

ANNEXURE - I - COURSE OUTCOMES AND CO-PO MAPPING

ELECTRICAL MACHINES		IV
COURSE OUTCOMES: At the end of the course, the students will have the ability to:		PO's Mapped
CO1	Explain the fundamental principles, construction, working, and characteristics of DC machines, transformers, and AC machines (induction and synchronous machines).	-
CO2	Apply electrical machine principles and equivalent circuit concepts to compute performance parameters such as efficiency, losses, voltage regulation, torque, and speed.	PO1
CO3	Analyze the behaviour and performance of DC machines, transformers, induction motors, and synchronous machines under various operating conditions.	PO2
CO4	Design and select suitable electrical machines and starting, control, and protection methods for given industrial and domestic applications.	PO3
CO5	Simulate and evaluate the performance characteristics of electrical machines using simulation tools and interpret the results.	PO5
CO6	Work in teams to study, analyze, and present a mini project related to electrical machines and their applications.	PO8, PO9, PO10

COURSE ARTICULATION MATRIX:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO3	-	3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	-	-	3	-	-	-	-	-	-	-	-	3	3	-
CO5	-	-	-	-	3	-	-	-	-	-	-	3	-	3
CO6	-	-	-	-	-	-	-	3	3	3	-	-	3	3
22NES408	3	3	3	-	3	-	-	3	3	3	-	3	3	3

22NPC407		ELECTRONICS FOR ANALOG SIGNAL PROCESSING	IV
COURSE OUTCOMES: At the end of the course, the students will have the able to:		PO's Mapped	
CO1	Explain the basic principles of IC fabrication, internal structure and characteristics of operational amplifiers, special ICs, and fundamental concepts of ADC and DAC systems.	-	
CO2	Apply operational amplifier concepts to analyze and solve problems related to linear and non-linear op-amp applications, waveform shaping circuits, and basic data conversion techniques.	PO1	
CO3	Analyze the performance of Op-amp circuits, comparators, active filters, oscillators, waveform generators, timer circuits, voltage regulators, and ADC/DAC architectures under different operating conditions.	PO2	
CO4	Design op-amp based signal processing circuits, waveform generators, timer circuits, and data converter systems to meet given specifications and practical requirements.	PO3	

C05	Simulate using Simulation-based tools to investigate the behavior of op-amp circuits, special ICs, and ADC/DAC systems.	PO5, PO6 PO8, PO9
C06	Present seminars/case studies/projects on recent developments and advanced applications of operational amplifiers, special ICs, and data conversion techniques to enhance professional and lifelong learning skills.	PO7, PO8 PO9, PO10 PO11

COURSE ARTICULATION MATRIX:

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO3	-	3	-	-	-	-	-	-	-	-	-	2	-	-
CO4	-	-	3	-	-	-	-	-	-	-	-	3	-	-
CO5	-	-	-	-	3	2	-	3	3	-	-	3	-	2
CO6	-	-	-	-	-	-	3	3	3	2	3	3	-	2
22NPC40	3	3	3	-	3	2	3	3	3	2	3	2.6	-	2
7														

22NPC408		DIGITAL ELECTRONICS	IV
COURSE OUTCOMES:			PO's Mapped
At the end of the course, the students will have the able to:			
CO1	Explain the fundamental concepts of number systems, Boolean algebra, logic gates, combinational circuits, sequential circuits, memory devices and the basic elements of VHDL.		-
CO2	Apply Boolean algebra, Karnaugh map techniques, combinational and sequential logic principles to compute and realize logic functions and digital circuits.		PO1
CO3	Analyze the behavior and performance of combinational, synchronous and asynchronous sequential circuits.		PO2
CO4	Design combinational and sequential digital systems using appropriate logic elements.		PO3
CO5	Simulate and evaluate digital circuits using HDL tools or any other simulation tools and interpret results.		PO5
CO6	Work in teams to implement and present a mini project on a digital system.	PO8, PO9, PO10, PO11	

COURSE ARTICULATION MATRIX:														
CO and PO Mapping:														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO3	-	3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	-	-	3	-	-	-	-	-	-	-	-	3	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	3	-	-
CO6	-	-	-	-	-	-	-	3	3	3	3	-	-	-
22NPC408	3	3	3	-	3	-	-	3	3	3	3	3	-	-

1 – Slight, 2 – Moderate, 3 – Substantial

22NPC409		INDUSTRIAL INSTRUMENTATION	IV
COURSE OUTCOMES			
Upon Completion of the course, the students will be able to		POs Mapped	
CO1	Explain the principles, terminology, classifications, working concepts, and characteristics of industrial measurement systems used for temperature, pressure, flow, level, viscosity, humidity, moisture, and density measurements.		-
CO2	Apply fundamental knowledge of mathematics, science, and engineering principles to compute measurement parameters such as flow rate, pressure, temperature, and level using standard industrial instrumentation methods.		PO1
CO3	Analyze the existing industrial measurement problems by identifying sources of error, limitations, and selection of sensors for specific industrial applications.		PO2
CO4	Design appropriate instrumentation systems by selecting sensors, and transmitters for real-time industrial measurement applications, considering accuracy, reliability, safety, and operating conditions.		PO3
CO5	Evaluate the performance of industrial instruments by applying modern engineering tools and simulation software		PO4, PO5, PO6
CO6	Communicate technical information effectively and present industrial instrumentation solutions, including sensor selection, safety considerations, and transmitter integration, within realistic industrial constraints.		PO8, PO9, PO11

CO-PO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	-	-	-	-	-	-	-	3	2
CO2	3		-	-	-	-	-	-	-	-	-	-	3	2
CO3	-	3	-	-	-	-	-	-	-	-	-	-	3	2
CO4	-	-	3	-	-	-	-	-	-	-	-	-	3	2
CO5	-	-	-	3	3	3	-	-	-	-	-	-	3	2
CO6	-	-	-	-	-	-	-	3	3	-	3	-	3	2
22NP C 409	3	3	3	3	3	3		3	3		3		3	2

22NPC410		FUNDAMENTALS OF SIGNALS AND SYSTEMS											IV
COURSE OUTCOMES:													PO's Mapped
Upon Completion of the course, the students will be able to													
C01	Explain the fundamental concepts of continuous-time and discrete-time signals and systems, their classification, system properties and analysis using transform techniques.												
C02	Apply sampling theory concepts to discretize continuous-time signals, analyze aliasing effects, quantization errors, and reconstruct signals using interpolation techniques.											PO1	
C03	Analyze continuous-time signals using time-domain techniques and frequency domain techniques include Fourier series, Fourier transform, and interpret spectral characteristics.											PO2	
C04	Design discrete-time systems using Z-transform techniques with respect to stability, causality, and realizability, and compute inverse Z-transforms.											PO3, PO4	
C05	Simulate using Software tools to experiment Fourier and Z transforms for continuous and discrete signals and systems											PO3, PO5,	
C06	Present Seminar in signal processing concepts and transform techniques and system models, and demonstrate independent learning											PO9, PO11,	

COs \ POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
C01	-	-	-	-	-	-	-	-	-	-	-	-	-	-
C02	3	-	-	-	-	-	-	-	-	-	-	3	-	-
C03	-	3	-	-	-	-	-	-	-	-	-	3	-	-
C04	-	-	3	2	-	-	-	-	-	-	-	3	1	2
C05	-	-	2	-	3	-	-	-	-	-	-	-	1	3
C06	-	-	-	-	-	-	-	-	3	-	2	-	-	3
22NPC410	3	3	2.5	2	3	-	-	-	3	-	2	3	1	2.6

22NPC411	ANALOG AND DIGITAL CIRCUITS LABORATORY	IV
COURSE OUTCOMES:		PO's Mapped
Upon Completion of the course, the students will be able to		
CO1	Explain the principles and operation of basic digital and analog electronic circuits implemented in the laboratory	
CO2	Apply Boolean logic concepts to implement combinational and sequential circuits using logic gates and electronic circuit concepts to implement using required ICs.	PO1
CO3	Analyze the performance of digital and analog circuits such as flip-flops, counters, amplifiers, filters, and converters through experimental observations.	PO2
CO4	Design and implement digital and analog electronic circuits to meet given functional specifications.	PO3
CO5	Simulate electronic circuits using appropriate software tools and compare simulated results with experimental outcomes.	PO5
CO6	Work effectively in a team to perform experiments by following safety procedures, analyze results, and present observations in the form of records	PO6, PO7, PO8, PO9, PO10

COURSE ARTICULATION MATRIX:														
CO and PO Mapping:														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO3	-	3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	-	-	3	-	-	-	-	-	-	-	-	3	-	-
CO5	-	-	-	-	3	-	-	-	-	-	-	3	-	-
CO6	-	-	-	-	-	3	3	3	3	3	-	-	-	-
22NPC4 11	3	3	3	-	3	3	3	3	3	3	-	3	-	-
1 – Slight, 2 – Moderate, 3 – Substantial														

22NPC412	VIRTUAL INSTRUMENTATION LABORATORY	VI
COURSE OUTCOMES		POs Mapped
Upon Completion of the course, the students will be able to		
CO1	Explain the basic concepts, terminology, programming elements, and functional blocks of virtual instrumentation systems, including VIs, sub-VIs, loops, arrays, clusters.	-
CO2	Apply modular and structured virtual instrumentation program techniques using sub-VIs, FOR/WHILE loops, and structures for engineering applications.	PO1
CO3	Analyze the signals acquired using DAQ, ELVIS and Embedded kit.	PO2
CO4	Design signal conditioning circuits for real-time measurement applications.	PO3
CO5	Investigate modern virtual instrumentation tools and platforms to design control systems for real-time applications, and validate	PO4, PO5, PO6

	results while considering safety, environmental impact, sustainability, and societal relevance of virtual instrumentation-based measurement systems.	
CO6	Work effectively in a team to perform experiments by following safety procedures, analyze results, and present observations in the form of records	PO6, PO7, PO8, PO9, PO11

CO-PO Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	-	-	-	-	-	-	1	2	2
CO2	3		-	-	-	-	-	-	-	-	-	1	2	2
CO3	-	3	-	-	-	-	-	-	-	-	-	1	2	2
CO4	-	-	3	-	-	-	-	-	-	-	-	1	2	2
CO5	-	-	-	3	3	3	-	-	-	-	-	1	2	2
CO6	-	-	-	-	-	3	3	3	3	-	3	1	2	2
22NP C 412	3	3	3	3	3	3	3	3	3		3	1	2	2

22NPC621		PROCESS DYNAMICS AND CONTROL	VI
COURSE OUTCOMES:			PO's Mapped
At the end of the course, the students will have the ability to:			
CO1	Explain the basic principles, terminology, components and block diagrams for diverse industrial process control systems		
CO2	Apply the concepts of mathematical modelling, controller design and tuning, to implement control actions in a final control element for a given industrial process.		
CO3	Analyze the dynamics of process, evaluate the effect of different controller structures, tuning techniques, and different final control elements.		
CO4	Design and implement suitable controllers with appropriate tuning methods to achieve desired control actions in the final control element of a given industrial process.		
CO5	Simulate the dynamics of processes, controllers using different tuning techniques for real-world scenarios		
CO6	Present a Seminar/Case Study/Miniproject on evaluation of the advanced control schemes for various industrial processes considering environmental and industrial safety.		

COs/POs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO1	PSO2	PSO 3
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3		-	-	-	-	-	-	-	-	-	-	2	2
CO3	-	3	-	-	-	-	-	-	-	-	-	-	2	2
CO4	-	-	3	-	-	-	-	-	-	-	-	-	2	2
CO5	-	-	-	-	3	-	-	-	-	-	-	-	2	2
CO6	-	-	-	-	-	-	3	3	3	3	3	-	2	2
22NPC 621	3	3	3	-	3	-	3	3	3	3	3	-	2	2

1 – Slight, 2 – Moderate, 3 – Substantial

22NPC622		INDUSTRIAL CONTROL SYSTEMS												VI
COURSE OUTCOMES														PO's Mapped
At the end of the course, students will be able to														
CO1	Explain the structure and operation of industrial control systems by integrating PLC architecture and programming, industrial communication buses and protocols, SCADA and HMI components, and Distributed Control System architectures used in modern industries.												-	
CO2	Apply industrial control system concepts including PLC programming, industrial networking, SCADA/HMI supervision, and DCS architecture to automate and monitor industrial processes.												PO1	
CO3	Analyze PLC, fieldbus, SCADA/HMI, and DCS architectures to determine their suitability, performance, and limitations for discrete and continuous industrial process automation applications												PO2	
CO4	Design PLC-based control program by selecting appropriate PLC hardware and programming strategies using ladder logic, timers, counters, sequencing, and control functions to automate a given application												PO3	
CO5	Design an integrated industrial control solutions by selecting appropriate PLC architectures, programming strategies, industrial communication and fieldbus protocols, SCADA/HMI supervisory structures, and DCS architectures using automation simulation tools to meet the automation, monitoring, and control requirements of discrete and continuous industrial processes through Case studies/Mini Projects.												PO5, PO6, PO8, PO9, PO11	
CO6	Present a seminar on troubleshooting issues related to PLC installation and programming, communication failures, SCADA alarms, and DCS process interfacing problems along with emerging trends in Industrial Control Systems.												PO8, PO9, PO11	

	COURSE ARTICULATION MATRIX:													
	CO and PO Mapping:													
	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 1 0	P O 1 1	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	-	-	-	-	-	-	-	1	3
CO2	3	-	-	-	-	-	-	-	-	-	-	-	1	3
CO3	-	3		-	-	-	-	-	-	-	-	-	2	3
CO4	-	-	3	-	-	-	-	-	-	-	-	-	3	3
CO5	-	-	-	-	3	-	-	2	3	-	2	-	3	3
CO6	-	-	-	3	-	3	-	2	3	-	2	-	-	3
22NPC622	3	3	3	3	3	3	-	2	3	-	2	-	2	3
	1 – Slight, 2 – Moderate, 3 – Substantial													

22NPC623		BASICS OF VLSI DESIGN												VI
COURSE OUTCOMES														PO's Mapped
At the end of the course, students will be able to														
CO1	Explain the fundamentals of VLSI design, Physical and electrical characteristics of CMOS circuits and networks and testing of VLSI systems.												-	

CO2	Apply CMOS circuit techniques to draw stick diagrams, layout diagrams, compute DC characteristics, delay and power dissipation of basic, complex logic gates and clock circuits	PO1
CO3	Analyze clocking schemes and memories, performance of CMOS inverters and high-speed logic networks under different loading and operating conditions.	PO2
CO4	Design and develop CMOS circuits and high speed logic networks using suitable modeling techniques.	PO3
CO5	Simulate and evaluate VLSI circuits and subsystems using appropriate EDA tools and interpret timing and power results.	PO4, PO5
CO6	Engage in self-learning to study recent trends in VLSI technology and present findings considering cost and societal impact.	PO6, PO10, PO11

COURSE ARTICULATION MATRIX:														
CO and PO Mapping:														
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PSO 1	PSO 2	PSO 3
CO1	-	-	-	-	-	-	-	-	-	-	-	3	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	3	-	-
CO3	-	3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	-	-	3	-	-	-	-	-	-	-	-	3	-	-
CO5	-	-	-	1	3	-	-	-	-	-	-	3	-	-
CO6	-	-	-	-	-	1	-	-	-	1	3	-	-	-
22NPC6 23	3	3	3	1	3	1	-	-	-	1	3	3	-	-
1 – Slight, 2 – Moderate, 3 – Substantial														

22NPC624	PROCESS CONTROL LABORATORY	VI
COURSE OUTCOMES:		PO's Mapped
At the end of the course, the students will have the ability to:		
CO1	Explain the procedures for measuring and controlling the industrial process parameters such as Flow, Level, Pressure and Temperature.	-
CO2	Analyze the open-loop and closed-loop dynamic responses of various process control systems (e.g., level, flow, temperature) using experimental data.	PO1
CO3	Apply and evaluate appropriate controller tuning methods (e.g., Ziegler-Nichols, Cohen-Coon) to achieve desired performance specifications for process system.	PO2
CO4	Design and implement a complete control system for a multi-variable process like Cascade control, Feed-Forward control and MIMO process using modern software and hardware tools, and justify the design choices.	PO3
CO5	Communicate effectively by preparing clear and concise engineering reports to document experimental procedures, results, and conclusions	PO8, PO9 PO11
CO6	Work effectively in teams to plan, implement, and demonstrate control solutions for the real time processes.	PO8, PO11

COURSE ARTICULATION MATRIX :

COs/ POs	PO 1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO 10	PO 11	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	2	3	
CO3	-	3	-	-	-	-	-	-	-	-	-	2	3	
CO4	-	-	3	-	-	-	-	-	-	-	-	2	3	
CO5	-	-	-	-	-	-	-	3	3	-	3	-	2	3
CO6	-	-	-	-	-	-	-	3	-	-	3	-	2	3
22NPC 624	3	3	3	-	-	-	-	3	3	-	3	-	2	3

1 – Slight, 2 – Moderate, 3 – Substantial

22NPC625		INDUSTRIAL CONTROL SYSTEMS LABORATORY	VI
COURSE OUTCOMES			
At the end of the course, students will be able to			
CO1	Apply PLC programming concepts to develop and execute PLC programs for discrete and continuous industrial processes such as bottle filling, traffic light control, lift control etc.,		PO1, PO5
CO2	Analyze analog/digital field devices and configure and interface using AI, AO, DI, DO modules with industrial PLC and DCS systems, and validate signal acquisition		PO2, PO5
CO3	Develop feedback control strategies and implement speed control of motors and process control loops for flow/level systems using PLC/DCS-based control and monitoring.		PO3, PO5
CO4	Design and implement SCADA/HMI applications for industrial process stations involving real-time monitoring, alarm handling, trend visualization, and operator interaction for parameters such as flow, level, pressure, and temperature.		PO4, PO5
CO5	Work effectively in teams to plan, implement, and demonstrate PLC/DCS/SCADA/IoT-based control solutions for the industrial automation problems.		PO8, PO11
CO6	Demonstrate effective communication skills by documenting industrial control system experiments through technical reports and presenting PLC/DCS/SCADA implementation, results, and conclusions using appropriate engineering terminology and visuals.		PO9, PO11

	COURSE ARTICULATION MATRIX:													
	CO and PO Mapping:													
	P O 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PSO 1	PSO 2	PSO 3
CO1	3	-	-	-	3	-	-	-	-	-	-	-	2	3
CO2	-	3	-	-	3	-	-	-	-	-	-	-	2	3
CO3	-	-	3	-	3	-	-	-	-	-	-	-	2	3
CO4	-	-	-	3	3	-	-	-	-	-	-	-	2	3
CO5	-	-	-	-	-	-	-	3	-	-	3	-	2	3
CO6	-	-	-	-	-	-	-	-	3	-	3	-	-	3

22NPC625	3	3	3	3	3	-	-	-	3	-	3	-	2	3
	1 – Slight, 2 – Moderate, 3 – Substantial													

22NES609	DESIGN THINKING FOR INSTRUMENTATION ENGINEERING	VI
COURSE OUTCOMES		POs Mapped
At the End of the course, the students will have the ability to		
CO1	Explain the principles, need, objectives, concepts, and stages of the Design Thinking process, including creative thinking and problem-solving methodologies, with suitable real-world examples.	
CO2	Apply the concepts of Design Thinking and creative problem-solving techniques to identify user needs, define problem statements, and generate feasible solution ideas for real-world engineering problems.	PO1,
CO3	Analyze real-world problems through field visits by identifying stakeholders, target customers, constraints, and use cases, and evaluate alternative solution approaches.	PO2,
CO4	Design an engineering product or system by following the Design Thinking approach, including ideation, conceptualization, and development of a proof-of-concept or minimum usable product.	PO3,
CO5	Simulate or demonstrate the functionality of the proposed solution using prototypes, models, mock-ups, or conceptual simulations to validate design assumptions and user requirements.	PO1, PO2, PO3, PO4, PO11
CO6	Present and defend the designed solution through a structured report and seminar-style pitch, effectively communicating the problem, design process, prototype, and expected impact.	PO9, PO10, PO11

a) CO/PO Mapping														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1	-	-	-	-	-	-	-	-	-	-	-	1	-	-
CO2	2	-	-	-	-	-	-	-	-	-	-	2	1	1
CO3	-	3	-	-	-	-	-	-	-	-	-	3	2	2
CO4	-	-	3	-	-	-	-	-	-	-	-	3	3	3
CO5	2	1	2	2	-	-	-	-	-	-	3	2	2	3
CO6	-	-	-	-	-	-	-	-	2	3	3	1	1	2
Average	2	2	2.5	2	-	-	-	-	2	3	3	2	1.8	2.2

22NPE\$09	FIBER OPTICS AND LASER INSTRUMENTATION	VI
COURSE OUTCOMES:		PO's Mapped
CO1	Explain the principles of light propagation in optical fibers, characteristics and types of lasers	
CO2	Apply optical fiber-based measurement principles for sensing and instrumentation of physical parameters and holography principles, holographic interferometry and non-destructive testing	PO1

CO3	Analyze the fundamental characteristics of different types of fibre optics and lasers, and resonator configurations.	PO2
CO4	Design laser-based material processing techniques for industrial, environmental and medical applications.	PO3, PO6
CO5	Present seminar/technical report on holography principles, holographic interferometry, non-destructive testing, and medical applications of lasers with emphasis on safety aspects	PO2, PO6, PO9, PO11
CO6	Solve engineering problems related to optical fiber and laser systems and demonstrate independent learning through assignments, case studies, and applications.	PO9, PO11

Cos \ Pos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PS01	PS02	PS03
CO1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	3	2
CO3	-	3	-	-	-	-	-	-	-	-	-	-	3	2
CO4	-	-	3	-	-	2	-	-	-	-	-	-	3	2
CO5	-	2	-	-	-	2	-	-	2	-	2	-	-	3
CO6	-	-	-	-	-	-	-	-	2	-	2	-	2	3
Average	3	2.5	3	-	-	2	-	-	2	-	2	-	2.75	2.4

22NPE\$28	INDUSTRIAL INTERNET OF THINGS	VI
COURSE OUTCOMES At the End of the course , the students will have the ability to		POs Mapped
CO1	Explain the concepts of digitisation, digital transformation, cyber-physical systems, Industry 4.0 evolution, and the overall role of IIoT architectures, communication technologies, analytics, and industrial applications in smart manufacturing and process industries.	
CO2	Apply ISA-95 framework, IIoT architectural concepts, sensor and actuator characteristics, industrial wireless standards, and communication protocols to map appropriate technologies to given industrial automation and monitoring use cases.	PO1
CO3	Analyze IIoT architectures, data analytics workflows, industrial communication protocols, and cybersecurity challenges to evaluate system performance and risks.	PO2
CO4	Design an IIoT-based industrial solution by integrating smart sensors/actuators, communication protocols, edge-cloud infrastructure, analytics techniques, and emerging technologies such as AR/VR for selected industrial domains.	PO3
CO5	Simulate IIoT data acquisition, communication, visualization, and analytics operations using IoT platforms and tools, including basic AI/ML-based industrial data processing.	PO1,PO2, PO3, PO4,PO11

C06	Present a technical seminar or case study on industrial IIoT applications, such as smart factories, brownfield IoT, oil and gas, retailing, or big-data-driven value creation, demonstrating technical depth and effective communication.	PO9,PO10, PO11
-----	---	-------------------

a) CO/PO Mapping														
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PS01	PS02	PS03
C01	-	-	-	-	-	-	-	-	-	-	-	1	1	2
C02	3	-	-	-	-	-	-	-	-	-	-	2	3	2
C03	-	3	-	-	-	-	-	-	-	-	-	2	2	3
C04	-	-	3	-	-	-	-	-	-	-	-	2	3	3
C05	1	1	2	3	-	-	-	-	-	-	3	1	2	3
C06	-	-	-	-	-	-	-	-	2	3	3	-	1	2
22NPE\$28	2	2	2.5	3	-	-	-	-	2	3	3	1.6	2	2.5