

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University)

Coimbatore - 641 013

Curriculum For

B. Tech. Industrial Biotechnology

(Full Time)

2022

Regulations

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013

> PHONE 0422 - 2433355 e.mail: gctcoe@gct.ac.in

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) COIMBATORE-641 013

DEPARTMENT OF INDUSTRIAL BIOTECHNOLOGY

VISION AND MISSION

VISION

To achieve the highest caliber in Biotechnology research and innovation to develop intellectual leaders to meet out the societal, environmental, and industrial needs.

MISSION

To provide quality education with global competence and molding the students as technologically sound and ethically motivated technocrats through advanced skill based learning.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) COIMBATORE-641 013

DEPARTMENT OF INDUSTRIAL BIOTECHNOLOGY

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

The following Programme educational objectives are designed based on the department mission.

- **PEO 1**: Graduates will possess necessary skills and knowledge in the frontier areas of biotechnology.
- **PEO 2**: Graduates will be able to implement the engineering principles to biological systems for the development of industrial applications as well as entrepreneurship skills to start biotech industries.
- **PEO 3**: Graduates will think critically and creatively about the use of biotechnology to address local and global problems.
- **PEO 4**: Graduates will consider the social implication of their work as it affects the health, safety and environment of human population.
- **PEO 5**: Graduates will have adequate knowledge in various fields of biotechnology, enabling them to pursue higher education in relevant areas to enhance their professionalism.

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University, Chennai) COIMBATORE-641 013

DEPARTMENT OF INDUSTRIAL BIOTECHNOLOGY

PROGRAMME OUTCOMES (POs)

Students in the Industrial Biotechnology Programme should possess the following POs at the time of their graduation.

- **PO1 Engineering knowledge**: Apply the concepts of mathematics, science, engineering fundamentals to identify the solution of complex engineering problems.
- **Problem analysis**: Identify, formulate, review research literature and analyze complex engineering problems providing substantiated conclusions using basic principles of mathematics, Natural sciences and engineering sciences.
- **PO3 Design/development of solutions**: Design and develop processes to meet the emerging technological demands with suitable consideration of public health, the cultural, societal, and environmental safety.
- **PO4** Conduct investigations of complex problems: Conduct effective research including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
- **PO5 Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern Engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge and need for sustainable development.
- **PO8 Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11** Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles to apply the strategies on one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12 Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological innovation.

GOVERNMENT COLLEGE OF TECHNOLOGY (An Autonomous Institution Affiliated to Anna University, Chennai) COIMBATORE-641 013

DEPARTMENT OF INDUSTRIAL BIOTECHNOLOGY

PROGRAMME SPECIFIC OUTCOMES (PSOs)

- **PSO 1:** Demonstrate competence in Biological sciences and technology courses to pursue higher education.
- **PSO 2:** Demonstrate an ability to acquire technical skills and work ethics to meet the industry needs and to become an entrepreneur.

GOVERNMENT COLLEGE OF TECHNOLOGY, COIMBATORE – 641 013 B.Tech. INDUSTRIALBIOTECHNOLOGY (FULL TIME)

FIRST SEMESTER

Sl.	Course	Course Title	Category	CA	End Sem	Total	I	Iour	s/We	eek
No.	Code		Cutegory	Marks	Marks	Marks	L	T	P	С
	THEORY									
	22BMC1Z0	Induction Programme	MC	-	-	-	-	-	-	0
1	22BHS1Z1	தமிழர் மரபுHeritage of Tamils	HSMC	40	60	100	1	0	0	1
2	22BHS1Z2	Values and Ethics	HSMC	40	60	100	3	0	0	3
3	22BBS1Z1	Linear Algebra and Calculus	BS	40	60	100	3	1	0	4
4	22BBS1Z2	Engineering Physics	BS	40	60	100	3	0	0	3
5	22BBS103	Chemistry for Biotechnology	BS	40	60	100	3	0	0	3
6	22BES101	Basics of Electrical and Electronics Engineering	ES	40	60	100	3	0	0	3
		PR	ACTICAL							
7	22BHS1Z3	Cambridge English	HSMC	60	40	100	0	0	2	1
8	22BBS1Z4	Chemistry Laboratory	BS	60	40	100	0	0	3	1.5
9	22BES1Z2	Engineering Graphics	ES	60	40	100	1	0	4	3
			TOTAL	420	480	900	17	1	9	22.5

SECOND SEMESTER

Sl.	Course			CA	End	Total	H	lours	/We	ek
No.	Code	Course Title	Category	Marks	Sem Marks	Marks	L	Т	P	C
		A W T	HEORY	MI.						
1	22BHS2Z4	தமிழரும்தொழில்நுட்பமும் Tamils and Technology	HSMC	40	60	100	1	0	0	1
2	22BHS2Z5	Professional English	HSMC	40	60	100	2	1	0	3
3	22BBS205	Differential Equations and Numerical Methods	BS	40	60	100	3	1	0	4
4	22BES203	Programming in C	ES	40	60	100	3	0	0	3
5	22BPC201	Biomolecules	PC	40	60	100	3	0	0	3
6	22BMC2Z1	Environmental Science and Engineering	MC	40	60	100	3	0	0	0
		NCC Credit Course (Optional)					2	0	0	0
		PR	ACTICAL							
7	22BBS2Z6	Physics Laboratory	BS	60	40	100	0	0	3	1.5
8	22BES2Z4	Workshop Practice	ES	60	40	100	0	0	3	1.5
9	22BES205	Programming in C Laboratory	ES	60	40	100	0	0	3	1.5
			TOTAL	420	480	900	15	2	9	18.5

GOVERNMENTCOLLEGEOFTECHNOLOGY

$(An Autonomous Institution Affiliated to Anna University)\\ Coimbatore -641013.$

INDUSTRIAL BIOTECHNOLOGY

22BMC1Z0	INDUCTION PROGRAMME	SEMESTER I
----------	---------------------	------------

Details of the Programme:

Day0: College Admission

Day1:Orientation Programme

Day2 Onwards: Induction Programme

Activities:

Physical activity,
Playground Events,
Yoga Practices,
Literary, Proficiency modules,
Team Building,
Lecturesby Eminent people,
Familiarization to department,
Branch oriented information,
Motivational speakers,
Talent exposure,
Quiz completion,
Visit to local areas....etc.

(Common to all Branches)	22BHS1Z1	தமிழர்மரபு Heritage of Tamils (Common to all Branches)	SEMESTER I
--------------------------	----------	---	------------

PREREQUISITES	CATEGORY	L	T	P	C
NIL	HSMC	1	0	0	1

UNIT – I LANGUAGE AND LITERATURE

3 Periods

Language Families in India - Dravidian Languages – Tamil as a Classical Language – ClassicalLiterature in Tamil – Secular Nature of Sangam Literature – Distributive Justice in Sangam Literature-ManagementPrinciples in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land -

ManagementPrinciples in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

UNIT - II HERITAGE - ROCK ART PAINTINGS TO MODERN ART - 3 Periods SCULPTURE

Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple carmaking - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

UNIT – III FOLK AND MARTIAL ARTS

3 Periods

Therukoothu, Karagattam, VilluPattu, KaniyanKoothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

TIME IN CONCEPT OF TAXABLE

UNIT – IV THINAI CONCEPT OF TAMILS

3 Periods

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature- Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT - V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE

3 Periods

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

Contact Periods:

Lecture: 15Periods

Tutorial:0 Periods Pract

Practical:0Periods

Total: 15 Periods

TEXT BOOK:

1	து நும் நுகவரலாறு – மக்களும்பணபாடும் – கே.கே. பிள்ளை
	(வெளியீடு:தமிழ்நாடுபாடநூல்மற்றும்கல்வியியல்பணிகள்கழகம்).
2	கணினித்தமிழ் – முனைவர்இல.சுந்தரம். (விகடன்பிரசுரம்).
3	கீழடி – வைகைநதிக்கரையில்சங்ககாலநகரநாகரிகம்
	(தொல்லியல்துறைவெளியீடு)
4	பொருநை – ஆற்றங்கரைநாகரிகம். (தொல்லியல்துறைவெளியீடு)

- 1 Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 2 Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by:International Institute of Tamil Studies.
- 3 Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies).
- 4 The Contributions of the Tamils to Indian Culture (Dr.M. Valarmathi) (Published by:International Institute of Tamil Studies.)
- Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department of
- 5 Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 6 Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: The Author)
- 7 Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 8 Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.

22BHS1Z1	தமிழர்மரபு Heritage of Tamils (Common to all Branches)	SEMESTER I
----------	---	------------

PREREQUISITES	CATEGORY	L	T	P	С
NIL	HSMC	1	0	0	1

அலகு I	மொழிமற்றும்இலக்கியம்	3 Periods
	ாழிக் குடும்பங்கள்- திராவிட மொழிகள்- தமிழ் ஒரு செ	• - •
செவ்விலக்	கியங்கள் –சங்க இலக்கியத்தின் சமயச் சார்ட	<u>ıற்ற</u> தன்மை-
சங்கஇலக்	கியத்தில் பகிர்தல்அறம்-திருக்குறளில் மேலாண்மைச்	s கருத்துக்கள் <i>-</i>
தமிழ்க்காப்	பபியங்கள், தமிழகத்தில் சமண பௌத்தசமயங்களின்	் தாக்கம்-பக்தி
இலக்கியம்	, ஆழ்வார்கள் மற்றும் நாயன்மார்கள்-சிற்றிலக்கிட	பங்கள்-தமிழில்
நவீன இலக	க்கியத்தின் வளர்ச்சி-தமிழ் இலக்கிய வளர்ச்சியில் பார	ரதியார் மற்றும்

	மரபு –	பாறை	
அலகு II	ஓவியங்கள்முதல்நவீனஓவியங்கள்வரை–		3 Periods
	சிற்பக்கலை <i>ெ</i> ````		

நடுகல்முதல்நவீன சிற்பங்கள்வரை ஐம்பொன்சிலைகள்-பழங்குடியினர்மற்றும்அவர்கள்தயாரிக்கும்கைவினைப் பொருட்கள் பொம்மைகள் தேர்செய்யும்கலை சுடுமண்சிற்பங்கள் நாட்டுப்புறத்தெய்வங்கள் –குமரிமுனையில் திருவள்ளுவர் சிலை

மிருதங்கம் , பறை,வீணை, இசைக்கருவிகள் யாழ், நாதஸ்வரம் தமிழர்களின்சமூகபொருளாதாரவாழ்வில்கோவில்களின்பங்கு.

அலகு III நாட்டுப்புறக்கலைகள்மற்றும்வீரவிளையாட்டுகள் 3 Periods தெருக்கூத்து, கரகாட்டம்-வில்லுப்பாட்டு-கணியான்கூத்து-ஒயிலாட்டம்-தோல்பாவைக்கூத்து-சிலம்பாட்டம்–வளரி-புலியாட்டம்-தமிழர்களின் விளையாட்டுகள்.

அலகு IV | தமிழர்களின்திணைக்கோட்பாடுகள்

பாரதிதாசன் ஆகியோரின்பங்களிப்பு.

3 Periods தமிழகத்தின்தாவரங்களும், விலங்குகளும் – தொல்காப்பியம்மற்றும்சங்க இலக்கியத்தில்அகம்மற்றும்புறக்கோட்பாடுகள் – தமிழர்கள்போற்றிய அறக்கோட்பாடு –சங்ககாலத்தில்தமிழகத்தில்எழுத்தறிவும், கல்வியம் சங்ககாலநகரங்களும்துறைமுகங்களும் – சங்ககாலத்தில் ஏற்றுமதிமற்றும் இறக்குமதி – கடல்கடந்தநாடுகளில்சோழர்களின்வெற்றி.

அலகு V இந்தியதேசியஇயக்கம்மற்றும்இந்தியபண்பாட்டிற்கு 3 Periods த் தமிழர்களின்பங்களிப்பு

இந்தியவிடுதலைபோரில்தமிழர்களின்பங்கு – இந்தியாவின்பிறப்பகுதிகளில் தமிழ்ப்பண்பாட்டின் தாக்கம் – சுயமரியாதைஇயக்கம் – இந்தியமருத்துவத்தில் சித்தமருத்துவத்தின்பங்கு – கல்வெட்டுகள், கையெழுத்துப்படிகள் - தமிழ்ப் புத்தகங்களின்அச்சு வரலாறு.

Contact Periods:

Lecture: 15 Periods Tutorial:0 Periods Practical:0Periods Total: 15 Periods

TEXT BOOK:

- 1 தமிழகவரலாறு மக்களும்பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடுபாடநூல்மற்றும்கல்வியியல்பணிகள்கழகம்).
- 2 கணினித்தமிழ் முனைவர் இல.சுந்தரம் . (விகடன்பிரசுரம்).
- 3 கீழடி வைகை நதிக்கரையில் சங்ககாலநகரநாகரிகம் (தொல்லியல்துறை வெளியீடு)
- 4 பொருநை ஆற்றங்கரைநாகரிகம். (தொல்லியல்துறைவெளியீடு)

- 1 Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 2 Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by:International Institute of Tamil Studies.
- 3 Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies).
- 4 The Contributions of the Tamils to Indian Culture (Dr.M. Valarmathi) (Published by:International Institute of Tamil Studies.)
- Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by:Department of
- 5 Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 6 Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: The Author)
- Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 8 Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.

22BHS172	VALUES AND ETHICS	SEMESTER I
22D1131Z.2	(Common to all Branches)	SENIESTERT

PREREQUISITES	CATEGORY	L	T	P	C
NIL	HSMC	3	0	0	3

3. To 4. To hea 5. To
1 5 To

Morals, Values and Ethics - Integrity - Work Ethics - Service Learning - Civic Virtue - Respect for Others - Living Peacefully - Caring - Sharing - Honesty - Courage - Valuing Time - Cooperation -Commitment - Empathy - Self-Confidence - Character.

ENGINEERING AS SOCIAL EXPERIMENTATION

9 Periods

Engineering Ethics: Senses of 'Engineering Ethics' - variety of moral issued - types of inquiry - moral dilemmas - moral autonomy - Models of Professional Roles.

Engineering as Experimentation – Engineers as responsible Experimenters – Research Ethics - Codes of Ethics - Industrial Standards - A Balanced Outlook on Law - Case studies: Chernobyl disaster and Titanic disaster.

ADDICTIONANDHEALTH UNIT – III

9 Periods

Peerpressure-Alcoholism:Ethicalvalues, causes, impact, laws, prevention-illeffects of smoking-

PreventionofSuicides; SexualHealth: Prevention and impact of pre-

marital pregnancy and Sexually Transmitted Diseases.

Drug Abuse: Abuse of different types of legal and illegal drugs: Ethical values, causes, impact, laws and prevention.

UNIT – IV PROFESSIONALETHICS

Abuse of Technologies: Hacking and other cybercrimes, Addiction to mobile phone usage, Video games and Social networking websites.

UNIT – V GLOBAL ISSUES

9 Periods

Multinational corporations - Environmental ethics - computer ethics - weapons development - engineers as managers - consulting engineers - engineers as expert witnesses and advisors - Code of Conduct -Corporate Social Responsibility.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods **Practical: 0 Periods** Total: 45 Periods

TEXT BOOK:

- Mike W Martin and Roland Schinzinger, "Ethics in Engineering", 4th Edition, McGraw-Hill, New York 2017.
- Govindarajan M, Natarajan S and Senthil Kumar VS, "Engineering Ethics", Prentice Hall of India, New Delhi, 2013.

REFERENCES:

1	Dhaliwal, K.K, "Gandhian Philosophy of Ethics: A Study of Relationship between his
	Presupposition and Precepts", Writers Choice, New Delhi, India, 2016.
2	Jayshreesuresh, B.S.Raghavan, "Human values and professional ethics", S. Chand& company
	Ltd, New Delhi, 2th Edition, 2007.
3	L.A. and Pagliaro, A.M, "Handbook of Child and Adolescent Drug and Substance Abuse:
	Pharmacological, Developmental and Clinical Considerations", Wiley Publishers, U.S.A, 2012.
4	Pandey, P. K(2012), "Sexual Harassment and Law in India", Lambert Publishers,
	Germany, 2012.
5	Kiran D.R, "Professional ethics and Human values", Tata McGraw Hill, New Delhi, 2007.
6	Edmund G See Bauer and Robert L Barry, "Fundamentals of Ethics for Scientists and
	Engineers", Oxford University Press, Oxford, 2001.
7	David Ermann and Michele S Shauf, "Computers, Ethics and Society", Oxford University Press,
	2003.
8	Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India,
	New Delhi, 2004.

	RSE OUTCOMES:	Bloom's Taxonomy Mapped
Upon	completion of the course, the students will be able to:	
CO1	Follow sound morals and ethical values scrupulously to prove as good	K3
	citizens.	
CO2	Assess the relevance of ethics and morals in engineering and to learn case studies.	K3
CO3	Describe the concept of addiction and how it will affect the physical and mental health.	K2
CO4	Identify ethical concerns while using advanced technologies.	K2
CO5	Judge the code of conduct, Environmental ethics and computer ethics.	K3

COURSE ARTICULATION MATRIX

a) CO	a) CO and PO Mapping														
COs/	POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO2
		1	2	3	4	5	6	7	8	9	10	11	12	1	
CO	1	-	-	-	-	-	3	3	3	3	3	3	-	-	1
CO	2	1	-	-	-	-	3	1	3	3	-	-	-	-	1
CO	3	-	-	-	-	-	3	1	3	3	2	3	-	-	1
CO	4	1	-	-	-	-	3	3	3	3	1	3	1	-	1
CO	5	1	-	-	-	-	3	3	3	3	-	1	3	-	1
22BHS	1Z2	-	-	-	-	-	3	3	3	3	2	2	1	-	1
1 – Slig	1 – Slight, 2 – Moderate, 3 – Substantial														
b) CO	and K	Key Per	rforma	nce In	dicato	rs Maj	pping								
CO1	6.1.1	,6.2.1,	7.1.1,7	.1.2,7.	2.1,7.2	2.2,8.1	.1,8.2.	1,8.2.2	,9.1.1,	9.1.2,	9.2.1,9	.2.2,9.	2.3,9.2	2.4,9.3.1	L,10.1.1
	,10.1	.2, 10.	1.3,10.	2.1,10	.2.2,10).3.1,1	0.3.2,	11.1.1,	11.1.2	,11.2.	1,11.3.	1			
CO2	6.1.1	,6.2.1,	7.1.1,8	.1.1,8.	2.1,8.2	2.2,9.1	.1,9.1.	2,9.2.1	.,9.2.2,	,9.2.3,	9.2.4,9	.3.1			
CO3	6.1.1	,6.2.1,	7.1.1,8	.1.1,8.	2.1,8.2	2.2,9.1	.1,9.1.	2,9.2.1	,9.2.2,	,9.2.3,	9.2.4,9	.3.1,10	0.2.1,1	0.3.1,	10.3.2,
	11.1.	1,11.1.	.2, 11.2	2.1,11.	3.1										
CO4	6.1.1	,6.2.1,	7.1.1,7	.1.2,7.	2.1,7.2	2.2,8.1	.1,8.2.	1,8.2.2	,9.1.1,	9.12,9	9.2.1,9.	2.2,9.2	2.3,9.2	.4,9.3.1	,10.3.1,
	10.3.	2, 11.1	.1, 11.	1.2,11	.2.1,11	1.3.1,1	1.3.2,1	2.1.1							
CO5	6.1.1	,6.2.1,	7.1.1,7	.1.2,7.	2.1,7.2	2.2,8.1	.1,8.2.	1,8.2.2	,9.1.1,	9.1.2,	9.2.1,9	.2.2,9.	2.3,9.2	2.4,9.3.1	l,11.1.1
	,12.1	.2,12.2	2.1,12.2	2.2,12.	3.1,12	.3.2									

ASSESSMENT F	ASSESSMENT PATTERN – THEORY											
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %					
CAT1	30	30	20	20	-	-	100					
CAT2	30	30	20	20	-	-	100					
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	30	30	20	20	-	-	100					
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	30	30	20	20	-	-	100					
ESE	30	30	20	20	-	-	100					

22BBS1Z1

LINEAR ALGEBRA AND CALCULUS

(Common to all Branches)

SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	С
NIL	BS	3	1	0	4

Course	1. To acquire knowledge of system of equation	is, eigenvalues,								
Objectives	eigenvectors, diagonalization of matrices and reduction of qu	adratic forms to								
	canonical forms.									
	2.To obtain the knowledge of analyze the functions using Limit	s and derivative								
	recognize the appropriate tools of differential calculus to solve applied									
	3.To obtain the knowledge of definite and improper integration and recognize the									
	appropriate tools of Integral Calculus to solve applied problems									
	4.To develop the skills in solving the functions of several variables by par	tial								
	derivatives.									
	5. To acquire knowledge of multiple integration and related applied	l problems in								
	various geometry	T								
UNIT – I	LINEAR ALGEBRA	9+3 Periods								
	System of Linear Equations - Eigen values and eigenvectors - Diagonalizat	ion of matrices by								
	sformation - Cayley-Hamilton Theorem - Quadratic to canonical forms.	T								
UNIT – II	DIFFERENTIAL CALCULUS	9+3 Periods								
	cinuity of function - Rolle's theorem - Mean value theorems - Taylor's									
	ication of Differential Calculus: Radius of curvature, Centre of curvature, C	Circle of curvature								
and Evolutes of										
UNIT – III	INTEGRAL CALCULUS	9+3 Periods								
	definite integral by trigonometric substitution - Convergence and Diverg									
	a & Gamma functions and their properties - Applications of definite int	egrals to evaluate								
	nd volume of revolution (Cartesian coordinates only).	0.20 1								
UNIT – IV	PARTIAL DERIVATIVES AND ITS APPLICATIONS	9+3 Periods								
	ves - total derivative - Taylor's series – Jacobians - Maxima, minima ar	id saddle points -								
	range multipliers.	0.2 D								
UNIT – V	MULTI VARIABLE INTEGRAL CALCULUS	9+3 Periods								
	1 - Area as double integral - change of order of integration in double									
Cylindrical pola	ame as Triple Integral. Change of variables: Cartesian to polar, Spherical	poiar coordinates,								
Contact Period										
Comact I Clive	AD.									

TEXT BOOK

Lecture: 45 Periods

1 VeerarajanT., "Engineering Mathematics I", Tata McGraw-Hill Education(India)Pvt. Ltd, New Delhi, 2015.

Tutorial: 15 Periods Practical: 0 Periods Total: 60 Periods

2 David C.Lay, "Linear Algebra and Its Application", Pearson Publishers, 6th Edition, 2021.

	EFERENCES
1	B.S.Grewal, "Higher Engineering Mathematics", Khanna Publishers, 44th Edition, 2017.
2	Howard Anton, "Elementry Linear Algebra" , 11 th Edition,Wiley Publication, 2013.
3	Narayanan.S and Manicavachagom Pillai. T.K "Calculas Vol I and Vol II", S.chand& Co, Sixth
	Edition, 2014.
4	H.K. Dass, "Advance Engineering Mathematics", S. Chand and company, Eleventh Edition, 2015.
5	Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", NarosaPublications, Eighth
	Edition, 2012.

	RSE OUTCOMES: completion of the course, the students will be able to:	Bloom's Taxonomy Mapped
CO1	Solve the linear system of equations, diagonalize matrix by orthogonal transformation and reduce quadratic form to canonical form.	K5
CO2	Compare and contrast the ideas of continuity and differentiability and use them to solve engineering problems.	K5
CO3	Acquire fluency in integration of one variable and apply them to find surface area and volumes.	K5
CO4	Apply the techniques of partial derivatives in functions of several variables.	K5
CO5	Use multiple integration for finding area, surface and volume of different geometry.	K5

COURSE ARTICULATION MATRIX

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	1	1	-	-	ı	ı	-	-	-	1	-	1
CO2	3	3	1	1	-	1	mi	575	-	-	-	1	-	1
CO3	3	3	1	100	200	1	77	01807/s²	- 6	-	-	1	-	1
CO4	3	3	1	1 (ン 原) -	-	-	1	-	1
CO5	3	3	1	1	72	3	1000		-	-	-	1	-	1
22BBS1Z1	3	3	1	1 9	-	-	-		7 -	-	-	1	-	1
1 – Slight, 2 – Moderate, 3 – Substantial														

b) CO a	nd Key Performance Indicators Mapping
CO1	1.1.1, 1.1.2, 2.1.1, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.3.1,
	4.1.1, 4.1.2, 12.2.1
CO2	1.1.1, 1.1.2, 2.1.1, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.3.1,
	4.1.1, 4.1.2, 12.2.1
CO3	1.1.1, 1.1.2, 2.1.1, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.3.1,
	4.1.1, 4.1.2, 12.2.1
CO4	1.1.1, 1.1.2, 2.1.1, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.3.1,
	4.1.1, 4.1.2, 12.2.1
CO5	1.1.1, 1.1.2, 2.1.1, 2.1.3, 2.2.1, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.2.1, 3.3.1,
	4.1.1, 4.1.2, 12.2.1

ASSESSMENT P	ATTERN – THE	CORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	20	40	30	10	-	-	100
CAT2	20	40	30	10	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	20	40	30	10	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	20	40	30	10	-	-	100
ESE	20	40	30	10	-	-	100

22BBS1Z2	ENGINEERING PHYSICS	SEMESTER I
	(Common to all Branches)	SENIESTERT

PREREQUISITES	CATEGORY	L	T	P	C
NIL	BS	3	0	0	3

UNIT – I	CRYSTAL PHYSICS	9 Periods
	5. To understand the properties, production and applications of ultrasoni	
	4. To solve quantum mechanical problems with the understanding Principles	g of Quantum
	3.To solve problems in bending of beams	
Objectives	2. To understand the principle, characteristics, working and application optical fiber	ns of laser and
Course	1. To understand the basics about crystal systems and defects	

Introduction - Crystalline and amorphous materials - Lattice - Unit Cell - Crystal system - Bravais lattices - Miller indices - Reciprocal lattice - d spacing in cubic lattice - Calculation of number of atoms per unit cell - Atomic radius - Coordination number - Packing factor for SC, BCC, FCC and HCP structures - Crystal defects - Point, line and surface defects.

LASER PHYSICS AND FIBER OPTICS

Introduction- Principle of laser action - characteristics of laser - Spontaneous emission and Stimulated emission – Einstein's coefficients - population inversion – methods of achieving population inversion -Optical Resonator -Types of Lasers - Principle, construction and working of CO₂ Laser applications of laser.

Introduction – Basic Principles involved in fiber optics- Total internal reflection–Propagation of light through optical fiber -Derivation for Numerical Aperture and acceptance angle - fractional index change.

UNIT – III PROPERTIES OF MATTER

Elasticity- Hooke's law- stress-strain diagram - Factors affecting elasticity - Moment (Q) -Couple (Q) - Torque (Q) - Beam - Bending moment - Depression of a cantilever - Twisting Couple- Young's modulus by uniform bending - I shaped girders.

UNIT – IV QUANTUM PHYSICS AND APPLICATIONS

9 Periods

Limitations of classical Physics - Introduction to Quantum theory - Dual nature of matter and radiation- de-Broglie wavelength in terms of voltage, energy and temperature -Heisenberg's Uncertainty principle - verification - physical significance of a wave function- Schrödinger's Time independent and Time dependent wave equations -- Particle in a one dimensional potential well -Scanning Electron Microscope (SEM)-Transmission Electron Microscope (TEM).

UNIT – V ULTRASONICS

Introduction - properties of ultrasonic waves - production of ultrasonic waves - Magnetostriction effect- Magnetostriction generator- Piezoelectric effect- Piezoelectric generator- Acoustic grating -Determination of wavelength and velocity of ultrasonic waves- cavitation - applications- ultrasonic drilling- ultrasonic welding- ultrasonic soldering and ultrasonic cleaning- Non- destructive Testing-Pulse echo system.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK:

- 1 K. Rajagopal, "Engineering Physics", PHI Learning Private Limited, 2015.
- 2 P. K. Palanisamy, "Engineering Physics-I", Scitech publications Private Limited, 2015.
- 3 M. Arumugam, "Engineering Physics", Anuradha Publishers, 2010.

1	Arthur Beiser, "Concepts of Modern Physics", Tata McGraw-Hill, 2010.
2	D. Halliday, R. Resnick and J. Walker," Fundamentals of Physics ", 6 th Edition, John Wiley and Sons,
	2001.
3	William T. Silfvast, "Laser Fundamentals", 2 nd Edition, Cambridge University Press, New York 2004.
4	M. N. Avadhanulu and P.G. Kshirsagar, "A Textbook of Engineering Physics", S. Chand and
	Company Ltd, 2010.
5	R. K. Gaur and S. L. Gupta, "Engineering Physics", Dhanpat Rai Publishers, 2009.

COU	RSEOUTCOMES:	Bloom's Taxonomy					
Upon	Upon completion of the course, the students will be able to:						
CO1	Interpret the crystal structure and analyse the type of defect	K4					
CO2	7	K4					
	optical fiber						
	Analyse and solve problems in laser and optical fiber						
CO3		K3					
	Apply the knowledge in construction of buildings						
CO4	Explain the importance of quantum mechanics	K3					
	Solve problems in basic quantum physics						
	Apply the wave equations in real time problems						
CO5	Explain the properties and production of ultrasonic waves	К3					
	Apply ultrasonic waves for industrial problems						

COU	RSE AR		LATIO				A proof		1				l		
	and P								1						
COs	s/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C	O1	2	2	-	- 3	1177	Table 1	1	Trent's	3	-	-	-	1	-
С	O2	3	1	-	-	150		1 0 00		3	-	-	-	1	-
C	O3	3	2	-	-	-	0		_	-	-	-	-	1	-
C	O4	2	2	-	-	-	-	-	-	-	-	-	-	1	-
C	O5	2	1	-	-	-	-	-	-	-	-	-	-	1	-
22BE	BS1Z2	3	2	-	-	-	-	-	-	-	-	-	-	1	-
1 - Sl	ight, 2 –	Mode	rate, 3	– Subs	tantial										
b) CC	and K	ey Per	rforma	nce In	dicato	rs Ma	pping								
CO1	1.1.1,	1.2.1, 1	1.3.1, 2	.1.1, 2	.1.3, 2.	2.3, 2.	3.1, 2.4	4.1							
CO2	1.1.1,	1.2.1, 1	1.3.1, 1	.4.1, 2	.1.1, 2.	1.3, 2.	3.1, 2.4	4.1							
CO3	1.1.1,	1.2.1, 1	1.3.1, 1	.4.1, 2	.1.1, 2.	1.3, 2.	2.1, 2.2	2.3, 2.2	.4, 2.3	.1, 2.4.	1				
CO4	1.1.1,	1.2.1, 1	1.3.1, 2	.1.1, 2	.1.3, 2.	2.3, 2.	3.1, 2.4	1.1							
CO5	1.1.1,	1.2.1, 1	1.3.1, 2	.1.1, 2	.1.3, 2.	3.1, 2.	4.1								

ASSESSMENT PA	ASSESSMENT PATTERN – THEORY												
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %						
CAT1	30	30	15	15	10	-	100						
CAT2	30	30	15	15	10	-	100						
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	40	40	20	-	-	-	100						
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40	40	20	-	-	-	100						
ESE	30	30	15	15	10	-	100						

SEMESTERI
SI

PREREQUISITES	CATEGORY	L	T	P	C
NIL	BS	3	0	0	3

Course	1. To acquaint the student with the principles of organic chemistry of nucleophilic and
Objectives	electrophilic reactions.
	2. To introduce about the concepts of stereochemistry and its configuration, synthesis and
	important reactions of five- and six-member hetero cyclic compounds.
	3 To inculcate sound understanding of preparations, properties of bio-molecules like
	carbohydrate, amino acids.
	4. To acquire basic knowledge about the nuclear reactions, transmutations and few tracer
	techniques.
	5. To impart the knowledge about the nanoparticles, its preparations, properties, types and
	applications in various field.

UNIT – I BASIC PRINCIPLES OF ORGANIC CHEMISTRY

9Periods

Bonding in organic molecules – inductive effect, electrometric effect and mesomeric effect – Intermediates of organic reactions: carbocation, free radicals and carbene – Nucleophilic substitution – SN_1 and SN_2 , Electrophilic substitution – Elimination reaction– E_1 and E_2 .

UNIT – II STEREOCHEMISTRYANDHETEROCYCLIC COMPOUNDS

9Period:

Stereoisomerism – classification – enantiomers and diastereosiomers – chirality,optical activity –Optical isomerism (D&L, R&S configuration) – Geometrical (E&Z configuration). Hetero cyclic compounds – pyrrole, pyridine, quinoline and indole – aromaticity, synthesis and reactions of the compounds.

UNIT – III INTRODUCTION TO BIO-MOLECULES

9Periods

Basic principles – Bio-molecules, structure and properties of important bio-molecules: Carbohydrates–classification, structure of mono saccharides (Glucose &Fructose), Disaccharides: Sucrose, Maltose - Polysaccharides: Starch, Cellulose, occurrence and functions – Preparation, properties and uses of amino acids and proteins.

UNIT – IV NUCLEAR CHEMISTRY

9Periods

Nuclear fission (Nuclear reactor) and fusion (solar energy) – Nuclear reactions: Q value, cross sections, types of reactions, nuclear transmutations, radioactive techniques – tracer technique, neutron activation analysis – Radiolysis of water – G Value and applications of radioactivity.

UNIT – V NANOMATERIALS

9 Periods

Nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanorod and nanotube. Preparation of nanomaterials: chemical vapour deposition, electrochemical deposition. Applications of nanomaterials in medicine, agriculture and electronics.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOKS:

- 1 Cox M. M. and Nelson D. L, Lehninger"Principles of Bio chemistry", W H Freernan and Co., New York, 2021.
- 2 Jain. P.C. and Monica Jain, "Engineering Chemistry", Dhanpat Rai Publications. Pvt. Ltd. New Delhi, 16th Edition, 2017

- 1 Robert Neilson Boyd, Saibalkanti Robert, Thornton Morrison "Organic Chemistry" kindle Edition 2014.
- 2 Murray, R.K, Kennelly P.J, Rodwell V.W, et al. "Harper's Illustrated Biochemistry", 29th Edition, McGraw-Hill, 2011
- 3 Charles P.Poole, Jr., Frank J.Owens" "Introduction to NanoTechnology", Wiley-India Edition, 2006.
- 4 Said SalaheldeenElnashaie, FiroozehDanafar, Hassan Hashemipour Rafsanjani "Nanotechnology for Chemical Engineers" 1st Edition 2015, Kindle Edition.

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Make the students conversant with the basic concepts in nucleophilic	K2
	substitution, electrophilic substitution, and elimination reaction.	
CO2	Assign the different types of stereoisomerism, configurations preparations	K3
	and properties of heterocyclic compounds.	
CO3	Apply the mechanism of organic reactions in synthesis of biomolecules.	K3
CO4	Recognize and apply the concepts of nuclear chemistry with different tracer	K3
	techniques.	
CO5	Implement the basic concepts of nanoscience and nanotechnology in	K2
	designing the synthesis of nanomaterials for bio technological field.	

COURSE ARTICULATION MATRIX

a) CO and F	O Ma	pping												
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	-	1	-	-	-	-	-	-	-	-	-	-	-
CO2	1	-	1	-	-	- 2000	2004	-	-	-	-	-	1	-
CO3	2	1	1	- 70	-		27	0.000	n -	-	-	-	1	-
CO4	1	1	1	1	V-18	2	٢) -	-	-	-	-	-
CO5	1	1	1	1	1		500		60 <u>-</u>	-	-	1	1	-
22BBS103	2	1	1	1 9	1	1	-	-1	7 -	-	-	1	1	-
1 – Slight, 2 -	- Mode	erate, 3	– Subs	tantial	100	The same	- 1	1						
b) CO and I	Key Pe	rform	ance Ir	dicato	rs Ma	pping		1						
CO1 1.2.1	, 1.4.1,	3.1.3		11	//	A SI	2	- 11						
CO2 1.2.1	, 3.1.3			1		8 7		, I						
CO3 1.2.1	, 1.3.1,	1.4.1,	2.3.1,	3.1.3, 3	3.1.5	80	-	9						
CO4 1.2.1	, 2.1.3,	2.3.1,	3.1.3,	3.2.3, 4	1.1.2, 4	.1.3, 6.	2.1, 8.2	2.2	3					
CO5 1.2.1	, 2.4.2,	3.1.3.	4.2.1.	4.3.1. 5	5.1.2. 1	2.2.3		6/1	85					

ASSESSMENT	ASSESSMENT PATTERN – THEORY									
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total			
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%			
CAT1	20	40	20	20	-	-	100			
CAT2	20	40	20	20	-	-	100			
Individual	20	40	20	20	-	-	100			
Assessment 1/										
Case Study 1/										
Seminar 1 /										
Project1										
Individual	20	40	20	20	-	-	100			
Assessment 2/										
Case Study 2/										
Seminar 2 /										
Project 2										
ESE	20	40	20	20	-	-	100			

22BES101

BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

(Common toCIVIL, MECH, PRODN, CSE, IT & IBT Branches)

SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	3	0	0	3

Course	1. To study the basic concepts of electric circuits, electronic devices and community	unication				
Objectives	engineering.					
	2. To know the fundamentals of DC and AC machines.					
	3. To familiar with the basics of analog and digital electronics.					
	4. To understand the basics of house wiring.					
	5. To introduce the components of electrical installations and energy conservation.					
UNIT – I	ELECTRICAL CIRCUITS	9 Periods				

Electrical circuit elements (R,L and C) - Voltage and Current sources - Ohm's Law - Kirchoff laws - Time domain analysis of First order RL and RC circuits - Representation of sinusoidal waveforms - Average, RMS and Peak values - Phasor representation - Real, Reactive, Apparent power and power factor.

UNIT – II ELECTRICAL MACHINES AND MEASUREMENTS

9 Periods

Construction, Principle of Operation, basic equations and Types, Characteristics and Applications of DC generators, DC motors, Single phase Transformer, Single phase and Three phase Induction motor. Operating principles of Moving coil, Moving iron Instruments (Ammeter and Voltmeters).

UNIT – III ANALOG AND DIGITAL ELECTRONICS

9 Periods

Analog Electronics: Semiconductor devices – P-N junction diode, Zener diode, BJT, Operational amplifier – principle of operation, Characteristics and applications. Digital Electronics: Introduction to numbers systems, basic Boolean laws, reduction of Boolean expressions and implementation with logic gates.

UNIT – IV FUNDAMENTAL OF COMMUNICATION AND TRANSDUCERS

9 Periods

Types of Signals: Analog and Digital Signals – Modulation and Demodulation: Principles of Amplitude and Frequency Modulations – Resistive, Inductive, capacitive Transducers- Introduction.

UNIT - V ELECTRICAL INSTALLATIONS AND ENERGY CONSERVATION

9 Periods

Single phase and three phase system – phase, neutral and earth, basic house wiring -tools and components, different types of wiring - basic safety measures at home and industry – Energy efficient lamps - Energy billing. Introduction to UPS and SMPS.

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 PeriodsPractical: 0 Periods Total: 45 Periods

TEXT BOOKS:

- 1 R.Muthusubramaniam,R.Salivaganan, Muralidharan K.A., "Basic Electrical and Electronics Engineering" Tata McGraw Hill, Second Edition 2010
- Mittle V.N and Aravind Mittal, "Basic Electrical Engineering", Tata McGraw Hill, Second Edition, New Delhi, 2005

1	D.P.Kothari, I.J. Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010
2	Nagsarkar T.K and Sukhija M.S, "Basic Electrical Engineering", Oxford Press, 2005
3	E.Hughes, "Electrical and Elecronics Technology", Pearson, 2010
4	MohmoodNahvi and Joseph A.Edminister, "Electric Circuits", Shaum Outline series, McGraw Hill, Sixth edition,
	2014
5	Premkumar N and Gnanavadivel J, "Basic Electrical and Electronics Engineering", Anuradha Publishers, 4th
	Edition, 2008
6	Allan S Morris, "Measurement and Instrumentation Principles" Elsevier, First Indian Edition, 2008.
7	S.L. Uppal, "Electrical Wiring Estimating and Costing", Khanna publishers, New Delhi, 2006.

COURSE	OUTCOMES:	Bloom's				
		Taxonomy Mapped				
Upon com	Upon completion of the course, the students will be able to:					
CO1	Analyze the DC and AC circuits	K4				
CO2	Describe the operation and characteristics of electrical machines	K4				
CO3	Classify and compare various semiconductor devices and digital electronics	K3				
CO4	Infer the concept of communication engineering and Transducers.	K2				
CO5	Assemble and implement electrical wiring and electrical installations	K6				

a) CO and	PO M	Iappin	\mathbf{g}			1			1					
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	3	2	1		TAM/2	K-1 /	\ -	-	-	-	2	-
CO2	2	2	3	2	1 /	- 4	2	1	/4	-	-	-	3	-
CO3	3	2	3	2	1	- 8	(1)	1	+	1	-	-	2	-
CO4	2	3	3	2	- 0	- 10	3	9	1	-	-	1	2	-
CO5	2	2	3	2	-856	V - W	· -	-0	7.480B	-	-	-	3	-
22BES101	3	3	3	2	1/=	0	1	105		1	-	1	3	-

1 – Slight,	2 – Moderate, 3 – Substantial						
b) CO and	b) CO and Key Performance Indicators Mapping						
	T						
CO1	1.1.1, 1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.2, 3.1.3, 3.1.4,						
	3.1.5, 3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1, 3.3.2, 3.4.1, 3.4.2, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.3.3, 5.2.1, 5.2.2.						
CO2	1.1.1, 1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.3.1, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5,						
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1, 3.3.2, 3.4.1, 3.4.2, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.3.1, 5.2.1, 5.2.2, 7.2.1, 7.2.2,						
	8.1.1.						
CO3	1.1.1, 1.2.1, 1.3.1, 1.4.1, 2.1.1, 2.1.2, 2.1.3, 2.3.1, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.2, 3.1.3, 3.1.4,						
	3.1.5, 3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1, 3.3.2, 3.4.1, 3.4.2, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 5.2.1, 5.2.2, 10.3.1.						
CO4	1.1.1, 1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.3.1, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.2, 3.1.3, 3.1.4,						
	3.1.5, 3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1, 3.3.2, 3.4.1, 3.4.2, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 7.1.1, 7.1.2, 7.2.1, 12.3.1,						
	12.3.2.						
CO5	1.1.1, 1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.3.1, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.2, 3.1.3, 3.1.4, 3.1.5,						
	316321322323331332341342411412413414433						

ASSESSMENT F	PATTERN – THE	CORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	30	30	40	-	-	-	100
CAT2	35	35	20	10	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	25	25	50		-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	25	25	40	10	-	-	100
ESE	35	35	20	10	-	-	100

22BBS1Z4	CHEMISTRY LABORATORY (Common to all Branches)	SEMESTERI

PREREQUISITES	CATEGORY	L	T	P	C
NIL	BS	0	0	3	1.5

COURSE OBJECTIVES:

To inculcate the practical applications of Chemistry to students and make them apply in the fields of engineering and technology.

LIST	OF EXPERIMENTS
1.	Estimation of hardness by EDTA method.
2	Conductometric titration of mixture of strong acid and weak acid using strong base.
3.	Estimation of chloride by Argentometric method.
4.	Potentiometric titration of ferrous iron by dichromate.
5.	Determination of Saponification value of an oil.
6.	Estimation of Iron by Spectrophotometry.
7.	Estimation of Dissolved Oxygen.
8.	Estimation of HCl by pH titration.
9.	Estimation of Copper in brass sample.
10.	Estimation of Manganese in Pyrolusite ore.
11.	Anodiziation of aluminium.
12.	Determination of corrosion rate and inhibitor efficiency of mild steel in acid media by weight loss
	method.
Conta	act Periods:
Lectu	re: 0 Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

REFERENCE BOOKS:

1	A.O. Thomas, "Practical Chemistry", Scientific Book Centre, Cannanore, 2006.
2	Vogel's "Text book of Quantitative Analysis", Jeffery G H, Basset J. Menthom J, Denney R.C.,6th Edition,
	EBS, 2009.

COUI Upon	Bloom's Taxonomy Mapped	
CO1	Analyze the quality of water samples with respect to their hardness and DO.	K3
CO2	Determine the amount of metal ions through potentiometric and spectroscopic techniques.	К3
CO3	Infer the strength of acid, mixtures of acids by pH meter and conductivity cell.	К3
CO4	Estimate the chloride, manganese and copper from various samples.	K3
CO5	Interpret the corrosion rate determination and anodizing method.	K2

COURSE ARTICULATION MATRIX

CO5

a) CO and	PO Ma	pping												
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	1	1	-	-	-	-	-	-	-	-	-	1	-
CO2	2	1	-	-	-	-	-	-	-	-	-	-	1	-
CO3	2	1	-	1	-	-	-	-	-	-	-	-	1	-
CO4	2	1	-	-	-	-	-	-	-	-	-	-	1	-
CO5	2	1	1	1	-	-	1	-	-	-	-	-	-	-
22BBS1Z4	2	1	1	1	-	-	1	-	-	-	-	-	1	•
1 – Slight, 2	- Mode	erate, 3	- Subst	antial										
b) CO and	Key Pe	rform	ance In	dicato	rs Ma	pping								
CO1	CO1 1.1.1, 1.2.1, 2.3.1, 3.1.5													
CO2	1.1.	1.1.1, 1.2.1, 1.3.1, 2.1.2												
CO3	1.1.	1.1.1, 1.2.1, 2.1.3, 4.1.3												
CO4	1.2.1, 1.3.1, 2.3.1													

1.1.1, 1.2.1, 1.3.1, 2.3.1, 3.1.5, 4.2.1, 7.1.1

22BES1Z2

ENGINEERING GRAPHICS

(Common toall Branches)

SEMESTER I

PREREQUISITES	CATEGORY	L	T	P	С
NIL	ES	1	0	4	3

Course	1. To understand the geometrical constructions.	
Objectives	2. To study the various types of projections.	
	3. To identify different section of solids.	
	4. To perform the development of surfaces and view of solids.	
	5. To familiarize with CAD packages.	
UNIT – I	GEOMETRICAL CONSTRUCTIONS AND PLANE CURVES	3+12 Periods

Principles of Engineering Graphics and their significance - Basic geometrical constructions. Conics – Construction of ellipse, parabola and hyperbola by eccentricity method – Drawing of tangents and normal to the above curves.

UNIT – II ORTHOGRAPHIC PROJECTIONS

3+12 Periods

Introduction to Orthographic Projection - Conversion of pictorial views to orthographic views. Projection of points - Projection of straight lines with traces - Projection of planes (polygonal and circular surfaces) inclined to both the principal planes.

UNIT – III PROJECTION AND SECTION OF SOLIDS

3+12 Periods

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids, when the axis is inclined to both the principal planes by rotating object method. Sectioning of prisms, pyramids, cylinder and cone in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other – obtaining true shape of section.

UNIT – IV DEVELOPMENT OF SURFACES AND ISOMETRIC 3+12 Periods PROJECTIONS

Development of lateral surfaces of simple and sectioned solids – prisms, pyramids, cylinder and cone. Principles of isometric projection – isometric scale – isometric projections of simple solids and truncated solids - prisms, pyramids, cylinder, cone- combination of two solid objects in simple vertical positions.

UNIT – V COMPUTER AIDED DRAFTING

(3+12 Periods)

Introduction to computer aided drafting package to make 2D Drawings. Object Construction: Page layout – Layers and line types – Creating, editing and selecting the geometric objects. Mechanics: Viewing, annotating, hatching and dimensioning the drawing – Creating blocks and attributes. Drafting: Create 2D drawing. A number of chosen problems will be solved to illustrate the concepts clearly.

(Demonstration purpose only, not to be included in examination).

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 75 Periods

TEXT BOOKS:

- 1 K. Venugopal, "Engineering Graphics", New Age International (P) Limited, 2016.
- 2 K.V.Natarajan, "A text book of Engineering Graphics", Dhanalakashmi Publishers, Chennai, 2016.

1	K.L.Narayana and P.Kannaiah, "Text book on Engineering Drawing", 2 nd Edition, SciTech
	Publications (India) Pvt. Ltd, Chennai, 2009.
2	N.S.Parthasarathy and Vela Murali, "Engineering Graphics", Oxford University Press, New
	Delhi, 2015.
3	K.R.Gopalakrishna, "Engineering Drawing" (Vol. I&II combined), Subhas Publications,
	Bangalore, 2014.
4	Basant Agarwal and C.M.Agarwal, "Engineering Drawing", Tata McGraw Hill Publishers,
	New Delhi, 2013.
5	Kevin Lang and Alan J.Kalameja, "AutoCAD 2012 Tutor for Engineering Graphics",
	Cengage Learning Publishers, 1st Edition, 2011.

COU	COURSE OUTCOMES:						
Upon	completion of the course, the students will be able to:	Mapped					
CO1	Acquire on representing solids as per international standards.	K3					
CO2	Impart knowledge on different types of projections.	K3					
CO3	Generate and interrupt the true shape of section.	K3					
CO4	Develop the various surfaces according to the standards.	K3					
CO5	Know the concept of computers in drafting engineering diagrams.	K6					

CO5 Know the concept of computers in drafting engineering diagrams. K6															
COURSE ARTICULATION MATRIX															
a) CO an	d PO I	Map	ping		1	1									
COa/ D	O _a	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
COs/ P	Os	1	2	3	4	5 /	~ 6	7	8	9	10	11	12	1	2
CO1		3	1	1	1	1	2	1	3	31	3	1	3	2	2
CO2	,	3	1	1	1	71	2	100	3	1	3	1	3	1	2
CO3		3	1	1	1	Les	2	-0	3	1	3	1	3	1	1
CO4	ı	3	1	1	1	1	2	-	3	1	3	1	3	2	2
CO5		3	1	1	1	1	2	-	3	1	3	1	3	2	3
22BES1Z2 3 1 1 1 1 2 - 3 1		1	3	1	3	2	2								
1 – Slight,	2-M	odera	ate, 3 -	– Subs	tantial										
b) CO and															
CO1	1													3.1.1, 8.2.1	
		•	.4, 10	.1.1, 1	0.1.2,	10.2.1	, 10.2.2	2, 10.3	.1, 10	.3.2, 1	1.3.1,	12.1.1	, 12.2	.1, 12.2.2,	12.3.1,
	12.3.														
CO2		,	,	,	,	,	,	,	,	,	,	,	,	8.1.1, 8.2.1	, ,
														12.3.1, 12.	
CO3														3.1.1, 8.2.1	
		•	.4, 10	.1.1, 1	0.1.2,	10.2.1	, 10.2.2	2, 10.3	.1, 10	.3.2, 1	1.3.1,	12.1.1	, 12.2	.1, 12.2.2,	12.3.1,
GO.4	12.3.		1 1 6		4 1 0	1.0.0	1001	2 2	1 1 0	2.1.4	22.5	111		211.02	1 0 2 2
CO4		•			,		,				,	,		3.1.1, 8.2.1	
			.4, 10	.1.1, 1	U.I.2,	10.2.1	, 10.2.2	2, 10.3	.1, 10	.3.2, 1	1.5.1,	12.1.1	, 12.2	.1, 12.2.2,	12.5.1,
CO5	12.3.		1 1 3	2 1 1 .	11 2	13 2	12 2 1	122	1 / 2	2.1 /	33 5	11 6	21 9	3.1.1, 8.2.1	1 822
COS														12.3.1, 8.2.1 12.3.1, 12.	
	9.4.1	, ヲ.∠.	4, 10.	1.1, 10	<i>J</i> .∠.1, 1	U.Z.Z,	10.5.1,	10.3.2	, 11.3.	1, 14.1	.1, 12.	4.1, 1	۷.۷.۷,	14.3.1, 14.	J.L

22BHS2Z4

தமிழரும் தொழில்நுட்பமும் TAMILS AND TECHNOLOGY(Common to all Branches)

SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	С
NIL	HSMC	1	0	0	1

UNIT – I WEAVING AND CERAMIC TECHNOLOGY

3 Periods

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW)– Graffiti on Potteries.

UNIT – II DESIGN AND CONSTRUCTION TECHNOLOGY

3 Periods

Designing and Structural construction House & Designs in household materials during Sangam Age-Building materials and Hero stones of Sangam age — Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT – III | MANUFACTURING TECHNOLOGY

3 Periods

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold-Coins as source of history - Minting of Coins - Beads making-industries Stone beads -Glass beads - Terracotta beads -Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT – IV AGRICULTURE AND IRRIGATION TECHNOLOGY

3 Periods

Dam, Tank, ponds, Sluice, Significance of KumizhiThoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT - V SCIENTIFIC TAMIL & TAMIL COMPUTING

3 Periods

Development of Scientific Tamil - Tamil computing — Digitalization of Tamil Books — Development of Tamil Software — Tamil Virtual Academy — Tamil Digital Library — Online Tamil Dictionaries — Sorkuvai Project.

Contact Periods:

Lecture: 15Periods Tutorial:0 Periods

Practical:0Periods Total: 15Periods

TEXT BOOK:

- 1 தமிழகவரலாறு மக்களும்பண்பாடும் கே.கே. பிள்ளை (வெளியீடு:தமிழ்நாடுபாடநூல்மற்றும்கல்வியியல்பணிகள்கழகம்).
- 2 கணினித்தமிழ் முனைவர்இல.சுந்தரம் . (விகடன்பிரசுரம்).
- 3 கீழடி வைகைநதிக்கரையில்சங்ககாலநகரநாகரிகம் (தொல்லியல்துறைவெளியீடு)
- 4 பொருநை ஆற்றங்கரைநாகரிகம். (தொல்லியல்துறைவெளியீடு)

- 1 Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 2 Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by:International Institute of Tamil Studies.
- 3 Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies).
- 4 The Contributions of the Tamils to Indian Culture (Dr.M. Valarmathi) (Published by:International Institute of Tamil Studies.)
- Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department
- 5 of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: The Author)
- 7 Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 8 Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.

22BHS2Z4

தமிழரும் தொழில் நுட்பமும்

TAMILS AND TECHNOLOGY (Common to all Branches)

SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	HSMC	1	0	0	1

அலகு I நெசவுமற்றும்பானைத்தொழில்நுட்பம்

3 Periods

சங்ககாலத்தில்நெசவுத்தொழில் – பானைத்தொழில்நுட்பம் - கருப்புசிவப்பு பாண்டங்கள்– பாண்டங்களில்கீறல்குறியீடுகள்.

அலகு II | வடிவமைப்புமற்றும்கட்டிடத்தொழில்நுட்பம்

3 Periods

சங்ககாலத்தில்வடிவமைப்புமற்றும்கட்டுமானங்கள்&சங்ககாலத்தில்வீட்டுப் பொருட்களில்வடிவமைப்பு-

சங்ககாலத்தில்கட்டுமானபொருட்களும்நடுகல்லும்–

சிலப்பதிகாரத்தில்மேடைஅமைப்புபற்றியவிவரங்கள்

மாமல்லபுரச்சிற்பங்களும்,கோவில்களும்-

சோழர்காலத்துப்பெருங்கோயில்கள்மற்றும்பிறவழிபாட்டுத்தலங்கள் நாயக்கர்காலக்கோயில்கள்-மாதிரிகட்டமைப்புகள்பற்றிஅறிதல்

மதுரைமீனாட்சிஅம்மன்ஆலயம்மற்றும்திருமலைநாயக்கர்மஹால்–

செட்டிநாட்டுவீடுகள் – பிரிட்டிஷ்காலத்தில்சென்னையில்இந்தோ-சாரோசெனிக்கட்டிடக்கலை.

அலகு III | உற்பத்தித்தொழில்நுட்பம்

3 Periods

கப்பல்கட்டும்கலை – உலோகவியல் – இரும்புத்தொழிற்சாலை – இரும்பை உருக்குதல், எஃகு – வரலாற்றுச்சான்றுகளாகசெம்புமற்றும்தங்கநாணயங்கள் நாணயங்கள்அச்சடித்தல் – மணிஉருவாக்கும்தொழிற்சாலைகள் கல்மணிகள்,கண்ணாடிமணிகள் – சடுமண்மணிகள் – சங்குமணிகள் எலும்புத்துண்டுகள் –தொல்லியல்சான்றுகள்

சிலப்பதிகாரத்தில்மணிகளின்வகைக்கள்.

அலகு IV வெளாண்மை மற்றும்நீர்ப்பாசனத்தொழில்நுட்பம்

3 Periods

அணை, ஏரி, குளங்கள் , மதகு – சோழர்காலக்குமுழித்தூம்பின்முக்கியத்துவம் – கால்நடைபராமரிப்பு – கால்நடைகளுக்காகவடிவமைக்கப்பட்டகிணறுகள் – வேளாண்மைமற்றும்வேளாண்மைச்சார்ந்தசெயல்பாடுகள் – கடல்சார்அறிவு – மீன்வளம் – முத்துமற்றும்முத்துக்குளித்தல் – பெருங்கடல்குறித்தபண்டைய அறிவு –அறிவுசார் சமூகம்.

அலகு V அறிவியல்தமிழ்மற்றும் கணினித்தமிழ்

3 Periods

அறிவியல்தமிழின்வளர்ச்சி-

கணினித்தமிழ்வளர்ச்சி-

தமிழ்நூல்களைமின்பதிப்புசெய்தல் – தமிழ்மென்பொருட்கள்உருவாக்கம் தமிழ்இணையக்கல்விக்கழகம்– தமிழ்மின்நூலகம்

இணையத்தில்தமிழ்அகராதிகள் – சொற்குவைத்திட்டம்.

Contact Periods:

Lecture: 15Periods Tutorial:0 Periods Practical:0Periods Total: 15Periods

TEXT BOOK:

- தமிழகவரலாறு மக்களும்பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடுபாடநூல்மற்றும்கல்வியியல்பணிகள்கழகம்).
- 2 கணினித்தமிழ் முனைவர் இல.சுந்தரம் . (விகடன்பிரசுரம்).
- 3 கீழடி வைகை நதிக்கரையில் சங்ககாலநகரநாகரிகம் (தொல்லியல்துறை வெளியீடு)
- 4 பொருநை ஆற்றங்கரைநாகரிகம். (தொல்லியல்துறைவெளியீடு)

- 1 Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 2 Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by:International Institute of Tamil Studies.
- 3 Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu)(Published by: International Institute of Tamil Studies).
- 4 The Contributions of the Tamils to Indian Culture (Dr.M. Valarmathi) (Published by:International Institute of Tamil Studies.)
- Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by:Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 6 Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay)(Published by: The Author)
- 7 Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 8 Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) –Reference Book.

22BHS2Z5

Felicitation

PROFESSIONAL ENGLISH

(Common to all Branches)

SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	HSMC	2	1	0	3

Course	1. To engage learners in meaningful language activities to improve their I	
Objectives	2. To enhance learners' awareness of general rules of writing for specific	
	3. To help learners understand the purpose, audience, contexts of differen	t types of
	writing	_
	4. To develop analytical thinking skills for problem solving in communication	
	5. To demonstrate an understanding of job applications and interviews for	r internship and
	placements	
UNIT – I	FUNDAMENTALS OF COMMUNICATION	9 Periods
_	istening to Personal Introduction and Filling a form	
	Self Introduction;Introducing someone in a formal context	
•	ading Biographies/ Autobiographies and E-mails relevant to technical cont	exts.
	riting Biographies/ Autobiographies; Drafting Professional E-mails.	
	Present Tense (Simple Present, Present Progressive, Present Perfect,	Present Perfect
	; Parts of Speech	
	- Word Formation with Prefixes; Antonyms; Portmanteau Words	T
UNIT – II	SUMMATION AND PROBLEM SOLVING	9 Periods
Listening - I	Listening to Short-Stories / Personal Experiences/Watching Movies.	
	arrating Personal Experiences / Events and Short Stories	
	eading Travelogues and Books.	
	port on an event (Field Trip, Industrial Visit, Educational Tours etc.), Review	ew on Books
and Movies.		
Grammar –	Past Tense (Simple Past, Past Progressive, Past Perfect, Past Perfec	t Continuous);
Impersonal l		
Vocabulary -	- Word Formation with suffixes; Synonyms; Phrasal Verbs.	
UNIT-III	DESCRIPTION OF A PROCESS / PRODUCT	9 Periods
Listening - I	Listening to Digital Marketing Advertisements for Product /Process Descrip	otions
	Describing/Interpreting a Picture; Giving instructions to use the product.	
	eading Advertisements, Gadget Reviews; User Manuals.	
	Writing Definitions; Product /Process Description; Transcoding; Co	ontent Writing
Grammar -F	uture Tense(Simple Future, future continuous, Future Perfect, Future Perfe	ct Continuous);
If Clauses		
	- Homonyms; Homophones, One Word Substitutes.	
UNIT- IV	EXPRESSION	9 Periods
Listening –	Listening to/Watching Formal Job interviews or Celebrity Interviews	L
	Participating in a Face to Face or Virtual Interview (Job/Celebrity Interview), virtual
interviews		
Reading – C	company profiles, Statement of Purpose, (SOP), Excerpts of interview with	professionals
from Newsp	aper, Magazine and other Resources	-
	b / Internship Application – Cover letter & Resume	
Grammar –	Question types: 'Wh' / Yes or No/ and Tags; Subject- Verb Agreement.	
Vocabulary -	- Idiomatic Expressions	
UNIT – V	PUBLIC SPEAKING	9 Periods
Listening –	Listening to Ceremonious Speeches on You Tube and Jotting down phrases	
_	Delivering Welcome Address; Introducing the Chief-Guest; Proposing Vote	
Foliaitation		

Reading – Excerpts of Speeches from Newspaper, Magazines and Motivational Books

Writing – Drafting a Welcome Address, Introduction to the Chief-Guest, Vote of Thanks and Felicitation

Grammar –Common Errors

Vocabulary – Commonly Confused Words

Contact Periods:

Lecture: 30 Periods Tutorial: 15 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

1	English for Science & Technology Cambridge University Press, 2021. Authored by
	Dr. VeenaSelvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr.
	Lourdes Joevani, Department of English, Anna University.

2 | Communicative English, Global Publishers, Chennai 2017 by Dr.J.Anbazhagan Vijay

REFERENCES

1	Raman.Meenakshi,Sharma.Sangeeta(2019). Professional English. Oxford University Press. New Delhi.
2	Learning to Communicate - Dr. V. Chellammal, Allied Publishing House, New Delhi, 2003
3	Using English, Orient Blackswan, Chennai, 2017 by Board of Editors
4	OER(Authentic Open Educational Resources)

COURSE OUTCOMES: On completion of the course, the students will be able to:					
CO1	Participate in a basic communicative task.	К3			
CO2	Analyse problems in order to arrive at feasible solutions and communicate them orally and in the written format.	К3			
CO3	Describe a product or process or mechanism.	K2			
CO4	Present their opinions in a planned and logical manner, and draft effective resumes in context of job search.				
CO5	К3				

COURSE ARTICULATION MATRIX

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
001						_								1
CO1	-	-	1	-	-	2	-	-	3	3	-	-	-	1
CO2	-	1	1	-	-	2	-	-	1	3	-	1	-	1
CO3	-	-	ı	1	ı	-	-	-	-	3	-	-	-	1
CO4	-	-	1	-	-	-		-	2	3	-	-	-	1
CO5	-	-	-	-	-	-	-	-	2	2	-	-	-	1
22BHS2Z5	-	1	1	1	-	1	-	-	2	3	-	1	-	1
b) CO and K	b) CO and Key Performance Indicators Mapping													
CO1	3.3.2	3.3.2, 6.1.1, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3.1, 10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2												
CO2	2.1.1, 2.2.3, 2.2.4, 3.1.2, 6.2.1, 9.2.1, 10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2, 12.3.1, 12.3.2													
CO3	4.1.1, 10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2													
CO4	3.3.2, 9.2.2, 9.2.3, 9.2.4, 9.3.1, 10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2													
CO5	9.2.2	9.2.2, 9.2.3, 9.2.4, 10.1.1, 10.1.3, 10.2.1, 10.2.2												

ASSESSMENT PATTERN – THEORY								
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %	
CAT1	-	12	88	-	-	-	100	
CAT2	-	18	82	-	-	-	100	
Individual Assessment 1/ Case Study 1/ Seminar 1 / Project1	-	-	100	-	-	-	100	
Individual Assessment 2/ Case Study 2/ Seminar 2 / Project 2	-	-	100	-	-	-	100	
ESE	-	20	80	-	-	-	100	

22BBS205

DIFFERENTIAL EQUATIONS AND NUMERICAL METHODS

(Common to all Branches except CSE & IT)

SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	BS	3	1	0	4

~								
Course								
Objectives								
	variable coefficients.							
	2. To be familiar with forming partial differential equations and solving partial differential							
	equations of standard types of first order and homogeneous linear differential equations. 3. To be familiar with numerical interpolation, numerical differentiation and numerical							
	integration.							
	4. To acquire the knowledge of numerical solution to first order ordinary differential							
	equations using single and multi step techniques.							
	5. To gain the knowledge of numerical solution to second order partial diff	erential						
	equations using explicit and implicit methods.							
UNIT – I	ORDINARY DIFFERENTIAL EQUATIONS	9+3 Periods						
	inear differential equations with constant coefficients -variable coefficients							
	chy-Legendre equation-Method of variation of parameters-Simultaneous	s first order linear						
	constant coefficients.							
UNIT – II	PARTIAL DIFFERENTIAL EQUATIONS	9+3 Periods						
	partial differential equations – First order partial differential equations –							
	e - Homogeneous linear partial differential equation of second and higher	order with constant						
coefficients.	coefficients.							
UNIT – III	INTERPOLATION, NUMERICAL DIFFERENTIATION AND INTEGRATION	9+3 Periods						
	olynomial and transcendental equations: Newton-Raphson method-Interp							
	ton's forward and backward difference formulae-Interpolation with							
	mulae-Numerical Differentiation: Newton's formulae-Numerical integratio	n: Trapezoidal rule						
and Simpson's	1/3rd and 3/8 rules.							
UNIT – IV	NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL	9+3 Periods						
	EQUATIONS							
First order ord	linary differential equations: Taylor's series method-Euler and modified	l Euler's methods-						
	linary differential equations: Taylor's series method-Euler and modified nethod of fourth order -Milne's and Adam's predicator-corrector methods.	l Euler's methods-						
	linary differential equations: Taylor's series method-Euler and modified	1 Euler's methods- 9+3 Periods						
Runge- Kutta r UNIT – V Partial differen	linary differential equations: Taylor's series method-Euler and modified nethod of fourth order -Milne's and Adam's predicator-corrector methods. NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS tial equations: Finite difference method for two dimensional Laplace equations.	9+3 Periods uation and Poisson						
Runge- Kutta r UNIT – V Partial differer equation- Imple	linary differential equations: Taylor's series method-Euler and modified nethod of fourth order -Milne's and Adam's predicator-corrector methods. NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS Itial equations: Finite difference method for two dimensional Laplace equicit and explicit methods for one dimensional heat equation (Bender-Solution)	9+3 Periods uation and Poisson						
Runge- Kutta r UNIT – V Partial differer equation- Important Nicholson met	linary differential equations: Taylor's series method-Euler and modified nethod of fourth order -Milne's and Adam's predicator-corrector methods. NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS Itial equations: Finite difference method for two dimensional Laplace equicit and explicit methods for one dimensional heat equation (Bender-Schods)-Finite difference explicit method for wave equation.	9+3 Periods uation and Poisson						
Runge- Kutta r UNIT – V Partial differer equation- Imple	dinary differential equations: Taylor's series method-Euler and modified method of fourth order -Milne's and Adam's predicator-corrector methods. NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS Itial equations: Finite difference method for two dimensional Laplace equicit and explicit methods for one dimensional heat equation (Bender-Sonods)-Finite difference explicit method for wave equation. ds:	9+3 Periods uation and Poisson chmidt and Crank-						

TEXT BOOK

1	Veerarajan.T, "Engineering Mathematics",	Revised Edition 2018, McGraw Hill Education (India)
	Private Limited	

2 P. Kandasamy, K. Thilagavathy, K. Gunavathi, "Numerical Methods", S. Chand & Company, 3rd Edition, Reprint 2013.

REFERENCES

1	B.S. Grewal, "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.												
2	SrimantaPal, "Numerical Methods Principles, Analyses and Algorithms", Oxford University Press,												
	New Delhi, I st Edition 2009.												
3	Raisinghania.MD, "Ordinary And Partial Differential Equations", 20th Edition, S.												
	ChandPublishing,2020												
4	S.S. Sastry, "Introductory methods of numerical analysis", PHI, New Delhi, 5 th Edition, 2015.												
5	Ward Cheney, David Kincaid, "Numerical Methods and Computing, Cengage Learning, Delhi, 7th												
	Edition 2013.												
6	S. Larsson, V. Thomee, "Partial Differential Equations with Numerical Methods", Springer, 2003.												

	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Solve higher order linear differential equation with constant and variable coefficients and simultaneous differential equation.	K5
CO2	Form partial differential equations and find solutions of first and higher order partial differential equations.	K5
CO3	Obtain approximate solutions for transcendental equations and problems on interpolation, differentiation, integration.	K5
CO4	Find the numerical solutions of first order ordinary differential equations using single and multi step techniques.	K5
CO5	Solve second order partial differential equations using explicit and implicit methods.	K5

COURSEAR	TICUL	AHU	IN IVIA	IKIA					1					
a) CO and	PO Ma	pping			1 1									
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	-	132		-	-		38	-	-	1	3	-
CO2	3	3	-	1		13	13	2)-	-	-	1	3	-
CO3	3	3	-	1	3		0	3	-	-	-	1	3	-
CO4	3	3	-	1	-	,	-	-	-	-	-	1	3	-
CO5	3	3	-	1	-	-	-	-	-	-	-	1	3	-
22BBS205	3	3	-	1	-	-	-	-	-	-	-	1	3	-
1 – Slight, 2 –	1 – Slight, 2 – Moderate, 3 – Substantial													
b) CO and K	Ley Per f	formai	ice Inc	dicato	rs Maj	pping								
CO1	1.1.1,	1.1.2,	1.3.1,	1.4.1	, 2.1.1	l, 2.1.	2, 2.1	.3, 2.2	2.1, 2.	2.2, 2.	2.3,2.2	.4, 2.3.	1, 2.3.2	2.4.1,
	2.4.3,	4.1.1,	12.2.1											
CO2	1.1.1,	1.1.2,	1.3.1,	1.4.1	, 2.1.1	l, 2.1.	2, 2.1	.3, 2.2	2.1, 2.	2.2, 2.	2.3,2.2	.4, 2.3.	1, 2.3.2	2.4.1,
	2.4.3,	4.1.1,	12.2.1											
CO3	1.1.1,	1.1.2,	1.3.1,	1.4.1	, 2.1.1	l, 2.1.	2, 2.1	.3, 2.2	2.1, 2.	2.2, 2.	2.3,2.2	.4, 2.3.	1, 2.3.2	2.4.1,
	2.4.3,	4.1.1,	12.2.1											
CO4	1.1.1,	1.1.2,	1.3.1,	1.4.1	, 2.1.1	l, 2.1.	2, 2.1	.3, 2.2	2.1, 2.	2.2, 2.	2.3,2.2	.4, 2.3.	1, 2.3.2	2.4.1,
	2.4.3,	4.1.1,	12.2.1											
CO5	1.1.1,	1.1.2,	1.3.1,	1.4.1	, 2.1.1	l, 2.1.	2, 2.1	.3, 2.2	2.1, 2.	2.2, 2.	2.3,2.2	.4, 2.3.	1, 2.3.2	2.4.1,
	2.4.3,	4.1.1,	12.2.1											

ASSESSMENT F	ASSESSMENT PATTERN – THEORY												
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total						
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%						
CAT1	20	40	20	20	-	-	100						
CAT2	20	40	20	20	-	-	100						
Individual													
Assessment 1 /Case Study 1/	20	40	20	20	-	-	100						
Seminar 1 / Project1													
Individual Assessment 2													
/Case Study 2/	20	40	20	20	-	-	100						
Seminar 2 / Project 2													
ESE	20	40	20	20	-	-	100						

PROGRAMMING IN C 22BES203 (Common to all Branches except MECH &PRODN) SEMESTERII

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	3	0	0	3

Course Objectives	 To study the basic concepts of computer and programming fun To understand the data types in C, flow control statements, Ar Pointers, Structures, Unions and File concepts in C. 	
UNIT – I	COMPUTER AND PROGRAMMING FUNDAMENTALS	(9 Periods)

Computer fundamentals – Evolution, classification, Anatomy of a computer: CPU, Memory, I/O – Introduction to software –Classification of programming languages – Compiling –Linking and loading a program – Introduction to OS – Types of OS.

UNIT – II DATATYPES AND FLOW OF CONTROL (9 Periods)

Structured programming – Algorithms – Structure of a C program – Variables – Data types – Operators and expressions – Input and Output statements – Tokens – Type Conversion – Control statements.

UNIT – III ARRAYS AND FUNCTIONS (9 Periods)

1DArrays – 2D Arrays – Multidimensional Arrays – Strings – String handling functions – Functions – Recursion – Array as function arguments – Storage Classes – Enumerations.

UNIT – IV POINTERS (9 Periods)

Introduction to pointers – Pointers arithmetic – call by reference – Relationship between Array and Pointers – Relationship between String and pointers – pointers to pointers – array of pointers – pointers to an array – Dynamic memory allocation – Arguments to main().

UNIT - V STRUCTURES AND UNIONS, FILE OPERATIONS (9 Periods)

Preprocessor directives – Structures – Unions – Bit fields – Opening and closing a file – Working with file of records – Random access to file of records.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOK

1 PradipDey, Manas Ghosh, "Computer Fundamentals and Programming in C", Second Edition, Oxford University Press, 2018.

REFERENCES

1	Al Kelley, Ira Pohl, "A Book on C- Programming in C", Fourth Edition, Addison Wesley,
	2001.
2	Herbert Schildt , "C: The Complete Reference", Fourth Edition, McGraw Hill Education, 2017.
3	YashavantP.Kanetkar, "Let Us C",15 th edition,BPB Publications,2016.
4	Brian W. Kernighan and Dennis Ritchie, "The C Programming Language", Second Edition, Prentice
	Hall Software Series, 2015.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:						
CO1	Articulate the basics of computer and evolution of programming languages.	Mapped K1					
	1 1 0 0 0						
CO2	Write simple C programs using appropriate datatypes and control statements	K3					
CO3	Write C programs using arrays, functions and enumerations	K3					
CO4	Use pointers effectively to develop programs	K3					
CO5	Create user defined datatypes using structures & union and effectively	K6					
	manipulate them in file operations.						

COURSE ARTICULATION MATRIX

a) CO ar						# <u>Аль́</u> а (19)-1	ye uda ili	(5)						
COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	1	3	1	-	-		Λ	1	-	-	-	1	1	-
CO2	1	3	1	-	-		+	1/4	-	-	-	1	1	-
CO3	1	3	1	- 1	/ - e		3/5	H	-	-	-	1	1	-
CO4	1	3	1	- /	- 8		2-0	7	-	-	-	1	1	-
CO5	1	3	1	- 1	1 - 8	-	A.	J.	-	-	-	1	1	-
22BES203	1	3	1	- 90	3	-	- 70	200	-	•	-	1	1	-
	ght, 2 – N			1			IN S	cuo)						
b) CO and						1 0	10							
CO1	1.3.1, 2	.1.1, 2.1	1.2, 2.1	.3, 2.2.3	3, 2.2.4,	, 2.3.1,	2.3.2, 2	.4.1, 2.	4.2, 2.4	4.3, 2.4	4.4, 3.	1.3, 12	2.2.1	
CO2 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.3, 3.2.3, 3.3.1, 12.1.2														
CO3	CO3 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.1, 2.2.3, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.3, 3.2.3, 3.3.1,12.1.2													
CO4	1.3.1, 2	.1.1, 2.1	1.2, 2.1	.3, 2.2.3	3, 2.3.2,	, 2.4.1,	2.4.2, 2	.4.3, 2.	4.4, 3.1	1.3, 3.2	2.3, 3.	3.1, 12	2.1.2,	

1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.3.2, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 3.1.3, 3.2.3, 3.3.1, 12.1.2

ASSESSMENT I	ASSESSMENT PATTERN - THEORY													
Test / Bloom's Category*	Remember ing (K1)%	Understan ding (K2)%	Applying (K3)%	Analyzing (K4)	Evaluating (K5)%	Creating (K6)%	Total %							
CAT1	50	20	30	-	-	-	100							
CAT2	20	30	50	-	-	-	100							
Individual Assessment 1 / Case Study 1 / Seminar 1 / Project 1	50	-	50	-	-	-	100							
Individual Assessment 2 / Case Study 2 / Seminar 2 / Project 2	-	-	100	-	-	-	100							
ESE	20	30	50	_	-	-	100							

22BPC201	BIOMOLECULES	SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	PC	3	0	0	3

Course Objectives

- 1. To identify the different classes of polymeric biomolecules and their monomeric building blocks.
- 2. To comprehend the properties of carbohydrates proteins, lipids, and nucleic acids
- 3. To understand the functional properties of carbohydrates proteins, lipids, and nucleic acids in the biological system
- 4. To know the basic information on structural and cytoskeletal biomolecules
- 5. To determine the levels of protein structures and their stability

UNIT - I INTRODUCTION

9 periods

Covalent and non-covalent interactions in biological molecules, Water – properties of water, hydrophobic effect, Water as a reactant, pH buffers, Acid-base reactions in biochemical processes, Maintenance of blood pH, Versatility of carbon bonding, Some common functional groups of biomolecules.

UNIT – II CARBOHYDRATES

9 periods

Carbohydrates- Classification, Structure and Properties of Carbohydrates (Mono, Di, Oligo & Starch, glycogen and cellulose) - Mutarotation, Hexose derivatives, Reducing sugars, Glycosidic Bond, Conjugated carbohydrates; Proteoglycans - glycosaminoglycans and lipopolysaccharides -Bacterial lipopolysaccharides.

UNIT – III LIPIDS

9 periods

Structure and properties of lipids – Classification, (Fatty acids, Glycerolipids, Phospholipids, Glycolipids, Sphingolipids, Steroids), Structure of vitamins and non-peptide hormones.

UNIT - IV NUCLEIC ACIDS

9 periods

Nucleic Acids – Structure of Purines, Pyrimidines, Nucleosides, Nucleotides, Ribonucleic acids – Structure and Classification, Deoxyribonucleic acids – Structure of DNA, Nucleoprotein complexes.

UNIT – V PROTEINS

0 poriode

Classification of Amino acids, Structure and Properties of Amino acids-peptide bond, Classification of Proteins-Primary- Secondary structures-alpha helix, beta-sheet and turns, Tertiary and Quaternary structure of proteins, Fibrous and globular proteins, Ramachandran plot.

Contact Periods:

Lecture:45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOKS

- 1 APA. Nelson, D. L., & Cox, M. M., "Lehninger's —Principles of Biochemistry", 7^h Edition, Macmillan, 2017.
- Voet, Donald, Judith G. Voet, and Charlotte W. Pratt., Fundamentals of Biochemistry: Life at the Molecular Level", 5th Edition, Wiley., 2016.

REFERENCES BOOKS

- 1 Victor W. Rodwell; David Bender; Kathleen M. Botham; Peter J. Kennelly; P. Anthony Weil., "Harper's Illustrated Biochemistry", 31st Edition, McGraw-Hill Education, 2018.
- 2 Berg, J.M., Tymoczko, J.L., Stryer, L., "Biochemistry", 9th Edition, WH Freeman, 2019.

	COURSE OUTCOMES: Upon completion of the course, the students will be able to:					
CO1	Comprehend the role of chemistry in a biological system	K1				
CO2	Classify bio-molecules based on their chemical properties	K1				
CO3	Infer the structure and properties of macromolecules	K2				
CO4	Interpret the levels of macromolecular organization	K2				
CO5	Realize the significance of complex biomolecules	K2				

a) CO and	PO M	appin	g											
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO2	1	1	-	-	-	-	-	-	-	-	-	-	3	1
CO3	1	1	1	-	-	-	_	-	-	-	-	-	3	1
CO4	1	1	-	-	m -	760	6	9-	-	-	-	-	3	1
CO5	1	1	-	-	76	El Dal	foi the	8 1419		-	-	-	3	1
22BPC201	1	1	1	-				E G		-	-	-	3	1
1 - Slight, 2	2 - Mc	derate	$a, 3 - S^2$	ubstant	ial				The same of the sa		•	•	•	
b) CO and	Key I	Perfor	mance	Indica	tors N	Iappir	ng	9						
CO1 1.4.1	CO1 1.4.1, 2.1.3													
CO2 1.4.1	CO2 1.4.1, 2.1.3													
CO3 1.4.1	CO3 1.4.1, 2.1.3, 3.2.1													
CO4 1.4.1														
CO5 1.4.1														

ASSESSMENT P	PATTERN – THE	CORY					
Test / Bloom's Category*	Remembering (K1) %	Understanding (K2) %	Applying (K3) %	Analyzing (K4) %	Evaluating (K5) %	Creating (K6) %	Total %
CAT1	60	40	-	-	-	-	100
CAT2	50	50	-	-	-	-	100
Individual Assessment 1 /Case Study 1/ Seminar 1 / Project1	50	50	-	-	-	-	100
Individual Assessment 2 /Case Study 2/ Seminar 2 / Project 2	40	60	-	-	-	-	100
ESE	50	50	-	-	-	-	50

22BMC2Z1

ENVIRONMENTAL SCIENCE AND ENGINEERING

(Common to all Branches)

SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	С
NIL	MC	3	0	0	0

Course Objectives

- 1. To study the modern agriculture related problems, natural resources and its harnessing methods.
- 2. To study the interrelationship between living organism and environment.
- 3. To educate the people about causes of pollutions and its controlling methods.
- 4. To impart the knowledge of various environmental threats and its consequences.
- 5. To study the various water conservation methods, Act, Population policy, Welfare programs.

UNIT – I ENVIRONMENTAL ENERGY RESOURCES

9 Periods

Food-effects of modern agriculture, fertilizers, pesticides, eutrophication &biomagnifications-Energy resources: renewable resources - Hydro Energy, Solar & Wind. Non-renewable resources - Coal and Petroleum - harnessing methods.

UNIT – II ECO SYSTEM AND BIODIVERSITY

9 Periods

Eco system and its components - biotic and abiotic components. Biodiversity: types and values of biodiversity, hot spots of biodiversity, endangered and endemic species, conservation of biodiversity: In situ and ex situ conservation. Threats to biodiversity-destruction of habitat, habit fragmentation, hunting, over exploitation and man-wildlife conflicts. The IUCN red list categories.

UNIT – III ENVIRONMENTAL POLLUTION

9 Periods

Air pollution, classification of air pollutants – sources, effects and control of gaseous pollutants SO₂, NO₂, H₂S, CO, CO₂ and particulates. Water pollution - classification of water pollutants, organic and inorganic pollutants, sources, effects and control of water pollution. Noise pollution - decibel scale, sources, effects and control.

UNIT – IV ENVIRONMENTAL THREATS

9 Periods

Global warming-measure to check global warming - impacts of enhanced Greenhouse effect, Acid rain-effects and control of acid rain, ozone layer depletion- effects of ozone depletion, disaster management - flood, drought, earthquake and tsunami.

UNIT - V SOCIAL ISSUES AND ENVIRONMENT

9 Periods

Water conservation, rain water harvesting, e-waste management, Pollution Control Act, Wild life Protection Act. Population growth- exponential and logistic growth, variation in population among nations, population policy. Women and Child welfare programs. Role of information technology in human and health, COVID-19 - effects and preventive measures.

Contact Periods:

Lecture:45 Periods

Tutorial: 0 Periods Practical: 0 Periods Total:45 Periods

TEXT BOOK:

- 1 Sharma J.P., "Environmental Studies", 4th Edition, University Science Press, New Delhi 2016.
- Anubha Kaushik and C.P.Kaushik, "Environmental Science and Engineering", 7th Edition, New Age International Publishers, New Delhi, 2021.

REFERENCES:

1	A K De, "Environmental Chemistry", 8th Edition, New Age International Publishers, 2017.
2	G. Tyler Miller and Scott E. Spoolman, "Environmental Science", Cengage Learning India Pvt,
	Ltd, Delhi, 2014.
3	ErachBharucha, "Textbook of Environmental Studies", Universities Press(I) Pvt, Ltd,
	Hyderabad, 2015.
4	Gilbert M.Masters, "Introduction to Environmental Engineering and Science", 3rd Edition,
	Pearson Education, 2015.

COU	RSE OUTCOMES:	Bloom's Taxonomy
Upon	completion of the course, the students will be able to:	Mapped
CO1	Recognize and understandabout the various environmental energy resources	K2
	and the effective utility of modern agriculture.	
CO2	Acquire knowledge about the interaction of biosphere with environment and	K2
	conservation methods of bio diversity.	
CO3	Be aware of the sources of various types of pollution, their ill effects and	K2
	preventive methods.	
CO4	Identify and take the preventive measures to control the environmental	K2
	threats and effects of Global warming, Ozone depletion, Acid rain, and	
	natural disasters.	
CO5	Demonstrate an idea to save water and other issues like COVID -19.	K2

					-//	- 4		2)	- 11						
a) CO and P	O Mar	ping			- //	ġ\	TO THE	7	11						
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
					3/2										
CO1	2	1	1	1	1	100	3		and the last	li -	-	-	1	-	-
CO2	-	-	1	-	1	Y.	3		577	-	-	-	1	-	ı
CO3	2	1	1	1	ı		3		-	-	-	-	2	•	-
CO4	2	1	1	1	-	-	3	-	-	-	-	-	1	-	
CO5	-	1	1	1	-	2	3	-	-	-	-	-	2	-	-
22BMC2Z1	2	1	1	1	-	1	3	-	-	-	-	-	2	-	•
1 - Slight, 2	– Mod	lerate,	3 – Su	bstanti	al										
b) CO and K															•
CO1	1.2.1,1.4.1,2.1.2,2.3.1,3.1.5,3.2.1,4.3.1,7.1.1,7.1.2,7.2.1														
CO2	3.1.5,7.1.1,7.1.2,7.2.1														
CO3	1.2.1,1.3.1,1.4.1,2.1.2,2.3.1,3.1.5,3.2.1,4.1.3,4.3.1,7.1.1,7.1.2,7.2.1														
CO4	1.2.1,1.4.1,2.1.2,2.3.1,3.1.5,4.1.3,4.3.1,7.1.1,7.1.2,7.2.1,7.2.2														
CO5	2.1.2,2.	.2.2,3.1	1.5,4.1.	3,4.3.1	,6.2.1,	7.1.1,7.	1.2,7.2	2.1,7.2.	2						

ASSESSMENT I	PATTERN – THE	CORY					
Test / Bloom's	Remembering	Understanding	Applying	Analyzing	Evaluating	Creating	Total
Category*	(K1) %	(K2) %	(K3) %	(K4) %	(K5) %	(K6) %	%
CAT1	20	40	20	20	-	-	100
CAT2	20	40	20	20	-	-	100
Individual	20	40	20	20	-	-	100
Assessment 1							
/Case Study 1/							
Seminar 1 /							
Project1							
Individual	20	40	20	20	-	-	100
Assessment 2							
/Case Study 2/							
Seminar 2 /							
Project 2							
ESE	20	40	20	20	-	-	100

22F	3B	S2	7	6

PHYSICS LABORATORY

(Common to all Branches)

SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	С
NIL	BS	0	0	3	1.5

Course	To impart practical knowledge on the concept of properties of matter
Objectives	andutilize the experimental techniques to measure the properties
	2. To impart practical knowledge on the modulii of elasticity
	3. To analyze the properties of semiconductors
	4. To learn practically the basic electronic concepts of transistor and logic gates
	To realize the principle, concepts and working of a solar cell and study the properties of ferromagnetic material
	6. To understand the concept of quantum physics

S. No.	LABORATORY EXPERIMENTS
1.	Determination of refractive index of the glass and given liquid – Spectrometer diffraction
	method.
2.	Determination of Planck's constant.
3.	Determination of Young's Modulus of the material in the form of bar – Cantilever Bending -
	Koenig's Method.
4.	a) Particle size determination using diode laser.
	b) Determination of numerical aperture and acceptance angle in an optical fiber.
5.	Hall effect - Determination of semiconductor parameters.
6.	Determination of band gap of semiconductor material.
7.	Determination of velocity of sound and compressibility of the given liquid-Ultrasonic Interferometer.
8.	Determination of moment of inertia of disc and rigidity modulus of a wire-Torsional pendulum.
9.	Transistor characteristics.
10.	Solar cell characteristics.
11.	Determination of Hysteresis losses in a Ferromagnetic material-B-H curve unit.
12.	Logic Gates – Verification and Construction.
Contact Pe	riods:
Lecture: 0	Periods Tutorial: 0 Periods Practical: 45 Periods Total: 45 Periods

COUR	SE OUTCOMES:	Bloom's Taxonomy
Upon c	ompletion of the course, the students will be able to:	Mapped
CO1	Determine refractive index and compressibility of liquids, micro size of particles and numerical aperture of an optical fibre	K5
CO2	Measure the Young's and rigidity modulii of the given material	K5
CO3	Determine the bandgap of a given semiconductor material and identify the type of semiconductor and its carrier concentration through Hall measurement	K5
CO4	Analyze the characteristics of transistor and verify the truth table of logic gates	K4
CO5	Measure the efficiency of a solar cell and energy loss associated with the ferromagnetic material by plotting B-H curve	K5
CO6	Determine the Planck's constant and work function	K5

a) CO and PO Mapping														
COs/POs	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO2	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO3	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO4	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO5	3	2	-	-	-	-	-	-	-	-	-	-	1	-
CO6	3	2	-	-	-	-	-	-	-	-	-	-	1	-
22BBS2Z6	3	2	-	-	-	-	-	-	-	-	-	-	1	-
1 - Slight, 2	1 – Slight, 2 – Moderate, 3 – Substantial													

	b) CO and Key Performance Indicators Mapping							
CO1	1.1.1, 1.1.2, 1.2.1, 1.3.1, 2.1.1, 2.1.3, 2.4.1, 2.4.2, 2.4.3, 2.4.4							
CO2	1.1.1,1.1.2, 1.2.1, 1.3.1, 2.1.1, 2.1.3, 2.4.1, 2.4.2, 2.4.3, 2.4.4							
CO3	1.1.1,1.1.2, 1.2.1, 1.3.1, 2.1.1, 2.1.3, 2.4.1, 2.4.2, 2.4.3, 2.4.4							
CO4	1.1.1,1.1.2, 1.2.1, 1.3.1, 2.1.1, 2.1.3, 2.4.1, 2.4.2, 2.4.3, 2.4.4							
CO5	1.1.1, 1.1.2, 1.2.1, 1.3.1, 2.1.1, 2.1.3, 2.4.1, 2.4.2, 2.4.3, 2.4.4							
CO6	1.1.1, 1.1.2, 1.2.1, 1.3.1, 2.1.1, 2.1.3, 2.4.1, 2.4.2, 2.4.3, 2.4.4							

22BES2Z4	WORKSHOP PRACTICE	SEMESTER II
ZZDESZZ4	(Common to all Branches)	SEWIESTER II

PREREQUISTES	CATEGORY	L	T	P	C
NIL	ES	0	0	3	1.5

Course	1. To make various basic prototypes in the carpentry trade such as Half Lap
Objectives	joint, Lap Tee joint, Dovetail joint, Mortise & Tenon joint.
	2. To make various welding joints such as Lap joint, Lap Tee joint, Edge joint,
	Butt joint and Corner joint.
	3. To make various moulds in foundry such as Cube, Straight pipe, V pulley,
	and Conical bush.
	4. To make various components using sheet metal such as Tray, Frustum of
	cone and Square box.
	5. To understand the working and identify the various components of CNC
	Machines.

LIST OF EXPERIMENTS

- 1. Introduction to use of tools and equipment's in Carpentry, Welding, Foundry and Sheet metal.
- 2. Safety aspects in Welding, Carpentry, Foundry and sheet metal.
- 3. Half Lap joint and Dovetail joint in Carpentry.
- 4. Welding of Lap joint and Butt joint and T-joint.
- 5. Preparation of Sand mould for Cube, Conical bush, Pipes and V pulley.
- 6. Fabrication of parts like Tray, Frustum of cone and Square box in sheet metal.
- 7.CNC Machines demonstration and lecture on working principle.
- 8. Electrical wiring and simple house wiring.

Contact periods:

	1.0	The second secon	
Lecture: 0 Periods	Tutorial: 0 Periods	Practical: 45 Periods	Total: 45 Periods

COU	RSEOUTCOMES:	Bloom's
Unon	completion of the course, the students will be able to:	Taxonomy Mapped
CO1	Safely Use tools and equipment's used in Carpentry, Welding, Foundry and	K2
	Sheet metal to create basic joints.	
CO2	Prepare sand mould for various basic pattern shapes.	K3
CO3	Fabricate parts like Tray, Frustum of cone and Square box in sheet metal.	K3
CO4	Practice on the Welding and Carpentry	K3
CO5	Demonstrate the working of CNC Machines.	K2

COURSE	COURSE ARTICULATION MATRIX													
a) CO and	a) CO and PO Mapping													
COs/	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO
POs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	2	3	2	1	3	1	2	3	3	2	3	-	2
CO2	2	2	3	2	1	3	3	2	3	3	2	3	-	2
CO3	2	2	3	2	1	3	3	2	3	3	2	3	-	2
CO4	2	2	3	2	1	3	3	2	3	3	2	3	-	2
CO5	2	2	3	2	3	-	-	2	3	3	2	2	-	2
22BES2Z4	2	2	3	2	2	3	2	2	3	3	2	3	-	2
1 – Slight,	2-N	Modera	ite, 3 –	- Subs	tantial									

b) CO and	Key Performance Indicators Mapping
CO1	1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.2.4, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1,3.3.2, 3.4.1, 4.1.1, 4.1.4, 4.2.1, 4.3.1, 5.2.2, 5.3.2,
	6.1.1,6.2.1,7.1.2, 8.2.1, 8.2.2, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4,9.3.1,10.1.1, 10.1.2,
	10.1.3, 10.2.1, 10.2.2, 10.3.1, 10.3.2, 11.1.1, 11.3.1, 12.1.1, 12.2.2, 12.3.1, 12.3.2
CO2	1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.2.4, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1,3.3.2, 3.4.1, 4.1.1, 4.1.4, 4.2.1, 4.3.1, 5.2.2, 5.3.2,
	6.1.1,6.2.1,7.1.1, 7.1.2, 7.2.2, 8.2.1, 8.2.2, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3.1,
	10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2, 10.3.1, 10.3.2, 11.1.1, 11.3.1, 12.1.1, 12.2.2, 12.3.1,
	12.3.2
CO3	1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.2.4, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1,3.3.2, 3.4.1, 4.1.1, 4.1.4, 4.2.1, 4.3.1, 5.2.2, 5.3.2,
	6.1.1,6.2.1,7.1.1, 7.1.2, 7.2.2, 8.2.1, 8.2.2, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3.1,
	10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2, 10.3.1, 10.3.2, 11.1.1, 11.3.1, 12.1.1, 12.2.2, 12.3.1,
	12.3.2
CO4	1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.2.4, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1,3.3.2, 3.4.1, 4.1.1, 4.1.4, 4.2.1, 4.3.1, 5.2.2, 5.3.2,
	6.1.1,6.2.1,7.1.1, 7.1.2, 7.2.2, 8.2.1, 8.2.2, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3.1,
	10.1.1, 10.1.2, 10.1.3, 10.2.1, 10.2.2, 10.3.1, 10.3.2, 11.1.1, 11.3.1, 12.1.1, 12.2.2, 12.3.1,
	12.3.2
CO5	1.2.1, 1.3.1, 2.1.1, 2.1.2, 2.1.3, 2.2.3, 2.2.4, 2.4.2, 2.4.3, 2.4.4, 3.1.1, 3.1.3, 3.1.4, 3.1.5,
	3.1.6, 3.2.1, 3.2.2, 3.2.3, 3.3.1,3.3.2, 3.4.1, 4.1.1, 4.1.4, 4.2.1, 4.3.1,5.1.1, 5.1.2, 5.2.1,
	5.2.2, 5.3.2, 7.1.1, 7.2.2, 8.2.1, 8.2.2, 9.1.1, 9.1.2, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.3.1, 10.1.1,
	10.1.2, 10.1.3, 10.2.1, 10.2.2, 10.3.1, 10.3.2, 11.1.1, 11.3.1, 12.2.2, 12.3.1, 12.3.2

22BES205

PROGRAMMING IN C LABORATORY

(Common to all Branches except Mech & Prodn)

SEMESTER II

PREREQUISITES	CATEGORY	L	T	P	C
NIL	ES	0	0	3	1.5

COURSE OBJECTIVES:

To understand the concepts like Data types, Flow control statements, Functions, Arrays, command line arguments, Pointer, Dynamic memory allocation, Preprocessor Directives, Structures, Unions and Files in C

EXER	CISES ILLUSTRATING THE FOLLOV	VING CONCEPTS:					
1	Operators, Expressions and IO forma	Operators, Expressions and IO formatting					
2	Decision Making and Looping						
3	Arrays and Strings						
4	Functions and Recursion						
5	Pointers						
6	Dynamic Memory Allocation						
7	Command line arguments						
8	Preprocessor Directives						
9	Structures	1/2					
10	Unions						
11	Files						
12	2 Mini Project						
Contac	Contact periods:						
Lectur	Lecture: 0 PeriodsTutorial: 0 PeriodsPractical: 45 PeriodsTotal: 45 Periods						

COUI	Bloom's						
Upon	Taxonomy						
		Mapped					
CO1	Use appropriate data types and flow control statements to write C programs	K6					
CO2	Write C programs using arrays, functions and command line arguments	K6					
CO3	Write C programsusing pointers, dynamicmemoryallocation and	K6					
	preprocessordirectives						
CO4	Implement user defined data types using structures & union and effectively	K6					
	manipulate them in file operations.						
CO5	Develop simple applications using C	K6					

a) CO and PO Mapping														
COs/POs	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	2	3	1	1	-	-	-	-	-	-	-	-	1	-
CO2	2	3	1	1	-	-	-	-	-	-	-	-	1	-
CO3	2	3	1	1	-	-	-	-	-	-	-	-	1	-
CO4	2	3	1	1	-	-	-	-	-	-	-	-	1	-
CO5	2	3	2	1	-	-	-	-	3	3	-	-	1	-
22BES205	2	3	2	1	-	-	-	-	1	1	-	-	1	-

1-S	light,	2-1	Mod	lerate,	3 –	Su	bstanti	al
-----	--------	-----	-----	---------	-----	----	---------	----

b) CO and Key Performance Indicators Mapping						
CO1	1.1.1, 1.3.1, 2.1.1,2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.2.3, 3.3.1, 4.1.1,					
	4.1.2, 4.2.1					
CO2	1.1.1, 1.3.1, 2.1.1,2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.2.3, 3.3.1, 4.1.1,					
	4.1.2, 4.2.1					
CO3	1.1.1, 1.2.1, 1.3.1, 2.1.1,2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.3.1, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.2.3, 3.3.1,					
	4.1.1, 4.1.2, 4.2.1					
CO4	1.1.1, 1.3.1, 2.1.1,2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.2.3, 3.3.1, 4.1.1, 4.1.2,					
	4.2.1					
CO5	1.1.1, 1.2.1, 1.3.1, 2.1.1,2.1.2, 2.1.3, 2.2.1, 2.2.2, 2.3.2, 2.4.1, 2.4.3, 2.4.4, 3.1.1, 3.1.5, 3.1.6,					
	3.2.3, 3.3.1					

