GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) COIMBATORE-641 013

DEPARTMENT OF INDUSTRIAL BIOTECHNOLOGY

VISION AND MISSION

VISION

To achieve the highest caliber in Biotechnology research and innovation to develop intellectual leaders to meet out the societal, environmental, and industrial needs.

MISSION

To provide quality education with global competence and molding the students as technologically sound and ethically motivated technocrats through advanced skill based learning.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) COIMBATORE-641 013

DEPARTMENT OF INDUSTRIAL BIOTECHNOLOGY

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- **PSO 1 :** Demonstrate competence in Biological sciences and technology courses to pursue higher education.
- **PSO 2 :** Demonstrate an ability to acquire technical skills and work ethics to meet the industry needs and to become an entrepreneur.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.Tech. INDUSTRIAL BIOTECHNOLOGY (FULL TIME)

SI.	Course	Course		CA	End	Total	Hours/Week				
No	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	Р	С	
	•	Т	HEORY								
1	22BBS307	Transform Calculus and Partial Differential Equations (<i>Common</i> to Civil & IBT)	BS	40	60	100	3	1	0	4	
2	22BBS308	Cell Biology	BS	40	60	100	3	0	0	3	
3	22BES306	Process Calculations and Heat transfer	ES	40	60	100	3	1	0	4	
4	22BPC302	Industrial Microbiology	PC	40	60	100	3	0	0	3	
5	22BPC303	Biochemistry	PC	40	60	100	3	0	0	3	
6	22BPC304	Genetics	PC	40	60	100	3	0	0	3	
		PR	ACTICAL								
7	22BBS309	Cell biology Laboratory	BS	60	40	100	0	0	3	1.5	
8	22BPC305	Microbiology Laboratory	PC	60	40	100	0	0	3	1.5	
9	22BPC306	Biochemistry Laboratory	PC	60	40	100	0	0	3	1.5	
			TOTAL	420	480	900	18	2	9	24.5	

THIRD SEMESTER

FOURTH SEMESTER

Sl.	Course			CA	End	Total	I	Iour	s/We	ek
No	Code	Course Title	Category Marks		Sem Marks	Marks	L	Т	Р	С
				-						
1	22BES407	Fluid Mechanics	ES	40	60	100	3	0	0	3
2	22BPC407	Molecular Biology	PC	40	60	100	3	0	0	3
3	22BPC408	Biochemical Thermodynamics	PC	40	60	100	3	0	0	3
4	22BPC409	Enzyme Engineering and TechnologyPC40601003							0	3
		THEORY COURSE WI	FH PRACT	ICAL CO	MPONE	NT				
5	22BPC410	Analytical Techniques in Biotechnology	PC	50	50	100	3	0	2	4
		PI	RACTICAL							
6	22BES408	Engineering Exploration For Industrial Biotechnology	ES	100	-	100	0	0	3	1.5
7	22BES409	Chemical Engineering Laboratory	ES	60	40	100	0	0	3	1.5
8	22BPC411	Molecular Biology Laboratory	PC	60	40	100	0	0	3	1.5
			TOTAL	430	370	800	15	0	11	20.5

TRANSFORM CALCULUS AND PARTIAL DIFFERENTIAL EQUATIONS

(Common to Civil and IBT Branches)

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	BS	3	1	0	4

Course								
Objectives	To be familiar with Fourier Series. To gain the knowledge	č						
Objectives	problems. To be familiar with Laplace and Inverse La	place transforms to solve						
	ordinary differential equations. To acquire knowledge on	Fourier transforms. To be						
	familiar with Z-transform to solve difference equations.							
UNIT – I	FOURIER SERIES	9 Periods						
Dirichlet's C	onditions - General Fourier series - Odd and even functions	- Half range Sine and Cosine						
series -Root	Mean Square Value- Parseval's Identity on Fourier series-Ha	rmonic Analysis						
UNIT – II	BOUNDARY VALUE PROBLEMS	9 Periods						
	n of PDE – Method of separation of variables - Fourier series							
wave equation	on - One dimensional equation of heat conduction - Ste	eady state solution of two						
	equation of heat conduction (Infinite Stripes in cartesian co							
UNIT – III	LAPLACE TRANSFORMS	9 Periods						
Laplace tran	sform -Sufficient condition for existence -Transform of e	elementary functions -Basic						
properties -	Transforms of derivatives and integrals of functions -D	erivatives and integrals of						
transforms -7	Fransforms of unit step function and impulse functions -Transforms of unit step functions and impulse functions	nsform of periodic functions.						
	ace transform -Statement of Convolution theorem -Initial							
	linear ordinary differential equation of second order with	constant coefficients using						
	formation techniques.							
UNIT – IV	FOURIER TRANSFORMS	9 Periods						
StatementofF	ourierintegralTheorem–Fouriertransformpair–FourierSineand	CosineTransforms-						
properties - 7	Fransforms of Simple functions – Convolution Theorem – Par	rseval's Identity.						
UNIT – V	Z TRANSFORMS	9 Periods						
Z-transforms	- Elementary properties - Convergence of Z-transforms - Ini	tial and Final value theorems						
	- Inverse Z-transform using partial fraction and convolution theorem- Formation of difference							
	Solution to difference equations of second order with co							
transform.	-	C						
Contact Per	iods:							
Lecture: 45	Periods Tutorial: 15 Periods Practical: 0 Periods T	otal: 60 Periods						

TEXT BOOK:

1 Veerarajan. T. **"Transforms and partial Differential equations"**, Tata Mc GrawHill Publishing Co., New Delhi. 2015.

2 B.S.Grewal., "HigherEngineeringMathematics", KhannaPublishers, NewDelhi, 44th Edition, 2018.

REFERENCES

1	Kandasamy, ThilagavathyandGunavathy., "EngineeringMathematics" for IIIS emester, S. Chand
	&Co, Ramnagar, New Delhi.
2	N.P.Bali andManish Goyal, "Transformsand partial Differentialequations", University
	Science Press, New Delhi, 2010.
3	VeerarajanT., "EngineeringMathematics" forSemesterI&II,TataMcGrawHillEducation (India)
	Pvt Ltd., New Delhi, Third Edition 2012.
4	Erwinkreyszig, "AdvancedEngineeringMathematics",9 th Edition,JohnWiley&Sons,2006.

	COURSE OUTCOMES: On completion of the course, the students will be able to:				
CO1	Express the periodic functions arising in the study of engineering problems as sine and cosine series.	К3			
CO2	Solve the Partial Differential Equations arising in engineering problems like Wave, Heat flow and Laplace equation in steady state (Cartesian coordinates) using Fourier series.	К3			
CO3	Apply Laplace transform technique to solve the given integral equations and ordinary differential equations.	K3			
CO4	Find Fourier Transforms, infinite Fourier Sine & Cosine transforms.	K3			
CO5	Apply Z - transform technique to solve difference equations	K3			

a) CO and H	a) CO and PO Mapping													
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	3	2	-	I	-	1	-	-	-	-	-	-	1	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	1	1
CO3	3	2	-	-	-	-	-	-	-	-	-	-	1	1
CO4	3	2	-	I	-	1	-	-	-	-	-	-	I	1
CO5	3	2	-	-	-	-	-	-	-	-	-	-	-	-
22BBS307	3	2	-	-	-	-	-	-	-	-	-	-	1	1
1 - Slight, 2	– Mo	derate	, 3 - 5	Substa	ntial									
b) CO and	Key I	Perfor	manc	e Ind	icato	rs Ma	pping							
CO1	1.1	.1, 1.1	.2,1.3	.1,1.4	.1,2.1	.2, 2.1	.3, 2.2	2.1, 2.2	2.2, 2.2	.3, 2.4	.1			
CO2	CO2 1.1.1, 1.1.2, 1.2.1, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.3.2, 2.4.1													
CO3	CO3 1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1													
CO4	CO4 1.1.1, 1.1.2, 1.3.1, 1.4.1, 2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.2.3, 2.4.1													
CO5														

ASSESSMEN	NT PATTERN -	THEORY					
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
Category*							
CAT1	20	30	50	-	-	-	100
CAT2	20	30	50	-	-	-	100
Individual							
Assessment							
1 /Case	20	30	50				100
Study 1/	20	50	50	-	-	-	100
Seminar 1 /							
Project1							
Individual							
Assessment							
2 /Case	20	30	50				100
Study 2/	20	50	50	-	-	-	100
Seminar 2 /							
Project 2							
ESE	20	30	50	-	-	-	100

22BBS308

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
BIOMOLECULES	BS	3	0	0	3

Course Objectives	To Gain the insights of cell structure and cell division ,understand the composition of extracellular matrix, cell junction and cell adhesion.Get familiarized with the various transport mechanisms and understand the different types of receptor and signal transduction and familiarized with the techniques to study cell line						
UNIT – I	CELL STRUCTURE AND FUNCTION OF THE ORGANELLES	9 Periods					
membrane pro	Structure of Prokaryotic and Eukaryotic cells their organelles, principles of membrane organization, membrane proteins, types of cell division, mitosis & meiosis, cell cycle and molecules that control cell cycle. Cell cycle check points.						
UNIT – II	EXTRACELLULAR MATRIX AND CELL JUNCTIONS	9 Periods					
	matrix- composition, cytoskeletal proteins-Microfilaments, Microtubul in-myosin interaction and its role. types of cell junctions and Ms)	cell adhesion					
UNIT – III	TRANSPORT ACROSS BIOMEMBRANES	9 Periods					
pump, V type,	ve transport, permeases, Co- transport - symport, antiport, .types of ATP P type pumps, voltage and ligand gated channels, endocytosis and exoc and toxins into cells.						
UNIT – IV	RECEPTORS AND SIGNAL TRANSDUCTION	9 Periods					
endocrine mod phosphates and	Cytosolic, nuclear and membrane bound receptors with examples, autocrine, paracrine and endocrine modes of action Signal amplification, role of secondary messengers- cyclic AMP, inositol tri phosphates and cyclic GMP; G proteins - role in signal transduction, calcium ion flux and its role in cell signaling, Tyrosine kinases and Serine Threonine kinases –examples and mechanism.						
UNIT – V	TECHNIQUES USED TO STUDY CELLS AND CELL LINES	9 Periods					
Cell fractionation - Preparation of Nuclear, Mitochondrial & cytoplasmic fractions, Cell viability,flow							

cytometry, Morphology and identification of cells using microscopic studies like SEM, TEM, Confocal Microscopy. Localization of proteins in cells – Immunostaining. Contact Periods:

Lecture: 45 Periods Tutorial:0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

1	Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, Keith; Walter, P., (eds) c2002: "Molecular
	Biology of the Cell", Garland Science, New York and London.
2	Darnell J, Lodish H, Baltimore D, "Molecular Cell Biology", W.H.Freeman; 8th edition, 2016
3	Brai De Robertis& De Robertis, "Cell Biology", Fourth edition, 2007
4	Geoffrey M. Cooper and Robert E. Hausman, "The Cell: A Molecular Approach", ASM Press and
	Sinauer Associates, Fifth Edition, 2009.

REFERENCES:

1	James D. Watson, "Molecular Biology of the Cell", Third edition, 2004.					
2	2 Channarayappa, " <i>Cell biology</i> ", Universities Press, 2010					
3	Rastogi.S.C, "Cell biology", New Age International publishers, 2005					
4	https://www.ncbi.nlm.nih.gov/books					
5	http://www.di.uq.edu.au/sparqglossary#b					
6	https://cellbiology.med.unsw.edu.au					
7	https://micro.magnet.fsu.edu					

	COURSE OUTCOMES: On completion of the course, the students will be able to:					
CO1	Understand the structural organization of the cell and cell division.	K2				
CO2	Familiarize with extracellular matrix, cell junction, cell adhesion.	K1				
CO3	Understand the various transport mechanism in the cell.	K2				
CO4	Get familiarized with the type of receptors and signal transduction pathways.	K2				
CO5	Familiarize with the techniques for cytometry analysis.	K3				

a) CO and PO Mapping
a) CO and PO Madding

a) CO allu I O	map	ping												
COs / POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	-	I	-	-	-	-	-	-	-	-	1	-
CO2	1	1	-	-	-	-	-	-	-	-	-	-	1	-
CO3	1	1	-	-	-	-	-	-	-	-	-	-	1	-
CO4	1	1	-	-	-	-	-	-	-	-	-	-	1	-
CO5	1	1	-	1	1	1	-	-	-	-	-	-	1	1
22BBS308	1	1	-	1	1	1	-	-	-	-	-	-	1	1
1 - Slight, 2 -	Moder	ate, 3 ·	– Subs	tantial										
b) CO and Ke	y Perf	ormar	nce Ind	licato	rs Maj	oping								
CO1	1.2.1	,2.2.2												
CO2	1.2.1	,2.2.2												
CO3	1.2.1	,2.2.2												
CO4	1.2.1	,2.2.2												
CO5	1.2.1	,4.1.2,4	4.1.3,5	.1.2										

ASSESSMEN	T PATTERN						
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	70	30	-	-	-	-	100
CAT2	60	40					100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40	60	-	-	-	-	100
ESE	50	50	-	-	-	-	100

22BES306

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	ES	3	1	0	4

Course	The primary aim of this course is to train the students in the fundament	al principles of								
Objectives	material balance, energy balances and various heat transfer methods to	develop								
	solutions for the problems encountered in chemical engineering.	Ĩ								
		0.2								
	UNIT - I BASICS OF BIOCHEMICAL CALCULATIONS 9+3 periods									
	Dimensions and Units: Dimensions and Systems of units - fundamental and derived quantities,									
	equation. Different ways of expression of units of quantities and u									
	conversion- atomic weight, molecular weight, equivalent weight, mola									
	t percent, volume percent, molarity, molality, normality, etc., Basics of	unit operations								
	sses involved in biotechnology industries and its applications.									
UNIT – II	MATERIAL BALANCE	9+3 periods								
	heet, degrees of freedom, Overall and component balances; material b									
and with chem	ical reactions; recycle, by pass and purge streams; Unsteady state mater	ial balance.								
UNIT – III	ENERGY BALANCE	9+3 periods								
Fundamentals	of energy balance calculations-Concepts of heat capacity, latent heat	t, sensible heat,								
	ge, Standard heat of reaction, the heat of mixing and dissolution of sol	ids, Hess's law,								
and Humidity	calculations. Energy balance with and without chemical reactions.									
UNIT – IV	CONDUCTION AND CONVECTION	9+3 periods								
Introduction -	Mode of heat transfer; Conduction - Basic concepts of conduction in	n solids, liquids								
and gases - Or	ne dimensional heat conduction – Critical and optimum insulation thick	ness. Principles								
of convection	- Equations of forced and free convection. Combined heat transfer	coefficients by								
convection and	d conduction. Unsteady state heat transfer fundamentals.									
UNIT – V	RADIATION AND HEAT EXCHANGERS	9+3 periods								
Basic laws of	heat transfer by radiation - black body and gray body concepts - so	olar radiations –								
combined hear	t transfer coefficients by convection and radiation. Principle and w	orking of Heat								
Transfer equip	Transfer equipment – Double pipe, Shell & tube and Plate type heat exchanger, Overall & Individual									
heat transfer co	heat transfer co-efficient, LMTD.									
Contact Perio	ds:									
Lecture: 45 P	eriods Tutorial: 15 Periods Practical: 0 Periods Total: 60Per	riods								

TEXT BOOK

1	K.V. Narayanan, B.Lakshmikutty, "Stoichiometry and Process calculations", Prentice hall of
	India, 2nd edition. 2017.
2	YunusCengel, "Heat and Mass Transfer – Fundamentals & Applications", McGraw-Hill, 2019.

REFERENCES

1	Bhatt B.I and VoraS.M. "Stoichiometry", Tata McGraw-Hill, New Delhi, 4th Edition.2010.
2	O.A.Hougen, K.M.Watson, R.A.Ragatz, "Chemical Process Principles Part-I: Material
	andEnergy Balances", CBS Publishers, 2018
3	C. J. Geankoplis, "Transport Processes and separation process principles (includes
	unitOperations)", Pearson Education Limited, 2013.
4	Theodore L. Bergman, Adrienne S. Lavine, Frank P. Incropera, David P. DeWitt"Principle of
	Heat and Mass Transfer", John Wiley, 2019.

	RSE OUTCOMES: ompletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Develop a fundamental understanding of the engineering unit conversions and Stoichiometry for doing balance calculations.	K1
CO2	Have a comprehensive understanding and be able to perform engineering calculations based on material balances.	K2
CO3	Establish mathematical methodologies for the computation of energy balances.	K2
CO4	Understand the basic laws of heat transfer & to develop solutions for the problem involving steady state & transient heat conduction in simple geometries.	K1
CO5	Calculate heat transfer by conduction, convection & thermal radiation realistic cases.	K2

a)CO and P	O Maj	oping												
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO1	2	1	1	-	-	-	-	-	-	-	-	-	3	1
CO2	3	1	1	-	-	-	-	-	-	-	-	-	3	1
CO3	3	1	1	-	-	-	-	-	-	-	-	-	3	1
CO4	2	1	1	-	-	-	-	-	-	-	-	-	3	1
CO5	3	1	1	-	-	-	-	-	-	-	-	-	3	1
22BES306	3	1	1	-	-	-	-	-	-	-	-	-	3	1
1 - Slight, 2	– Mod	erate,	$3-Su^{2}$	bstanti	al									
b) CO and H	Key Pe	rform	ance I	ndicat	tors M	appin	g							
CO1	1.1.1	, 1.2.1	, 1.4.1,	2.1.2,	2.1.3,	3.2.1								
CO2	1.1.1	, 1.2.1	, 1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	3.2.1						
CO3	1.1.1	, 1.2.1	, 1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	3.2.1						
CO4	1.1.1	, 1.2.1	, 1.4.1,	2.1.2,	2.1.3,	3.2.1								
CO5	1.1.1	, 1.2.1	, 1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.1.3,	3.2.1						

ASSESSMEN	ASSESSMENT PATTERN – THEORY											
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
Category*												
CAT1	30	70	-	-	-	-	100					
CAT2	30	70	-	-	-	-	100					
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100					
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	50	50	-	-	-	-	100					
ESE	30	70	-	-	-	-	100					

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	3	0	0	3

Course	To Understand the classification, microscopic examination, staini	ng methods of
Objectives	microorganisms, nutritional media types, growth, control of micro or	rganisms and to
	developknowledge about the industrial fermentation process and	production of
	modern biotechnology products.	-
UNIT – I	BASIC MICROBIOLOGY	9 Period
History of	microbiology, Classification and nomenclature of microorganism	n, microscopio
examination of	of microorganisms- light and electron microscopy; Staining techni	ques – simple
differential &	special staining; Colony morphology and arrangement of bacterial cells.	
UNIT – II	GROWTH AND CONTROL OF MICROORGANISMS	9 Period
Nutritional rec	uirements of bacteria and different media used for bacterial culture; I	solation of pur
culture (Sprea	d Plate, Streak Plate, Pour Plate); Growth curve and different methods	to quantify the
bacterial grow	vth; Physical control of microorganisms (dry and moist heat sterili	zation,filtration
	emical control of microorganisms (Phenolics, alcohol, aldehydes,	
	nary ammonium salts, sterilizing gases)-evaluation of antimicrobial age	
	interactions, anti-bacterial, anti-fungal and anti-viral agents, mod	
antibiotics and		
UNIT – III	INDUSTRIAL FERMENTATION PROCESS	9 Period
Historical ove	erview of industrial fermentation process -traditional and modern	Biotechnology
	erview of industrial fermentation process -traditional and modern potential of Biotechnology products in India. Industrial Fermentation-	
Commercial p		
Commercial p	otential of Biotechnology products in India. Industrial Fermentation-	
Commercial p mode of opera	otential of Biotechnology products in India. Industrial Fermentation- tion, fermentation processes-pictorial representation.	microorganisms
Commercial p mode of opera UNIT – IV	otential of Biotechnology products in India. Industrial Fermentation- 1tion, fermentation processes-pictorial representation. PRODUCTIONOFPRIMARY & SECONDARY	microorganisms 9 Period
Commercial p mode of opera UNIT – IV Production of	otential of Biotechnology products in India. Industrial Fermentation- 1tion, fermentation processes-pictorial representation. PRODUCTION OF PRIMARY & SECONDARYMETABOLITES	microorganisms 9 Period acids (glutamic
Commercial p mode of opera UNIT – IV Production of acid & tryptop	otential of Biotechnology products in India. Industrial Fermentation- retrieves to the product of the product o	microorganisms 9 Periods acids (glutamic ites- antibiotics
Commercial p mode of opera UNIT – IV Production of acid & tryptop	otential of Biotechnology products in India. Industrial Fermentation- network tion, fermentation processes-pictorial representation. PRODUCTION OF PRIMARY & SECONDARY METABOLITES primary metabolites- Organic acids (citric acid & acetic acid); amino than) and alcohols (ethanol & butanol), Production of secondary metabolities	microorganisms 9 Period acids (glutamic ites- antibiotics lases).
Commercial p mode of opera UNIT – IV Production of acid & tryptop (penicillin & s	otential of Biotechnology products in India. Industrial Fermentation- in tion, fermentation processes-pictorial representation. PRODUCTION OF PRIMARY & SECONDARY METABOLITES primary metabolites- Organic acids (citric acid & acetic acid); amino than) and alcohols (ethanol & butanol), Production of secondary metabol treptomycin), vitamins (Vit B ₁₂ and Vit B ₂), enzymes (proteases & amyle treptomycin).	microorganisms 9 Period acids (glutamio ites- antibiotics lases).
Commercial p mode of opera UNIT – IV Production of acid & tryptop (penicillin & s UNIT – V	otential of Biotechnology products in India. Industrial Fermentation- in tion, fermentation processes-pictorial representation. PRODUCTION OF PRIMARY & SECONDARY METABOLITES primary metabolites- Organic acids (citric acid & acetic acid); amino than) and alcohols (ethanol & butanol), Production of secondary metabolitereptomycin), vitamins (Vit B ₁₂ and Vit B ₂), enzymes (proteases & amylendot acids) PRODUCTION OF MODERN BIOTECHNOLOGY	microorganisms 9 Period acids (glutamid ites- antibiotics lases). 9 Period
Commercial p mode of opera UNIT – IV Production of acid & tryptop (penicillin & s UNIT – V Production of	otential of Biotechnology products in India. Industrial Fermentation- 1 tion, fermentation processes-pictorial representation. PRODUCTION OF PRIMARY & SECONDARY METABOLITES primary metabolites- Organic acids (citric acid & acetic acid); amino bhan) and alcohols (ethanol & butanol), Production of secondary metabol treptomycin), vitamins (Vit B ₁₂ and Vit B ₂), enzymes (proteases & amyl PRODUCTION OF MODERN BIOTECHNOLOGY PRODUCTS	microorganisms 9 Period acids (glutami ites- antibiotics lases). 9 Period (insulin, human
Commercial p mode of opera UNIT – IV Production of acid & tryptop (penicillin & s UNIT – V Production of growth hormo	otential of Biotechnology products in India. Industrial Fermentation- nettion, fermentation processes-pictorial representation. PRODUCTION OF PRIMARY & SECONDARY METABOLITES primary metabolites- Organic acids (citric acid & acetic acid); amino ohan) and alcohols (ethanol &butanol), Production of secondary metabol treptomycin), vitamins (Vit B ₁₂ and Vit B ₂), enzymes (proteases & amyl PRODUCTION OF MODERN BIOTECHNOLOGY PRODUCTS recombinant proteins having therapeutic and diagnostic applications	microorganisms 9 Period acids (glutami ites- antibiotics lases). 9 Period (insulin, human
Commercial p mode of opera UNIT – IV Production of acid & tryptop (penicillin & s UNIT – V Production of growth hormo	otential of Biotechnology products in India. Industrial Fermentation- nettion, fermentation processes-pictorial representation. PRODUCTION OF PRIMARY & SECONDARY METABOLITES primary metabolites- Organic acids (citric acid & acetic acid); amino shan) and alcohols (ethanol &butanol), Production of secondary metabol treptomycin), vitamins (Vit B ₁₂ and Vit B ₂), enzymes (proteases & amylend treptomycin), vitamins (Vit B ₁₂ and Vit B ₂), enzymes (proteases & amylend treptomycin) PRODUCTION OF MODERN BIOTECHNOLOGY PRODUCTS recombinant proteins having therapeutic and diagnostic applications one), Production of recombinant vaccines (Hepatitis B vaccine, chemonoclonal antibodies.	microorganisms 9 Period acids (glutamic ites- antibiotics lases). 9 Period (insulin, human
Commercial p mode of opera UNIT – IV Production of acid & tryptop (penicillin & s UNIT – V Production of growth hormo production of	otential of Biotechnology products in India. Industrial Fermentation- 1 tion, fermentation processes-pictorial representation. PRODUCTION OF PRIMARY & SECONDARY METABOLITES primary metabolites- Organic acids (citric acid & acetic acid); amino ohan) and alcohols (ethanol &butanol), Production of secondary metabol treptomycin), vitamins (Vit B12 and Vit B2), enzymes (proteases & amyl PRODUCTION OF MODERN BIOTECHNOLOGY PRODUCTS recombinant proteins having therapeutic and diagnostic applications one), Production of recombinant vaccines (Hepatitis B vaccine, ch monoclonal antibodies.	microorganisms 9 Periods acids (glutamic ites- antibiotics lases). 9 Periods (insulin, human nolera vaccine)

	1	Prescott LM, Harley JP, Klein DA, "Microbiology", 4 th Edition, Wm. C. Brown Publishers, 2010.
I	2	Waites, M.J., Morgan, N.L., Rockey, J.S., Higton, G., "Industrial Microbiology: An Introduction",
		Blackwell, 2001.

REFERENCES:

1	Pelczar MJ, Chan ECS and Krein NR, "Microbiology", McGraw Hill Education, 5 th Edition,
	2001.
2	Lee, S.Y., Nielsen, J. and Stephanopoulos, G., "Industrial Biotechnology: Products and
	Processes", John Wiley & Sons, 2016.
3	Cruger, W., Cruger, A ., "A Textbook of Industrial Microbiology", Panima Publishing
	Corporation, 2 nd Edition, 2005.
4	Pandey, A., Negi, S., Soccol, C.R., "Current Developments in Biotechnology and
	Bioengineering: Production, isolation and purification of industrial products ". Elsevier, 2016.
5	Okafor, N., "Modern Industrial Microbiology and Biotechnology", CRC Press, 2007.

	COURSE OUTCOMES: On completion of the course, the students will be able to:						
CO1	Understand the classification, microscopic examination and staining methods of microorganisms	K1					
CO2	Differentiate the types of nutritional media, growth pattern and control of micro organisms	K2					
CO3	Develop knowledge about the industrial fermentation process.	K2					
CO4	Identify the importance of microbes and their role in production of primary and secondary metabolites.	K3					
CO5	Explore the microbial process for production of modern biotechnology products.	K3					

a)CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	2	1	2
CO1	1	2	-	-	-	-	-	-	-	-	-	-	2	1
CO2	1	2	-	I	-	-	-	-	-	-	-	-	2	1
CO3	1	2	-	I	-	-	-	-	-	-	-	-	2	1
CO4	1	2	-	I	-	-	-	-	-	-	-	-	2	1
CO5	1	2	-	I	-	-	-	-	-	-	-	-	2	1
22BPC302	1	2	-	I	-	-	-	-	-	-	-	-	2	1
1 - Slight, 2	-Mod	lerate,	3 – Su	bstanti	al									
b) CO and 2	Key Pe	rform	ance l	[ndicat	tors M	apping	5							
CO1	1.2.1,2	.2.2												
CO2	1.2.1,2	.2.2												
CO3	1.2.1,2.2.2, 2.2.3,2.2.4													
CO4	1.2.1,2.2.2, 2.2.3,2.2.4													
CO5	1.2.1,2	.2.2, 2	.2.3,2.	2.4										

ASSESSME	ASSESSMENT PATTERN – THEORY												
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
Category*													
CAT1	50	50	-	-	-	-	100						
CAT2	20	30	50	-	-	-	100						
Individual													
Assessment			-			-	100						
1 /Case	50	50		_	_								
Study 1/	50	50		_	_								
Seminar 1 /													
Project1													
Individual													
Assessment													
2 /Case		50	50				100						
Study 2/	-	50	50	-	-	-	100						
Seminar 2 /													
Project 2													
ESE	40	30	30	-	-	-	100						

22BPC303

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	P	С
Chemistry for Biotechnology	DC	2	0	•	2
Biomolecules	PC	3	U	U	3

Course Objectives	To provide an insight into catabolic and anabolic metabolism of biomolecules and the mechanisms of protein folding and transportation										
UNIT – I	CARBOHYDRATE METABOLISM	9 Periods									
	oncepts-Glycolysis, TCA cycle, pentose phosphate &glyoxalate slive Phosphorylation and Photophosphorylation. Metabolic disorders										
UNIT – II	LIPID METABOLISM	9 Periods									
	nthesis and oxidative degradation, Triacylglycerol, phospholipid holesterol biosynthesis. Metabolic disorders associated with lipids.	biosynthesis and									
UNIT – III	NUCLEIC ACID METABOLISM	9 Periods									
for pyrimidin	f nucleotides, denovo and salvage pathways for purines, denovo and sets, Regulation of purine and pyrimidine synthesis, Degradation orders associated with nucleic acids.										
UNIT – IV	AMINO ACID METABOLISM	9 Periods									
•	bolism, Biosynthesis of six essential amino acids (Met, Thr, Lys, Il o acids. Urea cycle, Metabolic disorders associated with chain and on.										
UNIT – V	PROTEIN FOLDING & TARGETING	9 Periods									
energy landsc chaperons, Pro		globule state, oteins, Protein									

TEXT BOOKS

1	APA. Nelson, D. L., & Cox, M. M., "Lehninger's —Principles of Biochemistry", 7 ^h Edition,
	Macmillan, 2017.
2	Voet, Donald, Judith G. Voet, and Charlotte W. Pratt, "Fundamentals of Biochemistry: Life at the Molecular Level", 5 th Edition, Wiley., 2016.

REFERENCES:

1	Shawn O. Farrell and Mary K. Campbell, "Biochemistry", 8th Edition, Brooks/Cole, 2013
2	Satyanarayana, U. and U. Chakerapani, "Biochemistry" 3rd Rev. Edition, Books & Allied
	(P) Ltd., 2006.
3	Victor W. Rodwell; David Bender; Kathleen M. Botham; Peter J. Kennelly; P. Anthony Weil.,
	"Harper's Illustrated Biochemistry", 31st Edition, McGraw-Hill Education, 2018.
4	Berg, J.M., Tymoczko, J.L., Stryer, L., "Biochemistry", 9th Edition, WH Freeman, 2019.

	RSE OUTCOMES:	Bloom's Taxonomy
On con	mpletion of the course, the students will be able to:	Mapped
CO1	Understand the metabolic pathways of Carbohydrates, amino acids, nucleic acids and lipids.	K1
CO2	Fathom the complex relationship between biochemical pathways within living cells	K1
CO3	Know the metabolic disorders associated with biochemical metabolisms	K2
CO4	Understand the mechanism of protein targeting and transport	K2
CO5	Grasp the protein folding mechanism	K2

a) CO and I	a) CO and PO Mapping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COS/POS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO2	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO3	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO4	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO5	1	1	-	-	-	-	-	-	-	-	-	-	3	1
22BPC303	1	1	-	-	-	-	-	-	-	-	-	-	3	1
1 - Slight, 2	-Mod	lerate, 1	$3-Su^{2}$	bstanti	al									
b) CO and I	Key Pe	rform	ance I	ndicat	ors M	appin	g							
CO1	1.4.1,	2.1.3												
CO2	1.4.1,	2.1.3												
CO3	1.4.1, 2.1.3,													
CO4	04 1.4.1, 2.1.3													
CO5	1.4.1,	2.1.3,												

ASSESSMEN	T PATTERN – T	FHEORY					
Test / Bloom's	Remembering (K1) %	Understan ding (K2)	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*		%					
CAT1	70	30	-	-	-	-	100
CAT2	40	60	-	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100
ESE	60	40	-	-	-	-	100

22BPC304

PREREQUIS	ITES	CATEGORY	L	Т	Р	С			
	NIL	PC	3	0	0	3			
Course	To give an understanding on the fundamentals	of conventional	ge	netio	cs a	nd its			
Objectives	relevance in disease and therapy. To describe various genetic laws, learn the								
	chromosome structure function and understand	d methodologies	s fo	r c	ytog	enetic			
	applications. To apply the Hardy-Weinberg Law in			on g	eneti	ics for			
	gene frequency, sex linkage, equilibrium, and heter	ozygote frequenc	сy.						
					0 D	<u> </u>			
UNIT – I	BACTERIAL GENETICS					eriods			
	in merozygotes- plasmids and episomes, Recombi	nation in bacteria	a, T	rans	torn	nation,			
	Conjugation – mapping.				<u>0 D</u>				
UNIT – II	CLASSICAL GENETICS		_			eriods			
	nciples and experiments, segregation, multiple a								
0 1	ractions, epistasis and sex chromosomes, sex deterr	nination, dosage	com	pens	satio	n, sex			
<u> </u>	digree analysis.				0.5				
	APPLIED GENETICS	1 1		1	-	eriods			
	organization, structure and variation in prokaryotes a	•							
· ·	d lampbrush, deletion, inversion, translocation, dup								
	neuploidy, euploidy, polyploidy, Ames test, ka								
▲ ·	rossing over – cytological basis of crossing over, chr	omosome mappi	ng –	two	o and	1 three			
	interference, somatic cell hybridization. POPULATION GENETICS				0.0				
		librium Dandar		. .		eriods			
	erg equilibrium, Extensions of Hardy- Weinberg equilibrium, Extensions of Hardy- Weinberg equilibrium, Population generation gen								
	ion and Sociobiology, Eugenics.	ales. Mutation al	lia n	Ingi	atioi	I SIZE,			
UNIT - V	GENETIC DISEASES				0 D	eriods			
		mochromatosis,	Cu	otio					
Inborn errors of metabolism, Sickle cell anemia, Hemochromatosis, Cystic fibrosis, Hypogonadotropic hypogonadism, Gaucher's disease, Achondroplasia, Phenylketonuria,									
Huntington's Disease, Cystic fibrosis, Hemoglobinopathies, Age-related macular degeneration,									
	Obesity, Type 2 diabetes, Psychiatric disease, Including missing heritability, Autism.								
Contact Perio			•						
Lecture: 45 P		iods Total· 45	Per	ohoi					
		1045 10441. 75	1 (1	ious					

TEXT BOOK

1	Gardner, E.J, Simmons, M.J, and Snustad, D.P., "Principles of Genetics", 8 Edition,
	JohnWiley& Sons, Singapore,2015.
2	Strickberger, M.W., "Genetics", 3rd Edition, Prentice Hall of India, New Delhi, 2015.
3	Klug, W.S. and Cummings, M.R., "Concepts of Genetics", Pearson Education, New Delhi, 2019

REFERENCES

1	Tamarin, R.H., "Principles of Genetics", Tata McGraw Hill, New Delhi, 2002.
2	De Robertis, E. D. P. and De Robertis, E. M. F., " <i>Cell and Molecular Biology</i> ", 8 th Edition, Lippincott Williams & Wilkins, New York, USA,2010.

COU	RSE OUTCOMES:	Bloom's Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
CO1	Understand the fundamentals of bacterial genetics.	K1
CO2	Understand classical mendelian genetics in inheritance of genes.	K1
CO3	Apply concepts of genetics in chromosomal mapping	K2
CO4	Know population based on concepts of population genetics.	K2
CO5	Understand various genetic disorders and their genetic basis.	K2

a) CO a	nd P	O Ma	pping												
COs/P	Os	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1		1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO2		1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO3		1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO4		1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO5		1	1	-	-	-	-	-	-	-	-	-	-	3	1
22BPC3	804	1	1	-	-	-	-	-	-	-	-	-	-	3	1
1 – Sligh	nt, 2 -	- Mod	erate, 3	3 - Suł	ostantia	al									
b) CO a	nd K	Key Pe	rform	ance I	ndicat	ors M	apping	5							
CO1	1.4	.1, 2.1.	3												
CO2	1.4	.1, 2.1.	3												
CO3	CO3 1.4.1, 2.1.3														
CO4	CO4 1.4.1, 2.1.3														
CO5	1.4	.1, 2.1.	3												

ASSESSMEN	T PATTERN – T	THEORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	50	50	-	-	-	-	100
CAT2	40	60	-	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	60	40	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100
ESE	50	50	-	-	-	-	100

SEMESTER III

PREREQU	ISITES	CATEGORY	L	Т	Р	С
NIL		BS	0	0	3	1.5
Course	Students are able to handle and operate light micro	oscope and fami	liari	ze v	vith	slide
Objectives	preparation and staining techniques. Students are able	to study the diff	eren	t cel	l div	vision
	stages.					
LIST OF F	EXPERIMENTS					
1.	Principles of microscopy, phase contrast and fluoresce	nt microscopy				
2.	Identification of given plant, animal and bacterial ce	ells and their cor	npo	nent	s by	
Ζ.	microscopy					
3.	Identification of cells in a blood smear using Leishn	nan stain.				
4.	Identification of cells in a blood smear using Giemsa	staining.				
5.	Identification of cells in a blood smear Haemotoxyl	in Eosin Staining	g.			
6.	Counting of RBCs and WBCs using Haemocytometer	r				
7.	Study of Osmosis and Tonicity of blood cells.					
8.	Study of Cell viability using Tryphan Blue Assay					
9.	Separation and identification of peripheral blood mononuclear cells from blood.					
10.	Identification of meiosis cell division in grasshoppe	r testis.				
11.	Staining of different stages of mitosis in Alliumcepa	(Onion) root tip	•			
12.	Immunostaining of cells					
Contact Per	iods:					
Lecture: 0 I	Periods Tutorial: 0 Periods Practical: 45 Per	riods Total: 45	Per	iods	5	

REFERENCES:

1 De Robertis& De Robertis, *Cell biology*, W B Saunders Co publications, 4th edition, 2007.

	COURSE OUTCOMES: On completion of the course, the students will be able to:				
CO1	K3				
CO2	Prepare the slides for microscopic examinations.	K3			
CO3	Perform different staining techniques to identify blood cells	K3			
CO4	Interpret the different stages of cell division using microscope.	K3			
CO5	Work as a team to interpret practical data.	K3			

a) CO and I	a) CO and PO Mapping													
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO1 2	PSO 1	PSO 2
C01	-	-	-	2	-	-	-	-	-	-	-	-	3	1
CO2	-	-	-	1	-	-	-	-	-	-	-	-	3	1
CO3	-	-	-	3	-	-	-	-	-	-	-	-	3	1
CO4	-	-	-	2	-	-	-	-	-	-	-	-	3	1
CO5	-	-	-	I	-	-	-	-	2	-	-	-	3	1
22BBS309	-	I	-	2	-	-	-	-	2	-	-	-	3	1
1 - Slight, 2	-Mod	erate,	3 - Su	lbstanti	al									
b) CO and	Key Pe	rform	ance 1	Indicat	tors M	apping	5							
CO1	4.1.1, 4	1.1.2,4	.2.1											
CO2	4.2.1													
CO3	4.1.1, 4.1.2, 4.2.1, 4.3.1													
CO4	4.2.1, 4.3.1													
CO5	9.2.1,9	,2.2,9.2	2.3											

22BPC305

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	РС	0	0	3	1.5

Course	To demonstrate the proper safety procedures, parts & functions of microscope, staining
Objectives	techniques for microorganism identification, culture media preparation and growth
Ū	pattern of bacteria.
LISTOF E	XPERIMENTS
1.	Laboratory safety and sterilization techniques.
2.	Microscopic Methods-Identification of Microorganisms.
3.	Staining techniques-simple and differential staining (Gram staining), lacto phenol and acid fast staining
4.	Identification of fungal morphology by lactophenol cotton blue staining
5.	Preparation of culture media-nutrient broth, nutrient agar-slant preparation
6.	Culturing of microorganisms in broth and in plates (pour plates, streak plates and spread plate techniques)
7.	Preparation of selective media using MacConkey agar.
8.	Serial Dilution method
9.	Biochemical Tests for bacterial identification
10.	Motility Test-Hanging drop technique
11.	Antibiotic sensitivity assay-Disc Diffusion method
12.	Preservation of bacterial cultures-lyophilization & glycerol stock
13.	Study of bacterial growth curve.
Contact Per	
Lecture: 0 H	Periods Tutorial: 0 Periods Practical: 45Periods Total: 45 Periods

TEXT BOOK:

1 James G. Cappuccino & Natalie, "Microbiology, A Laboratory manual", Pearson Education Publishers, 6th edition, 2004.

2 Waites, M.J., Morgan, N.L., Rockey, J.S., Higton, G., "Industrial Microbiology: An Introduction", Blackwell, 2001.

REFERENCES:

1 *Harsha S*, **"Biotechnology Procedures and Experiments Handbook"**, *Infinity Science Press*, 2007.

COU	RSE OUTCOMES:	Bloom's Taxonomy
On co	mpletion of the course, the students will be able to:	Mapped
CO1	Identify and demonstrate the proper safety procedures concerning lab safety.	K3
CO2	Identify the parts & functions of microscope.	K3
CO3	Perform different staining techniques to identify microorganisms.	K3
CO4	Identify the purpose & principle associated with different media types used	K3
	in lab.	
CO5	Demonstrate the preservation methods and growth pattern of bacteria.	K3

a) CO and I	a) CO and PO Mapping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO
05/105	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO2	1	-	-	2	1	-	-	-	-	-	-	-	2	1
CO3	1	-	-	2	1	-	-	-	-	-	-	-	2	1
CO4	1	-	-	2	-	-	-	-	-	-	-	-	2	1
CO5	1	-	-	2	-	-	-	-	-	-	-	-	2	1
22BPC305	1	-	-	2	-	-	-	-	-	-	-	-	2	1
1 - Slight, 2	-Mod	erate,	3-Su	bstanti	al									
b) CO and l	Key Pe	rform	ance I	ndicat	ors M	appin	g							
CO1	1.2.1,	4.1.1,4	4.1.2											
CO2	1.2.1,	4.1.1,4	4.1.2,4	.2.1										
CO3	1.2.1, 4.1.1, 4.1.2, 4.2.1, 4.3.1													
CO4	1.2.1,	4.1.1,4	4.1.2, 4	.2.1,4.	3.1									
CO5	1.2.1,	4.1.1,4	4.1.2, 4	.2.1,4.	3.1									

22BPC306

BIOCHEMISTY LABORATORY

SEMESTER III

PREREQUISITES	CATEGORY	L	Т	P	С
Chemistry for Biotechnology Chemistry Laboratory	РС	0	0	3	1.5

Course Objectives	Train the students on qualitative and quantitative analysis of basic biomolecules.
Experiment No.	EXPERIMENTS
1.	Units, Volume/Weight measurements, concentrations, Sensitivity, Specificity, Precision and Accuracy.
2.	Preparation of buffers and Titration curves of amino acids.
3.	Qualitative tests for carbohydrates.
4.	Quantitative tests for reducing sugars.
5.	Qualitative tests for Amino Acids.
6.	Quantitative tests for Protein.
7.	Estimation of Nucleic acids : Test for ribose and deoxyribose.
8.	Estimation of glucose by GOD-POD method.
9.	Quantitative tests for Cholesterol.
10.	Determination of isoelectric point of casein.
Contact Perio	ds:
Lecture:0 Per	iods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

REFERENCES

1	David. T. Plummer, "An Introduction to Practical Biochemistry", McGraw – Hill, 3rd edition.,
	2017
2	Benjamin F. Lasseter, " <i>Biochemistry in the Lab A Manual for Undergraduates</i> ", 1 st Edition, CRC Press, 2019.
3	Andreas Hofmann, Samuel Clokie, "Wilson And Walker's Principles And Techniques Of Biochemistry And Molecular Biology", 8 th Edition, Wiley, 2018.

COUI	RSE OUTCOMES:	Bloom's
		Taxonomy
On con	mpletion of the course, the students will be able to:	Mapped
CO1	Prepare reagents accurately and reproducibly for experiments	K3
CO2	Operate pH meter, weighing balance, colorimeter and spectrophotometer	K3
CO3	Do the experiments for isolation and extraction of any bioactive compounds	K3
CO4	Identify and quantify the bio molecules (Carbohydrate, Protein, Nucleic	K3
	acid, Lipids) in any	
CO5	Understand the practical accession behind preparation and separation of	K3
	various biomolecules	

a) CO and F	a) CO and PO Mapping													
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO1 1	PO 12	PSO 1	PSO 2
CO1	-	-	-	2	-	-	-	-	-	-	-	-	3	1
CO2	-	-	-	1	-	-	-	-	-	-	-	-	3	1
CO3	-	-	-	4	-	-	-	-	-	-	-	-	3	1
CO4	-	-	-	2	-	-	-	-	-	-	I	-	3	1
CO5	-	-	-	1	-	-	-	-	-	-	-	-	3	1
22BPC306	-	-	-	2	-	-	-	-	-	-	-	-	3	1
1 - Slight, 2	-Mod	erate,	$3-Su^{2}$	bstanti	al									
b) CO and H	Key Pe	rform	ance I	ndicat	tors M	lappin	g							
CO1	4.2.1	, 4.3.1												
CO2	4.2.1													
CO3	4.1.1, 4.1.2, 4.2.1, 4.3.1													
CO4	4.2.1	, 4.3.1												
CO5	4.1.4	,												

22BES407

FLUID MECHANICS

SEMESTER IV

PREREQUISITES	CATEGORY	L	Т	Р	С
Differential Equations and Numerical Methods	ES	3	0	0	3

Objectives	Understand dynamics and properties of fluid flow, learn strong foundation of fluid mechanics (flow measurements) and develop dynamic characteristics of fluid flow through pipes and porous medium.												
UNIT – I	INTRODUCTION	9 periods											
Properties of f	Fluids, fluid statics, concept of shear stress, Newton's law of viscosity –	Fluid behavior											
under shear,	Newtonian and non-Newtonian fluids, Types of flow - lami	nar, turbulent,											
steady,unstead	ly, non uniform and uniform flows - compressible and incompressible flu	uids, Similitude											
-relationship b	etween dimensional analysis and similitude												
UNIT – II	FLUID DYNAMICS	9 periods											
	uation, Bernoulli's equation, boundary layer condition, form drag, s												
	aminar and turbulent flow through closed conduit velocity profiles, pipes												
valves, friction	n factor for smooth and rough pipes, head losses due to friction in pipes a												
UNIT – III	FLUID FLOW MEASURMENT AND PUMPING	9 periods											
	EQUIPMENTS												
	Venturimeter, Pitot tube, Rota meter, weirs and notches, hot wire anemo												
	meter, current meter, magnetic flow meter, pressure measurement byn	nanometers, U-											
· ·	ial and inclined manometers.												
	s, selection and specifications, positive displacement pumps, reciprocating	ng pump, rotary											
<u> </u>	Tugal pumps - characteristics curve of pumps – fans and compressors												
	FLUIDIZATION AND PACKED BEDS	9 periods											
	types – fluidized beds, properties of fluidized beds, continuous fluidization	on and											
<u> </u>	acked beds – pressure drop, flooding and loading. Mixing & agitation												
UNIT – V	MECHANICAL OPERATIONS	9 periods											
	n equipments - operations and their classification, Energy and power												
	ing, open and closed circuit operations - techniques of size analysis - di	fferent methods											
<u> </u>	solids, conveyors and elevators.												
Contact Perio		45 D 1 1											
Lecture: 45 I	Periods Tutorial: 0 Periods Practical: 0 Periods Total:	45 Periods											
Lecturet le 1													

McCabe Smith and Harriott, "Unit Operations of Chemical Engineering", 7th Edition, Tata McGraw-Hill company, 2022. Geankoplis C.J, "Transport Processes and Unit Operations", 3rd Edition, Prentice Hall of India, 2003.

REFERENCES:

1	Frank M. White, "Fluid Mechanics", 8 th Edition, Tata McGraw-Hill company, 2017.
2	J. M. Coulson, J. F. Richardson and R. K. Sinnott, "Chemical Engineering. Vol I & II", 6 th
	Edition, Butterworth-Heinemann Ltd, 1999.
3	Bansal R K, "Fluid mechanics and Hydraulic machines", 10 th Edition, Lakshmi publications
	(P) Ltd, New Delhi, 2019.

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand stress – strain relationship in fluids and analyse fluid flow problems.	K1
CO2	To apply Bernoulli principle and measure pressure drop in flow systems	K3
CO3	Describe the function and performance of flow metering devices.	K5
CO4	Determine minimum fluidization velocity in fluidized bed.	K4
CO5	Present characteristics of particulate solids, Principles of size reduction and screening, crushing and grinding equipment.	K2

a) CO and	a) CO and PO Mapping													
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	1	2	1	2
CO1	-	1	1	1	1	1	-	-	-	-	-	1	3	2
CO2	1	1	-	1	-	2	1	-	1	-	1	1	3	2
CO3	-	1	1	-	1	2	-	-	-	-	-	-	2	3
CO4	1	1	1	1	-	-	-	-	1	-	-	1	3	2
CO5	1	1	1	1	-	1	1	-	-	1	1	1	3	2
22BES407	1	1	1	1	1	1	1	-	1	1	1	1	3	2
1 - Slight, 2	2 - Mc	oderate	2, 3-5	Substa	ntial									
b) CO and	Key I	Perfor	mance	e Indio	cators	Mapp	oing							
CO1	2	.2.3, 2	.2.4,2.	3.2,3.	1.6, 4.	1.4, 5.	1.1,							
CO2	1	.2.1, 2	.1.3, 4	.3.1, 6	5.2.1, 7	'.2.2,								
CO3	2	2.2.2, 2.4.1, 3.1.1, 3.2.2, 5.3.2, 6.2.1												
CO4	1	1.2.1, 2.1.3, 2.3.2, 3.2.3, 4.3.3												
CO5	2	.1.2, 2	.4.2, 3	.2.1, 4	.2.2, 7	.2.2								

ASSESSMEN	T PATTERN – T	THEORY						
Test /	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total	
Bloom's	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%	
Category*								
CAT1	20	20	20	20	20	-	100	
CAT2	20	20	20	20	20	-	100	
Individual								
Assessment								
1 /Case	20	30	20		20		100	
Study 1/	30	50	20	-	20	-	100	
Seminar 1 /								
Project1								
Individual								
Assessment								
2 /Case	30	30	20		20		100	
Study 2/	50	50	20	-	20	-	100	
Seminar 2 /								
Project 2								
ESE	40	30	20	-	10	-	100	

PREREQUISITES	CATEGORY	L	Т	Р	С
Microbiology	PC	3	0	0	3
Cell Biology					l

Course	To learn the fundamental aspects of nucleic acids, the principle and pr	ocess of DNA			
Objectives	replication, transcription and translation and to study the basics of reg				
o Sjeen (es	expression, mutation and DNA repair.	Serie			
UNIT – I	CHEMISTRY OF NUCLEIC ACIDS	9 Periods			
	as genetic material; Structure and physico chemical properties of eleme				
	structure of DNA: Chemical and structural qualities of 3',5'-Phosp				
•	ucture of DNA: Watson & Crick model, Chargaff's rule, X-ray diffrad				
	stabilizes DNA structure, Conformational variants of double helical				
	riple helix, Quadruple helix, Reversible denaturation and hyperchromic				
	DNA: DNA supercoiling, Conformation of DNA and RNA; cla				
	f eukaryotic chromosome – c0t value.				
UNIT – II	DNA REPLICATION	9 Periods			
- Overview of	differences in prokaryotic and eukaryotic DNA replication, Rules of r	replication in all			
nucleic acid;	enzymology; DNA replication: Meselson& Stahl experiment, bi-d	irectional DNA			
replication, O	kazaki fragments; Replication in prokaryotes - D-loop and rolling	circle mode of			
replication; rep	lication of linear viral DNA. Replication of telomeres in eukaryotes. In	hibitors of DNA			
replication.					
UNIT – III	TRANSCRIPTION	9 Periods			
	ase- RNA replicase (Virus), Transcription in prokaryotes and eukary				
	omoters and enhancers; transcription factors; nuclear RNA splicing	mechanisms –			
tRNA- rRNA-	mRNA; ribozymes; RNA - editing.				
UNIT – IV	TRANSLATION	9 Periods			
	genetic code; Salient features of genetic code - Wobble hypothes				
	eukaryotic; protein synthesis; post translational processing; Protein targ				
UNIT – V	MUTATION - REPAIR AND REGULATION OF GENE	9 Periods			
	EXPRESSION				
	Regulation of genes - replication- transcription & translation factors; Lac and trp operon; Mutation-				
transition- transversion- artificial & natural mutation; suppressor mutation; Repair of DNA.					
	Contact Periods:				
Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods					

TEXT BOOK

1	David Friefelder, "Molecular Biology", Narosa Publ. House.2 nd edition, 1999.
2.	Harvey Lodish, Arnold Berk, S.L Zipursky, Paul Matsudaira, David Baltimore and James Danell
	"Molecular Cell Biology", 4 th Edition, New York: W.H Freeman and company, 2016.

REFERENCES

1	Malacinski, G.M., Freifelder's "Essentials of Molecular Biology", 4 th edition, Nasora
	Publishing House, New Delhi, 2015.
2	Watson J.D., Hopkins W.H., Roberts J.W., Steitz J.A., Weiner A.M., "Molecular Biology of the
	Gene", McGraw Hill,2 nd Edition, 1986.
3	Waston, B.B, & Gann, L.L, "Watson Molecular Biology of the Gene", 7 th Edition, Pearson
	Education, 2014.
4	Weaver, R, "Molecular Biology", 3 rd Edition, McGraw Hill, 2011
5.	Benjamin L., "Genes IX", 9th Edition, Jones & Bartlett Publishers Inc. 2013.

COU	COURSE OUTCOMES:					
On co	mpletion of the course, the students will be able to:	Mapped				
CO1	Understand the basic structure and biochemistry of nucleic acids	K1				
CO2	Comprehend the principle of DNA replication	K1				
CO3	Get familiarize with the process of transcription and RNA processing.	K2				
CO4	Become aware of the process of protein synthesis.	K2				
CO5	Understand the regulatory mechanism of molecular biology.	K1				

a) CO and	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	-	-	-	-	-	-	-	-	-	-	-	3	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	2
CO3	1	2	3	-	-	-	-	-	-	-	-	-	3	2
CO4	-	3	2	-	2	-	-	-	-	-	-	-	2	3
CO5	-	1	3	-	2	-	-	-	-	-	-	2	2	3
22BPC407	3	3	3	-	2	-	-	-	-	-	-	2	3	3
b) CO and	Key Pe	rforma	nce In	dicator	s Map	ping								
CO1	1.2.1, 2	.4.3												
CO2	3.1.5													
CO3	3.1.4,3.	1.5,												
CO4	5.1.2.													
CO5	12.1.1,1	2.1.2												

ASSESSMEN	NT PATTERN – '	THEORY					
Test / Bloom's	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
Category*							
CAT1	70	30	-	-	-	-	100
CAT2	40	60	-	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	70	-	-	-	-	100
ESE	60	40	-	_	-	-	100

22BPC408

PREREQUISITES	CATEGORY	L	Т	Р	С
NIL	PC	3	0	0	3

Course	To expound theory and fundamentals behind the thermodynamics implications in the
Objectives	biological processes. The students will be able to design & solve physical and chemical
	problems encountered in chemical and biochemical industries by applying fundamental thermodynamics laws.

UNIT - I THERMODYNAMIC LAW AND PROPERTIES OF FLUIDS 9 Periods

First Law of thermodynamics; a generalized balance equation and conserved quantities; Volumetric properties of fluids exhibiting non ideal behavior; estimation of thermodynamic properties using equations of state; calculations involving actual property exchanges; Maxwell's relations and applications.

UNIT – II	SOLUTION THERMODYNAMICS	9 Periods			
Partial molar properties; Chemical potential, Fugacity and fugacity coefficient in solutions; Henrys law					
and dilute sol	utions; Activity in solutions and activity coefficient; Gibbs-Duhem ec	quation ; Excess			
properties and	residual properties of mixtures.	-			
UNIT – III	PHASE EQUILIBRIA	9 Periods			
Criteria for ph	ase equilibria; VLE calculations for binary and multi component syste	ms; liquid-liquid			
equilibria and	solid-solid equilibria.				
UNIT – IV	CHEMICAL REACTION EQUILIBRIA	9 Periods			
Equilibrium cr	iteria for homogeneous chemical reactions; evaluation of equilibrium co	onstant; effect of			
temperature ar	d pressure on equilibrium constant; calculation of equilibrium conversion	on and yields for			
single and mul	tiple reactions.				
UNIT – V	THERMODYNAMIC DESCRIPTION OF MICROBIAL	9 Periods			
\mathbf{U}	GROWTH AND PRODUCT FORMATION	9 I cilous			
Thermodynam	ics of microbial growth stoichiometry thermodynamics of maintenance,	Calculation of			
the Operationa	the Operational Stoichiometry of a growth process at Different growth rates, Including Heat using				
the Herbert -	Pirt Relation for Electron Donor, thermodynamics and stoichiometr	y of Product			
Formation					
Contact Perio	ds:				
Lecture:45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Per	riods			

TEXT BOOKS:

1	Smith J.M., Van Ness H.C., Abbott M.M., 'Introduction to Chemical Engineering
	Thermodynamics', McGraw-Hill, 8th edition, 2018.
2	Narayanan K.V, 'A Text Book of Chemical Engineering Thermodynamics', Prentice Hall of
	India, 2 nd edition, 2013.
3	Christiana D Smolke, 'The Metabolic Pathway Engineering Handbook Fundamentals', CRC
	Press Taylor & Francis, 1 st edition, 2010.

REFERENCES:

1	Hougen O.A., Watson K.M., and Ragatz R.A., ' <i>Chemical Process Principles Part II</i> ', John Wiley & Sons, 2 nd edition. 2004.
2	Stanley I. Sandler ' <i>Chemical, Biochemical, and Engineering Thermodynamics</i> ', John Wiley Sons, 5 th edition, 2017.

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Illustrate the application of thermodynamics in design & operation of process industries.	K1
CO2	Design & solve problem in realistic cases by applying thermodynamics concepts.	K1
CO3	Estimate thermodynamic properties of substances in gas and liquid states	K2
CO4	Interpret the phase equilibria concepts in multi-component systems	K2
CO5	Understand about biochemical equilibrium and able to calculate the kinetics of biological systems.	K2

a) CO and	PO Ma	pping	Ş											
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	-	2	-	-	-	-	-	-	-	-	1	1
CO2	2	1	-	2	-	-	-	-	-	-	-	-	1	1
CO3	2	2	-	2	1	2	-	-	-	-	-	-	1	1
CO4	2	2	-	2	-	-	-	-	-	-	-	-	1	1
CO5	2	2	-	2	-	2	-	-	-	-	-	-	1	1
22BPC	2	2		2	1	2							1	1
408	2	2	-	2	1	2	-	-	-	-	-	-	1	1
1 - Slight, 2	2 - Moc	lerate,	3 - Su	bstanti	al									
b) CO and	Key Pe	erforn	nance l	[ndicat	ors M	apping	5							
CO1	1.2.1,	1.3.1,1	1.4.1,2.	1.2,2.1	.3, 2.1.	3,2.2.2	,2.3.2,2	2.4.4,4	.1.1,4.1	1.4,4.3	.3			
CO2	1.2.1,	1.3.1,1	1.4.1,2.	1.2,2.1	.3, 2.1.	3,2.2.2	,2.2.3,4	4.1.1,4	.1.2,4.3	3.2				
CO3	1.2.1,	1.3.1,1	1.4.1,2.	1.2,2.1	.3, 2.1.	3,2.2.2	,2.3.2,2	2.4.4,4	.1.1,4.1	1.2,4.1	.4,4.2.	1,4.3.1	,5.3.1,6.	1.1
CO4	1.2.1,	1.3.1,1	1.4.1,2.	1.2,2.1	.3, 2.1.	3,2.2.2	,2.3.2,2	2.4.4,4	.1.1,4.1	1.2,4.1	.4,4.2.	1,4.3.1	•	
CO5	1.2.1,	1.3.1,1	1.4.1,2.	1.2,2.1	.3, 2.1.	3,2.2.2	,2.3.2,2	2.4.4,4	.1.1,4.1	1.2,4.1	.4,4.2.	1,4.3.1	,6.2.1	

ASSESSMENT	ASSESSMENT PATTERN – THEORY												
Test / Bloom's	Remembering	Understanding	Applying	Analyzin	Evaluating	Creating	Total						
Category*	(K1) %	(K2) %	(K3) %	g (K4) %	(K5) %	(K6) %	%						
Unit test - 1	20	20	-	20	40	-	100						
Unit test - 2	20	20	-	20	40	-	100						
Individual													
Assessment 1													
/Case Study 1/	50	50	-	-	-	-	100						
Seminar 1 /													
Project1													
Individual													
Assessment 2													
/Case Study 2/	30	70	-	-	-	-	100						
Seminar 2 /													
Project 2													
ESE	20	20	-	30	30	-	100						

22BPC409

SEMESTER IV

PREREQUISITES	CATEGORY	L	Т	Р	С
BIOMOLECULES BIOCHEMISTRY	РС	3	0	0	3

	<u> </u>	~ 1
	Students are able to understand the basic enzyme catalysis and kinetics	
0	about different immobilization methods. Students able to familiarize w	ith different
	enzyme assay and also about enzyme applications	
UNIT – I	INTRODUCTION TO ENZYMES	9 Periods
Enzymes-Introc	luction-active site, concept of active site, co factors, co enzymes-exar	nples, Lock and
Key Hypothesis	s, Induced fit hypothesis, Classification of enzymes, Mechanism of cat	alysis-acid base
catalysis, electr	ostatic catalysis, covalent catalysis, Enzyme catalysis, Theory of ca	talysis-collision
state theory, tra	nsition state theory, Enzyme activity and specific activity, role of entro	py in catalysis
UNIT – II	ENZYME KINETICS	9 Periods
Kinetics of en	zyme catalyzed reaction-MichaelisMenten equation, Briggs Haldan	e modification,
	Km kcat, Vmax. Linear plots-Line weaver burk plot, Eadiehofstee plot	
Bimolecular re	eaction, Inhibition-types of enzyme inhibition-competitive, uncon	npetitive, non-
	xed, allosteric inhibition. Allosteric enzymes-Monod Wyman Changeu	
UNIT – III	ENZYME IMMOBILISATION	9 Periods
Enzyme immob	vilization- Physical and Chemical methods Physical methods-Adsorpti	on, entrapment,
encapsulation.	Chemical methods-covalent bonding, cross linking. Application	of immobilized
enzymes in indu	ustries. case studies	h
UNIT – IV	ENZYME CHARACTERIZATION AND PURIFICATION	9 Periods
Extraction and	purification of enzymes from microbial, plant and animal sourc	es, methods of
		size exclusion,
hydrophobic ir	teraction, Affinity chromatography, HPLC, Molecular weight det	ermination-SDS
PAGE, Native I	PAGE	
UNIT – V	ENZYME ASSAYS AND APPLICATIONS	9 Periods
Types of Enzyr	ne assays- End point methods, kinetic methods, coupled kinetic assay	, Immuno assay
methods, artif	icial enzymes. Application of enzymes as Biosensors, Applic	ation in food
	eindustries, foodindustries, Biopharmaceutical industries, tanning indust	
Contact Period	ls:	
Lecture: 45 Pe	riods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Pe	rinds

TEXT BOOK

1	Trevor Palmer, "Enzymes", Affiliated East West Press Pvt Ltd, New Delhi, 2004.
2	Harvey W. Blanch, Douglas S. Clark, "Biochemical Engineering", Marcel Dekker Inc, 2002
3	B. Sivasankar, "Bioseparations: Principles and Technique", Prentice-Hall of India Pvt.Ltd, 2007

REFERENCES

1	James M Lee, Biochemical Engineering, Prentice Hall of India, USA, 2009.
2	James. E. David F. Bailey & amp; Ollis, Biochemical Engineering Fundamentals, McGraw Hill,
	2011.
0	

3 Rufus O. Okotore, *Essentials of Enzymology*, Xlibris Corporation, 2015

	RSE OUTCOMES: mpletion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Understand the basics of enzymes and mechanism of enzyme catalysis	K1
CO2	Familiarize with the enzyme kinetics and apply to solve problems in enzyme kinetics	K3
CO3	Familiarize with the different types of enzyme immobilisation and its applications	K1
CO4	Analyze the different methods for enzyme extraction and purification.	K4
CO5	Understand the different assay procedures for enzymes and get familiarize with the different enzyme applications	K1

a) CO and I	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	1	-	1	-	-	1	-	1	-	-	-	1	-
CO2	1	-	2	-	2	-	1	1	1	-	2	-	-	2
CO3	1	-	1	2	-	-	-	3	1	-	1	-	-	3
CO4	1	2	2	-	-	1	-	2	-	1	I	-	1	-
CO5	1	-	-	-	-	-	-	2	1	1	2	-	-	3
22BPC409	1	1	2	2	2	1	1	2	1	1	2	-	1	3
1 - Slight, 2	-Mod	erate, 3	- Subs	tantial										
b) CO and l	Key Pe	rforma	nce ind	licator	s mapp	ing								
CO1	1.2.1,	1.3.1, 2	2.3.1, 4	.1.1										
CO2	1.1.1,	3.1.1, 5	5.1.1											
CO3	1.2.1,	4.2.1, 1	1.1.2											
CO4	1.2.1,	2.2.1, 3	3.1.1, 5	.1.2										
CO5	1.3.1,	2.1.1												

ASSESSMEN	ASSESSMENT PATTERN – THEORY													
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %							
CAT1	60	30	10	-	-	-	100							
CAT2	40	30	30	-	-	-	100							
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100							
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	40	30	_	-	-	100							
ESE	40	30	30	-	-	-	100							

22BPC410 ANALYTICAL TECHNIQUES IN BIOTECHNOLOGY SET

SEMESTER IV

PREREQUISITES	CATEGORY	L	Т	P	С
Engineering Physics Chemistry for Biotechnology	РС	3	0	2	4

Course objectives	To enable the students to understand and to get familiarized with principles of analytical instruments to solve research problems and to enable them to interpret the analytical data and research findings based on the knowledge obtained from this course.										
UNIT – I	BASICS OF MEASUREMENT	9+6 Periods									
Classification of analytical methods – calibration of instrumental methods – electrical components and circuits -signal to noise ratio; Properties of electromagnetic radiations and their interaction with matter.											
UNIT – II	MOLECULAR SPECTROSCOPY	9+6 Periods									
UV and visible	light spectroscopy-Qualitative and Quantitative absorption Measureme	nt, Beer- Lambert									
law, IR spectro	scopy, Raman spectroscopy, NMR spectroscopy, X- ray crystallog and applications; Atomic Absorption spectroscopy, Mass Spectroscopy.										
UNIT – III	ELECTROPHORESIS	9+6 Periods									
proteins by SDS	e of electrophoresis, support media (Agarose and Polyacrylamide gels, -PAGE gradient gels, Isoelectric Focusing, Two Dimensional PAGE, ng agarose gel, PFGE, Capillary Electrophoresis.										
UNIT – IV	CHROMATOGRAPHY	9+6 Periods									
Basic Principles of chromatography, TLC and Column chromatography, matrix materials, HPLC, Affinity chromatography, Ion Exchange Chromatography, Gel Exclusion Chromatography and Gas chromatography.											
UNIT – V	THERMAL METHODS	9+6 Periods									
Differential Thermal Analysis techniques - instrumentation & application, DTA curve. Differential Scanning Calorimetry - Instrumentation & Application, Instrumentation, Thermogravimetry – Instrumentation & Application, TGcurve. Biosensors – Components, Types											
Contact Periods:Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 30 PeriodsTotal: 75 Periods											

LIST OF EXPERIMENTS

- Precision and Validity in an instrument.
- Validation of Lambert-Beer's law using KMnO₄.
- Determination of concentration of the Iron content present in the tablet using atomic absorption spectrometry.
- Raman spectroscopy Identification of functional groups
- Data interpretation of FTIR spectra
- Demonstration on the working of XRD
- Determination of the concentration of Na and Ca using flame photometer.
- Separation of amino acids by TLC.
- Column chromatographic analysis of chlorophyll
- Separation of compounds using High Performance Liquid chromatography
- Gel filtration Size based separation of proteins

TEXT BOOK:

1	Willard H.W., Merritt L.L., Dean J.A. & Settle F.A" <i>Instrumental Methods of Analysis</i> ", East West Publishers, 7 th Edition.2004
2	Skoog, D.A., F. James Holler and Stanky, R. Crouch" <i>Instrumental Methods of Analysis</i> ". Cengage Learning India Pvt. Ltd., 7 th edition, 2020.

REFERENCES:

1	Harrison, R.G., Todd, P., Rudge, S.R. and Petrides, B.B. " <i>Bioseparations: Science and Engineering</i> ", Oxford University Press,2015.
2	Wilson K. and Walker J." <i>Principles and Techniques of Biochemistry and Molecular Biology</i> ", Cambridge University Press,8th Edition, 2018.
3	J. Jayaraman. <i>"Laboratory Manaual in Biochemistry"</i> , 1st Edition., New Age International Publications, 2007
4	R. F. Boye, Modern experimentl Biochemistry, Pearson India, 2002

COUI On co	Bloom's Taxonomy Mapped	
CO1	To understand the basic principles of measurement and calibration in analytical methods.	K2
CO2	To impart knowledge on the working principles of spectroscopic instruments.	K1
CO3	To instill knowledge on the separation of biomolecules such as nucleic acids and proteins by electrophoresis and chromatography methods.	К3
CO4	To describe the thermal behavior of thebioproducts and components of a biosensor.	K3
CO5	To develop a protocol to identify and determine the concentration of a analyze by analytical instruments.	K6

a) CO and	I PO N	Mappi	ing											
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO2
CO 1	2	1	1	1	-	-	-	-	-	-	2	1	1	1
CO 2	2	1	1	1	-	-	-	-	-	-	-	1	1	-
CO 3	2	1	-	1	-	-	-	-	-	-	-	-	-	-
CO 4	1	-	-	-	-	-	-	-	-	-	-	-	-	-
CO 5	-	-	-	-	1	2	-	I	-	-	-	-	-	-
22BPC410	2	1	1	1	1	2	-	1	-	-	2	1	1	1
1-Slight, 2	2 – Mo	derate	, 3 - S	ubstan	tial									
b) CO and	l Key	Perfo	rman	ce Ind	licato	rs Ma	pping	5						
CO1	1.1,1	.2,1.3,	1.4,2.1	1,2.2,2	.3,2.4,	3.1, 3.2	2,4.1,4	.2,11.2	2,11.3,	12.3				
CO2	1.1,1	.2,1.3,	1.4,2.1	1,2.2, 2	2.3,2.4	, 3.2,4.	1,4.2,1	2.2,12	2.3					
CO3	1.1,1	1.1,1.3,1.4,2.1, 2.2,2.4,4.1												
CO4	1.1	1.1												
CO5	1.2													

ASSESSMENT	PATTERN – TH	IEORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applyin g (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	14	10	2	10	12	2	100
CAT2	10	12	4	10	10	4	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	-	30	5	5	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	5	5	_	-	_	100
ESE	40	30	30	-	-	-	100

ENGINEERING EXPLORATION FOR INDUSTRIAL BIOTECHNOLOGY

PREREQUIS	TES	CATEGORY	L	Т	Р	С			
NIL		ES	S 0 0 3 1						
COURSE	The objective of the course is to provide an	introduction to the e	engine	ering	field	It is			

OBJECTIVE	designed to help the student to learn about engineering and how it is useful in our everyday life.									
UNIT-1	INTRODUCTION	15 Periods								
Introduction to	Engineering and Engineering study: Difference between science an	d engineering,								

scientist and engineering and Engineering study: Difference between science and engineering, scientist and engineer needs and wants, various disciplines of engineering, some misconceptions of engineering, expectation for the 21st century engineer and Graduate Attributes.

UNIT-II	ENGINEERING DESIGN	15 Periods								
Engineering Requirement, Knowledge within Engineering disciplines, Engineering advancements,										
Problem definition, Idea generation through brain storming and researching, solution creation through										
		U								

evaluating and communicating, text/analysis, final solution and design improvement. UNIT-III ENGINEERING DISCIPLINES

15 Periods

INDUSTRIAL BIOTECHNOLOGY:

Defining the problem, Data gathering through literature, Specify requirements, Brainstorm, Evaluate, Choose solution, Design, Implementation of the design, Develop Prototype/Model.

<u>GUIDELINES</u>

- Practical based learning carrying credits.
- Multi-disciplinary/ Multi-focus group of 3-4 students.
- Groups can select to work on specific tasks, or projects related to real world problems.
- Each group has a faculty coordinator/Instructor who will guide/evaluate the overall group as well as individual students.
- The students have to display their project/model/product at the end of the semester.

• The progress of the course is evaluated based on class performance and final demonstration. **Contact Periods**:

Lecture: 0 PeriodsTutorial: 0 PeriodsPractical: 45 PeriodsTotal: 45 Periods

REFERENCES:

1	Ryan A Brown, Joshua W. Brown and Michael Berkihiser: "Engineering Fundamentals:
	Design, Principles, and Careers", Goodheart-Willcox Publisher, Second edition, 2014.
2	Saeed Moaveni, "Engineering Fundamentals: An Introduction to Engineering", Cengage

	URSE OUTCOMES Completion of the course, the students will be able to	Bloom's Taxonomy Mapped
CO1	Explain technological and engineering development, change and impacts of engineering	K2
CO2	Complete initial steps (Define a problem list criteria and constraints, Brainstorm potential solutions and document ideas) in engineering designs	K3
CO3	Communicate possible solutions through drawings and prepare project reports.	K3
CO4	Draw sketches to a Design problem.	K3
CO5	Apply the concept of engineering fundamentals in Industrial Biotechnology	K3

a) CO and	a) CO and PO Mapping													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	1	2	2	2	3	3	1	2	1	3
CO2	3	3	1	2	1	2	2	2	3	3	1	2	1	3
CO3	3	3	3	3	1	2	2	2	3	3	1	2	1	3
CO4	3	2	3	3	1	2	2	2	3	3	1	2	1	3
CO5	3	2	3	3	1	2	2	2	3	3	1	2	1	3
22BES408	3	3	3	3	1	2	2	2	3	3	1	2	1	3
b) CO and	Key Per	rforma	nce Ir	dicato	ors maj	pping								
CO1	1.2.1,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.2.1,	2.2.2,	2.2.3	, 2.2.4	, 2.4.4	, 3.1.1	, 3.1.4	, 3.1.6,	4.1.1,
	4.1.3,	4.1.4,	4.3.1,	4.3.2,	4.3.3,	4.3.4,	5.1.1,	6.2.1,	, 7.1.1	, 7.1.2	, 8.1.1	, 9.1.1	, 9.2.2,	9.2.3,
	9.3.1,	10.1.2	, 10.1.	3, 11.	3.1, 12	2.1.2, 1	12.3.1							
CO2													, 3.1.6,	
		,	,	,	,	,		6.2.1,	, 7.1.1	, 7.1.2	, 8.1.1	, 9.1.1	, 9.2.2,	9.2.3,
	9.3.1,	10.1.2	, 10.1.	3, 11.	3.1, 12	2.1.2, 1	12.3.1							
CO3	,	,	,	,	,	,	,			,	,		, 3.1.6,	,
								6.2.1,	, 7.1.1	, 7.1.2	, 8.1.1	, 9.1.1	, 9.2.2,	9.2.3,
	9.3.1,	10.1.2	, 10.1.	3, 11.	3.1, 12	2.1.2, 1	12.3.1							
CO4	1.2.1,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.2.1,	2.2.2,	, 2.2.3,	, 2.2.4	, 2.4.4	, 3.1.1	, 3.1.4	, 3.1.6,	4.1.1,
	4.1.3,	4.1.4,	4.3.1,	4.3.2,	4.3.3,	4.3.4,	5.1.1,	6.2.1,	, 7.1.1	, 7.1.2	, 8.1.1	, 9.1.1	, 9.2.2,	9.2.3,
	9.3.1,	10.1.2	, 10.1.	3, 11.	3.1, 12	2.1.2, 1	12.3.1							
CO5	1.2.1,	1.3.1,	1.4.1,	2.1.1,	2.1.2,	2.2.1,	2.2.2,	, 2.2.3	, 2.2.4	, 2.4.4	, 3.1.1	, 3.1.4	, 3.1.6,	4.1.1,
	-							6.2.1,	, 7.1.1	, 7.1.2	, 8.1.1	, 9.1.1	, 9.2.2,	9.2.3,
	9.3.1,	10.1.2	, 10.1.	3, 11.	3.1, 12	2.1.2, 1	12.3.1							

22BES409

CHEMICAL ENGINEERING LABORATORY

SEMESTER IV

PREREQUISITES	CATEGORY	L	Т	Р	С
Fluid Mechanics	ES	0	Δ	2	15
Process calculations and Heat transfer	Еð	U	U	3	1.5

Course	To learn chemical engineering principles and their practical applications in the areas of
Objectives	fluid mechanics, Heat transfer, mass transfer and particle mechanics.
LISTOF E	XPERIMENTS
1.	Flow measurement using Venturimeter, Orificemeter for liquids
2.	Studies on flow behavior and friction loss in Fluidized bed.
3.	Product size distribution analysis using Roll Crusher
4.	Product size distribution analysis using Ball Mill
5.	Studies on Simple Distillation.
6.	Calculations of filter and medium resistances in Leaf filter apparatus
7.	Adsorption Equilibria
8.	Leaching
9.	Liquid-Liquid Equilibria
10	Batch drying
11	Batch sedimentation
12	Double Pipe Heat exchanger
13	Determination of effect of temperature on reaction rate content
Contact Per	
Lecture: 0 P	Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

TEXT BOOKS

1	YunusCengel, "Heat and Mass Transfer – Fundamentals & Applications", McGraw-Hill, 5 th
	edition. 2015.
2	Geankoplis C.J, "Transport Processes and Unit Operations", Prentice Hall of India, 4 th edition.
	2003.

COU	Bloom's Taxonomy	
On co	Mapped	
CO1	Able to calculate pressure and flow rate of liquid	K3
CO2	Find out the efficiencies of filtration and distillation range.	K3
CO3	Calculate the heat exchange limitation.	K3
CO4	Separate soluble components by using liquid equilibria.	K3
CO5	Knowledge on the basic principles of chemical engineering.	K3

a) CO and PO Mapping																							
COs/POs	P 0 1	PO 2	PO 3	РО 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2									
CO1	1	-	-	2	-	-	-	-	-	-	-	-	2	1									
CO2	1	-	-	2	-	-	-	-	-	-	-	-	2	1									
CO3	1	-	-	2	-	-	-	-	-	-	-	-	2	1									
CO4	1	-	-	2	-	-	-	-	-	-	-	-	2	1									
CO5	1	-	-	2	-	-	-	-	-	-	-	-	2	1									
22BES409	1	-	-	2	-	-	-	-	-	-	-	-	2	1									
1 - Slight, 2	– Mo	derate	, 3 – S	ubstan	tial																		
b) CO and H	Key P	Perform	nance	Indica	ators N	Ларрі	ng																
CO1	1.2.	1, 4.1.	1,4.1.2																				
CO2	1.2.	1, 4.1.	1,4.1.2	,4.2.1																			
CO3	1.2.	1, 4.1.	1,4.1.2	,4.2.1,	4.3.1																		
CO4	1.2.1, 4.1.1, 4.1.2, 4.2.1, 4.3.1																						
CO5	1.2.	1, 4.1.	1,4.1.2	, 4.2.1	,4.3.1							1.2.1, 4.1.1,4.1.2, 4.2.1,4.3.1 1.2.1, 4.1.1,4.1.2, 4.2.1,4.3.1											

PREREQUISITES	CATEGORY	L	Т	P	С
Microbiology Lab	DC	0	•	2	15
Cell biology Lab	PC	U	U	3	1.5

Course ObjectivesTo provide hands on experience in performing basic and advanced molecular bid techniques and to introduce students to the theory behind in each technique and describe common applications of each methodology in biological research.								
LIST OF EXPERIMENTS								
1. DNA Extraction from plant cells.								

- 1. DIVA Extraction from plant cens.
- 2. DNA Extraction from animal cells.
- 3. DNA Extraction from Human blood.
- 4. DNA Extraction from bacterial cell.
- 5. Qualitative Analysis of Genomic DNA
- 6. Quantitative Analysis of DNA.
- 7. Isolation of total RNA from bacteria.
- 8. Qualitative analysis of RNA.
- 9. Quantitative analysis of RNA.
- 10. Plasmid Extraction from bacterial cell.
- 11. Elution of DNA from Agarose gel.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

REFERENCE BOOK

1 Sambrook J and Russell DM, "Molecular Cloning: A Laboratory Manual", 2014.

COU On co	Bloom's Taxonomy Mapped										
CO1	O1 Understand the principles underlying in the techniques of molecular biology .										
CO2	CO2 Analyze the applications of these techniques.										
CO3	CO3 Carry out lab experiments and interpret the results.										
CO4	O4 Take safety precautions on usage of hazardous chemicals in case of										
	emergency.										

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	-	-	-	-	-	-	-	-	-	-	-	3	1
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	2
CO3	1	3	2	I	2	-	-	-	-	-	-	-	3	2
CO4	-	3	3	I	3	-	-	-	-	-	-	3	2	3
22BPC41	3	3	3	_	3	_	_	_	_	_	_	3	3	3
1	5	5	5	-	5		_	_	_	_	_	5	5	5
1 - Slight, 2	2 - Mo	derate	, 3 - S	ubstan	tial									
b) CO and	Key P	erforr	nance	Indica	ators N	Mappi	ng							
CO1	1.2.1,	1.4.1,												
CO2	2.4.3,3	3.1.5												
CO3	3.1.4,3	3.1.5,4	.3.2											
CO4	5.1.2,8	8.2.1,8	.2.2											