., "Esse	ential Immunolo	gy", 13 th edition,	Blackwell Scientific,2017.

COURSE OUTCOMES:	Bloom's
	Taxonomy
Upon completion of the course, the students will be able to:	Mapped
CO1 Identify the different specimens using microscope	K1
CO2 Perform different staining techniques for the study of blood cells and cell division	K1
CO3 Demonstrate various strategies of antigen-antibody interactions	K2
CO4 Perform experiments to quantify immune molecules	K2
CO5 Interpret the data obtained based on pathological processes	K2

a) CO and P	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	-	-	3	-	-	-	2	-	-	-	-	3	1
CO2	1	-	-	3	-	-	-	2	-	-	-	-	3	1
CO3	1	-	-	3	-	-	-	2	-	-	-	-	3	1
CO4	1	-	-	3	-	-	-	2	-	-	-	-	3	1
CO5	1	-	-	3	-	-	-	2	-	-	-	-	3	1
22BPC621	1	-	-	3	-	-	-	2	-	-	-	-	3	1

1 – Slight, 2 – Moderate, 3 – Substantial

b) CO and Key Performance Indicators Mapping

CO1	1.3.1, 2.1.3
CO2	1.4.1, 2.3.3
CO3	1.1.3, 2.1.3
CO4	1.4.1, 2.1.3,3.4.2
CO5	1.4.1,1.2.4

22BES612	DESIGN THINKING FOR INI BIOTECHNOLOGY		SI	ЕМЕ	ESTI	ER VI
PREREQUISITES		CATEGORY	L	T	P	C
NIL		ES	0	0	3	1.5

Course **Objectives**

To provide the technologist with a standardized innovation process to develop creative and viable solutions to problems—design related.

LIST OF EXPERIMENTS

45 periods

DESIGN THINKING PROCESS AND PRACTICE:

Definition and need for design thinking, objective and concepts of design thinking and brainstorming. Stages of design thinking process (with examples) - empathize, define, ideate, prototype, evaluate.

Understanding creative thinking process, understanding problem solving, creative problem solving. Process of engineering design product, design thinking approach, stages of product design, examples of best product designs and functions, Assignment-Engineering product design.

Students should identify a real world problem. Define the problem related to community, ideate a possible and potential solutions, create a prototype and test the solution

Contact Periods: Lecture: 0 Periods

Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

COURSE	OUTCOMES	Bloom's Taxonomy
Upon com	pletion of the course, the students will be able to	mapped
SCO1	Apply biotechnology knowledge to solve the real world problems	К3
CO2	Redefining the problem, or creating a different solution	K4
CO3	Apply the learnt process and skills to a Capstone project, with opportunity to present and transfer to the workplace.	K4
CO4	Apply the outcome to develop visual literacy and articulacy to explain design decisions.	K4
CO5	Develop critical skills to enable the process - communication, collaborative working, lateral thinking, decision making.	K4

COURS	E AR	TICUL	ATIO	N MA	TRIX									
a) CO and	I PO N	Aappin	g											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2	-	3	2	2	2	-	-	3	3	2
CO2	2	3	3	2	2	2	-	-	-	2	2	-	3	2
CO3	1	-	-	-	-	-	-	-	2	3	-	-	2	2
CO4	-	-	-	-	-	-	-	-	2	3	-	-	2	2
CO5	-	-	-	-	-	1	-	-	-	3	2	-	2	3
22BES612	2	3	3	2	2	2	2	2	2	3	2	3	3	2
1 – Slight,	2-M	oderate	$3 - S\iota$	ibstant	ial									
1 \ \		T. A		T 11		-								

h)	\overline{CO}	and Va	v Doufoun	anaa India	ators Mann	ino
		ини к	·v remorn	іянсе інак	aiors viado	шу

CO1	1.2.1, 2.1.1, 2.1.2, 2.1.3, 3.1.1, 3.1.2, 3.1.3, 4.1.1, 6.1.1, 6.2.1, 7.1.2, 8.1.1, 9.1.1, 12.1.2
CO2	1.2.1, 2.1.1, 2.1.2, 2.1.3, 3.1.1, 3.1.2, 3.1.3, 4.1.1, 6.1.1, 6.2.1, 10.1.1, 10.1.2, 10.3.1, 11.1.2, 11.2.1
CO3	1.2.1, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 10.1.2, 10.2.2
CO4	9.1.1, 9.1.2, 9.2.1, 9.2.2, 10.1.2, 10.2.2
CO5	6.1.1, 6.2.1, 10.1.2, 10.2.2, 10.3.1, 10.3.2

22BHS704	SAFETY AND QUALITY MANAGEMENT IN BIOTECHNOLOGY	SEMESTER VII
	DIOTECHNOLOGI	

PREREQUISITES	CATEGORY	L	T	P	C
NIL	HS	3	0	0	3

UNIT – I	SAFETY AND RISK ANALYSIS	9 periods								
	quality management tools.									
	documents to get certifications. To practice the various classes of	of								
	HACCP based SOPs. To build capability of preparing Quality management									
	accreditation processes. To expose the students to hazard analysis and to prepare									
Objectives										
Objectives	analysis. To learn the art of drafting SOPs and to give an overview on laboratory									
Course	To introduce the concepts of food safety and to reveal the sign									

Introduction to Food Safety, Food Safety System, Total Quality Management, Project Management, An Introduction to Risk Analysis- Risk Management, Risk Assessment, Risk Communication.

UNIT – II STANDARD OPERATING PROCEDURES

9 periods

Preparing scope, quality policy and quality objectives of food processing company, Defining Standard operating procedure – purpose- Format - developing and implementing, effective writing. SOP for purchasing raw materials, receiving raw materials, storage, cleaning, holding, cooling, freezing, thawing, reheating, personal hygiene, facility and equipments. Systems in laboratory accreditation

UNIT – III HACCP PRINCIPLE

9 periods

Conduct a hazard analysis, CCP identification, establish critical limits for each CCP, establish CCP monitoring procedures, establish corrective actions procedures, establish procedures for HACCP verification and validation, documenting the HACCP Program.

UNIT – IV INTRODUCTION TO QUALITY MANAGEMENT

9 periods

Evolution of Quality Management, Concepts of Product and Service Quality, Dimensions of Quality, Deming's, Juran's, Crosby's Quality Philosophy, Quality Cos, An Overview and Requirements of ISO 17025, Requirements Specific to Food Testing Laboratories – Physical, Chemical and Biological Parameters

UNIT-V QUALITY MANAGEMENT TOOLS

9 periods

Seven old and new Quality management tools, Statistical process control – Mean & range chart, P chart and C chart, Seven deadly wastages, PDCA cycle, Quality circle, Quality audit, Internal audit, Continuous improvement of productivity- proficiency testing for product quality- Six Sigma Concept.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 Andres Vasconcellos J. 2005. *Quality Assurance for the Food industry A practical approach. CRC press.*
- 2 J Evans and W Linsay, *The Management and Control of Quality*, 6'th Edition, Thomson, 2005

1	Inteaz	Alli.	2004.	Food	quality	assurance	- Principles	&	practices.	CRC	Press.	New
	York											

- 2 Sara Mortimore and Carol Wallace. 2013. *HACCP A practical approach*. Third edition. Chapman and Hall, London
- 3 Roday, S. 1998. *Food Hygiene and Sanitation*, Tata McGraw-Hill Education
- 4 Mitra A., Fundamentals of Quality Control and Improvement, PHI, 2nd Ed., 1998.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
On con	impletion of the course, the students will be able to:	Mapped
CO1	Understand the concepts of food safety and the importance of risk analysis	K1
CO2	Draft SOPs and prepared with the various laboratory accreditation processes	K1
CO3	Learn the hazard analysis and prepare HACCP based SOPs	K2
CO4	Know policies and how to prepare quality management documents	K3
CO5	Use and exploit the various classes of quality management tools.	K3

a) CO and I	PO Ma	pping			V 9		TU-AC'		li i					
COs/POs	PO	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO	PSO 2
CO1	1	1			1	2		-//			11		2	
	-	1	-	-	1 - 4		2	2	-	-	1	2	2	2
CO2	1	-	-	1	// 1		()	2	3	3	2	2	1	3
CO3	1	1	-	-	// -	0 5/	No.	1	1	-	-	-	1	3
CO4	-	-	-	-	1 (00		2	3	3	1	1	1	3
CO5	-	2	-	1 /	3	7	100		-	-	-	-	2	2
22BHS704	1	1	-	1 🖇	2	2	2	2	3	3	2	2	2	3
1 - Slight, 2	2 – Mo	derate	$\frac{1}{5}$, 3 – S	Substa	ntial	The state of the s	130) Indiana)					
b) CO and I	Key Pe	rforma	nce In	dicato	ors Ma	pping	1000	57						
CO1	1.2.1,	1.4.1,2.	4.3											
CO2	2.4.3,3	.1.5												
		.1.5,4.3												
		.2.1,8.2												
CO5	4.3.1, 4	4.3.2, 4	$.3.\overline{3}, 1$	1.3.1,	12.1.1,	12.1.2,								

ASSESSMENT	ASSESSMENT PATTERN – THEORY													
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	50	10	10	10	10	10	100							
CAT2	50	10	10	10	10	10	100							
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	20	20	20	10	10	100							
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	20	20	20	10	10	100							
ESE	50	10	10	10	10	10	100							

22BES713	BIOPROCESS ECONOMICS AND PLANT DESIGN	SEMESTER VII
----------	---------------------------------------	--------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	3	0	0	3

1,123	2.0										
Course	To understand the engineering fundamentals that include process selection										
Objectives	preparation, design constraints, plant location selection, layout and to calculate										
	capital, operating costs for process plants.										
UNIT – I	INTRODUCTION TO DESIGN PROJECT	9 Periods									
Introduction to	Design - nature of design - Technical feasibility survey - Organizati	ion of project-									
process develo	pment – data acquisition – design data information of project – Project	documentation									
codes and sta	ndards.										
UNIT – II	PROCESS DESIGN DEVELOPMENT	9 Periods									
Equipment sel	lection and specifications; materials of construction; flow sheeting	; piping and									
instrumentation	n; process safety and loss prevention- types of hazards-HAZOP analysis.										
UNIT – III	GENERAL SITE CONSIDERATIONS	9 Periods									
Introduction -	plant location and site selection; site layout-plant layout utilities	environmental									
considerations	- waste management - visual impact; government regulations a	and other legal									
restrictions; co	mmunity factors and human resources.	_									
UNIT – IV	COSTING AND PROJECT EVALUATION	9 Periods									
Introduction –	Accuracy and purpose of capital cost estimates; fixed and working of	apital operating									
costs – estima	tion of equipment purchased costs- cost indexes - rapid and factorial	method of cost									
estimation, Lai	ng factors; Operating costs- fixed and variable operating costs-estimatio	n of operating									
costs- Factors a	affecting investment and production costs.										
UNIT – V	ECONOMIC EVALUATION OF PROJECTS	9 Periods									
Cash flow dia	grams -discounted cash flow - rate of return - payback time - sens	sitivity analysis;									
	stments; Depreciation-types, methods to determine depreciation – Altern										
	nods for costing and project evaluation; accounting for uncertainty and										
	variations for future development; Optimization techniques.										
Contact Perio											
Lecture: 45 Pe	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods										
1											

TEXT BOOK:

- 1 Moran, S., "An Applied Guide to Process and Plant Design", Elsevier, 2015.
- 2 Towler, G., Sinnot, R.K., "Chemical Engineering Design Principles, Practice and Economics of Plant and Process Design", 2nd Edition, Butterworth Heinemann, 2013.

REFERENCES

1	Backhurst, J.R., Harker, J.H., "Process Plant Design", Butterworth-Heinemann, 2013.
2	Sinnott.R.K., "Coulson & Richardson's Chemical Engineering, Series Vol-6", 2 nd Edition,
	Butterworth Heinemann, 2005.
3	Peters, M., Timmerhaus, K., West, R., "Plant Design and Economics for Chemical Engineers",
	5 th Edition, McGraw Hill, 2003.
4	Baasal, W.D., "Preliminary Chemical Engineering Plant Design", Springer, 1989.

COURSE OUTCOMES:	Bloom's
	Taxonomy
On completion of the course, the students will be able to:	Mapped
CO1 Understand the basics engineering fundamentals for project development	K1
and process design	
CO2 Design process equipment and consider safety, operability and other design	K2
constraints in bioprocess plant design.	
CO3 Develop knowledge to select plant location, layout and utilities for new	K2
process plants	
CO4 Calculate capital investment and operating costs for process plants.	K3
CO5 Understand the basic concepts of cost estimation and profitability analysis.	K3

a) CO and	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	-	-	1	-	-	-	-	-	-	1	2
CO2	1	1	2	1	1	-	-	-	-	-	-	-	1	2
CO3	1	1	2	1	2	-	-	-	-	-	-	-	2	2
CO4	1	1	1	-	-	- 1/2	·******	-	-	-	-	-	1	1
CO5	1	1	1	-		1	0	2	6	-	-	-	1	2
22BES713	2	1	2	1	1	1	go gy	0 0 0	6	-	-	-	2	2
1 – Slight, 2	2 – Mo	oderat	e, 3 –	Substa	antial			200						
b) CO and	Key I	Perfor	manc	e Indi	icator	s Map	ping		de					
CO1	1.2.1	1,2.2.2	2,3.1.1,	6.2.1	100	To a		0	//					
CO2	1.2.1	1,2.2.2	2,3.2.2,	3.4.1,	4.1.2,5	5.1.1		\mathcal{M}	100					
CO3	1.2.1	1.2.1,2.2.2,3.2.2,3.4.1,4.1.2,5.1.1,5.2.1												
CO4	1.2.	1,2.2.2	2, 3.2.2	2	11	0/6								
CO5	1.2.1	1,2.2.2	2,3.2.2,	,3.4.1,	4.1.2,5	5.1.1,6	.1.1	M	6 1					

ASSESSMENT	Γ PATTERN – T	ГНЕОRY		/## ·			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	-	-	-	-	100
CAT2	20	30	50	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	-	-	-	100

22BPC722	DOWNSTREAM PROCESSING	SEMESTER VII

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PC	3	0	0	3

Course	To impart knowledge on the basics of the bioseparation process with	n an insightful
Objectives	view of different unit operations in downstream processing and to pro	vide an idea
	about the basics of scale-up operations of downstream techniques.	
UNIT – I	FUNDAMENTALS OF DOWNSTREAM PROCESSING	9 Periods

Broad categories of bioproducts; properties of biological materials relevant in separation; Scope, Need for and Importance of downstream processing; Stages of downstream processing; Basic principles of engineering analysis in bioseparation; Selection criteria for separation; Economic importance of DSP; Pretreatment and stabilization of bioproducts; Cell disruption – elements of cell structure, intracellular vs extracellular products, Methods of cell disruptions – mechanical and non-mechanical methods.

UNIT – II METHODS OF SOLID-LIQUID SEPARATION

9 Periods

Sedimentation – principles, methods, and coefficients; Centrifugation – principles, settling velocity, sigma analysis, flow rate analysis in a tubular bowl and disk type centrifuges – scale-up of centrifugation; Ultracentrifugation – Determination of molecular weight; Flocculation- principles – electrical double layer, Schulze Hardy Rule – flocculation rate – flocculants; Filtration– principles, conventional and cross-flow filtration, filter aid, filter media and equipment, Darcy's law, filtration rates with incompressible and compressible cakes for batch and continuous filters, scale-up parameter estimations.

UNIT – III PRODUCT ISOLATION

9 Periods

Extraction- phase separation and partitioning equilibria, batch, and counter-current stage calculations, scale-up and design of extractors, Aqueous two-phase and Reverse micelle extraction; Adsorption - Common adsorbents, Adsorption isotherm, Types of adsorptions, process calculations in batch, continuous stirred tank, and fixed-bed adsorption; Membrane-based separation: classification of membrane separation process - micro, ultra-filtration, reverse osmosis, dialysis, Theoretical model for membrane process, estimation of flux and concentration polarization, membrane fouling, membrane filtration equipment.

UNIT – IV PRODUCT PURIFICATION

9 Periods

Precipitation of proteins - protein solubility, methods of precipitation, Precipitate formation phenomenon; Chromatography - principles, types - ion-exchange, size exclusion, hydrophobic interaction, Affinity chromatography, HPLC, Column chromatography -Description, estimation of separation parameters and column efficiency.

UNIT – V FINISHING OPERATIONS

9 Periods

Crystallization – principle, analysis of batch crystallization, crystallization scale-up, and design, Recrystallization; Drying - principles – heat and mass transfer – dryers' description and operations of vacuum shelf dryers, batch vacuum rotary dryers, freeze dryers and spray dryers, Scale-up and design of drying systems.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- Belter P.A., Cussler E.L., Houhu W., "Bioseparations: Downstream Processing for Biotechnology", Wiley India Pvt. Ltd., 1st Edition, 2011.
- 2 Roger G.Harrison, Paul W. Todd, Scott R.Rudge and Demetri P.Petrides, "*Biosepartions Science and Engineering*", Oxford University Press, 2015.
- B. Sivasankar, "*Bioseparations: Principles and Technique*", Prentice-Hall of India Pvt.Ltd, 1st edition, 2007.

REFERENCES

- 1 Ghosh R, "*Principles of Bioseparation Engineering*", World Scientific Co. Ltd, 1st Edition,2006
- 2 Michael R. Ladisch, "Bioseparations Engineering: Principles, Practice, and Economics", Wiley, 2002.
- R.O. Jenkins, "Product Recovery in Bioprocess Technology Biotechnology By Open Learning Series", Butterworth-Heinemann, 2nd Edition, 1992.
- Mukesh Doble, "Principles of Downstream Techniques in Biological and Chemical Processes", Taylor & Francis Group, 2021.
- Mccabe W., Smith J., Harriott W., "*Unit Operations in Chemical Engineering*", McGraw Hill, 7th Edition, 2017.

	RSE OUTCOMES: upletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
1	Understand the need for bio separations and impart the skills in various cell disruption techniques	K2
	Analyze the techniques for solid-liquid separation and predict the parameters for large scale.	К3
	Explore the principles and working of different unit operations for the isolation of bio-products.	К3
CO4	Discriminate the various techniques of high-resolution purification	К3
	Classify the different methods and equipment used for the final polishing of bio-products at the industrial level.	К3

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO
	1	2	3	4	5	6	/	8	9	10	11	12		2
CO1	2	1	-	1	ı	-	1	-	1	ı	-	-	1	-
CO2	1		2	1	2	-	1	1	1	ı	2	-	-	2
CO3	1	-	1	2	-	-	-	3	1	-	1	-	-	3
CO4	1	2	2	-	-	1	-	2	-	-	-	-	1	-
CO5	1	-	-	-	-	-	-	2	1	1	2	-	-	3
22BPC722		1	2	2	-	1	1	2	1	1	2	-	1	3
1 - Slight, 2	2 – Mo	derate,	3-S	ubstan	tial									
b) CO and	Key P	erforn	nance	Indica	ators N	Mappi	ng							
CO1	1.3.1	, 1.4.1	, 2.1.2	, 4.2.1	, 7.2.2,	, 9.2.4								,
CO2	1.3.1	, 2.1.2	, 2.2.4	, 5.2.2	, 7.2.2,	, 9.2.4,	11.2.1							
CO3	1.3.1	, 3.1.1	, 4.2.1	, 8.1.1	, 8.1.2,	, 9.2.4								
CO4	1.3.1	, 2.1.2	, 2.2.4	, 3.1.1	,6.1.1,	8.1.1,	8.1.2							
CO5	1.3.1	, 8.1.1	, 8.1.2	, 9.2.4	, 10.1.	1, 10.1	.2, 11.	2.1						

ASSESSMEN	NT PATTERN						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	70	-	-	-	-	100
CAT2	40	60	-	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	60	40	-	-	-	-	100
ESE	40	60	-	-	-	-	100

22BPC723	DOWNSTREAM PROCESSING LABOR	RATORY	SEM	IES	ГER	R VII
PREREQUISIT	TES	CATEGORY	L	T	P	C
NIL		PC	0	0	3	1.5

Course To implement the various product separation techniques. To perform different product isolation techniques. To create deeper understanding of final product purification.

LIST OF EXPERIMENTS

- 1. Solid liquid separation Sedimentation.
- 2. Solid liquid separation Centrifugation.
- 3. Solid liquid separation Filtration.
- 4. Cell disruption techniques Physical, Chemical, and Mechanical method.
- 5. Isolation of products Aqueous two-phase extraction.
- 6. Isolation of products Adsorption
- 7. Purification Ammonium sulphate precipitation and Dialysis
- 8. High resolution Purification Ion-exchange chromatography.
- 9. High resolution Purification Gel filtration chromatography.
- 10. Product polishing Crystallization and freeze drying (Lyophilization)

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 60 Periods

TEXT BOOK:

- Roger G.Harrison, Paul Todd, Scott R.Rudge and Demetri P.Pterides, "Biosepartions Science and Engineering", Oxford University Press,2nd Edition,2015.
- R.O. Jenkins, (Ed.), "Product Recovery In Bioprocess Technology Biotechnology By Open Learning Series", Butterworth-Heinemann, 1st Edition, 1992

COURSE OUTCOMES:	Bloom's
	Taxonomy
On completion of the course, the students will be able to:	Mapped
CO1 Apply techniques for the recovery of products from fermentation broth.	K1
CO2 Decide and Perform experiments for isolating bio products.	K2
CO3 Concentrate and purify the products through various techniques.	K2
CO4 Able to formulate and finish the bioproducts.	K3

COUNS	<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NIIC	CLI	11011	141111	11121								
a) CO and	PO I	Mappi	ng											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	-	-	-	-	1	2	1	1	1	1	1	3	2
CO2	2	2	3	-	-	1	1	1	2	2		2	3	2
CO3	2	2	2	1	-	-	-	-	1	1		1	1	2
CO4	2	2	-	3	-	-	1	1	2	1	2	3	3	1
22BPC723	2	2	2	2	3	-	1	2	1	1	-	2	3	3
1 – Slight,	2-M	oderat	e, 3 - 3	Substa	ntial									

b) CO an	d Key Performance Indicators Mapping
CO1	1.2.1,2.2.2
CO2	1.2.1,2.2.2
CO3	1.2.1,2.2.2
CO4	1.2.1,2.2.2
CO5	1.2.1,4.1.2,4.1.3

22BEE702 ENGINEERING PROJECTS IN COMMUNITY SERVICE SEMESTER VI
--

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	0	0	4	2

Course	To provide an environment where teams of students can exercise their
Objectives	engineering skills by being exposed to realistic systems and customers and at the
	same time helping their community.

Problem identification – Identifying the issues within the community -Preliminary survey - Preparing a questionnaire, formats and survey forms. - A preliminary survey including the socio-economic conditions of the allotted habitation - Different types of surveys, tools and techniques for collecting the information. - Analysis of collected data and mapping of issues with the solutions available. - Based on the survey and the specific requirements of the habitation, Community Awareness Campaigns – Identifying the factors – Normalization of factors and finding the path way for problem solution – Selection of problem from the community and mapping of issues - Planning for working: Aim, objective and scope, time line - Application of engineering knowledge and tools for solutions Validation of the solution by supervising the execution of solution - Measuring the attainment of the solution: Feedback from community

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COURSE OUTCOMES:							
On comple	On completion of the course, the students will be able to:						
		Mapped					
CO1	Identify engineering related problems in the community.	K2					
CO2	Analyze and Design different solutions to solve the problems of	K4					
	community.						
CO3	Apply economical solution to those problems in the field.	K4					
CO4	To understand complexity and ambiguity	K1					
CO5 Connections with professionals and community members for learning and							
	career opportunities						

Course Art	Course Articulation Matrix													
COs/ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	2	2	-	1	2	1	-	2	-	1	-	1	1
CO2	-	2	2	-	1	2	1	-	2	-	1	-	1	1
CO3	-	2	2	-	1	2	1	-	2	-	1	-	1	1
CO4	-	2	2	-	1	2	1	-	2	2	1	-	1	1
CO5	-	2	2	-	1	2	1	-	2	2	1	-	1	1
22BEE702	-	2	2	-	1	2	1	-	2	-	1	-	1	1
1 – Slight, 2	1 – Slight, 2 – Moderate, 3 – Substantial													

22BEE803	CAPSTONE PROJECT	SEMESTER VIII				
PREREQUISITES	5	CATEGORY	L	T	P	С
	NIL	EEC	0	0	16	8

Course Objectives To carry out the literature review. To identify the problem statement. To design the research work. To analyze and interpret results using advanced analytical tools. To develop writing and presentation skills

DESCRIPTION

The students should perform a project with the following criteria:

- Background of the study
- Hypothesis and rationale.
- Plan of the study.
- Designing of the experiment.
- Validation.
- Results and interpretation.
- Discussion.
- Conclusion and Significance of the study.
- Outcomes and Summary.
- Report preparation and Presentation (PPT)

Students are encouraged to publish their original results in journals.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 240 Periods Total: 240 Periods

COUI	COURSE OUTCOMES:					
On co	mpletion of the course, the students will be able to:	Taxonomy Mapped				
CO1	Acquire practical knowledge on the selected area of biotechnology project	K4				
CO2	Identify, design and analyze the experiments in the systematic and ethical approach.	K5				
CO3	Develop a project as an individual or in a team.	K6				
CO4	Develop the communication skills for project presentation.	K6				
CO5	Develop the writing skills for drafting the project report.	K6				

a) CO and	PO N	Aappin	g											
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	-	2	-	-	1	2	1	-	-	-	2	3	2
CO2	•	3	2	3	3	-	-	2	2	-	2	1	3	2
CO3	-	-	-	-	-	-	-	-	3	2	-	-	2	3
CO4	-	-	-	-	2	-	-	-	-	3	2	-	2	3
CO5	-	-	-	-	-	-	-	-	-	3	2	-	2	3
22BEE 803	3	3	2	3	3	1	2	2	2	3	2	2	2	3

1 _	Slight	2 _	Moderate	3 _	Substantial
	onen.	_	moderate.		Substantiai

i Siigiit,	2 Woderate, 5 Substantial					
b) CO and	b) CO and Key Performance Indicators Mapping					
CO1	1.2.1, 3.1.1, 3.1.2, 3.1.3, 6.1.1, 6.2.1, 7.1.2, 8.1.1, 12.1.2					
CO2	2.1.1, 2.1.2, 2.1.3, 3.1.1, 3.1.2, 3.1.3, 4.1.1, 5.1.1, 5.2.2, 8.1.1, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.3,					
	11.1.2, 11.2.1, 12.1.1, 12.3.1, 12.3.2					
CO3	9.1.1, 9.1.2, 9.2.1, 9.2.2, 10.1.2, 10.2.2					
CO4	5.1.1, 5.2.2, 10.1.2, 10.2.2, 11.1.2, 11.2.1					
CO5	10.1.2, 10.2.2, 10.3.1, 10.3.2, 11.1.2, 11.2.1					

22BVA\$03	RESEARCH PUBLICATIONS

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	1	0	0	1

Course Objectives

To understand the philosophy of science and ethics, research integrity and publication ethics. To identify research misconduct and predatory publications. To understand indexing and citation databases, open access publications, research metrics (citations, h-index, impact Factor, etc.). To understand the usage of plagiarism tools.

UNIT – I INTRODUCTION TO RESEARCH

3 Periods

Definition and Objectives of Research, Scientific Methods, Various Steps in Scientific Research, Research planning, Selection of a Problem for Research, Formulation of the Selected Problems, Purpose of the Research, Formulation of research objectives, Formulation of research questions, Hypotheses Generation and Evaluation, Values Underlying Research Integrity; Framework for Good Academic Research Practices.

UNIT – II LITERATURE SURVEY AND TECHNICAL PAPER WRITING

3 Periods

Planning; Research Questions and Documentation; Literature Review; Overview of Literature survey, Literature survey using web of science, Scopus. Data, Precision, Accuracy & errors, Experimentation, Design of Experiments, Research Execution. Documentation & Manuscript writing.

Tutorial on BibTex with LaTex to add references to a document.

Tutorial on using Microsoft word with bibliographic sources.

UNIT - III SCIENTIFIC CONDUCT

3 Periods

Ethics with respect to science and research - Intellectual honesty and research integrity - Scientific misconducts: Falsification, Fabrication and Plagiarism (FFP) - Redundant Publications: duplicate and overlapping publications, salami slicing - Selective reporting and misrepresentation of data

UNIT – IV PUBLICATION ETHICS

3 Periods

Publication ethics: definition, introduction and importance - Best practices / standards setting initiatives and guidelines: COPE, WAME, etc. - Conflicts of interest - Publication misconduct: definition, concept, problems that lead to unethical behaviour and vice versa, types - Violation of publication ethics, authorship and contributor ship - Identification of publication misconduct, complaints and appeals - Predatory publisher and journals.

UNIT – V OPEN ACCESS PUBLISHING

3 Periods

Open access publications and initiatives - SHERPA/RoMEO online resource to check publisher copyright & self-archiving policies - Software tool to identify predatory publications developed by SPPU - Journal finger / journal suggestion tools viz. JANE, Elsevier Journal Finder, Springer, Journal Suggester, etc.

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

TEXT BOOK

- 1 Chaddah, P. (2018). Ethics in competitive research: Do not get scooped; do not 1. Get plagiarized Pothy. com.
- 2. Krause, S. D. (2007). The process of research writing. Steven D. Krause.

REFERENCES

1	Beall, J. (2012). Predatory publishers are corrupting open access. Nature News,
	489(7415), 179
2	Muralidhar, K. (2019). Ethics in science education, research and governance
3	Griffiths, P. A. (1995). On being a scientist: Responsible conduct in research.
	Washington (DC): National Academy Press.
4	Lowry, C. (Ed.). (2016). Choosing & Using Sources: A Guide to Academic
	Research. Ohio State University Libraries
5.	NPTEL course Introduction to Research.

COUF	RSE OUTCOMES:	Bloom's Taxonomy					
On cor	On completion of the course, the students will be able to:						
CO1	Acquire the knowledge on ethical research.	K1					
CO2	Understand how to perform literature survey and design research	K2					
	plan.						
CO3	Get Familiarized with technical paper writing using software tools.	K1					
CO4	Awareness on Publication ethics.	K1					
CO5	Apply the knowledge to select right medium of research Publication.	K3					

a) CO and I	PO M	appiı	ıg			7			1					
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	-	2	8	All	-	10	See .	-	-	1	3	2
CO2	3	3	-	2		16				-	-	2	3	1
CO3	-	-	3	-	7		\$ 60°		7	-	-	-	1	3
CO4	-	-	-	-	-	2		_	_	-	-	1	1	3
CO5	-	-	-	-	-	-	-	-	-	3	-	1	1	3
22BVA\$03	3	3	-	-	-	2	-	-	-	-	-	1	2	3
1 – Slight, 2	– Mo	derate	e, 3 - S	ubstan	tial	•	•					'	•	
b) CO and I	Key P	erfor	mance	Indic	ators I	Mappi	ng							
CO1	1.4.1,	2.1.3	, 2.2.2	, 2.2.3,	2.2.4,	2.3.2, 2	2.4.1,4.	1.1						
CO2	1.4.1,	2.1.3	, 2.2.2	, 2.2.3,	2.2.4, 2	2.3.2, 2	2.4.1, 2	.4.4,4.	1.2					
CO3	3.1.2, 3.1.3													
CO4	6.1.2,12.2.2													
CO5	10.1.1	,10.1	.2,10.1	.3,10.3	3.1, 10.	.3.2, 12	2.2.2							

22BVA\$04	NEXT GENERATION SEQUENCE ANALYSIS
-----------	-----------------------------------

PREREQUISITES	CATEGORY	L	T	P	C
Nil	EEC	1	0	0	1

Course	To understand the different platforms for NGS sequencing, To familiarize w	ith the steps					
Objectives	and alignment tools. To apply the NGS analysis for differential gene expres						
	and other applications						
UNIT – I	DIFFERENT PLATFORMS FOR NEXT GENERATION	3 Periods					
	SEQUENCING						
Different platfor	ms for NGS sequencing-Overview of 454 pyro sequencing system, Illumina s	equencing,					
	ng, Ion Torrent, Nano-pore technology, Pacific Biosciences Single Molecule	Real time					
Sequencing -adv	antages and disadvantages						
UNIT – II	TEPS IN NGS DATA ANALYSIS 3 Periods						
· · · · · · · · · · · · · · · · · · ·	STQ format, Base quality score. NGS data quality control and pre-processing	, Steps in NGS					
data analysis, Vi	sualization tools						
	- Chumbs -						
UNIT – III	LIGNMENT TOOLS 3 Periods						
Burrows-Wheel	er transformation, ELAND (Efficient Large-scale Alignment of Nucleotide Da	atabases)					
UNIT – IV	DIFFERENTIAL GENE EXPRESSION ANALYSIS	3 Periods					
Principles of RN	NAseq, BW aligner, SHRiMP, BFAST, The TopHat/Cufflinks software pa	ickage,					
HTSeq, RNA Se	q data analysis						
UNIT – V	APPLICATIONS OF NGS ANALYSIS	3 Periods					
Case study-differ	rential expression, RNA Seq (transcriptomics), Chip Seq , Metagenomics						
Contact Periods Lecture: 15 Per							

TEXT BOOK

	AT BOOK
1	Xinkun Wang., "Next Generation Sequencing Data analysis", CRC Press, New York,2016
	Stuart M. Brown, "Next-generation DNA Sequencing Informatics", Cold Spring Harbor Laboratory Press, 2015
	Lloyd Low., Martti Tammi., "Bioinformatics A Practical Handbook of Next Generation Sequencing and Its Applications", World Scientific Publishing Co. Singapore,2017

REFERENCES

Ali Masoudi Nejad, Zahra Narimani, Nazanin Hosseinkhan., "Next Generation Sequencing and Sequence Assembly: Methodologies and Algorithms", Series: Springer Briefs in Systems Biology, Springer New York NY, First edition, 2013

	RSE OUTCOMES: unpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the basics of various platforms for NGS sequencing	K1
CO2	Familiarize with the steps involved in NGS analysis	K1
CO3	Familiarize with the alignment tools in NGS analysis	K1
	Apply the different NGS tools for differential gene expression analysis	К3
CO5	Apply the NGS technique for various applications	К3

a) CO and Po	a) CO and PO Mapping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COS/POS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1		1	2	ı	-	-	-	-	-	-	1	3
CO2	1	1		1	2	- 103	100000	-	-	-	-	-	1	3
CO3	1	1	1	1	2	_@	0	- 65	-	-	-	-	1	3
CO4	-	-	-	1	2	2	See Ear	9 5111	3)-	-	-	-	1	3
CO5	-	1	-	1	2	99	July .	10g/		-	-	-	1	3
22BVA\$04	1	1	1	1	2	1			-	-	-		1	3
1 - Slight, 2 -	- Mo	derate	3 - S	ubstan	tial	100	-	Call I	77					
b) CO and K	ey P	erfori	nance	Indic	ators	Mappi	ing	*	//					
CO1	1.4	.1,2.4.	1,4.2.	1,5.2.1	,5.2.2				11					
CO2														
CO3	1.3.1,2.4.1,4.1.2,5.2.2													
CO4	2.2	.3,4.1.	2,5.2.	1,5.2.2	,6.1.1	8	-	The same	c 11		•	•	•	
CO5	2.2	.3,4.1.	2,5.2.	1,6.1.1	Al	W.	- 7	0 4	V/B					

22BVA\$05	PATENTS AND COPYRIGHTS

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	1	0	0	1

Course Objectives

Create an understanding on Intellectual Properties and the importance of it. To understand Trademarks and Trade secrets. To create awareness of unfair completion and methods of it. Create awareness on the protection copyrights and patents. Understand the Ownership rights and transfer. Create awareness of Cyber laws, Cyber Crime and get understanding of Privacy of Data. To create awareness international aspects of IPR and the Emerging Trends in IPR

UNIT – I INTRODUCTION

3 Periods

Introduction to Intellectual property, types of intellectual property, importance of intellectual property rights, agencies Responsible for Intellectual property Registration, Regulatory – Compliance and Liability Issues.

UNIT – II PATENT RIGHTS

3 Periods

Origin, Meaning of Patent, Types, Inventions which are not patentable, Registration Procedure, Rights and Duties of Patentee, Assignment and licence, Restoration of lapsed Patents, Surrender and Revocation of Patents, Infringement, Remedies & Penalties.

UNIT – III COPY RIGHT

3 Periods

Origin, Definition & Types of Copy Right, Registration procedure, Assignment & licence, Terms of Copy Right, Piracy, Infringement, Remedies, Copy rights with special reference to software.

UNIT – IV CYBER LAW

3 Periods

Information Technology Act – Cyber Crime and E-commerce – Data Security – Confidentiality – Privacy – International aspects of Computer and Online Crime.

UNIT – V ROLE OF PATENTS IN PRODUCT DEVELOPMENT & COMMERCIALIZATION

3 Periods

Recent changes in IPR laws impacting patents and copy rights, intellectual cooperation in the science and allied industry. Patentable and non-patentable research. Case studies.

Contact Periods:

Lecture: 15 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 15 Periods

TEXT BOOK

- Deborah E. Bouchoux, "Intellectual Property: The Law of Trademarks, Copyrights, Patents and Trade Secrets", Cengage Learning, Third Edition, 2012.
- 2. Prabuddha Ganguli,"Intellectual Property Rights: Unleashing the Knowledge Economy", McGraw Hill Education, 2011.

REFERENCES

1	R. Radha Krishnan, S. Balasubramanian: "Intellectual Property Rights", Excel Books.
	New Delh.
2	A short course in International Intellectual Property Rights – Karla C. Shippey, World
	Trade Press – 2 nd Edition.
3	Intellectual Property Rights – Heritage, Science, & Society under international treaties
	– A. Subbian, - Deep & Deep Publications – New Delhi.
4	Singh. K, (2010), Intellectual Property Rights in Biotechnology, BCLI, New
	Delhi.

COUF	RSE OUTCOMES:	Bloom's Taxonomy
On coi	mpletion of the course, the students will be able to:	Mapped
CO1	Acquire the knowledge on IPR.	K1
	Understand how to prepare and protect the Inventions, start up ideas and rights of patents and copy rights.	K2
CO3	Get Familiarized with exposure to licensing and transfer of Copyrights and Patents.	K1
CO4	Awareness of Cyber laws and Cyber Crime, to protect the data from Cybercrime.	K1
CO5	Apply the knowledge of patents in product development and commercialization.	К3

					- 21	(23)		100	AN L					
a) CO and F	O Ma	appin	g		絕	100	50	1		è				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	160	4 E 6		372	-	-	1	3	2
CO2	3	-	-	-	-	-	-	-	-	-	-	2	3	1
CO3	1	-	-	-	-	-	-	-	-	-	-	-	1	3
CO4	-	-	-	-	-	2	-	-	-	-	-	1	1	3
CO5	2	2	-	-	-	-	-	-	-	-	-	1	1	3
22BVA\$05	3	2	-	-	-	2	-	-	-	-	-	1	2	3
1 – Slight, 2	– Mod	derate.	, 3 – 5	Substa	ntial									
b) CO and I	Key Po	erforn	nanc	e Indi	icator	s Map	ping							
CO1	1.4.1.	, 12.2.	2											
CO2	1.4.1	, 12.2.	2											
CO3	1.4.1,	, 6.1.1												
CO4	12.2.2	2, 12.3	3.1											
CO5	1.4.1,	, 2.1.3	, 12.2	2.2										

22BVA\$06	VERMICOMPOSTING
-----------	-----------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	1	0	0	1

Course	To understand the importance of vermicompost application to tl	he soil. To learn
Objectives	the art of Vermicomposting. To know the scopes and or	pportunities for
	vermicompost production. To assess the need for vermicom	posting organic
	farming in India. To practice vermicomposting techniques site/location	in appropriate
	Site/iocation	15 periods

- 1. Concept of Vermitechnology Definition and justification
- 2. Importance of Vermicompost in Agri-horticultural practices.
- 3. Vermicomposting for Organic Farming an Eco-Friendly Approach Vermicomposting for Rural Development
- 4. Waste materials: Classification, disposal techniques & their impact on environment
- 5. Earthworms: Type, identification & usefulness
- 6. Anaerobic (Pit) & Aerobic (Heap) composting: techniques & their comparison
- 7. Vermiculturing: Techniques & importance
- 8. Vermicomposting techniques, standard composition of vermicompost
- 9. Vermi-wash production techniques, standard composition of vermiwash
- 10. Economics on Vermiculture and Vermicomposting

Contact Periods: 15

Lecture: 15 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 15 Periods

REFERENCES

- Dr Keshav Singh, Dr Gorakh Nath, Dr Rabish Chandra Shukla and Dr Deepak Kumar Bhartiya, Textbook of Vermicompost: Vermiwash and Biopesticides, 1st edition, 2022, Om publications, India.
- 2 Rhonda Sheman, The Worm Farmer's Handbook, Mid- to Large-Scale Vermicomposting for Farms, Businesses, Municipalities, Schools, and Institutions, 2018, Chelsea Green Publishing, UK.

COURSE OUTCOMES:	Bloom's
	Taxonomy
On completion of the course, the students will be able to:	Mapped
CO1 Basic facts, process and principle applied	K1
CO2 Develop skills on harvesting and management of vermicompost	K2
CO3 Techniques of composting in a limited space	K3
CO4 Recall and demonstrate practical skill	K3
CO5 Understand the scope of vermicomposting as entrepreneurship	K5

a) CO and l	a) CO and PO Mapping													
COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	-	-	-	-	3	•	2	•	-	-	-	1	3
CO2	1	-	-	-	-	3	ı	2	ı	ı	-	1	1	3
CO3	1	-	-	-	-	3		2	-		-		1	3
CO4	1	-	-	-	-	3	1	2	-	1	-	1	1	3
CO5	1	-	-	-	-	3	-	2	-	-	-	-	1	3
22BVA\$06	1	-	-	-	-	3	-	2	-	-	-	-	1	3
1 - Slight, 2	- Mo	derate	3 - 5	Substar	ntial									
b) CO and I	Key F	Perfori	nance	Indic	ators	Mapp	ing							
CO1	1.3.1	, 2.1.3												
CO2	1.2.1	, 2.1.3												
CO3	1.4.1, 2.2.3													
CO4	1.4.1, 2.1.3,3.4.2													
CO5	1.4.1	,3.2.1,3	3.3.2	127	3 3 4 5	De misio	81 116 ST	ハンド	1					

22BVA\$07	MUSHROOM CULTIVATION
ì	

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	1	0	0	1

	NIL	EEC		U	U	1			
	_								
Course	Enable the students to identify edible and	poisonous mush	roor	ns.	Prov	vide			
Objectives	hands on training for the preparation of be	hands on training for the preparation of bed for mushroom cultivation and							
	spawn production. Help the students to learn a means of self-employment								
	and income generation	id income generation							
UNIT – I	INTRODUCTION TO MUSHROOMS			3 Pe	riods	S			
Mushrooms -Ta	xonomical rank -History and Scope of mush	room cultivation	- Ve	eget	ativ	e			
characters of ed	ible and poisonous mushrooms.								
UNIT – II	COMMON EDIBLE MUSHROOMS			3 Pei	riods	s			
Button Mushro	om (Agaricus bisporous), Oyster mushroo	m (Pleurotus sa	jorca	aju),	, pa	ıddy			
straw mushroo	m (Volvariella volvacea), Milky Mushro	oom (Calocybe	indi	ica);	; Ō	ther			
	nportant and medicinal mushroom- Shiitake								
Kabul Dhingri (King Oyster) Mushroom.	`							
UNIT – III	PRINCIPLES OF MUSHROOM CULT	IVATION		3 Pei	riods	s			
Structure and co	instruction of mushroom house. Sterilization of	of substrates. Spa	wn r	rod	ucti	on			
	preparation- production of pure culture, mot								
spawn. Compo	sting technology, mushroom bed preparati	on. Spawning, s	spaw	n r	unn	ing,			
	tivation of oyster and paddy straw mushr								
	and nematodes, weed moulds and their manage								
UNIT – IV	HEALTH BENEFITS OF MUSHROOM	AS		3 Pe	riods	s			
Nutritional and	medicinal values of mushrooms. Therapeutic	aspects- antitum	or e	ffec	t				
UNIT – V	POST HARVEST TECHNOLOGY	5		3 Pe	riods	s			
Preservation of mushrooms - freezing, dry freezing, drying, canning, quality assurance and									
entrepreneurshi	p. Value added products of mushrooms.								

Contact Periods:

Lecture: 15 Periods **Tutorial: 0 Periods Practical: 0 Periods** Total: 15 Periods

TEXT BOOK

- 1 Pandey, R.K. and Ghosh, S.K. (1996). A handbook of Mushroom Cultivation. Emkey Publication.
- 2 Pathak, V.N. and Yadav, N. (1998). *Mushroom Production and Processing Technology*. Agrobios, Jodhpur.
- 3 Nita, B. (2000). *Handbook of Mushrooms*. Vol 1 & 2. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.

REFERENCES

Tripathi, D.P. (2005) Mushroom Cultivation, Oxford & IBH Publishing Co. PVT.LTD, New Delhi.

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Identify edible types of mushroom	K1
CO2	Gain the knowledge of cultivation of different types of edible mushrooms and spawn production	K1
CO3	Manage the diseases and pests of mushrooms	K2
CO4	Know the medicinal values of mushroom	K2
CO5	Learn a means of self-employment and income generation	K2

a) CO and Po	O Map	ping												
COs / POs	PO1	PO 2	PO 3	P O 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1	-	-	-	-	3	004	2	-	-	-	-	1	3
CO2	1	-	-	60-1		3	20	2	n -	-	-	-	1	3
CO3	1	-	-	-(0	V E	- 3	A	2) -	-	-	-	1	3
CO4	1	-	-		1	3	200	2	-	-	-	-	1	3
CO5	1	-	-	7	1	3	- 10	2	7 -	-	-	-	1	3
22BVA\$07	1	-	1	/	1	3	/	2/	-	1	-	1	1	3
1 - Slight, 2 - 1	Moder	ate, 3	– Suł	stanti	al	1		1			l.			
b) CO and Ke	y Perf	orma	nce I	ndica	tors N	Aapp i	ing	1						
CO1 1.3	.1, 2.1.	.3			8		Mr.	1						
CO2 1.2	.1, 2.1.	.3		858	1	1	1	N/A	ile .					
CO3 1.4	.1, 2.2.	.3		(=					5)					
CO4 1.4	.1, 2.1.	3,3.4.	2	Can	440	1	2-10	PLUB.	/					
CO5 1.4.	1,3.2.	1,3.3.2	2		0		0	9						

22BVA\$08	PHARMACOVIGILANCE
-----------	-------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	1	0	0	1

Course	To understand the Adverse Drug Reactions. To understand the Reporting	Database To						
	eligible to understand the role of clinical pharmacist in Pharmacovigilar							
UNIT – I	INTRODUCTION TO PHARMACOVIGILANCE	3 Periods						
Overview of P	harmacovigilance. Brief History of Pharmacovigilance. Thalidomide's	s Impact on						
	cope, definition and aims of Pharmacovigilance	1						
UNIT – II	ADVERSE DRUG REACTIONS	3 Periods						
Adverse Drug	Reactions (ADRs) - Classification, mechanism, predisposing fact	ors, causality						
assessment for	ADRs. ICH Definition of Adverse Drug Reaction. Medical Evaluation	on of Adverse						
Events in Pharm	nacovigilance. Diagnosis and Managements of ADRs.							
UNIT – III	INDICATORS OF PHARMACOVIGILANCE	3 Periods						
Reporting Data	base, Role of clinical pharmacist in Pharmacovigilance. Pharmacovigilan	nce indicators.						
Rationale and o	bjectives and Classification of pharmacovigilance indicators.							
UNIT – IV	GUIDELINES FOR PHARMACOVIGILANCE	3 Periods						
Signal Detectio	n, Managements and Risk Assessments & Evaluation in Pharmacovigila	nce. Regulator						
Guideline & lav	ws in Pharmacovigilance. Regulatory Aspects in Pharmacovigilance.							
UNIT – V	DRUG REGULATORY ACTIVITES	3 Periods						
Standard Term	s and Terminology used in Pharmacovigilance. Medical Dictional	ry for Drug						
Regulatory Activities MedDRA								
Contact Period	Contact Periods:							
Lecture: 15 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Pe	eriods						

TEXT BOOK

- 1 SK Gupta, **Textbook of Pharmacovigilance** .2nd Edition, Jaypee Brothers, Medical Publishers Pvt. Limited., 2019.
- 2 John Talbot, Patrick Waller ,Stephens' Detection of New Adverse Drug Reactions.5th Edition, John Wiley & Sons, 2003

REFERENCES

- 1 Barton Cobert, Cobert's Manual of Drug Safety and Pharmacovigilance, 2nd Edition,. ISBN-13: 9780763791599,2012
- 2 n Introduction Pharmacovigilance, 2nd Edition, Wiley-Blackwell, 2017.
- 3 s for Biomedical Research on Human Subjects 2000. ICMR, New Delhi.

COURS	SE OUTCOMES:	Bloom's Taxonomy
On comp	pletion of the course, the students will be able to:	Mapped
CO1 le	earn about development of pharmacovigilance	K1
CO ₂ e	stablish pharmacovigilance programme in an organization	K1
CO ₃ v	arious methods that can be used to generate safety data and signal detection	K2
CO ₄ d	evelop the skills of classifying drugs, diseases and adverse drug reactions.	K2
CO ₅ U	Understand global scenario of Pharmacovigilance	K2

a) CO ar	nd PO	Mappi	ng											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	-	-	-	-	3	-	2	-	-	-	-	1	3
CO2	1	-	-	-	-	3	-	2	-	1	-	-	1	3
CO3	1	-	-	-	-	3	-	2	-	-	-	-	1	3
CO4	1	-	-	-	-	3	-	2	-	-	-	-	1	3
CO5	1	-	-	-	-	3	-	2	-	-	-	-	1	3
22BVA\$08	3 1	-	-	-	-	3	-	2	-	-	-	-	1	3
1 – Slight,	2-Mc	derate,	$3 - S\iota$	ıbstant	ial									-
b) CO and	l Key P	erforn	nance	Indica	tors M	lappin	g							
CO1 1	.3.1, 2.	1.3												
CO2 1	.2.1, 2.	1.3												
CO3 1	.4.1, 2.	2.3												-
CO4 1	.4.1, 2.	1.3,3.4.	.2											
CO5 1	.4.1,3.2	.1.3.3.2	2											

22BVA\$09

BASICS OF YOGA FOR YOUTH EMPOWERMENT

PREREQUISITES	CATEGORY	L	T	P	C
NIL	EEC	1	0	0	1

Course	To understand the importance of physical and mental health a	nd refresh life
Objectives	energy and retard ageing process also purify the minds and u	understand the
	values of moral virtues	
UNIT – I	PHYSICAL HEALTH	3 periods

Manavalakalal (SKY) Yoga: Introduction - Education as a means for youth empowerment - Greatness of Education - Yoga for youth Empowerment. Simplified Physical Exercises: Hand, Leg, Breathing, Eye exercises - Kapalabathi, Makarasana Part I, Makarasana Part II, Body Massage, Acu pressure, Relaxation exercises - Benefits. ;Yogasanas 1: Pranamasana - Hastha Uttanasana - Pada Hasthasana - Aswa Sanjalana Asana - Thuvipatha asva Sanjalana asana - Astanga Namaskara - Bhujangasana - Atha Muktha Savasana - Aswa Sanjalana Asana - Hastha Uttanasana - Pranamasana. ; Pranayama: Naddi suddi-Clearance Practice - Benefits. ; Simplified Physical Exercise - Kayakalpa Practices - Meditation Practices.

UNIT – II LIFE FORCE

3 periods

Reasons for Diseases: Natural reasons (Genetic / imprints, Planetary Position, Natural calamities and climatic changes) - Unnatural reasons (Food habits, Thoughts, Deeds).; Philosophy of Kaya kalpa: Physical body - Sexual vital fluid - Life force - Bio-Magnetism - Mind.; Maintaining youthfulness: Postponing old age Transformation of food into seven components Importance of sexual vital fluid - Measure and method in five aspects of life - Controlling undue Passion.; Kayakalpa practice: Aswini Mudra - Ojas breath - Benefits of Kaya Kalpa.

UNIT – III MENTAL HEALTH

3 periods

Mental Frequencies: Beta, Apha, Theta and Delta wave - Agna Meditation explanation - benefits.; Shanti meditation: Shanti meditation explanation - benefits.; Thuriya Meditation: Thuriya Meditation explanation - benefits.; Benefits of Blessing: Self blessing (Auto suggestion) - Family blessing- Blessing the others - World blessing - Divine protection.

UNIT – IV VALUES

3 periods

Human Values: Self-control - Self-confidence - Honesty Contentment - Humility- Modesty Tolerance - Adjustment-Sacrifice - Forgiveness.; Purity (Body, Dress, Environment) - Physical purity - Mental purity-Spiritual purity.; Social Values: Non-violence - Service - Patriotism - Equality - Respect for parents and elders - care and protection - Respect for teacher; Punctuality-Time Management

UNIT – V MORALITY (VIRTUES)

3 periods

Importance of Introspection: I-Mine (Ego, Possessiveness); Six Evil Temperaments - Greed – Anger - Miserliness - Immoral sexual passion - Inferiority and superiority Complex – Vengeance; Maneuvering of Six Temperaments: Contentment – Tolerance - Charity - Chastity Equality - Pardon (Forgiveness); Five essential Qualities acquired through Meditation: Perspicacity – Magnanimity – Receptivity – Adaptability - Creativity (Improved Memory Power)

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

TEXT BOOK:

- 1 B.K.S Iyengar, "*Light on yoga (yoga dipika*)", 2008, Harper Collins publishers Daryaganj, New Delhi, India.
- 2 B.K.S Iyengar, "*Light on pranayama*", 2008, Harper Collins publishers Daryaganj, New Delhi, India.

REFERENCES:

- 1 M.D. Gharote and S.K. Ganguly: "*Teaching methods for yogic practice, Kaivalyadhama*", 1998, SMYM Samiti, Lonavla, Pune Dist, Maharashtra.
- 2 Nagendra H.R.: "New perspective in stress Mangement", 2000, Pub. Vivekanandha Kendra Yoga Prakashana, Bangalore, India.

COUF	RSE OUTCOMES:	Bloom's					
		Taxonomy					
On cor	On completion of the course, the students will be able to:						
CO1	To train the students to develop their body for leading a healthy life.	K1					
CO2	To rejuvenate life energy and achieve spiritual development.	K3					
CO3	To strengthen mind, will power and concentration.	K2					
CO4	To introspect and purify mind.	K5					
CO5	To understand the values of peace, harmony and non-violence in	K4					
	revitalizing human society.						

a) CO and	l PO N	Tappin	g		110	10	_ /	K //						
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	-	3	3	2	11	3-1	BISS A		-	-	-	3	3	2
CO2	2	2	-	3		W-	1	1	2	1	2	3	3	2
CO3	2	2	3	1	2	2	-	-	- B	-	-	2	2	3
CO4	1	3	3	2	1	-	1	1	- 280	-	-	3	3	2
CO5	1	3	ı	-	17	0 3	Y5.	Bicula	/ 1	1	1	3	3	2
22BVA\$09	1	3	3	2	16	2	1		2	1	2	3	3	2
1 - Slight,	2-M	oderat	e, $3 - 3$	Substa	ntial	- 63								
b) CO and	l Key	Perfor	manc	e Indi	cators	Mapp	ing							
CO1		1.1,1.	2,1.3,1	.4,2.1,2	2.2,2.3,	2.4,3.1	, 3.2,4.							
CO2				.4,2.1,2		,2.4, 3.	2,4.1,4.	2,12.2,	12.3					
CO3	1.1,1.3,1.4,2.1, 2.2,2.4,4.1													
CO4			4.3.3,											
CO5		1.3.1,	2.4.2,	2.4.4, 4	1.3.1, 5	.3.1, 5.	3.2							

22BVA\$10	BIOINDUSTRIES TRADE AND POLICY REGULATIONS	BIOINDUSTRIES TRADE AND POLICY REGULATIONS						
PREREQUISIT	TES	CATEGORY	L	T	P	C		
Nil		EEC	1	0	0	1		

Course	To understand the multinational dimensions in management of a b	iotech company
Objectives	and the business operations in more than one country	roteen company
J	and the business operations in more than one country	
UNIT – I	AN OVERVIEW OF INTERNATIONAL BUSINESS	3 periods
	d drivers of International Business- Changing Environment of I	
	ountry attractiveness- Trends in Globalization- Effect and	
Globalization-	International Institution: UNCTAD Basic Principles and Major A	chievements,
	Features of IBRD, Role and Advantage of WTO.	
UNIT – II	THEORIES OF INTERNATIONAL TRADE AND	3 periods
	INVESTMENT	
Theories of In	ternational Trade: Mercantilism, Absolute Advantage Theory, Con	mparative Cost
	sher-Ohlin Theory-Theories of Foreign Direct Investment: Produ	
	ket Power, Internationalisation-Instruments of Trade Policy: Vo	luntary Export
	ministrative Policy, Anti-dumping Policy, Balance of Payment.	
	GLOBAL ENTRY	3 periods
	npulsions Strategic options - Global portfolio management-	
	erent forms of international business, advantages - Organization	
	business - Organizational structures - Controlling of internation	
	control - Performance of global business, performance evaluation	
	PRODUCTION, MARKETING, FINANCIALS OF GLOBAL	3 periods
	BUSINESS	
	ction: Location, scale of operations- cost of production- Stand	
	nMake or Buy decisions- global supply chain issues- Quality	
	of markets: Marketing strategy- Challenges in product develop	
	nd channel management. Foreign Exchange Determination S	ystems: Basic
	s of Exchange Rate Regimes- Factors Affecting Exchange Rates.	
	CASE STUDY	3 periods
	enzymes-biomolecules – trade and policy regulations implemented	d in biotech
industries – ca	J	
Contact Period		
Lecture: 15 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Pe	eriods

TEXT BOOK

1	Charles W.I. Hill and Arun Kumar Jain, "International Business", 6th edition, Tata McGraw Hill, New Delhi, 2010.
2	Michael R. Czinkota, Ilkka A. Ronkainen and Michael H. Moffet, " <i>International Business</i> ", 7 th Edition, Cengage Learning, New Delhi, 2010
3	K. Aswathappa, "International Business", 5th Edition, Tata Mc Graw Hill, New Delhi, 2012.

REFERENCES

1	John D. Daniels and Lee H. Radebaugh, "International Business", Pearson Education
	Asia, New Delhi,12 th edition.
2	Vyuptakesh Sharan, "International Business", 3rd Edition, Pearson Education in South
	Asia, New Delhi, 2011
3	Rakesh Mohan Joshi, "International Business", Oxford University Press, New Delhi,
	2009

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	In Depth knowledge of driving factors of international Business	K1
1	Understanding of theories of trade and investment practiced in the global world	K1
	Deep Insights in to various market entry strategies followed by Global Organizations	K2
	Ability to identify the various global production and supply chain issues and have an understanding of foreign exchange determination system	K2
	To understand the trade and policy regulations implemented in biotech industry with case study	K2

a) CO and	I PO M	Lappin	g		8		0.10	JI.						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	1	-	100	100	100	1000	3	-	-	-	-	3	1
CO2	1	1	-	-	100		60	-	-	-	-	-	3	1
CO3	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO4	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO5	1	1	-	-	-	-	-	-	-	-	-	-	3	1
22BVA\$10	1	1	-	-	-	-	-	-	-	-	-	-	3	1
1 – Slight, 2	- Mo	derate,	3 – Su	bstant	ial		•				•			
b) CO and I	Key P	erforn	nance]	Indica	itors N	Tappin	g							
CO1	1.4.1,	, 2.1.3												
CO2	1.4.1,	, 2.1.3												
CO3	1.4.1,	, 2.1.3,												
CO4	1.4.1,	, 2.1.3												
CO5	1.4.1,	, 2.1.3,												

22BVA\$11

Professional Skills and Career Readiness

SEMESTER

PREREQUISITES	CATEGORY	L	T	P	С
	EEC	0	0	2	1

Course Objectives

- To develop students' technical communication and presentation skills.
- To build confidence in public speaking, group discussions, and interviews.
- To improve English communication (verbal and written) for placement scenarios.

S.No	Topics / Activities	Hours
1	Ice-breaker & Self-introductions – Students introduce	2
	themselves, Elevator pitch	
2	Technical Presentations – Students prepare a short (3-4 min)	4
	presentation on a simple technical topic	
3	PowerPoint / Slide Design - Best practices, visual aids,	3
	readability	
4	Email Etiquette & Writing – Structure, tone, salutations, follow-	2
	up emails	
5	Report Writing – Format, structure, executive summary,	4
	technical vs business report	
6	Group Discussion & Debates - Practice GD on technical/non-	4
	technical issues, role-playing, feedback	
7	Mock Interviews – One-on-one and panel interviews, feedback	4
8	Resume / CV Building - Format, content, tailoring to job	3
	descriptions, highlighting projects	
9	Non-verbal Communication Skills – Body language, posture,	2
	eye contact, voice modulation	
10	Reflection & Feedback - Peer feedback, self-reflection, goal-	2
	setting for communication improvement.	

Contact Periods:

Lecture: 00 Periods Tutorial: 00 Periods Practical: 30 Periods Total: 30 Periods

COU	RSE OUTCOMES:	Bloom's
		Taxonomy
On co	ompletion of the course, the students will be able to:	Mapped
CO1	Prepare and deliver technical presentations.	K3
CO2	Write professional emails, reports, and resumes.	K3
CO3	Participate in group discussions and role-plays.	K3
CO4	Demonstrate interview skills in mock scenarios.	K3
CO5	Use non-verbal communication effectively (body language,	K3
	eye contact).	

ASSE	SSMENT PATTERN:	
No En	d Semester Examination	
Only	Continuous Assessment	
Cont	inuous Assessment Marks distribution	
1.	Presentation Assessment	25
2.	Written Assessment	20
	(Emails/report/resume)	
3.	Mock Interview	25
4.	Participation (GDs, role-plays, and non-	30
	verbal communication)	
	Total	100

22BVA\$12	Placement Training	SEMESTER	
22BVA\$12	Placement Training	SEMESTER	

PREREQUISITES	CATEGORY	L	T	P	С
	EEC	0	0	2	1

Course Objectives

- To refine communication skills targeted at placement interviews (technical and HR).
- To enhance confidence in problem-solving, aptitude, and group tasks.
- To instill professional behaviour and soft skills required for workplace success.

S. No	Topics / Activities	Hours
1	Aptitude & Reasoning Training - Logical puzzles, quantitative reasoning	4
2	Group Discussion – Real-world engineering case studies, brainstorming	4
3	Leadership & Teamwork Workshop – Role plays, team tasks, problem solving, decision making	
4	Behavioural Interviews – Common HR questions, STAR method, mock HR interview	4
5	Technical Interviews – Mock technical questions, peer feedback, clarity of answer.	4
6	Personal Branding - Crafting LinkedIn profile, writing cover letters, personal elevator pitch	4
7	Group Exercise / Presentation – Group presentation on a hypothetical project	4
8	Feedback & Reflection Session - Students reflect on their performance, set professional goals	2

Contact Periods:

Lecture: 00 Periods Tutorial: 00 Periods Practical: 30 Periods Total: 30 Periods

COU	RSE OUTCOMES:	Bloom's Taxonomy
On co	ompletion of the course, the students will be able to:	Mapped
CO1	Solve common aptitude and reasoning problems for placement	K3
	tests.	
CO2	Perform well in group discussions and case-study discussions.	K3
CO3	Demonstrate leadership and teamwork in simulated workplace	K3
	situations.	
CO4	Participate confidently in technical and HR interviews.	K3
CO5	Develop a professional portfolio (resume, LinkedIn, cover letter).	K6

ASSESSMENT PATTERN: No End Semester Examination							
	Only Continuous Assessment						
Continuous Assessment Marks distribution							
1.	Aptitude Test		20				
2.	Group Case Presentation		20				
3.	Mock Interviews		25				
4.	Portfolio Evaluation		25				
5.	Participation & Reflection		10				
	•	Total	100				

22BEE\$IX

INTERNSHIP/INDUSTRIAL TRAINING

PREREQUISITES	CATEGORY	L	T	P	C
NIL		0	0	0	4

Course Objectives

To understand the functioning and mission of the institute or the industry, to get hands on training in handling the equipments or instruments, to conduct experimental or production process, to analyze and interpret outcomes to check for the quality using advanced analytical tools and to develop writing and presentation skills.

DESCRIPTION

Internship or Industrial training can be carried out at any type of Biotechnology based industry/institute as follows:

- 1. Food Processing industry
- 2. Bioprocess Engineering and Fermentation industry
- 3. Forensic Science Research Institute
- 4. Animal Cell Culture Laboratory
- 5. Plant Tissue Culture Laboratory
- 6. Genetics and Plant Breeding Institute
- 7. Waste Management Industry
- 8. Pharmaceutical Company
- 9. Enzyme Production Unit
- 10. Microbiological testing Laboratory

Day wise curriculum for internship shall be provided by common consensus of Industry HR, Department Heads of Industry, Head of The Department of Institution, Placement and Training Officer and Faculty Supervisor.

Syllabus shall be approved by the Principal before internship training The

modules include the following

- 1. Overview and history of the industry
- 2. Visit to various divisions in the industry
- 3. Choosing one or two different departments for training
- 4. Study and training -operation of major equipments
- 5. Manufacturing processes
- 6. Process planning
- 7. Process control
- 8. Quality assessment

- 9. Study of TQM concepts implementation
- 10. ISO and other quality systems implementation
- 11. Knowledge management system
- 12. Completion of specific projects assigned
- 13. Case study

Contact Periods:

1 week to 4 weeks

COURSE OUTCOMES: On completion of the course, the students will be able to:						
CO1	Acquire practical knowledge on the selected area of biotechnology research and development	K1				
	Identify, design and analyze the experiments in the systematic and ethical approach.	К3				
CO3	Develop a production process or an experimental prototype as an individual or in a team.	K2				
CO4	Develop the communication skills for technical presentation.	K2				
CO5	Develop the writing skills for drafting the internship report.	K3				

COURS	LAN	1100	LAII	IOI I	IAII	шл	2	-0	11					
a) CO and l	PO Ma	apping	;				TIP.							
COs / POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	-	2	-	T.	9	2	1		-	-	2	3	2
CO2	-	3	2	3	3	A	- 8	2	2	1	2	1	3	2
CO3	-	-	-	-		1/		-	3	2	-	-	2	3
CO4	-	-	-	-	2	10	NO.	-	10_	3	2	-	2	3
CO5	-	-	-	-	13	160	5 -50		7 -	3	2	-	2	3
18BEE\$IX	3	3	2	3	3	1	2	2	2	3	2	2	2	3
1 - Slight, 2	2 – Mo	oderat	e, 3 –	Substa	antial									
b) CO and	Key l	Perfor	manc	e Ind	icator	s Maj	ping							
CO1	7.1.2,	9.1.1												
CO2	7.2.1,	11.1.2	, 12.1	.2										
CO3	6.1.1,	7.1.1,	11.2.1							•	•		•	
CO4	6.2.1,	7.1.2,	11.3.1	1, 12.1	.2	•		•						
CO5	7.1.2,	8.1.1.	12.2.2	2						-			-	

22BPE\$01	IMMUNOTECHNOLOGY
-----------	------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	To understand the principles of microbial pathogenesis, clinical	importance of
Objectives	specific pathogens and inculcate knowledge on recent outbredisease transmission and understand the recent techniques pathogens.	
IINIT I	ANTICENS	0 Davieds

UNIT – I ANTIGENS 9 Perio Types of antigens, preparation of antigens for raising antibodies, handling of animals,

adjuvants and their mode of action.

UNIT – II ANTIBODIES &IMMUNODIAGNOSIS

9 Periods

Monoclonal and polyclonal antibodies – production, Western blot analysis, immunoelectrophoresis, SDS-PAGE - purification and synthesis of antigens, ELISA-principle and applications, radio immuno assay (RIA) – principles and applications, non isotopic methods of detection of antigens-enhanced chemiluminescence assay

UNIT – III ASSESSMENT OF CELL MEDIATED IMMUNITY

9 Periods

Identification of lymphocytes and their subsets in blood using flow cytometry. Estimation of cytokines, macrophage activation, macrophage microbicidal assay, in-vitro experimentation to understand the pathogenesis and defense mechanisms.

UNIT – IV IMMUNOPATHOLOGY

9 Periods

Preparation and storage of tissues, identification of various cell types and antigens in tissues, isolation and characterization of cell types from inflammatory sites and infected tissues, immunocytochemistry – immunofluoresecence, immunoenzymatic technique, immuno electron microscopy.

UNIT - V MOLECULAR IMMUNOLOGY

9 Periods

Preparation of vaccines, application of recombinant DNA technology for the study of the immune system, production of anti idiotypic antibodies, catalytic antibodies, application of PCR technology to produce antibodies and other immune molecules, immunotherapy with genetically engineered antibodies – Tetramer.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 Judith A Owen, Jenni Punt, Sharon A Stranford, Patricia P Jones, Janis Kuby, Kuby Immunology 8th Edition, New York: W.H. Freeman, 2019.
- Peter Williams, Julian Ketley & George Salmond, "Methods in Microbiology: Bacterial Pathogenesis", Vol. 27, Academic Press, 1998.
- 3 Iglewski B.H and Clark V.L "Molecular basis of Bacterial Pathogenesis", Academic Press, 1990.

REFERENCES

- Recent reviews in Infect. Immun., Mol. Microbiol., Biochem. J., EMBO,Life sciences etc.
- Nester, Anderson, Roberts, Pearsall, Nester, "Microbiology: A Human Perspective", Mc Graw Hill, 3rd Edition, 2001.
- 3 Eduardo A. Groisman, "Principles of Bacterial Pathogenesis", Academic Press, 2001.
- 4 Sunil K. Lal, "Molecular Biology of the SARS-Coronavirus", springer, 2010

COUR	Bloom's						
		Taxonomy					
On completion of the course, the students will be able to:							
CO1	To understand the basics of microbiology and the discovery.	K1					
CO2	To know how to analyze pathological condition in molecular level.	K1					
CO3	To acquire knowledge on the pathogenesis of recent outbreaks.	K2					
CO4	To learn basic molecular biology and experimental skills.	K2					
CO5	To Study the modern approaches to control pathogens.	K2					

a) CO and	PO M	appin	g		7									
COs/POs	D()1	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PO1	PSO	PSO
COS/FOS	rui	2	3	4	5	6	7	8	9	0	1	2	1	2
CO1	1	1	-	-	11-	1	NUZ.	(17)	₩-	-	-	-	3	1
CO2	1	1	-	-	//-	JE		-	11-	-	-	-	3	1
CO3	1	1	-	-	11-	8-10		-	1	-	-	-	3	1
CO4	1	1	2	-		89		1-10	NE.	-	-	-	3	1
CO5	1	1	-	-		10	-	The same	Z ABA	-	-	-	3	1
18BPE\$01	1	1	2	-	Ú	91	-	-	3	-	-	-	3	1
1 - Slight,	2-M	odera	te, 3 -	- Subs	stantia	1_{a}	360	- 05	10					
b) CO and	Key	Perfo	rman	ce In	dicato	ors M	appin	ıg						
CO1		1.4.1	, 2.1.3	3		- 0		84						
CO2		1.4.1	, 2.1.3	3										
CO3 1.4.1, 2.1.3														
CO4 1.4.1, 2.1.3,3.4.2														
CO5	, ,													

Test / Bloom's Category	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creatin g (K6) %	Total %
*							
CAT1	70	30	-	-	-	-	100
CAT2	60	40	-	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	60	40	-	-	-	-	100
ESE	60	40	-	-	-	-	100

22BPE\$02	NEUROBIOLOGY AND COGNITIVE SCIENCES

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives	To provide an understanding on the fundamentals on neuronal drugs and on how the brain responds and adapted environments and outline of their mechanism of action. fundamental relationships among neural activity, drug therapy, behavior.	s to changing To learn the
UNIT – I	NEUROANATOMY	9 Periods
C1 'C' 4'		, c

Classification of central and peripheral nervous system; Structure and function of neurons; type of Neurons; Synapses; Glial cells; Myelination; Brief anatomy of Brain and Spinal cord Blood Brain barrier; Meninges and Cerebrospinal fluid; Spinal Cord; Neural Development.

UNIT – II NEUROPHYSIOLOGY

9 Periods

Resting and action potentials; Mechanism of action potential conduction; Voltage dependent channels - sodium and potassium channels; nodes of Ranvier; Chemical and electrical synaptic transmission; information representation and coding by neurons.

UNIT – III NEUROPHARMACOLOGY

9 Periods

Classification of neurotransmitters and their mechanism of action: acetyl choline, serotonin, dopamine and -amino butyric acid (GABA); Peptide transmitters: mechanism of action; Nicotinic and muscarinic acetyl choline receptors; hormones and their effect on neuronal function.

UNIT – IV APPLIED NEUROBIOLOGY

9 Periods

Basic mechanisms of sensations like touch, pain, smell and taste; neurological mechanisms of vision and audition; skeletal muscle contraction.

UNIT - V BEHAVIOUR AND COGNITIVE SCIENCE

9 Periods

Basic mechanisms associated with motivation; control of feeding, sleep, hearing and memory; Disorders associated with the nervous system - Parkinson's disease, Alzheimer's disease, schizophrenia, Epilepsy; Anxiety and mood disorders - Depression, Agrophobia.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- Dale Purves, George J. Augustine, David Fitzpatrick, William C. Hall, "*Neuroscienc"e*, Oxford university press, sixth edition, 2018.
- 2 Striedter, G. F, "Neurobiology: a functional approach", Oxford University press, 2016

REFERENCES

Gondon M.Shepherd "Neurobiology", Oxford University Press, Third edition, 1994
 Mark F. Bear, Barry W. Connors, Michael A. Paradiso, "Neuroscience: Exploring the Brain", Lippincott Williams and Wilkins, Fourth Edition, 2015.
 Squire, L., Berg, D., Bloom, F.E., du Lac, S., Ghosh, A., Spitzer, N.C, "Fundamental Neuroscience", UK: Academic Press, Fourth edition, 2012.
 Eric R. Kandel, James H. Schwartz, Thomas M. Jessell, Steven A. Siegelbaum, A. J.

Hudspeth, "Principles of Neural Science", McGraw Hill / Medical, Fifth Edition, 2012.

l l	COURSE OUTCOMES: Upon completion of the course, the students will be able to:							
	CO1 Comprehend the central and peripheral nervous system, and describe the structure and functions of neurons and supporting cells							
CO2	Analyze the functioning of voltage-dependent channels and conduction mechanism	K2						
CO3	Understand the concept of synaptic transmission and the working details of various neurotransmitters.	K2						
CO4	Evaluate the mechanism of sensations and skeletal muscle contraction	K2						
	Fathom the fundamental concepts behind behavioural science and associated disorders.	K2						

a) CO and P	O Maj	pping												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	-	-	6	many.	-	-	-	-	-	1	1
CO2	2	1	1	i	1			5 F-R/F	9	-	ì	-	1	1
CO3	2	1	-	-	(SV		91-17-5	20 B	¥)-	-	-	-	1	1
CO4	2	1	-	-	-/4		/		-	-	-	-	1	1
CO5	2	1	1	1	(1)		-	3	77-	-	-	-	1	1
22BPE\$02	2	1	1	1	714	1	-	Ā-	(f) -	-	-	-	1	1
1 - Slight, 2 - Slight						1	ATTE		W					
b) CO and K	Cey Per	forma	nce In	dicato	rs Map	ping			11					
CO1	1.2.1,	, 2.1.2				3/		1	1					
CO2	1.2.1,	, 2.1.2				8	-	10						
CO3	1.2.1,	, 2.1.2			1868	10		D.	600					
CO4	1.2.1,	, 2.1.2			E	TON		3						
CO5	1.2.1,	, 2.1.2			100	Po .	00	ALC U	ال					

Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	40	60	-	-	-	-	100
CAT2	30	70	-	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	60	40	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100
ESE	40	60	-	-	-	-	100

22BPE\$03	MOLECULAR PATHOGENESIS
-----------	------------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	To understand the principles of microbial pathogenesis, clinical importa	nce of specific
Objectives	pathogens and inculcate knowledge on recent outbreaks and their diseas	e transmission
	and understand the recent techniques to study the pathogens.	
UNIT – I	BASICS OF MICROBIOLOGY AND IMMUNOLOGY	9 Periods

Louis Pasteur's contributions - Robert Koch's postulates - early discoveries of microbial toxins, Vaccines and Antibiotics - Attributes & components of microbial pathogenesis, Host natural defense mechanism - humoral and cellular defense mechanisms - complements - inflammation process - general disease symptoms - Pathogen resistance to the defense mechanisms.

UNIT – II PATHOGENESIS OF DISEASES

9 Periods

Virulence factors - gene regulation in virulence of pathogens - labile & stable toxins; Vibrio Cholera - Cholera toxin - E.coli pathogens: - ETEC - EPEC - EHEC - EIEC Hemolytic Uremic Syndrome - Shigella toxin - Plasmodium Life cycle - Antimalarials based on transport processes - Influenza virus - action of amantidine.

UNIT - III RECENT DISEASE OUTBREAKS

9 Periods

Clinical features and molecular mechanism of pathogenesis- Superficial mycoses- Dermatophytes-Intracellular stage-H1N1; HIV- Disease transmission of Chickengunya – Dengue, SARS-CoV-2.

UNIT – IV EXPERIMENTAL STUDIES ON HOST PATHOGEN 9 Periods INTERACTIONS

Virulence assays; cytopathic - cytotoxic effects. Criteria and tests in identifying virulence factors - attenuated mutants - signal transduction and host responses.

UNIT - V MODERN APPROACHES TO CONTROL PATHOGENS

9 Periods

Serotyping - Immuno and DNA based techniques - New therapeutic strategies based on life threatening pathogens - Vaccines - DNA, subunit and cocktail vaccines. Modern diagnosis based on highly conserved virulence factors.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 Judith A Owen, Jenni Punt, Sharon A Stranford, Patricia P Jones, Janis Kuby, **Kuby** Immunology 8th Edition, New York: W.H. Freeman, 2019.
- 2 Iglewski B.H and Clark V.L "Molecular basis of Bacterial Pathogenesis", Academic Press, 1990.

REFERENCES

- Nester, Anderson, Roberts, Pearsall, Nester, "Microbiology: A Human Perspective", Mc Graw Hill, 3rd Edition, 2001.
- 2 Eduardo A. Groisman, "Principles of Bacterial Pathogenesis", Academic Press, 2001.
- 3 Sunil K. Lal, "Molecular Biology of the SARS-Coronavirus", springer, 2010.
- Peter Williams, Julian Ketley & George Salmond, "Methods in Microbiology: Bacterial Pathogenesis", Vol. 27, Academic Press, 1998.

COURSE OUTCOMES:	Bloom's
	Taxonomy
On completion of the course, the students will be able to:	Mapped
CO1 To understand the basics of microbiology and the discovery.	K1
CO2 To know how to analyze pathological condition in molecular level.	K1
CO3 To acquire knowledge on the pathogenesis of recent outbreaks.	K2
CO4 To learn basic molecular biology and experimental skills.	K2
CO5 To Study the modern approaches to control pathogens.	K2

a) CO and	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
		_												
CO1	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO2	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO3	1	1	-	-		-	-		-	,	-	-	3	1
CO4	1	1	2	-		-	-		-	1	-	-	3	1
CO5	1	1	-	-		-	-		-	1	-	-	3	1
22BPE\$03	1	1	2	-		-	-		-	-	-	-	3	1
1 – Slight, 2	2 – Mo	derate	2, 3 - S	Substar	ntial	112	ATTO NO.	2						
b) CO and	Key F	erfor	mance	Indic	ators	Mapp	ing	39_						
CO1		1.4.1	, 2.1.3		7/89		ரத்தை மு	10.00	(0)	M				
CO2		1.4.1	, 2.1.3		C		Die	T. B						
CO3		1.4.1	, 2.1.3		1	1			de					
CO4		1.4.1	, 2.1.3	,3.4.2	110	A. A.		4						-
CO5		1.4.1	•		11.	10 1		Λ	11				•	

ASSESSMENT	PATTERN - THI	EORY	d Sales	//			
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		808	110	Z999			
CAT1	50	50			-	-	100
CAT2	60	40		-	-	-	100
Individual	70	30		-	-	-	100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual	60	40	-	-	-	-	100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	50	50	-	-	-	-	100

22BPE\$04	CANCER BIOLOGY
-----------	----------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	To describe the epidemiological factors and molecular swit	ches of cancer					
Objectives	development at cellular and molecular level and to familiarize	with the current					
	strategies of cancer diagnosis, prevention and therapy.						
UNIT – I	FUNDAMENTALS OF CANCER BIOLOGY	9 periods					
Epidemiology	of cancer: Environmental factors, Viruses, Life style habits, Mutat	ions. Regulation					
of cell cycle,	Modulation of cell cycle in cancer: pRb, p53. Classification of ca	ancer forms and					
hallmarks of c	rancers.						
UNIT – II	PRINCIPLES OF CARCINOGENESIS	9 periods					
Theory of ca	rcinogenesis, Chemical carcinogenesis, Physical carcinogenesis;	X-ray radiation:					
	f radiation carcinogenesis. Mutations that cause changes in signal mo						
basis of cance	r: DNA repair.						
IINIT III	PRINCIPLES OF MOLECULAR CELL BIOLOGY OF	0					
UNIT – III	CANCER	9 periods					
Cyclin depend	dent kinases, Tumor suppressor genes, Oncogenes, Virus and cancer	s: DNA viruses,					
Retroviruses.	Signaling Pathways: GPCR, RAS, JAK-STAT, Wnt-β-Catenin, No.	otch, Hedgehog,					
Myc, NF-кb.	Growth factors related to transformation, Telomerases, p53 mediated	Apoptosis.					
UNIT – IV	PRINCIPLES OF CANCER METASTASIS	9 periods					
Clinical signi	ficances of invasion, Three step theory of invasion, Proteinases	and tumor cell					
invasion. Ang	iogenesis: VEGF signaling.						
UNIT-V	CANCER DETECTION AND THERAPY	9 periods					
Cancer screening and early detection, Detection using biochemical assays, Tumor markers.							
Advances in cancer detection invasive and non-invasive methods. Different forms of therapy-							
Chemotherapy, Radiation therapy, Immunotherapy, Molecular therapy, Nanoparticle mediated drug							
delivery. Use of signal targets towards therapy of cancer; Gene therapy.							
Contact Periods: 45							
Lecture: 45 P	Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods						

TEXT BOOK

1	Stella Pelengaris, Michael Khan, 'The Molecular Biology of Cancer', Wiley Blackwell
	Publishing, 2 nd edition, 2013
2	Robert A. Weinberg, 'The Biology of Cancer', Garland Science, 2ndedition, 2014

REFERENCES

1	Ruddon R. W., 'Cancer Biology', 4th edition, Oxford University Press, 2007
2	Athena Aktipis C., Randolph M Nesse, 'Evolutionary foundations for Cancer Biology', Evol
	Appl., January; 6(1): 144-15, 2013
3	King Roger J.B., Mike Robbins, 'Cancer Biology', Prentice Hall, 3rd edition, 1996
4	Pezzella, F., Tavassoli, M., & Kerr, D. J. (Eds.). (2019). Oxford textbook of cancer biology.
	Oxford University Press.

COUI	RSE OUTCOMES:	Bloom's Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
CO1	Understand the epidemiology of carcinogenesis.	K2
CO2	Describe the complex molecular pathways and regulatory switches	K2
	involved in the transformation of a normal cell to a cancer cell.	
CO3	Describe the stages of cancer leading to the movement of cancer cells	K2
	across the body.	
CO4	Develop knowledge on the current strategies in cancer diagnosis and	K3
	therapy.	
CO5	Summarize the novel methods in the diagnosis and treatment of cancer.	К3

COUN	JE AN	11001	LATIO	1 1/1/4/11	MA									
a) CO a	and PO	Марр	oing											
COs/	PO	PO	PO3	PO4	PO5	PO6	PO 7	PO	PO	PO	PO	PO	PS	PS O2
POs	1	2					/	8	9	10	11	12	01	UZ
CO1	-	-	1	-	-	-	-	-	-	-	-	-	-	-
CO2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO5	-	-	-	-		2	W.D.	3	-	-	-	-	-	-
22BPE	1	1	2	1	(8 2 d m	3.0000	1115 51	2	1	1	1	1	0	0
\$04			2	1	(TV)		TO G		1	1	1	1	U	0
1 – Slig	ht, 2 –	Moder	ate, $3-9$	Substant	ial			1						
b) CO a	and Ke	y Perf	ormanc	e Indica	tors Ma	pping	- [4]	. 77						
CO1	6.1.1,	6.1.2			1100		*							
CO2	6.1.1, 6.1.2													
CO3	2.2.1, 10.1.3													
CO4	10.1.3													
CO5	CO5 4.1.3, 4.2.1, 4.3.1,8.1.1													

ASSESSMENT	r dattedn	THEODY	100	769			
Test / Bloom's Category*	Rememberi ng (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	10	10	10	10	10	100
CAT - 2	50	10	10	10	10	10	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	20	20	20	20	10	10	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	20	20	20	20	10	10	100
ESE	20	20	20	20	20	-	100

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	To provide foundation and inform		_				
Objectives		al properties, pharmacolo					
	biopharmaceuticals. To learn the p	procedures in drug manufactur	ing and d	envery systems			
UNIT – I : INT	RODUCTION			9 Periods			
	industry & development of drugs, ats, Generics and its advantages, Drugs						
UNIT – II : PH	ARMACOKINETICS AND PHAR	RMACODYNAMICS		9 Periods			
Metabolism and	Irug action, Pharmacokinetics – Mech I Excretion; Zero, First, Second-order inding, bioavailability and bioequival	r reactions kinetics; compartn					
UNIT – III : Do	OSAGE FORMS	TO V		9 Periods			
preparation and	f dosage forms: solid unit dosages coating; liquids – solutions, susper lytical methods in drug product analyst	nsion; semi-solid - ointments	s, pastes,	suppositories -			
UNIT – IV : BI	OPHARMACEUTICAL PRODUC	CT DEVELOPMENT		9 Periods			
antibodies, In	Reaction process for bulk drug manufacture - Penicillin, Streptomycin, Vitamins A, B12, cancer vaccines, antibodies, Insulin, Interferons, recombinant proteins – streptokinase, Asparginase and growth hormones-Gonadotrophins, Erythropoietin.						
UNIT – V : DR	UG DELIVERY	Z69		9 Periods			
Design and pharmacokinetic principles of controlled drug delivery systems, Oral, Parenteral controlled release systems, Transdermal, Ophthalmic drug delivery systems.							
Contact Period Lecture: 45 Per	~ -	Practical: 0 Periods	Tota	l: 45 Periods			

TEXT BOOKS:

- 1 Gary Walsh, "*Pharmaceutical Biotechnology: Concepts and Applications*", John Wiley and Sons, Fourth edition, 2007.
- 2 Leon Lachman et al, "*Theory and Practice of Industrial Pharmacy*", Lea and Febiger, 3rd Edition, 1986.

REFERENCES

1	Remington's, "The science and practice of Pharmacy", Elsevier, Twenty third edition, 2021
2	Brahmankar D M, Jaiswal S B, "Biopharmaceutics and Pharmacokinetics A Treatise", Vallabh Publisher, 2008.
3	Anya M. Hillery and Kinam Park, " <i>Drug Delivery: Fundamentals and Applications</i> ", 2nd Edition, CRC Press, 2016
4.	S.P. Vyas and Dixit, Pharmaceutical Biotechnology CBS Publishers and Distributors, New Delhi, 2003.

COURSE OUTCOMES: On completion of the course, the students will be able to:					
CO1	Perceive the pharmacological terms and drug development and its regulation	K1			
CO2	Interpret the basic concepts of pharmacokinetics and drug metabolism	К3			
CO3	Understand the forms of dosage, packing and contaminant analysis	K2			
CO4	Enlighten the process involved in bulk drug manufacturing	K2			
CO5	Discuss novel methods for production and delivery of biopharmaceuticals	К3			

COURSE A	KIIC	JULA	HOL	NIA.	IKIA									
a) CO and PC) Map	ping												
COs / POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	2	1	2	3	2	1	-	3
CO2	-	-	-	-	-	-	3	1	1	2	2	1	-	3
CO3	-	-	-	-	-	2	2	-	-	1	3	2	-	3
CO4	-	-	-	-		_3_	3_	3	-	1	2	2	-	3
CO5	-	1	-	10%	8 ± h		3	3	9 -	-	-	3	3	3
22BPE\$05	-	1	-	1 🕅	V .	3	- 3	3	0 -	-	2	2	-	3
1 – Slight, 2 -	- Mod	erate,	$3 - S\iota$	ıbstan	tial			-						
b) CO and K	Cey Pe	rform	ance	Indic	ators	Mapp	oing	7	7					
CO1	7.1.2	2, 9.1.1			1	10	_ /	\ //						
CO2	7.2.1	,11.1.	2, 12.	1.2				2 11						
CO3	6.1.1	, 7.1.1	1,11.2.	1 /	1 3	10	No.	. 11						
CO4	6.2.1	, 7.1.2	2,11.3	.1, 12.	1.2	9	-	9						
CO5	7.1.2	2, 8.1.1	1,12.2.	2 A	()	K.	10		3.					

ASSESSMENT	ASSESSMENT PATTERN												
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
Category*	` ,	` '	` /	` /	` ,	, ,							
CAT1	70	30	-	-	-	-	100						
CAT2	60	40	-	-	-	-	100						
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100						
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40	60	-	-	-	-	100						
ESE	60	40	-	-	-	-	100						

22BPE\$06	TISSUE ENGINEERING
-----------	--------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	To learn the fundamentals of tissue engineering and tissue repairing. To acquire
Objectives	knowledge on clinical applications of tissue engineering. To understand the basic
	concept behind tissue engineering focusing on the stem cells, Bio materials and its applications.

UNIT – I INTRODUCTION

9 periods

Introduction to tissue engineering: Basic definition; current scope of development; use in therapeutics, cells as therapeutic agents, cell numbers and growth rates, measurement of cell characteristics morphology, number viability, motility and functions. Measurement of tissue characteristics, appearance, cellular component, ECM component, mechanical measurements and physical properties

UNIT – II TISSUE ARCHITECTURE

9 periods

Tissue types and Tissue components, Tissue repair, Engineering wound healing and sequence of events. Basic wound healing Applications of growth factors: VEGF/angiogenesis, Basic properties, Cell-Matrix& Cell-Cell Interactions, telomeres and Self-renewal, Control of cell migration in tissue engineering.

UNIT – III BIO-MATERIALS

9 periods

Biomaterials: Properties of biomaterials, Surface, bulk, mechanical and biological properties. Scaffolds & tissue engineering, Types of biomaterials, biological and synthetic materials, Biopolymers, Applications of biomaterials, Modifications of Biomaterials, Role of Nanotechnology.

UNIT - IV BASIC BIOLOGY OF STEM CELLS

9 periods

Stem Cells: Introduction, hematopoietic differentiation pathway Potency and plasticity of stem cells, sources, embryonic stem cells, hematopoietic and mesenchymal stem cells, Stem Cell markers, FACS analysis, Differentiation, Stem cell systems- Liver, neuronal stem cells, Types & sources of stem cell with characteristics: embryonic, adult, haematopoetic, fetal, cord blood, placenta, bone marrow, primordial germ cells, cancer stem cells induced pleuripotent stem cells.

UNIT-V CLINICAL APPLICATIONS

9 periods

Stem cell therapy, Molecular therapy, In vitro organogenesis, Neurodegenrative diseases, spinal cord injury, heart disease, diabetes, burns and skin ulcers, muscular dystrophy, orthopedic applications, Stem cells and Gene therapy Physiological models, issue engineered therapies, product characterization, components, safety, efficacy. Preservation –freezing and drying. Patent protection and regulation of tissue-engineered products, ethical issues.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 Bernhard O.Palsson, Sangeeta N.Bhatia, "Tissue Engineering", Pearson Publishers 2009.
- 2 Meyer, U.; Meyer, Th.; Handschel, J.; Wiesmann, H.P., "Fundamentals of Tissue Engineering and Regenerative Medicine", 2009.

REFERENCES

- 1 Bernard N. Kennedy (editor)., "Stem cell transplantation, tissue engineering, and cancer applications", Nova Science Publishers, 2008.
- 2 Raphael Gorodetsky, Richard Schäfer., "**Stem cell-based tissue repair**", RSC Publishing, 2011.
- 3 R. Lanza, I. Weissman, J. Thomson, and R. Pedersen, "Handbook of Stem Cells", Two Volume, Volume 1-2: Volume 1-Embryonic Stem Cells; Volume 2-Adult & Fetal Stem Cells, Academic Press, 2004.
- 4 R. Lanza, J. Gearhart etal (Eds), "Essential of Stem Cell Biology", Elsevier Academic press, 2006.
- 5 J. J. Mao, G. Vunjak-Novakovic et al (Eds), "Translational Approaches In Tissue Engineering & Regenrative Medicine", Artech House, INC Publications, 2008.

COURSE OUTCOMES:	Bloom's Taxonomy
Upon completion of the course, the students will be able to:	Mapped
CO1 Ability to understand the components of the tissue architecture.	K1
CO2 Opportunity to get familiarized with the stem cell characteristics and their relevance in medicine.	K1
CO3 Awareness about the properties and broad applications of biomaterials.	K2
CO4 Overall exposure to the role of tissue engineering and stem cell therapy in Organogenesis.	K3
CO5 Understand the role of tissue engineering and materials in clinical applications	K3

COURSE ARTICULATION MATRIX

CO₅

COURSE	LAK	TICULA	MIOI	NIM	IKIA									
a) CO and F	O Ma	apping												
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	-	1	-	-	-	2	2	2	-	-	1	2	2	2
CO2	1	-	-	1	1	-	-	2	3	3	2	2	1	3
CO3	1	1	-	-	-	-	-	1	1	-	-	-	1	3
CO4	-	-	-	-	1	-	_	2	3	3	1	1	1	3
CO5	-	2	-	1	3	-	-	-	-	-	-	-	2	2
22BPE\$06	1	1	-	1	2	2	2	2	3	3	2	2	2	3
1 - Slight, 2	ght, 2 – Moderate, 3 – Substantial													
b) CO and	Key	Perforn	ance	Indica	ators N	Tappin	g							
CO1		2.2.2, 6.	1.1, 7.	1.2, 8.	1.1, 11	.1.1, 12	2.1.2							
CO2		1.1.1, 4.	2.1, 5.	2.1, 8	.1.1, 9.	1.1,9.2	.1,10.1	.1, 10.	1.2, 11	1.1.1,	12.1.2			
CO3		1.1.1, 2.	1.1, 8	.1.1, 9	.1.1									
CO4		5.2.1, 8	3.1.1, 9	0.1.1,9	.2.1,10	.1.1, 10	0.1.2,	11.1.1,	12.1.2					

1.1.1,2.2.2, 4.2.1, 5.2.1, 6.1.1,7.1.2, 8.1.1, 9.1.1,9.2.1,10.1.1, 10.1.2,

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	10	10	10	10	10	100
CAT2	50	10	10	10	10	10	100
Individual	20	20	20	20	10	10	100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual	20	20	20	20	10	10	100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	50	10	10	10	10	10	100

2BPE\$07	MOLECULAR FORENSICS
----------	---------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives

Create an understanding on laws and Principles of forensic science. To be aware of tools and techniques of Forensic science. Create awareness on genetics of forensic. To be familiar of DNA profiling and its limitation. To create awareness on the recent trends in forensics.

UNIT – I INTRODUCTION TO FORENSIC SCIENCE

9 Periods

Forensic Science: Definition of Forensic Science, The Role of the Forensic Laboratory, History and Development of Forensic Science in India & Abroad, Pioneers in Forensic Science, Multidisciplinary nature, Forensic Technology solving crimes with advanced technology, Forensic intelligence and Interviews. Forensic Evidences: Concise of Forensic Physical, Biological, Chemical and Psychological evidences, Medico-Legal Cases. Laws and Principles of Forensic Science: Law of Exchange (Locard), Law of Individuality, Law of Comparison, Law of Progressive Changes and Law of Probability, Branches of Forensic Science..

UNIT – II GENERAL FORENSIC TOOLS AND TECHNIQUES

9 Periods

Definition, Need of Instrumentation in Forensic Science, Qualitative and quantitative methods of analysis, Destructive and Non-Destructive Methods, Separatorary techniques, Hyphenated techniques, Accuracy, Precision, Signal to noise ratio, Sensitivity and detection limit, sources of noise, Instrument calibration. Microscopy: Theory and basic principles, setup and Forensic applications of Compound, Comparison, Fluorescence, Polarized, Stereo-zoom microscope. Structure and Forensic applications of Scanning Electron microscope (SEM), Transmission Electron Microscope (TEM). Thin Layer Chromatography: Basic Principle, Setup, visualization and Forensic applications etc.

UNIT – III FORENSIC GENETICS

9 Periods

Human Genetics, Heredity, Alleles, Mutations and Population Genetics, The concept of Genetics polymorphism, Hardy-Weinberg Law. DNA Statistics: frequency estimate calculations, interpretations, allele frequency determination, Paternity/Maternity index, Sibling index, Probability of match. Human Genome Project: Introduction, History, Goals, Benefits, Social, Ethical and Legal Issues. DNA Forensic Databases, Ethical, Legal, and Social Issues Associated with DNA Databanking, Potential Benefits of DNA Databanking Quality control, certification and accreditation.

UNIT – IV | ADVANCED DNA FORENSICS

9 Periods

DNA Profiling: Introduction, History of DNA Typing, molecular biology of DNA, variations, polymorphism, DNA Extraction-Organic and Inorganic extraction, Comparison of Extraction methods, Commercial kits DNA typing systems- RFLP analysis, PCR amplifications, sequence polymorphism. Analysis of SNP, YSTR, Mitochondrial DNA, Ancient DNA typing, Evaluation of results. Forensic Significance of DNA profiling: Applications in disputed paternity cases, child swapping, missing person's identity- civil immigration, veterinary, wildlife and agriculture cases, legal perspectives- legal standards for admissibility of DNA profiling, procedural and ethical concerns, status of development of DNA profiling in India and abroad. New and future technologies: DNA chips, SNPs and limitations of DNA profiling.

UNIT - V RECENT TRENDS IN FORENSIC SCIENCE

9 Periods

Environmental Forensics: Definition, Legal processes involving environmental forensic science. Geoforensics Global Positioning System; Basic principles and applications. Biometrics in Personal Identification: Introduction, Concepts of Biometric Authentication, Role in person Identification, Techniques and Technologies (Finger Print Technology, Face Recognition, IRIS, Retina Geometry, Hand Geometry, Speaker Recognition, Signature Verification and other forensic related techniques). Bioterrorism: Definition, Concepts of Biosecurity and microbial forensics, Weapons of mass destruction (WMD), mass-casualty weapons (MCW), NBC and CBRNE, Dirty Bombs.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

1	James, S.H and Nordby, J.J. (2003) Forensic Science: An introduction to scientific and
	investigative techniques CRC Press,

2. J A Siegel, P.J Saukko (2000) Encyclopedia of Forensic Sciences Vol. I, II and III, Acad. Press.

REFERENCES

	1	Willdard, H. H (1974) Instrumental Methods of Analysis.
	2	Settle, F.A. (1997) Handbook of Instrumental Techniques for Analytical Chemistry, Prentice Hall.
	3	John M. Butler (2005) Forensic DNA Typing: Biology, Technology, and Genetics of STR Markers Academic Press.
ĺ	4	Forensic DNA Profiling Protocols (1998) Patrick J. Lincoln and Jim Thomson; Humana
		Press, Inc.

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Acquire the knowledge of forensic science.	K1
CO2	Understand the Instrumentation in Forensic Science	K2
CO3	Awareness of forensic genetics and its significance	K1
CO4	Get familiarize with DNA profiling and its applications in forensic.	К3
CO5	Apply the knowledge of forensic science in various fields.	К3

COURSE ARTICULATION MATRIX

12.2.2, 12.3.1

1.4.1, 2.1.3, 12.2.2

CO4

CO5

a) CO and	PO M	appin	g		A	K		D	3					
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	-	-	-	13	33	0 to _ e3		372	-	-	1	3	2
CO2	1	-	-	-	3	-	-	-	-	-	-	2	3	1
CO3	1	-	-	-	-	-	-	-	-	-	-	-	1	3
CO4	-	-	-	-	-	-	-	-	-	-	-	1	1	3
CO5	2	2	-	-	-	-	-	-	-	-	-	1	1	3
22BPE\$07	2	2	-	-	-	-	-	-	-	-	-	1	2	3
1 – Slight, 2	2 – Mo	derate	$\frac{1}{5}$	Substa	ntial	ı	ı	•	l	l.	l			II.
b) CO and	Key P	erfor	mance	Indi	cators	Map	ping							
CO1	1.4.1, 12.2.2													
CO2	1.4.1, 5	5.2.2, 1	12.2.2											
CO3	1.4.1													

ASSESSME	NT PATTERN -	- THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	70	30	-	-	-	-	100
CAT2	20	20	60	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100
ESE	40	60	- Marine	-	-	-	100

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

INIL	T E												
Course	To impart comprehensive understanding of the chemical basis of dru	g action including											
Objectives	physicochemical and steric properties of drug. To study the class	sification, chemical											
	nomenclature, generic names and synthesis of various medicinal agents. To												
	understand the structure activity relationship, biochemical/molecular basis of mechanism												
of action and uses of drug.													
UNIT – I	PRINCIPLES OF MEDICINAL CHEMISTRY	9 Periods											
Physicochemic	al properties in relation to biological action: Ionization, Drug distri	bution and pKa											
values and the	ir relation to drug transport, hydrogen bonding, redox potential, surf	ace activity and											
chelation. Steri	c properties of drugs: optical and geometrical isomerism. Functional g	roup and their											
effects of on dr	rug action: steric effect, concept of isosterism, bioisosterism, homologs	and analogs.											
UNIT – II	DRUGS ACTING ON SYNAPTIC AND NEURO-EFFECTOR	9 Periods											
	JUNCTION SITES	7 - 55 422											
	biochemical/molecular basis of mechanism of action, structure activ												
	eo chemical aspects, physiochemical properties and synthesis of												
	e class of Cholinergics, Anticholinergics, Anticholinesterases and Adre												
UNIT – III	DRUGS ACTING ON THE CENTRAL NERVOUS SYSTEM	9 Periods											
	molecular basis of mechanism of action, structure activity relationship												
	Sedatives, Opioid analgesics, Anticonvulsants and Psychopharmac	cological agents											
• •	intidepressants, anxiolytics).												
UNIT – IV	DRUGS ACTING ON CARDIOVASCULAR SYSTEM	9 Periods											
Structural basi	s of mechanism of action, structure activity relationship including	physiochemical											
	synthesis of selected drugs belonging to the class of anti-anginal, vasoo	dilators, calcium											
	rs and cardiac glycosides.												
UNIT-V	AUTOCOIDS	9 Periods											
	edures, uses, structure activity relationship including physicochemical p												
	ses of drugs Antihistamines, Eicosanoids, Analgesic-antipyretics, Anti	- inflammatory											
(non-steroidal)	agents.												

Contact Periods: 45

Lecture: 45Periods Tutorial: 0Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 AshutoshKar, "Medicinal Chemistry", 6th Edition, New Age International (P) Ltd. Publishers, New Delhi 2015.
- 2 Graham L. Patrick, "An introduction to Medicinal Chemistry",6th Edition, Oxford University Press, 2017

REFERENCES

- 1 Donald J. Abraham, "Burger's Medicinal Chemistry and Drug Discovery", Vol V, 6th Edition, John Wiley and Sons, Inc., 2003.
- 2 William O Foye, "Thomas L Lemke, David A Williams Foye's Principles of Medicinal Chemistry", 7th Edition, Wolters Kluwer Health Adis (ESP) Publisher, 2012.
- 3 "Indian Pharmacopoeia", Vol-I,7th Edition, Published by Indian Pharmacopoeia Commission
 India, 2014
- 4 Ilango, K. and Valentina, P., "Text book of MedicinalChemistry", Vol.1, 1st edition, Keerthi Publishers, 2007.

COUR	SE OUTCOMES:	Bloom's Taxonomy
On con	appletion of the course, the students will be able to:	Mapped
CO1	Helps in correlating between pharmacology of a disease and its mitigation	K1
CO2	To understand the drug metabolic pathways, adverse effect and therapeutic	K1
	value of drugs	
	To know the structural activity relationship of different class of drugs.	K2
CO4	Well acquainted with the synthesis of some important class of drugs.	K3
CO5	To understand the chemistry of drugs with respect to their pharmacological	К3
	activity.	

\CO ID			1110.	11111										
a) CO and P	O Map	pping												
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2
COS/FOS	1	2	3	4	5	6	7	8	9	10	11	12	1501	PSUZ
CO1	3	2	1	-	-	-	-	-	3	1	-	1	3	3
CO2	3	-	3	2	2	-	-	-	3	2	-	2	3	3
CO3	1	1	2	2	2	-	-	-	2	1	-	1	1	2
CO4	2	2	2	2	2	William	2	1	2	2	-	2	1	2
CO5	2	1	2	1,00	1	-0	22	2	2	2	2	2	2	3
22BPE\$08	3	2	2	2	2	\$7.50 B	2		3	2	2	2	1	3
1 – Slight, 2 -	- Mode	erate, 3	- Subs	tantial	100	and the	ME 18							
b) CO and K	Cey Per	forma	nce Inc	licator	s Map	ping		1						
CO1	1.1.2, 1	10.3.1		9/	100	0.	9	//						
CO2 2.1.2,9.1.1														
CO3 1.1.2, 2.1.2, 2.2.1, 9.1.1., 10.1.1														
CO4	1.3.1,2	.1.1, 6.	2.2,8.2.	2	ě.	100	7							
CO5	1.3.1,2	.1.1, 3.	1.6,6.2.	2,7.2.2	,8.2.2,		1	. 11						

ASSESSMENT	ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
Category*		1000									
CAT1	50	10	10	10	10	10	100				
CAT2	50	10	10	10	10	10	100				
Individual	20	20	20	20	10	10	100				
Assessment 1											
/Case Study 1/											
Seminar 1 /											
Project1											
Individual	20	20	20	20	10	10	100				
Assessment 2											
/Case Study 2/											
Seminar 2 /											
Project 2											
ESE	50	10	10	10	10	10	100				

22BPE\$09

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	To provide foundational knowledge about genomes and p	proteomes with			
Objectives	relevant tools for genome analysis, including DNA sequencing	techniques and			
	bioinformatics software. Additionally, students will	learn about			
	methodologies used in proteomics, such as mass spectromet	try and protein			
	microarrays.				
UNIT – I	OVERVIEW OF GENOMES OF BACTERIA, ARCHAEA	0 novioda			
UNII – I	AND EUKARYOTA	9 periods			
Genome organization of prokaryotes and eukaryotes, Gene structure of Bacteria, Archaea					

and Eukaryotes, Minimal cell Genome, Human genome project, Introduction to functional and comparative genomics.

UNIT – II MAPPING TECHNIQUES

9 periods

Cytogenetic mapping, Radiation hybrid mapping, Fish-STS mapping, SNP mapping, Optical mapping. Linking and jumping of clones, Gap closure, Pooling strategies, Electronic PCR, Automation in Genome sequencing-Next Generation Sequencing.

UNIT – III FUNCTIONAL GENOMICS

9 periods

Gene finding, Annotation of genome – experimental and computational approach. ORF and functional prediction, Transcriptomics (RNA sequencing) & analysis of transcriptomic data, high-throughput analysis of gene expression, DNA microarrays and expression profiling

UNIT – IV PROTEOMICS TECHNIQUES

9 periods

Protein level estimation-Edman protein microsequencing, Protein cleavage, 2D gel electrophoresis, metabolic labelling. Detection of proteins on SDS gels. Mass spectrometry principles of MALDI-TOF, Fourier Transform Ion Cyclotron Resonance Mass Spectrometer, Orbitrap Mass Analyzer, Tandem MS, Peptide mass fingerprinting.

UNIT-V PROTEIN PROFILING

9 periods

Large-scale protein profiling using proteomics, Protein-protein interactions, Functional Proteomics Protein microarrays, proteome database. Bioinformatics-based tools for analysis of proteomics data.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 Arthur Lesk., "Introduction to Genomics", 3rd Edition, Oxford University Press, 2017.
- 2 Richard Twyman, Ph.D Cfe, George A, "Principles of Proteomics", 2nd Edition, Garland Science, 2013.
- 3 Nawin C. Mishra, Günter Blobel, "Introduction to Proteomics: Principles and Applications", 1st Edition, Wiley, 2010.

REFERENCES

	1	Conard, Edward.	"Genomics"	. Apple	Academics,	2010
--	---	-----------------	------------	---------	------------	------

- 2 Liebler, "Introduction to Proteomics", Humana Press, 2002
- 3 T.A Brown, "Introduction to Genetic: A molecular Approach", Garland Science, Taylor and Francis, 2012
- 4 R.M.Twyman, S.B. Primrose, "*Principle of Genome Analysis and Genomics*", Wiley Blackwell Publications, 2007.

COUF	RSE OUTCOMES:	Bloom's Taxonomy
On cor	impletion of the course, the students will be able to:	Mapped
CO1	Understand the basic structure and organization of genomes of	K1
	Prokaryotes	
CO2	Understand the basic structure and organization of genomes of Eukaryotes	K1
CO3	Have insight on basic organization of proteomes.	K2
CO4	Analyze proteomes and genomes using the relevant tools.	К3
CO5	Get familiarize with the principles of the methodologies of genomic	K3
	and proteomic	

a) CO and P	O Map	ping		- /	1									
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	1	-	- 0	- "		1 -	11 -	-	-	-	-	3	1
CO2	1	1	-	- //	- <u>2</u> \	THE STATE OF THE S	AD-	11-	-	-	-	-	3	1
CO3	1	1	1	- [-83	-	10		-	-	-	-	3	1
CO4	1	1	-	4	-18	a - ⁰	All I	V.Ba	-	-	-	-	3	1
CO5	1	1	-	3		- /			-	-	-	-	3	1
22BPE\$09	1	1	1	100		\$ 600 m		2	-	-	-	-	3	1
1 – Slight, 2	- Moc	lerate,	3 – Sub	stantia								1		
b) CO and	Key Pe	erform	ance I	ndicato	rs Ma	pping								
CO1	1.4.1,	12.2.2												
CO2	1.4.1,	5.2.2, 1	12.2.2											
CO3	1.4.1													
CO4	12.2.2	2, 12.3.1												
CO5	1.4.1,	2.1.3, 1	12.2.2											

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	30	20	_	-	-	100
CAT - 2	50	20	30	_	-	-	100
Individual Assignment 1/Case study 1/Seminar 1/ Project 1	20	60	20	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	20	20	60	-	-	-	100
ESE	20	40	40	HE SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE	-	-	100

22BPE\$10	METABOLIC ENGINEERING
22BPE\$10	METABOLIC ENGINEERING

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	To understand the basics of metabolic pathways to enhance pr	roduc	t vield to					
Objectives	determine the stoichiometry of cellular reactions and reaction rametabolic flux analysis and demonstrate experimental defluxes, to understand the basics of metabolic control analysis and flux control coefficients for metabolic pathways and to demonstrate and validation tests for flux distribution in metabolic networks.	ates, to etermi d to a	perform nation of nalyze the					
UNIT – I	INTRODUCTION TO METABOLIC ENGINEERING		9 Periods					
of metabolic	Overview of cellular metabolism, Comprehensive models for cellular reactions, Coordination of metabolic reactions- Feedback inhibition, Energy charge, Examples of metabolic pathway manipulations for the enhancement of product yield.							
UNIT – II	STOICHIOMETRY OF CELLULAR REACTIONS		9 Periods					
	y of cellular reactions, metabolite balancing, determination of reactions, thermodynamics of cellular reactions.	tion r	ates and					
UNIT – III	METABOLIC FLUX ANALYSIS		9 Periods					
Metabolic flux analysis and its applications, methods for the experimental determination of metabolic fluxes by isotope labeling- MS and NMR in labeling measurement.								
UNIT – IV	METABOLIC CONTROL ANALYSIS		9 Periods					
Analysis of metabolic control analysis, determination of flux control coefficients, MCA of linear and branched pathways- Determination of flux control coefficients.								
UNIT – V	APPLICATIONS OF METABOLIC DESIGN		9 Periods					
Multigene networks, metabolic regulation network at enzyme level and whole cell level, Examples of metabolic pathway manipulations, new concepts for quantitative bioprocess research and development.								

TEXT BOOK

Contact Periods: Lecture: 45 Periods

1 Gregory N. Stephanopoulos, Aristos A. Aristidou, Jens Nielsen, "Metabolic Engineering: Principles and Methodologies", Academic Press 1998.
2 Sang Yup Lee E. Terry Papoutsakis Marcel Dekker, "Metabolic Engineering".inc 1998

Practical: 0 Periods

Total: 45 Periods

Tutorial:0 Periods

REFERENCES:

1	Eberhard O. Voit "Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists" by Cambridge University Press 2000
1	Biochemists and Molecular Biologists" by Cambridge University Press 2000
2	R. Verpoorte, A. W. Alfermann and T. S. Johnson (eds). "Applications of Plant Metabolic
	R. Verpoorte, A. W. Alfermann and T. S. Johnson (eds). " <i>Applications of Plant Metabolic Engineering</i> ". Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. 2007.
2	
3	"Systems Modeling in Cellular Biology: From Concepts to Nuts and Bolts" Edited by Zoltan Szallasi, JorgStelling and VipulPeriwal MIT Press Cambridge 2006
1	Nielsen J and Villadsen J. (1994) "Bioreaction Engineering Principles". New york: Plenum
4	Press

	SE OUTCOMES: appletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To learn stoichiometry and energetics of metabolism.	K1
CO2	To apply practical applications of metabolic engineering in chemical, energy, medical and environmental fields.	К3
CO3	To integrate modern biology with engineering principles.	K2
CO4	To design a system, component, or process to meet desired needs.	K2
CO5	To validate engineering processes and evaluate the consistency of metabolic engineering processes.	К3

a) CO and PO	Mappi	ing		A	×		1	1	3					
COs / POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	-	-	- 5		1	2	2	2	2	-	2	3	1
CO2	1	2	-	-		1	2	2	2	2	-	2	3	1
CO3	3	1	-	-	-	2	3	2	2	2	-	2	3	2
CO4	2	1	-	-	-	-	3	2	2	2	-	2	3	1
CO5	2	-	3	2	2	3	3	3	3	2	-	2	3	3
22BPE\$10	2	-	2	-	-	3	2	2	1	2	-	2	3	1
1 – Slight, 2 – 1	Mode	rate, 3	$3 - S\iota$	ıbstan	tial		•	•				•	•	•
b) CO and Ke	y Per	form	ance	Indica	ators	Map	ping							
CO1	1.1.	2, 10.	3.1											
CO2	2.1.	2,9.1.	1											
CO3	1.1.	2, 2.1	.2,2.2	2.1,9.1	.1.,10).1.1								
CO4	1.3.	1,2.1.	1, 6.2	2.2,8.2	2.2									
CO5	1.3.	1,2.1.	1, 3.1	.6,6.2	2.2,7.2	2.2,8.2	2.2,							

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	70	30	Ī	-	-	-	100
CAT - 2	60	40	ı	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	40	60	-	-	-	-	100
ESE	60	40	-	-	-	-	100

22BPE\$11	PLANT BIOTECHNOLOGY
2201 E\$11	TLANT DIOTECTIVOLOGI

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	To Gain the insights of the basics of genes, genomes and breeding princip	oles, analyzing
Objectives	techniques in tissue culture and genetic engineering.	
UNIT – I	PLANT BIOTECHNOLOGY CONCEPTS	9 Periods
Engineering: C	and history of biotechnology, Different branches of biotechnology, To oning vehicles, Restriction enzymes, Modifying enzymes, DNA ligase, Ps, Recombinant DNA technology	
UNIT – II	PLANT BREEDING TECHNIQUES	9 Periods
pollinated crop physiological	plant breeding in crop development. Methods of plant breeding in selection, population improvement programme. Heterosis basis. Interspecific/ Intergeneric hybridization, Heterosis inbreedin types. Mutation breeding Gene actions, heritability, genotype and	Genetical and g depression.
UNIT – III	PLANT CELL AND TISSUE CULTURE	9 Periods
Scope and im	portance of tissue culture in crop improvement, totipotency and	morphogenesis,
Organogenesis,	Rhizogenesis, Embryogenesis, Nutritional requirement of in vitro cu	ltures, Different
	n-vitro culture. Protoplast isolation, culture Manipulation and fusion. Cybridization, Cryopreservation of germplasm. Secondary metabolites producti	
UNIT – IV	AGROBACTERIUM & VIRAL VECTORS	9 Periods
	rown gall disease, genes involved in the pathogenesis, Ti plasmid – t-DNA ring. Viral Vectors: Gemini virus, cauliflower mosaic virus, viral vectors a	
genetic enginee		
UNIT – V	APPLICATION OF PLANT BIOTECHNOLOGY	9 Periods
UNIT – V	tissue culture, transgenic plants, herbicide and pest resistant plants, molec	

TEXT BOOK

Lecture: 45 Periods

1 Slater, A., Scott, N. and Fowler, M., "*Plant biotechnology: the genetic manipulation of plants*" OUP Oxford, 2008.

Practical: 0 Periods

Total: 45 Periods

2 Ignacimuthu .S., "Plant Biotechnology", Oxford and IBH Publishing Co Pvt. Ltd. New

Tutorial:0 Periods

Delhi, 2003.

REFERENCES:

1	Swaminathan, M. S., " <i>Biotechnology in Agriculture – A dialogue</i> ", MacMillan India, New Delhi, 1991
2	Bhojwani S.S., Razdan M.K. " <i>Plant tissue culture: Theory and Practice</i> ", A revised edition, Elsevier science, 1996.
3	Stewart, C.N. Jr., "Plant Biotechnology & Genetics: Principles, Techniques and Applications", John Wiley & Sons Inc. U.S.A, 2008
	Singh B.D., "Text Book of Plant Biotechnology", Kalyani Publishers, 1998.

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply the basic concepts of genetic engineering to establish plant tissue culture.	K1
CO2	Gain knowledge about the significance of different breeding techniques.	K1
CO3	Understand the importance of tissue culture towards the crop improvement	K2
CO4	Demonstrate plant-pathogen interactions and various approaches for resistances.	K2
CO5	Emphasis the development of transgenic plants, herbicide and pest resistant plants	K2

a) CO and P			11101											
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	1	-	-60v	OTTO S	2-0	3	9	-	-	-	-	3	1
CO2	1	1	-	-7/6	7	<u>enjiri y</u>	-03	(6).	-	-	-	-	3	1
CO3	1	1	-	- //		ATT TO	WE 16	_	-	-	-	-	3	1
CO4	1	1	-	- 6	1	- 0	1	7	-	-	-	-	3	1
CO5	1	1	-	- 4	10	9-	果	//-	-	-	-	-	3	1
22BPE\$11	1	1	-	-	-//	Z4UD2	1/	W-	-	-	-	-	3	1
1 - Slight, 2	– Mod	derate,	3 - Su	bstant	ial			11			•			
b) CO and	Key P	erforn	nance i	Indica	tors N	Aappin	ıg	1						
CO1	1.4.1,	2.1.3		A	Ü		10 1	N 3						
CO2	1.4.1,	2.1.3		866	100	M.	B	288						
CO3	1.4.1,	2.1.3,		(=										
CO4	1.4.1,	2.1.3		7	7	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 B	P						
CO5	1.4.1,	2.1.3,												

ASSESSMEN	ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT - 1	50	50	-	-	-	-	100						
CAT - 2	50	50	-	-	-	-	100						
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100						
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	30	70	-	-	-	-	100						
ESE	50	50	-	-	-	-	100						

22BPE\$12	ANIMAL BIOTECHNOLOGY	
-----------	----------------------	--

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives	To understand the basics and applications of animal cell cul strategies to detect animal diseases based on molecular diagn therapeutic properties of various biomolecules, to demonstrate of farm animals based on micromanipulation technology and the role of stem cells in developing transgenic animal models.	osis, to evaluate ate the breeding d to understand
UNIT – I	ANIMALCELL CULTURE	12 Periods

Introduction to basic tissue culture techniques, Equipment and instruments in ATC – Media for animal cell culture-natural and artificial media, Animal cell cultures – Growth kinetics of animal cells in culture, Maintenance and preservation - Various types of cultures-cultures of cells, tissues and organs.

UNIT – II SCALE-UP OF ANIMAL CELL CULTURE 9 Periods

Scale-up of suspension and anchorage-dependent animal cells, Bioreactors for animal cell culture: Static monolayer culture, roller bottle culture, micro carrier culture, fixed bed and fluidized bed reactor, stirred tank culture, airlift culture, continuous flow culture.

10 Periods

UNIT – III THERAPY OF ANIMAL DISEASES

Recombinant cytokines and cytokine therapy – Therapeutic applications of monoclonal antibody, Vaccines - DNA, sub unit, cocktail vaccines - Gene therapy for animal diseases.

UNIT – IV MICROMANIPULATION OF EMBRYO 7 Periods

Micromanipulation technology - Equipments - Enrichment of x and y bearing sperms from semen samples – Artificial insemination - *In vitro* fertilization - Embryo transfer – Application of micromanipulation technology in breeding of farm animals

UNIT - V TRANSGENIC ANIMALS 7 Periods

Concepts of transgenic animal technology; Strategies for the production of transgenic animalsknock in technology and knock out technology-Stem cell cultures in the production of transgenic animals-

Engineered Embryonic stem cell culture method, pro-nuclei transfer, Applications of transgenic animal technology-case studies

Contact Periods:

Lecture: 45 Periods Tutorial:0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 Ranga M.M, "Animal Biotechnology", 3rd Edition, Agrobios India Limited 2010.
- 2 Ramadass. P and Meera Rani. S, "*Text Book of Animal Biotechnology*", Agrobios India Limited 2002.

REFERENCES:

1	Ashish S. Varma and Anchal singh, "Animal biotechnology-Models in Discovery and
1	<i>Translation</i> ", Elsevier publication, 2014.
2	Freshney R.I., "Culture of animal cells- a manual of basic techniques and specialized applications", Wiley-Blackwell, 7 th edition, 2016.
2	<i>applications</i> ", Wiley-Blackwell, 7 th edition, 2016.
3	Masters J.R., "Animal cell culture. Practical Approach", IRL Press, 2 nd edition, 2002
4.	Sasidhara.R, "Animal Biotechnology", MJP Publishers, 2009.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Exploit the biomolecular techniques for the study and diagnosis of infective and parasitic animal diseases, as well as for the formulation of innovative biotechnological vaccines to be implemented in field of veterinary science.	К3
CO2	Perceive and deduce the contemplative ethical problems subjective to testing protocols involving animals.	K1
CO3	Demonstrate various diagnostic and therapeutic techniques for the identification and curing of animal diseases.	K1
CO4	Reckon and utilize the concept of gamete and embryo manipulation technology for the production of transgenic animals and cloning.	K2
CO5	Acquire knowledge about the concept of transgenic animal production and its significance in biotechnology.	K1

a) CO and I	PO Ma	pping				7			24					
COs / POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	-	-	-			0	-	-	-	-	3	1
CO2	-	-	-	-	-	2	-	3	-	-	-	-	1	3
CO3	2	3	2	-	-	-	-	-	-	-	-	-	2	2
CO4	2	2	2	ı	ı	1	ı	2	-	ı	ı	-	3	2
CO5	3	2	2	ı	ı	1	2	2	-	•	-	-	3	1
18BPE\$12	2	3	2	ı	ı	1	2	2	-	ı	-	-	3	2
1 - Slight, 2	2 – Mo	oderate	e, 3 - 3	Substa	ntial									
b) CO and	Key I	Perfor	manc	e Indi	cators	s Map	ping							
CO1	1.3.1	,2.1.1												
CO2		,8.2.2												
CO3	1.3.1	,2.1.3,	2.2.3											
CO4		,2.1.1												
CO5	1.3.1	,2.1.1	$6.\overline{2.2}$,8.2.2,	3.1.6									

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	70	30	-	-	-	-	100
CAT - 2	60	40	-	-	-	-	100
Individual Assignment 1/Case study 1/Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignmen t 2/Case study 2/ Seminar 2/ Project 2	40	60		<u> </u>	-	-	100
ESE	60	40		-	-	-	100

22BPE\$13	STEM CELL TECHNOLOGY
-----------	----------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	To familiarize the students with the concept of the stem cells and it										
Objectives	to categorize the stem cells and to learn its developmental biology, to										
	on the stem cells differentiation, to give a broad view of mamma										
	reviewing where they are found in the body, the different types a										
	cultured to learn the basic biology of these stem cells as well as bio										
	application of these stem cells to potential treatments of human diseases.										
	STEM CELLS AND TYPES	9 periods									
	finition, Classification, Sources and Properties -Types of stem co										
isolation, stud	y of stem cells and their viability IPSC, embryonic stem cells, ca	ncer stem cells.									
 Preservation 	ns of Stem cell. Embryonic stem cell: Isolation, Culturing,	Differentiation,									
Properties –	Adult stem cell: Isolation, Culturing, Differentiation, Trans	-differentiation,									
Plasticity, and	Properties										
	STÊM CELLS IN PLANTS AND ANIMALS	9 periods									
Stem cell and	founder zones in plants –particulary their roots – stem cells of sh	oot meristems									
of higher plan	ts. Skeletal muscle stem cell – Mammary stem cells – intestina	ıl stem cells –									
•	em cells of cornea – skin and hair follicles –tumour stem cells.										
	STEM CELLS DIFFERENTIATION	9 periods									
Factors infl	uencing proliferation, physical, chemical and molecular	methods for									
	of stem cells – hormonal role in differentiation.										
UNIT – IV	REGENERATION AND EXPERIMENTAL METHODS	9 periods									
Germ cells, h	ematopoietic organs, and kidney, cord blood transplantation, or	donor selection,									
	g, patient selection, peripheral blood and bone marrow transpla										
	les: fluorescence activated cell sorting (FACS), time lapse										
fluorescent pro	Calledia Processing and Calledia Control of the Called	, , , , , , , , , , , , , , , , , , , ,									
UNIT – V	APPLICATION AND ETHICAL ISSUES	9 periods									
	apy for neurodegenerative diseases, spinal cord injury, heart dise	1									
	cers, muscular dystrophy and orthopaedic applications. Stem c										
	ell research: Hype, hope and controversy.	cii poncy and									
TRADUCTOR STEELINGS	ALTUSUATUR TIVUE HUDE AHU CUHHUVELSV										

TEXT BOOKS

Contact Periods:

Lecture: 45 Periods

1	Stem	celle	hy C	' C	Potten	Flee	vier	2006
	LICIII	CCHS	DV.	/ L]	I OLLOH	1/130	vici.	$\Delta (MM)$.

2 Essentials of Stem Cell Biology by Robert Lanza., fourth edition. Elsevier 2014.

Tutorial: 15 Periods

Practical: 0 Periods Total: 15 Periods

REFERENCES

1	Stem	cell	biology	and	Gene	Therapy	by	Peter	Quesenberry.,	First	Edition,	Wiley-Liss,
	1998.											

- 2 Embryonic Stem cells Protocols by KursadTurksen., Second Edition Humana Press, 2002
- 3 Stem Cells: From Bench to Bedside by AriffBongso, EngHinLee., World Scientific Publishing Company, 2005
- 4 Stem cells in clinic and Research by Ali Gholamrezanezhad., Intech, 2013

COUR	SE OUTCOMES:	Bloom's Taxonomy
On con	npletion of the course, the students will be able to:	Mapped
CO1	Understand the concept of the stem cells and its different types	K1
CO2	Categorize the stem cells and understand their developmental biology	K2
CO3	Reveal the factors influencing the stem cells differentiation and to	K3
	optimize them.	
CO4	Culture the mammalian stem cell cultures with the varied SOPs.	K4
CO5	Apply the concepts of these stem cells to potential treatments of	K5
	human diseases	

				- 7.0	D. 700	in the second		11						
a) CO and P	O Maj	ping		1	1		東							
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	-	-	-	- 11	14	3		3	1	-	-	1	3	1
CO2	-	-	-	- []	2	3	10-10	3	2	-	-	1	1	2
CO3	1	-	1	1,60	2	3	1	3	2	1	1	1	3	1
CO4	1	-	2	2	2	3	1	3	2	1	1	1	3	1
CO5	-	-	2	2	2	3	1 1 AV	uu 3/	2	1	1	1	3	1
22BPE\$13	1	-	2	2	2	3	12	3	2	1	1	1	3	1
1 – Slight, 2														
b) CO and	Key P	erforn	nance	Indica	itors N	Aappir	ıg							
CO1 5.1.1	, 6.1.1	, 6.2.1	, 8.1.1,	8.2.2	, 9.1.1,	, 12.1.1	-							
CO2 5.1.1	, 6.1.1	, 6.2.1	, 8.1.1,	8.2.2	, 9.1.1,	, 12.1.1	-							
							8.1.1,							
CO4 1.1.1	, 3.1.1	, 4.1.2	, 5.1.1,	6.1.1	, 6.2.1,	7.1.2,	8.1.1,	8.2.2,	9.1.1,	10.1.1	1, 11.2	2.1, 12	2.1.1	
CO5 3.1.	1, 4,1,2	2, 5,1,1	. 6.1.1	. 6.2.1	. 7.1.2	. 8.1.1	8.2.2,	9.1.1.	10.1.	1. 11.2	2.1. 12	2.1.1		

ASSESSMENT	PATTERN – T	HEORY					
Test / Bloom's Category*	Rememberin g (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	50	-	-	-	-	100
CAT - 2	50	50	-	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	50	50	-	-	-	-	100
ESE	50	50	-	-	-	-	100

22BPE\$14	MARINE BIOTECHN	NOLOGY				
PREREQUISIT	ES	CATEGORY	L	T	P	C
NIL		PE	3	0	0	3

	To learn the basis of marine environment and various application	
Course	organisms and to equip the students in understanding of how	biotechnology
Objectives	could be applied in finding solutions to marine problems.	
UNIT – I	INTRODUCTION TO MARINE ENVIRONMENT	9 periods
	em and its functioning: intertidal, estuarine, open ocean, deep sea; Bi	
	ding and reproduction - Marine flora-Phytoplankton, seaweeds, s	
	rine fauna-Zooplankton; marine invertebrates -crustaceans & mollusc	s; Vertebrates
	nmals - dolphins and whales.	
	BIOACTIVE COMPONENTS AND BIOMATERIALS FROM	9 periods
	MARINE ENVIRONMENT	•
	- tetrodotoxins, conotoxins and ciguateratoxins; Marine enzymes-p	
	anase, Marine Biominerals, Biopolymers-polysaccharides, chitin, ma	arine collagens,
	s, antiviral and antimicrobial agents.	
UNIT – III	MARINE ENVIRONMENTAL BIOTECHNOLOGY	9 periods
	on – biology indicators (marine micro, algae) – biodegradation & bio	remediation –
marine fouling		
	AQUACULTURE TECHNOLOGY	9 periods
	astal aquaculture - marine fishery resources - common fishing crafts an	d gears – aqua
farm design and		
UNIT – V	MANIPULATION TECHNIQUES	9 periods
	manipulation in aquaculture - hybridization; Ploidy induction; G	Jynogenesis,
	nd sex reversal in commercially important fishes.	
Contact Period		
Lecture: 45 Pe	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	eriods

TEXT BOOK:

- Fingerman M, Nagabhushanam R, Thompson M.F, "Recent advances in marine biotechnology", Volume 2, Science Pub Inc, 1999.
- Fingerman M, Nagabhushanam R, Thompson M.F, "Recent advances in marine biotechnology", Volume 3, Science Pub Inc, 1999.

REFERENCES:

- 1 Joanne M. W, Sherwood L, Woolverton C.J, "Prescott's Microbiology", McGraw-Hill, 8th edition., 2011.
- 2 Kaiser M.J and Attrill M.J, "Marine Ecology: Process, Systems and Impacts", Oxford, 2nd edition., 2011.
- 3 Recent advances in marine biotechnology volume 3 M.Fingerman , R . Nagabhushanam Mary Frances Thomson. Science Publishers Inc, USA 1999
- 4 Recent advances marine biotechnology volume 7 M.Fingerman, R.Nagabhushanam Mary Frances Thomson Science Publishers Inc, USA 2002.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Learn the basic of ocean structure and characteristics	K1
	Explain the marine eco system	К3
CO3	Describe the important microorganism in marine system	K5
CO4	Understand importance of biotechnological solution for marine problems	K4
CO5	Elaborate on various active compounds extract from marine organisms	K2

a) CO and	PO M	apping	Ţ,											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	-	-		-	1	1	-	-	-	-	1	3	3
CO2	1	-	-	-	-	-	1	-	-	-	-	1	2	1
CO3	-	2	-	-	2	1	1	-	-	-		1	3	2
CO4	1	-	-	-	-	-	-	-	-	-	-	1	1	1
CO5	1	-	1	-	-	- 000	2000	-	-	-	-	1	1	2
22BPE\$14	1	2	-	-	B 100	3/	0 L		1	-	ı	2	3	-
1 – Slight, 2	2 – Mo	derate,	3 - Su	bstantia	il	400	a grub		A .					
b) CO and	l Key	Perfor	rmanc	e Indi	cators	Map	ping							
CO1	1.1,1.	2,1.3,1	.4,2.1,2	2.2,2.3,	,2.4,3.1	, 3.2,4.	1,4.2,1	1.2,11.	3,12.3					
CO2	1.1,1.	2,1.3,1	.4,2.1,2	2.2, 2.3	,2.4, 3.	2,4.1,4	.2,12.2	,12.3						
CO3	1.1,1.	3,1.4,2	.1, 2.2,	2.4,4.1					12					
CO4	4.1.2,	4.3.3,	5.3.1	•			We I	11						
CO5	1.3.1,	2.4.2,	2.4.4,	4.3.1, 5	.3.1, 5.	3.2		. W						

ASSESSMENT	T PATTERN – T	HEORY	10 11	VIs.			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	50		-	-	-	100
CAT - 2	50	50	-	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	50	50	-	-	-	-	100
ESE	50	50	-	-	=	=	100

22BPE\$15	PHARMACOGENOMICS
-----------	------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

UNIT – IV	GENOMICS APPLICATIONS FOR DRUG ACTION AND TOXICITY	9 periods
	nzymes, Transporters, Plasma binding proteins, Drug targets.	
	erited genetic factors influence the outcome of drug treats	•
Viability and	Adverse Drug Reaction in drug response - contribution of	genetic factor;
UNIT – III	ASSOCIATION STUDIES IN PHARMACOGENOMICS	9 periods
of SNPs, Stud	ly design for analysis, Analytical issues, Development of market	rs.
nucleotide po	lymorphisms (SNP's) in Pharmacogenomics - approaches, nur	nber and types
_	ication, analysis of proteome, DNA variation; Biological com	
	ome-based pharmacological science; Protein coding genes, re	
*	at affect the outcome of host pathogen interactions: A templat	
	l analysis of whole genomes, comparative genome analysis	
	equence Tags (EST) and computational biology; Microbia	
	HUMAN GENOME	9 periods
_	omics in drug discovery and drug development.	one expression,
	etics, Genetic drug response profiles, the effect of drugs on Go	
	etics-the roots of pharmacogenomics; Pharmacogenomics -	1
	INTRODUCTIONTO PHARMACOGENOMICS	9 periods
	genome-based applications for drug design in personalized med	
Course	To understand the genetic basis for variation in drug response	and evnlore

Platform technologies - Genomics, Proteomics, Bioinformatics; The pharmaceutical process and applications of pharmaceutical industry - Understanding biology and diseases, Target identification and validation, Drug candidate identification and optimization, safety and toxicology studies.

PHARMACOGENOMICS AND DRUG DESIGN

The need of protein structure information, protein structure and variation in drug targets the scale of problem, Mutation of drug targets leading to change in the ligand binding pocket.

Contact Periods:

Lecture: 45 Periods **Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods**

TEXT BOOK

- 1 Licinio, J and Wong, Ma-Li. "Pharmacogenomics: The Search for the Individualized Therapies", Wiley-Blackwell, 2009.
- 2 Chiranjib Chakraborty and Atana Bhattacharyya, "Pharmacogenomics: An Approachto New Drugs Development", 2004.

REFERENCES

- 1 Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics", American Society of Health-System Pharmacists, Second Edition, 2017.
- 2 Russ B. Altman, David Flockhart, David B. Goldstein, "Principles of Pharmacogenetics and Pharmacogenomics", UK: John Wiley, 2012.
- 3 Rothstein, Mark, A. "Pharmacogenomics: Social, Ethical and Clinical Dimensions", Wiley-Liss, 2003.
- 4 Sandosh Padmanabhan, "Handbook of Pharmacogenomics and Stratified Medicine", Elsevier Science, 2014.
- 5 Martin M. Zdanowicz, M.M. "Concepts in Pharmacogenomics", American Society of Health-System Pharmacists, Second Edition, 2017.

COUF	RSE OUTCOMES:	Bloom's Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
	Learn about the human genome, gene expression and their relation to drug development.	K1
CO2	Distinguish the effect of genetic differences between individuals in the outcome of drug	K1
CO3	Describe the role of single nucleotide polymorphism as a biomarker for predicting risk and	K2
CO4	Utilize and manage a new genomics-based tools for assessing drug action and toxicity.	K3
	Have a complete understanding of protein targets to learn ligand binding to develop new	K3

					00		OF A	o 11						
a) CO and P	O Map	ping		A	1 K		B.	V.3.						
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1	1	-	-	JUNE NO	(VB = 80	2	7-	-	-	-	-	1	1
CO2	1	1	-	-	-	_	100	-	-	-	-	-	1	1
CO3	1	1	-	-	-	-	-	-	-	-	-	-	1	1
CO4	1	1	-	-	-	-	-	-	-	-	-	-	1	1
CO5	1	1	-	-	-	-	-	-	-	-	-	-	1	1
22BPE\$15	1	1	-	1	-	_	-	-	-	-	-	-	1	1
1 - Slight, 2	- Moc	lerate,	$3-S_1$	ubstanti	al	ı			1			1	ı I	
b) CO and l	Key Pe	erforn	nance	Indica	tors M	apping								
CO1	1.4.1	, 12.2.	2											
CO2	1.4.1	, 5.2.2	, 12.2.2	2										
CO3	1.4.1													
CO4	12.2.	.2, 12.3	3.1											
CO5	1.4.1	, 2.1.3	, 12.2.2	2	•									

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	30	20	-	-	-	100
CAT - 2	50	20	30	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	20	60	20	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	20	20	60	-	-	-	100
ESE	20	40	40	-	-	-	100

22BPE\$16	GENOME EDITING
-----------	----------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	To give an understanding on the fundamentals of conventional g	genome editing								
Objectives	ts relevance in disease. To describe various techniques, genome editing and									
	its applications.									
UNIT – I	UNIT – I INTRODUCTION									
Introduction to genetics and genetic engineering, Genes and Genome Organization, History and										
hasics of ge	netic Engineering Advantages and limitations of genetic Engineering									

UNIT – II GENOME ENGINEERING

9 periods

Pharmacogenetics-the roots of pharmacogenomics; Pharmacogenomics - It is not just pharmacogenetics, Genetic drug response profiles, the effect of drugs on Gene expression, pharmacogenomics in drug discovery and drug development.

UNIT – III HUMAN GENOME AND ZFN TECHNOLOGY

9 periods

Breakage of Genomic DNA, Repair of genomic DNA, Homologous and non-homologous recombination, site specific recombination, Targeted gene modification. Basics of Zing finger nucleases, design of zinc finger nucleases for genome editing, Applications of Zinc finger nucleases.

UNIT – IV GENOME EDITING

9 periods

Basics of TALEN (Transcription activator-like effector nuclease), Design of TALEN for genome editing, Applications of TALEN

UNIT – V APPLICATION IN TREATING DISEASES

9 periods

CRISPR system in bacteria, Cas9 in genome editing, Human cell engineering-Thalassemia, SCID, Hemophilia, etc; Disease modeling-Cancer, iPSc and animal models; Engineered immune cells for cancer therapy; Personalized therapy; Challenges: safety and specificity; Ethical concerns: Germ line gene editing.

Contact Periods:

Lecture: 45 Periods Tu

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

TEXT BOOK

- 1 Harber, J. E., Genome Stability: *DNA Repair and Recombination*, Garland Science, 2013
- 2 Yamamoto, T. *Targeted Genome Editing Using Site-Specific Nucleases*, Springer, 2015.

REFERENCES

- Barrangou, R. and Oost, J. van der, *CRISPR-Cas Systems: RNA-mediated Adaptive Immunity in Bacteria and Archaea*, Springer, 2013.
- 2 Addgene, CRISPR 101:A Desktop Resource, January 2016
- ³ Zlatanova, J. and Holde, K. van, *Molecular Biology: Structure and Dynamics of Genomes and Proteomes*. Garland Science, 2015
- ⁴ R.M.Twyman, S.B. Primrose, "*Principle of Genome Analysis and Genomics*", Wiley Blackwell Publications, 2007.

COUR	SE OUTCOMES:	Bloom's
		Taxonomy
On con	npletion of the course, the students will be able to:	Mapped
CO1	New technique development in genome engineering.	K1
CO2	Application of already developed techniques for biomedical use.	K1
CO3	Development of high-throughput genome engineering techniques.	K2
CO4	Application of already developed techniques in understanding	K2
	fundamental mechanism of interesting biological problems.	
CO5	Understand various applications in treating human diseases.	K2

a) CO and P	O Map	ping												
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	-	-	1	-	-	-	-	2	3	-	-	1	3
CO2	1	-	-	-	-	-	-	-	-	3	-	-	1	3
CO3	1	-	-	2	-	2	-	-	-	3	-	-	1	3
CO4	1	-	1	-	-	-50	mm.	-	-	3	-	-	1	3
CO5	1	-	2	-	(Part		0	6 (19)	9/2	3	-	-	1	3
22BP E\$16	1	-	1	1	W	_ 2	17 (TC/2	(a)	2	3	-	-	1	3
1 – Slight, 2	- Mo	derate	, 3 – Sı	ıbstant	ial						I			
b) CO and I	Key P	erforr	nance	Indica	tors M	Iappin	g	Cul.	//					
CO1	1.4.2	2, 2.1.3	3		1			Λ	1					
CO2	1.4.1	, 3.1.3	3		- //			1	1					
CO3	1.4.4	l, 2.1.4	1		- //	9/8			1					
CO4	1.4.1	, 2.1.3	3,3.4.2			8	-	The same						
CO5														

ASSESSMENT	SSESSMENT PATTERN – THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT - 1	50	50	-	-	-	-	100							
CAT - 2	60	40	-	-	-	-	100							
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100							
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	50	50	-	-	-	-	100							
ESE	50	50	-	-	-	-	100							

22BPE\$17	ASPECTS OF BIOCHEMICAL ENGINEERING

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives	1 1						
UNIT – I	INTRODUCTION	9 Periods					

Introduction-applications of biochemical processes- differences between chemical engineering and biochemical engineering -advantages of biochemical products-characteristics of the living organisms-classifications of the living organisms-taxonomy of the microorganisms- classifications of the microorganisms - applications of microorganisms -microbial culture and composition of the medium-strain development and improvement scale-up of inoculums development- difference between peptides and proteins, anabolism and catabolism of living systems, major metabolic pathways-bioproducts and their availability, classification of bioproducts, industrial fermentation process-industrial bioproducts and their market values.

UNIT - II STOICHIOMETRY AND THERMODYNAMICS OF 9 Periods BIOCHEMICAL REACTIONS

Stoichiometry of biochemical processes: law of conservation of mass- degree of reduction, energetic growth yield, energetic product yield and weight fraction of carbon- thermodynamic efficiency of aerobic and anaerobic processes- development of the complete stoichiometric equation of a biochemical process: calculation of O₂ requirement and heat evolved in aerobic fermentation process- validity of the experimental data of a biochemical process- calculation of theoretical yield of biomass in aerobic fermentation process- stoichiometric analysis of anaerobic fermentation process: calculation of theoretical yield of methane from the anaerobic digestion of organic waste- determination of stoichiometric formula of the 'ash free' biomass- calculation of heat evolved for the formation of biomass- definition of thermodynamics: system and surrounding, thermodynamic state, properties of a system- first law of thermodynamics- change of entropy in exothermic and endothermic reactions- Gibb's free energy of chemical reaction- "thermodynamics of biomethanation process- enthalpy of formation and Hess' law-characteristics of chemical equilibrium- factors affecting chemical equilibrium constant.

UNIT – III BIOREACTOR TYPES, DESIGN AND ANALYSIS

9 Periods

Different types of reactor- reactor analysis- analysis of CSTR and PFR--design and analysis of activated sludge process- design and analysis of anaerobic digestion process- scale up of bioreactor- transport phenomenon in bioprocess- air and medium sterilization.

UNIT - IV KINETIC ASPECTS OF CHEMICAL AND ENZYMATIC 9 Periods REACTIONS

Kinetics of homogenous chemical reactions-kinetics of enzyme catalyzed reactions using free and immobilized enzymes-kinetics of substrate utilization, product formation and biomass production of microbial cells.

UNIT – V OPERATION AND PROCESS CONTROL

9 Periods

Operation of industrial fermenter and material analysis: schematic diagram of fermenter accessories of a fermenter-flow diagram of the citric acid fermentation process- materials analysis of citric acid fermentation process-process control: process control of bioprocesses- different parameters involve in bioprocesses- monitoring and control of physical parameters- monitoring and control of chemical parameters- automated process control system- overview of downstream processing- economic analysis of biochemical processes.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Kargi. F., Shuler. M.L., "Bioprocess Engineering: Basic Concepts", 3rd Edition. Prentice Hall, 2017.
- 2 Doran. P. M., "Bioprocess Engineering Principles", Academic Press, 2012

REFERENCES:

	1	Najafpour G., "Biochemical Engineering and Biotechnology ", 2nd Edition, Elsevier, 2015
Γ	2	Scott F.H., "Elements of Chemical Reaction Engineering", 5th Edition, Pearson Education, Inc.,
		2015
	3	Schügerl K., Bellgardt KH., Bioreaction Engineering: Modeling and Control, Springer, 2000
	4	Bailey, J.E., Ollis, D.F., "Biochemical Engineering Fundamentals", 2 nd Edition, McGraw Hill, 1986.

	SE OUTCOMES: upletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the basic aspects of biochemical processes and industrial bioproducts.	K1
	Acquire knowledge about the stoichiometric analysis and thermodynamics of biochemical processes.	K2
CO3	Familiarize about the various types, design and analysis of bioreactors	K2
CO4	Inculcate the kinetic aspects of chemical and enzymatic reactions	К3
	Impart knowledge about the operation and process control of industrial fermenter.	К3

a) CO and PO Mapping													
01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
2	1	1										1	2
1	1	2	1	1								1	2
1	1	2	1	2								2	2
1	1	1	2									1	1
1	1	1										1	2
2	1	2	1	1								2	2
- Mo	oderat	e, 3 - S	Substan	tial									
Key I	Perfor	mance	Indic	ators l	Mappi	ng							
	1.2.1,2	2.2.2,3.	1.1										
	1.2.1,2	2.2.2,3.	2.2,3.4	.1,4.1.2	2,5.1.1								
CO3 1.2.1,2.2.2,3.2.2,3.4.1,4.1.2,5.1.1,5.2.1													
	1.2.1,2	2.2.2, 3	.2.2,4.2	2.2,4.3	.2								
CO5 1.2.1,2.2.2,3.2.2,3.4.1,4.1.2,5.1.2													
	2 1 1 1 1 2 - M(ey)	2 1 1 1 1 1 1 1 1 1 1 2 1 - Moderat (ey Perfor 1.2.1,2 1.2.1,2 1.2.1,2	2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 2 - Moderate, 3 – S (ey Performance) 1.2.1,2.2.2,3. 1.2.1,2.2.2,3. 1.2.1,2.2.2,3.	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1 1 1	2 1 1 1	2 1 1 1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT - 1	50	50	-	-	-	-	100			
CAT - 2	20	30	50	-	-	-	100			
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100			
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100			
ESE	50	50	-	-	-	=	100			

22BPE\$18	FERMENTATION TEC	HNOLOGY				
PREREQUISIT	ES	CATEGORY	L	T	P	C
NIL		PE	3	0	0	3

UNIT – I	· / /						
Objectives	beer, wine, fermented foods production.						
Course	To gain the knowledge about basics of fermentation process and to familiarize about						

Fermentation processes-basic requirements of fermentation processes – An overview of aerobic and anaerobic fermentation processes and their application in industry -Medium requirements for fermentation processes - Design and usage of commercial media for industrial fermentation-Fundamentals of material and energy balance for fermentation processes.

UNIT – II BEER FERMENTATION

9 Periods

Barley Beer-types, bottom and top fermented beers; Raw materials for beer fermentation-Barley malt, adjuncts, hops, water, yeast; Brewing process- malting, milling, mashing, wort boiling, fermentation, lagering and packaging; Beer defects; Continuous brewing process.

UNIT – III WINE FERMENTATION

9 Periods

Grape wine-types; Wine making process-crushing of grapes, fermentation, ageing, storage, clarification, packaging; Wine defects

UNIT – IV FOOD FERMENTATION

9 Periods

Introduction to fermented foods, microbial cultures used in food industry, fermented dairy products, fermented meat products, fermented vegetable products, fermented oriental food products, fermentation for flavor production, fermented, dried and smoked fish products- microorganisms as food-single cell protein, mycoprotein production.

UNIT – V ADVANCED FERMENTATION PROCESSES

9 Periods

Recombinant protein expression with *E.coli* and fermentation. Expression in yeast *Pichia pastoris*, production of recombinant vaccines, purification of recombinant proteins. Animal cell culture, Plant cell culture; Cell culture practices, nutritional requirement of cultured cell, cell growth and propagation, prevention and eradication of contamination, Cell synchronization; Cell cloning. Scaling-up of animal and plant cell culture.

Contact Periods: 45

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Okeke, Benedict C., and Okafor, Nduka. "Modern Industrial Microbiology and Biotechnology", CRC Press, Taylor & Francis Group, 2018.
- 2 Waites, Michael J., et al. "Industrial Microbiology: An Introduction", Wiley, 2009.

REFERENCES:

	1	Whitaker, Allan., Stanbury, Peter F., Hall, Stephen J "Principles of Fermentation
		Technology" Elsevier, 2016.
Ī	2	Charles W. Bamforth, David J. Cook, "Food, Fermentation, and Micro-organisms", John Wiley
		& Sons, 2019.
Ī	3	Gopal Kumar Sharma, "Advances In Fermented Foods And Beverages", New India Publishers, 2021

COUR	SE OUTCOMES:	Bloom's Taxonomy
On con	npletion of the course, the students will be able to:	Mapped
	Gain the knowledge about basics of fermentation process.	K1
CO2	Familiarize about the beer fermentation process.	K2
CO3	Understand about the processing steps in wine production.	K2
CO4	Explore about the various fermented food products.	K3
CO5	Inculcate the knowledge about the advances in fermentation process.	K3

a) CO and	PO N	Iappi i	ng											
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1											1	1
CO2	1	1											1	1
CO3	1	1	2	2				Many	51				1	2
CO4	1	1	2	2		100/		0	32				1	2
CO5	1	1	2	2		19		a digital		10			1	2
18BPE\$18	1	1	2	2		0		15	W. C.				1	2
1 – Slight,	2-Mc	oderat	e, $3 - 5$	Substa	ntial	1	1			de				
b) CO and	Key l	Perfor	manc	e Indi	cators	Mapp	oing	£	-4					
CO1		,2.2.2					D.	De-		1				
CO2	1.2.1	,2.2.2					1	AND	R. L.	8				
CO3	CO3 1.2.1,2.2.2,3.2.2,3.4.1,4.1.2													
CO4	CO4 1.2.1,2.2.2,3.2.2,3.4.1,4.1.2													
CO5														

ASSESSMENT	PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	50	-	-	-	-	100
CAT - 2	20	30	50	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100
ESE	50	50	-	-	-	-	100

22BPE\$19	FOOD PROCESS ENGINEERING					
PREREQUISIT	ES	CATEGORY	L	T	P	C
NIL		PE	3	0	0	3

1122		12	0	U				
Course	Course To understand the basic constituents of foods, various food preservation techniques,							
Objectives	unit operations and packaging methods involved in	food processing.						
UNIT – I	BASICS OF FOOD CHEMISTRY AND MICRO			9 Peri				
	of food- water - bound and unbound water activit							
	and textural characteristics; Bacteria, yeasts and mol			specie	es of			
	food processing and preservation; Fermented foods;	Single cell protein.						
UNIT – II	FOOD PRESERVATION			9 Peri				
	ature - blanching, pasteurization, sterilization, ev							
	ng, frying; Thermal death time relationships (D, Z							
	ivity at low temperature and methods - chilling	freezing; Irradia	ition;	Chem	icals			
-	preservation; Hurdle technology.							
UNIT – III	UNIT OPERATIONS IN FOOD PROCESSING			9 Peri				
	preparation- cleaning, sorting, grading and peeling; S							
	aration and concentration - centrifugation, filtrat							
	uction, convection, radiation, extruders (Theory ar		y); La	arge s	scale			
	neat, beverage, confectionary, dairy, fresh fruits and v	regetables.		a				
UNIT – IV	FOOD PACKAGING	77		9 Peri				
	aging material and containers; Interactions between p							
	nosphere, Modified atmosphere packaging, Aseptic p							
	packaging; Packing - meat, dairy, fresh fruits and vegetables, beverages and confectionaries; Food							
	packaging closure and sealing system; Nutrition labelling and legislative requirements.							
UNIT – V	FOOD SAFETY AND QUALITY CONTROL			9 Peri				
	nportance and functions of quality control; Food s				ınd			
	SSAI, FDA; Grades and standards; Concept of code:	x almentarious/HA	CCP/	/ISO				
	c; Food recalls.							
Contact Perio		77	Γ-4-1	45 D				
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0	Perioas	Fotal:	45 Pe	riods			

TEXT BOOK:

1	Fellows P.J, "Food Processing Technology: Principles and Practices", Woodhead Publishing
	4^{th} edition, 2016.
2	Robertoson G.L, "Food Packaging: Principles and Practice", CRC Press, 3 rd edition, 2016.

REFERENCES:

	BI EILE (CES)
1	Frazier W.C and Westoff D.C., "Food Microbiology", McGraw Hill, 5 th edition, 2013.
2	Smith P.G., "Introduction to Food Process Engineering", Springer, 2 nd edition, 2011.
3	Toledo.R.T, "Fundamentals of Food Process Engineering", Springer, 3 rd edition, 2007
4	Berk.Z, "Food Process Engineering and Technology". Elsevier, 2009.

COURSE OUTCOMES:	Bloom's Taxonomy
Upon completion of the course, the students will be able to:	Mapped
CO1 Understand the basic constituents of foods and the relationship between foo	od K1
and microorganism in fermentation process.	
CO2 Develop knowledge about various preservation techniques for food product	t. K2
CO3 Gain the knowledge about the different unit operations involved in foo	od K2
processing.	
CO4 Explore the types of packaging methods for food products.	K3
CO5 Understand the food safety and control concepts.	K3

a) CO and PO Mapping														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1						0.700					1	1
CO2	1	1				200		ar.	0 3	2	-		1	1
CO3	1	1	2	2		6	(899)	100	ar or U	S PARTY	1/2		1	2
CO4	1	1	2	2			V /8	3	4337	69 V			1	2
CO5	1	1	2	2									1	2
18BPE\$18	1	1	2	2		9	0		ſ		77		1	2
1 – Slight,	$\overline{,2-N}$	/lodera	ate, 3 -	– Subs	stantia	l W	100	M	XS: X	泉 /	6			
b) CO and	d Key	Perf	ormar	ice In	dicato	rs Ma	pping	3	TO					
CO1		,2.2.2						YES						
CO2		1.2.1,2.2.2												
CO3		1.2.1,2.2.2,3.2.2,3.4.1,4.1.2												
CO4		,2.2.2,				18		10	A	0 1	3			
CO5	1.2.1	,2.2.2,	3.2.2,	3.4.1,4	1.1.2	80	16	11/20	- 1	1	900			

ASSESSMENT	PATTERN						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	50	-	-	-	=	100
CAT - 2	20	30	50	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100
ESE	50	50	-	-	-	=	100

22BPE\$20	BIOREACTOR DESIGN AND SCALE UP PROCESS											
PREREQUISIT	TES	CATEGORY	L	T	P	С						
NIL		PE	3	0	0	3						
Objectives	familiarize about the design and analysis of bioreactors.											
UNIT – I	BASIC BIOREACTOR CONCEPTS				Perio							
 Chemostat, t biological reactor Tubular plug flo 		eactors – Tank-ty Biomass Recycle	/pe,	Col anks	umn -in-s	-type eries,						
UNIT – II	AERATION AND AGITATION IN BIOPROCES	SS SYSTEMS		9.	Perio	ds						
Newtonian and naerated tanks for reactor, residence – Laminar and T	n agitated tanks – Effect of agitation on dissolved non Newtonian liquid – Power number, Power require Newtonian and non Newtonian liquids – Agitation re time distribution – Shear damage, bubble damage, furbulent flow in stirred tank bioreactors.	ement for mixing ate studies - Mixing Methods of minin	in ae ng ti	rate me i g ce	d and n ag ll da	d non itated mage						
UNIT – III	SELECTION AND DESIGN OF BIOPROCESS I				Perio							
process streams equipment used microbial, plant	nstruction for bioprocess plants – Design conside processing equipments, selection, specification – in bioprocess industries – Requirements, design cell and animal cell.	Design of heat	and	mas bior	s tra	nsfer or for						
UNIT – IV	SCALE UP AND SCALE DOWN ISSUES				Perio							
availability and time, impeller t - Adsorption resistance etc.), down related aspects.	(LUB method), Chromatography (constant reso Centrifugation (equivalent times etc.), Extractors	ver consumption p cale up of down plution etc.), Fi g (geometry base	er v istre Itrati	olun am on	ne,m proc (cor	ixing esses estant						
UNIT – V	BIOREACTOR INSTRUMENTATION AND CO	NTROL		9]	Perio	ds						
measurement an cells, measurement control, SCAD	and Operating Principle: Temperature, flow m d control, shaft power, rate of stirring, detection and ent and control of dissolved oxygen, inlet and outlet A systems for Bioreactors: SCADA architecture, Studies in Bioreactor Instrumentation and Control.	prevention of foar gas analysis, pH	n, m mea	easu isure	reme men	ent of t and						
Lecture: 45 Per		Periods To	tal:	45 F	erio	ds						

TEXT BOOK:

- 1 Impre, J.F.M.V., Vanrolleghem, P.A. and Iserentant, D.M., "Advanced Instrumentation, Data Interpretation and Control of Biotechnological Processes", Kluwer Academic Publishers, 2010...
- 2 Mansi, E.M.T.EL., Bryce, C.F.A., Demain, A.L. and Allman, A.R., "Fermentation Microbiology and Biotechnology", Taylor and Francis, 2012

REFERENCES:

1	Towler, G. and Sinnott, R., "Chemical Engineering Design: Principles, Practice, Economics of
	Plant and Process Design", Butterworth – Heinemann ltd., Elsevier, 2012.
2	Mann, U., "Principles of Chemical Reactors Analysis & Design: New tools for Industrial Chemical
	Reactor Operations", Willey-VCH, 2009.
3	Carl-Fredrik Mandenius., "Bioreactors:Design, Operation and Novel Applications", Wiley, 2016
4	Klass van't Riet and Johannes Tramper., "Basic Bioreactor Design", CRC Press, 1991.

COURSE OUTCOMES:	Bloom's Taxonomy
On completion of the course, the students will be able to:	Mapped
CO1 Understand the operation modes of bioreactor.	K1
CO2 Gain knowledge about the mass transfer process in bioreactor system.	K2
CO3 Familiarize about the design and analysis of bioreactors.	K2
CO4 Understand about bioreactor scale up and scale down issues .	К3
CO5 Gain knowledge about bioreactor instrumentation and process control.	К3

a) CO and	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1		J.B.	K		10	/3				2	1
CO2	1	1	2	1				100	J.				2	1
CO3	1	1	2	1	2		%		10				2	1
CO4	1	1	1	2	1		5		Y				2	1
CO5	1	1	1	2									2	1
22BPE\$20	2	1	2	2	1								2	1
1 − Slight,	2 – Mo	oderate	e, 3 - S	ubstan	tial									
b) CO and	Key I	Perfor	mance	Indic	ators l	Mappi	ng							
CO1		1.2.1	,2.2.2,3	3.1.1										
CO2		1.2.1	,2.2.2,3	3.2.2,3.	4.1,4.1	1.2,5.1.	1							
CO3	CO3 1.2.1,2.2.2,3.2.2,3.4.1,4.1.2,5.2.1													
CO4	04 1.2.1,2.2.2, 3.2.2,4.1.2													
CO5		1.2.1	,2.2.2,3	3.2.2,3.	4.1,4.1	1.2,5.1.	1							

ASSESSMENT	T PATTERN – T	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	50	-	-	-	-	100
CAT - 2	20	30	50	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100
ESE	40	40	20		-	-	100

22BPE\$21	BIOREACTOR CONSIDERATIONS FO	R RECOMBINAN	JT F	PRO	DU	CTS
PREREQUISI	TES	CATEGORY	L	T	P	С
NIL		PE	3	0	0	3

11117		1 12	
			•
Course	To acquire skills on techniques of isolation	of gene of interes	t, construction of
Objectives	recombinant DNA and to apply techniques	for production of	pharmaceuticals,
	growth hormones, vaccines, gene therapy in e	-	•
UNIT – I	GENETICALLY ENGINEERED ORGAN		9 Periods
Different hos	st vector systems, Guidelines for choosing	Host Vector sy	stems, Process
	Genetic instability, considerations in plasmic		
principles and	l implementation of containment, good industr	ial large-scale pra	ctice (GILSP).
UNIT – II	CONSIDERATIONS FOR ANIMAL CEL	L CULTURES	9 Periods
Structure and	biochemistry of animal cells - Methods Used	for the cultivation	of animal cells
	considerations for animal cell culture - Pr		
	animal cell tissue cultures.		ŕ
UNIT – III	CONSIDERATIONS FOR PLANT CELL	CULTURES	9 Periods
Overview of	plant cell cultures - Plant cells in culture co	ompared to micro	bes - Bioreactor
	s for plant cell culture - Bioreactors for suspen		
	on - Bioreactors for organized tissues, economi		
	DOWNSTREAM PROCESSING CONSID		9 Periods
Release of pr	otein from Biological Host, genetic approach	es to facilitate pro	tein purification,
	separation, extraction of Recombinant protein		
	nbranes for protein isolation and purificati		
	etergent from protein fractions, precipitation		
	e bio separation.	1 /1	•
UNIT – V	SAFETY CONSIDERATIONS ASSOCIAT	TED WITH	9 Periods
	AGRICULTURAL AND ENVIRONMEN		
	APPLICATIONS		
Risk assessm	nent methods, safety considerations, Applic	ation of rDNA	organism in the
	Survival, multiplication and/or dissemination		
	1:1:1:00	1	

Risk assessment methods, safety considerations, Application of rDNA organism in the environment, Survival, multiplication and/or dissemination in the environment, Interactions with species or biological systems, effects on the environment, evaluating environmental risks of rDNA organisms released from industrial applications.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Michael L. Shuler, Fikret Kargi, Matthew De Lisa,. "Bioprocess Engineering", 3rd Edition, Prentice Hal, 2017.
- 2 Bailey J.A and Ollis D.F., "Biochemical Engineering Fundamentals", McGraw Hill (New York), 2nd Edition, 2010.

REFERENCES

1	Pörtner, R. and Barradas, O.B.J.P., 2007. Animal cell biotechnology. Methods and
	Protocols, 2nd. Edition. Humana.
2	Slater, A., Scott, N. and Fowler, M., 2008. Plant biotechnology: the genetic manipulation

of plants. OUP Oxford.

3 Cutler, P. ed., 2004. Protein purification protocols (Vol. 244). Springer Science &

3 Cutler, P. ed., 2004. Protein purification protocols (Vol. 244). Springer Science & Business Media.

4 Perry R H, "Perry's Chemical Engineers' Handbook", McGraw-Hill, 8th Edition, 2008.

COURSE OUTCOMES:	Bloom's Taxonomy
On completion of the course, the students will be able to:	Mapped
CO1 Acquire skills on techniques of isolation of gene of interest and construction	K1
of recombinant DNA.	
CO2 Apply techniques for production of pharmaceuticals, grow	th K2
hormones, vaccines, gene therapy in expression system.	
CO3 Apply rDNA technology in evolving plants for resistance to pest and	K2
disease, tolerance to herbicides and abiotic factors.	
CO4 Identify problems associated with production of recombinant proteins	
and protein purification and devising strategies to overcome problem	
CO5 Acquire knowledge on environmental applications of genet	ic K3
engineering through bioremediation.	

						74			10/1	344				
a) CO and PO N	Aappi	ng				Car Tree								
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2	1	1	-	-	1	-	-	-	-	-	-	1	2
CO2	1	1	2	1	1	-	-	-	-	-	-	-	1	2
CO3	1	1	2	1	2	-	-	-	-	-	-	-	2	2
CO4	1	1	1	-	-	-	-	-	-	-	-	-	1	1
CO5	1	1	1	-	-	-	-	-	-	-	-	-	1	2
22BPE\$21	2	1	2	1	1	1	-	-	-	-	-	-	2	2
1 - Slight, 2 - N	Moder	ate, 3	– Sub	stantia	ıl	1	1		1		1	1	· ·	
b) CO and Key	y Perf	orma	nce Ir	idicat	ors N	Iappi i	ıg							
CO1	1	2.1,2.2	2.2,3.1	.1,6.2	.1									
CO2	1	2.1,2.2	2.2,3.2	2.2,3.4	.1,4.1	.2,5.1.	1							
CO3	1	2.1,2.2	2.2,3.2	2.2,3.4	.1,4.1	.2,5.1.	1,5.2.	1						
CO4	1.	2.1,2.2	2.2, 3.	2.2										
CO5	1	2.1,2.2	2.2,3.2	2.2,3.4	.1,4.1	.2,5.1.	1,6.1.	1						

ASSESSMEN	ASSESSMENT PATTERN – THEORY									
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Fotal %			
CAT - 1	50	50	-	-	-	-	100			
CAT - 2	20	30	50	-	-	-	100			
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100			
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100			
ESE	50	50	W/7777/W	-	-	-	100			

22BPE\$22	BIOPROCESS CONTROL AND IN	NSTRUMENTAT	IOI	N			
PREREQUISIT	TES	CATEGORY	L	T	P	С	
NIL		PE	3	0	0	3	
Course Objectives	To categorize bioprocess instrumentation for the me to understand the components of control system in b		ous p	aran	neter	s and	
UNIT – I	BIOPROCESS INSTRUMENTATION 9 Periods						
	I, Level, Flow, Pressure, DO sensors. Response of Fi	-					
Transient Response, Forcing Functions and Responses. Physical examples of First and second order systems: Examples of First order systems, Linearization, Transportation Lag.							
UNIT – II	NIT – II COMPONENTS OF CONTROL SYSTEM						
Multi-loop Syste			Loop				
UNIT – III	TRANSIENT RESPONSE OF SIMPLE CONTR				Perio	ds	
Servo Proble PID C Locus.	m, Regulatory Problem, Controllers: Propor ontrollers.Ziegler-Nichols Controller Settings. Stabili			_		ot	
UNIT – IV	INTRODUCTION TO FREQUENCY RESPONS	SE .		9	Perio	ds	
	le, Bode Diagrams. Control system design based of Criterion, Gain and Phase Margins.	n frequency respo	onse:	Во	de a	nd	
UNIT – V	ADVANCED CONTROLS IN BIOREACTORS		9 Periods				
	lead time compensation, pH measurement and control and online estimation, Cascade control for jacketed		men	t and	d con	trol,	
Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

TEXT BOOK:

- 1 Impre, J.F.M.V., Vanrolleghem, P.A. and Iserentant, D.M., "Advanced Instrumentation, Data Interpretation and Control of Biotechnological Processes", Kluwer Academic Publishers, 2010.
- 2 Stephanopoulose G, "Chemical Process Control: An Introduction to Theory and Practice", Prentice Hall of India, New Delhi, 1993.

REFERENCES:

- 1 Seborg D E, Edgar TF, Mellichamp D A, Doyle FJ, "Process Dynamics and Control", 3/e, John Wiley & Sons, 2010.
- 2 | Tapobrata Panda, "Bioreactor Analysis and Design", Tata McGraw Hill, 2011.
- 3 LeBlanc, SE., Coughanowr, DR.. "Process Systems Analysis and Control". McGraw-Hill Higher Education, 2009.
- 4 James B. Riggs, M. Nazmul Karim., "Chemical and Bio-process Control", Pearson, 2007

COUR On con	Bloom's Taxonomy Mapped	
	Categorize Bioprocess instrumentation for the measurement of various parameters	K1
CO2	Understand the components of control system in bioprocesses.	K2
CO3	Develop the closed loop control system using P/PI/PID controller	K2
CO4	Analyze the stability of feedback control system	К3
CO5	Gain knowledge about the advanced control system in bioreactors.	К3

a) CO and PO Mapping														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	-	-	-61	humil	-G	-	-	ı	-	2	1
CO2	1	1	2	1	v1s	(CE)	7000	S SHIP!	20	-	-	-	2	1
CO3	1	1	2	2	2	9	15	PE		-	ı	-	2	1
CO4	1	1	2	2	2					-	-	-	2	1
CO5	1	1	2	2	2	-	,	4	//-	-	-	-	2	1
22BPE\$22	2	1	2	2	2	0-1	1	Α.	10-	-	-	-	2	1
1 - Slight, 2	2 – Mo	derate	, 3 – Sı	ıbstant	ial	7		(1)	1			•		
b) CO and	Key P	erforr	nance	Indica	tors N	Tappin	g	k	11					
CO1		1.2.1,	2.2.2,3	.1.1		8	All Park	M						
CO2		1.2.1,	2.2.2,3	.2.2,3.	4.1,4.1	.2,5.1.1	1	8 1	V/a					
CO3		1.2.1,	2.2.2,3	.2.2,3.	4.1,4.1	.2,,5.2.	1	10	Z499					
CO4	CO4 1.2.1,2.2.2,3.2.2,3.4.1,4.1.2,,5.2.1													
CO5 1.2.1,2.2.2,3.2.2,3.4.1,4.1.2,5.1.1														
		•				-0		6						

ASSESSMENT PATTERN – THEORY										
Test/Bloom's	Remembering	Understandin	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	g (K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT - 1	50	50	-	-	-	-	100			
CAT - 2	20	30	50	-	-	=	100			
Individual										
Assignment										
1/Case study	50	50	-	-	-	-	100			
1/ Seminar 1/										
Project 1										
Individual										
Assignment										
2/Case study	-	50	50	-	-	-	100			
2/ Seminar 2/										
Project 2										
ESE	40	40	20	-	-	-	100			

22BPE\$23	BIOPROCES MODELLING AND SIMUI	ATIC	ΟN		
PREREQUISIT	ES CATEGOR	L	T	P	C
NIL	PE	3	0	0	3

	To introduce the fundamental aspects of modeling of various biologica				
Objectives	address the various modeling paradigms, based on the level of detail. T	Γo outline the			
	applications of such modeling techniques.				
UNIT – I	MODELING OF BIOLOGICALSYSTEMS	9 Periods			
Modeling Principles, model development from first principles. Modeling approaches for biological					

Modeling Principles, model development from first principles. Modeling approaches for biological systems – structured and unstructured systems; Compartment models; Deterministic and stochastic approaches for modeling structured systems.

UNIT – II MODELLING OF DIFFUSION SYSTEMS (BIOFILM AND IMMOBILIZED ENZYME SYSTEMS 9 Periods

External mass transfer, Internal diffusion and reaction within biocatalysts, derivation of finite model for diffusion-reaction systems, dimensionless parameters from diffusion-reaction models, the effectiveness factor concept, case studies; oxygen diffusion effects in a biofilm, biofilm nitrification

UNIT – III MODELING BIOREACTOR

Bioreactor modelling: Ideal and non-ideal bioreactors; Stirred tank models; characterization of mass and energy transfer distributions in stirred tanks, Tower Reactor Model; Flow modeling, bubble column flow models, mass transfer modeling, structured models for mass transfer in tower reactors, process models in tower reactors, airlift models,

UNIT – IV LINEAR SYSTEM ANALYSIS

9 Periods

9 Periods

Study of linear systems, linearization of non-linear systems; Simulation of linear models using software; Parameter estimation and sensitivity analysis; Steady state and unsteady state systems; stability analysis; Case study of recombinant protein production.

UNIT - V HYBRID AND OTHER MODELING TECHNIQUES

9 Periods

Advanced modeling techniques such as fuzzy logic, neural network, hybrid systems and fuzzy logic systems; case studies.

Contact Periods:

Lecture: 45 Periods Tutorial:0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 Moser, Anton, "Bioprocess technology: kinetics and reactors", Springer Science & Business Media, 2012.
- Wayne Bequette. B, "*Process Control: Modeling, Design, and Simulation*", Prentice-Hall, 2023.

REFERENCES:

1	Said Elnashaie S.E.H., Parag Gharyan, "Conservation Equations and Modeling of
1	Said Elnashaie S.E.H., Parag Gharyan, "Conservation Equations and Modeling of Chemical and Biochemical Processes", Marcel Dekker, 2003.
2	Elmar Heinzle, Dunn.I. J, "Biological Reaction Engineering: Dynamic Modeling Fundamentals with 80 Interactive Simulation Examples", Wiley-VCH., 2021.
4	Fundamentals with 80 Interactive Simulation Examples", Wiley-VCH., 2021.
2	Najaf pour, G.D., "Biochemical Engineering & Biotechnology", 2nd Edition, Elsevier,
3	2015.
1	William L. Luyben ., "Process Modeling, Simulation, and Control for Chemical Engineers",
4	McGraw Hill, 1990.

	COURSE OUTCOMES: On completion of the course, the students will be able to:							
CO1	Understand the modelling of biological systems and bioreactors.	K2						
CO2	Design new models for biological systems, biofilm and immobilized enzyme systems, and bioreactors.	К3						
CO3	Carry out simulation of models using software.	K2						
CO4	Analyze the simulation studies and stability and sensitivity of the system.	K4						
CO5	Understand advanced modelling techniques.	K2						

a) CO and I	a) CO and PO Mapping													
COs/ POs	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	•	•	-	•	-	-	-	ı	-	-	1	ı
CO2	1	1	-	-	-	-	-	-	-	-	-	-	1	-
CO3	1	1	ı	ı	-	- 0	W. Tryn	-	-	-	-	-	1	-
CO4	1	1	•	•	600	W.	0		100	ı	-	-	1	ı
CO5	1	1	ı	1	109		ga gr		2)-	1	-	-	1	1
22BPE\$23	3	3	-	1	Į.		300		<u></u>	-	-	-	3	1
1 - Slight, 2	- Mod	derate,	3 – Suł	stantia	1	0 1		9	//					
b) CO and I	Key Po	erform	ance I	ndicato	ors Ma	pping		M	([
CO1	1.2.1,2	.2.2			- 11	7/		11	//					
CO2	2 1.2.1,2.2.2													
CO3	1.2.1,2.2.2													
CO4	1.2.1,2.2.2													
CO5	1.2.1,4	.1.2,4.1	.3,4.1.2	2	222	1111		100	AB		•		•	

SSESSMENT PATTERN										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
CAT - 1	70	30	-	-	-	-	100			
CAT - 2	60	40	-	-	-	-	100			
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100			
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	40	60	-	-	-	-	100			
ESE	50	50	-	-	-	-	100			

22BPE\$24	SOLID STATE BIOPROCESSING

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

IINIT _ I	INTRODUCTION	9 Periods
Objectives	and types of bioreactors for SSF, production of bulk chemicals and prod	ucts by SSF.
Course	To understand the basic concepts involved in SSF, general consideration	,

Solid-State Fermentation (SSF)-Difference Between Solid-State Fermentation and Submerged Fermentation-Advantages and Applications of SSF; Principles and Regulations of SSF based on biological and substrate characteristics; Biotechnology Principles of Solid State Fermentation-Microbial Growth and Metabolic Characteristics, Filamentous, Bacterial, yeast growth on the Solid Matrix; Properties of the Solid Matrix in SSF.

UNIT – II GENERAL CONSIDERATIONS FOR SSF

9 Periods

Factors affecting SSF-strain selection, medium, C/N ratio, temperature, moisture, water activity, pH, aeration and agitation, particle size; Energy balance; Heat and Mass Transfer in SSF; Kinetics of SSF estimation of kinetic parameters

UNIT – III BIOREACTORS FOR SSF

9 Periods

Overview of bioreactors employed in SSF; Types-Unaerated and Unmixed (Tray reactor), Forcefully-Aerated Bioreactors Without Mixing (Packed bed reactor), Rotating-Drum and Stirred-Drum Bioreactors, Continuously-Mixed, Forcefully-Aerated Bioreactors (Stirred Beds with Mechanical Agitators, Gas-Solid Fluidized Beds), Intermittently-Mixed Forcefully-Aerated Bioreactors; Continuous SSF Bioreactors-Continuous Tubular Flow Bioreactors, Continuous Rotating Drum Bioreactor, Continuous Stirred Tank Bioreactor; Scale-up challenges in SSF.

UNIT – IV SSF FOR BULK CHEMICALS AND PRODUCTS

9 Periods

Production of organic acids (citric acid-lactic acid); Production of enzymes (proteases,lipases),factors affecting enzyme production in SSF system-recovery of enzymes- Production of mushroom microorganisms- substrates -physiological and environmental control for mushroom production by SSF- bioremediation and detoxification of mushroom strains-Microbial pigments production.

UNIT - V APPLICATION PROSPECTS OF MODERN SSF

9 Period

Applicability of solid biomass used as substrate-characteristics of solid substrate-solid biomass bioconversion, Biomass bioconversion technology based on SSF- biological pretreatment-enzyme production for biomass bioconversion -high and Low value-added bioconversion of biomass.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Chen, Hongzhang, "Modern Solid State Fermentation: Theory and Practice", Springer Netherlands, 2013.
- 2 Ashok Pandey, C.R. Soccol, Christian Larroche, "Current Developments in Solid-state Fermentation", Springer New York, 2008..

REFERENCES

- Susanne Steudler, Anett Werner, Jay J. Cheng, "Solid State Fermentation: Research and Industrial Applications", Springer International Publishing, 2019.
- 2 Krieger, Nadia., Mitchell, David A., "Solid-State Fermentation Bioreactors: Fundamentals of Design and Operation", Springer Berlin Heidelberg, 2006.
- 3 B.K. Lonsane, G. Viniegra-Gonzalez, Gustavo Viniegra, M. Raimbault, S. Roussos, "Advances in Solid State Fermentation", Springer Netherlands, 2013.
- 4 Ashok Pandey "Solid-state Fermentation", Wiley Eastern, 1994.

COUR	RSE OUTCOMES:	Bloom's
Upon	completion of the course, the students will be able to:	Taxonomy Mapped
	Understand the basic concepts and biotechnological principles involved in	K1
	SSF.	
	Develop knowledge about the general considerations and kinetics of SSF.	K2
CO3	Explore about the various types of bioreactors for SSF.	K2
CO4	Gain knowledge about the production of bulk chemicals by SSF	К3
CO5	Inculcate the application prospects of modern SSF.	К3

a) CO and	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	1	-	ı	1	ı	1	-	-	-	-	1	2
CO2	1	1	2	1	1	-	-	-	-	-	-	-	1	2
CO3	1	1	2	1	2	-			-	-	-	-	2	2
CO4	1	1	1	-	-	-	NA. LANA	-	-	-	-	-	1	1
CO5	1	1	1	-	60		9		20	-	-	-	1	2
22BPE\$24	2	1	2	1	1	7	1 C 0 0 0	7720	(5)	-	-	-	2	2
1 – Slight, 1	2 – Mc	derate	$3 - S_1$	ubstant	ial			500						
b) CO and	Key P	erfori	mance	Indica	itors N	Iappir	ıg	_	7					
CO1			,1.2.2,		7		K	R						
CO2	CO2 1.2.1,2.2.2,3.2.2,3.4.1,4.1.2,5.1.1													
CO3 1.2.1,2.2.2,3.2.2,3.4.1,4.1.2,5.1.1,5.2.1														
CO4	CO4 1.2.1,2.2.2, 3.2.2													
CO5	24 V98/11/20/7/988													

ASSESSMENT	SSESSMENT PATTERN – THEORY										
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %				
CAT - 1	50	50	=	ī	-	-	100				
CAT - 2	20	30	50	=	-	-	100				
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100				
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	-	50	50	-	-	-	100				
ESE	50	50	-	=	-	-	100				

22BPE\$25

CLINICAL TRIALS AND HEALTH CARE POLICIES IN BIOTECHNOLOGY

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives

To understand the fundamentals of bioethics, quality assurance and governance. To develop advanced clinical trial management strategies including drug development and trial planning. To demonstrate project management in clinical trials. To apply consent and data protection methods.

UNIT - I: INTRODUCTION TO CLINICAL TRIALS

9 Periods

Fundamentals of clinical trials; Basic statistics for clinical trials; Clinical trials in practice; Reporting and reviewing clinical trials; Legislation and good clinical practice - overview of the European directives and legislation governing clinical trials in the 21stcentury; Principles of the International Committee on

Harmonisation (ICH)-GCP.

UNIT – II : REGULATIONS OF CLINICAL TRIALS

9 Periods

Drug development and trial planning - pre-study requirements for clinical trials; Regulatory approvals for clinical trials; Consort statement; Trial responsibilities and protocols - roles and responsibilities of investigators, sponsors and others; Requirements of clinical trials protocols; Clinical trials regulations in

India- schedule Y- rules and regulations, Drugs and Cosmetics Act and Rules (DCA)

UNIT - III: MANAGEMENT AND HEALTH CARE POLICIES

9 Periods

Clinical Trial Management System (CTMS), Software for CTMS study, SaaS. Legal issues in managing clinical data Health care informatics. Project management in clinical trials; Risk assessment; Research ethics and Bioethics - Principles of research ethics; Ethical issues in clinical trials; animal ethics; Use of humans

in Scientific Experiments; Ethical committee system; Introduction to ethical codes and conduct; A case study on clinical trials of drugs in India with emphasis on ethical issues.

UNIT - IV : INFORMED CONSENT

9 Periods

Consent and data protection- the principles of informed consent; Consent processes; Data protection; Legislation and its application; Data management – Introduction to trial master files and essential documents;

Data management.

UNIT - V: QUALITY CONTROL AND GUIDELINES

9 Periods

Quality assurance and governance - quality control in clinical trials; Monitoring and audit; Inspections; Pharmacovigilance; Research governance; Trial closure and pitfalls-trial closure; Reporting and legal requirements;

Contact Periods:

Lecture: 45 Periods Tutorial:0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 Matoren, Gary M. "The Clinical Research Process In The Pharmaceutical Industry. "Marcel Dekker, 2004.
- 2 Lawrence M.Friedman et al, "Fundamentals of Clinical Trials", Mosby, 2016

REFERENCES:

1	Lee, Chi-Jen et al, "Clinical Trials or Drugs and Biopharmaceuticals." CRC / Taylor & Francis, 2011.
2	Curtis L Meinert et al, "Clinical Trials - Design Conduct and Analysis", Oxford University Press 1986.
3.	Janet Woodcock, Frederick Ognibene, John Overbeke, Assuring data quality and validity in clinical trials for regulatory decision making, 2003.
4	Textbook of Clinical Trials edited by David Machin, Simon Day and Sylvan Green, March 2005, John Wiley and Sons.

	SE OUTCOMES: appletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply ethical concepts and quality control measures in clinical trial projects	K1
CO2	Demonstrate project management in clinical trials.	К3
CO3	Develop clinical trials protocols, design consent and data protection.	K2
CO4	Operate consent and data protection methods.	K2
CO5	Manage the trial coordination process	К3

a) CO and P	O Map	ping						3	25%					
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	-	1	-	-	-	2	2	2	-	-	1	2	2	2
CO2	1	-	-	1	1	-	-	2	3	3	2	2	1	3
CO3	1	1	-	-	-	-	-	1	1	-	-	-	1	3
CO4	-	-	-	-	1	-	-	2	3	3	1	1	1	3
CO5	-	2	-	1	3	-	-	-	-	-	-	-	2	2
22BPE\$25	1	1	-	1	2	2	2	2	3	3	2	2	2	3
1 - Slight, 2	- Moo	lerate,	3 - S	ubstar	ntial									
b) CO and I	Key Po	erforn	nance	Indic	ators	Mapı	oing							
CO1 7.1	1.2, 9.1	.1												
CO2 7.2	2.1,11.	1.2, 12	2.1.2											
	1.1, 7.1													
CO4 6.2	2.1, 7.1	.2,11.	3.1, 1	2.1.2										
CO5 7.1	1.2, 8.1	.1,12.	2.2											

ASSESSMENT	Γ PATTERN						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	70	30	-	-	-	-	100
CAT - 2	60	40	-	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	40	60	-	-	-	-	100
ESE	60	40	-	-	-	-	100

22BPE\$26

BIOTECHNOLOGICAL PRODUCTS AND ITS VALIDATION

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course
Objectives

Gain a thorough understanding of all aspects related to development, manufacturing an evaluation of bioproducts. Acquire adequate understanding of design of pharmaceuticals. Understand the principles of validation in biotech industry.

UNIT - I: INTRODUCTION TO VALIDATION

9 Periods

Guidelines to process validation; Introduction to calibration of instruments and its guidelines, Introduction to Qualification and Validation, Importance and scope of Validation, Types of Validation, Validation master plan.

UNIT - II: PROCESS VALIDATION OF PHARMACEUTICAL PRODUCTS

9 Periods

Process Validation of different dosage forms - solid, semisolids and parenterals; Qualification of equipment: DO, IQ, OQ and PO(Validation of critical equipment - mixer, compression machine, fluidized bed dryer (FBD), filling equipment, sterilization tunnel)

UNIT - III: STERILE EQUIPMENT VALIDATION

9 Periods

Sterile equipment train Validation, Validation of HVAC systems including clean room concepts, air handling equipment and water supply systems (purified, distilled and water for injection). • Cleaning Validation.

UNIT - IV: COMPUTER ENABLED SYSTEM VALIDATION

9 Periods

Understanding of computer system validation (electronic records and digital signature 21 CFR Part 11) concept of firmware, Commercial off the Shelf (COTS) and GAMP.

UNIT - V : CASE STUDY

9 Periods

Analytical Test Methods for Biological and Biotechnological Products; Process Optimization and Characterization Studies for Purification of an E. coli -Expressed Protein Product – case study.

Contact Periods:

Lecture: 45 Periods

Tutorial:0 Periods

Practical: 0 Periods

Total: 45 Periods

TEXT BOOK

- 1 Haider SI. Pharmaceutical Master Validation Plan: The Ultimate Guide to FDA, GMP and GLP Compliance. St. Lucie Press; 2002.
- 2 Wrigley GC. Facility Validation: Theory, Practice, and Tools. CRC Press; 2004.

REFERENCES:

- Segalstad SH. International IT Regulations and Compliance: Quality Standards in the Pharmaceutical and Regulated Industries. John Wiley & Sons; 2008.
- Ira R. Berry and Robert A. Nash, Pharmaceutical process validation (Drugs and Pharmaceutical Series), Marcel Dekker Inc. New York.
- Huber L. Validation and Qualification in Analytical Laboratories. Informa Healthcare; 2007
- Haider SI, Asif ES. Cleaning Validation Manual: A Comprehensive Guide for the Pharmaceutical and Biotechnology Industries. CRC Press; 2010.

	SE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Apply ethical concepts and quality control measures in clinical trial projects	K1
CO2	Demonstrate project management in clinical trials.	К3
CO3	Develop clinical trials protocols, design consent and data protection.	K2
CO4	Operate consent and data protection methods.	K2
CO5	Manage the trial coordination process	К3

a) CO and Po	O Maj	pping												
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	-	1	-	-	-	2	2	2	ı	-	1	2	2	2
CO2	1	-	-	1	1	-	-	2	3	3	2	2	1	3
CO3	1	1	-	-	-	-	-	1	1	-	-	-	1	3
CO4	-	-	-	-	1	200	YY44	2	3	3	1	1	1	3
CO5	-	2	-	1	3	1/2	0	2000	-	-	-	-	2	2
22BPE\$26	1	1	-	1	2	2	2	2	3	3	2	2	2	3
1 - Slight, 2	- Mo	derate	3 - S	lubstan	tial	200	6.2	1						
b) CO and I		erfori	nance	Indica	ators N	Iappin	g	. 7						
CO1 7.1.2, 9	9.1.1				100	1	- 1							
CO2 7.2.1,1	1.1.2,	12.1.2	2			M	MI.	2						
CO3 6.1.1,	7.1.1,1	1.2.1			1/	A S	E	- 11						
CO4 6.2.1,	7.1.2,1	11.3.1	, 12.1.	2	11 9	8								
CO5 7.1.2,	8.1.1,1	2.2.2			A	W.	B	3						
					1200	61550	- 1	1						

ASSESSMENT	T PATTERN		0601100	7			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3)%	Analyzing (K4) %	Evaluating (K5) %	Creating (K6)%	Total %
CAT - 1	70	30	-	-	-	-	100
CAT - 2	60	40	-	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	40	60	-	-	-	-	100
ESE	60	40	-	-	-	-	100

22BPE\$27

QUALITY ASSURANCE AND QUALITY CONTROL IN BIOTECHNOLOGY

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	Identify the various aspects of quality control and quality assur	ance aspects of										
Objectives	various biotechnological industries. Familiarize with cGM	IP, QC tests,										
	documentation, quality certifications, GLP and regulatory affairs											
IINIT _ I	INTRODUCTION	9 periods										

Quality Assurance, Quality Control, Role of Quality Assurance, QA testing, Role of Quality Control, Test for quality control, Quality assurance – Quality control – Practice of cGMP-Overview of ICH Guidelines – QSEM, with special emphasis on Q-series guidelines. Good Laboratory Practices: Scope of GLP, Definitions, Quality assurance unit, protocol for conduct of non clinical testing, control on animal house, , scope of quality certifications – responsibilities of QA & QC departments, Analysis of raw materials, finished products, packaging materials, in process quality control (IPQC), Developing specification (ICH Q6 and Q3)

UNIT - II QUALITY ASSURANCE AND QUALITY CONTROL IN CLINICAL TRIALS

9 periods

Audit criteria, Audit process, Responsibilities of stakeholders in audit process, Audit followup and documentation, Audit resolution and Preparing for FDA inspections, Fraud and misconduct management – Clinical Trial Data Management- Standard Operating Procedures, Data management plan, CRF & Data base design considerations, Study set-up, Data entry, CRF tracking and corrections, Central lab, IVRS, source data. Data cleaning, managing laboratory and ADR data, Data transfer and database lock, Quality Control and Quality Assurance in CDM, Data mining and warehousing

UNIT – III DOCUMENTATION, ASSESSMENT AND EVALUATION OF QC / QA 9 periods

Document preparation for QC/QA norms of different sectors. Quality control in Microbiology. Laboratory, assessment of aseptic condition, evaluation of possible channels of contamination, QC/QA norms for handling pathological samples

UNIT – IV QUALITY SYSTEM REGULATIONS AND QUALITY CONTROL OF MEDICAL DEVICES

9 periods

Quality System Requirements 21 CFR Part 820, Labeling requirements 21 CFR Part 801, Post marketing surveillance of MD and Unique Device Identification (UDI), Quality System requirements and clinical evaluation and investigation. IMDRF study groups and guidance documents, ISO 13485, Quality Risk Management of Medical Devices: ISO 1497

UNIT-V QUALITY IN FOOD, NUTRACEUTICALS, 9 periods BIOLOGICAL AND COSMETIC PRODUCTS

WHO guidelines on nutrition. NSF International: Its Role in the Dietary Supplements and Nutraceuticals Industries, NSF Certification, NSF Standards for Food and Dietary Supplements. Good Manufacturing Practices for Nutraceuticals, Quality, safety and legislation for herbal products in India, USA and European Union, Analysis of Cosmetics, Toxicity screening and test methods: Quality control and toxicity studies as per Drug and Cosmetics Act, Analysis of Food additives- milk constituents and milk products- Pesticide analysis

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 Mindy J. Allport-Settle, Current Good Manufacturing Practices: Pharmaceutical, Biologics, and Medical Device Regulations and Guidance Documents Concise Reference, Pharmalogika Inc., USA, 2009.
- 2 J Evans and W Linsay, *The Management and Control of Quality*, 6'th Edition, Thomson, 2005

REFERENCES

- 1 **Good Manufacturing Practices for Pharmaceutical**; A Plan for total Quality Control, 4th
 - Ed, Sidney willing, 2006
- 2 F. R., Berory and Robert A. Nash, *Quality Assurance Guide by Organization of Pharmaceutical producers of India, Pharmaceutical Process Validation*, 2008
- 3 Mitra A., Fundamentals of Quality Control and Improvement PHI, 2nd Ed., 2012.
- Willig, H., Tuckeman, M.M. and Hitchings, W.S., "Good Manufacturing Practices for Pharmaceuticals", 5th Edition, Marcel Dekker Drugs and the Pharmaceutical Sciences, by CRC Press, New York, 2000.

COUF	RSE OUTCOMES:	Bloom's
		Taxonomy
On cor	mpletion of the course, the students will be able to:	Mapped
CO1	Understand the basics and importance of QA and QC in biotechnology industries	K1
CO2	Understand the quality assurance and quality control in clinical trials	K1
	Draft SOPs in accordance with QC/QA norms of different sectors of biotechnology	K2
CO4	Know policies and regulations and quality control of medical devices	K3
	Understand the regulatory affairs of food, nutraceuticals, biological and cosmetic products based industries.	К3

COURSE ARTICULATION MATRIX

a) CO and PO Mapping														
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	
-	1	-	-	-	2	2	2	-	-	1	2	2	2	
1	-	-	1	1	-	-	2	3	3	2	2	1	3	
1	1	-	-	-	-	-	1	1	-	-	-	1	3	
-	-	-	-	1	-	-	2	3	3	1	1	1	3	
-	2	-	1	3	-	-	-	-	-	-	-	2	2	
1	1	-	1	2	2	2	2	3	3	2	2	2	3	
	PO1 - 1 1 1 1	PO1 PO2 - 1 1 - 1 1 - 2 1 1	PO1 PO2 PO3 - 1 - 1 - 1 1 - - 2 - 1 1 -	PO1 PO2 PO3 PO4 - 1 - - 1 - - 1 1 1 - - - - - - - 2 - 1 1 1 - 1	PO1 PO2 PO3 PO4 PO5 - 1 - - - 1 - - 1 1 1 1 - - - - - - 1 3 - 2 - 1 3 1 1 - 1 2	PO1 PO2 PO3 PO4 PO5 PO6 - 1 - - 2 1 - - 1 1 - 1 1 - - - - - - - - 1 - <	PO1 PO2 PO3 PO4 PO5 PO6 PO7 - 1 - - - 2 2 1 - - 1 1 - - 1 1 - - - - - - - - 1 3 - - - 2 - 1 3 - - 1 1 - 1 2 2 2	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 - 1 - - 2 2 2 1 - - 1 1 - - 2 1 1 - - - - 1 - - 2 - - - 1 -	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 - 1 - - - 2 2 2 - 1 - - 1 1 - - 2 3 1 1 - - - - 1 1 - - - - 1 - - - - 1 1 - 1 2 2 2 2 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 - 1 - - 2 2 2 - - 1 - - 1 1 - - 2 3 3 1 1 - - - - 1 1 - - - - 1 - - - - - - - 1 1 - 1 2 2 2 2 3 3	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 10 PO 11 - 1 - - - 2 2 2 - - 1 1 - - 1 1 - - 2 3 3 2 1 1 - - - - 1 1 - - - - - - 1 1 -<	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 10 PO 11 PO 12 - 1 - - - 2 2 2 - - 1 2 1 - - 1 1 - - 2 3 3 2 2 1 1 - - - - 1 1 - - - - - - 1 1 - <t< td=""><td>PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 10 PO 11 PO 11 PSO1 - 1 - - 2 2 2 - - 1 2 2 1 - - 1 1 - - 2 3 3 2 2 1 1 1 - - - - 1 1 - - - 1 -</td></t<>	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO 10 PO 11 PO 11 PSO1 - 1 - - 2 2 2 - - 1 2 2 1 - - 1 1 - - 2 3 3 2 2 1 1 1 - - - - 1 1 - - - 1 -	

1 – Slight, 2 – Moderate, 3 – Substantial

b) CO and k	o) CO and Key Performance Indicators Mapping					
CO1	9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.4, 10.1.2, 12.1.2, 12.3.2					
CO2	9.1.1, 9.1.2, 9.2.1, 11.1.2, 11.3.1					
CO3	3.1.1, 3.1.2, 10.1.1, 10.1.2, 11.1.2, 11.3.1					
CO4	8.1.1, 8.2.1,					
CO5	8.1.1, 8.2.1, 8.2.2					

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	40	60	-	-	-	-	100
CAT - 2	10	40	50	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	40	60	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	10	40	50	-	-	-	100
ESE	10	40	50	<u> </u>	-	-	100

22BPE\$28	ENTREPRENEURSHIP AND PATENT DESIGN
-----------	------------------------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives

To enable the students to get familiarize with the different sources of entrepreneurial opportunities, to train the students in developing entrepreneurial skills with an understanding of finance management, marketing strategies, ethical and legal issues related to various business affairs and to provide knowledge on various aspects of Patents law and practices.

UNIT – I INTRODUCTION TO ENTREPRENEURSHIP

9 Periods

Entrepreneurship Definition; Skills necessary for an Entrepreneur, Stages in entrepreneurship process, Role of entrepreneurship in economic development, Entrepreneurship-Innovation risk and failure.

UNIT – II BUSINESS MODELS AND FUNDING SOURCES

9 Periods

Business models- Vertical model, Platform business model, Service business model from bio based companies, Product model; Grants and Funding sources - Initial public offering, Government Grants, Informal funding, Pre seed and seed, Business angels, Venture capital, Incubators, Private investors, Creative financing, Corporate partners.

UNIT - III BUSINESS PLANNING AND DEVELOPMENT

9 Periods

Start-up Idea, Customers, Competitors, Resources, Technology, Planning, People, Writing business proposal, Checklist for business proposal writing; Location selection for business set up, Marketing Strategy, Financial management, Staff appointment and Management, Business Protection and Insurance- importance, Record Keeping and Accounting. Case studies on successful entrepreneurs- reason for success and failures.

UNIT – IV INTRODUCTION TO IPR AND PATENT

9 Periods

Introduction - Invention and Creativity - Intellectual Property (IP) - Importance - Protection of IPR. Patent- Historical development, Concepts, Novelty, Utility, Inventiveness/ Non-obviousness; Patentable subject matter, Patentability criteria, non-patentable inventions, Patent protection of pharmaceutical products and process, Software Patents, Patenting of Micro-organism.

UNIT – V PATENT LAW AND PRACTICES

9 Periods

Patent act and amendments, Rights of patentee, Procedure for granting a patent and obtaining patents, Grounds for opposition Working of Patents, Compulsory License Acquisition, Surrender, Revocation, Restoration, Transfer of patent rights; Patent infringement- types, determination of infringement, infringer, official machinery, controller, powers and functions, Defenses to infringement, Case Studies on - Patents (Basumati rice, Turmeric, Neem, etc.)

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- Jogdand S.N, "*Entrepreneurship and Business of Biotechnology*", Himalaya Publishing Home, 2007.
- 2 Damian Hine, John Kapeleris and Edward Elgar, "Innovation and Entrepreneurship in Biotechnology: An International Perspective, Concepts, Theories and Cases", Edward Elgar Publishing Ltd, 2006.

REFERENCES

1	Oliver R, "The coming biotech age: The business of biomaterials", New York, McGraw Hill,
	2000.
2	Cynthia Robbins-Roth, "From Alchemy to IPO: The Business of Biotechnology", Basic Books,
	2001.
3	Subbaram N.R, "Handbook of Indian Patent Law and Practice", S. Viswanathan Printers and
	Publishers Pvt. Ltd., 1998
4	N.S.Gopalakrishnan and T.G. Agitha, "Principles of Intellectual Property", Eastern Book
	Company, Lucknow, 2 nd edition, 2014.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
	Develop an ability to communicate effectively, inculcate entrepreneurial skills leading to innovation and risk management	K2
	Demonstrate an ability to grab business opportunity and to gain support from various funding sources for the venture.	K2
	Propose and develop appropriate business plan with a priority of business protection and analyse the reasons for success and failures of the real entrepreneurs to lead a profitable business.	К3
l l	Classify the different forms of IPR and discriminate the patentable and non patentable inventions.	K3
	Relate the patent law and application process and explore the patent infringement.	К3

a) CO and P	O Maj	pping				100		-						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	-	-	-	-	3	1	-	1	-	3
CO2	-	-	-	-	-	-	-	-	3	-	3	-	-	3
CO3	-	-	2	-	-	-	-	-	-	2	3	-	-	3
CO4	-	-	-	-	-	-	-	3	-	-	-	-	-	3
CO5	-	-	-	-	-	-	-	3	-	-	-	-	-	3
22BPE\$28	-	-	1	-	-	-	-	2	2	1	2	1	-	3
1 – Slight, 2 -	- Mode	erate, 3	– Sub	stantia	ıl									
b) CO and K						11 (,							
CO1	9.1.1,	9.1.2,	9.2.1,	9.2.2,	9.2.4, 1	10.1.2,	12.1.2	2, 12.3	.2					
CO2	CO2 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.4, 11.1.2, 11.3.1													
CO3	CO3 3.1.1, 3.1.2, 10.1.1, 10.1.2, 10.2.1, 11.1.2, 11.3.1													
CO4	CO4 8.1.1, 8.2.1, 8.2.2													
CO5	8.1.1,	8.2.1,	8.2.2											

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	40	60	-	-	-	-	100
CAT - 2	10	40	50	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	40	60	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	10	40	50	-	-	1	100
SESE	10	40	50	-	-	-	100

22BPE\$29 INTELLECTUAL PROPERTY RIGHTS IN BIOTECHNOLOGY

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Course	To provide comprehensive knowledge to the students regarding					
Objectives	principles of IPR, concept and theories, international regime re	elating to IPR.				
	Students will learn the fundamentals and advanced strategies of II	P. They will be				
	given opportunity for understanding the same in MSME sector. They	y will be finally				
	being provided with brief exposure about the valuation techniques an	d audits of IP.				
UNIT-I	INTRODUCTION	9 Periods				
Introduction t	o IPR, Basic concepts and need for Intellectual Property - Paten	ts, Copyrights,				
	Indications, IPR in India and Abroad - Genesis and Developm					
from WTO	to WIPO -TRIPS, Nature of Intellectual Property, Indus	trial Property,				
technological	Research, Inventions and Innovations – Important examples of IPI	R.				
UNIT-II	REGISTRATIONOFIPR	9 Periods				
Meaning and	practical aspects of registration of Copy Rights, Tradem	narks, Patents,				
Geographical Indications, Trade Secrets and Industrial Design registration in India and						
1	mucations, frauc secrets and muustrar besign registration	in India and				
Abroad.	maications, trade Secrets and modernal Design registration	in India and				
	AGREEMENTSANDLEGISLATIONS	9 Periods				
Abroad. UNIT-III	Commerce Commerce	9 Periods				
Abroad. UNIT-III International	AGREEMENTSANDLEGISLATIONS	9 Periods eement, Patent				
Abroad. UNIT-III International	AGREEMENTSANDLEGISLATIONS Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agr	9 Periods eement, Patent				
Abroad. UNIT-III International Act of India, Act.	AGREEMENTSANDLEGISLATIONS Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agr	9 Periods				
Abroad. UNIT-III International Act of India, Act. UNIT-IV	AGREEMENTSANDLEGISLATIONS Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agr Patent Amendment Act, Design Act, Trademark Act, Geograph	9 Periods eement, Patent iical Indication				
Abroad. UNIT-III International Act of India, Act. UNIT-IV	AGREEMENTSANDLEGISLATIONS Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agr Patent Amendment Act, Design Act, Trademark Act, Geograph ENFORCEMENTOFIPR	9 Periods eement, Patent iical Indication				
Abroad. UNIT-III International Act of India, Act. UNIT-IV Infringement of UNIT-V	AGREEMENTSANDLEGISLATIONS Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agr Patent Amendment Act, Design Act, Trademark Act, Geograph ENFORCEMENTOFIPR of IPRs, Enforcement Measures, Emerging issues—Case Studies.	9 Periods eement, Patent nical Indication 9 Periods				
Abroad. UNIT-III International Act of India, Act. UNIT-IV Infringement of UNIT-V Basic features	AGREEMENTSANDLEGISLATIONS Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agr Patent Amendment Act, Design Act, Trademark Act, Geograph ENFORCEMENTOFIPR of IPRs, Enforcement Measures, Emerging issues—Case Studies. IPRINBIOTECHNOLOGY	9 Periods eement, Patent nical Indication 9 Periods 9 Periods V, Invention/				
Abroad. UNIT-III International Act of India, Act. UNIT-IV Infringement OUNIT-V Basic features Discovery, Pa	AGREEMENTSANDLEGISLATIONS Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agr Patent Amendment Act, Design Act, Trademark Act, Geograph ENFORCEMENTOFIPR of IPRs, Enforcement Measures, Emerging issues—Case Studies. IPRINBIOTECHNOLOGY of Indian Plant Varieties Protection & Farmer's Rights Act, UPO	9 Periods eement, Patent nical Indication 9 Periods 9 Periods V, Invention/				
Abroad. UNIT-III International Act of India, Act. UNIT-IV Infringement OUNIT-V Basic features Discovery, Pa	AGREEMENTSANDLEGISLATIONS Treaties and Conventions on IPRs, TRIPS Agreement, PCT Agr Patent Amendment Act, Design Act, Trademark Act, Geograph ENFORCEMENTOFIPR of IPRs, Enforcement Measures, Emerging issues—Case Studies. IPRINBIOTECHNOLOGY of Indian Plant Varieties Protection & Farmer's Rights Act, UPO tentable subject matter, Generics, Compulsory Licensing, Exclusive, Bolar provision, Bayh-Dole act, Second medical use. ds:	9 Periods eement, Patent nical Indication 9 Periods 9 Periods V, Invention/ ve Marketing				

TEXTBOOK

- S.V.Satakar, "Intellectual Property Rights and Copy Rights", Ess Ess Publications, New Delhi, 2002
- Deborah E. Bouchoux, "Intellectual Property: The Law of Trademarks, Copy rights, Patents and Trade Secrets", Cengage Learning, Third Edition, 2012

REFERENCES

1	V.Scople Vinod, <i>Managing Intellectual Property</i> , Prentice Hall of India pvt Ltd, 2012.
2	Prabuddha Ganguli, "Intellectual Property Rights: Unleashing the Knowledge
	Economy", McGraw Hill Education, 2011.
3	Edited by Derek Bosworth and Elizabeth Webster, <i>The Management of Intellectual</i>
	Property, Edward Elgar Publishing Ltd., 2013.
4	N.S.Gopalakrishnan and T.G.Agitha, "Principles of Intellectual Property", Eastern
	Book Company, Lucknow, 2 nd edition, 2014.

	SE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Identify different types of Intellectual Properties (IPs), the right of ownership, scope of protection as well as the ways to create and to extract value from IP.	K1
	To learn the procedure of obtaining Patents, Copyrights, Trade Marks & Industrial design.	K2
CO3	To make the students to understand the statutory provisions of different forms of IPRs in simple forms.	K2
CO4	Identify activities and constitute IP infringements and the remedies available to the IP owner and describe the precautious steps to be taken to prevent infringement of Proprietary rights in products and technology development.	K3
CO5	Explore the visionary aspects in the areas of Biotechnology.	К3

a) CO and P	O Maj	pping			7/6	1000	ந்த நூ		97					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	-	-	-	-	1	1		<u> </u>	7-	-	-	1	1	2
CO2	-	-	-	-	-11	1	1	Λ	1 -	-	-	-	1	2
CO3	-	-	-	-	41	-16	2	Y -	\\ -	-	-	1	1	2
CO4	-	-	-	-	Н	1/1		<u> </u>	// -	-	-	-	1	2
CO5	-	-	-	-	1	89	-	P.	JI-	-	2	1	1	2
22BPE\$29	-	-	-	-	188	2	2	1	ASE	-	1	1	1	2
- Slight, 2 -	- Mode	erate, 3	– Subs	stantial		100		-		•			•	
) CO and K	Cey Per	forma	nce In	dicato	rs Map	ping	200	16 DU						
CO1	1.2.1	, 2.1.2			1	0%	70.00	60	factory.					
CO2	1.2.1	, 2.1.2												
CO3	1.2.1	1.2.1, 2.1.2												
CO4	1.2.1	, 2.1.2												
CO5	1.2.1	, 2.1.2												

ASSESSMENT	Γ PATTERN						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	40	60	-	-	-	-	100
CAT - 2	30	70	-	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	60	40	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	30	70		- -	1	1	100
ESE	40	60	Nu preside		-	-	100

22BPE\$30	BIOSAFETY AND HAZARD MANAGEMENT
-----------	---------------------------------

PREREQUISITES: NIL	CATEGORY	L	T	P	C
	PE	3	0	0	3

	hazards and the measurement procedures. To demonstrate techniques involved in hazard waste management. INTRODUCTION - BIOSAFETY 9 periods				
	framework of GMOs in India & at international level. To study about the types of				
•	understand the various standards of GMOs. To acquire knowledge about the regulatory				
	To enable the students to recognize the issues related to environment	nt biosafety. To			

Introduction - Historical Background - Introduction to Biological Safety Cabinets - Primary Containment for Biohazards - Biosafety Levels - Biosafety Levels for handling Infectious agents and GMOs - Biosafety guidelines - Government of India - Definition of GMOs & LMOs - Environmental release of GMOs - Risk Analysis - Risk Assessment; Risk management and communication.

UNIT – II BIOSAFETY- REGULATORY FRAMEWORK FOR GMOS IN INDIA 9 periods

Regulatory framework in India governing GMOs-Recombinant DNA Advisory Committee (RDAC) - Institutional Biosafety Committee (IBC) - Review Committee on Genetic Manipulation, Genetic Engineering Approval Committee (GEAC) - State Biosafety Coordination Committee (SBCC) - District Level Committee (DLC). Recombinant DNA Guidelines (2017) - Seed Policy (2002) The Food Safety and Standards Bill (2005) - Plant Quarantine Order (2003) - Regulation for Import of GM Products Under Foreign Trade Policy (2006-2007) - National Environment Policy (2006) - Rules for the manufacture, use/import/export and storage of hazardous microorganisms/genetically engineered organisms or cells (Ministry of Environment and Forests Notification, 1989), National biodiversity regulations.

UNIT – III BIOSAFETY-REGULATORY FRAMEWORK FOR GMOS AT INTERNATIONALLEVEL 9 periods

Convention of Biological Diversity (1992) – Cartagena Protocol on Biosafety – Objectives and salient features of Cartagena Protocol – Advanced Information Agreement (AIA) procedure – procedures for GMOs intended for direct use-risk assessment-risk management-handling, transport, packaging and identification of GMOs-Biosafety Clearing House-unintentional transboundary movement of GMOs-Benefits of becoming a party to the Cartagena Protocol status of implementation in India.

UNIT – IV PHYSICAL, CHEMICAL AND BIOLOGICAL 9 periods HAZARDS

Noise compensation aspects- noise exposure regulation-properties of sound, occupational damage-risk factors-sound measuring instruments- octave band analyser, Recognition of chemical hazards-dust, fumes, mist, vapor, fog, gases, Types- Measurement Procedure-Instruments Procedure- Gas and Vapor monitors- dust sample collection devices- personal sampling; Classification of Biohazardous agents—examples- bacterial agents- rickettsial and chlamydial agents-viral agents, fungal, parasitic agents, infectious diseases-Biohazard control program-employee health program-laboratory safety program.

UNIT – V	HAZARDOUS WASTE MANAGEMENT	9 periods					
Phytoremediation and Biomining; Biofertilizers and Biopesticides; Biofuel and Fundamentals							
of Composting	of Composting process; Biosensors and its application in environmental issues. Production of						
bioelectricity from microbial fuel cell (MFC). Current status of biotechnology in environment							
protection and	its future.						

Contact Periods:

Lecture: 45 Periods Tutorial:0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

1	Singh. B.D, "Biotechnology", 1st Edition, Kalyani Publishers, 2003.
2	Krishnan N.V, " <i>Safety Management in Industry</i> ", 1 st Edition, Jaico Publishing House, Bombay, 1997.
3	Hyatt N, "Guidelines for process hazards analysis, hazards identification & risk analysis", Dyadem Press, 2004.

REFERENCES:

1	Sasson A, "Biotechnologies and Development", UNESCO Publications, 2010.
2	Singh K, "Intellectual Property rights on Biotechnology", BCIL, New Delhi, 2010.
3	Regulatory Framework for GMOs in India, Ministry of Environment and Forest, Government of India, New Delhi, 2006.
4	Cartagena Protocol on Biosafety, Ministry of Environment and Forest, Government of India, New Delhi, 2006.

COURSE OUTCOMES: On completion of the course, the students will be able to:						
CO1	Understand the basics and guidelines of biosafety.	K1				
CO2	Familiarize about the Indian standard of GMOs.	K1				
CO3	Familiarize about the International regulatory frameworks for GMOs.	K2				
CO4	Identify and analyze various types of hazards present in physical, chemical, and biological agents in a process	K1				
CO5	Gain the knowledge about the hazardous waste management.	K2				

a) CO and F	O Ma	pping												
COs / POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	-	-	-	-	-	-	-	3	1	3	1
CO2	1	2	1	1	-	-	1	2	-	-	-	-	1	3
CO3	1	2	1	1	-	-	-	1	2	-	-	1	1	1
CO4	1	1	1	1	2	-	-	-	1	-	-	-	1	1
CO5	1	2	1	1	-	-	3	2	1	-	-	1	1	1
22BPE\$30	1	2	1	1	1	-	1	2	1	-	-	1	1	1
1 – Slight, 2	2 – Mo	derate	3 - S	ubstar	itial									
b) CO and	Key P	erfori	nance	Indic	ators	Mapp	ing							
CO1	2.2.2,3.1,1,11.3.1,12.2.2													
CO2	2.2.3,4.1.2,7.2.1													
CO3	1.3.1,2.1.2													
CO4	1.4.1,	2.2.4,4	.3.1,9.	2.1										
CO5	1 2 1	7 1 1	8 1 1											

000 1.2	,,, 0.1.1	- 9	- Burney				
ASSESSMENT	ΓPATTERN	(Contract	non grub Co	(5)			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3)%	Analyzing (K4) %	Evaluating (K5) %	Creating (K6)%	Total
CAT - 1	70	30		-	-	-	100
CAT - 2	60	40		1 -	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	602	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	40	60	(b 100° 2	- -	-	-	100
ESE	60	40	-	-	-	-	100

22BPE\$31	CONSERVATION ECONOMICS
-----------	------------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	To understand the economics. To understand the conservation bi	understand the economics. To understand the conservation biology. To										
Objectives	gible to understand the role economics in conservation of ecosystem.											
UNIT -I	INIT -I INTRODUCTION TO ECONOMICS 9 Perio											
	d the economy, theory and models in economic analysis, positive a	and normative										
economics, introduction to micro and macroeconomics.												
UNIT – II	CONSERVATION BIOLOGY	9 Periods										

Introduction to conservation biology; Values of biodiversity and conservation ethics; Patterns and process of biodiversity; Losses and threats to biodiversity, Community and ecosystem level conservation; Theories, planning and designing conservation reserves.

ENVIRONMENTAL MANAGEMENT SYSTEMS

9 Periods

Pollution control Vs Pollution prevention, cleaner production concepts, Source reduction, Raw material substitution, Process modification, Toxic use reduction and Elimination, and barriers of CP, Cleaner production project development and Opportunities implementation, cleaner production assessment and applications.

ENVIRONMENTAL ECONOMICS UNIT – IV

9 Periods

Market failure, Externalities, Common goods and public goods, Ecosystem valuation, Solution to correct externalities – Environmental regulation, Quotas on pollution, Taxes and tariff on pollution, Pigovian tax, Ecological Economics, Green economy, Ecolabel, Green washing, Low-carbon economy.

CASE STUDIES UNIT – V

Economics of protected area-sanctuaries, national parks, economics of environmental disasters-mercury contamination in fishes, The Delhi smog, The love canal, New York.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

TEXT BOOK

- Ahmed, M. H.: "Principles of Environmental Economics and Sustainability: An Integrated Economic and Ecological Approach", Routledge publisher, ISBN 0415676908,2015.
- 2 ells, **Economics**, Worth Publishers Inc., U.S.; 3rd edition, 2012.

REFERENCES

- Scott, J. C., Janet, M. T., "Environmental Economics and Management Theory, Policy and Applications", South Western publishers, ISBN-10: 8131527646,2015.
- 2 | Sharma J.P., Environmental Studies", 3rd Edition, University Science Press, New Delhi, 2009.
- Anubha Kaushik and C.P. Kaushik, Environmental Science and Engineering", 3rd Edition, New age International Publishers, New Delhi, 2008.
- R.K.Trivedi, "Hand book of Environmental laws, Rules, Guidelines, Compliances and Standards", Vol.I&II.Environ Media, 2006.

COUR	COURSE OUTCOMES:								
		Taxonomy							
On cor	On completion of the course, the students will be able to:								
CO1	learn about the concept of economics	K1							
CO2	establish the need of conservation of wildlife	K1							
CO3	Understand various environmental management systems	K2							
CO4	develop the skills of environmental economics	K2							
CO5	Understand conservation economics	K2							

a) CO and l	PO M	Iappi	ing											
COs / POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	-	-	-	-	2	3	-	-	-	-	-	3	3
CO2	1	-	ı	-	-	3	3	-	-	-	-	ı	3	2
CO3	1	-	-	ı	-	2	3	-	-	ı	-	ı	3	2
CO4	1	-	ı	-	-	2	3	-	-	-	-	ı	3	1
CO5	1	-	-	-	-	2	3	-	-	ı	-	1	3	1
22BPE\$31	1	-	-	-	0	2	3	- C.		-	-	-	3	1
1 – Slight, 2							சந்தை		401					
b) CO and H	Key P	erfo	rman	ce Inc	licato	rs Maj	pping	THE W						
CO1 1.2.	1,1.3.	.1,1.4	.1,2.2	2.1,4.1	.2,4.1.	.3			de					
CO2 1.2.1	, 2.1.3	3			110	10		30						
CO3 1.2.1, 1.3.1,2.1.3														
CO4 1.2.1, 1.3.1,2.1.3														
CO5 2.4.	1, 3.2	$2.1, \overline{4.2}$	2.1,5.	2.1	11	ě.	E AND	1	1					

ASSESSME	NT PATTERN	– THEORY		3.			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	60	40		-	-	-	100
CAT - 2	50	50	-	-	-	-	100
Individual Assignmen t 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignmen t 2/Case study 2/ Seminar 2/ Project 2	60	40	-	-	-	-	100
ESE	50	50	-	-	-	-	100

	22BPE\$32	CHEMICAL PROCESS SAFETY
- 1		

PREREQUISITES:	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives	ecome a skilled person in hazopard hazarel analysis and finding out the root cause of accident. Gain knowledge in devising safety policy and procedures to be adopted implement total safety in a plant.										
UNIT – I	INTRODUCTION TO SAFETY IN INDUSTRIES	9 Periods									
	by in industries; Safety Programmes – components and realization; Potting conditions, toxic chemicals; safe handling.	tential hazards -									
UNIT – II	IMPLEMENTATION OF SAFETY PROCEDURES	9 Periods									
-	on of safety procedures – periodic inspection and replacement and prevention; promotion of industrial safety.	; Accidents –									
UNIT – III	RISK ANALYSIS	9 Periods									
ISO 14000, E	malysisemergency planning-on site & off site emergency planning, ri MS models case studies. Quantitative risk assessment - rapid and con due to Radiation, explosion due to over pressure, jet fire-fire ball.										
UNIT – IV	HAZARD IDENTIFICATION ANALYSIS	9 Periods									
	fication safety audits, checklist, what if analysis, vulnerability mo tree analysis, Hazan past accident analysis Fixborough-Mexico-Madr										
UNIT – V	HAZOP STUDIES	9 Periods									
	words, parameters, derivation-causes-consequences-recommendation dies-pumping system-reactor-mass transfer system.	n-coarse Hazop									
Contact Perio Lecture: 45 P		otal: 45 Periods									

TEXT BOOK

1	Daniel A. Crowl, J.F. Louvar, Prantice Hall, NJ,' Chemical Process Safety: Fundamentals with
	Applications, 1990
2	Marcel, V.C., <i>Major Chemical Hazard</i> - Ellis Harwood Ltd., Chi Chester, UK, 1987.

REFERENCES:

1	Handley, W., "Industrial Safety Hand Book", 2nd Edn., McGraw-Hill Book Company, 1969
2	Heinrich, H.W. Dan Peterson, P.E. and Rood, N., " <i>Industrial Accident Prevention</i> ", McGraw Hill Book Co., 1980.
3	Taylor, J.R., <i>Risk analysis for process plant, pipelines and transport</i> , Chapman and Hall, London, 1994.
4	Fawatt, H.H. and Wood, W.S., "Safety and Accident Prevention in Chemical Operation", Wiley Interscience, 1965.

	COURSE OUTCOMES: On completion of the course, the students will be able to:							
CO1	Demonstrate the awareness of plant safety in selection and layout of chemical plants and the usage of safety codes.	K1						
CO2	Exhibit the skill in classifying chemical, fire, explosion hazards and to understand the occupational diseases.	K1						
CO3	Analyze the bio medical and engineering response to health hazards and to implement the effective process control and instrumentation.	K2						
CO4	Analyze various safety protocols involved in industries.	K1						
CO5	Study on different situation pertaining in environmental management in chemical process industries.	K2						

a) CO and PO Mapping														
COs / POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	1	-		-9	Summy.	2-		-	3	1	3	1
CO2	1	2	-	1	70	20 C C C C	1	2	70-	-	-	-	1	3
CO3	1	2	1	1		1000	277162	21	2	-	-	1	1	1
CO4	1	1	1	1	2	9			1	-	-	-	1	1
CO5	1	2	1	1	-{100	1	3	2	7//1	-	-	1	1	1
22BPE\$32	1	2	1	1	1\\\	9-1	1	2	1	-	ı	1	1	1
1 – Slight, 2	- Mod	erate, 3	- Subs	stantial	- 11		ATTE	(1,2	W					
b) CO and	Key Pe	rforma	nce In	dicator	s Map	ping			1					
CO1	2.2.2,	3.1.1,1	1.3.1,12	2.2.2	- 11	8/	AUD A		11					
CO2	2.2.3,	4.1.2,7.	2.1			8	1	11						
CO3	1.3.1,2.1.2													
CO4	1.4.1,	2.2.4,4.	3.1,9.2	.1	2	700			200					
CO5	1.2.1,	7.1.1, 8	.1.1	•	100	1000	ON A	Alcu	0		•	•	•	

ASSESSMENT PATTERN								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT - 1	70	30	-	-	_	-	100	
CAT - 2	60	40	-	-	-	-	100	
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100	
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	40	60	-	-	-	-	100	
ESE	60	40	-	-	-	-	100	

22BPE\$33	HUMAN ANATOMY AND PHYSIOLOGY
22BPE\$33	HUMAN ANATOMY AND PHYSIOLOGY

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

	To understand the structure and functions of the various systematical systems and systems of the various systems.	
Objectives	body. To acquire knowledge on the importance of anatomica	l features and
	physiology of different human systems	
IINIT – I	HUMAN ANATOMY	9 Periods

Basics of human anatomy, tissues of the human body- epithelial, connective, muscular and nervous tissues, their sub types and characteristics. Skeletal system- Structure, composition, classification of joint, anatomy of skeletal muscles.

UNIT – II CIRCULATORY SYSTEM

9 Periods

Circulatory system- Blood, lymph composition and function. Basic anatomy of the heart. Physiology of heart, blood vessels and circulation. Basic understanding of cardiac cycle, heart sounds and electrocardiogram. Blood pressure and its regulation. Brief outline of cardiovascular disorders like hypertension, hypotension, atherosclerosis, angina, myocardial infarction, congestive heart failure and cardiac arrhythmias.

UNIT – III DIGESTIVE AND ENDOCRINE SYSTEM

9 Periods

Digestive System- Anatomy of the gastro intestinal tract, functions of its different parts: liver, pancreas and gall bladder, various gastrointestinal secretions and their role in the absorption and digestion of food. Endocrine system- anatomy and functions of pituitary gland, adrenal gland, parathyroid gland, pancreas.

UNIT – IV RESPIRATORY, URINARY AND REPRODUCTIVE 9 Periods SYSTEM

Respiratory System- Anatomy of respiratory organs. Functions of respiration, mechanism and regulation of respiration, respiratory volumes and vital capacity. Urinary System-Various parts, structures and functions of the kidney and urinary tract. Reproductive system-testes and ovary, Anatomy and physiology of various parts of male and female reproductive systems.

UNIT – V GLOBAL ISSUES

9 Periods

Central Nervous System- Functions of different parts of brain and spinal cord. Neuro-chemical transmission in central nervous system, reflex action, cranial nerves and their functions. Autonomic Nervous System- Physiology and functions of autonomic nervous system-mechanism of neuro humoral transmission in A.N.S.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 Gerad. J. Tortora and Bryan H. Derrickson, **Principles of Anatomy and Physiology**, 16th edition, Wiley, 2020.
- 2 C.C.Chatterjee, **Human Physiology**, 13th edition, Vol I and II, CBS publishers and distributors, 2020.

REFERENCES

1	John. E. Hall, Guyton and Hall Textbook of Medical Physiology, 14th edition, Elseiver, 2
2	K. Sembulingam, Prema Sembulingam, Essentials of Medical Physiology, 8 th edition, Jaypee Brothers, New Delhi, 2019.
3	Marieb, Elaine N. and Katja Hoehn, Human Anatomy & Physiology , 11 th edition, Pearson publishers, 2018.
4	Frederic H. Martini, Judi L. Nath, Edwin F. Bartholomew, Fundamentals of Anatomy and Physiology. Tenth Edition, Pearson Publishers, 2014

	COURSE OUTCOMES: On completion of the course, the students will be able to:					
	Recognize the basic structural and functional elements of human body and human skeletal system.	K1				
CO2	Identify the anatomical and physiological characteristics of human circulatory system.	K1				
	Differentiate the various structural and functional components of human digestive and endocrine system.	K2				
	Report the anatomical features and physiology of human respiratory, urinary and reproductive system	K2				
CO5	Classify the structural framework and key functions of central nervous system.	K2				

a) CO and I	a) CO and PO Mapping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO1	PSO2
	1	2	3	4	5	6	7	8	9	10	11	12		
CO1	1	1	•	ı	-	2	ı	-	ı	-	-	-	3	1
CO2	1	1	-	-	-	2	-	-	-	-	-	-	3	1
CO3	1	1	-	-	-	2	-	-	-	-	-	-	3	1
CO4	1	1	1	1	1	2	-	1	1	-	-	-	3	1
CO5	1	1	-	-	-	2	-	-	-	-	-	-	3	1
22BPE\$33	1	1	-	-	-	2	-	-	-	-	-	-	3	1
1 - Slight, 2														
b) CO and I	Key Pe	erform	ance I	ndica	tors M	[appin	g							
CO1	1.2.1	, 2.1.2	, 6.2.1											
CO2	1.2.1, 2.1.2, 6.2.1													
CO3	1.2.1, 2.1.2, 6.2.1													
CO4	1.2.1	, 2.1.2	, 6.2.1							•	•	•		
CO5	1.2.1	, 2.1.2	, 6.2.1											

Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total
CAT - 1	50	50	-	=	-	-	100
CAT - 2	40	60	-	-	-	-	100
Individual Assignmen t 1/Case study 1/ Seminar 1/ Project 1	60	40	-	-	-	-	100
Individual Assignmen t 2/Case study 2/ Seminar 2/ Project 2	30	70	-	-	-	-	100
ESE	50	50	MACHEDONA	-	-	-	100

22BPE7\$34	BIOETHICS
------------	-----------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

1111		1.12	5 0	U	9				
Course	To enlighten the students about the ethical i	ssues and respo	nsibili	ties.	To				
Objectives	discuss about the safety and risk assessment in	various industri	al proc	ess					
UNIT – I	ENGINEERING ETHICS			9 Pe	eriods				
Cardinal virtue	Cardinal virtues and their development, concept of morality, ordinal virtues, Senses of "Engineering"								
Ethics" - Vari	Ethics" – Variety of moral issues – Types of inquiry – Moral dilemmas – Moral Autonomy –								
	eory - Gilligan"s theory - Consensus and C		rofession	ons a	and				
Professionalisn	n – Professional Ideals and Virtues – Uses of Ethica	1 Theories							
UNIT – II	ENGINEERING AS SOCIAL EXPERIMENTA	TION		9 Pe	eriods				
Engineering as	Experimentation – Engineers as responsible Experir	nenters – Researc	h Ethics	s - Co	des of				
Ethics - Indust	rial Standards - A Balanced Outlook on Law - The	Challenger Case	Study						
UNIT – III	ENGINEER'S RESPONSIBILITY FOR SAFET	$\Gamma \mathbf{Y}$		9 Pe	eriods				
Safety and Risl	k – Assessment of Safety and Risk – Risk Benefit A	nalysis – Reducii	ng Risk	- Th	e				
Government Re	egulator's Approach to Risk - Chernobyl and Bhopa	al Case Studies.							
UNIT – IV	RESPONSIBILITIES AND RIGHTS			9 Pe	eriods				
Collegiality an	d Loyalty - Respect for Authority - Collective	Bargaining - Co	onfiden	tiality	<i>y</i> –				
Conflicts of Int	erest - Occupational Crime - Professional Rights -	- Employee Right	s – Inte	llectu	al				
Property Rights	Property Rights (IPR) - Discrimination.								
UNIT – V	GLOBAL ISSUES			9 Pe	eriods				
Multinational Corporations – Business Ethics - Environmental Ethics – Computer Ethics - Role in									
Technological Development - Weapons Development - Engineers as Managers - Consulting									
Engineers – Engineers as Expert Witnesses and Advisors – Honesty – Moral Leadership – Sample									
Code of Conduct.									

TEXT BOOK

Contact Periods: Lecture: 45 Periods

- Mike Martin and Roland Schinzinger, "*Ethics in Engineering*", McGraw Hill, New York, 2005
- Charles E Harris, Michael S Pritchard and Michael J Rabins, "*Engineering Ethics Concepts and Cases*", Thompson Learning, 2000.

Practical: 0 Periods Total: 45 Periods

REFERENCES

1 Charles D Fleddermann, "*Engineering Ethics*", Prentice Hall, New Mexico, 1999.

Tutorial: 0 Periods

- 2 John R Boatright, "Ethics and the Conduct of Business", Pearson Education, 2003.
- 3 Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, 2001.
- 4 | Prof. (Col) P S Bajaj and Dr. Raj Agrawal, "*Business Ethics An Indian Perspective*", Biztantra, New Delhi, 2004.

	RSE OUTCOMES: unpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Get familiarize with the basics of work ethics.	K2
	Be aware of the engineer's social responsibility and standard industrial operating procedures.	K2
CO3	Acquire the responsibility of an engineer towards safety.	K2
CO4	Report the different ethical rights and responsibilities of an engineer.	K3
CO5	Explore the various global issues related to professional ethics.	K3

a) CO and	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						_		_						
CO1	-	-	-	ı	-	3	2	3	-	-	-	-	-	3
CO2	-	-	-	•	•	3	2	3	1	-	-	-	-	3
CO3	1	1	-	ı	ı	3	_ 2	3	-	-	-	1	-	3
CO4	-	-	-	-	0	3	2	3	100	-	-	-	-	3
CO5	-	-	-	-	(2)	3	2	3	0)-	-	-	-	-	3
22BPE7\$34	-	-	-	-	7	3	2	3	1	-	-	-	-	3
	1 – Slight, 2 – Moderate, 3 – Substantial													
b) CO and Ko	ey Perf	formar	ice Ind	licator	s Map	ping		6	//					
CO1	6.1.1,	6.2.1, 7	7.1.2, 7	.2.2, 8.	1.1, 8.	2.1, 8.2	2.2	Λ						
CO2	6.1.1,	6.2.1, 7	7.1.2, 7	.2.2, 8.	1.1, 8.	2.1, 8.2	2.2, 9.1	.2						
CO3	6.1.1,	6.2.1, 7	7.1.2, 7	.2.2, 8.	1.1, 8.	2.1, 8.2	2.2		1					
CO4	6.1.1,	6.2.1, 7	7.1.2, 7	.2.2, 8.	1.1, 8.	2.1, 8.2	2.2	M						
CO5	6.1.1,	6.2.1, 7	7.1.2, 7	.2.2, 8.	1.1, 8.	2.1, 8.2	2.2, 9.1	.2	//3	•		•		

ASSESSMENT PATTERN								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT - 1	40	60	-	-	-	-	100	
CAT - 2	10	40	50	-	-	-	100	
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	40	60	-	-	-	-	100	
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	10	40	50	-	-	-	100	
ESE	10	40	50	-	-	-	100	

22BPE7\$35	BIOMASS AND BIOENERGY
------------	-----------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

-								
Course								
Objectives	strategies in the production of biofuels. To evaluate various technologies on the basis of							
	the substrates treated. To enable them to design elements and conceptualize bioenergy							
	plants.							
UNIT – I	BIOMASS: PROPERTIES AND TYPES	9 Periods						
Constituents o	f Biomass, Energy properties. Biomass typologies: Lignocellulosic, s	startchy, sugary,						
oilseeds,sewag	e sludge, manure. Biomass Conversion: Physical, Chemical, Biochemical	process.						
UNIT – II	MILESTONES IN BIOFUELS	9 Periods						
	n biofuels-bioethanol; Second generation biofuels-methane and hydrog							
	microbes; Third generation biofuels-biobutanol-biodesel from algae; F	ourth generation						
	to fuel method to produce biofuels, Microbial fuel cell							
UNIT – III	BIODIESEL AND BIOMETHANE	9 Periods						
Sources and pr	ocessing of biodiesel (fatty acid methyl ester); Sources and characterist	ics of lipids for						
use as biodiesel feedstock and conversion of feedstock into biodisel (transesterification); Biomethane or								
biogas-hydroly	biogas-hydrolysis-anaerobic digestion-methanogenesis (acetoclastic, hydrogenotrophic) - rates of							
methane forma	tion-one and two stage fermentation, Factors affecting gas production.							
UNIT – IV GASIFICATION & PYROLYSIS TECHNOLOGIES 9 Periods								
Gasification pr	ocesses and the main types of gasifier designs-production of electricity	by combining a						
gasifier with a gas turbine or fuel cell; Combined-cycle electricity generation with gas and steam								
turbines and generation of heat and steam; Fast pyrolysis technology to produce liquid bio oil or								
pyrolysis oil (synthetic oil) from biomass-refined to produce a range of fuels- chemicals and fertilizer,								
Biochar								
UNIT - V CHEMICAL ENGINEERING TOOLS FOR ENERGY DESIGN PROCESSES 9 Periods								
Reaction stoic	hiometry, reaction kinetics, reaction thermodynamics, reactors, proce	ess analysis and						
design								
Contact Periods:								
Lecture: 45 Po	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 P	eriods						

TEXT BOOK

1	Samir K. Khanal, "Bioenergy Production: Principles and Applications", Wiley-
	Blackwell Publishing, 1 st edition, 2016.
2	David M. Mousdale, "Biofuels: Biotechnology, Chemistry, and Sustainable
	Development ", CRC Press Taylor and Francis group, 1 st edition, 2008.

REFERENCES

1	Robert C. Brown, "Biorenewable Resources: Engineering New Products from Agriculture", Wiley-Blackwell Publishing, 2 nd edition, 2014.
1	Wiley-Blackwell Publishing, 2 nd edition, 2014.
2	Pogaku, Ravindra, Sarbatly, rosalamhj. (Eds.), "Advances in Biofuels", Springer, 2013.
2	Martin Kaltschmitt and Hermann Hofbauer, "Biomass Conversion and Biorefinery", Springer
3	Publishing, 2008.
4	Donald L. Klass, "Biomass for Renewable Energy, Fuels, and Chemicals", Academic
4.	Press, Elsevier, 2006.

	COURSE OUTCOMES: On completion of the course, the students will be able to:							
CO1	Understand various organism in soil and their roles in ecosystem management	K1						
CO2	Review on xenobiotic compounds and their degradation pathway.	K1						
CO3	Able to explain the characteristics and biological treatment of waste water	K2						
CO4	Analyze various industrial waste and their treatment process.	K2						
CO5	Study on different applications of biotechnology in environmental management.	K2						

a) CO and Po	О Мар	ping												
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO2	1	1	-	-	-	HTM CHICAN	-	-	-	-	-	-	3	1
CO3	1	1	-	- 000	-	2 0	mg.	_	-	-	-	-	3	1
CO4	1	1	-	-47	8 5000	Anthor (1 F6 5		7-	-	-	-	3	1
CO5	1	1	-	- 8	V /5%	5	25		9 -	-	-	-	3	1
22BPE\$35	1	1	-	- 5	1	_	-	-1	-	-	-	-	3	1
1 – Slight, 2 –	Mode	rate, 3 -	- Subs	tantial	74		P	1	7					
b) CO and Ko	*			licato	rs Map	oping			0					
CO1		1, 2.1.3						- 11						
CO2	CO2 1.4.1, 2.1.3.													
CO3 1.4.1, 2.1.3.														
CO4	CO4 1.4.1, 2.1.3.													
CO5	1.4.	1, 2.1.3	3.	2				ZE	345		•			

ASSESSMENT	ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT - 1	50	50	-	-	-	-	100						
CAT - 2	50	50	-	-	-	-	100						
Individual Assignmen t 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100						
Individual Assignmen t 2/Case study 2/ Seminar 2/ Project 2	30	70	-	-	-	-	100						
ESE	50	50	-	-	_	-	100						

22BPE\$36 ENVIRONMENTAL BIOTECHNOLOGY

PREREQUISITES	CATEGORY	L	T	P	C
Nil	PE	3	0	0	3

1 111		1.12	3 0 0	3				
Course Objectives	To enable the students to get familiar with the di- environment and their various roles in environment about various pollutants present in the environment							
UNIT – I	FUNDAMENTALS OF SOIL MICROBIOLO	GY	9 period	ds				
	of soil, growth and ecological adaptations of soil microsms, biogeochemical role of soil microorganisms.	oorganisms, inter	actions among	g				
UNIT – II	9 period	ds						
Factors causir hydrocarbons	Xenobiotics - persistence and biomagnification; Types of Recalcitrant xenobiotic compounds; Factors causing molecular recalcitrance; microbial pathways for biodegradation of petroleum hydrocarbons – aliphatic, aromatic, polycyclic and chlorinated hydrocarbons; biodegradation of pesticides and synthetic detergents.							
UNIT – III	WASTEWATER TREATMENT		9 period	ds				
Characteristics	of Wastewater - Physical, chemical and biological	l; Wastewater tr	eatment-Biolo	ogical				
method- suspen	ded growth and biofilm processes; design of activated	d sludge process;	ponds and lag	oons;				
	anaerobic wastewater treatment; sludge digestion - dent removal – nitrogen and phosphorus.	esign of anaerobio	e sludge					
	INDUSTRIAL WASTEWATER MANAGEM	FNT						
			9 period					
	te management- Leather, pulp, pharmaceutical, da	-	=					
-	ess, origin and characteristics of waste, waste minimi		•	olid				
waste managem	ent; hazardous waste management – e-waste, radioact	ive and nuclear po	wer waste.					
UNIT – V	DEVELOPMENTS PERTAINING TO ENVIRONMENTAL BIOTECHNOLOGY		9 period	ls				
Phytoremediation	on and Biomining; Biofertilizers and Biopesticid	es; Biofuel and	Fundamenta	ls of				
Composting pro	ocess; Biosensors and its application in environmenta	l issues. Producti	on of bioelect	ricity				
from microbial	fuel cell (MFC). Current status of biotechnology	in environment p	rotection and	its				
future.								

TEXT BOOK

Contact Periods: Lecture: 45 Periods

Bruce E.R and Perry L.M, 'Environmental Biotechnology: Principle and Applications', McGraw Hill, 2012.

Practical: 0 Periods

Total: 45 Periods

Tutorial:0 Periods

² Patwardhan, A.D, 'Industrial wastewater treatment', PHI learning private limited, 2nd edition, 2017.

REFERENCES:

ı		~ .						
ı	1	Scragg A	'Environmental	Riotechnolomy	Ovtord	Inivercity	nrece 2nd edi	tion 2005
ı	1	Buragg A,	Littioninentui	Diviechnology	, Ozioiu	University	press, zna car	111011. 2005.

- ² Joanne M. W, Sherwood L, Woolverton C.J, '*Prescott's Microbiology*', McGraw-Hill, 8th edition, 2011.
- 3 Parimal pal, 'Industrial water treatment process technology', Butterworth-Heinemann, 2017.
- 4 Mecalf & Eddy Inc, Tchobanoglous G, Burton F.L, Stensel H.D, 'Wastewater Engineering: Treatment Disposal Reuse', McGraw Hill, 4th edition. 2002.

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
	Understand various organism in soil and their roles in ecosystem management	K1
CO2	Review on xenobiotic compounds and their degradation pathway.	K1
CO3	Able to explain the characteristics and biological treatment of waste water	K2
CO4	Analyze various industrial waste and their treatment process.	K2
000	Study on different applications of biotechnology in environmental management.	K2

					11 3		7900	S 11						
a) CO and I	PO Ma	pping		1	//			1						
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	1	-	- 8	3/-	15	-4	7.0	ė -	-	-	-	3	1
CO2	1	1	-	- (6			/2		3 -	-	-	-	3	1
CO3	1	1	-	- 1	-	20	3	De Une	-	-	-	-	3	1
CO4	1	1	-	-	-	2/4	90	(-	-	-	-	3	1
CO5	1	1	-	-	-	-	-	-	-	-	-	-	3	1
22BPE\$36	1	1	-	-	-	-	-	-	-	-	-	-	3	1
1 – Slight, 2	2 – Mo	derate	3 - S	ubstar	itial	•	•			•		•		
b) CO and	Key P	erfori	mance	Indic	ators	Mapp	ing							
CO1	1.4.1,	2.1.3.												
CO2	1.4.1,	2.1.3.												
CO3	1.4.1,	2.1.3.												
CO4	1.4.1,	2.1.3.												
CO5	1.4.1.	2.1.3.												

ASSESSME	NT PATTERN	- THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6)%	Total %
CAT - 1	50	50	-	-	-	-	100
CAT - 2	50	50	-	-	-	-	100
Individual Assignmen t 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignmen t 2/Case study 2/ Seminar 2/ Project 2	30	70	- Gram	-	-	-	100
ESE	50	50	I SO BILL TO SO BE	- 100	-	-	100

22BPE\$37	BIOPOLYMER TECHNOLOGY

PREREQUISITES	CATEGORY	L	T	P	С
NIL	PE	3	0	0	3

Biopolymers - definition, Plant and Animal biopolymers- polynucleotide, polyamides, polysaccharides, polyisoprene, lignin, polyphosphate and polyhydroxyalkanoates. Application and chemical synthesis of super absorbent polymers-Polyethylene glycol, Polypropylene glycol, Polytetramethylene glycol, Polyglycerine. Bioplastics and environment, Commercial bioplastics. Natural fibers like silk, wool, flax, jute, linen, cotton, bamboo. Biocomposite-properties and applications.

UNIT – II BIOPOLYMER TECHNOLOGY AND APPLICATIONS 9 Periods

Industrial biopolymers: Production of polyphenol resins by the enzyme soybean peroxidase; Novel synthesis of Artificial Biopolymers in Biomedical Applications- An Overview, Hydrogel as potential Nano scale drug delivery system, Low cost foods and drugs using immobilized enzymes on Biopolymers, Physiochemical characteristics of biopolymers. Biodegradable polymers for medical purposes, Biopolymers in controlled release systems. Synthetic polymeric Membranes and their biological applications.

UNIT – III BIOSURFACTANTS

9 Periods

Biosurfactants: Source, characteristics and properties of Biosurfactants; Production of Biosurfactants via the fermentation and biotransformation routes; Production of Biosurfactants with immobilized cells; Integrated bioprocess for continuous production of Biosurfactants including downstream processing; Applications of Biosurfactants — Food Industry, Environmental Control.

UNIT – IV MATERIAL TESTING AND ANALYTICAL METHODS 9 Periods

An Overview of Available Testing Methods, Comparison of Test Systems for the Examination of the Fermentability of Biodegradable Materials, Evaluation of the properties of biopolymers to make good biomaterials; Tensile strength (both elasticity and breaking strength); Hydration, visco – elastic properties; viscosity. Criteria used in the evaluation of Biodegradable polymers – petridish screen – environmental chamber method – soil burial tests etc.

UNIT – V CASE STUDIES

9 Periods

Biopolymers: Synthesis from a simple biological monomer (i.e. Hyaluronate polymers); Dextran (used in chromatography columns); Rubberlike materials produced by bacteria and fungi – Polyhydroxybutyrate (PHB), Polycaprolactone (PCL), Xanthan gum; Production of a copolymer of PHB and PHV (Polyhydroxyvaleric acid), sold as Biopol by fermentation on *Alcaligenes eutrophus*; Biodegradable polymers

Contact	Periods:
---------	----------

Lecture: 45 Periods Tutorial:0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- 1 Emo Chiellini, Helena Gil, "Biorelated Polymers: Sustainable Polymer Science and Technology", Springer 2001.
- 2 Johnson R.M, L.Y. Mwaikambo and N. Tucker, "Biopolymers", Rapra Technology, 2003

REFERENCES:

Carmen Scholz, Richard A Gross, "Polymers from Renewable Resources: Biopolymers and Biocatalysis", American Chemical Society, 2001.

David Plackett, "Biopolymers – New Materials for Sustainable films and Coatings", John Wiley and Sons Ltd, 2011

Naim Kosaric (Ed). "Biosurfactants". Marcell Dekker Inc, 1993.

Leopoido Javier Rios Gonzalez. "Handbook of Research on Bioenergy and Biomaterials: Consolidated and green process" Apple academic press, 2021.

COURSE OUTCOMES: On completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1 To employ the greener technologies to solve the environmental issues.	K1
CO2 To illustrate the synthesis and application of biopolymers in nanoscale drug delivery systems, as biomimetic materials and waste water treatment methods.	K1
CO3 To understand the properties of biosurfactants and their use in food industries.	K2
CO4 To evaluate the tensile strength, hydration, viscoelastic properties using different testing methods.	K2
CO5 To analyze the different types of Biopolymers through case studies.	K2

a) CO and P	O Map	ping												
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO2	1	1	-	-	-	-	-		-	-	-	-	3	1
CO3	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO4	1	1	-	•	-	-	-		•	-	-	-	3	1
CO5	1	1	-	-	-	-	-	-	-	-	-	-	3	1
22BPE\$37	1	1	-	-	-	-	-	-	-	-	-	-	3	1
1 - Slight, 2	2 – Mo	derate,	$3-S\iota$	ıbstant	ial									
b) CO and	Key P	erforn	nance	Indica	tors N	Iappir	ıg							
CO1	1.4.1,	2.1.3.												
CO2	1.4.1,	2.1.3.												
CO3	1.4.1,	2.1.3.												
CO4	1.4.1,	2.1.3.												
CO5	1.4.1,	2.1.3.												

ASSESSMEN	T PATTERN	- THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	50	-	-	-	-	100
CAT - 2	50	50	-	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	30	70	-	-	-	-	100
ESE	50	50	-	-	-	-	100

22BPE\$38	NANOBIOTECHNO	LOGY				
PREREQUISIT	ES	CATEGORY	L	T	P	C
NIL		PE	3	0	0	3

NIL	NIL PE 3									
Course	937									
	various methods of synthesis and characterization of nanoparticles.									
	UNIT – I : INTRODUCTION				Perio					
	ion; Fundamental science behind nanotechnology-									
metals- biosyst	tems; Nanobiotechnology -definition; Nanomateri	als- types- Carl	on	nan	oma	iterials				
	heme- nanotubes; Characteristics and applications)-	Quantum Dots a	nd '	Wire	s; N	1 etal				
	properties and applications.									
UNIT – II	METHODS OF NANOPARTICLES SYNTHESIS	S		91	Perio	ods				
Nanoparticles	fabrication- Top-down & bottom-up approaches-	Physical- chen	nical	- b	iolog	gical				
methods; Use of	of bacteria- fungi- actinomycetes and plants for nan	oparticle synthes	sis;]	Mag	neto	tatic				
bacteria for natu	ural synthesis of magnetic nanoparticles- mechanism	of formation.								
UNIT – III	CHARACTERIZATION OF NANOPARTICLES	5		91	Perio	ods				
Characterization	n of nanoparticles - AFM- SEM- TEM- STM- XR	D- EDAX- FTIF	l – j	orino	ciple	and				
applications.										
UNIT – IV	NANOBIOMETRICS			91	Perio	ods				
Introduction- D	DNA based nanostructures, Protein based nanoparti	icles- Peptide, al	bum	in,	S-La	ayer				
protein self asse	embled system; Nanoscale motors; Ion channel as ser	nsors; Lipid based	d na	nopa	artic	les.				
UNIT – V	BIOMEDICAL APPLICATIONS OF NANOPAR	RTICLES		9]	Perio	ods				
Biocompatible	In-organic devices (Implant coating- stems and	seeds); Nanopa	rtic	les	for	drug				
delivery-Polym	neric nanoparticles, nanoshells; Nanovectors for gene	therapy; Nanobi	osen	sors	; <i>In-</i>	·vivo				
diagnostics in n	nolecular imaging.									
Contact Period	ds:									
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 1	Periods To	tal:	45]	Peri	ods				

TEXT BOOK:

- 1 Kumar, N., Kumbhat, S., "Essentials in Nanoscience and Nanotechnology", John Wiley & Sons, 2016.
- 2 *Niemeyer, C.M., Mirkin, C.A.,* "Nanobiotechnology: Concepts, Applications and Perspectives", Wiley-VCH, 2004.

- 1 Cao, G., "Nanostructures and Nanomaterials-Synthesis, properties and applications", Imperial College Press, 2004.
- De la Fuente, J.M., Grazu, V., "Nanobiotechnology", In: Frontiers in Nanoscience (Vol.4), R.E. Palmer (Ed), Elsevier, 2012.
- 3 Challa S. S. R. Kumar., "Nanotechnologies for the Life Sciences", Vol. 2 Biological and Pharmaceutical Nanomaterials, Wiley, 2006.
- 4 Nicolini, C., "Nanobiotechnology and Nanobiosciences", Pan Stanford, 2008
- 5 Yoseph, Bar-Cohen, "Biomimetics: Biologically Inspired Technologies", CRC Press, 2006.

COURSE OUTCOMES: On completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1 Understand the different types of nanomaterials, its properties	and K1
applications.	
CO2 Know about biological methods of nanoparticle synthesis	K2
CO3 Characterize the synthesized nanoparticles using different analytical techniques	
CO4 Understand the bionanomachinery in living cells to design bionanodevices	s K2
CO5 Acquire knowledge about the biological applications of nanoparticles.	K2

a) CO and l	PO M	appi	ng											
COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	2	-	-	-	10	2 0	ME	/	-		2	3	2
CO2	2	3	2	-	776	34400	A 11 (10)	y (ie s	No.	7		-	3	2
CO3	2	2	-	3	2	193	The same	D. W.		-		-	2	3
CO4	2	1	2	-	-/	1	-	-		3 -		-	2	3
CO5	2	-	-	-	-//	2	W-	-26	-//			1	2	3
22BPE\$38	2	2	2	3	2	2	-		11	-		2	2	3
1 – Slight, 2	2-M	loder	ate, î	3 - Su	bstan	tial	(B)	2) ·	1					
b) CO and	Key	Perf	orm	ance l	Indic	ators	Mapı	oing	11					
CO1	1.2.1	1,1.2.	2,2.2,	3,6.1.1		89		10	0					
CO2	1.2.1	,2.2.	2,3.2.	2,3.4.1		1		10		3. 64				
CO3	1.2.1	,2.2.	2,,4.1	.2,5.1.	1,5.2.	1			de la	200				
CO4	1.2.1	1,6.1.	1		100	W. W.	(S)	17	Siculo.	/	•	•		•
CO5	1.2.1	,2.2.	2,3.2.	2,3.4.1	,4.1.2	,5.1.1,	6.1.1		5					

ASSESSMENT	T PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	50	-	-	-	-	100
CAT - 2	20	30	50	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	-	50	50	-	-	ı	100
ESE	50	50	-	-	-	-	100

22BPE\$39	BIOMASS CONVERSION AND BIOREFINERY
-----------	------------------------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course Objectives	To provide an insight to the basics of biomass, several conversion to and the different types of biological products that can be obtained u conversion	_
UNIT – I	INTRODUCTION	9 Periods
World energy	scenario, consumption pattern, fossil fuel depletion and environmen	tal issues.
UNIT – II	BIOMASS	9 Periods
biomass prod	ailability and abundance, photosynthesis, composition and energy pluction and selection, waste biomass (municipal, industrial, ag	gricultural and
forestry) avail	lability, abundance and potential, biomass as energy resources: de	dicated energy

biomass production and selection, waste biomass (municipal, industrial, agricultural and forestry) availability, abundance and potential, biomass as energy resources: dedicated energy crops, annual crops (maize, sorghum sugar beet, hemp), perennial herbaceous crops (sugarcane, switchgrass, miscanthus), short rotation woody crops (poplar, willow), oil crops and their biorefinery potential, microalgae as feedstock for biofuels and biochemical, enhancing biomass properties for biofuels, challenges in conversion

UNIT – III BIOREFINERY AND BIOMASS CONVERSION

9 Periods

Basic concept, types of biorefineries, biorefinery feedstocks and properties, economics, Biomass Pretreatment - pretreatment technologies such as acid, alkali, autohydrolysis, hybrid methods, role of pretreatment in the biorefinery concept, Physical and Thermal Conversion Processes - Types, fundamentals, equipment and applications; thermal conversion products, Microbial Conversion Process: Types, fundamentals, equipment and applications, products.

UNIT – IV BIODIESEL AND BIOOIL

9 Periods

Diesel from vegetable oils, microalgae and syngas; transesterification; FT process, catalysts; biodiesel purification, fuel properties, Biooil and Biochar: Factors affecting biooil, biochar production, fuel properties, biooil upgradation

UNIT – V BIOETHANOL AND BIOHYDROGEN

9 Periods

Corn ethanol, lignocellulosic ethanol, microorganisms for fermentation, current industrial ethanol production technology, cellulases and their role in hydrolysis, concepts of SSF and CBP, advanced fermentation technologies, ABE fermentation pathway and kinetics, product recovery technologies, Biohydrogen generation, metabolic basics, feedstocks, dark fermentation by strict anaerobes, facultative anaerobes, thermophilic microorganisms, integration of biohydrogen with fuel cell; fundamentals of biogas technology, fermenter designs, biogas purification, methanol production and utilization

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

- Donald L. Klass, "*Biomass for Renewable Energy, Fuels, and Chemicals*", Academic Press, Elsevier, 2006.
- Prabir Basu, "Biomass Gasification, Pyrolysis and Torrefaction", Academic Press, Elsevier, 2013.

REFERENCES:

	1	Shang-Tian Yang (Ed.), "Bioprocessing for Value Added Products from Renewable Resources", Elsevier, 2007.
L	1	Resources", Elsevier, 2007.
	2	A A Vertes, N. Qureshi, H.P. Blaschek, H. Yukawa (Eds.), "Biomass to Biofuels: Strategies
		A A Vertes, N. Qureshi, H.P. Blaschek, H. Yukawa (Eds.), "Biomass to Biofuels: Strategies for Global Industries", Wiley, 2010
	2	A.A. Vertes, N. Qureshi, H.P. Blaschek, H. Yukawa (Eds.), "Biomass to Biofuels: Strategies
	3	A.A. Vertes, N. Qureshi, H.P. Blaschek, H. Yukawa (Eds.), "Biomass to Biofuels: Strategies for Global Industries", Wiley, 2010.
Ī	1	S. Yang, H.A. El-Enshasy, N. Thongchul (Eds.), "Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals and Polymers" Wiley 2013
	4	Biorefinery for Sustainable Production of Fuels, Chemicals and Polymers" Wiley 2013

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	To comprehend the environmental implications of fossil fuel, carbon credits and economics.	K1
CO2	To elaborate the different types biomass, their structure and composition.	K1
CO3	To emphasis the various pre-treatment technologies currently adapted to produce cellulose, conversion technologies basics along with reactor design for physical, chemical, thermal and microbial conversion techniques.	K2
CO4	To summarise the various products such as biodiesel and biooil from vegetable oil and its properties	K2
CO5	To understand the production of bioethanol and biohydrogen, fermentation process and metabolic pathway	K2

a) CO and F	O Mar	ping			100	100 6	0.00	37						
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO2	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO3	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO4	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO5	1	1	-	-	-	-	-	-	-	-	-	-	3	1
22BPE\$39	1	1	-	-	-	-	-	-	-	-	-	-	3	1
1 – Slight, 2	2 – Mo	derate,	$3-S\iota$	ıbstanı	tial						•			
b) CO and	Key P	erforn	nance	Indica	ators I	Mappir	ıg							
CO1	1.4.1,	2.1.3												
CO2	1.4.1,	2.1.3												
CO3	1.4.1,	2.1.3,												
CO4	1.4.1,	2.1.3												
CO5	1.4.1,	2.1.3,												

ASSESSMENT	PATTERN –	THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	50	-	-	-	-	100
CAT - 2	50	50	-	-	-	-	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	50	50	-	-	-	-	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	30	70	-	-	-	-	100
ESE	50	50	-	-	-	-	100

22BPE\$40	INTRODUCTION TO BIOSTATISTICS
-----------	-------------------------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PE	3	0	0	3

Course	Understand and interpret commonly reported statistical measures published in
Objectives	healthcare research. Analyze the different type of data using appropriate
	statistical software. Demonstrate a good understanding of descriptive statistics
	and graphical tools. Explain fundamental concepts of estimation and
	hypothesis testing and be confident when interpreting P values and confidence
	intervals

UNIT – I DESCRIPTIVE STATISTICS AND BASICS OF PROBABILITY

9 periods

Measure of location, measure of spread, coefficient of variation, grouped data, graphic methods, Probability - definition of probability, multiplication law, addition law, conditional probability, Baye's rule and screening tests.

UNIT – II PROBABILITY DISTRIBUTIONS

9 periods

Discrete probability distribution - Random variables, probability mass function, expected value, variance, cumulative distribution function, binomial and Poisson distributions, continuous probability distribution - Probability density function, and normal distribution.

UNIT – III ESTIMATION AND HYPOTHESIS TESTING-ONE SAMPLE INFERENCE

9 periods

Relationship between population and sample, sampling distribution, point and interval estimation of mean and variance, one-sample inference- general concepts, test for mean of a normal distribution - one sided and two sided alternatives, one sample chi-square test for variance of a normal distribution.

UNIT – IV HYPOTHESISTESTING-TWO-SAMPLE INFERENCE

9 periods

The paired t- test, testing for equality of two variances, t-test for two independent samples for mean with equal and unequal variances, categorical data - R x C contingency table, Chisquare goodness of fit.

UNIT-V REGRESSION METHODS AND ANOVA

9 periods

General concepts, fitting regression lines - method of least squares, inferences about parameters from regression lines, goodness of fit of regression lines, analysis of variance-One way ANOVA-fixed effects model, random effect model.

Contact Periods: 45

Lecture: 45 Periods Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

TEXT BOOK

- 1 Bernard Rosner, "Fundamental of Biostatistics", Duxbury Thomson Learning, New York, 2015.
- 2 Ronald N Forthofer and Eun Sul Lee, "Introduction to Biostatistics A Guide to Design, Analysis and Discovery", Academic Press, New York, 2016

REFERENCES

- Vee Bala and Rastogi, "Biostatistics", Scientific International, New Delhi, 2017...
- Wayne W Daniel and Chad L Cross, "Biostatistics: Basic concepts and methodology for Health Sciences", Wiley, USA, 2017.
- 3 Sundar Rao PSS and Richard J, "An introduction to Biostatistics- A model for students in health sciences", Prentice Hall, New Delhi, 2012.
- 4 B. Burt Gerstman Basic Biostatistics: Statistics for Public Health Pratice 2nd Edition 2015. ISBN-13: 978-1284036015

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:				
CO1	Apply descriptive techniques commonly used to summarize public health data.	K1			
CO2	Apply basic statistical concepts commonly used in public health and health Sciences	K1			
CO3	Apply statistical knowledge to test hypothesis and interpret results of commonly used statistical analyses	K2			
CO4	Apply statistical knowledge to test hypothesis, design and conduct research studies and interpret results of commonly used statistical analyses	К3			
CO5	Operate statistical software packages to conduct research studies and interpret results of commonly used statistical analyses in written summaries	К3			

a) CO and	PO M	appi	ng		11	8		P						
COs/POs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	-	1	-	-	(1)	2	2	2	110 -	-	1	2	2	2
CO2	1	-	-	1	13	2	\$ 50 B	2	3	3	2	2	1	3
CO3	1	1	-	-	-	-	-	1	1	-	-	-	1	3
CO4	-	-	-	-	1	-		2	3	3	1	1	1	3
CO5	-	2	-	1	3	-	-	-	-	-	-	-	2	2
22BPE\$40	1	1	-	1	2	2	2	2	3	3	2	2	2	3
1 – Slight,	2-M	loder	ate, 3	3 - Si	ıbstan	tial								
b) CO and	Key	Perf	orm	ance :	Indic	ators]	Mapp	ing						
CO1	1.4.	1, 2.	1.3											
CO2	1.4.	1, 2.	1.3											
CO3	1.4.	1, 2.1	1.3,											
CO4	1.4.	1, 2.1	1.3											
CO5	1.4.	1, 2.	1.3,											

ASSESSMENT	T PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT - 1	50	10	10	10	10	10	100
CAT - 2	50	10	10	10	10	10	100
Individual Assignment 1/Case study 1/ Seminar 1/ Project 1	20	20	20	20	10	10	100
Individual Assignment 2/Case study 2/ Seminar 2/ Project 2	20	20	20	20	10	10	100
ESE	50	10	10	10	10	10	100

22COE\$01	DISASTER MANAGEMENT A (Common to All Br		ON			
PREREQUIS	ITES	CATEGORY	L	T	P	С
	NIL	OE	3	0	0	3
Course Objective	To impart knowledge to create appropriate plann emergency treatment in disaster situation	ing, preparation a	nd re	spor	ise fo	or
UNIT – I	INTRODUCTION TO DISASTERS				Peri	
Impacts - Glo Change- Dos a	saster, Hazard, Vulnerability, Resilience, Risks oal Trends in Disasters: Urban Disasters, Pander and Don'ts during various types of Disasters.			encie	s, C	limate
UNIT – II	HAZARDS AND RISK VULNERABILITY	T. 21			Perio	
technological likelihood and Political/ Soci	Tication and Hazard Profiling - Hazard Analysis Components of Risk- likelihood and Consequence. Risk Evaluation – Purpose, Risk Aal, Economic. Vulnerability-Physical Profile, Sofile - Factors Influencing Vulnerability, Risk Perce	nence, Trends and acceptability, Alteocial Profile, Env	d C rnati	omp ves,	utati Pers	on of onnel.
UNIT – III	MITIGATION AND PREPAREDNESS	•		9	Perio	ods
capacity, Incom	ypes, Obstacles, Assessment and Selection of Miti- porating Mitigation into Development and Relief Public Preparedness, Media as a Public educato	Projects. Prepare	dnes	s- G	over	nment
UNIT – IV	RESPONSE AND RECOVERY			9	Perio	ods
Management, Components of	Emergency- Pre disaster, post disaster, Provision of Command, Control and Coordination. Recovery- Street Planning, Coordination, Information, Personnel. Types of Recovery- Government, Infra	Short Term and Lo, Money and Sup astructure, Debris	ong-t plies Ren	erm , All nova	Reco ocat l Di	overy- ion of sposal
and Processin	g, Environment, Housing, Economic and Livelih cial Considerations in Recovery.	nood, Individual,	Fam	ily a	and	Social
and Processin Recovery- Spe UNIT - V	cial Considerations in Recovery. DISASTER MANAGEMENT: APPLICATION STUDIES	ONS AND CAS	E	9	Perio	ods
and Processin Recovery- Spe UNIT - V	cial Considerations in Recovery. DISASTER MANAGEMENT: APPLICATION	ONS AND CAS	E nmer	9 1	Perio	ods th and

TEXT BOOKS:

Lecture: 45 Periods

 Singhal J.P. "Disaster Management", Laxmi Publications, 2010.
 Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012.

Tutorial: 00 Periods Practical: 00 Periods Total: 45 Periods

1	Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005.
2	Government of India, National Disaster Management Policy, 2009.
3	Gupta Anil K, Sreeja S. Nair. "Environmental Knowledge for Disaster Risk Management",
	NIDM, New Delhi, 2011
4	Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New

	COURSE OUTCOMES: On completion of the course, the students will be able to:						
CO1	Identify the types of disasters, causes and their impact on environment and society	K2					
CO2	Assess vulnerability and various methods of risk reduction measures as well as mitigation.	K2					
CO3	Comprehend the mitigation and preparedness process.	K2					
CO4	Describe about response and recovery process during disaster.	K2					
CO5	Perform disaster damage assessment and management.	K2					

a) CO and PO Mapping															
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	1	-	1	-	2	3	3	2	2	2	-	3	2	-	2
CO2	1	-	1	-	2	3	3	2	2	2	-	3	2	-	2
CO3	1	-	1	-	2	3	3	- 2	2	2	-	3	2	-	2
CO4	1	-	1	-	2	3	3	2	2	2	-	3	2	-	2
CO5	1	-	1	-	2	3	3	2	2	2	-	3	2	-	2
22COE\$01	1	-	1	-	2	3	3	2	2	2	-	3	2	-	2
1 – Slight,	2-M	odera	ate, 3	– Sub	stanti	al		-		37					
b) CO and	Key :	Perf	orma	nce Ir	dicat	ors M	[appi	ıg	2	//					
CO1		-		.1, 5 10.1.3	-	1.1, 6	.2.1, 7	'.1.1, '	7.1.2,	7.2.1, 8	3.1.1, 8.	2.2, 9.1	.1, 9.1.2	2, 9.2.1	,
CO2				.1, 5 0.1.2,			.2.1, 7	7.1.1,	7.1.2,	7.2.1, 7	7.2.2, 8.	1.1, 8.2	2.2, 9.1.	1, 9.1.2	,
CO3				.1, 5 0.1.2,			.2.1, 7	'.1.1, ´	7.1.2,	7.2.1, 7	7.2.2, 8.	1.1, 8.2	2.2, 9.1.	1, 9.1.2	,
CO4			-	.1, 5 0.1.2,		ME	.2.1, 7	'.1.1,	7.1.2,	7.2.1, 7	7.2.2, 8.	1.1, 8.2	2.2, 9.1.	1, 9.1.2	,
CO5	1.2.1	, 3.3	.6, 5.1		2.1, 6.	1.1, 6	.2.1, 7	'.1.1, '	7.1.2,	7.2.1, 7	7.2.2, 8.	1.1, 8.2	2.2, 9.1.	1, 9.1.2	,

ASSESSME	ASSESSMENT PATTERN – THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	40	40	20	-	-	-	100							
CAT2	40	40	20	-	-	-	100							
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	25	50	25	-	-	100							
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	25	50	25	-	-	100							
ESE	30	30	40	-	-	-	100							

WATER CANITATION AND HEATTH		
22COE\$02 WATER SANITATION AND HEALTH (Common to All Branches)	22COE\$02	WATER SANITATION AND HEALTH (Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To understand the overview of Environment, Health and Safety (EHS)												
Objective	and related Indian regulations, types of Health hazards, effect, assessment and control												
	methods and EHS Management System	·											
UNIT – I	INTRODUCTION	9 Periods											
Need for developing Environment, Health and Safety systems in work places- International initiatives,													
National Policy and Legislations on EHS in India - Regulations and Codes of Practice - Role of Trade													
Union Safety l	Representatives – Ergonomics.												
UNIT – II	OCCUPATIONAL HEALTH AND HYGIENE	9 Periods											
and human re	Definition of occupational health and hygiene - Categories of health hazards - Exposure pathways and human responses—Exposure Assessment-occupational exposure limits - Hierarchy of control measures - Role of personal protective equipment and the selection criteria.												
UNIT – III	WORKPLACE SAFETY AND SAFETY SYSTEMS	9 Periods											
Ventilation an	tisfactory and Safe design of work premises – good housekeeping - lig d Heat Control, Noise, Chemical and Radiation Safety – Electrical Safe instruction sites, ETP – Machine guarding – Process Safety, Working at 6	ety – Fire Safety											
UNIT – IV	HAZARDS AND RISK MANAGEMENT	9 Periods											
investigation -	sal – Job Safety Analysis-Control techniques – plant safety inspect - Analysis and Reporting – Hazard and Risk Management Techniquency Plans. Employee Participation- Education and Training- Case Studies	ies –Onsite and											
UNIT – V	ENVIRONMENTAL HEALTH AND SAFETY MANAGEMENT	9 Periods											
Concept of Er	vironmental Health and Safety Management - Elements of Environme	ental Health and											
Safety Manage	ement Policy and implementation and review - ISO 45001-Strucure ar	nd Clauses-Case											
Studies.													
Contact Perio	ods:												
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods											

TEXT BOOKS:

1	Industrial Health and Safety Acts and Amendments, by Ministry of Labour and Employment,
	Government of India.
2	Dr.K.U.Mistry, Siddharth Prakashan, "Fundamentals of Industrial Safety and Health", 2012

1	Bill Taylor, "Effective Environmental, Health, and Safety Management Using the Team
1	Approach", Culinary and Hospitality Industry Publications Services, 2005.
2	
	Nicholas P.Cheremisinoff and Madelyn L. Graffia, "Environmental and Health and Safety
	Management", William Andrew Inc. NY, 1995.
3	Brian Gallant, "The Facility Manager's Guide to Environmental Health and Safety",
	Government Inst Publ., 2007.
4	https://archive.nptel.ac.in/courses/114/106/114106017/

	RSE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Outline the needs for EHS in industries and related Indian regulations	K2
CO2	Assess the various types of Health hazards, effect, assessment and control methods	K2
CO3	Identity the various safety systems in working environments	K2
CO4	Select the methodology for preparation of Emergency Plans and Accident investigation	К3
CO5	Describe the EHS Management System and its elements	K2

a) CO and PO Mapping															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2	PSO3
CO1	2	-	1	-	3	3	3	2	1	-	2	-	1	1	-
CO2	2	-	1	-	3	3	3	2	1	-	2	-	1	1	-
CO3	2		1	-	3	3	3	2	1	-	2	-	1	1	-
CO4	2		1	-	3	3	3	2	1	-	2	-	1	1	-
CO5	2	-	1	ı	2	3	3	2	1	ı	2	-	1	1	ı
22COE\$02	2	-	1	ı	3	3	3	2	1	-	2	-	1	1	ı
1 – Slight,	2-N	Iodera	ite, 3 -	- Subs	tantial	TRE	\$150 B	1000	1						
b) CO and	Key	Perfo	rman	ce Inc	licato	rs Ma	pping			89					
CO1		-	.1, 3.1 1.1, 11	-	.5, 5.1	.1, 5.2	2.1, 5.	2.2, 5.	3.1, 6.	1.1, 6.2	.1, 7.1.2	2, 7.2.1,	7.2.2, 8	8.1.1, 8.	2.2,
CO2		-	.1, 3.1 1.1, 11	-	.5, 5.1	.1, 5.2	2.1, 5	2.2, 5.	3.1, 6.	1.1, 6.2	.1, 7.1.2	2, 7.2.1,	7.2.2, 8	8.1.1, 8.	2.2,
CO3		-	.1, 3.1 1.1, 11	-	.5, 5.1	.1, 5.2	2.1, 5.2	2.2, 5.	3.1, 6.	1.1, 6.2	.1, 7.1.2	2, 7.2.1,	7.2.2, 8	8.1.1, 8.	2.2,
CO4		-	.1, 3.1 1.1, 11	-	.5, 5.1	.1, 5.2	2.1, 5.2	2.2, 5.	3.1, 6.	1.1, 6.2	.1, 7.1.2	2, 7.2.1,	7.2.2, 8	8.1.1, 8.	2.2,
CO5		-	.1, 3.1	-	.5, 5.1	.1, 5.2	2.1, 5	2.2, 5.	3.1, 6.	1.1, 6.2	.1, 7.1.2	2, 7.2.1,	7.2.2, 8	8.1.1, 8.	.2.2,

ASSESSME	NT PATTERN	– THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	25	50	25	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	25	50	25	-	-	100
ESE	30	30	40	-	-	-	100

22MOE\$03

NANOTECHNOLOGY AND SURFACE ENGINEERING

(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objectives	To educate the production techniques and characterization techniques and to familiarize about the surface modification techniques materials.	1
UNIT – I	ELEMENTS OF NANO-SCIENCE AND NANOTECHNOLOGY	(9 Periods)
Engineering	scale of nanotechnology, different classes of nano-materials, synth	esis of nano-
materials fab	rication and characterization of nanostructures. Engineering application	ne_ Cosmetics

Engineering scale of nanotechnology, different classes of nano-materials, synthesis of nano-materials, fabrication and characterization of nanostructures, Engineering applications- Cosmetics and Consumer Goods, Nano Sensor, Nano catalysts, Water Treatment and the Environment, Paints, Food and Agriculture Industry.

UNIT – II NANOTECHNOLOGY AND CERAMICS

(9 Periods)

Introduction, Vapor Condensation Methods, Sputtering, Laser Method, Spray Pyrolysis, Thermo Chemical /Flame Decomposition of metal organic Precursors methods

UNIT – III CHARACTERIZATION OF NANOMATERIALS

(9 Periods)

X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy, UV / Visible Spectroscopy.

UNIT – IV SURFACE ENGINEERING

(9 Periods)

Introduction to surface engineering, Scope of surface engineering for different engineering materials, Surface Preparation methods such as Chemical, Electrochemical, Mechanical: Sand Blasting, Shot peening, Shot blasting, Hydro-blasting, Vapor Phase Degreasing etc., Coatings: Classification, Properties and applications of Various Coatings.

UNIT – V SURFACE MODIFICATION TECHNIQUES

(9 Periods)

Surface modification by use of directed energy beams, Plasma, Sputtering & Ion Implantation. Surface modification by Friction stir processing. Surface composites.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

TEXT BOOKS:

	G. Cao, "Nanostructures and Nanomaterials: Synthesis", Properties and Applications by	y
	Imperial College Press, 2 nd edition, 2011.	

2 Keith Austin "Surface Engineering Hand Book", London: Kogan Page, 1998

	1	Gregory Timp, "Nanotechnology", Springer, 2012
ĺ	2	Dheerendra Kumar Dwivedi, "Surface Engineering: Enhancing Life of Tribological
		Components", Springer, 2018
ĺ	3	D. Phil Woodruff, "Modern Techniques of Surface Science", Cambridge University Press, 2016
ſ	4	Sulabha K Kulkarni "Nanotechnology: Principles and Practices" Springer 2019

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
CO1	Choose appropriate nano material and its manufacturing method.	K1
CO2	Select most suitable technique to deposit a layer of nano material on ceramic	K2
	surface.	
CO3	Identify appropriate techniques to characterize nano materials.	K2
CO4	Select surface preparation, coating techniques and predict their combinational	K2
	effect for engineering applications.	
CO5	Adopt different techniques to modify surfaces and make surface composites as	K2
	per requirement.	

a) CO and I	PO Maj	pping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	0	1	2	1	1	0	0	0	0	0	0	0	2	2	3
CO2	0	1	2	1	1	0	0	0	0	0	0	0	2	2	3
CO3	0	1	2	1	1	0	0	0	0	0	0	0	2	2	3
CO4	0	2	2	1	1	0	0	0	0	0	1	0	2	3	3
CO5	0	1	2	1	1	0	0	0	0	0	1	0	3	2	3
22MOE\$03	0	1	2	1		0	0	0	0	0	1	0	2	2	3
1 – Slight, 2 -	– Mode	rate, 3	- Sul	stanti	al			200							
b) CO and I	Key Per	rform	ance l	ndica	tors N	Mappi	ng		de						
CO1	2.2.2,	2.2.3,	2.2.4,	2.3.1,	, 3.1.1	, 3.1.2	, 3.1.3	3, 3.1.4	4, 3.1.	5, 3.1.	6, 3.3	.2, 4.1	.1, 4.3.4	4, 5.1.2	
CO2	2.2.2,	2.2.3,	2.2.4,	2.3.1	, 3.1.1	, 3.1.2	2, 3.1.3	3, 3.1.4	4, 3.1.	5, 3.1.	6, 3.3	.2, 4.1	.1, 4.3.4	4, 5.1.2	
CO3	2.2.2,	2.2.3,	2.2.4,	2.3.1,	, 3.1.1	, 3.1.2	3.1.3	3, 3.1.4	4, 3.1.	5, 3.1.	6, 3.3	.2, 4.1	.1, 4.3.4	4, 5.1.2	
CO4	2.1.1,	2.1.2,	2.2.2,	2.2.3	, 2.2.4	, 2.3.1	, 3.1.1	1, 3.1.2	2, 3.1.	3, 3.1.	4, 3.1	.5, 3.1	.6, 3.3.2	2, 4.1.1,	4.3.4,
	5.1.2,	5.3.1,	11.3.	[8		M							
CO5	2.2.2,	2.2.3,	2.2.4,	2.3.1,	, 3.1.1	, 3.1.2	2, 3.1.3	3, 3.1.4	4, 3.1.	5, 3.1.	6, 3.3	.2, 4.1	.1, 4.3.4	4, 5.1.2,	5.3.1,
	11.3.1			9	128	(1)20		B	200						

ASSESSMENT	Γ PATTERN – T	HEORY	200-60				
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	50	50	-	-	-	-	100
CAT2	30	70	-	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100
ESE	40	60	-	-	-	-	100

22MOE\$04

INDUSTRIAL SAFETY MANAGEMENT

(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

	<u> </u>									
Course	To learn the techniques of industrial safety and management to imple	ement and solve								
Objectives	safety problems in engineering.									
UNIT – I	ENVIRONMENT AND SAFETY PHILOSOPHY	9 Periods								
	ms Of Industrial Safety - Concepts Of Safety - Ethics of environmenta									
	Environmental Impact Assessment – Environmental economics – Safety philosophy – Planning for									
	ising for safety – Directing for safety - Role of Occupier and Factory M	fanager, Factory								
	ttee, Structure and Functions and Working Tenure Details									
UNIT – II	SAFETY APPRAISAL AND CONTROL TECHNIQUES	9 Periods								
-	pment safety appraisal techniques - Laws and regulation - Hazards and	d Risks – Major								
accident hazar	d control – Importance of Disaster management									
UNIT – III	ACCIDENT PREVENTION AND SAFETY MANAGEMENT	9 Periods								
	cident - Injury - Dangerous occurrence - Unsafe Act - Unsafe Conditi									
	ht - Mistake, Near Miss - Measurement of safety performance - Key ele									
	system (ISO 14001, OHSAS 18001 etc.). ILO Legislations - C									
	ion concerning Safety, Health and Environment - Objectives of Health	alth, Safety and								
	Policy, Responsibility for Implementation of HSE Policy.									
UNIT – IV	SAFETY MANAGEMENT IN INDUSTRIES	9 Periods								
	g of machines - Manual handling and storage of materials - Mechan									
	and tools and portable power tools - Electrical hazards - Earth,									
	s - Industrial lighting - Safety of pressure vessels - Ventilation and									
	- Special precautions - Safety in Construction Industry - Safety									
	ety in Chemical Industries - Safety in Textile Industries - Safety in I	Oock and Port –								
	Safety – Safety in Fire and explosive industries.									
	INDUSTRIAL HYGIENE AND POLLUTION CONTROL	9 Periods								
	iene – Air sampling – Noise and vibration – Industrial physiology - Occ	upational health								
	tective Equipment's – Pollution Control strategies.									
Contact Perio	ds:									

TEXT BOOKS:

Lecture: 45 Periods

- 1 Akhil Kumar Das, "Principles of Industrial Safety Management": Understanding the Ws of Safety at Work" PHI Learning, 2021
- 2 Jain R K and Sunil.S.Rao, "Industrial Safety Health and Environment Management System", Seventh reprint, Khanna publishers, 2023.

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- 1 Prathibha Bansal and Anupama Prashar, "Industrial safety and Environment", S.K.Kattaria Sons, 2005.
- 2 A.K. Gupta, "Industrial safety and Environment", Laxmi Publication Pvt Limited, 2008.
- 3 "Accident Prevention Manual For Industrial Operations", N.S.C Chicago, 13th Edition 2009.
- 4 Dan Petersen, "Techniques of Safety Management", Americal Society of Safety Emgineers, 4th edition, 2003.

COUI	RSE OUTCOMES:	Bloom's Taxonomy
On con	mpletion of the course, the students will be able to:	Mapped
CO1	Understand Environment and safety philosophy.	K1
CO2	Frame Safety appraisal and control technique to create safety management.	K2
CO3	Follow accident prevention procedure to solve safety problem.	K2
CO4	Implement safety management for Industries.	К3
CO5	Follow Industrial Hygiene and Pollution control	K3

a) CO/PO M	a) CO/PO Mapping														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂	PSO3
CO1	3	2	0	1	3	0	0	0	0	0	0	0	3	1	2
CO2	3	3	0	1	2	0	0	0	0	0	0	0	3	2	2
CO3	3	3	0	0	3	0	0	0	0	0	0	0	3	1	2
CO4	3	3	0	1	2	0	0	0	0	0	0	0	3	2	2
CO5	3	3	0	0	3	0	0	0	0	0	0	0	3	1	2
22MOE\$04	3	3	0	1	3	0	0	0	0	0	0	0	3	1	2
b) CO and I	Key F	Perfor	manc	e Indi	cators	mapp	ing	110 51	30	1					
CO1	1.1.1	, 1.1.2	2, 1.3.	1, 1.4.	1, 2.1.3	3, 2.2.1	, 2.2.3	, 2.2.4,	2.4.4,	4.3.4,	5.1.2, 5	5.2.1, 5	5.2.2, 5	.3.1, 5.	3.2
CO2		, 1.1.2 , 5.3.1	-	-	1, 2.1.1	, 2.1.2	, 2.1.3	, 2.2.1,	2.2.2,	2.2.3,	2.2.4, 2	2.4.3, 2	.4.4, 4	.1.4, 5.	1.2,
CO3		, 1.1.2 , 5.3.1	-	-	1, 2.1.1	, 2.1.2	, 2.1.3	, 2.2.1,	2.2.2,	2.2.3,	2.2.4, 2	2.4.3, 2	.4.4, 5	.1.1, 5.	1.2,
CO4		, 1.1.2 , 5.3.1			1, 2.1.1	, 2.1.2	, 2.1.3	, 2.2.1,	2.2.2,	2.2.3,	2.2.4, 2	2.4.3, 2	.4.4, 4	.1.4, 5.	1.2,
CO5		, 1.1.2 , 5.3.1	-	-	1, 2.1.1	, 2.1.2	, 2.1.3	, 2.2.1,	2.2.2,	2.2.3,	2.2.4, 2	2.4.3, 2	.4.4, 5	.1.1, 5.	1.2,

ASSESSMENT	DATTEDN						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	70	20	10	-	-	-	100
CAT2	50	30	20	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	60	40	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50	30	20	-	-	-	100
ESE	50	30	20	-	-	-	100

22EOE\$05	RENEWABLE POWER GENERATION SYSTEMS (Common to All Branches)						
PREREQUIS	ITES	CATEGORY	L	T	P	C	
NIL		OE	3	0	0	3	
Course	To understand energy scenarios, energy sources a	nd their utilization	, soc	iety's	s pre	sent	
Objectives needs and future energy demands, the principles of renewable energy conversion							
	systems						
UNIT – I	NIT – I ENERGY SCENARIO 9 Periods						
	renewable energy; energy and sustainable deve						
1	worldwide renewable energy availability, renewab	0.7	_		-		
descriptions on solar energy, wind energy, tidal energy, wave energy, ocean thermal energy, biomass						nass	
energy, geothe	ermal energy, oil shale. Introduction to Internet of en	nergy (IOE).					
UNIT – II	UNIT – II SOLAR ENERGY 9 Periods						
Solar Energy:	Solar Energy: Fundamentals; Solar Radiation; Estimation of solar radiation on horizontal and inclined						
surfaces; Solar radiation Measurements- Pyrheliometers, Pyrometer, Sunshine Recorder. Solar							
Thermal systems: Flat plate collector; Solar distillation; Solar pond electric power plant. Solar electric							
power generation- Principle of Solar cell, Photovoltaic system for electric power generation,							

UNIT – III WIND AND BIOMASS ENERGY

9 Periods

Wind Energy: Properties of wind, availability of wind energy in India, wind velocity and power from wind; major problems associated with wind power, Basic components of wind energy conversion system (WECS); Classification of WECS- Horizontal axis- single, double and multi blade system. Vertical axis- Savonius and Darrieus types.

Biomass Energy: Introduction; Photosynthesis Process; Biofuels; Biomass Resources; Biomass conversion technologies -fixed dome; Urban waste to energy conversion; Biomass gasification (Downdraft).

UNIT – IV TIDAL AND OCEAN THERMAL ENERGY

advantages, Disadvantages and applications of solar photovoltaic system.

9 Periods

Tidal Power: Tides and waves as energy suppliers and their mechanics; fundamental characteristics of tidal power, harnessing tidal energy, advantages and limitations.

Ocean Thermal Energy Conversion: Principle of working, OTEC power stations in the world, problems associated with OTEC.

UNIT – V GREEN ENERGY

9 Periods

Introduction, Fuel cells: Classification of fuel cells – H₂; Operating principles, Zero energy Concepts. Benefits of hydrogen energy, hydrogen production technologies (electrolysis method only), hydrogen energy storage, applications of hydrogen energy, problem associated with hydrogen energy.

Contact Periods: (Times New Roman, Size 11, BOLD, Sentence case)

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

G D Rai, Non Conventional Energy sources, Khanna Publication, Fourth Edition, 2009
 Boyle, "Renewable Energy – Power For A Sustainable Future", Oxford, 2012

ļ	1	S Rao, B.B. Parulekhar, "Energy Technology 3/e: Nonconventional, Renewable and Conventional",
ļ		Khanna Publishers, 1994

- 2 G. N. Tiwari, "Solar Energy Fundamentals, Design, Modelling and Applications", 2002
- 3 Gilbert M. Masters, "Renewable and Efficient Electric Power Systems" Wiley,2005
- 4 | Shobh Nath Singh, "Non-Convention Energy Resources", Pearson, 2018

	SE OUTCOMES:	Bloom's Taxonomy
On cor	npletion of the course, the students will be able to:	Mapped
CO1	Describe the environmental aspects of renewable energy resources in comparison with various conventional energy systems, their prospects and	K2
	limitations.	
CO2	Summarize the use of solar energy and the various components used in the energy production with respect to applications like - heating, cooling, desalination, electric power generation.	K2
CO3	Apply the conversion principles of wind and tidal energy for the production of electric power generation	К3
CO4	Apply the concept of biomass energy resources and green energy for developing sustainable electric power generation set-up	К3
CO5	Analyze the basic knowledge of ocean thermal energy conversion and hydrogen energy and hence design & evaluate the power generation system	K4

a) CO and P	O Mapı	oing													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	3	3	3	3	3	2-	-	-	-	3	3	3	2
CO2	3	3	3	3	3	3	3	6500	4)-1	-	-	3	3	3	2
CO3	3	3	3	3	3	3	3	18-67		-	-	3	3	3	2
CO4	3	3	3	3	3	3	3	-	-//	-	-	3	3	3	2
CO5	3	3	3	3	3	3	3	Q2	1/	-	-	3	3	3	2
22EOE\$05	3	3	3	3	3	3	3	Λ	11-	-	-	3	3	3	2
1 – Slight, 2 –								11 8							
b) CO and K	•				100				1						
CO1	1.1.1,	1.1.2, 1	1.2.1, 1	.3.1, 1	.4.1, 2	.1.1, 2	.1.2, 2.	1.3, 2.	2.1, 2.	2.2, 2.	2.3, 2.	2.4, 2.3	3.1, 2.3.2	2, 2.4.1,	2.4.2,
	2.4.3,	2.4.4, 3	3.1.1, 3	3.1.2, 3	.1.3, 3	.1.4, 3	.1.5, 3.	1.6, 3.	2.1, 3.	2.2, 3.	2.3, 3.	3.1, 3.3	3.2, 3.4.1	, 3.4.2,	4.1.1,
	4.1.2,	4.1.3, 4	1.1.4, 4	1.2.1, 4	.2.2, 4	.3.1, 4	.3.2, 4.	3.3, 4.	3.4, 5.	1.1, 5.	1.2, 5.	2.1, 5.2	2.2, 5.3.1	, 5.3.2,	6.1.1,
	6.2.1,	7.1.1, 7	7.1.2, 7	7.2.1, 7	.2.2, 1	2.1.1,	12.1.2,	12.2.	1, 12.2	.2, 12	3.2.				
CO2	1.1.1,	1.1.2, 1	1.2.1, 1	.3.1, 1	.4.1, 2	.1.1, 2	.1.2, 2.	1.3, 2.	2.1, 2.	2.2, 2.	2.3,2.2	2.4, 2.3	.1, 2.3.2	, 2.4.1, 2	2.4.2,
	2.4.3,	2.4.4, 3	3.1.1, 3	3.1.2, 3	.1.3, 3	.1.4, 3	.1.5, 3.	1.6, 3.	2.1, 3.	2.2, 3.	2.3, 3.	3.1, 3.3	3.2, 3.4.1	, 3.4.2,	4.1.1,
	4.1.2,	4.1.3, 4	1.1.4, 4	1.2.1, 4	.2.2, 4	.3.1, 4	.3.2, 4.	3.3, 4.	3.4, 5.	1.1, 5.	1.2, 5.	2.1, 5.2	2.2, 5.3.1	, 5.3.2,	6.1.1,
	6.2.1,	7.1.1, 7	7.1.2, 7	7.2.1, 7	.2.2, 1	2.1.1,	12.1.2,	12.2.	1, 12.2	.2, 12	3.2.				·
CO3	1.1.1,	1.1.2, 1	.2.1, 1	.3.1, 1	.4.1, 2	.1.1, 2	.1.2, 2.	1.3, 2.	2.1, 2.	2.2, 2.2	2.3, 2.	2.4, 2.3	3.1, 2.3.2	2, 2.4.1,	2.4.2,
	2.4.3,	2.4.4, 3	3.1.1, 3	3.1.2, 3	.1.3, 3	.1.4, 3	.1.5, 3.	1.6, 3.	2.1, 3.	2.2, 3.	2.3, 3.	3.1, 3.3	3.2, 3.4.1	, 3.4.2,	4.1.1,
	4.1.2,	4.1.3, 4	1.1.4, 4	1.2.1, 4	.2.2, 4	.3.1, 4	3.2, 4.	3.3, 4.	3.4, 5.	1.1, 5.	1.2, 5.	2.1, 5.2	2.2, 5.3.1	, 5.3.2,	6.1.1,
	6.2.1,														ŕ
CO4												2.4, 2.3	3.1, 2.3.2	2, 2.4.1,	2.4.2,
	-													, 3.4.2,	-
	-													, 5.3.2,	-
	6.2.1,											<i>y</i> - •-	,	, · - ,	- ,
CO5												2.4. 2.3	3.1. 2.3.2	2, 2.4.1,	2.4.2.
	-													1, 3.4.2,	
														1, 5.1.2, $1, 5.3.2,$	-
	6.2.1,											- .1, J.2	 , <i>J</i> .J.	, 5.5.2,	0.1.1,
	0.4.1,	/.1.1, /	.1.4,	.4.1, /	.∠.∠, 1	۷.1.1,	14.1.4,	14.4.	1, 14.4	.4, 14	٤.∠.				

ASSESSMENT	T PATTERN – T	HEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	20	30	30	-	-	100
CAT2	20	20	30	30	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	20	30	30	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	20	30	30	-	-	100
ESE	20	20	30	30	-	-	100

22EOE\$06	SMART GRID TECHNOLOGY (Common to All Branches)
	(Common to Att Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

1 (11)	OL C				
Course	To provide a comprehensive understanding of Smart Grid Technology.	including its			
Objectives	components, functions, applications and implications for Energy Mana				
	Distribution.				
UNIT – I	BASICS OF POWER SYSTEMS	9 Periods			
Basics of Pow	er Systems: Load and Generation - Power Flow Analysis- Economic Dis	spatch and Unit			
Commitment	Problems. Smart Grid: Definition – Applications- Government and Indus	stry-			
Standardizatio		-			
UNIT – II	SMART GRID COMMUNICATIONS	9 Periods			
Two-way Dig	tital Communications Paradigm - Network Architectures - IP-based S	ystems - Power			
Line Commur	nications - Advanced Metering Infrastructure				
UNIT – III	WIDE AREA MEASUREMENT	9 Periods			
Sensor Netwo	rks - Phasor Measurement Units- Communications Infrastructure- Fault	Detection and			
Self-Healing S	Systems -Applications and Challenges				
	VS PORTERE				
UNIT – IV	SECURITY AND PRIVACY	9 Periods			
	y Challenges in Smart Grid - Load Altering Attacks- False Data In	jection Attacks-			
Defense Mech	nanisms - Privacy Challenges- Cyber Security Standards				
UNIT – V	ECONOMICS AND MARKET OPERATIONS	9 Periods			
Introduction,	Reasons for restructuring / deregulation of power industry, Und	erstanding the			
restructuring	process - Entities involved. The market place mechanisms-Energy	and Reserve			
Markets- Market Power - Generation Firms- Locational Marginal Prices- Financial Transmission					
Rights					
Contact Perio	ods:				
Lecture: 45 P		eriods			
_					

TEXT BOOK

- 1 Janaka Ekanayake, Nick Jenkins, KithsiriLiyanage "Smart Grid Technologies and applications" John Wiley Publishers Ltd., 2012.
- P. Venkatesh, B.V. Manikandan, S. Charles Raja, A. Srinivasan "Electrical Power Systems- Analysis, Security and Deregulation" PHI Learning Private Limited, New Delhi, 2012.

- 1 Lars T. Berger, Krzysztof Iniewski "Smart Grid applications, Communications and Security" John Wiley Publishers Ltd., 2012.
- 2 Yang Xiao, "Communication and Networking in Smart Grids", CRC Press Taylor and Francis Group, 2012.
- 3 Caitlin G. Elsworth, "The Smart Grid and Electric Power Transmission", Nova Science Publishers Inc, August 2010
- 4 Lars T. Berger, Krzysztof Iniewski "Smart Grid applications, Communications and Security" John Wiley Publishers Ltd., 2012.

	Deletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Recollect the fundamentals of conventional power systems and learn the concept of smart grid	
CO2	Interpret the role of communication Technologies in a smart grid	K2
CO3	Apply the state-of-the-art measurement and protection techniques for reliable grid	К3
CO4	Utilize the techniques for ensuring safety and security of the smart grid	K3
CO5	Analyze the economical aspects of the smart grids	K4

a) CO and				01111											
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	2	2	2	2	2	2	ı	-	1	1	-	3	2	1
CO2	3	3	1	2	2	-	-	-	-	2	3	2	3	2	1
CO3	3	3	1	2	2	-	Variation of the same	mo		2	3	2	3	3	2
CO4	3	3	1	2	2	3	2	2	7	-	-	3	3	3	2
CO5	3	2	2	2	2		2	2		1	3	3	3	3	2
22EOE\$06	3	3	1	2	2	3	2	2	1//	2	3	3	3	3	2
1 – Slight, 2						M		\sim							
b) CO and							_		1						
CO1	1.2.1	, 1.3.1	, 1.4.1	, 2.3.1	, 2.3.2	2, 2.4.	4, 3.1.	3, 3.1	.6, 3.2	2.1, 4.1	.4, 4.2.	1, 4.3.4	4, 5.1.1,	5.3.1,	6.1.1,
	7.1.1	, 7.2.2,	, 10.1.1	1, 10.3	.1, 11.	1.1	-	1							
CO2	1.1.1	, 1.1.2	, 1.2.1	, 1.3.1	, 1.4.1	, 2.1.	2, 2.1.	3, 2.2	.1, 2.2	2.3, 2.3	.1, 2.3.	2, 2.4.	1, 2.4.2,	2.4.3,	2.4.4,
	3.1.6	, 3.2.1	3.2.2,	3.2.3,	4.1.1	, 4.1.3	3, 4.1.	4, 5.1	.1, 5.2	2.1, 5.3	3.1, 12.	1.2, 12	2.2.2, 12	2.3.2, 1	0.1.1,
	10.2.	2, 10.3	.1, 11.	1.1, 11	.2.1,	11.3.1	, 11.3.	2, 12.3	3.1, 12	2.3.2					
CO3	1.1.1	, 1.1.2	, 1.2.1	, 1.3.1	, 1.4.1	, 2.1.	2, 2.1.	3, 2.2	.1, 2.2	2.3, 2.3	.1, 2.3.	2, 2.4.	1, 2.4.2,	2.4.3,	2.4.4,
	3.1.6	, 3.2.1	3.2.2,	3.2.3,	4.1.1	, 4.1.3	3, 4.1.	4, 5.1	.1, 5.2	2.1, 5.3	3.1, 12.	1.2, 12	2.2.2, 12	2.3.2, 1	0.1.1,
	10.2.	2, 10.3	.1, 11.	1.1, 11	.2.1,	11.3.1	, 11.3.	2, 12.3	3.1, 12	2.3.2					
CO4											.1, 2.3.	2, 2.4.	1, 2.4.2,	2.4.3,	2.4.4,
													2, 7.2.1,		
			, 5.3.1,												
CO5									.1, 2.2	2.3, 2.3	.1, 2.3.	2, 2.4.	1, 2.4.2,	2.4.3,	2.4.4,
											12.1.2,				,

ASSESSMEN	T PATTERN						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	10	30	40	20	ı	ı	100
CAT2	10	30	40	20	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	30	30	20	20	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	30	30	20	20	-	100
ESE	10	30	40	20	-	-	100

22LOE\$07	CMOS VLSIDESIGN
	(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To introduce various aspects of CMOS logic design in combinational a	and sequential
Objective	circuit to design CMOS VLSI system components	and sequential
UNIT – I	CMOSLOGICDESIGN	9 Periods
	Logic Gates: Compound Gates – Pass Transistors and Transmission Ga	7 - 00 022
	-CMOS Fabrication and Layout: Fabrication Process - Layout	
	ckDiagrams–DesignPartitioning.	_ 55585555
UNIT – II	MOSTRANSISTORTHEORY	9 Periods
Introduction – L	ong Channel I-V Characteristics – C-V Characteristics – Non-ideal I-V	Effects –DC
	teristics – CMOS Technologies – Sources of Power Dissipation - Dy	
Static Power.		
UNIT – III	COMBINATIONALCIRCUITDESIGN	9 Periods
CircuitFamilies:	StaticCMOS-RatioedCircuits-CascodeVoltageSwitchLogic-Dynamic	
	nsistorCircuits.Silicon-on-InsulatorCircuitDesign-SubthresholdCirucitD	esign.
	-Chumbo-	
UNIT – IV	SEQUENTIALCIRCUITDESIGN	9 Periods
	ccircuits-Circuitdesignoflatchedandflip-flops-Sequencingdynamiccircuit	
-	Wavepipelining -VLSIclocking:CMOS clockingstyles-Pipe	elinedsystems-
Clockgeneration	anddistribution.	
	DESIGNOFVLSISYSTEMS	9 Periods
System Specifi	cations - Structural Gate Level Modeling - Switch Level	Modeling -
BehavioralandR'	ΓL Modeling-Addition/subtraction–Comparators–counters—	-Multiplexers-
BinaryDecoders	- Comparators - Priority Encoders - Latches - Flip-Flops and Registe	rs – SRAM –
DRAM-ROM.		
Contact Periods	200 (185)	
Lecture: 45 Per	iods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	ods

TEXT BOOKS:

	TEHT BOOKS.	
	1 N. Weste and David Money Harris	s, "CMOS VLSI Design", Fourth Edition,
	PearsonEducation,2011	
Ī	2 Uvemura, John P. "Introduction 1	to VLSI Circuits and Systems", Wiley & Sons, 8th Reprint 2009

1	JanM.Rabaey,"DigitalIntegratedCircuits:ADesignPerspective",PHI,SecondEdition,2012.
2	R.JacobBaker, "CMOS: CircuitDesign, Layout, and Simulation", Wiley-
	IEEE,RevisedSecondEdition,2008.
3	Pucknell, "BasicVLSIDesign", PrenticeHall, 2006.

	RSE OUTCOMES: empletion of the course, the students will be able to:	Bloom's Taxonomy Mapped						
CO1	CO1 Realize the CMOS logic design							
CO2	Explain the basic MOS transistor theory and power dissipation in CMOS logic.	K2						
CO3	Develop combinational circuit design of CMOS logic	К3						
CO4	Interpret sequential circuit design of CMOS logic	K2						
CO5	Model the digital system using Hardware Description Language	K2						

a) CO and	a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	-	-	2	-	1	ı	2	-	3	3	1	3
CO2	3	2	1	-	-	2	-	-	-	2	-	3	2	1	2
CO3	3	3	2	-	-	2	-	-	-	2	-	3	3	1	3
CO4	3	3	2	-	-	2	-	-	-	2	-	3	3	1	3
CO5	3	3	2	-	-	2	-	-	-	2	-	3	3	1	3
22LOE\$07	22LOE\$07 3 3 2 2 2 - 3 3 1 3												3		
1 – Slight, 2	- Mod	erate, 3	3 – Sub	stantia	ıl						•				
b) CO and	Key Pe	erform	ance I	ndicat	ors M	apping	g								
CO1	1.1.2,	, 1.2.1,	1.3.1,	1.4.1,	2.1.1, 2	2.1.2, 2	2.1.3, 2	2.2.1, 2	2.2.2, 2	.2.3, 2	3.1, 2.	3.2, 2.4	.1, 2.4.3	, 3.1.4, 3	.1.5,
	3.1.6,	3.3.2,	3.4.1,	3.4.2,	6.1.1,	10.1.1,	10.1.2	2, 10.1	.3, 12.1	1.1, 12	.1.2, 12	2.2.1, 12	2.2.2, 12	.3.1, 12.3	3.2
CO2	1.1.2,	1.2.1,	1.3.1,	1.4.1,	2.1.2, 2	2.1.3, 2	2.2.1, 2	2.2.2, 2	2.2.3, 2	.3.1, 2	3.2, 2.	4.1, 3.1	.4, 3.3.2	3.4.1, 3	.4.2,
	6.1.1,	, 10.1.1	, 10.1.	2, 10.1	.3, 12.	.1.1, 12	2.1.2, 1	2.2.1,	12.2.2	, 12.3.	1, 12.3	.2			
CO3	1.1.2,	1.2.1,	1.3.1,	1.4.1,	2.1.1, 2	2.1.2, 2	2.1.3, 2	2.2.1, 2	2.2.2, 2	.2.3, 2	3.1, 2.	3.2, 2.4	.1, 2.4.3	, 3.1.4, 3	.1.5,
	3.1.6,	3.3.2,	3.4.1,	6.1.1,	10.1.1,	, 10.1.2	2, 10.1	.3, 12.	1.1, 12	.1.2, 1	2.2.1, 1	12.2.2,	12.3.1, 1	2.3.2	
CO4	1.1.2,	1.2.1,	1.3.1,	1.4.1,	2.1.1, 2	2.1.2, 2	2.1.3, 2	2.2.1, 2	2.2.2, 2	.2.3, 2	3.1, 2.	3.2, 2.4	.1, 2.4.3	, 3.1.4, 3	.1.5,
	3.1.6	3.3.2,	3.4.1,	3.4.2,	6.1.1,	10.1.1,	10.1.2	2, 10.1	.3, 12.1	1.1, 12	.1.2, 12	2.2.1, 12	2.2.2, 12	.3.1, 12.3	3.2
CO5														, 3.1.5, 3	.1.6,
	3.3.2,	3.4.1,	3.4.2,	6.1.1,	10.1.1,	, 10.1.2	2, 10.1	.3, 12.	1.1, 12	.1.2, 1	2.2.1, 1	12.2.2,	12.3.1, 1	2.3.2	

ASSESSMEN	NT PATTERN – T	THEORY	- 9	- 77			
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	40	40	20	W-11-	-	-	100
CAT2	40	40	20	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	40	40	20	-	-	-	100

22LOE\$08	MOBILE COMMUNICATION (Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

PREKEQUI	SHES	CATEGORY	L	ı	r						
NIL		OE	3	0	0	3					
Course	To understand and recall the mobile radio propagation,										
Objective	and diversity techniques, digital modulation technique	ies and various	wire	less	netw	vork					
	standards.										
UNIT – I	MOBILE RADIO PROPAGATION				riod						
	ee-space propagation - Radio Wave Propagation in w										
	Model - Ground Reflection Model, Diffraction, Scattering										
	ading - Time dispersion parameters - Coherence bandwie		ead	& C	ohere	ence					
	lue to Multipath time delay spread - Fading due to Dopple	r spread.									
UNIT – II	CELLULAR CONCEPT				riod	~					
_	ell-Cell clustering-Frequency Reuse-Static and dynamic				ategie	es -					
	egies - Interference and System Capacity - Trunking - Cap	acity in Cellular S	yste	ms.							
	ss Techniques: FDMA, TDMA, CDMA, OFDMA.										
	MULTIPATH MITIGATION TECHNIQUES				riod						
	- Adaptive equalization: Linear and Non-Linear equalizat										
diversity - Div	versity combining techniques - Rake receiver- MIMO Cod	ing: Alamouti Sch	ieme	(Qu	alitat	ive)					
	MODULATION TECHNIQUES				riod						
	cellular wireless systems: Binary Phase Shift Keying (B										
	ft Keying-Gaussian Minimum Shift Keying - Multicarrier		ogor	ıal Fı	reque	ency					
Division Mult	iplexing (OFDM) -PAPR reduction –Windowed OFDM -	Filtered OFDM									
UNIT – V	WIRELESS NETWORKS			9 Pe	riod	S					
Second Gene	ration Cellular Standard: GSM - Third Generation Cellu	ular standards: C	DM/	\ -W	CDN	ИA-					
Fourth Gener	ration Cellular Standards: 4G LTE - LTE Advance	d – 5G Netwo	rk –	· Ne	ar F	ield					
Communication	on (NFC) systems – Wireless LAN technology – Hyper L	AN – Bluetooth t	echn	olog	y – L	Jltra					
Wideband (UWB) communication - Introduction to 60 GHz mmWave.											
Contact Perio	Contact Periods:										
T		TT : 1 4 T T .	-								

TEXT BOOKS:

Lecture: 45 Periods

- Theodore S. Rappaport, "Wireless communications", 2nd Edition, Pearson Education, 2010
- Mischa Schwartz, "Mobile Wireless Communications", 1st Edition, Cambridge University Press, 2010

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

- Suvra Sekhar Das and Ramjee Prasad, "Evolution of air interface towards 5G Radio Access Technology and Performance Analysis", River Publishers, 2018
- David Tse, Pramod Viswanath, "Fundamentals of Wireless Communication", 1st Edition, Cambridge University Press, 2006.
- Andreas.F. Molisch, "Wireless Communications", 2nd Edition, Wiley, 2011.
- 4 | Aditya K Jagannatham, "Principles of Modern Wireless Communication Systems Theory and Practice", 1st Edition, McGraw Hill Education (India) Private Limited, 2017
- William Stallings, "Wireless Communications and networks", 2nd Edition, Pearson, 2009.

COU	RSE OUTCOMES:	Bloom's Taxonomy
On co	impletion of the course, the students will be able to:	Mapped
CO1	Interpret the concepts of radio propagation and fading channel models in wireless communication	К3
CO2	Interpret the functionalities of various cellular concepts and multiple access techniques and solve problems in channel assignment and traffic intensity in cellular system	K4
CO3	Explain various equalization and diversity combining techniques used in multipath propagation	K2
CO4	Discuss the need for digital and multicarrier modulation techniques used in modern cellular system	K2
CO5	Recall the functionalities of various wireless networks used in day-today life.	K2

a) CO and PO Mapping															
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1	-	-		- 04	-	-		1	3	-	1
CO2	3	2	1	1	10/	75	1	2	1/2	-	-	1	3	-	1
CO3	3	2	1	1	1/6		சந்த மு	100	25)	-	-	1	3	-	1
CO4	3	2	1	1						-	-	1	3	-	1
CO5	3	2	1	1	5	-	- 50	ū	77	-	-	1	3	-	1
22LOE\$08	3	2	1	1	-//	0-1	-	*	//	-	-	1	3	-	1
1 – Slight, 2 -	- Mod	erate, 3	3 – Sul	stanti	al	1	ANU	KIJ	1				1		·
b) CO and 1	Key Pe	erform	ance l	ndica	tors M	lappin	g		11						
CO1	1.1.	1,1.1.2	,1.2.1,	1.3.1,1	.4.1,2.	1.1,2.1	.2,2.1.3	3,2.2.2	,2.2.3,2	2.3.1,2	.3.2,2.4	1,2.4.4	,3.1.1,3.	1.2,3.3.1	,4.1.1,
	4.2.	1,4.3.3	, 12.1.	1,12.2	.2	60		0.7	B.L.						
CO2	1.1.	1,1.1.2	,1.2.1,	1.3.1,1	.4.1,2.	1.1,2.1	.2,2.1.3	3,2.2.2	,2.2.3,2	2.3.1,2	.3.2,2.4	1,2.4.4	,3.1.1,3.	1.2,3.3.1	,4.1.1,
		1,4.3.3			All Inches	700									
CO3						1.1,2.1	.2,2.1.3	3,2.2.2	2.2.3.2	2.3.1,2	.3.2,2.4	1.1,2.4.4	,3.1.1,3.	1.2,3.3.1	,4.1.1,
		1,4.3.3					14 E		37	,	,	,	, ,	,	, ,
CO4						1.1,2.1	.2,2.1.3	3,2.2.2	,2.2.3,2	2.3.1,2	.3.2,2.4	1,2.4.4	,3.1.1,3.	1.2,3.3.1	,4.1.1,
		1,4.3.3							,			-			
CO5		-		-		1.1,2.1	.2,2.1.3	3,2.2.2	,2.2.3,2	2.3.1,2	.3.2,2.4	1,2.4.4	,3.1.1,3.	1.2,3.3.1	,4.1.1,
		1,4.3.3			-	•			,			•			

ASSESSME	ASSESSMENT PATTERN – THEORY						
Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	20	20	-	-	100
CAT2	50	50	-	-	-	-	100
Individual Assessmen t 1 /Case Study 1/ Seminar 1 / Project1	20	40	20	20	-	-	100
Individual Assessmen t 2 /Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100
ESE	20	40	20	20	-		100

22POE\$09	RAPIDPROTOTYPING (Common to All Branches)
-----------	--

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

*To educate the students with fundamental and advanced knowledge Prototyping technology and associated Aerospace, Architecture, Art, Mapplications. **UNIT-I** **INTRODUCTION* **Overview - Need - Development of Rapid Prototyping (RP) Technology: Rapid Prototyping Rapid Manufacturing - Additive Manufacturing. RP Process Chain, Benefits, Application Bio Printing, Food Printing, Electronics Printing, Automobile, Aerospace, Healthcare. **UNIT-II** **VAT POLYMERIZATION AND MATERIAL EXTRUSION* Photo polymerization: Stereo lithography Apparatus (SLA) - Materials -Process - top approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process-Material Extrusion: Fused Deposition Modelling (FDM) - Process-Materials - Applications. **UNIT-III** **POWDER BED FUSION AND BINDER JETTING* Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mecha Applications. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - and Applications. **Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits - Limitations -	(9 Periods) ing -Rapid Tooling - ns: Building Printing, (9 Periods) down and bottom up
Overview - Need - Development of Rapid Prototyping (RP) Technology: Rapid Prototyp Rapid Manufacturing - Additive Manufacturing. RP Process Chain, Benefits, Application Bio Printing, Food Printing, Electronics Printing, Automobile, Aerospace, Healthcare. UNIT- II VAT POLYMERIZATION AND MATERIAL EXTRUSION Photo polymerization: Stereo lithography Apparatus (SLA) - Materials -Process - top approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process-Material Extrusion: Fused Deposition Modelling (FDM) - Process-Materials -Applications. UNIT- III POWDER BED FUSION AND BINDER JETTING Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mecha Applications. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - and Applications. Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits - Limitations -	ing -Rapid Tooling - ns: Building Printing, (9 Periods) down and bottom up
Rapid Manufacturing - Additive Manufacturing. RP Process Chain, Benefits, Application Bio Printing, Food Printing, Electronics Printing, Automobile, Aerospace, Healthcare. UNIT- II VAT POLYMERIZATION AND MATERIAL EXTRUSION Photo polymerization: Stereo lithography Apparatus (SLA) - Materials -Process - top approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process-Material Extrusion: Fused Deposition Modelling (FDM) - Process-Materials - Applications. UNIT- III POWDER BED FUSION AND BINDER JETTING Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mecha Applications. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - and Applications. Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits - Limitations -	(9 Periods) down and bottom up
Photo polymerization: Stereo lithography Apparatus (SLA) - Materials -Process - top approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process - Process - Powder Interior - Application: UNIT-III POWDER BED FUSION AND BINDER JETTING Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mecha Application. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - and Applications. Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits - Limitations -	down and bottom up
approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Proc	
Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mecha Application. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - and Applications. Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits - Limitations -	s and Limitations.
Application. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - and Applications. Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits - Limitations -	(9 Periods)
	Process - Advantages
UNIT- IV MATERIAL JETTING AND DIRECTED ENERGY DEPOSITION	(9 Periods)
Material Jetting: Multi jet Modelling- Materials - Process - Benefits - Application Deposition: Laser Engineered Net Shaping (LENS) - Process - Material Delivery - Applications.	ns. Directed Energy Materials –Benefits -
UNIT- V SHEET LAMINATION AND DIRECT WRITE TECHNOLOGY	(9 Periods)
Sheet Lamination: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism Bonding - Thermal Bonding - Materials - Application and Limitation.	. Gluing or Adhesive
Ink-Based Direct Writing (DW): Nozzle Dispensing Processes, Inkjet Printing Processes, DW - Applications of DW.	C
Contact Periods:	C
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods	C

TEXT BOOK

1	Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani "Additive manufacturing technologies". 3rd edition Springer Cham, Switzerland, 2021.
2	Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015.

REFERENCES

1	Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid
1	Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011.
2	Milan Brandt, "Laser Additive Manufacturing: Materials, Design, Technologies, and
2	Applications", Woodhead Publishing., United Kingdom, 2016.
3	Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press.,
	United States, 2015.
4	Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer., United
4	States ,2006.
5	Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for
	prototype development", CRC Press., United States, 2011.

COUI	RSE OUTCOMES:	Bloom's Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
CO1	Discuss the development of RP technology and how RP technology propagated into various businesses and developing opportunities.	К3
CO2	Demonstrate the Vat polymerization and material extrusion processes and its applications.	К3
CO3	Elaborate the process and applications of powder bed fusion and binder jetting.	K3
CO4	Evaluate the advantages, limitations, applications of material jetting and directed energy deposition processes.	К3
CO5	Describe the sheet lamination and direct write technology.	K3

						107		B .		9					
a) CO and I	PO Ma	pping	;		120	X	1	100	. / s	Boo					
COa/DOa	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
COs/POs	1	2	3	4	5	6		8	9	10	11	12	1	2	3
CO1	2	2	2	0	2	0	3	0	3	3	3	3	0	0	0
CO2	2	2	3	2	3	0	3	0	3	3	1	2	0	0	0
CO3	2	2	3	2	3	0	3	0	3	3	1	2	0	0	0
CO4	2	2	3	2	3	0	3	0	3	3	1	2	0	0	0
CO5	2	2	3	2	3	3	3	0	3	3	1	3	0	0	0
22POE\$09	2	2	3	2	3	1	3	0	3	3	2	3	0	0	0
1 – Slight, 2 -	- Mod	erate, 3	3 – Sul	stanti	al										
b) CO and 1	Key Pe	erform	ance l	Indica	tors M	appin	g								
CO1	1.2.	1, 1.3.	1, 1.4.	1, 2.1.1	1, 2.1.3	, 2.2.2	, 2.2.3	, 2.2.4,	, 2.3.1,	2.3.2,	2.4.2,	3.1.1, 3	.1.2, 3.1	.3, 3.1.4	, 3.1.5,
	3.1.	6, 3.2	3, 5.2.2	2, 5.3.1	1, 5.3.2	, 7.1.2	, 7.2.1	, 7.2.2,	, 9.2.1,	9.2.2,	9.2.3,	9.2.4, 9	0.3.1, 10.	1.1, 10.1	1.2,
				0.2.2, 1	0.3.1,	10.3.2	, 11.1.	1, 11.1	.2, 11.	2.1, 11	1.3.1, 1	1.3.2, 1	2.1.1, 12	2.1.2, 12	.2.2,
	12.3	3.1, 12.	.3.2.												
CO2	1.2.	1, 1.3.	1, 1.4.	1, 2.1.1	1, 2.1.3	, 2.2.2	, 2.2.3	, 2.2.4	, 2.3.1,	2.3.2,	2.4.2,	3.1.1, 3	.1.2, 3.1	.3, 3.1.4	, 3.1.5,
	3.1.	6, 3.2.	1, 3.2.2	2, 3.2.3	3, 3.3.2	, 3.4.1	, 3.4.2	, 4.1.1,	4.1.2,	4.2.1,	4.3.1,	5.1.1, 5	5.1.2, 5.2	.1, 5.2.2	, 5.3.1,
	5.3.	2, 7.1.	1, 7.1.2	2, 7.2.1	7.2.2	, 9.2.1	, 9.2.2	, 9.2.3	, 9.2.4,	9.3.1,	10.1.1	, 10.1.2	2, 10.1.3,	10.2.1,	10.2.2,
					2.1.2,					Í			ĺ	Í	Í
CO3										2.3.2,	2.4.2,	3.1.1, 3	3.1.2, 3.1	.3, 3.1.4	, 3.1.5,
													5.1.2, 5.2		
													2, 10.1.3,		
	10.3	3.1, 10.	.3.2, 1	1.3.1, 1	2.1.2,	12.2.2	, 12.3.	1, 12.3	.2.						

CO4	1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.3, 2.2.2, 2.2.3, 2.2.4, 2.3.1, 2.3.2, 2.4.2, 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.2, 3.4.1, 3.4.2, 4.1.1, 4.1.2, 4.2.1, 4.3.1, 5.1.1, 5.1.2, 5.2.1, 5.2.2, 5.3.1,
	5.3.2, 7.1.1, 7.1.2, 7.2.1, 7.2.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3.1, 10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2,
	10.3.1, 10.3.2, 11.3.1, 12.1.2, 12.2.2, 12.3.1, 12.3.2.
CO5	1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.3, 2.2.2, 2.2.3, 2.2.4, 2.3.1, 2.3.2, 2.4.2, 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.2, 3.4.1, 3.4.2, 4.1.1, 4.1.2, 4.2.1, 4.3.1, 5.1.1, 5.1.2, 5.2.1, 5.2.2, 5.3.1,
	5.3.2, 6.1.1, 6.2.1, 7.1.1, 7.1.2, 7.2.1, 7.2.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3.1, 10.1.1, 10.1.2, 10.1.3,
	10.2.1, 10.2.2, 10.3.1, 10.3.2, 11.3.1, 12.1.1, 12.1.2, 12.2.2, 12.3.1, 12.3.2.

Test / Bloom's Category*	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Tota
CAT1	15	52	33	-	-	-	100
CAT2	15	68	17	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50		-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	-	100	-	-	-	100
ESE	9	75	16	-	-	-	100

22POE\$10

MANAGERIALE CONOMICS

(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objectives	To introduce the fundamental economic principles necessary for production managers					
UNIT- I	FUNDAMENTALS OF MANAGERIAL ECONOMICS	(9 Periods)				

Introduction to Economics - Scope of Managerial Economics - General Foundations of Managerial Economics: Economic Approach, Working of Economic System and Circular Flow of Activities - Economics and Business Decisions: Relationship between Economic Theory and Managerial Economics - Role of managerial Economics in Decision making - Concept of Economic Rationality - Opportunity Cost - Marginal and Incremental approach.

UNIT- II DEMAND ANALYSIS

(9 Periods)

Demand and Supply - Determinants of Demand - Demand Estimation and Forecasting - Price Elasticity of Demand - Price Elasticity - Factors Affecting Price Elasticity - Cross Price Elasticity - Income Elasticity of Demand - Advertisement or Promotional Elasticity - Elasticity of Supply.

UNIT-III DEMAND THEORY

(9 Periods)

Utility Analysis - Total and Marginal Utility - Law of Diminishing marginal utility - Indifference curve analysis - Consumer Equilibrium - Consumer Surplus - Price effect, Substitution Effect and Income Effect.

UNIT- IV THEORY OF PRODUCTION AND COST

(9 Periods)

The Production Function - Profit-Maximizing Input Usage - Isoquants and Isocosts - CostMinimization and Optimal Input Substitution - The Cost Function - Breakeven analysis, Contribution analysis - Long-run Costs and Economies of Scale - Multiple Cost Functions and Economies of Scope - Learning curve.

UNIT- V THEORY OF MARKET AND PRICING

(9 Periods)

Forms of Markets: Meaning and Characteristics - Market Equilibrium: Practical Importance, Market Equilibrium and Changes in Market Equilibrium. Pricing Functions: Market Structures - Pricing and output decisions under different competitive conditions: Monopoly Monopolistic completion and Oligopoly.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods

Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 Maheshwari.Y "Managerial Economics", Prentice Hall of India, 2012
- 2 Thomas and Maurice "Managerial Economics: Concept and Applications", McGrawHill, 2005

1	D.N. Dwivedi, "Managerial Economics", Vikas Publishing house, 2015.
2	Christopher R Thomas, S Charles Maurice, "Managerial economics", Mcgraw Hill, 2014.
3	M. A. Beg, "Managerial Economics", Global Professional Publishing Ltd, 2010.
4	K.C. Sankaranarayanan, "Managerial Economics", CBS, 2015.

COUI	COURSE OUTCOMES:					
On co	On completion of the course, the students will be able to:					
CO1	Explain fundamentals of managerial economics	K2				
CO2	Discuss the dynamics of Demand	K3				
CO3	Explain about various theories of demand	K3				
CO4	Discuss about the factors influencing production	K4				
CO5	Describe about the theory of market and pricing method	K4				

a) CO and	d PO	Mapp	oing												
COs/POs	P O 1	P O 2	P 03	P O4	P O5	P 06	P 07	P 08	P 09	P O 10	P O 11	P O 12	PSO 1	PSO 2	PSO 3
CO1	1	2	1	3	1	3	3	0	1	3	3	3	0	1	2
CO2	1	3	2	3	1	3	3	0	1	3	3	3	0	1	2
CO3	1	3	2	3	1	3	3	0	1	3	3	3	0	1	2
CO4	1	3	2	3	al a	3	3	0	1	3	3	3	1	1	2
CO5	1	3	2	3	"/18j	3	3	0	- 1	3	3	3	0	1	2
22POE\$1 0	1	3	2	3	1	3	3	0		3	3	3	0	1	2
1 – Slight,	2 - M	[odera	ite, 3 -	- Subs	tantia		K.	-4							
b) CO and	l Key	Perfo	rman	ce In	dicato	rs M	appin	\mathbf{g}							
CO1														1, 3.4.1,	
														10.1.1,	
						0.3.1,	10.3.	2, 11	.1.1,	11.2.1	, 11.3	3.1, 1	2.1.1,	12.1.2,	12.2.1,
			2.3.1,			Q)		B	1	2					
CO2														2, 2.4.2,	
														2, 4.1.3,	
		-	-	-	-	1	Table -			-	-	-		2, 7.2.1,	
).2.2,	10.3.1	, 10.3	.2, 11	.1.1,	11.2.1,	11.3.1,	12.1.1,
			2.2.1,												
CO3														2, 2.4.2,	
														2, 4.1.3,	
														2, 7.2.1,	
).2.2,	10.3.1	, 10.3	.2, 11	.1.1,	11.2.1,	11.3.1,	12.1.1,
CO4			2.2.1,					2 2 1	222	2.2	2 2 2	4 2 2	1 2 2	2 2 4 2	2.4.2
CO4														2, 2.4.2,	
														2, 4.1.3,	
														2, 7.2.1,	
								1.2.2,	10.3.1	, 10.5	.2, 11	.1.1,	11.2.1,	11.3.1,	12.1.1,
CO5			2.2.1,					2 2 1	222	22	2 2 2	1 2 2	1 2 2	2, 2.4.2.	2/13
														2, 2.4.2, 2, 4.1.3,	
														2, 4.1.3, 2, 7.2.1,	
														2, 7.2.1, 11.3.1,	
			2.2.1,					<i></i> ,	10.5.1	, 10.5	.4, 11	.1.1,	11.4.1,	11.3.1,	12.1.1,
	14.	1.4, 1	4.4.1,	14.4.4	ر. 14.	1.1, 12	.J.L								

ASSESSM	ENT PATTERN	– THEORY					
Test / Bloom's Category	Remembering (K1) %	Understandin g (K2) %	Applying (K3) %	Analyzin g (K4) %	Evaluatin g (K5) %	Creatin g (K6) %	Tota 1 %
CAT1	50	50		-	-	-	100
CAT2	50	50		-	-	-	100
Individual Assessme nt 1 /Case Study 1/ Seminar 1 / Project1	33.33	33.33	33.33	-	-	-	100
Individual Assessme nt 2 /Case Study 2/ Seminar 2 / Project 2	33.33	33.33	33.33	12.001	-	-	100
ESE	42	42	16	7	-	-	100

22NOE\$11	MEASUREMENT AND CONTROL
	(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

COLIDGE		1 4 1 4						
COURSE OBJECTIVES	To teach about the concepts of variable sensors for inc	•						
UNIT - I	measurement and to impart knowledge on automatic control systematic co	9 Periods						
01111		,						
Elements of measurement system - Classification of Instruments - Static and dynamic characteristics								
of a measurement system - Errors in measurement - Calibration of instruments.								
UNIT - II	STRAIN AND DISPLACEMENT MEASUREMENT	9 Periods						
	train gauges, theory of operation, strain gauge materials, strain ga							
	lacement: Resistive potentiometer: Linear, circular and helical - I							
Capacitance transe	ducers – Piezoelectric transducers – Hall Effect devices - Proximity	y sensors.						
UNIT - III	PRESSURE AND TEMPERATURE MEASUREMENT	9 Periods						
resistance, induct sensors: RTD, T	ical devices: Diaphragm, bellows, and bourdon tube - Electrical cance and capacitance transducers. Temperature: Resistance transcouples, Thermopiles and Thermistor - Laws of thermoconcrature measurement.	ype temperature						
UNIT - IV	FLOW AND LEVEL MEASUREMENT	9 Periods						
area type: Rotamo	ad type flow meters: Orifice plate, Venturi tube, Flow nozzle, Pito eter - Turbine flow meter - Electromagnetic flow meter - Ultrason nductive and capacitive techniques – Ultrasonic methods – Air pur	onic flow meter.						
UNIT - V	AUTOMATIC CONTROL SYSTEM	9 Periods						
Elements of control system – Concept of open loop and closed loop systems – Mathematical modelling - Controllers – Brief idea of Proportional, Derivative and Integral Modes – Pneumatic Controller – Hydraulic Controller.								
Contact Periods: Lecture: 45 Perio	45 Periods ods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	riods						
TEVT DOOKS	0000							

TEXT BOOKS

1	A.K. Sawhney, Puneet Sawhney, "A Course in Mechanical Measurements and Instrumentation & Control" Dhanpat Rai & Co, 2012.
2	S. K. Singh, "Industrial Instrumentation and Control", McGraw Hill Publication, 3 rd Edition, 2016.

1	William Bolton, "Instrumentation and Control Systems," Newnes, Publication, 3 rd Edition, 2021.
2	E. D. Doeblin, "Measurement Systems: Application and Design", McGraw Hill Publication, 6 th
	Edition, 2017.
3	E.W. Golding and F.C. Widdis, "Electrical Measurements and Measuring Instruments"
	A.H.Wheeler and Co., 5 th Edition, 2011.
4	Alan S. Morris, "Measurement and Instrumentation Principles", Butterworth-Heinemann
	Publications, 3 rd Edition, 2011.

	COURSE OUTCOMES On Completion of the course, the students will be able to					
CO1	Describe the methods of measurement and classification of measuring instruments.	K2				
CO2		K2				
	66					
CO3	Explain the construction and working of transducers for pressure and	K2				
	temperature measurement.					
CO4	Elucidate the characteristics of flow and level measuring instruments.	K2				
CO5	Elaborate the concept of automatic control system.	K2				

a) CO/PO	a) CO/PO Mapping														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	-	-	-	-	-	-	-	-	-	3	2
CO2	3	2	2	2	-	-	1	-	-	-	-	-	-	3	2
CO3	3	2	2	2	-	1	ı	ı	ı	-	-	-	-	3	2
CO4	3	2	2	2	-	ı	ı	ı	1	-	-	-	-	3	2
CO5	3	3	3	2	-	•	Harm	mo-	-	-	-	-	-	3	3
22NOE\$11	3	3	3	2	-6%	84400		100		nj -	-	-	-	3	2
b) CO and	Key l	Perfoi	man	ce Indi	icators	mapp	ing	TRE							
CO1										, 2.2.2,	2.3.1,	2.3.2, 2	2.4.1, 2	2.4.2, 3	5.2.1,
	3.2.	3, 3.3.	.1, 3.3	.2, 3.4	.1, 3.4	.2, 4.1	.2, 4.1.	3, 4.1.	4 //						
CO2	02 1.1.1, 1.1.2, 1.2.1,1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.2.2,2.2.3, 2.3.1, 2.3.2, 3.1.6, 3.3.2, 3.4.1,														
	3.4.2, 4.1.2, 4.1.3, 4.1.4														
CO3										, 2.2.3,	2.2.4,	2.3.1, 2	2.3.2, 3	3.1.5, 3	.1.6,
	3.3.	2, 3.4.	.1, 3.4	.2, 4.1	1.2, 4.1	.3, 4.1	.4, 4.2.	1, 4.2.	2						
CO4			-	-			-			,2.2.3,	2.2.4,	2.3.1, 2	2.3.2, 3	3.1.5, 3	.1.6,
	3.3.	2, 3.4.	.1, 3.4	.2, 4.	1.2, 4.1	.3, 4.1	.4, 4.2.	1, 4.2.	2	À					
CO5	1.1.	1, 1.1	$.2, \overline{1.2}$.1,1.3.	1, 1.4.	1, 2.1.1	1, 2.1.2	, 2.1.3	$, 2.\overline{2.1},$	$, 2.\overline{2.2},$	2.2.3,	2.2.4, 2	$2.3.\overline{1,2}$	2.3.2, 2	.4.1,
	2.4.	2, 3.1	.5, 3.	1.6, 3.2	2.1, 3.2	2.3, 3.3	.1, 3.3.	2, 3.4.	1, 3.4.2	2, 4.1.	2, 4.1.3	3, 4.1.4	, 4.2.1	, 4.2.2	

ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	40	60	-	-	-	-	100	
CAT2	40	60	-	-	-	-	100	
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	30	70	-	-	-	-	100	
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100	
ESE	40	60	-	-	-	-	100	

22NOE\$12	INDUSTRIAL AUTOMATION
	(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	\mathbf{C}
NIL	OE	3	0	0	3

COURSE	To elaborate on the basic concept of automation, including the necessary	component						
OBJECTIVE and various automation controllers utilized in industrial automation.								
UNIT - I	INTRODUCTION TO AUTOMATION	9 Periods						
Automation overview - Requirement of automation systems - Architecture of industrial automation								
	ial bus systems: Modbus and Profibus.Introduction to Industry 4.0 and its evo	lution.						
UNIT - II	AUTOMATION COMPONENTS	9 Periods						
Sensors for tem	perature – Pressure – Force – Displacement - Speed – Flow-level – Humidity	and						
pH measuremen	nt. Actuators - Process control valves - Power electronic drives: DIAC-TRIA	C –power						
MOSFET – IGI	BT. Introduction to DC and AC servo drives for motion control.							
UNIT - III	PROGRAMMABLE LOGIC CONTROLLERS	9 Periods						
PLC Hardware	- power supplies and isolators -Relays - Switches -Seal-in circuits	s – PLC						
programming -	ladder diagram - sequential flow chart - PLC communication and networking	ng – PLC						
selection - PLO	C installation - Advantages - Application of PLC to process control indus	stries and						
Robotics.								
UNIT - IV	DISTRIBUTED CONTROL SYSTEM	9 Periods						
Overview of DO	CS – DCS hardware – DCS software configuration – DCS communication – D	OCS						
supervisory con	nputer tasks – DCS integration with PLC and Computers.							
UNIT - V	SUPERVISORY CONTROL AND DATA ACQUISITION	9 Periods						
	SYSTEMS							
Introduction -	Supervisory Control and Data Acquisition Systems - SCADA HMI Ess	sentials –						
SCADA Compo	onents – SCADA Configuration and Software – HMI hardware and software.							
Contact Period	ls: 45 Periods							
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods							

TEXT BOOKS:

1	Frank D. Petruzella, " Programmable Logic Controllers ", 5 th Edition, McGraw Hill, 2016.
2	S.K. Singh "Industrial Instrumentation and Control", 3rd Edition, McGraw Hill Companies,
	2004.

1	Sudip Misra, Chandana Roy, Anandarup Mukherjee, "Introduction to Industrial Internet of
	Things and Industry 4.0", CRC Press, 1st edition, 2021
2	Bela G Liptak, "Process software and digital networks – Volume 3", 4th Edition, CRC press,
	2012.
3	Romily Bowden, "HART application guide and the OSI communication foundation",1999.
4	John.W. Webb Ronald A Reis, "Programmable Logic Controllers - Principles and
	Applications", Prentice Hall Inc., 5 th Edition, 2003.
5	M. P. Lukcas, "Distributed Control Systems", Van Nostrand Reinhold Co., 1986.

	RSE OUTCOMES impletion of the course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Elaborate the basic architecture of automation systems and Industry 4.0.	K2
CO2	Describe the various automation components and industrial bus system involved in industrial automation	K2
CO3	Construct ladder logic diagram using PLC basic functions, timer and counter functions for simple applications	K3
CO4	Illustrate the functionary components and supervisory control of DCS with relevant diagrams	K2
CO5	Describe the basics of SCADA technology.	K2

a) CO/PO	a) CO/PO Mapping														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	-	-	-	-	-	-	-	1	3	3
CO2	3	2	1	-	-	-	-	-	-	-	-	-	1	3	3
CO3	3	3	2	2	E Va	9	0	2	1	-	-	2	1	3	3
CO4	3	2	2	-	7/69		n jó cz. gyl			-	-	-	1	3	3
CO5	3	2	`1	-	-7				-	-	-	-	1	3	3
22NOE\$12	3	3	2	1	5	P	-	5	1	-	-	1	1	3	3
b) CO and	Key I	Perfori	mance	Indica	itors n	nappin	g	Λ							
CO1	1.2.1,	1.3.1,	1.4.1,	2.1.1, 2	2.1.2, 2	.1.3, 2	3.1, 2.	4.3,3.1	.1, 3.1	.2, 3.1.	3, 3.3.	1,3.3.2			
CO2	02 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.3.1, 2.4.3,3.1.1, 3.1.2, 3.1.3, 3.3.1,3.3.2.														
										.2, 3.1.	3, 3.3.	1,3.3.2	, 4.1.1,	4.1.2,	4.2.1,
	4.2.2,	9.1.1,	9.1.2,	10.1.1,	10.1.2	, 10.1	3, 12.1	.1, 12.	1.2.						
CO4	1.2.1,	1.3.1,	1.4.1,	2.1.1, 2	2.1.2, 2	.1.3, 2	$3.1, \overline{2}$	4.3,3.1	.1, 3.1	.2, 3.1.	3, 3.3.	1,3.3.2			
CO5	1.2.1,	1.3.1,	1.4.1,	2.1.1, 2	2.1.2, 2	.1.3, 2	3.1, 2.	4.3,3.1	.1, 3.1	.2, 3.1.	3, 3.3.	1,3.3.2		•	

ASSESSMEN	ASSESSMENT PATTERN - THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %		
CAT1	20	60	20	-	-	-	100		
CAT2	20	60	20	-	-	-	100		
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	60	20	ı	-	-	100		
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	60	20	-	1	1	100		
ESE	20	60	20	-	-	-	100		

22SOE\$13

PROGRAMMING IN JAVA

(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	The objective of this course is to provide students with the essential Ja	ava constructs							
Objectives	necessary for developing an object-oriented program.								
UNIT – I	FUNDAMENTALS OF JAVA PROGRAMMING	9 Periods							
History and I	Evolution of Java- Overview of java- Operators- Control Structures- Met	hods- Classes							
and Objects-	Inheritance- Packages and Interfaces- Exception Handling.								
UNIT – II	THREADS , I/O AND STRING HANDLING	9 Periods							
	Multi threaded Programming– Enumeration- Auto boxing– Annotations- String Handling-Input/Output: Exploring java.io								
UNIT – III	EVENT HANDLING	9 Periods							
Introducing t	the AWT: working with windows- graphics and text- Using AWT cor	trols- Layout							
Manager - M	enus - Introducing Swing								
UNIT – IV	IMAGING AND DATABASE CONNECTIVITY	9 Periods							
	eating- loading and displaying- Image observer- Double buffering- Neer- consumer- filters- animation- Java Database Connectivity	Iedia tracker-							
UNIT – V	NETWORKING	9 Periods							
Networking -	Networking – Remote Method Invocation – Java Beans – Java servlets								
Contact Per	iods:								
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods									

TEXT BOOKS

1 Herbert Schildt, "Java, **The Complete Reference**", Tata McGrawHill, 12th Edition, 2022

1	Deitel .H.M and Deitel.P.J, " Java: How to Program ", Pearson Education Asia, 9 th Edition 2011
2	Lay.S&Horstmann Gary Cornell, "Core Java Vol I", The Sun Microsystems & press Java Series, 9 th Edition, 2012
3	NPTEL Course: "PROGRAMMING IN JAVA" https://archive.nptel.ac.in/courses/106/105/106105191/

	SE OUTCOMES: upletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Write simple java programs using fundamental concepts of java like control structures, inheritance, packages, interfaces and exception handling	K4
CO2	Write java program using multithreading and string handling	К3
CO3	Write java programs for managing events and to access database	K4
CO4	Write java programs to display and manipulation of graphical images	К3
CO5	Develop client server programs using RMI and servlets	К3

a) CO/PO	a) CO/PO Mapping														
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	P 01 1	PO 12	PS O1	PSO 2	PSO 3
CO1	2	2	2	2	1	-0	0.0	0	0	2	0	0	1	2	2
CO2	2	1	2	2	1	0	0	0	0	2	0	0		2	3
CO3	2	1	2	2	1	0	0	0	0	2	0	0	1	2	3
CO4	2	1	2	2	1	0	0	0	0	2	0	0	1	2	3
CO5	2	1	2	2	1	0	0	0	0	2	0	2	1	2	3
22SOE\$13	2	2	2	2	1	0	0	0	0	2	0	1	1	2	3
b) CO and	Key Pe	rform	ance I	ndica	tors N	Iappii	ng	1							
CO1	1.3.1, 1 4.1.3, 4				No. Berlin				/ / DO C. DO	3.1.6,	3.2.2,	3.3.1,	3.3.2, 4	1.1.1, 4.	1.2,
CO2	1.3.1, 1 5.2.2,10	-	-	-	.4.3, 3	.1.5, 3	.1.6, 3	3.2.2, 3	3.3.2,	4.1.1,	4.1.2,	4.1.3,	4.2.1, 4	1.3.1, 4.	3.2,
CO3	1.3.1, 1 5.2.2,10				.4.3, 3	.1.5, 3	.1.6, 3	3.2.2, 3	3.3.2,	4.1.1,	4.1.2,	4.1.3,	4.2.1, 4	1.3.1, 4.	3.2,
CO4	1.3.1, 1 5.2.2,10				.4.3, 3	.1.5, 3	.1.6, 3	3.2.2, 3	3.3.2,	4.1.1,	4.1.2,	4.1.3,	4.2.1, 4	1.3.1, 4.	3.2,
CO5	1.3.1, 1 5.1.1, 5	-								4.1.1,	4.1.2,	4.1.3,	4.2.1, 4	1.3.1, 4.	3.2,

ASSESSMENT 1	PATTERN – TH	EORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	-	30	40	30	-	-	100
CAT2	10	30	40	20	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	-	70	30	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	-	50	50	-	-	100
ESE	-	30	40	30	-	-	100

22SOE\$14

NETWORK ESSENTIALS

(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course Objectives	The objective of the course is to understand the basics of networking and a configure and troubleshoot switches and routers.	able to
UNIT – I	INTRODUCTION	9 Periods

Introduction to Computer Networks - Goals and advantages of Computer Networks - Network Topologies - Basic networking devices - Protocols - the need for a layered architecture - The OSI Model and the TCP/IP reference model - the Ethernet LAN - Home Networking - Assembling an office LAN - Testing and Troubleshooting a LAN - Physical layer cabling: Twisted pair and Fiber optics

UNIT – II WIRELESS NETWORKING

9 Periods

Importance of Wireless Networking – IEEE 802.11 Wireless LANs – Bluetooth- WIMAX – RFIDs – Securing the Wireless LANs – Configuring a Point to Multipoint Wireless LAN – Interconnecting network LANs – Switch, Bridges and Routers. Interconnecting LANs with the router, Configuring the network interface-Auto negotiation

UNIT – III | ADDRESSING AND ROUTING FUNDAMENTALS

9 Periods

IPv4 and IPv6 addressing – Subnet masks – CIDR blocks – configuration of a router – Console port connection - user EXEC mode – Privileged EXEC mode - Configuration of a switch – Static VLAN configuration - Spanning Tree protocol – Network Management – Power over Ethernet

UNIT – IV ROUTING PROTOCOLS

9 Periods

Static Vs Dynamic Routing Protocols – Distance vector Routing – Link State Routing – Hybrid Routing – Configuring RIP - Network Services – DHCP, DNS - Analyzing Internet Traffic.

UNIT - V TROUBLESHOOTING AND NETWORK SECURITY

9 Periods

Analyzing Computer Networks – FTP data packets – Analyzing Campus Network data traffic – Troubleshooting the router and switch interface, Troubleshooting fiber optics – Intrusion – DOS – Security software and hardware.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

TEXT BOOK:

- 1 Jeffrey S.Beasley Piyasat Nilkaew "Network Essentials" 3 rd Edition, Pearson, 2018
- 2 Larry L. Peterson and Bruce S. Davie "Computer Networks, A Systems Approach" 5 th edition, Morgan Kaufmann Publishers Inc, 2014.

REFERENCES:

1	Behrouz A. Forouzan, "Data Communications and Networking with TCP/IP Protocol Suite", Sixth Edition TMH, 2022.
2	James F. Kurose, Keith W. Ross, "Computer Networking, A Top-Down Approach Featuring the Internet", Eighth Edition, Pearson Education, 2021.
3	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source Approach", McGraw Hill, 2012.
4	Nader F. Mir, "Computer and Communication Networks", Second Edition, Prentice Hall, 2014.

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Identify topologies and types of Computer Networks and enumerate the layers of the OSI model and TCP/IP	K2
CO2	Explain the significance of wireless networks and configure a Wireless LAN	K3
CO3	Configure a switcher and a router	К3
CO4	Describe basic routing algorithms and network services	К3
CO5	Troubleshoot the router and switch interface	К3

					- 11	- 25	1,487.11	9/10	. 11						
a) CO an	d PO M	Iappi r	ıg			89		D.	10						
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
COS/TOS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
WCO1	2	3	-	-	7	1_{0}	5/		SC 1110	/ -	-	-	1	2	-
CO2	2	3	-	-		5	3/		3	-	-	ı	1	2	-
CO3	2	3	-	2	2	1).	33	-	-	-	ı	1	2	-
CO4	2	3	-	2	2	1	-	-	-	-	-	ı	1	2	-
CO5	2	3	-	2	2	1	-	-	-	-	-	-	1	2	-
22SOE\$1	2	3	-	2	2	1	-	-	-	-	-	-	1	2	-
4															
1 – Slight,	2-Mc	derate	$\frac{1}{3} - S$	ubstar	itial										
b) CO an	d Key P	erfori	mance	Indic	ators :	Mapp	ing								
CO1 1	.3.1, 1.4	4.1, 2.1	1.2, 2.2	2.2, 2.4	1.4, , 4	.1.2, 5	5.1.1, 5	5.1.2,5	.2.1, 5	5.2.2, 5	5.3.2, 6	5.1.1, 6	.1.2		
CO2 1	.3.1, 2.	1.1, 2.1	1.2, 2.1	.3, 2.2	2.1, 2.2	2.2, 2.2	2.3,2.2	2.4, 4.1	1.2, 5.	1.1, 5.	1.2,5.2	2.1, 5.2	.2, 5.3.2	, 6.1.1, 6	5.1.2
CO3 1	.3.1, 1.4	4.1, 2.1	1.1, 2.1	1.2, 2.1	.3, 2.2	2.1, 2.2	2.2, 2.	2.3,2.2	2.4, 4.	1.1, 4.	1.2, 5.	1.1, 5.1	.2,5.2.1	, 5.2.2, 5	5.3.2,
6	5.1.1, 6.	1.2													
CO4 1	.3.1, 1.4	4.1, 2.1	1.1, 2.1	1.2, 2.1	.3, 2.2	$2.1, \overline{2.2}$	2.2, 2.	2.3,2.2	2.4, 4.	1.1, 4.	1.2, 5.	1.1, 5.1	.2,5.2.1	5.2.2, 5	5.3.2,
	5.1.1, 6.														
			1.1, 2.1	1.2, 2.1	.3, 2.2	2.1, 2.1	$2.2, \overline{2.2}$	2.3,2.2	2.4, 4.	1.1, 4.	1.2, 5.	1.1, 5.1	.2,5.2.1	5.2.2, 5	5.3.2,
6	5.1.1, 6.	1.2													

ASSESSME	NT PATTERN -	- THEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	35	35	-	-	-	100
CAT2	10	45	45	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	50	50	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	-	50	50	-	-	-	100
ESE	10	40	50	15 Jr-	-	-	100

22I0E\$15	VIDEO CREATION AND EDITING (Common to All Branches)	
-----------	--	--

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	Upon completion of the course the students will be familiar with the pri	nciples and						
Objectives	echniques of video creation and editing, video production equipment and software,							
	visual storytelling and video production, planning, executing, and ed	visual storytelling and video production, planning, executing, and editing video						
	projects. also able to foster critical thinking and creativity in developing and							
	executing video projects.							
UNIT – I	INTRODUCTION TO VIDEO CREATION AND EDITING	9 Periods						
Overview of video creation and editing -Brief history of video and film production -Understanding								
visual stamptallings developing decompositions and desiration majority introduction to digital and film								

visual storytelling: developing documentary and dramatic projects- introduction to digital and film systems

UNIT – II PRE-PRODUCTION

9 Period

Developing a concept and idea - Scriptwriting and storytelling -The Digital image - Film systems and cameras -The film image - Case Study : Non linear editing system

UNIT – III PRODUCTION

9 Periods

Camera operation and techniques: The video camcorder- The Lens - Lighting and sound recording techniques - Directing actors and crew -Conducting interviews -Shooting the movie - Case Study: Professional video zoom lenses

UNIT – IV POST-PRODUCTION

9 Periods

Picture and Dialogue editing - Editing digital video -sound editing and mixing -Color grading and correction-Sound editing and mixing - working with film in post production Case Study : Digital Audio Recording

UNIT – V DISTRIBUTION AND PROMOTION

9 Periods

Presenting the project - funding sources - budgets- business arrangements- legal and copyright issuesdistribution and marketing - publicity and the marketing campaigns-building and sustaining a career -Case Study: Creating a short movie.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45

Periods

TEXT BOOK

Steven Ascher and Edward Pincus, The Filmmaker's Handbook: A Comprehensive Guide for the Digital Age, Fifth edition Penguin Publishing Group, 2012

- 1 Walter Murch, In the Blink of an Eye: A Perspective on Film Editing", Silman-James Press, 2001
- 2 Karel Reisz and Gavin Millar, The Technique of Film Editing", second edition, Taylor and Francis Group 2017
- 3 Ken Dancyger, The technique of film and video editing, fifth edition, Elsevier 2011.
- 4 Chris Kenworthy, Digital video production cookbook, OReillyMedia, 2006
- 5 Mark Brindle, The Digital Filmmaking Handbook, Ouercus Publishing, 2014

	RSE OUTCOMES: empletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Demonstrate an understanding of the history and evolution of video	K2
	production and editing.	
CO2	Develop and execute a concept, script, and storyboard for a video project	K3
CO3	Plan and prepare for a video shoot, including casting, location scouting, and	K3
	budgeting.	
CO4	Edit and assemble video footage using basic and advanced editing	K2
	techniques.	
CO5	Promote and distribute the final video on various platforms.	K1

			apping	2	1 1 1 1 1 1 1	111121									
		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COs/ P	Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		2	1	1	1	0	0	0	0	0	0	0	0	1	1
CO2		1	2	3	2	3	0	0	0	0	0	0	0	1	1
CO3		1	2	1	3	3	0	1	0	3	1	2	0	1	1
CO4		1	2	2	2	3	3	0	$_{\odot}0$	3	1	2	0	1	1
CO5		1	2	2	2	3	3	1	3	3	3	2	0	1	1
22IOES	§15	1	2	2	2	2	91			2	1	1	0	1	1
1– Sligh	t, 2 –	Mode	erate, 3	3 – Sub	stantia	al /									
b) CO a	nd K	ey Pe	rform	ance I	ndicat	tors M	appin	g	Col	7/					
CO1	1.1.	1,1.2.	1,1.31	,2.1.1,2	2.1.2,2	.2.4,2.	4.1,3.1	.4,3.4.	1,4.1.3	3,					
CO2	1.1.	1,2.1.	1,2.1.2	2,2.1.3,	2.2.1,2	2.2.2,2	.4.3,3.	1.1,3.1	.2,3.1.	3,3.1.6	,3.2.1,	3.2.2,3.2	2.3,3.3.1	,3.4.1,3.	4.2,4.1.
	1,4.	1.3,4.	2.1,4.3	3.1,4.3.	2,4.3.4	1,5.1.1	,5.1.2,	5.2.1,5	.2.2,5	3.1,5.3	.2,				
CO3														,4.1.3,4.	
		-	3.2,4.3	3.3,,5.1	.1,5.1.	2,5.2.1	,5.2.2,	5.3.2,7	7.1.1,9	.1.1,9.	1.2,9.2	.1,9.2.2,	9.2.3,10	.1.1,11.2	2.1,11.3.
		1.3.2				120	M	18	B.	V. 6					
CO4		-	-												.1.3,4.2.
	-			5.1.1, 5	.1.2, 5	.2.1, 5	.2.2, 5.	3.2, 6.	1.1, 6.	1.2, 9.	1.1, 9.1	1.2, 9.2.	1, 9.2.2,	9.2.3, 10	0.1.1,
		3.1, 11				13	254	10 ESE		7					
CO5														1.1, 4.1.	
														2, , 9.1.	
			2, 9.2.	3,9.2.4	, 9.3.1	, 10.1.	1, 10.1	.2, 10.	1.3,10	.2.1, 1	0.2.2, 1	0.3.1, 1	0.3.2, 1	1.1.1, 11	.1.2,
	11.2	2.1													

ASSESSMEN	NT PATTERN –	THEORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	30	30	40	-	-	-	100
CAT2	30	30	40	-	-	-	100
Assignment 1	30	30	40	-	-	-	100
Assignment 2	30	30	40	-	-	-	100
Other mode of internal assessments, if any	-	-	-	-	-	-	-
ESE	30	30	40	-	-	-	100

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course
Objectives

To give insight on the framework to analyze, strategies and plan digital marketing and communication activities for typical marketing situations. Familiarize with the key tools and techniques of digital marketing that are popularly used by professionals in the real world of digital marketing and help them develop the ability to formulate and analyze key metrics to evaluate the performance of typical digital marketing efforts.

UNIT – I INTRODUCTION TO DIGITAL MARKETING

9 Periods

Basics of Digital Marketing - online marketplace analysis: digital marketing environment - consumer choice and digital influence online consumer behavior-competitors -suppliers- new channel structures - rate of environment change - economic force-political force - legal force - social force- cultural force.

UNIT – II DIGITAL MARKETING STRATEGY DEVELOPMENT

9 Perio

Digital marketing strategy - The impact of digital media and technology on the marketing mix: product-price-place-promotion -people, process and physical evidence - relationship marketing using digital platforms: the challenge of customer engagement - customer lifecycle management

UNIT – III DIGITAL MARKETING IMPLEMENTATION AND PRACTICE 9 Periods

Delivering the online customer experience: planning website design and redesign projects - initiation of the website project - defining site or app requirement - designing the user experience - development and testing of content - site promotion or traffic building - campaign planning for digital media

UNIT - IV | MARKETING | COMMUNICATIONS | USING | DIGITAL | MEDIA | 9 Periods | CHANNELS |

Search engine marketing - online public relations - affiliated marketing - interactive display advertising - email marketing and mobile text messaging- social media and viral marketing - offline promotion techniques

UNIT - V EVALUATION OF DIGITAL CHANNEL PERFORMANCE

9 Periods

Create a performance management system - performance metric framework - tools and techniques for collecting metrics -customer experience and content management - online consumer behavior- online retailing - customer acquisition in B2B marketing -online inter- organizational trading

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

1 Dave Chaffey Fiona Ellis-Chadwick, Digital Marketing, sixth edition, 2016

1	Puneet singh Bhatia.	Fundamentals of Digita	l Marketing . Pearson	India Education services.2017

- 2 | Mathur, Vibha, Arora, Saloni, "Digital Marketing", PHI Learning Pvt. Ltd., 2020
- 3 Ian Dodson, The Art of Digital Marketing: The Definitive Guide to Creating Strategic, Targeted, and Measurable Online Compaigns, Wiley 2016
- 4 Dr.Shakti Kundu, Digital Marketing Trends and Prospects:Develop an effective Digital Marketing strategy with SEO, SEM, PPC, Digital Display Ads & Email Marketing techniques,BPB PUBN,2021
- 5 | Seema Gupta, Digital Marketing, Third Edition, McGraw Hill 2022
- 6. Simon Kingsnorth, Digital Marketing Strategy: An Integrated Approach to Online Marketing, Kogan page, 2022

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Explain the role and importance of digital marketing in a rapidly changing business landscape	K1
CO2	Discuss the key elements of a digital marketing strategy	K2
CO3	Demonstrate advanced practical skills in common digital marketing tools such as Social media and Blogs	K2
CO4	Demonstrate advanced practical skills in common digital marketing tools such as SEM	K2
CO5	understand online consumer behavior and influence the extent to which individuals are likely to engage with the digital marketplace	K2

a) CO a	and PC) Map	ping												
COs / POs		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO	1	1	1	2	2	-	-	-	-	-	-	-	-	2	2
CO	2	1	1	2	2	-	-	-	-	-	-	-	-	2	2
CO:	3	1	1	2	2	3	- Arr	my	-	-	-	-	-	2	2
CO	4	1	1	2	2	3	2	3	3	3	3	3	3	2	2
CO.		1	1	2	2	~ 1		3	3	3	3	3	3	2	2
22IOE		1	1	2	2	1	-1		1	1	1	1	1	2	2
1– Sligh	-							-	-	77					
b) CO a									2						
CO1					.1.6,3.2				-						
CO2					.1.6,3.2		-1-			_					
CO3			2.1.2,3	3.1.1,3	.1.6,3.2	.1,3.2	.2,3.2.	3,3.3.1	1,4.1.1	,4.1.3	4.2.1,4	.3.3,5.1	1.1,5.1.2	2,5.2.1,5	.2.2,5.3
	.1,5.3						0	-	M						
CO4														2,5.2.1,	
			5.3.2,6	5.1.1,7	.1.1,7.1	.2,7.2	.1,7.2.	2,8.1.1	1,8.2.1	,8.2.2.	,9.1.1,9	.1.2,9.2	2.1,9.2.2	2,9.2.3,9	.2.4,9.3
	.1,10.	-				QU _{II}		V-1921							
					2.2,10	3.1,10	.3.2,11	1.1,1	1.1.2,	11.2.1,	11.3.1,	11.3.2,	12.1.1,1	12.1.2,12	2.2.1,12
00.5			12.3.2		1 6 2 2	1 2 2	222	2.2.2.1		4 1 2	1011	2.2.5	1151	2.5.2.1	
CO5				-	-	-	-	-	-			-	-	2,5.2.1,	
					.1.1,8.2									10 1 1 1	. 1 2 12
						2.2,10	.3.1,10).3.2,1	1.1.1,	11.1.2,	,11.2.1,	11.3.1,	11.3.2,	12.1.1,12	2.1.2,12
	.2.1,1	2.2.2,	12.3.1	,12.3.2	<u>′</u>										

ASSESSMEN	NT PATTERN -	THEORY					
Test / Bloom's	Rememberin g (K1) %	Understandin g (K2) %	Applyin g (K3)	Analyzing (K4) %	Evaluatin g (K5) %	Creating (K6) %	Total %
Category*	20	20	%				100
CAT1	30	30	40	-	-	-	100
CAT2	30	30	40	-	-	-	100
Assignment 1	30	30	40	-	-	-	100
Assignment 2	30	30	40	-	-	-	100
Other mode of internal assessments, if any	-	-	-	-	-	-	1
ESE	30	30	40	-	-	-	100

22BOE\$17	PRINCIPLES OF FOOD TECHNOLOGY
22DOL\$17	(Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

Course	To learn about the various food constituents and its additives. To lea	rn about various
Objectives	microbes associated with food. To learn about different food	processing and
3	preservation techniques.	
UNIT – I	FOOD AND ENERGY	9 Periods
Constituent	s of food – carbohydrates, lipids, proteins, water, vitamins and mineral	s, dietary
	e and functional properties in food, contribution to organoleptic and te	
characterist		
UNIT – II	FOOD BORNE DISEASES	9 Periods
Classificati	on – food infections – bacterial and other types; food intoxications and	poisonings-
	d non-bacterial; food spoilage – factors responsible for spoilage, spoilage	
	poultry, beverage and other food products.	,
UNIT – III	FOOD ADDITIVES	9 Periods
Classification	, intentional and non-intentional additives, functional role in food	processing and
	food colourants – natural and artificial; food flavours; enzymes as food	
UNIT – IV	FOOD PRESERVATION	9 Periods
Principles inv	olved in the use of sterilization, pasteurization and blanching, thermal	leath curves of
	ns, canning; frozen storage-freezing characteristics of foods, microbial	
	factors affecting quality of foods in frozen storage; irradiation preserva	
UNIT – V	FOOD PACKAGING	9 Periods
Types of pack	aging material and containers; Interactions between packaging and foo	ds; Packing -
meat, dairy, fr	esh fruits and vegetables, beverages and confectionaries; Food package	ing closure and
	n; Nutrition labelling and legislative requirements.	-
Contact Perio		
Lecture: 45 F	11 00	al: 45 Periods

TEXT BOOK

1	T.P. Coultate, Food – The Chemistry Of Its Components, 6th Edn. Royal Society, London, 2015.
2	W.C. Frazier And D.C. Westhoff, Food Microbiology , 4th Ed., Mcgraw-Hill Book Co., New York 2013.

1	Srinivasan Damodaran and Kirk L. Parkin., "Fennema's Food Chemistry", CRC Press, 5 thedition. 2017.
2	Fellows P.J, "Food Processing Technology: Principles and Practices", Woodhead
	Publishing 4 th edition, 2016.
3	B. Sivasanker, Food Processing And Preservation, Prentice-Hall Of India Pvt. Ltd. New
	Delhi 2002.
4	T.P. Coultate – Food – The Chemistry Of Its Components, 2nd Edn. Royal Society, London,
	1992.

	RSE OUTCOMES:	Bloom's Taxonomy
_	completion of the course, the students will be able to:	Mapped
	learn different constituents present in food and microorganism involved in processing of food.	K1
CO2	learn principles and different preservations techniques of food can also be	K1
	known.	
CO3	learn techniques involved in modern food processing and impact of the	K2
	process on food quality.	
CO4	Explain various preservation and packaging techniques for food product	K2
CO5	Describe the relationship between food and microorganism that basis for	K2
	fermentation and preservation	

a) CO and PO Mapping														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
						WWW.	4		_				_	
CO1	1	-	-		7	- 0	332		2	3	-	-	1	3
CO2	1	-	-	47.65	100	n ja q	1000	< 0	-	3	-	-	1	3
CO3	1	-	-	2	200	2	N. C.		-	3	1	-	1	3
CO4	1	-	1	-6	1	-		-	-	3	1	-	1	3
CO5	1	-	2	-)/	1	7	υ£	- //	-	3	1	-	1	3
22BOE\$17	1	-	1	1	M.	2	\rightarrow	s=11°	2	3	1	-	1	3
1 – Slight, 2	2 – Mo	derate	$\frac{1}{5}$, 3 – S	ubstai	ntial	AWA	2/	0						
b) CO and	Key P	erfor	mance	Indi	cators	Mapp	oing							
CO1	1.4.2,	2.1.3		- 11	8		10							
CO2	1.4.1,	3.1.3		Al	W		B.	W/s	i i					
CO3	1.4.4,	2.1.4		1888	1150	10	10	76	ģ.		•		•	
CO4	1.4.1,	2.1.3,3	3.4.2				-)					
CO5	1.4.1,2	2.2.1		1	103	100								

		The state of the s					
ASSESSMENT	PATTERN - TH	IEORY				·	
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	50	50	-	-	-	-	100
CAT2	60	40	-	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100
ESE	50	50	-	-	-	-	100

22BOE\$18	BIOLOGY FOR ENGINEERS (Common to All Branches)

PREREQUISITES	CATEGORY	L	T	P	C
NIL	OE	3	0	0	3

TILL	Œ.	3 0 0 3									
Course	Understand and interpret commonly reported statistical measur	es published in									
Objectives	healthcare research. Analyze the different type of data using appropriate the different type of data using appropriate type	opriate statistical									
	software. Demonstrate a good understanding of descriptive statistics and graphical										
	tools. Explain fundamental concepts of estimation and hypothesis testing and be										
confident when interpreting P values and confidence intervals											
UNIT – I	, ,										
An overview	of cells - origin and evolution of cells-cell theory-classifica	tion of cells –									
prokaryotic co	ells and eukaryotic cells; Structure of prokaryotic and eukaryotic	cells and their									
organelles co	mparison of prokaryotic and eukaryotic cells; Transport across	s membranes –									
diffusion - act	rive and passive diffusion.										
UNIT – II											
Classification of microorganism-microscopic examination of microorganisms; Structural											
organization a	and multiplication of bacteria-viruses-algae and fungi; Microorg	ganism used for									
	of penicillin-alcohol and vitamin B-12.										
UNIT – III HUMAN ANATOMY AND PHYSIOLOGY 9 periods											
	nan anatomy-tissues of the human body-epithelial-connective-n										
muscular; Nei	vous system-Respiratory System-Circulatory system and Digestive	ve system.									
UNIT – IV	BIO MOLECULES AND IMMUNE SYSTEM	9 periods									
Introduction	to Biochemistry-classification-structure and properties of	carbohydrates-									
proteins- lipid	s and nucleic acids; Innate and acquired immunity; Types of imm	une responses.									
	A R										
UNIT-V	APPLIED BIOLOGY FOR ENGINEERS	9 periods									
Overview of b	piosensors - glucometer applications-medicine; Microarray analys	is to diagnose									
	icrobial production of biofuels; Applications of stem cells.										
Contact Perio	ods: 45										

TEXT BOOK

Lecture: 45 Periods

1 Darnell J, Lodish H, Baltimore D. "Molecular Cell Biology", W.H.Freeman; 8th Edition, 2016

Practical: 0 Periods Total: 45 Periods

- 2 Pelczar MJ, Chan ECS and Krein NR, "Microbiology", Tata McGraw Hill, 5thEdition, New Delhi. 2001.
- 3 Wulf Cruger and Anneliese Cruger, "A Textbook of Industrial Microbiology", Panima Publishing Corporation, 2nd Edition, 2000.

REFERENCES

- 1 David L. Nelson and Michael M Cox, "Lehninger's Principles of Biochemistry", Macmillan Worth Publisher, 4th edition, 2004.
- 2 Brain R.Eggins, "Chemical Sensors and Biosensors", John Wiley & Sons, 2002.
- 3 Anton Moser, "Bioprocess Technology, Kinetics and Reactors", Springer, Berlin (Verlag), 1st edition, 1998
- 4 Kuby J, "Immunology", WH Freeman & Co., 7th edition, 2013.

Tutorial: 0 Periods

COUR	SE OUTCOMES:	Bloom's Taxonomy
On cor	npletion of the course, the students will be able to:	Mapped
CO1	Understand the functions of cell and their structural organization	K1
CO2	Describe the mechanisms and role of cell in immune system	K1
CO3	Get familiarized biomolecules and human anatomy system	K2
CO4	Illustrate the applications of microbes in industrial process	К3
CO5	Apply the engineering concepts in biology	К3

a) CO and I			11011	141711	11171									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	-	1	-	-	-	2	2	2	-	-	1	2	2	2
CO2	1	-	-	1	1	-	-	2	3	3	2	2	1	3
CO3	1	1	-	-	-	-	-	1	1	-	-	-	1	3
CO4	-	-	-	-	1	mm	-	2	3	3	1	1	1	3
CO5	-	2	- 1	1	3	- F		-	-	-	-	-	2	2
22BOE\$18	1	1	-	14/).	2	2	2	2	3	3	2	2	2	3
1 – Slight, 2	2 – Mo	derate,	3 – Sul	ostanti	al	10000	1							
b) CO and	Key P	erform	ance I	ndica	tors M	apping	5 77							
CO1	2	2.2.2, 6.1.1, 7.1.2, 8.1.1, 11.1.1, 12.1.2												
CO2	1	1.1.1, 4.2.1, 5.2.1, 8.1.1, 9.1.1, 9.2.1, 10.1.1, 10.1.2, 11.1.1, 12.1.2												
CO3	1	1.1.1, 2.1.1, 8.1.1, 9.1.1												
CO4	4	5.2.1, 8.1.1, 9.1.1, 9.2.1, 10.1.1, 10.1.2, 11.1.1, 12.1.2												
CO5	1	1.1.1,2.2.2, 4.2.1, 5.2.1, 6.1.1,7.1.2, 8.1.1, 9.1.1,9.2.1,10.1.1, 10.1.2, 11.1.1, 12.1.2												

ASSESSMENT PATTERN – THEORY										
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %			
Category*										
CAT1	50	10	10	10	10	10	100			
CAT2	50	10	10	10	10	10	100			
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	20	20	20	10	10	100			
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	20	20	20	10	10	100			
ESE	50	10	10	10	10	10	100			

