

COURSE OUTCOMES:												PO's Mapped
On completion of the course, the students will be able to:												
C01	Remember the concept of probability and understand the general discrete Probability distribution function and continuous probability distribution function.											
C02	Apply the concepts of probability mass function and probability density functions. Discuss the standard distributions and apply them to solve the real time problems in each distribution.											
C03	Analyze the notion, testing of hypothesis in statistical problems in practice and extend this understanding to the analysis of variance(ANOVA) for one-way,two-way classification and Latin square design.											
C04	Develop statistical quality control methods and charts such as R-chart, p, np-Chart and C-Chart .											
C05	Use the probability concepts and statistical methods and present seminars, assignments, group discussion and quiz.											

Mapping:

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PS 01	PS 02	PS 03
C01	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C02	3	-	-	-	-	-	-	-	-	-	-	2	-	-
C03	-	3	2	-	-	-	-	-	-	-	-	1	-	-
C04	-	-	-	2	-	-	-	-	-	-	-	1	-	-
C05	-	-	-	-	-	-	-	-	2	-	1	1	-	-
AVERAGE	3	3	2	2	-	-	-	-	-	2	-	1	1.25	-

22MPC405 **HYDRAULICS AND PNEUMATICS CONTROLS** **SEMESTER IV**

COURSE OUTCOMES: On completion of the course, the students will be able to:		PO's Mapped
CO1	Apply fundamental principles of fluid mechanics and thermodynamics to explain the working of fluid power systems, hydraulic pumps, compressors, and pneumatic components.	PO1
CO2	Analyze hydraulic and pneumatic systems to identify system requirements, losses, and performance parameters for different industrial applications.	PO2
CO3	Design basic hydraulic and pneumatic circuits using standard symbols and modern engineering tools to meet given operational requirements.	PO3,PO4, PO5
CO4	Evaluate environmental and sustainability aspects of hydraulic and pneumatic systems, including energy efficiency, leakage control, and ethical use of resources.	PO7,PO8
CO5	Demonstrate effective communication, teamwork, and continuous learning skills while working on fluid power system design projects using PLC, servo systems, and IIoT-based monitoring.	PO9,PO10,PO11

MAPPING

COURSE OUTCOMES:												PO's Mapped		
On completion of the course, the students will be able to:														
CO1	Explain the basic terminology, definitions related to mechanisms, including degrees of freedom, mobility criteria and evaluate the effects of friction drives on various materials												PO1	
CO2	Analyze and determine the velocity and acceleration of different mechanisms and construction of Cam Profile using graphical method understanding the relationship between cam geometry and output motion.												PO2	
CO3	Identify and classify different types of gears and gear trains, and apply principles of gear mechanics in problem-solving.												PO2,PO3	
CO4	Apply the concept of various mechanisms, cams, friction drives and gear train with the help of hands-on projects, integrating theoretical and practical knowledge for effective mechanical system application.												PO8,PO11	
CO5	Design and simulate the various mechanisms, friction drives and cam profile utilizing their understanding of friction and kinematics by using modern design and analysis tools.												PO3,PO5,PO11	
CO6	Present the Seminar with the help of their hand on projects and modern design tools and content beyond syllabus.												PO7,PO9,PO11	

MAPPING

COs/POs	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO1	PSO2	PSO3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	-	3	-	-	-	-	-	-	-	-	-	3	2	-
CO3	-	2	2	-	-	-	-	-	-	-	-	2	2	-
CO4	-	-	2	-	3	-	-	3	-	-	2	2	3	3
CO5	-	-	-	-	-	-	-	-	-	-	2	2	2	3
CO6	-	-	-	-	-	-	2	-	3	-	2	2	3	3
AVERAGE	2	2.5	2	-	3		2	3	3	-	2	2.2	2.4	3

COURSE OUTCOMES:												PO's Mapped		
On completion of the course, the students will be able to:														
CO1	Understand the fundamental concepts and working principles of air standard cycles, internal combustion engines, refrigeration systems, boilers, compressors, nozzles, and turbines.												PO1, PO7	
CO2	Apply thermodynamic principles to solve numerical problems related to air standard cycles, IC engine performance parameters, refrigeration cycles, compressors, and turbine systems.												PO1, PO4, PO7	
CO3	Analyze the performance characteristics, efficiency, losses, and operational behavior of IC engines, refrigeration systems, boilers, compressors, and turbines using P-V diagrams, energy balances, and performance curves.												PO2, PO5	
CO4	Design and select basic components of thermal systems such as boilers, compressors, nozzles and refrigeration systems based on given operating conditions and engineering constraints.												PO3, PO5, PO7	
CO5	Simulate the working and performance of thermal engineering systems—such as thermodynamic cycles, internal combustion engines, refrigeration systems, and turbines—using theoretical thermodynamic models, numerical methods, and basic simulation tools such as MATLAB, Scilab, EES (Engineering Equation Solver), and MS Excel.												PO2, PO5, PO7	
CO6	Present a seminar on advanced topics related to IC engines, refrigeration, boilers, compressors or turbines by effectively communicating technical concepts, recent developments, and research findings.												PO8, PO9, PO10	

MAPPING

COs/POs	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	2	1	1	1	1	2	3	3
CO2	3	-	-	2	-	-	2	1	1	1	1	2	3	3
CO3	-	3	-	-	3	-	1	1	1	1	1	2	3	1
CO4	-	-	3	-	3	-	2	1	1	1	1	2	3	3
CO5	-	3	1	2	3	-	2	1	1	1	1	2	3	2
CO6	-	-	-	-	-	1	1	2	2	2	1	1	3	1
AVERAGE	3	3	3	2	3	1	2	1	1	1	1	2	3	3

COURSE OUTCOMES: On completion of the course, the students will be able to:		PO's Mapped
CO1	Apply principles of manufacturing science to explain metal cutting mechanisms, tool geometry, tool wear, surface finish, and machinability.	PO1, PO2
CO2	Analyze machining problems related to chip formation, cutting forces, heat generation, and tool failure using fundamental engineering concepts and experimental data.	PO1, PO2, PO4, PO11
CO3	Develop an effective machining solutions for lathe, shaping, planning, drilling, broaching, grinding, milling, and gear generation operations by selecting appropriate machines, tools, workholding device and process parameters to satisfy specified functional and quality requirements.	PO1, PO2, PO3, PO5
CO4	Evaluate conventional and non-conventional machining processes considering sustainability, safety, economic, and environmental constraints in industrial applications.	PO3, PO6, PO7
CO5	Prepare and deliver a seminar on machining processes by collaboratively working in teams, effectively communicating technical concepts, and engaging in independent learning to support lifelong learning	PO6, PO8, PO9, PO11

MAPPING

COs/POs	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	-	-	-	-	-	-	3	1	2
CO2	2	3	-	2	-	-	-	-	-	-	-	1	1	3
CO3	3	3	3	-	3	-	-	-	-	-	-	1	3	2
CO4	-	-	1	-	-	2	2	-	-	-	-	2	1	2
CO5	-	-	-	-	-	2		3	3	-	2	1	1	1
AVERAGE	2.6	2.6	2	2	3	2	2	3	3	-	1.5	1.6	1.8	1.6

COURSE OUTCOMES: On completion of the course, the students will be able to:		PO's Mapped
CO1	Identify suitable measurement system to calculate force and torque.	PO1,PO2
CO2	Apply the concepts of pressure and flow measurements to evaluate complex engineering system.	PO1,PO2
CO3	Analyze temperature and motion measurement techniques to select appropriate instruments for thermal, vibration and acceleration-based applications.	PO1,PO2,PO3
CO4	Apply control system concepts to model mechanical and electrical systems.	PO1,PO2,PO3,PO4
CO5	Evaluate dynamic system behavior of a control system by analyzing its characteristics.	PO1,PO2,PO3,PO4,PO5

COs/POs	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO1	PSO2	PSO3
CO1	3	2	2	2	1	1	1	1	1	1	2	3	1	1
CO2	3	2	2	2	1	1	1	1	1	1	2	3	1	1
CO3	3	2	2	2	1	1	1	1	1	1	2	3	1	1
CO4	3	3	3	3	2	1	1	1	1	1	2	3	1	1
CO5	3	3	3	3	3	1	1	1	1	1	2	3	1	1
AVERAGE	3	2	2	2	2	1	1	1	1	1	2	3	1	1

22MPC620	DESIGN OF TRANSMISSION SYSTEMS (Use of Approved Design Data Book is Permitted)	SEMESTER VI
-----------------	---	------------------------

CO	COURSE OUTCOMES: Upon completion of the course, the students will be able to:	PO's Mapped
CO1	Select appropriate flexible transmission elements for machinery and equipment.	PO1, PO2, PO12
CO2	Perform engineering analysis and estimate the required size and type of spur and helical gears.	PO1, PO2, PO3, PO5, PO12
CO3	Perform engineering analysis and estimate the required size and type of bevel and worm gears.	PO1, PO2, PO3, PO4, PO12
CO4	Design and develop gear box for various machinery and equipment.	PO1, PO2, PO3, PO5, PO12
CO5	Design cams, friction clutches and brake components.	PO1, PO2, PO3, PO5, PO6, PO12
CO6	Present a technical seminar on the topic “Hydrodynamic Analysis of Coupling Performance” demonstrating understanding of torque transmission characteristics, slip, efficiency, and operating conditions.	PO1, PO2, PO10, PO11, PO12

MAPPING															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	2	2	1	1	-	-	-	-	-	1	2	1	-
CO2	2	2	2	1	2	1	-	-	-	-	-	2	1	2	1
CO3	2	2	2	1	2	1	-	-	-	-	-	2	1	2	1
CO4	2	2	2	1	2	1	-	-	-	-	-	2	1	2	1
CO5	2	2	2	1	2	1	-	-	-	-	-	2	1	2	1
CO6	1	2	-	-	-	-	-	-	-	3	1	2	1	1	2
Average	1.5	2.0	2.0	1.2	1.8	1.0	-	-	-	3.0	1.0	1.8	1.2	1.7	1.2

1 – Slight, 2 – Moderate, 3 – Substantial

22MPC618	METROLOGY AND QUALITY CONTROL	SEMESTER VI
----------	-------------------------------	-------------

COURSE OUTCOMES:		PO's Mapped
Upon completion of the course, the students will be able to:		
CO1	Explain principles of measurements, standards, units and operating principles of linear and angular metrological instruments.	PO1, PO6
CO2	Interpret mechanical, optical, electrical and pneumatic magnification methods to measure gears, threads, surface finish, and form errors including runout, pitch, profile, backlash, straightness, flatness, and roundness using standard inspection instruments.	PO1, PO2, PO3, PO6
CO3	Apply advanced measurement methods and modern instruments such as CMM, laser interferometers, machine vision, and computer-aided inspection tools to inspect and improve product quality.	PO1, PO2, PO3, PO4, PO5, PO12
CO4	Assess the importance of quality control, statistical quality control, and reliability concepts in ensuring safe, reliable, and high-quality products for societal and industrial needs.	PO1, PO2, PO5, PO6, PO7, PO8, PO12
CO5	Evaluate quality, reliability, and sampling methods with respect to sustainable manufacturing practices, ethical responsibility, cost of quality, and efficient use of resources.	PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO8, PO10, PO12
CO6	Demonstrate teamwork, communication, and continuous learning skills by applying Six Sigma concepts, reliability analysis, and acceptance sampling plans in quality improvement projects.	PO1, PO2, PO3, PO9, PO10, PO11, PO12

MAPPING															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	1	-	-	1	-	-	-	-	-	2	2	1	1
CO2	2	1	2	-		2	-	-	1	1	1	2	3	2	3
CO3	3	2	2	3	3	-	-	-	-	-	-	1	3	3	1
CO4	3	1	-	1	2	2	3	3	-	-	-	2	2	2	3
CO5	2	2	1	2	2	2	2	2	-	1	-	2	3	2	1
CO6	2	2	2	-	-	-	-	-	1	3	1	2	3	2	2
Average	2.5	2.0	1.7	2.0	1.5	1.8	2.5	2.5	1.0	1.7	1.0	1.8	2.7	2.0	1.8

1 – Slight, 2 – Moderate, 3 – Substantial

22MPC619	FINITE ELEMENT ANALYSIS	SEMESTER VI
----------	-------------------------	-------------

COURSE OUTCOMES:		PO's Mapped
Upon completion of the course, the students will be able to:		
C01	Formulate, analyse and design finite element models for complex engineering problems using engineering mathematics and fundamentals to ensure accurate and convergent solutions that meet specified requirements.	PO1, PO2, PO6, PO9
C02	Use modern computational tools to investigate and validate results of FE problems.	PO3, PO4, PO7, PO9, PO11
C03	Apply FE Techniques to use resources efficiently to reduce environmental impact and improves sustainabilty.	PO1, PO2, PO3, PO4, PO5, PO9, PO12
C04	Develop finite element models and communicate technical findings clearly through reports and presentations.	PO1, PO2, PO5, PO6, PO7, PO8, PO12
C05	Apply basic project management principles and modern learning resources to plan, execute and continuously improve finite element- based engineering analysis in professional practice.	PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO8, PO10, PO11, PO12

MAPPING															
C0s/P0s	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PS02	PS03
C01	3	1	-	-	-	2	-	-	2	-	-	-	-	-	-
C02	-	-	2	2	-	-	2	-	2	-	-	-	-	-	-
C03	3	2	2	2	3	-	-	-	2	2	3	1	3	3	1
C04	2	1	-	-	1	2	3	3	-	-	-	2	1	1	3
C05	2	2	1	2	1	2	2	2	-	1	2	2	2	2	2
Average	2.0	1.2	1.0	1.2	1.0	1.2	1.4	1.0	1.2	1.7	1.0	1.0	1.2	1.2	1.2

1 – Slight, 2 – Moderate, 3 – Substantial

22MPC621	MECHATRONICS	SEMESTER VI
----------	--------------	-------------

COURSE OUTCOMES:		PO's Mapped
Upon completion of the course, the students will be able to:		
C01	Apply fundamental engineering knowledge and problem analysis techniques to understand and analyze the concepts, principles, and methodologies presented in the syllabus.	PO1, PO2
C02	Design and investigate engineering solutions related to the syllabus using appropriate analytical methods, experimentation, and modern engineering tools.	PO3, PO4
C03	Apply engineering judgement to address practical engineering problems arising from the syllabus, considering professional responsibilities and real-world constraints.	PO5
C04	Evaluate engineering concepts and practices presented in the syllabus with respect to environmental sustainability, professional ethics, and effective technical communication.	PO6, PO7
C05	Function effectively as an individual and as a member of a team to plan, manage, and improve engineering activities related to the syllabus using appropriate engineering management and economic principle	PO8, PO9
C06	Communicate business strategies effectively, work in teams, and engage in continuous learning for venture growth, succession planning, and exit strategies.	PO10, PO11

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
C01	3	2	-	-	-	-	-	-	-	-	-	2	1	1
C02	-	3	2	2	3	-	-	-	-	-	-	3	2	2
C03	-	-	3	3	-	2	-	-	-	-	-	3	3	1
C04	-	-	-	-	-	-	3	2	-	3	-	1	1	3
C05	-	-	-	-	-	-	-	-	3	-	3	2	2	2
C06	3	2	-	-	-	-	-	-	-	-	-	1	1	2
Average	2	1	2	1	2	1	2	1	1	2	2	2	2	2

22MPE637	TOTAL QUALITY MANAGEMENT	SEMESTER VI
----------	--------------------------	-------------

COURSE OUTCOMES:		PO's Mapped
Upon completion of the course, the students will be able to:		
C01	Explain the fundamental concepts of quality, Total Quality Management (TQM), quality frameworks, and the contributions of quality pioneers such as Deming, Juran, and Crosby.	PO1, PO2, PO12
C02	Apply the TQM principles like strategic quality planning and Continuous Process improvement (PDCA, 5S, Kaizen) Quality Circles to foster effective teamwork and organizational growth.	PO1, PO2, PO3, PO5, PO9, PO10, PO11, PO12
C03	Analyze quality-related problems using statistical tools, control charts, process capability indices(Six Sigma), QFD, FMEA and TPM.	PO1, PO2, PO3, PO4, PO5, PO12
C04	Apply ethical and sustainability principles in quality systems using ISO standards, continuous improvement processes, waste reduction techniques, and environmental management practices.	PO1, PO2, PO5, PO6, PO7, PO8, PO12
C05	Analyze a case study to examine how quality management systems influence customer satisfaction, organizational performance, and societal well-being in industrial and service sectors.	PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO8, PO10, PO12
C06	A seminar to be presented to evaluate the effectiveness and challenges of implementing Total Quality Management (TQM) in the manufacturing industry.	PO1, PO2, PO10, PO11, PO12

CO MAPPING															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01	3	1	-	-	-	-	-	-	-	-	-	2	2	1	1
C02	2	1	2	-	1	-	-	-	1	1	1	2	3	2	2
C03	3	2	2	2	3	-	-	-	-	-	-	1	3	3	1
C04	2	1	-	-	1	2	3	3	-	-	-	2	1	1	3
C05	2	2	1	2	1	2	2	2	-	1	-	2	2	2	2
C06	2	2	-	-	-	-	-	-	-	3	1	2	1	1	2
Average	2.3	2.0	1.7	2.0	1.5	2.0	2.5	2.0	1.0	1.7	1.0	2.2	1.8	1.7	2.0

1 – Slight, 2 – Moderate, 3 – Substantial

22MPE\$40	ENTREPRENEURIAL DEVELOPMENT	SEMESTER VI
-----------	-----------------------------	-------------

COURSE OUTCOMES:		PO's Mapped
Upon completion of the course, the students will be able to:		
C01	Explain the evolution, characteristics, and types of entrepreneurs, entrepreneurial competencies, and business models.	PO1, PO2
C02	Analyse business opportunities, conduct feasibility and project appraisal, and identify appropriate sources of finance.	PO3, PO4
C03	Apply legal, institutional, financial, and management principles to design and organize a new venture	PO5
C04	Evaluate the role of entrepreneurship in economic and social development and assess the impact of policies and support systems.	PO6, PO7
C05	Demonstrate ethical, sustainable, and socially responsible practices while managing growth, resources, and workforce in ventures.	PO8, PO9
C06	Communicate business strategies effectively, work in teams, and engage in continuous learning for venture growth, succession planning, and exit strategies.	PO10, PO11

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
C01	2	2	-	-	-	-	-	-	-	-	-	2	1	1
C02	-	-	2	1	-	-	-	-	-	-	-	3	2	2
C03	-	-	-	-	3	-	-	-	-	-	-	3	3	1
C04	-	-	-	-	-	2	3	-	-	-	-	1	1	3
C05	-	-	-	-	-	-	-	2	1	-	-	2	2	2
C06	-	-	-	-	-	-	-	-	-	2	2	1	1	2
Average	1	1	2	1	2	1	2	1	1	2	2	2	2	2

22MPE\$20	LEAN MANUFACTURING (Common to Mech& Prod)
-----------	--

COURSE OUTCOMES:

Upon completion of the course, the students will be able to:

CO1	Adopt the systematic waste-elimination methodologies and foster a culture of continuous improvement in the organization which can significantly enhance productivity and operational excellence	PO1, PO2, PO3, PO4, PO5
CO2	Exhibit the capacity to adapt effectively to a rapidly evolving industrial environment while consistently adhering to ethical standards, social responsibility, environmental sustainability, and professional integrity.	PO6, PO7
CO3	Ensure effective communication among members within the organization as well as with external stakeholders, thereby enhancing overall organizational performance and relationships.	PO8, PO9
CO4	Examine industrial case studies and address their operational challenges through the systematic application of lean manufacturing methodologies.	PO10, PO11
CO5	Emphasize the lean culture by sustained acquisition, updating, and application of knowledge.	PO12

COURSE ARTICULATION MATRIX:

CO and PO Mapping															
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	3	3								1	3	1
CO2						2	2							2	
CO3								3	3					1	
CO4										3	3			2	
CO5												3		1	
22MPE\$20	3	3	3	3	3	2	2	3	3	3	3	3	1	2	1

1 - Slight, 2 - Moderate, 3 - Substantial

22MPE\$38	GAS DYNAMICS AND JET PROPULSION	VI
-----------	---------------------------------	----

COURSE OUTCOMES:		Bloom's Taxonomy Mapped
On completion of the course, the students will be able to:		
CO1	Understand the basic principles of compressible flow in variable and constant area ducts, the characteristics of shock waves and the working principles of jet and rocket propulsion systems.	PO1,
CO2	Apply compressible flow principles in nozzles, diffusers, combustion chambers, heat exchangers and jet and rocket propulsion systems.	PO1, PO4, PO11
CO3	Analyze compressible flow behaviour in various systems, examine the effects of shock waves and analyze the performance of jet and space propulsion systems.	PO2, PO5, PO11
CO4	Design variable and constant area ducts such as nozzles, diffusers, and combustion chambers and develop basic designs for jet and space propulsion systems including turbojet, ramjet and rocket engines.	PO3,PO5,PO11
CO5	Simulate the performance of constant and variable area ducts, as well as jet and space propulsion systems, using CFD tools and aerodynamic principles.	PO2,PO3,PO4,PO5
CO6	Present a seminar on the behavior of C-D nozzles with varying back pressure, flow variations in constant area ducts, characteristics of shock waves, and the theory of jet and rocket propulsion systems.	PO6,PO7,PO8,PO9,PO10

COURSE ARTICULATION MATRIX:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	2	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	2	-	-	-	-	-	-	2	3	-	2
CO3	-	3	-	-	2	-	-	-	-	-	2	2	-	-
CO4	-	-	3	-	2	-	-	-	-	-	2	1	2	3
CO5	-	2	2	3	3	-	-	-	-	-	2	1	3	2
CO6	-	-	-	-	-	2	2	3	3	3	2	-	-	-
22MES308	3	3	3	2	-	2	2	3	3	3	2	2	3	2