

GOVERNMENT COLLEGE OF TECHNOLOGY

(An Autonomous Institution Affiliated to Anna University) Coimbatore - 641 013

Curriculum and Syllabi For B.E. (PRODUCTION ENGINEERING) (Full Time)

OFFICE OF THE CONTROLLER OF EXAMINATIONS GOVERNMENT COLLEGE OF TECHNOLOGY THADAGAM ROAD, COIMBATORE - 641 013

PHONE 0422 - 2433355 FAX : +91 0422 - 2433355 email : gctcoe@gct.ac.in

VISION AND MISSION OF THE INSTITUTION

VISION

To emerge as a centre of excellence and eminence by imparting futuristic technical education in keeping with global standards, making our students technologically competent and ethically strong so that they can readily contribute to the rapid advancement of society and mankind.

MISSION

- To achieve academic excellence through innovative teaching and learning practices.
- To enhance employability and entrepreneurship.
- To improve the research competence to address societal needs.
- To inculcate a culture that supports and reinforces ethical, professional behaviours for a harmonious and prosperous society.

VISION AND MISSION OF THE DEPARTMENT

VISION

To be recognized globally for outstanding education, industrial orientation and research leading to grooming competitive engineers, who are innovative, entrepreneurial and successful in advanced fields of engineering and research.

MISSION

To develop technically competent, socially committed and disciplined production engineers with creative ability, innovative thinking and managerial skills to produce quality products for the benefit of mankind.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

DEPARTMENT OF PRODUCTION ENGINEERING PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO 1: Ability to design manufacturing processes, products, the equipment, tooling and necessary environment for the manufacture of products that meet specific material and other requirements.

PSO 2: Ability to use design, manufacturing and industrial engineering software packages to formulate and solve real time issues.

PSO 3: Ability to analyze, synthesis and control manufacturing operations using statistical methods and to create competitive advantage through the application of manufacturing planning, strategy, quality and control concepts.

BOARD OF STUDIES IN BASIC SCIENCES 2016-17 B.E.PRODUCTION ENGINEERING

CBCS 2016 REGULATIONS

Sl.	Course			Continuous	End	Total		Cre	dits	
No.	Code	Course Title	Category	Assessment	Sem	Marks	L	Т	Р	С
110.	Code			Marks	Marks	IVIALKS	L	1	Г	C
		THEORY								
1	16PHS1Z1	Communication Skills in	HS	50	50	100	2	2	0	3
1	IOPHSIZI	English	пз	50	50	100	2			3
2	16PBS1Z2	Engineering Mathematics I	BS	50	50	100	3	2	0	4
3	16PBS103	Applied Physics	BS	50	50	100	3	0	0	3
4	16PBS104	Engineering Chemistry	BS	50	50	100	3	0	0	3
5	16PES105	Basics of Electrical and	ES	50	50	100	3	0	0	3
3	10PES103	Electronics Engineering	ES	50	50	100	3		0	3
		PRACTICAL								
6	16PBS106	Physics Laboratory	BS	50	50	100	0	0	4	2
7	16PES107	Engineering Graphics	ES	50	50	100	2	0	4	4
		TOTAL	NUTURALS	350	350	700				22

FIRST SEMESTER

SECOND SEMESTER

			SWA Y	Continuous	End			Cre	dits	
Sl. No.	Course Code	Course Title	Category	Assessment Marks	Sem Marks	Total Marks	L	Т	Р	С
		THEORY								
1	16PHS2Z1	Technical English	HS	50	50	100	2	2	0	3
2	16PBS2Z2	Engineering Mathematics II	BS	50	50	100	3	2	0	4
3	16PBS2Z3	Materials Science	BS	50	50	100	3	0	0	3
4	16PHS2Z4	Environmental Science and Engineering	HS	50	50	100	3	0	0	3
5	16PES2Z5	Programming in C	ES	50	50	100	3	0	0	3
6	16PES206	Engineering Mechanics	ES	50	50	100	3	2	0	4
		PRACTICAL								
7	16PBS207	Chemistry Laboratory	BS	50	50	100	0	0	4	2
8	16PES208	Workshop Practice	ES	50	50	100	0	0	4	2
9	16PES2Z9	Programming in C Laboratory	ES	50	50	100	0	0	4	2
		TOTAL		450	450	900				26

THIRD SEMESTER

S1.	Course			Continuous	End	Total		Cre	edit	s
No.	Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	Т	Р	C
		THEORY								
1	16PBS3Z1	Engineering Mathematics III	BS	50	50	100	3	2	0	4
2	16PES302	Strength of Materials	ES	50	50	100	3	0	0	3
3	16PPC303	Fluid Mechanics and Machinery	PC	50	50	100	3	0	0	3
4	16PES304	Thermal Sciences	ES	50	50	100	3	2	0	4
5	16PPC305	Foundry and Welding Technology	PC	50	50	100	3	0	0	3
6	16PPC306	Engineering Metallurgy	PC	50	50	100	3	0	0	3
		PRACTICAL								
7	16PES307	Strength of Materials and Fluid Machinery Laboratory	ES	50	50	100	0	0	4	2
8	16PPC308	Metallurgy Laboratory and Thermal Science Laboratory	PC	50	50	100	0	0	4	2
		TOTAL	1 32 M	400	400	800				24
		(Vost	We Drunded	N.						

FOURTH SEMESTER

S1.	Course			Continuous	End	Total		Cre	dits	
No.	Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	Т	Р	С
		THEORY								
1	16PBS401	Probability and Statistics	BS	50	50	100	3	2	0	4
2	16PES402	Applied Electronics and Microprocessor	ES	50	50	100	3	0	0	3
3	16PES403	Electrical Machines and Drives	ES	50	50	100	3	0	0	3
4	16PPC404	Mechanics of Machines	PC	50	50	100	3	2	0	4
5	16PPC405	Metal Forming Processes	PC	50	50	100	3	0	0	3
6	16PPC406	Machine Tools and Processes	PC	50	50	100	3	0	0	3
		PRACTICAL								
7	16PPC407	Machine Drawing	PC	50	50	100	0	0	4	2
8	16PES408	Electrical Machines and Microprocessor Laboratory	ES	50	50	100	0	0	4	2
		TOTAL		400	400	800				24

FIFTH SEMESTER

S1.	Course			Continuous	End	Total		Cre	dits	
No.	Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	Т	Р	С
		THEORY								
1	16PHS501	Total Quality Management	HS	50	50	100	3	0	0	3
2	16PPC502	Machine Elements Design	PC	50	50	100	3	2	0	4
3	16PPC503	Computer Numerical Control Machines	PC	50	50	100	3	0	0	3
4	16PPC504	Metrology and Computer Aided Inspection	PC	50	50	100	3	0	0	3
5	16PPC505	Fluid Power Drives and Controls	PC	50	50	100	3	0	0	3
6	OE - I	Open Elective I	OE	50	50	100	3	0	0	3
		PRACTICAL								
7	16PPC507	Manufacturing Processes Laboratory I	PC	50	50	100	0	0	4	2
8	16PPC508	Metrology Laboratory	PC	50	50	100	0	0	4	2
		TOTAL	þ	400	400	800				23

SIXTH SEMESTER

S1.	Course			Continuous	End	Total		Cre	dits	
No.	Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	Т	Р	С
		THEORY	B							
1	16PPC601	Operations Research Techniques	PC	50	50	100	3	2	0	4
2	16PPC602	Computer Aided Design	PC	50	50	100	3	0	0	3
3	16PPC603	Process Planning and Cost Estimation	PC	50	50	100	3	0	0	3
4	16PPC604	Jigs, Fixtures and Press Tools	PC	50	50	100	3	0	0	3
5	OE – II	Open Elective II	OE	50	50	100	3	0	0	3
6	PE - I	Professional Elective I	PE	50	50	100	3	0	0	3
		PRACTICAL								
7	16PPC607	Manufacturing Processes Laboratory II	PC	50	50	100	0	0	4	2
8	16PEE608	Modelling Laboratory	EEC	50	50	100	0	0	4	2
9	16PEE609	Mini Project	EEC	100	-	100	0	0	8	4
		TOTAL		500	400	900				27

SEVENTH SEMESTER

S1.	Course			Continuous	End	Total		Cre	dits	
No.	Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	T	Р	C
		THEORY								
1	16PPC701	Automation and CIM	PC	50	50	100	3	0	0	3
2	16PPC702	Production Planning and Control	PC	50	50	100	3	0	0	3
3	OE – III	Open Elective III	OE	50	50	100	3	0	0	3
4	PE – II	Professional Elective II	PE	50	50	100	3	0	0	3
5	PE – III	Professional Elective III	PE	50	50	100	3	0	0	3
6	PE – IV	Professional Elective IV	PE	50	50	100	3	0	0	3
		PRACTICAL								
7	16PEE707	Automation and Computer Aided Manufacturing Laboratory	EEC	50	50	100	0	0	4	2
8	16PEE708	Simulation Laboratory	EEC	50	50	100	0	0	4	2
		TOTAL	nisto put lib bi	400	400	800				22

EIGHTH SEMESTER

S1.	Course	Ŕ		Continuous	End	Total		Cre	dits	
No.	Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	Т	Р	С
		THEORY								
1	PE – V	Professional Elective V	PE	50	50	100	3	0	-	3
2	PE - VI	Professional Elective VI	PE	50	50	100	3	0	-	3
3	16PEE801	Project Work	EEC	50	50	100			16	8
		TOTAL		150	150	300				14

Sl.	Course			Continuous	End	Total		Cre	dits	
No.	Code	Course Title	Category	Assessment Marks	Sem Marks	Marks	L	Т	Р	С
1	16PPEX01	Mechatronic Systems	PE	50	50	100	3	0	0	3
2	16PPEX02	Robotics and Machine Vision System	PE	50	50	100	3	0	0	3
3	16PPEX03	Finite Element Techniques	PE	50	50	100	3	0	0	3
4	16PPEX04	Production of Automotive Components	PE	50	50	100	3	0	0	3
5	16PPEX05	Unconventional Manufacturing Processes	PE	50	50	100	3	0	0	3
6	16PPEX06	Additive Manufacturing	PE	50	50	100	3	0	0	3
7	16PPEX07	Power Plant Engineering	PE	50	50	100	3	0	0	3
8	16PPEX08	Robust Design	PE	50	50	100	3	0	0	3
9	16PPEX09	Statistical Quality Control and Reliability Engineering	PE	50	50	100	3	0	0	3
10	16PPEX10	Advanced Welding Technology	PE	-50	50	100	3	0	0	3
11	16PPEX11	Product Design and Process Engineering	PE	50	50	100	3	0	0	3
12	16PPEX12	Design for Manufacture and Assembly	PE	50	50	100	3	0	0	3
13	16PPEX13	Human Values and Professional Ethics-II	РЕ	50	50	100	3	0	0	3
14	16PPEX14	Plant Layout and Material Handling	PE	50	50	100	3	0	0	3
15	16PPEX15	Managerial Economics	PE	50	50	100	3	0	0	3
16	16PPEX16	Non Destructive Testing Techniques	PE	50	50	100	3	0	0	3
17	16PPEX17	Supply Chain Management	PE	50	50	100	3	0	0	3
18	16PPEX18	Production Management	PE	50	50	100	3	0	0	3
19	16PPEX19	Lean Manufacturing	PE	50	50	100	3	0	0	3
20	16PPEX20	Micro manufacturing Processes	PE	50	50	100	3	0	0	3
21	16PPEX21	Theory of Metal Cutting	PE	50	50	100	3	0	0	3
22	16PPEX22	Advanced Casting Technology	PE	50	50	100	3	0	0	3
23	16PPEX23	Total Productive Maintenance	PE	50	50	100	3	0	0	3
24	16PPEX24	Green Manufacturing	PE	50	50	100	3	0	0	3

LIST OF PROFESSIONAL ELECTIVE SUBJECTS

S1.	Course			Continuous	End	Total		Cre	dits	
No.	Code	Course Title	Category	Assessment	Sem	Marks	L	Т	Р	C
110.				Marks	Marks				-	
1	16AOEX01	Nanoscience and Technology	OE	50	50	100	3	0	0	3
2	16AOEX02	Material Characterizations	OE	50	50	100	3	0	0	3
3	16AOEX03	Electrochemical Technology	OE	50	50	100	3	0	0	3
4	16AOEX04	Polymer Technology	OE	50	50	100	3	0	0	3
5	16COEX05	Disaster Management and Mitigation	OE	50	50	100	3	0	0	3
6	16COEX06	Environmental Management	OE	50	50	100	3	0	0	3
7	16COEX07	Town Planning and Architecture	OE	50	50	100	3	0	0	3
8	16MOEX09	Composite materials	OE	50	50	100	3	0	0	3
9	16MOEX10	Automobile Engineering	OE	50	50	100	3	0	0	3
10	16EOEX11	Renewable Energy Sources and Technology	OE	50	50	100	3	0	0	3
11	16EOEX12	Smart Grid Technology	OE	50	50	100	3	0	0	3
12	16LOEX13	Principles of Communication	OE	50	50	100	3	0	0	3
13	16LOEX14	Microcontrollers and its applications	OE	50	50	100	3	0	0	3
14	16NOEX15	Industrial Automation Systems	OE	50	50	100	3	0	0	3
15	16NOEX16	Measurement and Instrumentation	OE	50	50	100	3	0	0	3
16	16SOEX17	Enterprise JAVA	OE	50	50	100	3	0	0	3
17	16SOEX18	Cyber Security	OE OE	50	50	100	3	0	0	3
18	16SOEX19	Network Essential	OE	50	50	100	3	0	0	3
19	16IOEX20	Programming in Python	OE	50	50	100	3	0	0	3
20	16IOEX21	BIG Data Science	OE	50	50	100	3	0	0	3
21	16IOEX22	Object Oriented Programming using C++	OE	50	50	100	3	0	0	3
22	16BOEX23	Computational Biology	OE	50	50	100	3	0	0	3
23	16BOEX24	Biology for Engineers	OE	50	50	100	3	0	0	3
24	16BOEX25	Fundamentals of Bioengineering	OE	50	50	100	3	0	0	3

LIST OF OPEN ELECTIVE SUBJECTS

LIST OF ONE CREDIT COURSES

(Max. 1 Course / Semester upto VII semester only)

SI.No.	Course Code	Course Title
1	16POC1Z1	Human Values I
2	16POCX02	Human Values and Professional Ethics
3	16POCXZ3	Yoga for Youth Empowerment
4	16POCX04	Basics of Civil Engineering
5	16POCX05	Metallography
6	16POCX06	Design of Experiments using Taguchi Concept
7	16POCX07	Entrepreneurship Development
8	16POCX08	Patents Systems in Engineering
9	16POCX09	Industrial case studies
10	16POCX10	Project Management
11	16POCX11	Industrial safety
12	16POCX12	Six Sigma
13	16POCX13	Professional Skills
14	16POCX14	Solar Energy Systems
15	16POCX15	Wind Energy Systems
16	16POCX16	Refrigeration Systems
17	16POCX17	Air Conditioning Systems

CURRICULUM DESIGN 2016

FULL TIME B.E PRODUCTION ENGINEERING (U.G)

SUMMARY

SI. No	Subject Area			Cr	redits I	Per Se	meste	er		Total Credits	% of Total Credits	Total No. of subjects	AICTE recommended	range of credits %
		Ι	п	III	IV	v	VI	VII	VIII				Min	Max
1	HS	3	6	-	-	3	-	-	-	12	6.59	4	5	10
2	BS	12	9	4	4	-9		ng.	-	29	15.93	9	15	20
3	ES	7	11	9	8	E.	1466 Q	NG CHE	S)	35	19.23	12	15	20
4	PC	-	-	11	12	17	15	6	7	61	33.52	21	30	40
5	PE	-	-	-	-))		3.1/	9	6	18	9.89	6	10	15
6	OE	-	-	-	-{	3	3	3	1	9	4.95	3	5	10
7	EEC	-	-	-		X	6	4	8	18	9.89	5	10	15
	Total	22	26	24	24	23	27	22	14	182	100	60		
8	Non-Credit/ Mandatory	1	-	-	-	-)	-	-	1				

16PHS1Z1

COMMUNICATION SKILLS IN ENGLISH

(*Common to all branches*)

Category : HS

LTPC 2 2 0 3

Pre-Requisites: Nil

Course Objectives:

- To make the learners understand the usage of basic grammar in English.
- To enhance the learner's speaking skills through appropriate listening practice.
- To instill reading habits to practice communicative tasks and comprehension •
- To improve the learner's writing skills through various means
- To enrich the vocabulary of learners for speaking and writing

UNIT I

Listening - Listening to practice basic pronunciation at phonemic and word level, Listening to informal conversations of exchanging greetings and introducing oneself/others; Speaking-Introducing oneself, one's family / friend, speaking about one's place; Reading-Reading to practice stress and pause; Writing-Autobiographical writing, Letter to seek permission, Letter to issue certificates; Grammar- Use of Auxiliary Verbs, Adjectives and Adverbs; Vocabulary-Word formation, Synonyms and Antonyms of High frequency words.

UNIT II

Listening-Listening to Telephone Conversations for taking and leaving messages, making enquiries; Speaking—Role-play activities based on real life situations, Narrating daily routines; Readingskimming and scanning, Reading for comprehension with exercises; Writing-Advertisements and slogan writing, Imperative instructions, Definitions; Grammar - Tenses, Prepositions; Vocabularv-Commonly confused words

UNIT III

Listening -Listening to give instructions, Making requests and responding to requests, Thanking someone and responding to thanks; Speaking -Group Discussion on chosen topics, Describing a simple process; Reading-Reading and interpreting visual material, Critical reading; Writing -Letter to the Editor of a Newspaper, Recommendations; Grammar- Impersonal Passive, Subject-verb agreement; Vocabulary- Collocation, Word Association

UNIT IV

Listening-Listening to accept/refuse invitation, Listening to apologize, Listening to congratulate; Speaking - Debates on current social affairs; Reading -Reading to make inference, Paraphrasing; Writing- Personal letter (Inviting your friend to a function, congratulating someone on his / her success, thanking one's friends / relatives); Grammar - 'Wh'-questions, Modal verbs; Vocabulary -Single word substitutes -Use of abbreviations & acronyms

UNIT V

Listening -Video Listening to different accents, Viewing Speeches, Viewing English songs, Viewing short films; Speaking -Giving impromptu talks, Making presentations on given topics; Reading -Extensive reading; Writing –Writing General Article, Writing Short Stories; Grammar - Common Errors in English; Vocabulary – Word Pairs with Repetitive meaning.

Contact Periods:

Lecture: 30 Periods **Tutorial: 30 Periods** Practical: 0 Periods **Total: 60 Periods**

9

6+6Periods

6+6Periods

6+6Periods

6+6Periods

6+6Periods

TEXT BOOKS AUTHOR NAME

Department of English, Anna University. Mindscapes Sadanand, Kamlesh & Punitha, Susheela

REFERENCE BOOKS AUTHOR NAME

Raman, Meenakshi &

Vijay, Anbazhagan.J, &

Sangeetha Sharma

Jaishree.N Rizvi, Ashraf. M.

English for Technologists and Engineers Spoken English: A Foundation Course (Part 1)

TITLE OF BOOK

TITLE OF BOOK

Technical Communication: Principles and Practice Technical English-I

Effective Technical Communication Communication Skills for Technology Face 2 Face: Elementary Student's Book

PUBLISHER, YEAR OF PUBLICATION Orient Blackswan, Chennai, 2012

Orient Blackswan, Hyderabad. 2014

PUBLISHER, YEAR OF PUBLICATION

Oxford University Press, New Delhi. 2011 Global Publishers, Chennai, 2016

Tata McGraw-Hill, New Delhi. 2005 Pearson, New Delhi. 2001

Cambridge University Press, New Delhi. 2009

Rutherford, Andrea. J Basic

Redston, Chris, Cunningham, Gillie

EXTENSIVE READING

(Not for Examination) Kalam, Abdul.A.P.J. Wings of Fire. Universities Press, Hyderabad. 1999.

Websites

- 1. http://www.usingenglish.com
- 2. http://www.uefap.com

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

CO1: The learner will be able to understand basic grammar and the learner will have sufficient command over language by training his tongue and tuning his ear through apt listening tasks.

CO2: Reading tasks will enable the learner practice phonological and linguistic aspect of learning, help comprehend and create interest in extensive reading.

CO3: The learner shall be able to write appropriately for a given context and use the right word at the right place.

PO/PSO	PO	PO	РО	PO	РО	PO	PO	PO	РО	PO	РО	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	-	М	-	М	-	-	-	-	-	-	-	L	L	L
CO 2	-	-	-	-	-	M	-	-	-	-	М	-	L	L	L
CO 3	-	-	-	-	-	-	-	-	-	Н	-	-	L	L	L
16PHS1Z1	-	-	L	-	L	L	-	-	-	L	L	-	L	L	L

Course Articulation Matrix

L- Low, M - Moderate (Medium), H - High

16PBS172

ENGINEERING MATHEMATICS I

(*Common to all branches*)

Category : BS LTPC 3 2 0 4

Pre-Requisites: Nil

Course Objectives:

- To familiarize techniques of matrix algebra including properties of eigen values and • eigen vectors.
- To gain the knowledge of hyperbolic functions and application problems in differential • calculus.
- To familiarize with functions of several variables and Functions of two variables including extremum problems, Jacobian and Leibnitz rule of integration.
- To perform double and triple integration with relevant to surface area and volume of • solid.

UNIT I

MATRICES

Eigen values and Eigen vectors of a real matrix-Characteristic equation-Properties of Eigen values and eigen vectors-Cayley Hamilton theorem - Diagonalization of matrices-Reduction of a quadratic form to canonical form by orthogonal transformation-Nature of quadratic forms.

UNIT II HYPERBOLIC FUNCTIONS AND DIFFERENTIAL 9+6 Periods CALCULUS

Hyperbolic and Inverse Hyperbolic functions-Identities- Real and Imaginary parts-Solving Problems using Hyperbolic functions.

Curvature and radius of curvature-Cartesian and polar coordinates- center of curvature and Evolutes- Envelopes and Evolute as envelope of normal.

UNIT III FUNCTIONS OF SEVERAL VARIABLES 9+6 Periods Functions of two variables- Taylor's theorem (statement only) and expansions-Maxima and Minima-Constrained extremum by Lagrange's multiplier method-Jacobians-Differentiation under integral sign

UNIT IV

INTEGRAL CALCULUS

Definite and Indefinite integrals-Substitution rule-Techniques of Integration-Integration by parts-Trigonometric substitutions-Integration of rational function by partial fractions-Integration of irrational functions-Improper integrals.

UNIT V

MULTIPLE INTEGRALS

Practical: 0 Periods

9+6 Periods

Total: 75 Periods

9+6 Periods

Beta and Gamma integrals and properties. Double Integrals-Change of order of integration-Double integrals in polar coordinates-Area enclosed by plane curves-Triple integrals-Volume as a triple integral-Transformation to Polar, Cylindrical and Spherical polar coordinates.

Tutorial: 30 Periods

Contact Periods: Lecture: 45 Periods TENT DOOLO

TEXT BOOKS		
AUTHOR NAME	TITLE OF BOOK	PUBLISHER, YEAR OF PUBLICATION
Veerarajan T	Engineering Mathematicsfor Semesters I and II	Tata McGraw Hill Publishing Co., New Delhi, 2015.
Kandasamy P, ThilagavathyK and Gunavathy K	Engineering Mathematics for I year B.E/B.Tech.	S.Chand& Co, Ramnagar, New Delhi, Reprint2013.
S. Narayanan and Manicavachagom Pillai T.K.	Calculus, Vol.1 , II and III,	S. Viswanathan, Printers and Publishers Pvt. Ltd, Chennai, 2009.

9+6 Periods

REFERENCE BOOKS AUTHOR NAME

110111010101010	11122 01 20011	i e baisiiaig
		YEAR OF PUBLICATION
Erwin Kreyszig	Advanced Engineering	Wiley & sons (Asia) Ltd,
	Mathematics	10 th Edition, 2015.
Ray Wylie.C and Louis	Advanced Engineering	Tata McGraw Hill Company,
Barrett	Mathematics	New Delhi, 2004.
Grewal B. S	Higher Engineering	Khanna Publishers, New Delhi,
	Mathematics	43 rd Edition, 2014.
Ramana B V	Higher Engineering	Tata McGraw Hill Co. Ltd,
	Mathematics	NewDelhi, 11 th Print, 2010.
Bali N., Goyal M and	Advanced Engineering	Firewall Media (An Imprint of
Watkins C	Mathematics	Laxmi Publications Pvt Ltd), New
		Delhi, 7 th Edition, 2009.
Bali N.P and Goyal M	A text book of Engineering	University Science Press (An
	Mathematics	Imprint of Laxmi Publications Pvt
		Ltd),
		New Delhi,2014

PUBLISHER,

TITLE OF BOOK

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

Ŕ

CO1: Acquire knowledge of eigen values and eigen vectors including properties through matrix theory.

CO2: Understand the hyperbolic functions and applications of differential calculus.

CO3: Acquire fluency in partial differentiation and solving problems related to maxima and minima for more independent variables.

CO4: Understand the standard types of integration and solution to various integrals.

CO5: Understand the multiple integrals and their applications to engineering problems.

PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Н	Н	Н	М	100	200		STR.	N'UM	Н	М	М	-	L	-
CO 2	Н	М	М	-	_ ``	0		20	I A	М	-	-	L	М	L
CO 3	Н	Н	Н	-	-	-	-	-	-	L	-	-	М	L	L
CO 4	Н	Н	М	М	-	-	-	-	-	M	L	М	-	-	-
CO 5	Н	М	M	-	-	-	-	-	-	L	L	М	М	L	L
16PBS1Z2	Η	Н	М	М	-	-	-	-	-	М	L	М	М	L	L

Course Articulation Matrix

L-Low, M – Moderate (Medium), H - High

16PBS103

APPLIED PHYSICS

Category: BS LTPC 3 0 0 3

(Common to Civil, Mechanical, Production and Industrial Biotechnology branches)

Pre-Requisites: Nil

Course Objectives:

To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology. Upon completion of this course the students will be familiar with:

- Concepts, types of lasers and its applications, fibre optic principles and its applications.
- Basics of properties of matter & thermal physics
- Origin of quantum physics, Schrödinger's equation and applications.
- Principles of acoustics, ultrasonics and their industrial applications.
- Fundamentals of vacuum science, production and measurement.

UNIT I

LASERS & FIBRE OPTICS

9 Periods

Introduction- Principle of laser action - characteristics of laser - Spontaneous emission and Stimulated emission -Einstein's coefficients - population inversion - methods of achieving population inversion -Optical Resonator -Types of Lasers - Principle, construction and working of Nd-YAG, CO₂,Semiconductor laser - applications of laser-Hologram.

Introduction - Basic Principles involved in fiber optics- Total internal reflection -Structure of optical fiber -Propagation of light through optical fiber -Derivation for Numerical Aperture and acceptance angle - fractional index change - Classification of optical fiber based on materials, refractive index profile and Modes - Fiber optical communication links-Fiber optic sensorsdisplacement

PROPERTIES OF MATTER & THERMAL PHYSICS UNIT II 9 Periods Elasticity- Hooke's law- stress-strain diagram - Factors affecting elasticity - Bending moment -Depression of a cantilever - Young's modulus by uniform bending - I shaped girders. Thermal expansion - thermal stress - thermal conductivity - heat conduction in solids - flow of heat

through compound media - Forbe's and Lee's disc method: theory and experiment.

OUANTUM PHYSICS AND APPLICATIONS UNIT III 9 Periods

Limitations of classical Physics - Introduction to Quantum theory - Dual nature of matter and radiation-de-Broglie wavelength in terms of voltage, energy, and temperature -Heisenberg's Uncertainty principle - verification - physical significance of a wave function- Schrödinger's Time independent and Time dependent wave equations -- Particle in a one dimensional potential well -Scanning Electron Microscope (SEM)-Transmission Electron Microscope (TEM).

UNIT IV

ACOUSTICS & ULTRASONICS

9 Periods

Classification of sound - loudness and intensity - Weber-Fechner law - standard intensity and intensity level - decibel - reverberation - reverberation time - sound absorbing materials -Determination of absorption coefficient - factors affecting acoustics of buildings.

Introduction - properties of ultrasonic waves - production of ultrasonic waves; Magnetostriction effect- Magnetostriction generator- Piezoelectric effect- Piezoelectric generator- Acoustic grating -Determination of wavelength and velocity of ultrasonics-cavitation - applications- ultrasonic drillingultrasonic welding- ultrasonic soldering and ultrasonic cleaning-Non- destructive Testing- Pulse echo system

UNIT V

VACUUM SCIENCE

9 Periods

Introduction - Importance of vacuum in industries - Pumping speed and throughput - Types of pumps-Rotary vane type Vacuum pump(oil sealed), Diffusion Pump and Turbo Molecular Pump -Measurement of High Vacuum-McLeod Gauge-Pirani Gauge-Penning Gauge - Application to thin film technology.

Contact Periods: Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

5 Total: 45 Periods

TEXT BOOKS AUTHOR NAME **TITLE OF BOOK** PUBLISHER, YEAR OF PUBLICATION Arumugam M Anuradha Publishers, 2010. **Engineering** Physics (Unit I & Unit III) P.K.Palanisamy Engineering physics-I SciTech Publications (India) Pvt. *Ltd*, 2015. (Unit II & Unit IV) Ganesan S and Iyandurai N **Applied** Physics KKS Publishers, Chennai, 2007.(Unit V)

REFERENCE BOOKS AUTHOR NAME

TITLE OF BOOK

Avadhanulu M N andA Textbook of EngineeringKshirsagar P GPhysicsGaur R.K. and Gupta S.LEngineering PhysicsK.RajagopalEngineering Physics

PUBLISHER, YEAR OF PUBLICATION S.Chand and Company Ltd, New Delhi, 2010. Dhanpat Rai Publishers, 2009. PHI Learning Private limited, New Delhi, 2015.

COURSE OUTCOMES:

Upon completion of this course, the students will be able to **CO1:** Analyze the construction and working of Nd-YAG, CO₂, Semiconductor lasers. Explain fiber optics and classify fibers based on index profiles and modes.

[Familiarity]

CO2: Acquire knowledge in properties of matter and thermal Physics [Application] **CO3:** Analyze the dual nature of matter using Heisenberg's Uncertainty principle, Schrodinger's

time independent and dependent wave equations. [Assessment]

CO4: Apply piezoelectric detector method for industrial applications. [Usage and Assessment]

CO5: Production & Measurement of vacuum. [Familiarity]

PO/PSO	PO	РО	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Η	Η	Н	Н	Н	Н	Н	-	-	-	-	-	L	L	L
CO 2	Н	Н	Н	Η	Н	Н	Н	-	-	-	-	-	L	L	L
CO 3	М	М	-	-	М	М	М	-	-	-	-	-	L	L	L
CO 4	Η	Η	Н	Н	Н	Н	Н	-	-	-	-	-	L	L	L
CO 5	Н	Η	Н	Η	Н	Н	Н	-	-	-	-	-	L	L	М
16PBS103	Н	Η	Η	Η	Н	Н	Η	-	-	-	-	-	L	L	L

Course Articulation Matrix

L- Low, M - Moderate (Medium), H - High

16PBS104

ENGINEERING CHEMISTRY

(Common to Civil, Mechanical and Production)

Category : BS LTPC 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

• The course is aimed at imparting knowledge of Engineering Chemistry topics which would be useful for students to understand chemistry relevant to conventional engineering fields.

UNIT I

WATER TECHNOLOGY

Water- sources - types of impurities, hardness - temporary and permanent - units - ppm and mg/L estimation of hardness - EDTA method- problems- Boiler troubles- internal treatment - external treatment- lime soda process and ion exchange process- Drinking water - characteristics- colour, odour, turbidity, chloride - treatment - preliminary, primary and disinfection methods- chlorinationbreakpoint chlorination, desalination - reverse osmosis.

UNIT II

POLYMER TECHNOLOGY

Polymers- definitions of monomer, polymer, functionality, degree of polymerisation -Free radical mechanism -Individual polymers- PVC, PMMA, Teflon, polyamide, poly carbonate, epoxy, polyurethane-preparation, properties and their end users- compounding of plastics-components and functions- fabrication techniques- compression, injection, extrusion and blow moulding- Conducting polymers- structures of polypyrrole, polyaniline and poly acetylene- conduction mechanism of polyacetylene only - Biodegradable polymers - polylactide, starch and cellulose.

UNIT III

FUELS AND COMBUSTION

Fuels- classifications - calorific value - Gross and Net-Determination by Dulong's formula-problems combustion -theoretical air-principle and calculations - solid fuels - Coal-proximate and ultimate analysis- significance- Coke- characteristics- manufacture by Otto Hoffman method - Liquid fuels petroleum- fractionation - petrol and diesel - knocking of IC engines and diesel engines - octane and cetane numbe- anti-knocking agents - Biogas - biodiesel.

UNIT IV

ENGINEERING MATERIALS

Refractories - classification - properties and manufacture of silica and magnesia bricks; Abrasives-Classification-properties - manufacture of SiC -; Lubricants -solid lubricants (Graphite & Molybdenum sulphide) hydrodynamic mechanism of lubrication - Cement - manufacture - setting and hardening of cement - special cements - Alumina cement, waterproof cement, high early strength cement.

UNIT V

CORROSION

Corrosion- Spontaneity - Chemical corrosion- mechanism, nature of oxides - PillingBedworth ruleelectrochemical corrosion - mechanism- types - galvanic and differential aeration - Galvanic series and importance - Prevention methods - design of materials, cathodic protection techniques(sacrificial anode and impressed current cathode), Inhibitors - Protective coatings-Inorganic coatingelectroplating – surface preparation and plating method applied to Cr and Ni and galvanising – Organic coating- paints - constituents and functions.

Contact Periods:

Lecture: 45 Periods Tutor	ial: 0 Periods Practical	: 0 Periods Total: 45 Periods
TEXT BOOKS AUTHOR NAME	TITLE OF BOOK	PUBLISHER,
Vairam S, Subha Ramesh	Engineering Chemistry	YEAR OF PUBLICATION <i>Wiley India, 2015.</i>
Jain. P.C. and Monica Jain	Engineering Chemistry	Dhanpat Rai publications Pvt. Ltd, New Delhi, 16 th Edition, 2015.

9 Periods

9 Periods

9 Periods

9 Periods

9 Periods

REFERENCE BOOKS AUTHOR NAME

		YEAR OF PUBLICATION
Dara. S.S, Umare	Text book of Engineering	S. Chand Publications, 2004.
	Chemistry	
Agarwal C.V.	Chemistry of Engineering	9 th Edition, B.S. Publications, 2006.
	Materials	
Kuriakose, J.C., and	Chemistry in Engineering and	Tata Mc Graw Hill Publishing
Rajaram J	Technology", Vol.1 & II,	company Pvt.Ltd, New Delhi, 2001.
O.P. Aggarwal, Avinash	Engineering Chemistry	Khanna Publishers, 2010.
Aggarwal		
Sivasankar B	Engineering Chemistry	Tata McGraw Hill Publications,

PUBLISHER,

2008.

COURSE OUTCOMES:

Upon the completion of this course, students will be able to

TITLE OF BOOK

CO1: Understand the nature of impurities and the effects of various sources of water, and apply them in treatment them usable for industrial and domestic purposes.

CO2: Know about the different types of polymeric materials, properties and fabrication which match the specific applications.

CO3: Learn the different types of fuels with their compositions, combustion characteristics in engines and apply them in design of combustion chambers.

CO4: Be familiar with the various engineering materials, refractories, abrasives, lubricants and cements with their properties and manufacturing methods which are used in engineering applications.

CO5: Gain the knowledge about corrosion of the machinery they use in their fields and, also to understand the mechanisms and to adopt the preventive measures by various techniques.

	-	-			111	60	-	1000		-					
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Н	M	Μ	L	L	М		М	L	М	L	L	L	L	М
CO 2	Н	L	Н	L	L	М	М	Η	L	L	L	L	L	L	М
CO 3	M	L	Н	L	L	М	L	Н	L	М	М	L	L	L	M
CO 4	Н	M	Н	L	L	М	Н	Н	Н	L	М	М	L	L	M
CO 5	Н	M	Μ	М	L	L	L	L	Н	L	М	L	L	L	М
16PBS104	Н	М	Н	L	L	Н	М	М	Н	L	М	L	L	L	М

Course Articulation Matrix

L- Low, M – Moderate (Medium), H - High

16PES105 BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to Mechanical, Production and Industrial Biotechnology branches) Category : ES L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

- To study the basic concepts of electric circuits, electronic devices and communication engineering.
- To know the fundamental of energy conversion, construction, principle of operation, characterization of DC machines and AC machines.

UNIT IELECTRICAL CIRCUITS & MEASUREMENTS9 PeriodsOhm's Law – Kirchoff's Laws – Steady State Solution of DC circuits – Introduction to AC Circuits –
Waveforms and RMS Value – Power and Power factor – Single Phase and Three Phase Balanced
Circuits.

Operating Principles of Moving Coil and Moving Iron Instruments (Ammeters and Voltmeters), Dynamometer type Watt meters and Energy meters.

UNIT II ELECTRICAL MACHINES 9 Periods Construction, Principle of Operation, Basic Equations and Types, Characteristics and Applications of DC Generators, DC Motors, Single Phase Transformer, Single Phase induction motor.

UNIT III SEMICONDUCTOR DEVICES AND APPLICATIONS 9 Periods Characteristics of PN Junction Diode – Zener Effect – Zener Diode and its Characteristics – Half wave and Full wave Rectifiers - Voltage Regulation.

Bipolar Junction Transistor – CB, CE, CC Configurations and Characteristics – Working principle and Characteristics of FET, JFET, MOSFET – Characteristics and Simple Application of SCR, DAC, TRIAC & UJT – Elementary Treatment of Small Signal Amplifier.

UNIT IV

DIGITAL ELECTRONICS

9 Periods

Binary Number System – Logic Gates – Boolean Algebra – Half and Full Adders - Flip-Flops – Registers and Counters – A/D and D/A Conversion (Simple concepts).

UNIT V FUNDAMENTALS OF COMMUNICATION ENGINEERING 9 Periods Types of Signals: Analog and Digital Signals – Modulation and Demodulation: Principles of Amplitude and Frequency Modulations.

Communication Systems: Radio, TV, Microwave, Satellite, RADAR and Optical Fibre (Block Diagram Approach only).

Contact Periods:

Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods			
TEXT BOOKS AUTHOR NAME	TITLE OF		BLISHER, AR OF PUBLICATION			
Muthusubramanian R,	Basic Elect		McGraw Hill, Second			
Salivahanan S and	Electronics	Engineering Edit	ion, (2009).			
Muraleedharan K A						
Mittle.V.N and Arvind M	Iittal Basic Elect	rical Tata	McGraw Hill, Second			
	Engineerin	g Edit.	ion, New Delhi, 2005.			
Sedha R.S	A Text book	k of Applied S. C.	hand & Co., 2008.			

Electronics

REFERENCE BOOKS AUTHOR NAME

S

TITLE OF BOOK

Nagsarkar T K and Sukhija M Basics of Electrical Engineering Mehtra V.K and Rohit Mehta Priniciples of Electrical *Engineering and Electronics* Electric Circuits, Schaum' Mahmood Nahvi and Joseph A. Edminister **Outline Series** Premkumar N and Basic Electrical and Gnanavadivel J *Electronics Engineering*

PUBLISHER, YEAR OF PUBLICATION Oxford Press (2005).

S. Chand & Co. 2^{nd} Edition 2015.

McGraw Hill, Sixth edition (2014)

Anuradha Publishers, 4th Edition (2008).

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

CO1:Analyze simple DC and AC Circuits.

CO2:Understand the significance of Electrical machines.

CO3: Apply knowledge on semiconductor devices and Integrated circuits.

CO4:Understand the concepts of communication engineering.

CO5: Design simple circuits using electronic components for specific applications.

an Barrow Barr

Course Articulation Matrix

a star o an in a star of a															
PO/PSO	PO	PO	PO	РО	PO	PO	РО	РО	PO	PO	PO	PO	PSO	PSO	PSO 3
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
CO 1	Н	Н	-	-	-)	1	М	-/	1-1	-	L	М	М	М	L
CO 2	Н	M	М	-	-//		М	(s)	-	-	L	-	М	М	L
CO 3	Н	L	L	-	М	- 20	I.	×	-	-	-	-	L	L	L
CO 4	Н		L	-	М	M	⊳L	-	-		L	L	L	L	L
CO 5	Н	M	Н	М	M		19	6	ALW	7	L	М	М	М	L
16PES105	Н	М	М	М	M	М	М		Ð	-	L	М	М	М	L

L- Low, M - Moderate (Medium), H - High

16PBS106

PHYSICS LABORATORY

(Common to Civil, Mechanical, Production and Industrial Biotechnology branches)

Pre-Requisites: Nil

Course Objectives:

• To have a practical knowledge about the concepts behind physics and the need to apply in the emerging technology.

LIST OF EXPERIMENTS

- 1. Spectrometer Diffraction Grating Normal Incidence Method
- 2. Air Wedge Determination of thickness of a paper
- 3. Young's Modulus Cantilever Bending Koenig's Method
- 4. a. Laser Particle size Determination
 - b. Optical fiber Determination of NA & Acceptance angle
- 5. Ammeter and Voltmeter Calibration Low Range
- 6. Resistance Of The Given Coil Of Wire Carey Foster's Bridge
- 7. Determination of Band gap Energy of Semiconductor
- 8. Ultrasonic Interferometer Velocity of sound & Compressibility of liquids.
- 9. Transistor Characteristics
- 10. Torsional pendulum Determination of Rigidity Modulus & Moment of Inertia

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

COURSE OUTCOMES:

Upon completion of this practical classes, the students will be able to

- **CO1:** Determinate all physical properties of any matter, basic idea of calibrating electrical Measuring instruments and thereby effectively using it for particular applications.
- **CO2:** Experiment intrinsic characteristic features of electronic devices for electrical and Electronic applications.

PO/PSO	РО	PSO	PSO	PSO										
СО	1	2	3	4	5	6	7	8	9	10	11	1	2	3
CO1	M	М	М	Μ	М	Μ	Μ					М	L	L
CO2	M	М	М	Μ	М	М	M					M	М	Μ
16PBS106	Μ	М	М	Μ	М	М	М					М	L	L

Course Articulation Matrix

L- Low, M – Moderate (Medium), H – High

16PES107

ENGINEERING GRAPHICS

(Common to Civil, Mechanical, Production and *Industrial Biotechnology branches*)

Pre-Requisites: Nil

Course Objectives:

- Geometrical constructions
- Orthographic projections. •
- Performing section of solids and development of the same. •
- Interpretation of solids. ٠
- Pictorial view of solids

UNIT I **GEOMETRICAL CONSTRUCTIONS 15Periods**

Dimensioning-Lettering-Types of Lines-Scaling conventions-Dividing a given straight line in to any number of equal parts- Bisecting a given angle- Drawing a regular polygon given one side-Special methods of constructing a pentagon and hexagon- Construction of curves like ellipse, parabola, cycloid and involute using one method.

ORTHOGRAPHIC PROJECTIONS UNIT II **25 Periods** Introduction to Orthographic Projection-Projection of points-Projection of straight lines with traces-Projection of planes-Conversion of pictorial views to orthographic views-Projection of solids -Auxiliary projections.

UNIT III	SECTION OF SOLIDS AND DEVELOPMENT	20Periods
Section of solids- Develo	pment of surfaces	

UNIT IV **INTERPENETRATION OF SOLIDS and PICTORIAL 20** Periods VIEWS

Cylinder and cylinder, cone and cylinder only Isometric projections - Conversion of orthographic views to pictorial views (simple objects).

UNIT V **INTRODUCTION TO AUTOCAD 10Periods**

Object Construction: Page layout – Layers and Line types – Creating, Editing and selecting the Geometric Objects. Viewing, Annotating, Hatching and Dimensioning the drawing -Creating Blocks and Attributes

Contact Periods:

Tutorial: 0Periods Lecture: 30 Periods

Practical: 60 Periods Total: 90 Periods

REFERENCE BOOKS AUTHOR NAME	TITLE OF BOOK	PUBLISHER, YEAR OF PUBLICATION
K.Vengopal	Engineering Graphics	New Age International (P) Limited, 2015.
Dhananjay.A.Jolhe	Engineering Drawing	Tata McGraw Hill Publishing Co., 2007.
K.V.Nataraajan	A text book of Engineering Graphics	Dhanalakashmi Publishers, Chennai, 2006.
M.B.Shah and B.C. Rana	Engineering Drawing	Pearson Education, 2005.
Luzadder and Duff	Fundamentals of Engineering Drawing	Prentice Hall of India Pvt Ltd, XI Edition, 2001.
K.L.Narayana and P.Kannaiah	Text book on Engineering Drawing	2 nd Ed., Scitech Publications (India) Pvt. Ltd, Chennai, 2009.

Category : ES LTPC 2 0 4 4

COURSE OUTCOMES:

Upon completion of this course, students will be able to

CO1:Represent planes and solids as per international standards.

CO2:Generate and interpret multiple views through development, interpretation and sectional views.

CO3:Generate and interrupt orthographic views.

CO4:Generate and interrupt pictorial views and interpenetration.

CO5:Generate and interrupt perspective views.

CO6:Apply the concept of AUTO CAD in engineering graphics.

Course Articulation Matrix

PO/PSO	PO	РО	PO	PO	РО	РО	PO	РО	РО	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	Н	Н	-	-	М	-	L	Н	М	-	М	L	L	L
CO 2	-	-	Н	-	-	М	-	L	Н	М	-	М	L	L	L
CO 3	-	-	Н	-	-	М	Maria	L	Н	М	-	М	L	L	L
CO 4	-	-	Н	-	96	M	<u></u>	L.	Н	М	-	M	L	L	L
CO 5	-	-	Н	-	0	М	NON C	CF.	H	М	-	М	L	L	L
CO6	-	Н	Н	Н		Μ	-	L	Н	М	-	M	Н	Н	L
16PES107	-	L	Н	L	-))	М		L	H	М	-	М	М	М	L

L- Low, M – Moderate (Medium), H - High

16PHS2Z1

TECHNICAL ENGLISH

(*Common to all branches*)

Category : HS LTPC 2 2 0 3

6+6 Periods

6+6 Periods

Pre-Requisites: Nil

Course Objectives:

- To make learners acquire guided listening and speaking skills in both formal and informal contexts.
- To help them develop reading skills by familiarizing them with different types of reading • tasks and strategies.
- To make them understand advance level of grammar and equip them with writing skills needed for academic as well as workplace contexts.
- To explore the learner to Technical English and Technical Vocabulary. •

UNIT I

Listening - Listening to ask for/ give opinions, Listening to persuade/dissuade people, Listening to make complaints, Listening to transfer information; Speaking –Role play activities on a formal/corporate context, Delivering Welcome Address- Reading - Reading to infer lexical and contextual meaning; Writing - Effective use of SMS on Whatsapp/ Hike/ Messenger, Writing E-mails on a business context, Technical style; Grammar - Use of relative / reflexive pronouns, Discourse Markers; Vocabulary- Homonyms and Homophones

UNIT II

Listening - Listening to express regrets/sympathy/condolences, Listening and Note-taking; Speaking - Addressing at an official meeting to deal with problems/ sensitive issues, Discussion on a movie with a poignant social message/ or on a recently read book; Reading - Reading a short story or an article from newspaper; Writing - Writing a review of a book/movie/music concert/sports event. Graph Description; Grammar - Noun/Adjective/Adverbial phrases, Cause and effect expressions; **Vocabulary** - Using phrasal verbs in sentences, Jargon

UNIT III

Listening - Listening to a talk about using quantities, Listening to describe manner and frequency, Listening to expressions of assumptions/inference, Listening to make comparisons; Speaking -Making conversation to practice stress, pause, pronunciation and intonation, Introducing the chiefguest; Reading - Speed reading - reading passages with time limit - Writing - Notice, Agenda and Minutes of meetings; - Elements of Writing Technical articles -Grammar - Numerical expressions, Conditional clauses; Vocabulary - Same word used as different parts of speech, Register

UNIT IV

Listening - Listening to talks about future events/plans, Listening to a talk about making arrangements, Listening to language of reporting, Viewing a model discussion; Speaking -Discussion on a formal/corporate context, Proposing vote of thanks; Reading - Reading the job advertisements and the profile of the company concerned; Writing - Process Description, Applying for a job with résumé; Grammar - Direct and indirect speech; Vocabulary - Idioms

UNIT V

Listening – Listening to expressions of possibility, Listening to expressions of obligations, Listening to expressions of ability, Viewing model interviews; Speaking - Mock interview; Reading - Note making, Intensive reading; Writing - Checklist, - Feasibility / Project report; Grammar - Time Statements and Contracted Time Statements; Vocabulary - Nominal Compounds

6+6 Periods

6+6 Periods

6+6 Periods

TEXT BOOKS AUTHOR NAME

TITLE OF BOOK

Engineers.

PUBLISHER, YEAR OF PUBLICATION Orient Blackswan, Chennai. 2012

Department of English, Anna University. Mindscapes Sadanand, Kamlesh & Punitha, Susheela

Spoken English: A Foundation Course (Part 2).

English for Technologists and

Orient Blackswan, Hyderabad. 2014

Contact Periods: Lecture: 30 Periods

TITLE OF BOOK

Technical Communication: Principles and Practice Technical English-II

Effective Technical Communication Structure of Technical English

Word Power and Speed Reading: English Improvement Series Essentials of Business Communication

PUBLISHER, YEAR OF PUBLICATION Oxford University Press, New Delhi. 2011 Global Publishers, Chennai, 2016

Total: 60 Periods

Tata McGraw-Hill, New Delhi. 2005 The English Language Society, London. 1971 Infinity Books, New Delhi, 2007

Sultan Chand & Sons

REFERENCE BOOKS AUTHOR NAME

Raman, Meenakshi & Sangeetha Sharma Vijay, Anbazhagan.J, & Jaishree.N Rizvi, Ashraf. M.

Herbert, A.J

Michigan, E.A

Rajendrapal & Korlahalli. J.S

WEBSITES

1. http://www.usingenglish.com

2. http://www.uefap.com

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

CO1: The learners will be able to speak convincingly at work place and social contexts through guided listening tasks and different genres and strategies of reading.

CO2: The learner will understand advance level of grammar and write professionally to a larger extent for workplace and general contexts.

CO3: The learners will familiarize themselves with Technical Vocabulary and Technical English.

PO/PSO	PO	PSO	PSO	PSO										
СО	1	2	3	4	5	6	7	8	9	10	11	1	2	3
0														
CO1	-	-	L	-	L	Μ	-	-	-	-	Μ	L	L	L
CO2	-	-	-	-	-	-	-	-	-	H	-	L	L	L
CO3	-	-	-	I	-	-	1	-	-	-	-	L	L	L
16PHS2Z1	I	I	L	I	L	L	I	I	I	L	L	L	L	L

Course Articulation Matrix

L- Low, M – Moderate (Medium), H - High

Tutorial: 30Periods Practical: 0 Periods

24

16PBS2Z2

ENGINEERING MATHEMATICS II

(*Common to all branches*)

Category : BS LTPC 3 2 0 4

Pre-Requisites: Basics of - trigonometry- differential and integral formulae.

Course Objectives:

- To acquire knowledge of techniques of ordinary differential equations leading to engineering problems.
- To acquire knowledge of vector Calculus with engineering applications. •
- To gain standard techniques of complex variable applicable to fluid dynamics, heat conduction, and elasticity.
- To develop skill of solving transforms leading to engineering applications. •

ORDINARY DIFFERENTIAL EQUATIONS UNIT I 9+6 Periods Second and Higher order Differential Equations, Method of variation of parameters- Method of

undetermined coefficients-Homogeneous equations of Euler's and Legendre's type-System of Simultaneous first order Linear equations with constant coefficients - Method of reduction of order.

UNIT II

VECTOR CALCULUS

Gradient and directional derivative, Divergence and Curl - Irrotational and Solenoidal fields- Vector identities - Line, Surface and Volume Integrals - Green's Theorem in a Plane, Gauss Divergence and Stoke's Theorems (Statements only) -Verifications and Applications.

UNIT III

COMPLEX DIFFERENTIATION

Functions of a Complex variable-Analytic functions- Cauchy Riemann equations and sufficient conditions (excluding proof)-Harmonic conjugates-Construction of analytic functions-Conformal mappings: w=z+a, az_1/z , z^2 , e^z , sinz, cosz and Bilinear Transformation.

UNIT IV

COMPLEX INTEGRATION

9+6 Periods Cauchy's integral theorem, Cauchy's integral formula -Taylor's and Laurent's theorems (Statements only) and expansions - Poles and Residues - Cauchy's Residue theorem - Contour integration -Circular and semi circular contours with no pole on real axis.

UNIT V

LAPLACE TRANSFORMATIONS

Laplace transforms- Properties and standard transforms-Transforms of unit step, unit Impulse and error functions - Transforms of periodic functions- Inverse Laplace transforms- Initial and Final value theorems- Convolution theorem (Statement only) and applications - Applications to Solution of Linear differential equations of second order with constant coefficients.

	orial: 30Periods Practic	al: 0 Periods Total: 75 Periods
TEXT BOOKS AUTHOR NAME	TITLE OF BOOK	PUBLISHER, YEAR OF PUBLICATION
Veerarajan T	Engineering Mathematics" for Semesters I and II	Tata McGraw Hill Publishing Co., New Delhi, 2015.
Kandasamy P, Thilagavathy K and Gunavathy K	Engineering Mathematics" for I year B.E/B.Tech	S.Chand& Co, Ramnagar, New Delhi,Reprint2013.
S. Narayanan and Manicavachagom Pillai T.K.	Calculus-Vol.III	S. Viswanathan, Printers and Publishers Pvt. Ltd, Chennai, 2009.

9+6 Periods

9+6 Periods

9+6 Periods

REFERENCE BOOKS AUTHOR NAME

		YEAR OF PUBLICATION
Erwin Kreyszig	Advanced Engineering Mathematics	Wiley &sons(Asia) Ltd, 10 th Edition, 2015.
		,
Ray Wylie.C and Louis	Advanced Engineering	Tata McGraw Hill Company,
Barrett	Mathematics	New Delhi, 2004.
Grewal B. S	Higher Engineering	Khanna Publishers, New Delhi,
	Mathematics	43 rd Edition, 2014.
Ramana B V	Higher Engineering	Tata McGraw Hill Co. Ltd,
	Mathematics	NewDelhi, 11 th Print, 2010.
Bali N., Goyal M and	Advanced Engineering	Firewall Media (An Imprint of
Watkins C	Mathematics	Laxmi Publications Pvt Ltd),
		New Delhi, 7 th Edition, 2009.
Bali N.P and Goyal M	A text book of Engineering	University Science Press (An
	Mathematics	Imprint of Laxmi Publications
		Pvt Ltd), New Delhi,2014.
		1 200, 1.0 2011.

PUBLISHER,

VEAD OF DUDI ICATION

TITLE OF BOOK

COURSE OUTCOMES:

Upon completion of this course, the student will be able to

CO1:Understand the kinds of differential equations and their solutions in the field of engineering.

CO2:Evaluate gradient, divergence and curl and also line, surface and volume integrals in cartesian form and simple coordinate systems and calculate integrals applying Greens, stokes and Gauss theorems.

CO3:Understand the concepts of analytic functions and conformal mappings.

CO4: Evaluate contour integrals using calculus of residues.

CO5: Apply Laplace transform methods to solve differential equations.

PO/PSO	РО	PO	РО	РО	РО	РО	PO	РО	РО	PO	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Н	Н	Н	Н	-	-	-	-	-	М	Η	Η	М	-	-
CO 2	Н	Н	М	М	-	-	-	-	-	М	-	М	Н	М	L
CO 3	Н	Н	М	Н	-	М	-	-	-	М	М	М	L	-	-
CO 4	Н	Н	М	М	-	М	-	-	-	М	М	М	L	-	-
CO 5	Н	Н	Н	Н	-	Н	-	-	-	М	М	Н	М	М	-
16PBS2Z2	Н	Н	М	Н	-	М	-	-	-	М	М	М	М	М	L

Course Articulation Matrix

L- Low, M – Moderate (Medium), H - High

16PBS2Z3

UNIT I

MATERIALS SCIENCE (*Common to all branches*)

Category : BS L T P C 3 0 0 3

9 Periods

Pre-Requisites: Nil

Course Objectives:

To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology. Upon completion of this course the students will be familiar with:

- The properties of conducting materials.
- The application of magnetic and super conducting materials.
- Application and properties of dielectric and ferro electric materials.
- Applications and properties of Modern engineering materials.
- Nano materials and its properties.

CONDUCTING MATERIALS

Introduction to Conductors – classical free electron theory of metals – Draw backs of classical theory – quantum theory - Electrical and Thermal conductivity of Metals – Derivation for Wiedeman – Franz law – Lorentz number — Fermi distribution function - effect of temperature – density of energy states – calculation of Fermi energy- carrier concentration in metals.

UNIT II SEMICONDUCTING MATERIALS AND DEVICES 9 Periods Introduction – Properties – elemental and compound semiconductors - Intrinsic and extrinsic semiconductors – properties - Carrier concentration in intrinsic Semiconductor - variation of Fermi level with temperature and carrier concentration - Electrical Conductivity – band gap determination - extrinsic semiconductors - Carrier concentration in P- type and N-type semiconductors – variation of Fermi level with temperature and impurity concentration – Hall effect- Determination of Hall Co-efficient in N type and P type Semiconductor - Applications.

UNIT III MAGNETIC AND SUPER CONDUCTING MATERIALS 9 Periods Introduction - Origin of magnetic moment - Bohr magneton - Dia, Para, and Ferro magnetic materials -Domain theory of ferromagnetism - Hysteresis - Hard and Soft magnetic materials. Ferrites - structure and applications. - Magneto optical recording and readout – Superconductivity - Types of superconductors - BCS theory of superconductivity (qualitative) - properties- High Tc superconductors, Applications of superconductors- SQUID, Cryotron, Magnetic levitation.

UNIT IVDIELECTRICS AND FERROELECTRICS9 PeriodsIntroduction to dielectric materials – Electric polarization and Dipole moment - Electrical susceptibility– dielectric constant – Various polarization mechanisms in dielectrics - electronic, ionic, orientationaland space charge polarization – frequency and temperature dependence of polarization – internal field –Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – Applications ofdielectric materials - Ferro electricity –Ferro electric materials -BaTiO₃ – Applications- Ferro electricenergy converter.

UNIT VMODERN ENGINEERING MATERIALS9 PeriodsMetallic glasses - preparation of metallic glasses - properties - applications of the metallic glasses -
Shape Memory Alloys (SMA) - Characteristics, properties of NiTi alloy - applications of the Shape
memory alloys - advantages and disadvantages of SMA - Nanomaterials-synthesis -chemical vapour
deposition - Sol Gel - ball Milling - properties of nanoparticles and applications of nanoparticles -
Carbon Nanotubes (CNT) - structure - properties - applications of CNTs.9 Periods

Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total: 45 Periods

TEXT BOOKS AUTHOR NAME	TITLE OF BOOK	PUBLISHER, YEAR OF PUBLICATION
P.K.Palanisamy	Engineering Physics-II	Scitech Publications (India) Pvt. Ltd 2015
		(Unit I, Unit III & Unit IV)
Dr.Jayakumar .S	Materials science	R.K.Publishers,2008.(Unit II & IV)
Dr.V.Rajendran	Material Science	Tata McGraw Hill Publications, NewDelhi, 2011.

REFERENCE BOOKS AUTHOR NAME

TITLE OF BOOK

PUBLISHER, YEAR OF PUBLICATION *Wiley India, 2012.*

Charles P.Poole, Jr; Frank J.Owens Gaur R.K. and Gupta S.L K.Rajagopal Introduction to Nanotechnology Engineering Physics Engineering Physics

Dhanpat Rai Publishers, 2009. PHI Learning Private Ltd, New Delhi, 2015.

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

- CO1: Analyze the properties of conducting materials. [Familiarity]
- CO2: List and analyze the properties of Semiconducting materials and Devices. [Familiarity]
- **CO3:** Identify, analyze the properties and applications of magnetic & super conducting materials. **[Familiarity]**
- CO4: List and analyze the properties of dielectric Ferro electric materials. [Familiarity & Application]
- CO5: List the properties and applications of modern engineering materials. [Familiarity & Application]

Course min		011 1/1													
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	M	М	-	-	-	М	М	-	-	-	-	-	L	L	L
CO 2	M	М	M	М	M	М	М	-	-	-	-	-	М	М	М
CO 3	Н	Н	Н	Н	Н	Н	Н	-	-	-	-	-	М	М	М
CO 4	H	Н	Н	Н	Н	Н	Н	-	-	-	-	-	М	М	М
CO 5	Н	Н	H	Н	Н	Н	Н	-	-	-	-	-	Н	Н	Н
16PBS2Z3	М	Μ	-	-	-	Μ	М	-	-	-	-	-	L	L	L
I Low M	Mad	amata	(Mod	i)	II I	High									

Course Articulation Matrix

L- Low, M – Moderate (Medium), H - High

16PHS2Z4

ENVIRONMENTAL SCIENCE AND ENGINEERING (Common to all branches)

Category : HS L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

• The course is aimed at creating awareness among students and also to inseminate the critical ideas of preserving environment.

UNIT I ENVIRONMENTAL RESOURCES 9 Periods Natural resources - Forest – benefits, over exploitation, deforestation & consequences – Water unique features, hydrological cycle & over exploitation – Food -effect of modern agriculture, fertilizers, pesticides, eutrophication& biomagnifications -Energy resources - renewable & nonrenewable resources - wind, solar and tidal - harnessing methods.

UNIT II

ECO SYSTEM AND BIODIVERSITY

Ecology - ecosystem, physical and chemical components of ecosystem, biological components of ecosystem - forest ecosystem, desert ecosystem and pond ecosystem, Energy flow in ecosystem, nitrogen cycle and carbon dioxide cycle, food pyramid, ecological succession, Biodiversity - types, values of biodiversity, hot spots of biodiversity, endangered and endemic species, conservation of biodiversity – insitu – ex situ conservation.

UNIT III

ENVIRONMENTAL POLLUTION

Air pollution, classification of air pollutants – sources, effects and control of gaseous pollutants SO_2 , NO_x , H_2S , CO, CO_2 and particulates, control methods - cyclone separator and electrostatic precipitator -Water pollution - classification of water pollutants, organic and inorganic pollutants, sources, effects and control of water pollutants Soil pollution - sources, effects and control - Noise pollution - decibel scale, sources, effects and control.

UNIT IV

ENVIRONMENTAL THREATS

Acid rain, greenhouse effect, global warming and ozone depletion, disaster management, flood, drought, earthquake and tsunami, Threats to biodiversity-destruction of habitat, habit fragmentationhunting, over exploitation and man-wildlife conflicts, The IUCN red list categories, status of threatened species.

UNIT V

SOCIAL ISSUES AND ENVIRONMENT

Sustainable development- sustainable technologies, need for energy and water conservation, rain water harvesting, water shed management, waste land reclamation, Pollution control Act, Wild life protection act, Forest conservation act, population growth- exponential and logistic growth, variation in population among nations, population policy, women and child welfare programs, role of information technology in human and health, HIV/AIDS - effects and preventive measures.

Contact Periods:

Lecture: 45 Periods	Tutorial: 0Periods	Practical: 0 Perio	ods Total: 45 Periods
TEXT BOOKS AUTHOR NAME	TITLE O	F BOOK	PUBLISHER, YEAR OF PUBLICATION
Sharma J.P	"Environ 3 rd Edition	mental Studies", n	University Science Press, New Delhi 2009.
Anubha Kaushik and C			New age International Publishers
Kaushik	and Engir Edition	neering", 3 rd	New Delhi, 2008.

9 Periods

9 Periods

9 Periods

9 Periods

REFERENCE BOOKS AUTHOR NAME	TITLE OF BOOK	PUBLISHER, YEAR OF PUBLICATION
R.K. Trivedi	Hand book of Environmental laws, Rules, Guidelines, Compliances and Standards'', Vol.I&II,	Environ Media, 2006.
G. Tyler Miller Jr	"Environmental Science", 10 th Edition	Thomson Brooks/Cole Publishing, 2004.
Gilbert M. Masters	Introduction to Environmental Engineering and Science, 2 nd Edition	Pearson Education, 2004.

COURSE OUTCOMES:

Upon completion of this course, students will be able to

CO1: To know about the various environmental resources, the effective utility and problems accompanied in over exploitation.

CO2: To acquire knowledge about the interaction of biosphere with environment and conservation methods of bio diversity.

CO3: To be aware of the source of various types of pollution, their ill effects and preventive methods.

CO4: To understand the environmental threats, Acid rain, Green house effect and Ozone depletion and natural disasters.

CO5: To create an idea about sustainable development and social issues.

PO/PSO	PO	PO	PO	РО	PO	PO	PO	PO	РО	РО	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Μ	L	Н	L	Μ	Μ	М	M	М	М	L	L	L	L	L
CO 2	М	L	L	L	P.	$\mathbf{L}_{\mathbf{r}}$	E C	L	E.	L	L	L	L	L	L
CO 3	L	L	Н	L	L	L	М	М	L	М	L	L	L	L	L
CO 4	L	L	Н	L	L	L	L	L	L	L	L	L	L	L	L
CO 5	М	L	М	L	L	L	Н	Н	L	М	L	L	L	L	L
16PHS2Z4	М	L	Н	L	L	L	Н	Н	L	L	L	L	L	L	L

Course Articulation Matrix

L- Low, M – Moderate (Medium), H - High

16PES2Z5

PROGRAMMING IN C

(Common to all branches)

Category : ES L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

Upon completion of this course, the students will be familiar with,

- The Computer and Programming fundamentals
- Data types in C and Flow control statements
- Functions, Arrays, Pointers And Strings
- Bitwise Operators, Preprocessor Directives, Structures and Unions
- Structures, List Processing, Input And Output

UNIT ICOMPUTER AND PROGRAMMING FUNDAMENTALS9 PeriodsComputer fundamentals – Evolution, classification, Anatomy of a computer: CPU, Memory, I/O –Introduction to software – Generation and classification of programming languages – Compiling –Linking and loading a program – Translator – loader – linker – develop a program – softwaredevelopment – Introduction to OS – Types of OS – Algorithms – Structured programming concept.

UNIT II DATA TYPES AND FLOW OF CONTROL 9 Periods An overview of C – Programming and Preparation – Program Output – Variables – Expressions, and

An overview of C – Programming and Preparation – Program Output – Variables – Expressions, and Assignment, The use of #include, printf(), scanf() – Lexical elements, operators and the C systems – The fundamental data types – Flow of control

UNIT IIIFUNCTIONS, ARRAYS, POINTERS AND STRINGS9 PeriodsFunctions and storage classes - 1D Arrays – Pointers – Call by reference – Relationship between9Arrays and Pointers – Pointer arithmetic and element size – Arrays as function argument – Dynamic9memory allocation – Strings – String handing functions – Multidimensional Arrays.

UNIT IV ARRAY OF POINTERS, BITWISE OPERATORS, 9 Periods PREPROCESSOR DIRECTIVES

Arrays of Pointers – Arguments to main () - Ragged Arrays – Functions as Arguments – Arrays of Pointers to Functions - Type qualifiers.-Bitwise operators and expressions – Masks – Software tools – Packing and unpacking – Enumeration types – The preprocessor directives.

UNIT V	STRUCTURES AND UNIONS, I/O AND FILE	9 Periods
	OPERATIONS	

Structures and Unions – Operator precedence and associativity – Bit fields – Accessing bits and bytes - Input and Output functions – File Processing Functions – Environment variables – Use of make and touch.

Contact Periods:

Lecture: 45 Periods	Tutorial: 0Periods	Practical: 0 Periods	Total: 45 Periods		
TEXT BOOKS					
AUTHOR NAME	TITLE OF BOO		SHER,		
			OF PUBLICATION		
Pradip Dey, Manas Gho	1	v	University Press,		
	and Programmin Second Edition	ng in C, 2013.			
Al Kelley, Ira Pohl	A Book on C-	Addisor	n Wesley, 2001.		
	Programming in				
	Edition				

REFERENCE BOOKS AUTHOR NAME

TITLE OF BOOK

PUBLISHER, YEAR OF PUBLICATION *Sams Publication, 2004.*

Programming in C-A

Stephen G. Kochan

Yashavant P. Kanetkar Brian W. Kernighan and Dennis Ritchie

Stephen Prata

complete introduction to the C programming language, Third Edition Let Us C, 13th edition The C Programming Language", Second Edition C Primer Plus, Fifth Edition

BPB Publications, 2013. Prentice Hall Software Series, 1988.

Sams Publishing, 2005.

COURSE OUTCOMES:

Upon completion of this course, the students will be able to,

CO1: Articulate the programming environment [Familiarity]

CO2: Write algorithm for solving the given problem statement [usage]

CO3: Use right data types and flow control statement [Assessment]

CO4: Write programs using functions, arrays, pointers and strings [Usage]

CO5: Use right storage classes, preprocessor directives, bitwise operators in programs [Assessment]

CO6: Use structures, unions and files [Usage]

Course	Articu	lation	Matrix	

			1		11				11	-					1
PO/PSO	PO	PSO	PSO	PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12	I	2	3
CO 1	Н	Н	М	Н	Н	X	Μ	Μ	Μ	Μ	L	M	L	L	L
CO 2	Н	Н	М	Н	H	10	2	М	М	М	L	M	М	М	М
CO 3	Н	Н	М	Н	H			М	М	М	L	M	L	М	L
CO 4	Н	Н	М	Н	Н	-	-	М	М	М	L	М	L	М	L
CO 5	Н	Н	М	Н	Н	-	-	М	М	М	L	M	М	L	L
CO6	Н	Н	М	Н	Н			М	М	M	L	M	-	L	L
16PES2Z5	Н	Н	М	Н	Н	-	М	М	М	М	L	М	L	М	L

L- Low, M – Moderate (Medium), H - High

16PES206

ENGINEERING MECHANICS

(Common to all except ECE, CSE and IT branches)

Category : ES L T P C 3 2 0 4

Pre-Requisites: Nil

Course Objectives:

• To analyze the force systems, friction and to study the dynamics of particles, impulse and momentum.

UNIT I INTRODUCTION TO MECHANICS AND FORCE 9+6 Periods CONCEPTS

Principles and Concepts–Laws of Mechanics – system of forces – resultant of a force system – resolution and composition of forces – Lami's theorem – moment of a force – physical significance of moment-Varignon's theorem – resolution of a force into force and couple – forces in space –addition of concurrent forces in space – equilibrium of a particle in space.

UNIT II FRICTION 9+6 Periods Frictional resistance – classification of friction- laws of friction – coefficient of friction-angle of friction – angle of repose — cone of friction – free body diagram-advantages-equilibrium of a body on a rough inclined plane – non-concurrent force system - ladder friction – rope friction – wedge friction.

UNIT IIIGEOMETRICAL PROPERTIES OF SECTION9+6 PeriodsCentroids – Determination by integration – moment of inertia – theorems of moment of inertia –
Product of Inertia –Principal moment of inertia of plane areas- radius of gyration.9+6 Periods

UNIT IVBASICS OF DYNAMICS - KINEMATICS9+6 PeriodsKinematics and kinetics – displacements, velocity and acceleration- Equations of motion – Rectilinear
motion of a particle with uniform velocity, uniform acceleration, varying acceleration – motion curves
– motion under gravity – relative motion – curvilinear motion of particles – projectiles – angle of
projection – range – time of flight and maximum height.9+6 Periods

UNIT VBASICS OF DYNAMICS - KINETICS9+6 PeriodsNewton's second law of motion – linear momentum – D'Alembert's principle, Dynamics equilibrium
— work energy equation of particles– law of conservation of energy – principle of work and energy.9+6 PeriodsPrinciple of impulse and momentum – Equations of momentum –Laws of conservation of
momentum. Impact– Time of compression, restitution, collision – Co-efficient of restitution – types of
impact – collision of elastic bodies by direct central impact and oblique impact – collision of small
body with a massive body – Kinetic energy of a particle.9+6 Periods

Contact Periods:

Lecture: 45 Periods	Tutorial: 30Periods	Practical: 0 Periods	Total: 75 Periods
TEXT BOOKS AUTHOR NAME	TITLE OF	F BOOK PUB	LISHER,
		YEA	R OF PUBLICATION
S.S. Bhavikatti and K.C Rajasekarappa	G. Engineerin	g Mechanics New 1999	Age International Pvt Ltd.
S.C. Natesan	Engineerin	0	h Publications, 5-B north et, Naisarak, Delhi, 2002.

REFERENCE BOOKS AUTHOR NAME

YEAR OF PUBLICATION Tata Mc. Graw Hill Pvt Ltd, 10th F.B. Beer and E.R. Johnson Vector Mechanics for Engineers Edition, 2013. Mc.Graw Hill, 4th Edition, 1995. S. Timoshenko and Young Engineering Mechanics Irving Shames and Krishna Prentice Hall of India Ltd, Delhi, **Engineering Mechanics** Mohana Rao 2006. Domkundwar V.M and Engineering Mechanics Dhanpat Rai and Co. Ltd, 1st Anand V. Domkundwar (Statics and Dynamics) *Edition*, 2006. Suhas Nitsure **Engineering Mechanics** Technical Publications, Pune, 1st edition, 2006. Prentice Hall of India Ltd, 13th R.C. Hibbeller **Engineering Mechanics** Edition, 2013. Vela Murali **Engineering Mechanics** Oxford university Press, 1stEdition, 2010.

TITLE OF BOOK

PUBLISHER,

COURSE OUTCOMES:

Upon completion of this course, students will be able to **CO1:** Analyze the problems related to force systems and friction **CO2:** Apply concepts of centre of gravity and moment of inertia **CO3:** Solve problems on dynamics, momentum and impulse

Course Articulation Matrix

PO/PSO	PO	РО	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	Н	М	L	Ha	54	-	-	L	3-	L	-	М	L	Н
CO2	L	Н	L	-	L	55	40	100th	Ŀ	-	L	-	L	L	L
CO3	М	Н	М	L	L	-	-	-	L	-	L	-	М	L	L
16PES206	М	Н	М	L	L	-	-	-	L	-	L	-	М	L	L

16PBS207

CHEMISTRY LABORATORY

(Common to Civil, Mechanical, Production and IBT branches)

Category: BS L T P C 0 0 4 2

Pre-Requisites: Nil

Course Objective:

• The course is aimed at imparting knowledge of experimental techniques which would be useful for students to apply the practical principles relevant conventional engineering field.

LIST OF EXPERIMENTS

- 1. Estimation of hardness by EDTA method.
- 2. Estimation of chloride by Argentometric method.
- 3. Determination of dissolved oxygen by Winkler's method.
- 4. Conductometric titration of mixture of strong acid and weak acid using strong base.
- 5. Potentiometric titration of ferrous iron by dichromate.
- 6. Estimation of copper in brass by EDTA method.
- 7. Estimation of Iron by Spectrophotometry Estimation of HC1 by pH titration.

Contact Periods:

Lecture: 0 Periods Tutorial: 0Periods Practical: 60 Periods Total: 60 Periods

REFERENCE BOOKS AUTHOR NAME

TITLE OF BOOK

PUBLISHER, YEAR OF PUBLICATION

A.O. Thomas,

Jeffery G H, Basset J. Menthom J, Denney R.C. Practical Chemistry Vogel's Text book of

quantitative analysis, 5th

Edition

Scientific Book Centre, Cannanore, 2003. EBS, 1988.

COURSE OUTCOMES:

Upon completion of this practical classes, the students will be able to

- **CO1:** Understand the nature of hardness, chloride level, pollution level using dissolved oxygen content, iron present in water and analyse them in water.
- **CO2:** Apply the EMF and conductometric measurements in quantitative analysis of substances.

Course Articulation Matrix

PO/PSO	PO	РО	PO	РО	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	М	L	L	М	L	L	L	L	М	L	М	L	L	L
CO2	Н	М	L	L	М	L	L	L	L	М	L	М	L	L	L
16PBS207	Н	М	L	L	М	L	L	L	L	М	L	М	L	L	L

16PES208

WORKSHOP PRACTICE

(Common to Civil, Mechanical, Production and Industrial Biotechnology branches)

Pre-Requisites: Nil

Course Objectives:

- To make various basic prototypes in the carpentry trade such as Lap joint, Lap Tee joint, Dove tail joint, Mortise & Tenon joint and Cross-Lap joint.
- To make various welding joints such as Lap joint, Lap Tee joint, Edge joint, Butt joint and Corner joint.

LIST OF EXPERIMENTS

- 1. Introduction to use of tools and equipments in Carpentry, Welding, Foundry and Sheet metal.
- 2. Safety aspects in Welding, Carpentry and Foundry.
- 3. Half lap Joint and Dovetail Joint in Carpentry.
- 4. Welding of Lap joint, Butt joint and T-joint.
- 5. Preparation of Sand mould for cube, conical bush, pipes and V pulley.
- 6. Fabrication of parts like tray, frustum of cone and square box in sheet metal.
- 7. Electrical wiring simple house wiring.
- 8. Plumbing

Contact Periods:

Lecture: 0 Periods Tutorial: 0Periods Practical: 60 Periods Total: 60 Periods

COURSE OUTCOMES:

Upon completion of this practical classes, the students will be able to

CO1: Use tools and equipments used in Carpentry, Welding, Foundry and Sheet metal.

- CO2: Make half lap joint and dovetail joint in carpentry.
- **CO3:** Make welded lap joint, butt joint and T-joint.

CO4: Prepare sand mould for cube, conical bush, pipes and V pulley.

CO5: Fabricate parts like tray, frustum of cone and square box in sheet metal

CO6: Carry out minor works/repair related to electrical wiring and plumbing.

Course Articulation Matrix

PO/PSO	PO	РО	PO	PSO	PSO	PSO									
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	-	Н	Н	-	-	M	-	L	Н	М	-	М	L	М	L
CO 2	-	-	Н	-	-	M	-	L	Н	М	-	М	М	М	L
CO 3	-	-	Н	-	-	M	-	L	Н	М	-	М	М	М	L
CO 4	-	-	Н	-	-	M	-	L	Н	М	-	М	L	L	L
CO 5	-	-	Н	-	-	M	-	L	Н	М	-	М	Н	М	L
CO6	-	Η	Н	Н	-	M	-	L	Н	Μ	-	Μ	L	L	L
16PES208	-	L	Н	L	-	М	-	L	Н	М	-	М	М	М	L

16PES2Z9

(Common to all branches)

Category : ES L T P C 0 0 4 2

Pre-Requisites: Nil

Course Objectives:

- Data types in C and Flow control statements.
- Functions, Arrays, Pointers and Strings.
- Dynamic memory allocation and command line arguments.
- Bitwise Operators, Preprocessor Directives, Structures and Unions.
- Structures, List Processing, Input And Output

PRACTICALS EXERCISES ILLUSTRATING THE FOLLOWING CONCEPTS:

- 1. Operators, Expressions and IO formatting
- 2. Decision Making and Looping
- 3. Arrays and Strings
- 4. Functions and Recursion
- 5. Pointers
- 6. Dynamic Memory Allocation
- 7. Structures
- 8. Unions
- 9. Files
- 10. Command line arguments
- 11. Mini Project

Contact Periods:

Lecture: 0 Periods Tutorial: 0Periods Practical: 60 Periods Total: 60 Periods

COURSE OUTCOMES:

Upon completion of this practical classes, the students will be able to

CO1: Use appropriate data types and flow control statements [Usage]

CO2: Write programs using functions, arrays, pointers and strings [Usage]

CO3: Write programs using dynamic memory allocation [Usage]

CO4: Implement programs using right storage classes, preprocessor directives, bitwise operators [Usage]

CO5: Work with command line arguments, structures, unions and files **[Usage] CO6:** Develop applications using C **[Usage]**

Course A	Articula	ation M	latrix

PO/PSO	PO	РО	РО	PO	РО	PO	PO	PO	PO	PO	РО	PO	PSO 1	PSO 2	PSO 3
CO		2	3	4	5	6	7	8	9	10	11	12	1	-	
CO 1	Н	Н	М	Н	Н	-	-	M	M	M	L	M	L	L	L
CO 2	Н	Н	М	Н	Н	-	-	M	M	M	L	M	М	L	L
CO 3	Н	Н	М	Н	Н	-	-	M	М	M	L	M	М	М	L
CO 4	Н	Н	М	Н	Н	-	-	M	М	M	L	M	М	М	L
CO 5	H	Н	М	Η	Н	-	-	M	M	M	Η	M	L	L	L
CO6	H	Н	М	Н	H	-	-	M	M	M	М	H	М	М	L
16PES2Z9	Η	Η	М	Η	Η	I	-	М	М	М	М	М	М	L	L

16PBS3Z1

ENGINEERING MATHEMATICS III

(Common to all Branches)

Category: BS L T P C 3 2 0 4

Pre-Requisites: Nil

Course Objectives:

- To gain the knowledge of formation of Fourier series.
- To familiarize with Infinite and finite Fourier transforms functions.
- To be familiar with solution of first and second order differential equations.
- To acquire knowledge of techniques to solve one and two dimensional partial differential equations concerning to engineering applications.

UNIT- I	FOURIER SERIES	(9+6)
Dirichlet's cond	ditions - Full range Expansions - Odd and even functions - Half ran	nge sine and
cosine series – I	Parseval's identity on a Fourier series - Harmonic analysis	
UNIT- II	FOURIER TRANSFORMS	(9+6)
Fourier integral	theorem (statement only) - Infinite Fourier transform pair - Fourier sin	e and cosine
transform pair	- Properties -Transforms of simple functions - Parseval's identity of	on a Fourier
transform - Fini	te Fourier transforms.	
UNIT- III	PARTIAL DIFFERENTIAL EQUATIONS	(9+6)
Formation of pa	rtial differential equations - First order PDE - Standard types and Lagr	ange's type -
Linear partial d	ifferential second and higher order with constant coefficients - Homo	geneous and
Non-homogeneo	ous types	
UNIT- IV	BOUNDARY VALUE PROBLEMS	(9+6)
Method of separ	ration of variables and Fourier series solution: One dimensional wave e	equation, one
and two dimens	ional heat flow.	
UNIT- V	Z TRANSFORMS	(9+6)
Z transforms-p	properties-Inverse Z transforms-Initial and final value theorems-	Convolution
theorem- Forma	ation of difference equations- Solution to difference equations of s	econd order
difference equat	tions with constant coefficients with Z transform.	

Contact Periods:

Lecture: 45 Periods Tutorial: 30Periods Practical: 0 Periods Total: 75 Periods

Author Name	Title of Book	Publisher, Year of Publication						
Veerarajan T	Transforms and partial	Tata McGraw Hill Publishing						
	differential equations	Co., New Delhi, 2015						
Kandasamy, Thilagavathy	Engineering Mathematics for	S.Chand& Co, Ramnagar, New						
and Gunavathy	semester III B.E/B.Tech	Delhi, 2013						

- 1. Grewal B .S, "Higher Engineering Mathematics" Khanna Publishers, New Delhi, 43rd Edition, 2014.
- 2. Ramana B. V, "Higher Engineering Mathematics" Tata McGraw Hill Co. Ltd., New Delhi, 11th Edition, Reprint, 2010.
- 3. Bali N., Goyal M, "Transforms and Partial differential equations" University Science Press, New Delhi, 2010
- 4. Ray Wylie C and Louis C Barrett, "Advanced Engineering Mathematics", McGraw Hill Education(India) Pvt Ltd, New Delhi, 6th Edition, Reprint ,2014.
- 5. Donald.A.McQuarrie,, "Mathematical Methods for Scientists and Engineers", Viva Books Pvt. Ltd., New Delhi, 1st Edition, Reprint ,2015.

Course Outcomes

On completion of this course, students will be able to

- **CO 1:** Understand the concepts of Fourier series and its construction when discrete and continuous form is known.
- CO 2: Acquire fluency in Fourier transforms in order to solve improper integrals.
- CO 3: Understand the standard and special types of partial differential equations.
- CO 4: Gain fluency in solving boundary value problems.
- CO 5: Understand the Z transform methods to find solutions of difference equations.

PO/PSO	PO	PO	PO	PO	PO	РО	РО	PO	РО	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Н	Н	Н	-	-	-	-	-	-	Н	-	-	-	-	-
CO 2	М	Η	М	-	-	-	-	-	-	М	-	-	-	-	-
CO 3	Н	М	-	-	-	-	-	-	-	L	-	-	-	-	-
CO 4	Н	Η	M	-	-	М	-	-	-	М	М	-	-	-	-
CO 5	М	М	M	-	-	-	-	-	-	-	-	-	-	-	-
16PBS3Z1	Н	Н	М	М	-	М	-	-	-	L	М	-	-	-	-

Course Articulation Matrix

16PES302

STRENGTH OF MATERIALS

(Common to Production and Mechanical Engineering)

Category: ES L T P C 3 0 0 3

Pre-Requisites:

1. 16PES206 - Engineering mechanics

Course Objectives:

- To understand the basic concepts of stress, strain, shear force, bending moment and deflection for different types of loading conditions.
- To understand the deflection of beams, theory of columns and application of torsion.

UNIT- I	STRESS AND STRAIN	(09)								
Stress and strai	n at a point-Tension, compression, shear stresses - Hooke's law - Comp	oound bars –								
lateral strain - F	Poisson's ratio -Volumetric strain - Bulk modulus - Relationship among elas	stic constants								
– stress strain d	iagrams for mild steel, cast iron-Ultimate stress - Yield stress-Factor of safe	ety - Thermal								
stresses - Thin	cylinders - Strain energy due to axial force - Resilience- Stress due to	gradual load,								
suddenly applie	d load and Impact load.									
UNIT- II	SHEAR FORCE AND BENDING MOMENT	(09)								
Beams – Types	of Beams - Types of loads, supports - Shear force - Bending moment - she	ear forces and								
bending momer	nt diagrams for cantilever, simply supported and over hanging beams with	concentrated,								
uniformly distributed and uniformly varying load-Relationship between rate of loading, shear force,										
bending moment- Point of contra flexure.										
UNIT- III	THEORY OF BENDING AND COMPLEX STRESSES	(09)								
Theory of ben	ding-Bending equation-Section Modulus-Stress distribution at a cross se	ection due to								
bending mome	ent and shear force for cantilever, simply supported beams with	point, UDL								
loads(Rectangu	lar, circular, I & T sections only) -combined direct and bending stresse	es, Kernel of								
section (Rectan	gular, Circular Sections only). 2D State of stress - 2D Normal and shear str	resses on any								
plane-Principal	stresses and Principal planes-Principal Strains and direction-Mohr's circle o	f stress.								
UNIT- IV	DEFLECTION OF BEAMS AND THEORY OF LONG COLUMNS	(09)								
Determinations	of deflection curve - Relation between slope, deflection and radius of	curvature –								
Slope and defle	ection of beam at any section by Macaulay's method - Concept of Cor	njugate beam								
method (Theory	y only)- Euler's theory of long Columns- Expression of crippling load for	r various end								
conditions-Effe	ctive length-Slenderness ratio-limitations of Euler equation - Rankine	formula for								
columns.										
UNIT- V	THEORY OF TORSION	(09)								
Torsion of shaf	ts - Torsion equation - Polar modulus- Stresses in Solid and Hollow circ	ular shafts -								
Torsional rigidi	ty - Power transmitted by the shaft - Importance of angle of Twist - Strai	n energy due								
to Torsion - M	odulus of rupture - Torsional resilience - Combined bending and Torsion	n- Stresses in								
helical springs -	Deflection of helical spring-Leaf springs.									

Contact Periods:

Lecture:45 Periods

Tutorial: 0Periods

Practical: 0 Periods

Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication
Sadhu Singh	Strength of Materials	Khana Publishers, New Delhi, 2000
Rajput.R. K	Strength of Materials	S. Chand & Company Ltd., New Delhi 2002
James M.Gere	Mechanics of Materials	Thomson India, Brooks/cole, 2006

Reference Books:

- 1. Dr.B.C. Punmia, Ashok Kumar Jain and Arun Kumar Jain., "Mechanics of Materials", Lakshmi Publications Pvt Ltd, New Delhi, 2002.
- 2. Kazimi, "Solid Mechanics", Tata McGraw Hill, New Delhi, 1998.
- 3. Robert L.Mott, "Applied Strength of Materials", PHI Learning Pvt. Ltd, New Delhi, 2009.
- 4. Jindal UC, "Textbook on Strength of Materials", Asian Books Pvt. Ltd., 2007.
- 5. Ramamrutham S and Narayan R, "Strength of Materials", Dhanpat Rai and Sons, New Delhi, 2000.

Course Outcomes:

On completion of this course, students will be able to

- CO1: Find the stress, strain and modulus for different materials.
- CO2: Understand the knowledge of shear force and bending moment diagrams of beams.
- CO3: Calculate the complex stresses in beams with different loading conditions.
- **CO4:** Find the deflection behaviour of beams and slender columns.
- **CO5:** Apply the concepts of torsion in shafts and springs.

Course Articulation Matrix

F	PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO 1	L	Н	-	М	-	L	-	-	-	-	-	-	L	L	L
	CO 2	L	М	Н	L	М	-	-	-	-	L	-	-	L	-	L
	CO 3	-	Н	L	Н	М	-	-	-	-	L	-	-	L	-	L
	CO 4	М	Н	L	М	L	-	-	-	-	-	-	-	L	-	L
	CO 5	L	Н	-	М	-	L	-	-	-	-	-	-	L	-	L
16	6PES302	L	Н	L	М	М	L	-	-	-	L	-	-	L	-	L
				(m. m.)												

16PPC303

FLUID MECHANICS AND MACHINERY

(Common to Production and Mechanical Engineering)

Category: PC L T P C 3 0 0 3

Pre-Requisites:

1. 16PES206 - Engineering mechanics

Course Objectives:

- To understand the basic principles in fluid mechanics and behavior study of fluid particles under rest and moving conditions.
- To understand the moment principle in fluid mechanics and its application in flow through pumps and turbines.

UNIT- I	FLUID PROPERTIES	(09)
Units and Dime	ensions - Fluid properties - Density, Specific gravity, Viscosity, Sur	face tension,
Capillarity, Con	npressibility and Bulk modulus - Pascal's Law - pressure mea	surements –
manometers - Fl	uid statics - Total pressure and centre of pressure on submerged surface	es.
UNIT- II	FLUID KINEMATICS AND DYNAMICS	(09)
Types of fluid fl	ow and flow lines - control volume - continuity equation in one-dimer	ision and
three dimension	- velocity potential and stream function - Energy equation - Euler and	Bernoulli's
equations – App	lications of energy equations- Flow meters - Laminar and Turbulent flo	ow through
pipes - Governin	ng Equations.	
UNIT- III	MOMENTUM PRINCIPLE	(09)
Impulse momen	ntum principle - Application of momentum principle - Impact of	Jet - Force
exerted by a jet	on normal, inclined and curved surfaces for stationary and moving ca	ses -Angular
momentum prin	ciple - construction of velocity vector diagram.	
UNIT- IV	HYDRAULIC TURBINES	(09)
Classification –	construction, working principles and design of Pelton wheel, Francis a	nd Kaplan
Turbines - head,	losses, work done and efficiency - specific speed - operating characteristic char	cteristics -
Governing of Tu	irbines.	
UNIT- V	PUMPS	(09)
Classification of	pumps - Centrifugal pump - working principle - discharge, work done	and
efficiencies – Ge	ear oil and Multistage pumps - Reciprocating pumps - work done and e	fficiencies -
negative slip - fl	ow separation conditions - air vessels - indicator diagram and its variat	ion - savings
in work done.		

Contact Periods:

Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total: 45 Periods

Author Name	Title of Book	Publisher, Year of Publication											
Rajput.R.K.	A text Book of Fluid Mechanics	S. Chand and Company,											
	and Machinery	NewDelhi , 2002											
Ramamrutham.S and	Fluid Hydraulics and Fluid	Dhanpat Rai Publishing House											
Narayanan.R.	Machines	(P) Ltd , New Delhi, 2000.											
Modi.P.N. and	Hydraulics and Fluid Mechanics	Standard book house, Delhi, 2002											
Seth.S.M.	including Hydraulic Machines												

- 1. Streeter, Victor L .and Wylie, E. Benjamin, "Fluid Mechanics", McGraw Hill Ltd., 1998.
- 2. Natarajan.M.K., "Fluid Machines", Anuradha Agencies, VidayalKaruppur, Kumbakonaam, 1995.
- 3. Kumar.K.L., "Engineering Fluid Mechanics", Eurasia Publishing House (P) Ltd., New Delhi, 2000.

Course Outcomes

On completion of this course, the students will be able to

CO 1: Identify the importance of fluids properties and fluid principles at rest.

CO 2: Know the physical behavior of fluids system and equations under moving conditions.

CO 3: To apply the concept of momentum principle at stationary and moving vanes.

CO4: To conduct the performance test on different types of turbines.

CO5: To conduct the performance study and selection of pumps for different applications

courserine					16	1916-16-67	ALC: N	11 116 8 5	States .	(P)					
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	М	Н	L	L	М	6		J.	-/	-	-	-	-	-	М
CO 2	Н	М	L	М	L	-			-//	-	-	-	L	-	М
CO 3	L	L	М	Н	L	8		冬	- 1	-	-	-	L	-	М
CO 4	L	М	М	Н	A	R	-			L	-	-	М	-	Н
CO 5	L	М	М	Н	E	10	-	P	ſ	L	-	-	Н	-	М
16PPC303	М	М	М	Н	K			IS RIP.	r ·	L	-	-	L	-	М

Churry B

Course Articulation Matrix

THERMAL SCIENCES

L T P C 3 2 0 4

Pre-Requisites: Nil

Course Objectives:

- To understand the basic laws of Thermodynamics and Heat and mass transfer.
- To understand the principle of operation of thermal equipment like IC engine, boiler, and refrigerator etc.

UNIT- I	THERMODYNAMICS	(9+6)								
Thermodynamic	systems - zeroth law, first and second laws of thermodynamics, applic	ations, steady								
flow energy eq	uation, ideal gas processes - calculation for work done, heat transfer	and entropy								
changes.										
UNIT- II	POWER PLANTS	(9+6)								
Rankine cycle(without reheat and regeneration), Steam power plant, Brayton cycle, gas turbine										
power plant, co	power plant, cogeneration and combined cycle power plants. Global energy requirements - role of									
energy manager	s in industries.									
UNIT- III	IC ENGINES	(9+6)								
Carnot cycle, Otto, diesel cycles, Principles of operations of IC Engines, valve and port timing										
diagrams, indica	ator diagrams, carburetors - simple and Solex; diesel fuel pump and i	injector, need								
for cooling and	lubrication of IC engines, coil and magneto ignition systems, mech	nanical, brake								
thermal and ind	icated thermal efficiencies.									
UNIT- IV	REFRIGERATION AND AIR-CONDITIONING	(9+6)								
Refrigeration -	vapour compression cycles - vapour absorption cycle, comparison be	tween vapour								
compression an	d absorption systems. Properties of steam: P - V, T - S and H -	S diagrams-								
Psychrometry, F	Psychrometric chart – processes.									
UNIT- V	T- V HEAT AND MASS TRANSFER (9+6)									
Heat conduction	n through plane and cylinder, critical thickness of insulation, natura	al and forced								
convection. Rad	liation, Surface emission properties, Stefan-Boltzmann law, Kirchhol	ff's law.Mass								
Transfer - Mode	e of mass transfer, Concentrations, Velocities and Fluxes.									

Contact Periods:

Lecture: 45 Periods Tutorial: 30Periods Practical: 0 Periods Total: 75 Periods

Author Name	Title of Book	Publisher, Year of Publication
Yunus A Cengel	Introduction to Thermodynamics	McGraw Hill Inc.,
	and Heat Transfer	New York, 2007.
Nag.P.K,	Engineering Thermodynamics	Tata McGraw-Hill, New Delhi, 2008.
R.K.Rajput	Thermal Engineering	Laxmi Publications (P) Ltd, 6th edition
		New Delhi, 2006.

1. R.K.Rajput, "Heat and Mass Transfer" 5thEdition, S.Chand& Company ltd, 2012.

2.Kothandaraman.C.P., Domkundwar.S. and A.V.Domkundwar., "A course in Thermal Engineering",

Dhanpat Rai and Sons., 5th edition, 2000.

3. Holman. J.P., "Thermodynamics", 3rd Edition, McGraw-Hill, 2007.

4. Arora. C.P., "Refrigeration and Air conditioning", TMH, 1994.

5. Holman J.P "Heat and Mass Transfer" Tata McGraw-Hill, 2000.

6.Nag P.K, "Power plant Engineering", Tata McGraw-Hill, 1998.

7. Ganesan V, "Internal Combustion Engines", Tata McGraw Hill Publishing Company, New Delhi, 2007.

Course Outcomes

On completion of this course, students will be able to

CO1: describe the thermodynamic systems and various laws of thermodynamics.

CO2: explain various thermodynamic cycles.

CO3: describe about IC engines.

CO4: describe the refrigeration and air conditioning systems.

CO5: explain about heat and mass transfer in a thermodynamic system.

									N 11						
PO/PSO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO						
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	M	H	M	М	A	L	10 00 10 00	100	L	Н	-	L	L	-	L
CO2	M	M	L	Н	-	М	-	-	L	Н	-	М	L	-	L
CO3	M	L	L	М	-	М	-	-	L	Н	-	М	L	-	L
CO4	М	L	Н	Н	-	М	М	-	L	М	-	М	L	-	L
CO5	M	L	L	L	-	М	М	-	L	М	-	М	L	L	L
16PES304	М	М	М	М	-	М	L	-	L	М	-	М	L	L	L

Course Articulation Matrix

L – Low, M- Moderate (Medium), H – High

16PPC305

FOUNDRY AND WELDING TECHNOLOGY

Category: PC L T P C 3 0 0 3

Pre-Requisites: Nil

COURSE OBJECTIVES:

- To familiarize the basic principles of casting and welding processes.
- To make the students to learn the various casting and welding methods including advanced techniques.

UNIT- I	INTRODUCTION TO CASTING	(09)						
Patterns : Makin	ng - materials, types, allowances pattern making - Moulding: materia	lls, equipment,						
sand preparation	n and testing - Cores and core making - Design considerations in o	casting, gating						
system – Meltin	g and heat treatment furnaces.							
UNIT- II	CASTING PROCESSES	(09)						
Casting processo	es: steps, advantages, limitations and applications of sand castings, per	manent mould						
casting - pressu	casting - pressure die casting, centrifugal casting - precision casting: investment casting, shell							
moulding -cont	inuous casting, squeeze casting - Fettling and finishing -casting	g defects and						
inspection.	Bystern Danster pr. va a right							
UNIT- III ARC AND GAS WELDING PROCESSES								
Types of weldi	ng - Positions of welding-types of weld joints - Arc welding: p	ower sources-						
electrodes – flux	x - types: SMAW, GTAW, GMAW, SAW, ESW. Gas welding - equips	ment - welding						
symbols – types	- pre and post weld heat treatments. Welding defects: causes and reme	dies - Welding						
inspection.								
UNIT- IV	SPECIAL WELDING PROCESSES	(09)						
Resistance weld	ing: spot, seam, projection, percussion, flash types - atomic hydrogen	arc welding -						
thermit welding	g - Soldering, brazing and braze welding - Electron beam weldin	g, laser beam						
welding, plasma	a arc welding and ultrasonic welding - explosive welding - Friction	stir welding -						
Under water we	lding.							
UNIT- V	AUTOMATION OF CASTINGANDWELDING	(09)						
Layout of mech	anized foundry - sand reclamation - Material handling in foundry - po	ollution control						
in Foundry - Re	cent trends in casting - Computer Aided design of Castings - Process.	Automation in						
welding - Weld	ling robots - Seam tracking vision and arc sensing - Overview of	automation in						
various industrie	28.							

Contact Periods:

Lecture: 45 Periods Tutorial: 0Periods Practical: 0 Periods Total: 45 Periods

Author Name	Title of Book	Publisher, Year of Publication					
Rao P.N	Manufacturing Technology: Foundry Forming and Welding	4th edition, McGraw Hill Education (India), New Delhi, 2013.					
Little R.L	Welding and Welding Technology	Tata McGraw Hill, 2008					
Heine R., Loper C. and Rosenthal P	Principles of Metal Casting	Tata McGraw Hill Publishing Co. Ltd., New Delhi, 33rd Reprint, 2008.					

- 1. Parmer R.S., "Welding Processes & Technology", Khanna Publishers, 2013.
- 2. Campbell J., "Casting Practice", Elsevier Science Publishing Co., 2004.
- 3. Parmer R.S., "Manufacturing processes and Automation", Khanna Publishers, 2012.
- 4. SeropeKalpakjian, Steven R. Schmid, "Manufacturing Engineering and Technology Anna University", 4th edition, Pearson Education, India, 2014.

Course Outcomes

On completion of this course, students will be able to

- CO 1:describe the fundamentals of metal casting processes.
- **CO 2:** classify the different metal casting processes with their inherent merits and limitations.
- CO 3: describe the fundamentals of welding processes.
- CO 4: classify the different welding processes with their inherent merits and limitations.

CO 5: discuss about the automation in foundries and welding shops.

Course Articulation Matrix

						1000	- Part	The second second							
PO/PSO	РО	PO	PO	PO	PO	PO	РО	РО	PO	PO	РО	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М				T			-4	. 7	2			М		
CO2	М				1								М		
CO3	М								1				М		
CO4	М				1	8		入					М		
CO5	М				М	X	*			3			М		
16PPC305	М				М	103	1/3	B		5			М		
I Low M		1		1.) II	TT. I	20276	C. Margaret	11111	/					

NOTTINA

16PPC306

ENGINEERING METALLURGY

(Common to Production and Mechanical)

Category: PC L T P C 3 0 0 3

Pre-Requisites:

- 1. 16PBS103- Applied Physics
- 2. 16PBS2Z3- Materials Science

Course Objectives :

• To study the phase diagrams, various heat treatment methods, principles of foundry, welding and powder metallurgy and to acquire knowledge on testing materials, properties and application of various methods.

Constitution of alloys – Solid solutions, substitutional and interstitial –phase diagrams, Isomor eutectic, peritectic, eutectoid and peritectoid reactions, Iron – Iron carbide equilibrium diagramUNIT - IIHEAT TREATMENT AND SURFACE TREATMENTDefinition – Full annealing, process annealing, stress relief, recrystallisation - spheroidizing –	1.								
UNIT - II HEAT TREATMENT AND SURFACE TREATMENT									
Definition – Full annealing, process annealing, stress relief, recrystallisation - spheroidizing –	(9)								
normalising, hardening and tempering of steels - austempering, martempering - Isothermal									
transformation diagrams - cooling curves superimposed on I.T diagram- CCR - hardenability,									
Jominy end quench test - Case hardening, carburising, nitriding, cyaniding, carbonitriding-Flar	me and								
Induction hardening.									
UNIT - III FERROUS AND NON FERROUS METALS	(9)								
Plain carbon steels - alloy steels - Effect of alloying elements (Mn, Si, Cr, Mo, V, Ni, Ti& V	W) on								
properties of steel - stainless and tool steels - Gray, White, Malleable, Spheroidal graphite	- alloy								
cast irons - heat resistant steels and die steels. Copper, Aluminium, Nickel, Magnesium, Tit	tanium,								
Lead, Tin - Important alloys - their composition, properties and applications - Material Specif	fication								
and standards.									
UNIT - IV FOUNDRY AND POWDER METALLURGY	(9)								
Solidification of pure metals and alloys - melting - super heating - fluxing - micro and	macro								
segregation - hot tears - heat transfer and structural change - Production of powders, n	mixing,								
blending, compacting, sintering and hot pressing - secondary operations- application of p	powder								
metallurgy – advantages and limitations.									
UNIT - V WELDING METALLURGY AND TESTING OF MATERIALS	(9)								
Weldability - heat distribution during welding and thermal effects on parent metals - HAZ -	factors								
affecting HAZ - hardening, cracking, distortion and residual stresses - stress relief treatment of	f welds								
- Mechanical tests - tension, compression, impact, hardness, Non Destructive Testing	g basic								
principles and testing method for Radiographic testing, Ultrasonic testing, Magnetic F	Particle								
inspection and Liquid penetrant inspection test - Eddy current testing.									

Contact Periods:

Lecture: 45 Periods

Tutorial: 0Periods

Practical: 0 Periods

Total: 45 Periods

Text Books

Author Name	Title of Book	Publisher, Year of Publication
Higgins R.A	Engineering Metallurgy	5th edition, EIbs, 1983.
Dieter, G.E	Mechanical metallurgy, SI metric	McGraw-Hill, ISBN 0-07-100406-
	edition	8, 1988.
Sydney H.Avner	Introduction to Physical	Tata McGraw Hill Book Company,
	Metallurgy	1994.

Reference Books

- 1. William D Callsber "Material Science and Engineering", Wiley India pvt Ltd 2007.
- 2. Lakhtin Yu., "Engineering Physical Metallurgy and Heat Treatment", Mir Publisher, 1985.
- 3. Kenneth G.Budinski and Michael K.Budinski "Engineering Materials" Prentice-Hall of India Private Limited, 4th Indian Reprint 2002.
- 4. GUY.A.G., "Elements of Physical Metallurgy", Oxford & IBH Pub.Co, 1990.
- 5. O.P.Khanna, "Material Science And Metallurgy", Dhanpat Rai Publication, 2011

Course Outcomes:

On completion of this course, students will be able to

CO 1: predict the alloy components and its composition variation with respect to temperature changes.

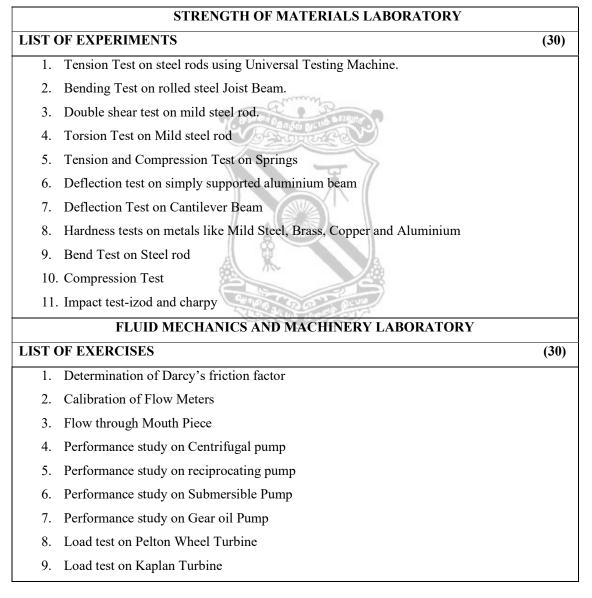
- CO 2: select suitable materials and heat treatment methods for various industrial applications.
- CO 3: understand the ferrous and nonferrous materials and their application
- **CO 4:** apply the knowledge of foundry and powder metallurgy to solve various industrial production processes.
- **CO 5:** gain knowledge about materials testing methods and welding techniques to meet industrial requirements.

PO/PSO	РО	PO	PO	РО	PO	PO	РО	РО	PO	PO	PO	P0	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L				Μ			L				L	М		
CO2	М		Н		Н								Н	М	
CO3	Н	Μ			Μ								М	Н	L
CO4	L	Μ			Μ								L	М	
CO5	L					М	Н				L				L
16PPC306	L				М			L				L	М		

Course Articulation Matrix

16PES307

STRENGTH OF MATERIALS AND FLUID MACHINERY LABORATORY


(Common to Production and Mechanical Engineering)

Pre-Requisites:

- 1. 16PES302–Strength of Materials
- 2. 16PPC303 Fluid Mechanics and Machinery

Course Objectives:

- To understand the basics of different testing methods for different materials.
- To study the behaviour of fluid system at rest and motion and performance analysis of pumps and turbines.

Contact Periods:

Lecture: 60 Periods	Tutorial: 0Periods	Practical: 0 Periods	Total: 60Periods
---------------------	---------------------------	----------------------	-------------------------

Course Outcomes

On completion of this course, students will be able to

CO1: Apply knowledge of compression, tension, shear and torsion testing procedures on materials.

CO2: Know the deflection and bending behaviour of different types of beams.

CO3: Find the hardness of different metals.

CO4: Find the flow properties of fluids.

CO5: Conduct performance tests on pumps and turbines and draw the performance curves.

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Н	М	L	L					М				L		L
CO 2	М	Н	L	М	L				L				L		L
CO 3	L	Н		М		L	Anna	mo	L				L		L
CO 4	М	Н	L	L	Μ	pileri ()	2.00	116 60	L				L		
CO 5	L	М	М	Н	Ŀ	ØZ	N	GAC (L	L			L		
16PES307	М	Н	L	М	L	L		P	- L 7	L			L		L

16PPC308METALLURGY LABORATORYANDTHERMALSCIENCECategory: PCLABORATORYL T P C0 0 4 2

16PPC308 (A) METALLURGYLABORATORY

L	Т	Р	С
0	0	2	1

Pre-Requisites: Nil

Course Objectives:

• To impart the skill of micro structural examination, defect examination and heat treatment of ferrous and nonferrous materials.

LIST OF EXERCISES

1. Study of Metallurgical microscope

2. Preparation of Specimen for micro-examination

3. Study of Iron carbon Equilibrium diagram

- 4. Study of Microstructure of materials
 - Steel (low carbon steel, high carbon steel, HSS, Spheroidised steel)
 - Cast iron (grey, white, SG)
 - Non Ferrous (brass, Gun metal, aluminium, silicon alloy)
- 5. Study of Heat Treatment processes (Annealing, Normalizing, Hardening and Tempering)
- 6. Study of non-destructive tests
 - Liquid penetrant test
 - Ultrasonic inspection
 - Magnetic particle inspection
 - Radiography
- 7. Determination of Hardenability by Jominy end quench test.

Contact Periods:

Lecture: OPeriods Tutorial: OPeriods Practical: 30 Periods Total: 30Periods

Course Outcomes

On completion of this course, students will be able to

- **CO1:** prepare specimen for microscopic examination and identify the microstructures of ferrous and nonferrous engineering components.
- **CO2:** select suitablenon destructive tests for finding flaws in a material.
- **CO3:** realize the effect of heat treatment on the properties of materials.

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	М	Н	L	L	-	L	-	-	L	-	L	-	М	-	М
CO 2	Н	М	L	L	-	L	-	-	L	-	L	-	М	-	М
CO 3	М	L	-	L	-	L	L	-	L	-	L	-	М	-	М
16PPC308A	М	М	L	L	-	L	L	-	L	-	L	-	М	-	М

16PPC308 (B) THERMAL SCIENCELABORATORY

L T P C 0 0 2 1

Pre-Requisites: Nil

Course Objectives:

• To impart the skill of conducting tests on I.C engines, compressors and blowers for finding the performance and other related characteristic parameters.

LIST OF EXERCISES

- Valve timing and port timing diagrams of single cylinder diesel engines.
- Performance test on 4 stroke Diesel Engine using various loading devices.
- Retardation test to find Frictional Power of a Diesel Engine.
- Economical speed test on Diesel Engine.
- Performance test on Constant speed blower.
- Performance test on Variable speed blower.
- Performance test on Reciprocating Air compressor.

Contact Periods:

Lecture: 0 Periods Tutorial: 0Periods Practical: 30 Periods Total: 30Periods

Course Outcomes

On completion of this course, students will be able to

- **CO 1:** Conduct performance tests on diesel engines with different types of loading devices to access the performance.
- CO 2: Find the opening / closing timings of valves or ports in engines.
- **CO3:** Conduct performance tests on blowers and reciprocating compressor to access the performance.

PO/PSO	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	РО	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Н	М	L	L	-	Н	Η	-	L	-	М	-	-	-	М
CO 2	Μ	Μ	L	L	-	М	М	-	L	-	L	-	-	-	М
CO 3	Н	M	L	L	-	Н	Η	-	L	-	М	-	-	-	М
16PPC308B	М	М	L	L	-	М	М	-	L	-	L	-	-	-	М

Course Articulation Matrix

16PBS401

PROBABILITY AND STATISTICS

LTPC 3 2 0 4

Pre-Requisites: Nil

Course Objectives:

- To gain the knowledge of probability concepts. •
- To understand the statistical distributions both discrete and continuous cases. •
- To be familiar with tests of sampling. •
- To familiarize with design of experiments and correlation analysis. •

UNIT- I	PROBABILITY AND RANDOM VARIABLES	(9+6)
Axioms of prob	ability - conditional probability -Independent events - Total probability	/ –Baye's
theorem - Rand	om variables - Discrete and continuous random variables - Moments -	Moment
generating funct	tions and their properties.	
UNIT- II	STANDARD DISTRIBUTIONS	(9+6)
Binomial, Poiss	on, Geometric, Uniform, Exponential, Normal, Gamma, Weibull (Mear	n, Variance
and Simple prob	plems) Chebychev's inequality (Simple problems).	
UNIT- III	TEST OF HYPOTHESIS	(9+6)
Large samples:	Tests of means, variances and proportions. Small samples: Tests of me	eans, variances
and attributes u	sing t, F, Chi Square distribution - Interval estimation for mean, stan	dard deviation
and proportion.		
UNIT- IV	ANALYSIS OF VARIANCE	(9+6)
One way classif	ication, Two way classification and Latin Square design (Only problem	ıs).
UNIT- V	CORRRELATION ANALYSIS	(9+6)
Coefficient of c	correlation - rank correlation - regression lines - Multiple and Partia	l correlation -
Partial regressio	n - Regression planes (Problems only).	
Contact Period	S:	

Contact Periods:

Lecture : 45 Periods **Tutorial : 30 Periods Total: 75 Periods Practical : 0 Periods**

Text Books:

Author Name	Title of Book	Publisher, Year of Publication
Veerarajan T	Probability and Random Processes (with	McGraw Hill Education (India
	Queueing Theory and Queueing Networks))Pvt Ltd., New Delhi, Fourth Edition 2016.

Reference Books:

- 1. Gupta S.C and Kapoor V.K, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 2015.
- 2. Gupta S.P, "Statistical Methods", Sultan Chand & Sons, New Delhi, 2015.
- 3.Kandasamy, Thilagavathy and Gunavathy, "Probability and Random Process", S. Chand & Co, Ramnagar, New Delhi, Reprint 2013.
- 4. Trivedi K.S, "Probability and Statistics with Reliability, Queuing and Computer Science Applications", Prentice Hall of India, New Delhi.
- 5. Hwei Hsu, "Schaum's outline series of Theory and Problems of Probability and Random Process", Tata McGraw Hill Publishing Co., New Delhi, 2015.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** Understand probability axioms and calculate expected values through moment generating functions.
- CO 2: Understand probability distributions of discrete and continuous random variables.
- **CO 3:** Understand tests of sampling for large and small samples.
- **CO 4:** Acquire fluency in experimental design using criterion of ANOVA.
- **CO 5:** Understand how to calculate coefficient of correlation, regression coefficients, multiple and partial correlation and regression plane.

Course mit	iculai		141111	•											
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Н	Н	L	Μ	М						М		М		М
CO 2	Н	Н	L	Μ	Μ						М		М		М
CO 3	Н	Н	Н	Н	Н	L	L		М		М		М		M
CO 4	Н	Н	Н	Н	Н	Μ	M	m	М		Н		М		М
CO 5	Н	Н	Н	Н	Н	$p(\mathbf{L}_{ij})$	L.	1000	Μ	-	М		М		М
16PBS401	Н	Н	Н	Н	Н		NL CO	R	М		М		М		М

Course Articulation Matrix:

Pre-Requisite:

16PES105 – Basic of Electrical and Electronics Engineering.

Course Objectives:

• To equip the students with the basic knowledge of analog and digital electronic circuits and microprocessor.

UNIT- I	ANALOG ELECTRONIC CIRCUITS	(09)								
Review of chara	acteristics of transistors - Need for biasing - DC Load line analysis - B	Biasing of BJT-								
Types of Biasin	g - Fixed and Self biasing - RC Coupled amplifier - Class A Power an	nplifier - Class								
B pushpull amp	plifier - Distortion in amplifiers. Concept of feedback - Oscillators	- Barkhausen								
criterion - RC pl	hase shift oscillator - Hartley Oscillator - ColpittsOscillator.									
UNIT- II	DIGITAL CIRCUITS	(09)								
Binary number	system - AND, OR, NOT, NAND, NOR and XORgate - Combinat	ional circuits -								
Adders and subtractors. Flip flops - RS flip flop, JK, D, T flip flops. A/D and D/A converters -										
weighted resistor DAC -R-2R ladder DAC - servo tracking A/D - successive approximation A/D										
converter -Dual	slope ADC - Memories - ROM - EPROM - EEPROM-RAM.									
UNIT- III	8085 ARCHITECTURE AND PROGRAMMING	(09)								
Block diagram	of microcomputer - Architecture of 8085 - Pin configuration - Instru	ction formats -								
Instruction set -	Addressing modes – Simple assembly language programs.									
UNIT- IV	TIMING DIAGRAM AND INTERRUPTS	(09)								
Instruction cycle	e - machine cycle -Timing diagram: OP code fetch cycle, Memory and	I/O read cycle,								
memory and I/C) write cycle, interrupt acknowledge machine cycle. Interrupts - Hardw	are Interrupts -								
Vectored Interr	upts - Non-vectored interrupts - Priority interrupts - Data trans	fer schemes -								
synchronous transfer, asynchronous transfer, interrupt driven transfer and DMA transfer.										
UNIT- V	INTERFACING AND APPLICATIONS	(09)								
Interfacing of I	nput and output devices - Applications of microprocessor - Tempera	ature control –								
Stepper motor c	Stepper motor control – Traffic light control- Digital clock- EPROM Programmer.									

Contact Periods:

Author Name	Title of Book	Publisher, Year of Publication				
S.Salivahanan, N.Sureshkumar	Electronic Devices and	2nd Edition, Tata Mc Graw				
and A.Vallavaraj	Circuits	Hill, 2008				
Morris Mano M	Digital Design	Prentice Hall Of India Pvt.				
		Ltd. 2008				
Ramesh	Microprocessor Architecture	Penram International				
S. Goankar	and Programming and	Publishing (India) 2004				
	Applications 8085 / 8080a					

- 1. Mathur S.P., Kulshreshtha D.C., Chadha P.R. "Electronic Devices and Applications and Integrated Circuits", Umesh Publications, 2004.
- Krishna Kant, "Microprocessor and Microcontroller Architecture, Programming and System Design using 8085,8086, 8051 and 8096", PHI, 2011. Ajit Pal, "Microprocessor Principles and Applications", Tata Mcgraw Hill, New Delhi 1999.
- 3. Allen Mottershead "Electronic Devices and Circuits", Prentice Hall of India, 2008.
- 4. Charles H.Roth, Jr, "Fundamentals of Logic Design", 4th Edition, Jaico Publishing House, 2006.

Course Outcomes:

On completion of this course, students will be able to

- CO1: Knowledge about bipolar junction and field effect transistors.
- CO2: Knowledge on the design of amplifiers and oscillators.
- CO3: Knowledge about combinational and sequential logic circuits.
- CO4: Basic knowledge about A/D and D/A converters.
- CO5: In-depth knowledge on architecture and programming concepts of 8085 microprocessor.
- CO6: Exposure to various interfacing circuits for real time applications.

Course Articulation Matrix

PO/PSO	PO	РО	PO	РО	PO	РО	РО	РО	PO	PO	PO	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Н		L		a	8	1	0		2			L		L
CO 2	Н		L		A	150	<u>ان</u>		X	36			L		L
CO 3	Н		L					S	2010	Ð			L	L	L
CO 4	L				1	Con the second	100	DE C	T				L	L	L
CO 5	М		Μ										L		L
CO6	М		М										L	L	L
16PES402	М		L										L	L	L

16PES403

ELECTRICAL MACHINES AND DRIVES

Category: ES

(Common to Production and Mechanical Engineering)

3 0 0 3

Pre-Requisites:

16PES105- Basics of Electrical and Electronics Engineering

Course Objectives:

• To understand the fundamental of energy conversion and to study the construction, principal of operation, characterization of DC machines, AC machines and various drives used.

UNIT- I	DC MACHINES	(10)							
Construction –	Construction - Generator Principle - EMF equation - Characteristics of different types of DC								
generators - Motor principle - Torque equation - Characteristics of different types DC motors -									
Starters - Speed control - Electric braking - Swinburne's test - Brake test.									
UNIT- II	SYNCHRONOUS MACHINES	(09)							
Alternators –	Alternators - Types and constructional features - EMF equation - Voltage regulation -								
Synchronous m	Synchronous motor principle - V and inverted V curves - Hunting - Methods of starting -								
Applications.	Bolderin Danser aut the attempt								
UNIT- III INDUCTION MACHINES									
Construction of three-phase induction motors – Principle of operation – Torque-slip characteristics –									
Starting and spe	Starting and speed control methods – Single phase induction motor – Types – Methods of starting –								
Applications – U	Applications – Universal motor.								
UNIT- IV	SOLID STATE SPEED CONTROL	(08)							
	(Power circuits and Qualitative treatment only)								
Control of DC	drives using rectifiers and choppers - Control of three phase ind	duction motor using							
stator voltage co	ontrol - V/f control- Rotor resistance control- Slip power recove	ry schemes.							
UNIT- V	SELECTION OF DRIVES AND SPECIAL MOTORS	(08)							
Types of electri	cal drives - Factors influencing the choice of electric drives -	Loading conditions							
and classes of a	luty - Determination of power rating - Selection of motor for	steel rolling mills,							
paper mills, sug	gar mills, textile mills, and machine tool applications - DC and	AC servomotors –							
Stepper motors.									

Contact Periods:

Lecture :	45 Periods	Tutorial : 0	Periods
Dectaile .			

Practical : 0 Periods

Total : 45 Periods

Author Name	Title of Book	Publisher, Year Of Publication
Theraja B.L and	A Test book of Electrical	S.Chand& Co., 2006
Theraja A.K.	Technology, volume – II	
Pillai S.K	A first course on Electrical Drives	New Age International
		Publishers.,NewDelhi, 2 nd Edition
		(Reprint) 2010

- 1. De N.K and Sen P.K., 'Electric Drives', PHI, 2009.
- 2. Deshpande M.V., 'Electric motors application and control', PHI, 2011.
- 3. Sugandhi R.K. and Sugandhi K.K., 'Thyristors: Theory and applications', New Age International Publishers, 2nd edition (reprint) 2009.
- 4. Dubey G.K., 'Fundamentals of Electric Drives', Alpha Science International Ltd., 2002.
- 5. Vedam Subramaniam., 'Electric Drives: Concepts and Applications', McGraw Hill, 2011.

Course Outcomes:

On completion of this course, students will be able to

- CO 1: Select and utilize various electrical machines
- CO 2: Employ effective control techniques to electrical motors
- CO 3: Identify suitable synchronous machines for real time applications
- CO 4: Design suitable induction machines for real time applications
- CO 5: Select appropriate electrical drive for various industrial applications

PO/PSO	PO	PO	PO	PO	PO	РО	РО	РО	PO	РО	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	700	8	9	10	11	12	1	2	3
CO 1	L	М	-	-	H	19		М	L	-	-	М	-	Н	-
CO 2	L	-	М	-	4	8	Y	М	-1	М	-	М	М	-	-
CO 3	L	-	-	М	金	1	-	-		§ -	L	М	-	-	Н
CO 4	-	Н	-	-	0	2010	3	550	cuia)	/ -	Н	М	-	М	-
CO 5	Н	-	L	-	L	М	4 <u>8</u>)	М	2	L	-	-	М	-	-
16PES403	L	М	L	М	М	М		М	L	L	М	М	М	М	Н

Course Articulation Matrix

16PPC404

MECHANICS OF MACHINES

Pre-Requisites:

- 1. 16PES206 Engineering mechanics
- 2. 16PES302 Strength of Materials

Course Objectives:

- To familiarize the basic concepts of mechanisms and machinery.
- To make the students to know the importance of balancing and the effect of friction and vibration in different machine parts.
- To make the students to learn about various gear train configurations and kinematic analysis of cam-follower motion.

UNIT- I	MECHANISMS	(9+6)								
Machine structu	re - Kinematic link, pair and chain-Constrained motion- Degrees of f	reedom- Slider								
crank and crank rocker mechanisms - inversions, applications - Introduction to Kinematic analysis										
and synthesis of simple mechanisms - Determination of velocity and acceleration of simple										
mechanisms.										
UNIT- II FRICTION (9+6)										
Types of friction	n - Friction in pivot, collar and thrust bearings - Plate and disc clutches	- Belt (flat and								
V) and Rope di	rives - Ratio of tensions - Effect of centrifugal and initial Tension -	Condition for								
maximum powe	r transmission.									
UNIT- III GEARING AND CAMS										
Gear – Types ar	Gear - Types and profile - nomenclature of spur and helical gears - laws of gearing - interference -									
requirement of	minimum number of teeth in gears - gear trains - simple, compoun	d and reverted								
gear trains – det	termination of speed and torque in epicyclic gear trains - Cam - Type	es of cams and								
followers - Can	n design for different follower motions.									
UNIT- IV	BALANCING	(9+6)								
Static and dynar	nic balancing - Single and several masses in different planes - Primary	and secondary								
balancing of rec	iprocation masses – Balancing of single and multi cylinder engines.									
UNIT- V	VIBRATION	(9+6)								
Free, forced an	d damped vibration of single degree of freedom systems - force	Transmitted to								
supports - vibra	tion isolation - vibration absorption - torsional vibration of shaft - Si	ngle and multi								
rotor systems-C	ritical speed of shafts.									

Contact Periods:

Lecture : 45 Periods	Tutorial : 30 Pe	riods
Effectation is a serious		

Practical : 0 Periods Total : 75 Periods

Author Name	Title of Book	Publisher, Year Of Publication
Rattan, S.S.	Theory of Machines	McGraw-Hill Education (1) Private Ltd., New Delhi, 2015
Bansal Dr.R.K. and BrarDr.J.S.	Theory of Machines	Laxmi Publications (P) Ltd., New Delhi, 2016

- 1. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", 3rd Edition, Oxford University Press, 2009.
- 2. Thomas Bevan, 'Theory of Machines', 3rd Edition, CBS Publishers and Distributors, 2005.
- 3. Robert L. Norton, "Kinematics and Dynamics of Machinery", Tata McGraw-Hill, 2009.
- 4. Rao, J.S. and Dukkipati, R.V. "Mechanism and Machine Theory", Second Edition, Willey Eastern Ltd., 1992.

Course Outcomes:

On completion of this course, students will be able to

CO1: Explain the basics concepts of various mechanisms and to do velocity and acceleration analysis of simple mechanisms.

CO2: Describe the effect of friction on power transmission.

CO3: Discuss the basic principles of gears and cams.

CO4: Perform static and dynamic balancing of high speed rotary and reciprocating machines.

CO5: Analyze free and forced vibrations of machines, engines and structures.

Course Articulation Matrix

PO/PSO	PO	PO	PO	РО	PO	PO	РО	РО	PO	PO	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	Н							1				М		
CO2	М	Н			1	Ŕ		夏人	1				М		
CO3	М	Н			1	8	0					L	М		
CO4	М	Н			JA.	X	w ::		S.	200		L	М		
CO5	М	Н				10		1	10	R.		L	М		
16PPC404	М	Н			C.	1000		51	SIC VID	1		L	М		

16PPC405

METAL FORMING PROCESSES

Pre-Requisites: Nil

Course Objectives:

- To familiarize the basic principles of metal forming theory.
- To make the students to know various types of metal forming processes.
- To make the students to know recent advances in metal forming.

UNIT- I	INTRODUCTION TO METAL FORMING	(09)						
Mechanical beh	navior of materials - Elastic and plastic deformation - Classification	on of Forming						
Processes - Ter	nperature in metal working: hot and cold working - Introduction to	the theory of						
plastic deformation.								
UNIT- II	BULK DEFORMATION PROCESSES – FORGING AND	(09)						
	ROLLING							
Principle – cla	assification - equipment - tooling - processes parameters and	calculation of						
forcesduring for	rging and rolling processes - Ring compression test - Post forming he	eat treatment –						
defects(causes a	nd remedies) – applications – Roll forming.							
UNIT- III	BULK DEFORMATION PROCESSES – EXTRUSION AND	(09)						
	DRAWING							
Classification of	f extrusion processes – tool, equipment and principle of these processes	- influence of						
friction - extru	usion force calculation - defects (causes and remedies) - Rod/W	ire drawing –						
tool,equipment	and principle of processes - defects - Tube drawing and sinkin	g processes –						
Mannesmann pr	ocess of seamless pipe manufacturing – Tube bending.							
UNIT- IV	SHEET METAL FORMING PROCESSES	(09)						
Conventional s	heet metal forming processes like shearing, bending and miscellar	neous forming						
processes - Hig	h energy rate forming processes - Super plastic forming processes -	Deep drawing						
process; Princip	bles, process parameters, advantages, limitations and applications -	Formability of						
sheet metals - D	esign considerations.							
UNIT- V	SPECIAL FORMING PROCESSES	(09)						
Orbital forging	- Isothermal forging - Hot and cold Isostatic pressing - High speed ex	trusion - High						
speed forming i	machines - Rubber pad forming - Water hammer forming - Fine blan	king.Explosive						
forming - Elect	rohydraulicforming.							

Contact Periods:

	Lecture :	45 Periods	Tutorial : 0	Periods
--	-----------	------------	--------------	---------

Practical : 0 Periods Total : 45 Periods

Author Name	Title of Book	Publisher, Year Of Publication
Narayanasamy R	Theory of Metal Forming Plasticity	Narosa Publishers, New Delhi, 1999
Nagpal G.R.	Metal forming processes	Khanna publishers, New Delhi, 2004.

- 1. Mikell P. Groover, "Principles of Modern Manufacturing", Wiley India Private Limited, 2014.
- 2. Kalpakjian S. and Schmid S.R, "Manufacturing Processes for Engineering Material", Pearson, Chennai, 2009.
- 3. Juneja B.L., "Fundamentals of Metal forming Processes", New Age International (P) Ltd., Chennai, 2007.

Course Outcomes:

On completion of this course, students will be able to

- CO 1: Describe the principles and classification of metal forming.
- **CO 2:** Explain the fundamentals of forging and rolling processes.
- CO 3: Describe various methods of extrusion and drawing processes.

CO 4: Compare various sheet metal forming processes.

CO 5: Discuss recent advances in metal forming.

Course Articulation Matrix

PO/PSO	PO	PO	PO	РО	PO	PO	PO	PO	PO	РО	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М				9	122	NOR	Dare -	store and the second se	60			L		
CO2	М				1			-	- 7	2			L		
CO3	М				1		L	泉					L		
CO4	M						L_{0}		11				L		
CO5	М					6			1			М	L		
16PPC405	М					å	\mathcal{T}_{W}	\sim				М	L		

Total : 45 Periods

Pre-Requisites: Nil

Course Objectives:

• To study different machine tools and machining operations.

UNIT- I	FUNDAMENTALS OF METAL CUTTING	(09)								
Concepts of orthogonal and oblique cutting - Mechanics of chip formation - Types of chips produced										
in cutting - Cutting forces and power-Temperature in cutting- Machinability-Tool life - Wear and										
failure-surface finish and integrity- Cutting Tool Materials-cutting fluids.										
UNIT- II	MACHINE TOOLS AND PROCESSES FOR PRODUCING (09)									
	ROUND SHAPES									
Engine Lathe -	functions; work holding devices in lathe - functions - Chuck, Centre	, Dogs, Steady								
Rest and Follo	wer Rest; Mechanism of lathe - Apron, Feed, Tumbler Gear; varie	ous operations								
performed in La	athe - facing, turning, chamfering and knurling - relative positions of	tool and job –								
Taper turning n	nethods. Drilling machines - specifications, types - feed mechanism	n, operations –								
drill bit nomenc	drill bit nomenclature.									
UNIT- III	MACHINE TOOLS AND PROCESSES FOR PRODUCING (09)									
	VARIOUS SHAPES									
Milling - speci	fications - types - cutter nomenclature - types of cutters - millin	ig processes –								
indexing – gear	forming in milling - gear generation - gear shaping and gear hobbing	g. Broaching –								
specifications, t	ypes, tool nomenclature, broaching operations. Shaper machine - ble	ock diagram –								
functions - Quic	k return mechanism.									
UNIT- IV	ABRASIVE MACHINING AND FINISHING OPERATIONS	(09)								
Abrasives - bor	nded abrasives - Grinding process- wheel, gear grinding operations a	nd machines -								
grinding fluids	- Design Consideration for Grinding - Finishing operations: Lap	ping, Honing,								
Burnishing- economics of grinding and finishing operation.										
UNIT- V	MACHINE TOOL STRUCTURE AND AUTOMATION	(09)								
Machine tools s	tructures -erecting and testing of machine tools- Vibration and chatters	in machining-								
Automation: Ca	Automation: Capstan and Turret lathe - single spindle and multi spindle automats - Swiss type and									
automatic screw	machines-Feeding Mechanisms-Transfer mechanism-Tracer controller	r Mechanism.								
	machines recently recentions realiser meetianism react controller									

Contact Periods:

Lecture : 45 Periods	Tutorial : 0 Periods	Practical : 0 Periods

Author Name	Title of Book	Publisher, Year Of Publication			
Hajra Choudhry S.K.	Workshop Technology Vol II	Media Promoters and Publishers Pvt.			
and Bose S.K.,		Ltd., Bombay, 12th edition, 2007.			
Sharma P.C.,	A Text Book of Production	S.Chand and Company Ltd., New			
	Technology	Delhi, 10th Revised edition, 2010.			

- 1. Khanna, O.P and Lal, M, "A Text book of Production Technology", Vol.II, DhanpatRai Publications (P) ltd., 1st Edition, 2009.
- 2. SeropeKalpakjian and Steven R.Schmid, "Manufacturing Engineering and Technology", Addison Wesley Longman (Singapore) Pte Ltd, Delhi, 2009
- 3. Jain R.K. and Gupta S.C., "Production Technology", Khanna Publishers, New Delhi, 17th edition, 2004.
- 4. HMT, "Production Technology", Tata McGraw Hill publishing co. ltd., 1st edition, 2008.

Course Outcomes:

On completion of this course, students will be able to

- CO 1:describe about various machining processes and cutting tools.
- **CO 2:** explain the processes involved in production of round shaped components.
- CO 3: explain the processes involved in production of prismatic and contour shapes.
- CO4: discuss about various finishing operations.
- CO 5: explain the machine tool structure and mechanisms of automation.

PO/PSO	РО	PO	PO	PO	РО	РО	PO	PO	РО	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	L		L	1	Ł	L			L	L	М	М	L	
CO2	Н		L		L	М	L	L	М		L	L	Н		М
CO3	Н		L		L	М	L	$\mathbf{L}_{\mathcal{O}}$	M		L	L	Н		М
CO4	Н		L		D.C	М	(dL)	L	М		L	L	Н		М
CO5	М	М	Н	М	Н	М	М	L	L	М	L	М	Н	М	Н
16PPC406	Н	L	L	L	L	М	L	L	L	L	L	L	Н	L	М

Course Articulation Matrix

16PPC407

MACHINE DRAWING

Category: PC

L T P C 0 0 4 2

Pre-Requisites:

16PES107 - Engineering Graphics

Course Objectives:

- To provide hands on training on assembly drawing and impart knowledge on various types of machine parts & joints.
- To create knowledge about important features of assembled parts used in major engineering applications.

UNIT- I	CONVENTIONS, ABBREVIATIONS AND	(06)							
	SYMBOLS								
Interrupted views- Partial views of symmetrical objects- Conventional representation of intersection									
curves- Square e	curves- Square ends and openings, adjacent parts- Common machine elements.								
UNIT- II	FITS AND TOLERANCES (09)								
Description of	Description of tolerances and grades- Types of fits and their description- Shaft and hole basis								
systems- Selec	tion of fits from standard tables- Fits for different ap	plications- Examples-							
Geometrical tole	erances- Surface finish conventions.								
UNIT- III PREPARATION OF ASSEMBLY DRAWINGS AND (45									
COMPONENT DRAWINGS									
Cotter joint, Knuckle joint, Flange coupling, Universal coupling, Foot step bearing, Plummer block,									
Connecting rod ends, Cross heads, Screw jack, Lathe tailstock, Stop valves, Non-return valve.									
<u> </u>									

Contact Periods:

Lecture : 0 Periods	Tutorial : 0 Periods	Practical : 60 Periods	Total : 60 Periods

Text Books

Author Name	Title of Book	Publisher, Year Of Publication
Gopalakrishna K.R	Machine Drawing in First Angle Projection	Subhas Stores, Bangalore, 2007
Bhatt.N.D	Machine Drawing	Charotar Publishing House Pvt. Ltd., 49 th edition, 2013.

Reference Books

- 1. Gill.P.S., "Text Book of Machine Drawing", S.K.Kataria and Sons, Publishers and Distributors, Delhi, 2013.
- 2. PSG College of Technology, Design Data Book of Engineers by KalikathirAchchagam, 2012.
- 3. Narayana K.L., Kannaiah.P., VenkataReddy.K., "Machine Drawing", New Age International Publishers, 2009.

Course Outcomes:

CO 1: Describe the conventions in assembly drawing

- **CO 2:** Describe the Fits and Tolerances
- **CO 3:** Describe the Geometric Dimensioning &Tolerancing

CO 4: Incorporate the parts for to assemble

CO 5: Construct an assembly drawing of various machine unit

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	PO	РО	PO	PO	РО	PO	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	М				M			M	L	M		М	M		
CO1 CO2	M				H			M	L M	M		M	M		
CO2 CO3	M				н Н			IVI	M	M		M	M		
CO3	IVI				М				L	M		M	M		
C04 C05	Н				H	М		M	L M	M		IVI	M		
-						-	(married	-				м			
16PPC407	Μ				Н	Μ		Μ	M	M		М	M		

Category: ES LTPC 0 0 4 2

16PES408 (A) ELECTRICAL MACHINES LABORATORY	Category: ES
	LTPC
	0 0 2 1

Pre-Requisites:

16PES105 - Basics of Electrical and Electronics Engineering

Course Objectives:

• To give hands on training for measuring DC/AC electrical parameters by conducting basic tests on DC / AC machines and analyzing their performance.

LIST OF EXERCISES

- 1. O.C.C and load-test on separately Excited DC generator
- 2. O.C.C and load-test on DC shunt generator
- 3. Swinburne's test
- 4. Speed control of DC shunt motor
- 5. Load test on DC shunt motor
- 6. Load test on DC compound motor
- 7. Load test on DC series motor
- 8. Mechanical and iron losses of 3-phase induction motor
- 9. Load test on 3-phase induction motor
- 10. Load test on 1-phase induction motor
- 11. Regulation of 3-phase alternator by EMF & MMF methods
- 12. Load test on 3-phase alternator
- 13. Study of induction motor starters

Contact Periods:

Course Outcomes:

On completion of this course, students will be able to

- CO 1: Perform suitable experiments to analyze the performance of DC machines and AC machines.
- CO 2: To understand the concepts of working principles of electrical machines.
- CO 3: Select electrical machines for appropriate applications

Course Articulation Matrix

PO/PSO	PO	РО	PO	PO	PO	PSO	PSO	PSO							
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	L	-	-	-	М	-	-	М	L	Μ	-	Н	L	-	L
CO 2	Μ	-	-	-	Н	-	-	Μ	М	М	-	Μ	-	-	-
CO 3	L	-	-	Μ	-	-	-	Н	-	-	-	L	L	-	L
16PES408A	L	-	-	L	Н	-	-	Μ	М	Μ	-	Μ	-	-	-

16PES408 (B) MICROPROCESSOR LABORATORY

Category: ES L T P C 0 0 2 1

Course Objectives:

• To develop good programming skill in 8085 microprocessor and its applications.

LIST (OF EXERCISES							
Program	ms using 8085 Microprocessor							
1.	1. 8-bit addition and subtraction.							
2.	16-bit addition and subtraction.							
3.	8-bit multiplication and division.							
4.	Factorial of a number.							
5.	Sorting of numbers in ascending and descending order.							
6.	Code converters.							
7.	Stepper motor control.							
8.	Rolling display.							

Contact Periods:

	Lecture : 0 Periods	Tutorial: 0 Periods	Practical : 30 Periods	Total : 30 Periods
--	---------------------	---------------------	------------------------	--------------------

References:

- 1. S.Salivahanan, N.Sureshkumar and A.Vallavaraj, "Electronic Devices and Circuits", 2nd Edition, TataMcGrawHill, 2008.
- 2. Ramesh S. Goankar, "Microprocessor Architecture and Programming and Applications 8085 / 8080a", Penram International Publishing (India) 2004.
- 3. A.Nagoorkani, "8085 microprocessor and its applications", 3rd edition, RBA Publisher, 2013.
- 4. Krishna Kant, "Microprocessor and Microcontroller Architecture, Programming and System Design using 8085,8086, 8051 and 8096", PHI, 2011. Ajit Pal, "Microprocessor Principles and Applications", Tata Mcgraw Hill, New Delhi 1999.

Course Outcomes:

On completion of this course, students will be able to

- CO1: Exposure to 8085 microprocessor.
- CO2: In-depth knowledge on programming concepts of 8085 microprocessor.
- CO3: Exposure to real time applications of 8085.

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PO	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Н	-	L	-	-	-	-	-	-	-	-	-	-	-	-
CO 2	H	-	L	-	-	-	-	-	-	-	-	-	L	-	L
CO 3	Н	-	L	-	-	-	-	-	-	-	-	L	L	-	L
16PES408B	Η	-	L	-	L	-	-	-	-	-	-	L	-	-	-

Pre-Requisites: Nil

Course Objectives:

• To impart knowledge to develop a product with the required quality at a reasonable price and to satisfy the requirements under various quality standards

UNIT- I	INTRODUCTION	(09)							
Definition of qu	ality, dimensions of quality, quality planning, quality costs concepts -	basic concepts							
of total quality	management, principles of TQM, leadership concepts - quality c	ouncil, quality							
statements, stra	tegic planning- steps in strategic planning- Deming philosophy, ba	rriers to TQM							
implementation.									
UNIT- II	TQM PRINCIPLES	(09)							
Customer satisfa	action - customer perception of quality - customer retention, employee	e involvement -							
motivation, empowerment, performance appraisal, continuous process improvement - Juran trilogy,									
PDSA cycle, 5S concept, kaizen, supplier partnership - supplier rating - performance measures-									
Malcom Balridge National Quality Award.									
UNIT- III	STATISTICAL PROCESS CONTROL	(09)							
Seven old and new tools of quality - statistical fundamentals - population and sample - normal curve -									
control charts for	or variables and attributes- state of control and out of control - proce	ess capability -							
concept of six si	igma.								
UNIT- IV	TOOLS AND TECHNIQUES	(09)							
Benchmarking ·	- benchmarking process - quality function deployment (QFD) - hou	se of quality -							
Taguchi quality	loss function - total productive maintenance (TPM) - pillars of TPM	- Failure Mode							
Effective Analy	sis (FMEA) - Failure rate- types of FMEA - stages of FMEA.								
UNIT- V	QUALITY SYSTEMS	(09)							
Need for ISO	9000 and other quality system - ISO 9001:2015 quality system	– elements -							
implementation	implementation of quality system - documentation - quality auditing - QS 9000, ISO 14000 - concept,								
requirements an	d benefits- integrating ISO 14000 with ISO 9000 – OSHSAS 18001.								

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication
Dale H.Besterfield	Total Quality Management	Pearson Education, 2008.
SubburajRamasamy	Total Quality Management	Tata McGraw Hill, 2008.

Reference Books:

- 1. James R.Evans& William M.Lidsay, "The Management and Control of Quality", Thomson Learning, 2002.
- 2. Feigenbaum.A.V. "Total Quality Management", McGraw-Hill, 1991.
- 3. Zeiri, "Total Quality Management for Engineers" Wood Head Publishers, 1991
- 4. P.N.Mukherjee "Total Quality Management", PHI Publishers, 2006.
- 5. John.LHradesky "Total Quality Management Hand book" McGraw-Hill, 1995.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** apply the principle of strategic planning, Deming philosophy and leadership concepts in industries.
- **CO2:** apply the principle of TQM in industries.
- **CO3:** apply the principle of statistical process control in industries.
- **CO4:** select appropriate quality tools to meet industrial requirements.
- CO5: implement appropriate quality standards for industries.

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO						
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L	Η			М			L	L		L	L	М	L	М
CO2	L	Η			М			L	L		L	L	М	L	М
CO3	L	Η			М			L	L		L	L	М	L	М
CO4	L	Η			М	G	n'n	nL N	L		L	L	М	L	М
CO5	L	Η			М			L	炎	5	L	L	М	L	М
16PHS501	L	Η			Μ			E	H		L	L	L	L	М

MACHINE ELEMENTS DESIGN

(Use of Approved Data Book is permitted)

Category: PC L T P C 3 2 0 4

Pre-Requisites:

1.16PES206 - Engineering Mechanics

2.16PES302 - Strength of Materials

3.16PPC404 - Mechanics of Machines

Course Objectives:

- To familiarize the various steps involved in the Design Process.
- To make the students to learn the designing procedure for shafts, energy storing elements and flexible elements like Belt, Pulley and chain etc.
- To train the students to design the different type of bearings and gears using standard procedure.

UNIT- I	PRINCIPLES OF DESIGN	(9+6)									
Selection of M Safety, Principa Variable Stress,	Fundamentals of Machine Design - Phases of Design, Design Consideration - Standards and Codes - Selection of Materials - Design against Static and Dynamic Load - Modes of Failure, Factor of Safety, Principal Stresses, Theories of Failure - Stress Concentration, Stress Concentration Factors, Variable Stress, Fatigue Failure, Endurance Limit, Design for Finite and Infinite Life, Soderberg and Goodman Criteria.										
UNIT- II	SHAFTS AND BEARING	(9+6)									
Design of solid and hollow shafts based on strength, rigidity and critical speed. Sliding contact and rolling contact bearings.											
UNIT- III	JOINTS, COUPLINGS AND SPRINGS	(9+6)									
Design of welde leaf springs.	Design of welded joints, Bolted joints (brackets) - Design of flange couplings - Design of helical and leaf springs										
UNIT- IV	FLEXIBLE ELEMENTS	(9+6)									
Selection of flat	and V belts and pulleys. Roller chains.	I									
UNIT- V	GEARS AND GEAR BOXES	(9+6)									
	and helical gears based on strength and wear considerations. Design ression - standard step ratio - ray diagram, kinematic layout - design of esh gear box.										

Contact Periods:

Lecture: 45 Periods Tutorial: 30 Periods Practical: 0 Periods Total: 75 Periods

Author Name	Title of Book	Publisher, Year of Publication
Bhandari V	Design of Machine Elements	Tata McGraw-Hill Book Co,3 rd Edition, 2010.
Sharma, P.C., Aggarwal, D.K	A Text Book of Machine Design	Kataria and sons., 2012

- 1. Shigley, J.E., and Mischke, C.R., Mechanical Engg. Design, McGraw-Hill Book Co., 8th edition, 2008.
- 2. Dobrovolsky, V., and others, Machine Elements A Text Book, MIR Publishers.
- 3. Spotts, M.F., Design of Machine Elements (6th ed.), Prentice Hall of India Pvt.Ltd.

Course Outcomes:

On completion of this course, students will be able to

CO 1: estimate safety factors of simple structures exposed to static and repeated loads.

CO 2: design the shafts and bearings.

CO 3: design the welded joints, bolted joints, couplings and springs.

CO 4: design the drives - chain drives and belt drives.

CO 5: design the spur gears, helical gears and gear boxes

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO						
СО	1	2	3	4	5	6	de	8	9	10	11	12	1	2	3
CO1	М	Н	L		7		A Dans	SO QUE I		\mathcal{O}		L	М	М	Н
CO2	М	Н	L			K						L	Н	М	Н
CO3	М	Н	L		1				Pa.			L	Н	М	Н
CO4	М	Н	L					SUL A				L	Н	М	Н
CO5	М	Η	L			1				1		L	Н	М	Н
16PPC502	М	Н	L					Y				L	Н	М	Η

16PPC503 COMPUTER NUMERICAL CONTROL MACHINES

Category: PC L T P C 3 0 0 3

Pre-Requisites:

1. 16PPC406 – Machine Tools and Processes

Course Objectives:

• To enable the students to understand CNC machines constructional features, working and programming.

UNIT- I	INTRODUCTION TO CNC MACHINE TOOLS									
Evolution of CNC Technology, principles, features, advantages, applications, CNC and DNC concept, types of control systems, CNC controllers, characteristics, interpolators, types of CNC Machines – turning centre, machining centre, grinding machine, Vertical turret lathe, turn – mill centre, EDM.										
UNIT- II	STRUCTURE OF CNC MACHINE TOOL	(09)								
CNC Machine building, structural details, configuration and design, guide ways – Friction, Anti friction and other types of guide ways, elements used to convert the rotary motion to a linear motion – Screw and nut, recirculating ball screw, planetary roller screw, recirculating roller screw, rack and pinion, spindle assembly, torque transmission elements – gears, timing belts, flexible couplings, Bearings.										
UNIT-III	DRIVES AND CONTROLS	(09)								
motors. Open lo	feed drives – stepper motor, servo principle, DC and AC servom pop and closed loop control, Axis measuring system – synchro, sync fringe gratings, encoders, inductosysn, laser interferometer.									
UNIT- IV	CNC PROGRAMMING	(09)								
Coordinate system, structure of a part program, G & M Codes, tool length compensation, cutter radius and tool nose radius compensation, do loops, subroutines, canned cycles, mirror image, parametric programming, machining cycles, programming for machining centre and turning centre for well known controller such as Fanuc, Sinumerik Generation of CNC codes from CAM packages.										
UNIT- V	TOOLING AND WORK HOLDING DEVICES	(09)								
classification -	terials for CNC machine tools – hard metal insert tooling - inserts ar qualified, semi qualified and preset tooling, ATC, APC, tooling for M work holding devices for rotating and fixed work parts, econom CNC machines.	fachining and								

Contact Periods:Lecture: 45 PeriodsTutorial: 0 PeriodsPractical: 0 PeriodsTotal: 45 Periods

Text Books:		
Author Name	Title of Book	Publisher, Year of Publication
HMT Limited	Mechatronics	Tata McGraw-Hill Publishing Company Limited, New Delhi, 2005
Mike Mattson	CNC Programming Principles and Applications	Delmar Cengage learning, 2010

- 1. Evans K., Polywka J. and Stanley Gabrel., "Programming of CNC Machines", Third Edition Industrial Press Inc, New York, 2007
- 2. Madison J., "CNC Machining Hand Book", Industrial Press Inc., 1996.
- 3. Smid P., "CNC Programming Hand book", Industrial Press Inc., 2007 Third Edition
- 4. Radhakrishnan P., "Computer Numerical Control Machines", New Central Book Agency, 2002.
- 5. Rao P.N., "CAD/CAM Principles and Applications", Tata McGraw-Hill Publishing Company

Limited, New Delhi, 2010.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** describe the evolution and principle of CNC machine tools and types of control systems.
- CO2: apply knowledge in current terminology to describe the CNC machines and its types.

Panter grub and

CO3: describe constructional features of CNC machine tools, drives and positional

transducers used in CNC machine tools.

- **CO4:** generate CNC programs for popular CNC controllers.
- **CO5:** describe tooling and work holding devices for CNC machine tools.

Course	Articu	lation	Matrix
--------	--------	--------	--------

 se i n ene and					1, 100. 100	1223	- 11111	TAGU	COLUMN A	107.7					
PO/PSO	PO	PO	PO	PO	РО	РО	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L				Η								L		
CO2	L				Η	2		彯					L		
CO3	L				М	5	1	0					М		
CO4	L			1000	Н	1100			X	33		М		Н	
CO5	L			2	М	0) 0	Ell	100	AL UL	2			М		
16PPC503	L				Η	0	() 9 9	P/C	C			М	М	М	

Category: PC

L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

• To impart knowledge on different kind of traditional and latest computer aided measuring instruments with appropriate parameters of measuring components.

UNIT- I	GENERAL CONCEPTS OF MEASUREMENT	(09)						
and tolerances -	ndards of measurement – accuracy and precision – errors in measuremet - interchangeability and selective assembly – calibration of instruments e – measurements and calibration – Taylor's principles - design of gaug	s. Principles of						
UNIT- II LINEAR AND ANGULAR MEASUREMENTS								
gauges, slip gau	ng instruments : Vernier instruments, micrometers, height gauge, dial in iges, comparators. Angle measuring instruments : bevel protractors, s itor, angle dekkor and clinometers – interferometry.							
UNIT- III	FORM MEASUREMENT	(09)						
terminology-Methods of measurements of runout, pitch, profile, lead, backlash, tooth thickness composite method of inspection - Parkinson gear tester, Measurement of surface finish - Stylus prob instruments - profilometer-Tomlinson and Talysurf instrument-Straightness, Flatness and Roundness measurement.								
instruments - pr measurement.	ofilometer-Tomlinson and Talysurf instrument-Straightness, Flatness a	and Roundness						
instruments - pr measurement. UNIT- IV	ofilometer-Tomlinson and Talysurf instrument-Straightness, Flatness a	(09)						
instruments - pr measurement. UNIT- IV Laser in enginee – laser interfero	ofilometer-Tomlinson and Talysurf instrument-Straightness, Flatness a	(09) based on laser						
instruments - pr measurement. UNIT- IV Laser in enginee – laser interfero	ofilometer-Tomlinson and Talysurf instrument-Straightness, Flatness a LASER METROLOGY ering metrology – methods of laser metrology – precision instruments meter – applications of laser in industry – linear and angular measure	(09) based on laser						

Contact Periods:

Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods

Author Name	Title of Book	Publisher, Year of Publication
Gupta. I.C	A text bookof Engineering Metrology	Dhanpat Rai and Sons, Delhi, 2012.
Groover M.P	Automation, Production systems and	Prentice Hall India Ltd.,
	Computer Integrated Manufacturing	

- 1. Jain.R.K., "Engineering Metrology", Khanna Publishers, Delhi, 2015.
- 2. Gayler G.N., and Shotbolt C.R., Metrology for Engineers, ELBS Edn.,
- 3. ASTE hand book of industrial metrology, Predntice hall of India Ltd.,
- 4. Marvin J.Weber, Hand book of LASERS, CRC Press.

Course Outcomes:

On completion of this course, students will be able to

- CO1: understand the general concepts of linear and angular measurements.
- CO2: describe various geometric and form measurements.
- CO3: explain about recent measuring machines and advances in metrology.
- CO4: describe various measurement concepts involved in laser metrology.
- CO5: explain the basic concepts of computer aided inspection

Course Articulation Matrix

PO/PSO	РО	РО	РО	РО	РО	РО	PO	РО	РО	РО	PO	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7.	8	9	10	11	12	1	2	3
CO1	Н			L		P2		Ser al	X			М	L		М
CO2	М	L		М	1			Pe	• 7	2		L	L		М
CO3	М			Η		1	SW/		1			М	L		М
CO4	М		L	М		Â		劉人				М	L		М
CO5	М		L	Η	B	<u>a</u> 8	(2		М	L		М
16PPC504	Н	L	L		题	K A	*			479.42		М	L		М

FLUID POWER DRIVES AND CONTROLS

Category: PC L T P C 3 0 0 3

Pre-Requisites:

- 1. 16PPC303 Fluid Mechanics and Machinery
- 2. 16PPC405 Metal Forming Processes
- 3. 16PPC406 Machine Tools and Processes

Course Objectives:

• To make the students to design the hydraulic and pneumatic circuits for different applications.

UNIT- I	BASIC PRINCIPLES	(09)							
Hydraulic Princ	Hydraulic Principles; Hydraulic Fluids; Hydraulic pumps - Classification, Characteristics, Pump								
Selection, Pumping Circuits; Hydraulic actuators - Classification, Cylinder Mounting, Selection,									
Characteristics; Hydraulic valves - Pressure, Flow, Direction Controls, Applications, Symbols									
UNIT- II HYDRAULIC CIRCUITS (09)									
Hydraulic circuits - Reciprocating, Quick Return, Sequencing, Synchronizing, Regenerative circuit,									
Double pump hydraulic system; Application circuits - Press, Milling Machine, Planner, Fork Lift, etc.									
UNIT- III	POWER GADGETS IN HYDRAULICS	(09)							
Accumulators - Classification, Circuits; Pressure Intensifier and Circuit; Safety Circuits; Mechanical									
hydraulic servo	system; Selection of components. Installation and Maintenance of H	Iydraulic power							
pack; Troublesh	ooting of fluid power circuits.								
UNIT- IV	PNEUMATIC SYSTEMS	(09)							
Pneumatic Fun	damentals; Control Elements; Logic Circuits; Position sensing, Pr	ressure sensing;							
Electrical contro	ols : Various switches; Electro Pneumatic and Electro Hydraulic Circuit	S.							
UNIT- V	UNIT- V DESIGN AND SELECTION OF PNEUMATIC CIRCUITS (09)								
Design of Pneu	Design of Pneumatic circuits - Classic, Cascade, Step counter, Combination methods; PLC and								
Microprocessor	s - Uses; Selection criteria for Pneumatic components; Installation and	Maintenance of							
Pneumatic powe	er pack; Fault finding; Case studies.								

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Author Name	Title of Book	Publisher, Year Of Publication
Anthony Esposito	Fluid Power with Applications	Pearson Education India, 7 th edition, 2013.
Andrew Parr	<i>Hydraulics and Pneumatics : A</i> <i>Technician's and Engineer's Guide</i>	Butterworth-Heinemann, 3 rd edition, 2011.

- 1. DudleyA Pease and John J Pippenger, Basic Fluid Power, Prentice Hall PTR, 2nd edition 1987.
- 2. John J Pippenger and Tyler G Hicks, Industrial Hydraulics, McGraw Hill, 2nd edition, 1970.
- 3. J. Michael, Pinches and HohnG.Ashby, .Power Hydraulics., Prentice Hall, 1989.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** describe the principle of fluid power
- **CO2:** describe the components of hydraulics
- CO3: design the hydraulic circuits for automation
- CO4: describe the components of pneumatics

CO5: design the pneumatic circuits for automation

Course Articulation Matrix

PO/PSO	РО	РО	РО	РО	РО	РО	PSO	PSO	PSO						
СО	1	2	3	4	5	6	- 7.0	8	9	10	11	12	1	2	3
CO1	М		М	L	L	Н	М		X		L	L		L	
CO2	Η	L		М	L	М	L	PR	L			М	М	М	
CO3	М	Η	Η	L					L	М		М		L	М
CO4	Η	L		М		М		J.	1			М	L	М	
CO5	М	Η	Η		L	8	L	0	L	20		М		М	
16PPC505	М	М	Н	М	L.	М	L	L	\mathbf{L}°	L	L	М	L	М	L

16PPC507 MANUFACTURING PROCESSES LABORATORY I

Pre-Requisites:

16PPC406 - Machine Tools and Processes.

Course Objectives:

• To practice various machining operations in lathe.

LIST OF EXERCISES

- 1. Study of construction details of different types of lathes and tools
- 2. Study of various accessories used in lathe.
- 3. Study of different types of tools used in lathe and the measuring instruments
- 4. Exercises on models using conventional Lathes:
 - Facing, plain turning, step turning and parting
 - Groove cutting, knurling and chamfering.
 - Form turning and Taper turning
 - Thread cutting (Internal and external -Vee and square)
 - Eccentric turning
 - Drilling, reaming and counter sinking.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

Course Outcomes:

On completion of this course, students will be able to

CO1: explain the constructional details of different types of lathe.

- CO2: operate lathe and control the process parameters of machining.
- **CO3:** perform plain turning, taper turning, eccentric turning etc.
- **CO4:** perform external and internal thread cutting.

CO5: perform drilling, reaming on lathe.

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н					L	L	L	Н	Н	М	L	М		М
CO2	Н	Н	М				М	L	Н	Н	М	L	М		М
CO3	Н	Н	Н				М	L	Н	Н	М	L	М		М
CO4	Н	Н	Н				М	L	Н	Н	М	L	М		М
CO5	Н	Н	Н				М	L	Н	Н	М	L	М		М
16PPC507	Η	Н	Н			L	М	L	Н	Н	М	L	М		М

METROLOGY LABORATORY

Pre-Requisites: Nil

Course Objectives:

• To familiarize the basic concepts of measurements, various linear, angular and form measuring equipment and their principles of operation.

LIST C	DF EXERCISES
1.	Study and use of Measuring Instruments.
2.	Calibration of Dial gauge using Dial Calibration Tester.
3.	Measurement of external taper angle using sine bar and slip gauges.
4.	Measurement of internal and external dovetail angle using rollers.
5.	Measurement of internal angle using spheres.
6.	Measurement of external angle using rollers and slip gauges.
7.	Measurement of spur gear tooth thickness using gear tooth verniercaliper.
8.	Measurement of internal diameter and depth of the cylinder using spheres.
9.	Measurement of effective diameter and pitch of screw thread using three wire method and
	pitch gauge.
10.	Optical profile projector - Measurement of gear tooth parameters and screw thread
	parameters.
11.	Tool maker's microscope - Measurement of cutting tool geometry and screw threads
	parameters.
12.	Straightness measurement using Autocollimator.
13.	Study of Co-ordinate Measuring Machine.

- 13. Study of Co-ordinate Measuring Machine.
- 14. Study of surfcorder for surface roughness measurement.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** explain the general concepts of measurements.
- **CO2:** apply and Identify correct symbols, abbreviations and units for all measurements.
- CO3: perform some linear, angular and form measurements, and record observations.
- **CO4:** calibrate the measuring instruments.
- **CO5:** explain about various methods of traditional and modern measurements that are used in the industry to measure product dimensions.

Course Articulation Matrix

courserning															
PO/PSO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PO	PO	РО	PSO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L	L							М	L			L		М
CO2	L				L	L			М	L			L		М
CO3	L	Н							М	L			L		М
CO4	L	Н							М	L			L		М
CO5	L	Н			М				М	L			L	М	М
16PPC508	L	Н			L	L			М	L			L	L	М

(Use of Approved Statistical Table is permitted)

Category: PC L T P C 3 2 0 4

Pre-Requisites:

16PBS401 – Probability and Statistics

Course Objectives:

- To provide an in-depth understanding of definition, scope, objectives, phases, models & limitations of operations research.
- To familiarize various tools of optimization, decision making and simulation, as applicable in particular scenarios in industry for better management of various resources.

UNIT- I	LINEAR MODELS	(9+6)								
The phases of	operations research study- formation of Linear programming model	l - Graphical								
method - Simpl	lex algorithm - artificial variables technique - Big M method - De	uality - Dual								
Simplex method	l.									
UNIT- II	TRANSPORTATION, ASSIGNMENT AND SEQUENCING	(9+6)								
	PROBLEMS									
Optimal solution by North West Corner method - Least Cost Method - Vogel's Approximation										
Method-optimality test - MODI method - Degeneracy. Assignment problem - formulation -										
Hungarian method - unbalanced assignment problem. Sequencing problem: processing 'n' jobs										
through two ma	chines and three machines, processing two jobs through 'n' machines									
UNIT- III	NETWORK MODELS	(9+6)								
Shortest route -	Minimal spanning tree - Maximum flow models - Project network	k - CPM and								
PERT networks	- Critical path scheduling – Crashing.									
UNIT- IV	QUEUEING THEORY AND SIMULATION	(9+6)								
Queueing mode	ls - Queueing systems and structures - Notation - parameter - Single Se	erver and								
multi server mo	dels-Poisson input-exponential service -constant rate service- infinite p	population.								
Simulation- rand	dom number generation- application of simulation for queuing and mai	intenance								
UNIT- V	DECISION MODELS	(9+6)								
Game theory – Two person zero sum games – Graphical solution- Algebraic solution. Replacement										
models - Replacement of items that deteriorate with time - value of money changing with time -										
not changing wi	th time - optimum replacement policy - individual and group replacer	nent.								

Contact Periods:

Lecture: 45 Periods Tutorial: 30 Periods Practical: 0 Periods Total: 75 Periods

Author Name	Title of Book	Publisher, Year of Publication
P.K. Gupta and D.S.	Problems in Operations Research	S.Chand and Co. Ltd., 2013
Hira	(Principles and Solutions)	
Panneerselvam, R	Operations Research	2nd Edition, Prentice – Hall of
		India, New Delhi, 2006

- 1. Taha H.A "Operations research", 8th Edition, Prentice Hall of India, New Delhi, 2006.
- 2. Sharma S.D, "OperationsResearch" Kedarnath Ram Nath and Co.Meerut, 2009.
- 3. Don. T. Phillips, Ravindren A and James Solberg, "Opeartions research", John Wiley and sons, 1987.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** identify and formulate operational research models from the verbal description of a real system.
- **CO2:** apply operations research techniques like L.P.P, Scheduling, Sequencing, Transportation problems to Industrial optimization problems.

19-50

- **CO3:** use network scheduling techniques like PERT, CPM for solving project management problems.
- **CO4:** analyze various models and apply suitable analytical method or simulation technique to solve queueing problems.
- **CO5:** apply suitable decision making tools for Replacement and Game theory problems for achieving optimization.

	Jul se Al tie	iiatio	11 1/14	UI IA		10	100.									
	PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
ſ	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
ſ	CO1	Н	Μ			1			211	1						М
	CO2	М	Η	М	L	1	自		列							М
	CO3	М	Η	L			5					Н				М
	CO4	М	Η	М	L	/As	M	2								М
	CO5	М	Η	М	L	Ũ	9	1	1	1						М
	16PPC601	М	Η	М	L	AG	(2) a a	30	STIE.	AL UM	/	Η				М

Course Articulation Matrix

COMPUTER AIDED DESIGN

Pre-Requisites :

1. 16PES107 - Engineering Graphics

2. 16PPC407 - Machine Drawing

Course Objectives:

- To make the students to gain exposure over the concepts of computer graphics.
- To familiarize the basics of CAD

UNIT- I	FUNDAMENTALS OF COMPUTER GRAPHICS	(09)
	Computer Aided Design (CAD) - conventional design vs CAD– Compu	
 co-ordinate sy (point, line, 	stems- 2D and 3D transformations- homogeneous coordinates - graphic	e primitives
circle drawing a	lgorithms) - Clipping- viewing transformation.	
UNIT- II	GEOMETRIC MODELING	(09)
Modeling – Su Coons Surface.	of curves - Hermite cubic spline curve, Bezier curve, B-spline cur rface Entities, Representation of Surface, Bezier Surface, B-Spline Solid Modeling - Solid Entities, Solid Representation, Boundary Re s Representation, Constructive Solid Geometry (CSG).	Surface and
UNIT- III	VISUAL REALISM	(09)
efforts, Scan Lin	n surface removal, The Depth - Buffer Algorithm, Properties that help ne coherence algorithm, Span - Coherence algorithm, Area-Coherence orithm, Priority Algorithms- shading – colouring – computer animation	Algorithms,
UNIT- IV	PART ASSEMBLY	(09)
Mass propertie	s - Assembly modeling - Inference of position and orientation	-Geometric
Dimensioning a	and Tolerancing – Functional importance of various types of fits, and Tolerancing, Tolerance stacking – types and remedies.	
unnensioning a		
UNIT- V	CAD STANDARDS	(09)

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Author Name	Title of Book	Publisher, Year Of
		Publication
Ibrahim Zeid and R.	CAD/CAM Theory and practices	Tata McGraw Hill, 2nd
Sivasubramaniam		Edition,
		2009
Chris McMahon and	CAD/CAM Principles, practice and	Pearson education Asia, 2001
Jimmie Browne	manufacturing management	

- 1. Rao, P.N., "CAD/CAM principles and applications" Tata McGraw Hill, 2012.
- 2. Donald D.Hearn, M.Pauline Baker and Warren Carithers "Computer Graphics with OpenGL", Pearson Education, 4th Edition, 2014.

Course Outcomes:

On completion of this course, students will be able to

- **CO 1:** explain the fundamentals of computer graphics.
- **CO 2:** describe the basics of geometric modeling.
- **CO 3:** discuss about visual realism in CAD.
- **CO 4:** explain the importance of geometric dimensioning and tolerancing.
- **CO5:** discuss about various computer graphics standards, data exchange standards and communication standards.

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	PO	РО	РО	РО	РО	PO	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	L			М	B		B						М	М
CO2	М	L			Μ		កផ្ទះចំ ខ្	EII6 S	all a	2				М	М
CO3	М				Μ	22	S S	1000	3	2				М	М
CO4	М	М			M			h	r)	7		L		М	М
CO5	М				М	1						L		L	М
16PPC602	М	L			М							L		М	М

16PPC603 PROCESS PLANNING AND COST ESTIMATION

Category: PC L T P C

3 0 0 3

Pre-Requisites: Nil

Course Objectives:

• To introduce the process planning concepts, cost estimation for various manufacturing process.

UNIT- I	INTRODUCTION TO PROCESS PLANNING	(09)
Aims and Object	tives, Place of process planning in Manufacturing cycle - Process and	Production
Planning. Drawi	ing interpretation, Dimensional tolerance vs Production processes.	
UNIT- II	PROCESS PLANNING STEPS	(09)
Design of a pro	ocess plan - Selection of production processes, tools and process pa	arameters-
Positioning and	work holding devices, Selection of inspection devices and tools, Doe	cumenting
the process plan		
Computer-Aideo	d Process Planning (CAPP) – Benefits, Architecture and approaches.	
UNIT-III	INTRODUCTION TO COST ESTIMATION	(09)
Importance, Ty	pes, Purpose, Components, Procedure, Classification of costs, Cost	elements,
Cost ladder, O	verhead expenses, Break-even analysis - Concept, make or buy	decision,
assumptions, m	erits and demerits of break even analysis. Applications - Linear, mul	ti product
break-even anal	ysis.	
UNIT- IV	PRODUCTION COST ESTIMATION	(09)
Estimation of p	roduction cost for - cast components, welded components, forged co	omponents,
powder metallur	gy parts.	
UNIT- V	ESTIMATION OF MACHINING TIME AND COST	(09)
Estimation of 1	Machining time - Lathe operations, Drilling, Milling, Shaping, Pl	laning and
Grinding, Cost e	estimation for machining processes.	

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Author Name	Title of Book	Publisher, Year Of Publication
Gideon Halevi	Process and operation planning	Kluwer academic publishers (Printed ebook), 2003.
M. Adithan.	Process Planning and Cost Estimation	New Age International Publishers, 2007

- 1. Thomas E.Vollmannet all, "Manufacturing Planning and Control Systems", GalgotiaPublications Pvt. Ltd., New Delhi, 1998.
- 2. Robert Creese, M. Adithan, B.S Pabla, "Estimating and Costing for the Metal Manufacturing Industries", Marcel Dekker, 1992.
- 3. Samuel Eilon, "Elements of Production Planning and Control", MacMillan, London, 1985.
- 4. Kesavan R "Process Planning and Cost Estimation", New Age International Pvt. Ltd., Chennai, 2008.
- 5. B.S. Narang, V. Kumar, "Production and Costing", Khanna Publishers, 2000.
- 6. Banga T R and Sharma S C, "Mechanical Estimating and Costing", Khanna Publishers, New Delhi

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** explain the concept of process planning and process selection.
- CO2: describe the steps involved in process planning.
- **CO3:** have a knowledge on cost estimation and f Break Even analysis.
- **CO4:** estimate the manufacturing cost for welded, forged components and powder metallurgy parts.

CO5: calculate the machining time and cost for various machining process.

Course A	Course Articulation Matrix														
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L					1	28	Μ	Н	Μ					
CO2	Μ						8	M	Н	Μ		М			
CO3	L				1	14	1200	Μ	Н	M	8	М			М
CO4	Н					0			Н	L			Н		
CO5	Н					10	e ave a	200	Н	Μ			Н		
16PPC603	Μ					1000	0	Μ	Η	Μ		Μ	Н		М

Course Articulation Matrix

JIGS, FIXTURES AND PRESS TOOLS

Category: PC L T P C 3 0 0 3

Pre-Requisites:

1.16PPC405 - Metal Forming Processes

2.16PPC502 - Machine Elements Design

Course Objectives:

- To introduce the concepts of various types of jigs, fixtures and dies
- To design jig/ fixture / die for a given component

UNIT- I	LOCATING AND CLAMPING DEVICES	(08)
	cation and clamping – Different types of locating devices – different ushes – types – Elements of fixtures – Materials used in jigs and fixtures	
UNIT- II	DESIGN OFJIGS	(10)
Design concepts Box jig – Design	s of Template Jig, Plate Jig, Sandwich Jig, Vice Jaw Jig, Latch Jig, T n of simple jigs.	Furnoverjig,
UNIT- III	DESIGN OF FIXTURES	(09)
Fixtures for Mil simple fixtures.	ling, Grinding, Turning, Welding, and Assembly – Modular fixtures	- Design of
UNIT- IV	PRESS WORKING AND ELEMENTS OF DIE	(09)
forging - Die bl	ng, lancing, notching, bending design features of dies for drawing, ex ock – Diesets - Die shoe – Bolster plate – punch – punch plate – punc guide bushes – strippers – knockouts – stops – pilots – Mechanism of ure.	ch holder –
UNIT- V	DESIGN OF DIES	(09)
	rations in extrusion, forging and bending dies — selection of standard development - Design of Progressive die – compound die – Bendin lling fixtures.	

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Author Name	Title of Book	Publisher, Year Of Publication
Donaldson, B.H. Lecain,	Tool Design	TMH Edition, 2012
Goold V.V		

1.Paquin, Die Design Fundamentals, Industrial Press Inc, New York, 2005 2.Fundamentals of Tool design, Society Of Manufacturing Engineers, 2010.
3. P.H.Joshi., Jigs and Fixtures, Mcgraw Hill Education, 2010.

Course Outcomes:

On completion of this course, students will be able to

- CO1: explain the fundamentals of work holding devices, locators and clamps.
- CO2: discuss about various types of jigs and fixtures.
- CO3: explain about various press working operations.
- CO4: discuss about the various elements of die.

CO5: design simple dies/jigs/ fixtures for given component.

Course Articulation Matrix

PO/PSO	РО	PO	РО	PO	PO	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO
CO	1	2	3	4	5	6	- 7 - (8	- 9	10	11	12	1	2	3
CO1	L	М	М	М				15	200	L	М	L	М	L	М
CO2	М	Н	М	L	5			Pe	- 7	L	М	L	М		М
CO3	М	М	L	L						L	М	L	М		М
CO4	М	М	М	L		A				L	L	L	L		М
CO5	М	Н	Н	М		183				L	L	L	М		Н
16PPC604	М	Н	М	L	國	K	÷			L	М	L	М	L	М

16PPC607 MANUFACTURING PROCESSES LABORATORY II

Category: PC

Pre-Requisites:

1. 16PPC406 - Machine Tools and Processes

L T P C 0 0 4 2

2. 16PPC503 - Computer Numerical Control Machines

Course Objectives:

• To practice operations in radial drilling, shaper, grinder, milling machine and gear cutting with gear hobbing, gear shaping, milling and CNC machines.

LIST OF EXERCISES

- V-Groove cutting in shaping machine.
- Drilling, tapping and surface grinding using surface grinder and Radial drilling machine.
- External cylindrical grinding of shaft.
- Spur gear milling.
- Helical gear milling.
- Gear shaping.
- Gear hobbing.
- Polygonal milling.
- Making hexagonal hole using slotting machine.
- Letter cutting in vertical milling machine.
- Turning using Capstan and Turret lathes.
- Milling, Turning and drilling using CNC machining centre.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

Course Outcomes

On completion of this course, students will be able to

- **CO1:** operate machines tools for various assembly and fabrication tasks and expose to time management.
- **CO2:** prepare gears using forming and generating methods of gear manufacturing and CNC operation.
- CO3: to set up machines like shaper, grinding and milling machine for various applications.
- CO4: fabricate parts for equipments / tools used for project works.
- **CO5:** prepare report on work done.

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO						
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Η	Н	Μ		М		М	L	Н	Н	М	L	М	L	М
CO 2	Η	Н	Μ		Η		М	L	Н	Н	М	L	М	Н	М
CO 3	Η	Н	Η				М	L	Η	Н	М	L	М		М
CO 4	Η	H	Η				Μ	L	Η	Н	М	L	М		М
CO 5	Η	Н	Μ				Μ	L	Н	Н	М	L	М		
16PPC607	Η	Η	Η		L	L	Μ	L	Η	Η	М	L	М	L	М

16PEE608

MODELLING LABORATORY

Category: EEC L T P C 0 0 4 2

Pre-Requisites:

- 1. 16PES107 Engineering Graphics
- 2. 16PPC407 Machine Drawing

Course Objectives:

• To design the solid models by creating parts and assemble them with the aid of computers.

LIST OF EXERCISES

Exercises on modeling of mechanical components using packages like AutoCAD / Mechanical

Desktop/Inventor/IDEAS/ Pro Engineer/CATIA/Unigraphics etc...

- Simple two dimensional geometry creations and modification using drafting module.
- Detailing and documentation of a typical production drawing
- Attributes and data extraction from a drawing
- Creation of simple solid models using CSG and B-rep Approach
- Surface Modeling
- External database connection
- Generation of working drawings of components and preparation of assembly models of Tail stock, Cranehook, Flanged coupling, Screw jack, Clapperbox, Universal coupling, Machine vice

Drill jig assembly by using the following techniques...

- Generation of surfaces of revolution
- Generation of surfaces of extrusion
- Generation of surfaces by skinning operation
- Generation of solid models using constructive solid geometry, method shading and rendering.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

Course Outcomes:

On completion of this course, students will be able to

CO1: explain the basics of graphics generation, 2-Dimensional and 3-Dimensionalconcepts involved in Computer Aided Design.

CO2: use the commands to create, edit and dimension the 2D model in detail.

CO3: use the commands to create, edit and dimension the 3D surface model.

CO4: use the commands to create, edit and dimension the 3D solid model.

CO5: do the assembly of various solid models and create 3D assembly model.

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	PO	PO	РО	РО	PO	PO	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	М	М	М	М							L	L	L	
CO2	M	М	L	L	L								L	L	
CO3	M	М	L	L	L								L	L	
CO4	М	М	М	L	L								L	L	
CO5	Н	М	М	L	L								L	L	
16PEE608	М	М	М	L	L							L	L	L	

16PEE609

MINI PROJECT

Category: EEC L T P C 0 0 8 4

Pre-Requisites: Nil

Course Objectives:

• To provide an opportunity to the student to get hands on training in the fabrication of one or more components of a complete working model, which is designed by them.

The students may be grouped into 2 to 4 and work under a project supervisor. The device/ system/component(s) to be fabricated may be decided in consultation with the supervisor and if possible with an industry. A project report to be submitted by the group and the fabricated model, which will be reviewed and evaluated continuously by a Committee constituted by the Head of the Department.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 120 Periods Total: 120 Periods

Course Outcomes

On completion of this course, students will be able to

- **CO1:** practice acquired knowledge within the chosen area of technology for project development.
- **CO2:** identify, discuss and justify the technical aspects of the chosen project with a comprehensive and systematic approach.
- CO3: reproduce, improve and refine technical aspects for engineering projects.
- CO4: follow and value health, safety and ethical practices during project.
- **CO5:** work as an individual or in a team in development of technical projects.
- CO6: communicate and report effectively project related activities and findings.

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L	Μ		Μ		L			L		L	Μ	М	L	
CO2	Μ	Н	Η	Μ	Η	Μ	L		Η	L	Н	Μ	Н	Н	Н
CO3	Н	Η	Η	Μ	Η	Μ	L		Η	L	Н	Н	Н	Н	Н
CO4						Μ	L	Н	L		Н	L			
CO5									Η	L	Н	Н	Н	Н	Н
CO6									Μ	Н	М	Μ			
16PEE609	Μ	Н	Η	Μ	Η	Μ	L	Н	Η	Н	Η	Η	Н	Η	Н

AUTOMATION AND CIM

3 0 0 3

Pre-Requisites: Nil

Course Objectives:

- To provide knowledge on various automated manufacturing activities.
- To familiarize the application of computer Technology in the manufacturing activities.
- To enable the students to understand the smooth transition from conventional manufacturing to automated production and computer integrated manufacturing.

UNIT- I	FUNDAMENTALS OF AUTOMATION AND CIM	(09)								
Concept of aut	omation - Basic Elements of Automated system and Classification	- Levels of								
Automation – 7	en Strategies for Automation, Concept of automation in industry - of	classification,								
mechanization a	and automation. Evolution of CIM - CIM Hardware and Software	– Data base								
Requirement of	CIM - Concurrent engineering - Principles - Design and developmen	t. Production								
economics.										
UNIT- II	AUTOMATION IN MANUFACTURING	(09)								
Automation in machine tools - Mechanical feeding and tool changing - machine tool control transfer automaton, automated flow lines - Methods of work part transport transfer - Line efficiency. Simulation in assembly line - Analysis of Automated flow lines - General terminology and analysis of transfer lines - without and with buffer storage, partial automation, Implementation of automated flow lines. Buffer stock - Mechanical buffer storage control function.										
UNIT- III	AUTOMATED MATERIAL HANDLING AND STORAGE SYSTEMS	(09)								
systems. Engine Processing opera	omated storage systems-Automated Storage/Retrieval systems, Carc ering analysis of storage systems. Industrial Robot applications-Mater ations, Assembly and Inspection.	ial handling,								
UNIT- IV	GROUP TECHNOLOGY AND FMS	(09)								
Cellular manufa FMS – Compar	gy – Part families – Part Classification and Coding – Production flov cturing – Cell design – Application considerations in Group Technology ison with Conventional Manufacturing – Economic Justification – Co Flexibility – FMS Applications and Benefits.	. Concepts of								
UNIT- V	CONTROL SYSTEMS	(09)								
Process industries and Discrete manufacturing industries – levels of automation, variables and parameters – Continuous control systems – Steady state optimization, Adaptive control - Computer process control – control requirements, capabilities and forms of computer process control – Computer process monitoring, Direct Digital Control, Distributed Control systems – Hardware components for automation and process control – Discrete process control – Logic control, Sequencing - Programmable Logic controllers.										

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Pi

Practical: 0 Periods To

Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication					
Mikell P Groover,	Automation, Production Systems and Computer Integrated Manufacturing	Pearson education (Singapore) Pvt. Ltd., New Delhi, 4th edition 2008.					
Radhakrishnan P and Subramaniyan S	CAD/CAM/CIM	New Age International (P) Ltd., 3rd edition,2008.					

Reference Books :

1. James A Rehg and Henry W Kraebber, "Computer Integrated Manufacturing", 3rd edition Pearson Education (Singapore) Pvt. Ltd., New Delhi, 2005.

2. Chris McMahon, and Jimmie Browne, "CAD/CAM Principles, Practice and manufacturing Management", Addison Wesley Longman Ltd, England, 2nd edition, 1998.

3.Kant Vajpayee .S, "Principles of Computer Integrated Manufacturing", Prentice Hall of India Limited, 3rd edition 2010.

4. Paul G Rankey. "Computer Integrated Manufacturing". Prentice Hall, 2004

Course Outcomes:

On completion of this course, students will be able to

CO1: explain the fundamentals of automation and CIM.

CO2: describe the automation in manufacturing.

CO3: describe the material handling and storage systems.

CO4: explain the concept of group technology and flexible manufacturing system.

CO5: describe the fundamentals of Control systems.

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	-7	8	9	10	11	12	1	2	3
CO						0)								
CO1	М	М	М	L	М	L			L			L	Н	М	М
CO2	L	М	М	М	Н	L			L		М	L	Н	Н	L
CO3	L	М	М	М	М	L			L		М	L	Н	М	L
CO4	L	М	М	М	М	М			М		М	L	Н	М	L
CO5	L	М	L	М	М	L			М	М	L		Н	М	L
16PPC701	L	М	М	М	М	L			L	L	М	L	Н	М	L

Pre-Requisites: Nil

Course Objectives:

• To study various production planning and control activities in industries.

UNIT- I	INTRODUCTION	(09)								
Objectives and	benefits of planning and control-Functions of production control	ol-Types of								
production-job-	batch and continuous-Product development and design-Marketin	ng aspect -								
Functional aspe	cts-Operational aspect-Durability and dependability aspect-aesthetic a	aspect. Profit								
consideration-St	andardization, Simplification and specialization-Value analysis.									
UNIT- II	WORK STUDY	(09)								
Method study, l	pasic procedure-Selection-Recording of process - Critical analysis, De	evelopment -								
Implementation	- Micro motion and memo motion study - work measurement - T	echniques of								
work measurem	ent - Time study - Production study - Work sampling - Synthesis fi	om standard								
data - Predeterm	ined motion time standards.									
UNIT- III	OPERATIONS PLANNING AND SCHEDULING	(09)								
Components of	operations planning and scheduling systems – Aggregate planning – M	PS – MRP –								
Capacity Planni	ng, Process – Routing, Techniques – Scheduling, Principles, Types as	nd Strategies								
Methodology -	Dispatching-Progress reporting and expediting-Lead time, Techniques	for aligning								
completion time	s and due dates									
UNIT- IV	MATERIALS PLANNING AND CONTROL	(09)								
Materials Plann	ing and control, scope, Techniques - Purchasing, Functions, Methods	s, Procedure,								
parameters, Sup	plier selection – Make or Buy Decision – Store and storekeeping,	Codification,								
Functions, Orga	inising, Methods, Accounts of stores, valuation methods, storage, pr	otection and								
Interrelationship										
UNIT- V	THEORY OF CONSTRAINTS, PURCHASING AND	(09)								
	DISTRIBUTION									
Fundamental Pr	inciples of the Theory of Constraints – Guidelines – Steps to improve the	ne Process								
Using TOC Prin	inciples of the Theory of Constraints – Guidelines – Steps to improve the	Causes –								

Contact Periods:

Lecture: 45Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Author Name	Title of Book	Publisher, Year Of Publication
Samson Eilon	<i>Elements of production planning and control</i>	Macmillan, 1962.
Stephen N. Chapman	The fundamentals of production planning and control	Pearson education, 2009.
Anil Kumar, Suresh	Production and Operations Management	New Age international, 2008.

1. MartandTelsang, "Industrial Engineering and Production Management", S. Chand and Company, First edition, 2011.

Course Outcomes

On completion of this course, students will be able to

- **CO1:** distinguish manufacturing and service operations, and explain the overview of operations in an industry.
- **CO2:** classify various forecasting techniques and identify strategies for sales and operations planning.
- CO3: explain the methodology of scheduling and materials planning
- CO4: describe the methodology of capacity planning and Production control
- **CO5:** explain about the theory of constraints and significance of purchasing and distribution.

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
		-	-		94	witzer	<u></u>	1	100000			-			
CO1	M		L		C	15	SUIT	UR	SUC.	ρL	М				М
CO2	M	M		M	L			1	-	L	Η	L			М
CO3	L	M	L	L	L	0		Ā		L	М	L			М
CO4	М	L	L	L	L				1	М	Н	L			М
CO5	М	М	М	L	L	8		汣		L	М	L			М
16PPC702	М	М	L	L	L	R				L	Н	L			М

16PEE707 AUTOMATION AND CONTROL SYSTEMS LABORATORY Category: EEC

L T P C 0 0 4 2

Course Objectives:

- To train the students to simulate the simple applications in hydraulic and pneumatic kits.
- To train the students to control the speed of electrical drives.

1. Design and simulation of systems using single acting actuator and Pneumatic elements.

2. Design and simulation of system using double acting actuator, Pneumatic elements and Electro Pneumatic elements.

3. Design and simulation of system using double acting actuator and PLC.

4. Design and simulation of hydraulic system - sequencing circuit, air-oil intensifier circuit,

meter-in and meter-out circuit.

5.Design and simulation of hydraulic system with PLC – sequencing circuit, meter-in and meter- out circuit, high-low circuit, on delay timer control circuit.

6. Speed control of AC motor.

7.Speed control of DC motor.

8. PID controller with temperature control system.

9. Servo controller using servo motor.

10. Stepper motor interfacing with 8051 micro-controller.

11. Computerized data logging system.

Contact Periods: Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

Course Outcomes:

On completion of this course, students will be able to

CO1: design and develop the simple industrial application pneumatic circuits.

CO2: design and develop the simple industrial application hydraulic circuits.

CO3: explain PID controller with temperature control system.

CO4: control the speed of electrical drives.

CO5: activate the stepper motor interfacing with 8051 micro-controller.

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	M	Н	M	M		M			L	L		L	Н	Μ	L
CO2	M	Н	M	M		L			L	L		L	Н	Μ	L
CO3	L	M	Н	M		L			L	L		L	Н	M	L
CO4	L	M	L	M		L			L	L		L	Н	Μ	L
CO5	L	M	M	M		L			L	L		L	Н	Μ	L
16PEE707	L	М	Μ	Μ		L			L	L		L	Н	Μ	L

16PEE708

SIMULATION LABORATORY

Category: EEC

L T P C 0 0 4 2

Pre-Requisites:

- 1.16PES302 Strength of Materials
- 2.16PPC502 Machine Elements Design
- 3.16PPE003 Finite Element Techniques

Course Objectives:

• To gain practical experience in handling 3D modeling and analysis software.

Finite Element Modeling and Analysis
• Exercises on Modeling and Meshing on 1D, 2D and 3D models.
• Exercises on Solution and Post processing of 1D, 2D and 3D models.
Structural analysis of a fixed beam
• Structural analysis of a cantilever beam
Structural analysis of a link element
Structural analysis of aluminium bracket
Modeling using axisymmetry
Plane stress analysis
Modeling of a spindle base
Modal analysis of cantilever beam
Modeling of allen key
Heat distribution in rectangular slab
Thermal analysis of 2D heat sink
Exercise on coupled field analysis
CAM software
Designing of connecting rod using CAM software
• Exercise on 2D part development and NC contour tool path generation.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 60 Periods Total: 60 Periods

Reference Books

• Laboratory Manual prepared by Department of Production Engineering.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** explain the basics used to create and manipulate geometric models in computer using ANSYS.
- CO2: create 1D, 2D and 3D models using ANSYS and Master CAM.
- CO3: do structural and thermal analysis of various models.
- CO4: describe about the failure criteria and vonmises stress for various models.
- CO5: do the coupled field analysis involved in structural and thermal analysis simultaneously.

PO/PSO	PO	РО	PO	РО	РО	PO	PO	РО	РО	PO	РО	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	М	М	М	М								L	М	
CO2	М	М	Н	М	М								L	М	
CO3	М	М	Η	М	М								L	М	
CO4	М	М	Η	М	М								L	М	
CO5	Н	Η	Η	М	М								L	М	
16PEE708	М	М	Η	М	М								L	Μ	

Course Articulation Matrix

16PEE801

PROJECT WORK

Category: EEC L T P C 0 0 16 8

Pre-Requisites: Nil

Course Objectives:

- To develop the ability to solve a specific problem right from its identification and literature review till the successful solution of the same.
- To train the students in preparing project reports and to face reviews and viva voce examination.

A project topic must be selected by the students in consultation with their guides. The aim of the project work is to deepen comprehension of principles by applying them to a new problem which may be the design and fabrication of a device for a specific application, a research project with a focus on an application needed by the industry/society, a computer project, a management project or a design project.

The progress of the project is evaluated based on a minimum of three reviews. The review committee may be constituted by the Head of the Department. A project report is required at the end of the semester. The project work is evaluated jointly by external and internal examiners constituted by the Head of the Department based on oral presentation and the project report.

Contact Periods:

Lecture: 0 Periods Tutorial: 0 Periods Practical: 240 Periods Total: 240 Periods

Course Outcomes

On completion of this course, students will be able to

- **CO1:** identify problem specification or need for development.
- CO2: analyse and develop conceptual design and methodology of solution for the problem.
- **CO3:** devise solution and build physical model /test if required, as per industry / research / societal need, with due consideration of environmental aspects.
- CO4: follow and value health, safety and ethical practices during project.
- CO5: contribute as an individual or in a team in development of technical projects.
- CO6: express technical ideas, strategies and methodologies in written form.
- CO7: develop effective communication skills for presentation of project related activities.

Course Articulation Matrix

PO/PSO	PO	РО	PO	PSO	PSO	PSO									
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L	М		М		L			L		L	М	М	L	
CO2	М	Н	Η	Н	Н	М	L		Η	L	Η	М	Н	Н	Н
CO3	Н	Н	Н	Н	Н	М	Н		Н	L	Н	Н	Н	Н	Н
CO4						Н	L	Н	L		Η	L			
CO5									Η	L	Η	Н	Н	Н	Н
CO6									Μ	Н	М	М			
CO7									М	Н	L	М			
16PEE801	Н	Н	Η	Н	Н	Η	Η	Η	Η	Н	Η	Η	Н	Н	Н

16PPEX01	MECHATRONIC SYSTEMS	

L T P C 3 0 0 3

Category: PE

Pre-Requisites:

1. 16PES402 Applied Electronics and Microprocessor

2. 16PPC505 Fluid Power Drives and Controls

Course Objectives:

• Introducing the key elements of mechatronics system and understanding the concepts of integration and design of mechatronics system.

UNIT- I	MECHATRONICS SYSTEMS	(09)					
Introduction to	Mechatronics - Basics of actuating systems. Mechanical, pneumatic,	hydraulics,					
electrical system	electrical systems- control systems- measurements systems - Mechatronics approach.						
UNIT- II	IT- II SENSORS AND TRANSDUCERS						
Introduction -	performance terminology- displacement, position and proximity- ve	elocity and					
motion- fluid pressure-temperature sensors- light sensors- selection of sensors- signal processing.							
UNIT- III	8085 MICROPROCESSOR	(09)					
Introduction- architecture- pin configuration- instruction set- programming of microprocessors							
using 8085 instructions-interfacing input and output devices- interfacing D/A converters and A/D							
converters- applications- temperature controls-stepper motor control- traffic light controller.							
UNIT- IV	PROGRAMMABLE LOGIC CONTROLLERS	(09)					
Introduction- b	basic structure- input/output processing- programming- Mnemonic	es- timers,					
internal relays a	nd counters-data handling- analog input/output- selection of a PLC.						
UNIT- V	DESIGN OF MECHATRONIC SYSTEMS	(09)					
Stages in designing Mechatronics systems - Traditional and Mechatronics design- Possible							
design- solutions- case studies of Mechatronics systems- pick and place robots- automatic car							
park systems- engine management systems.							
^T ontaat Daviada	TO THE MAN THE STA						

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication
W.Bolton	Mechatronics	Pearson education., Second Edition, 2007.
Ramesh S. Gaonkar	Microprocessor Architecture. , Programming and Applications	Wiley Eastern, 1991.

Reference Books:

- 1. Michel B. Histand and David G. Alciatore, Introduction to Mechatronics and measurement systems., McGraw Hill Intrenational Editions.
- 2. HMT Ltd, .Mechatronics., Tata McGraw Hill publishing Co. Ltd.
- 3. D.A.Bradley, D. Dawson, N.C. Buru and A.J. Loader. .Mechatronics., Chapman and Hall.
- 4. K. Ram, .Fundamantals of Microprocessors and Microcomputers., Dhampat rai publications.
- 5. Dan Necsulescu, "Mechatronics", Pearson Education Asia. (Indian reprint).

On completion of this course, students will be able to

- **CO1:** build the basic block diagram of mechatronics system (sensing, measuring controls and actuation, hardware and software).
- **CO2:** describe the mechatronic system approach.
- **CO3:** explain the concepts of transducers, sensors, microprocessor and programmable logic controllers in mechatronics systems.
- **CO4:** identify critical problems/ design issues and suggest feasible solutions in mechatronics systems.
- **CO5:** design mechatronic components and systems.

Course Articulation Matrix

PO/PSO	РО	PO	РО	PO	PO	PO	РО	РО	РО	PO	РО	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	Н	М	М	М	L						L	L	М	
CO2	М	M	М	М	М	L	Jun	m	745305			L	L	М	
CO3	М	М	М	М	М	\mathbf{L}_{ij}	andró i	ALLE L	10,000	2		L	L	М	
CO4	М	M	Н	Н	М	(L)		GHC		2		L	L	М	
CO5	Н	Н	Н	Н	М	L		F	- 7	2		L	L	М	
16PPEX01	Н	Н	Н	Н	М	L						L	L	М	

16PPEX02

ROBOTICS AND MACHINE VISION SYSTEM

L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

• To familiarize students with the concepts and techniques of robot manipulator, its kinematics, programming and build confidence to evaluate, choose and incorporate robots in engineering systems.

UNIT- I	FUNDAMENTALS OF ROBOT	(09)							
Robotics - Introduction - Basic structure - Classification of robot and Robotic systems -									
Specifications of Robots - laws of robotics - work space, precision movement. Drives and									
Controls system	s: Hydraulic systems, power supply - servo valve - hydraulic motor -	– DC servo							
motors – stepper motors – operation – selection of system – control system – servo control.									
UNIT- II	ROBOT MOTION ANALYSIS	(09)							
Kinematics of	Robot : Introduction, Matrix Representation, homogeneous trans	sformation,							
	forward and inverse kinematics, Inverse kinematics Programming, Degeneracy, dexterity, velocity and static forces, Basics of trajectory planning.								
UNIT- III	UNIT- III GRIPPERS AND SENSORS (09)								
grippers – Adh Potentiometers,	Grippers force analysis – Other types of grippers – Vacuum cups - esive grippers – Robot end effectors interface. Sensors : Position encoders, - LVDT, Velocity sensors, Acceleration Sensors, Force, Pr Touch and Tactile sensors, Proximity, Range and sniff sensors.	sensors –							
UNIT- IV	PROGRAMMING AND APPLICATION	(09)							
Types of progra	mming – programming languages sample program for different types o	f robots –							
	cations: Application of robots in processing operations – Assembly and ling – Loading and unloading– AI and Robotics.	l inspections							
UNIT- V	MACHINE VISION	(09)							
Introduction – image processing Vs image analysis, image acquisition, digital images – sampling andquantization – image definition, levels of computation. Image processing Techniques: Data reduction –Windowing, digital conversion. Segmentation– Thresholding, Connectivity, Noise reduction, Edge detection, Segmentation, Region growing and Region splitting, Binary morphology and grey morphology operation – feature extraction.									

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication
Saeed B.Niku	Introduction to Robotics: Analysis, Systems, Applications	2nd edition, Pearson Education India, PHI 2003 (ISBN 81- 7808-677-8)
M.P.Groover	Industrial Robotics – Technology, Programming and Applications	McGraw- Hill, USA, 1986

Reference Books:

- 1. Janakiraman P.A., Robotics and image processing, Tata McGraw Hill, 1995.
- 2. YoremKoren, Robotics for Engineers, McGraw-Hill, USA, 1992.
- 3. Richard D.Klafter, Thomas A.Chmielewski and Michael Negin, Robotic Engineering An Integrated Approach, Prentice Hall Inc, Englewoods Cliffs, NJ, USA, 1989.
- 4. Ramesh Jam, RangachariKasturi, Brain G.Schunck, Machine Vision, Tata McGraw Hill.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** explain the basic concepts like various configurations, classification and parts of robots.
- CO2: explain the concept of kinematics, degeneracy, dexterity and trajectory planning.
- CO3: describe various end effectors (grippers and tools) and sensors used in robots.
- **CO4:** explain the concept of Artificial Intelligence in robots, various types of robot programming and its applications.
- **CO5:** demonstrate the image processing and image analysis techniques by machine vision system.

					And in case of the local division of the loc	Contraction of the local division of the loc		1 - 18 C	·						
PO/PSO	PO	PO	РО	PO	PO	РО	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	L	L									L	М		
CO2	М	Μ	М	М								L	М		
CO3	М	L	L									L	М		
CO4	М	Μ	Η		М							L	М	М	
CO5	Η	М	М	L								L	М	М	
16PPEX02	Μ	М	Μ	L	L							L	М	М	

Course Articulation Matrix

16PPEX03

FINITE ELEMENT TECHNIQUES

Category: PE

L	Т	Р	С
3	0	0	3

Pre-Requisites:

- 1. 16PES302 Strength of Materials
- 2. 16PPC502 Machine Elements Design

Course Objectives:

• To familiarize the students in principles involved in discretization, finite element approach and can solve the simple engineering problems.

INTRODUCTION TO FINITE ELEMENT METHOD (FEM) (09)								
Historical background; Basic concept of FEM; Discrete and continuous models; Boundary and								
Initial value problems; Discretization - Convergence requirements.								
FORMULATION OF ELEMENT CHARACTERISTIC	(09)							
MATRICES								
One dimensional governing equations - Structural and heat transfer problems; Variational method;								
Weighted residual methods; Principle of minimization of potential energy.								
ONE DIMENSIONAL PROBLEMS (09)								
s; Problems in axial loaded members, trusses, beams, heat transfe	r through							
and fins; Gauss elimination and Cholesky method of solving equations.								
TWO DIMENSIONAL PROBLEMS	(09)							
r and rectangular elements - Shape functions:Pascal's triangle - Concep	t of plane							
strain. Solution of simple problems in structural and heat transfer models.								
UNIT- V HIGHER ORDER ELEMENTS								
higher order elements; Lagrangian and serendipity elements; Iso	parametric							
elements - Jacobian transformation.								
	ground; Basic concept of FEM; Discrete and continuous models; Bour blems; Discretization - Convergence requirements. FORMULATION OF ELEMENT CHARACTERISTIC MATRICES Il governing equations - Structural and heat transfer problems; Variationa al methods; Principle of minimization of potential energy. ONE DIMENSIONAL PROBLEMS s; Problems in axial loaded members, trusses, beams, heat transfer and fins; Gauss elimination and Cholesky method of solving equations. TWO DIMENSIONAL PROBLEMS r and rectangular elements – Shape functions:Pascal's triangle - Concep strain. Solution of simple problems in structural and heat transfer models. HIGHER ORDER ELEMENTS F higher order elements; Lagrangian and serendipity elements; Isop							

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
J.N.Reddy	Introduction to Finite Element Method	McGraw Hill, Intl, 3 rd edition, 2006.
Larry J. Segerlind	Applied Finite Element Analysis	John Wiley and Sons., 2 nd edition, 1985.
SingiresuS.Rao	<i>The Finite Element Method in</i> <i>Engineering</i>	Butterworth Heinemann., 5 th edition, 2011.

Reference Books:

- 1. Tirupathi R. Chandrupatala and Ashok D. Belegundu, Introduction to Finite Elements in Engineering, Pearson Education, 4th edition, 2011.
- 2. David V. Hutton, Fundamentals of Finite Element Analysis, Tata McGraw Hill, 3rd edition, 2005.
- 3. ChandrakantS.Desai, Elementary Finite Element Method, Prentice Hall Inc., 1979.
- 4. Logan, D.L., "A first course in Finite Element Method", Thomson Asia Pvt. Ltd., 2002.
- 5. Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, "Concepts and Applications of Finite Element Analysis", 4th Edition, Wiley Student Edition, 2002.

Course Outcomes:

On completion of this course, students will be able to

- CO1: Describe the fundamentals of finite element technique
- CO2: Formulate the structural and heat transfer problems
- CO3: Solve the simple structural and heat transfer problems
- CO4: Describe the shape function and element characteristics
- **CO5:** Describe the higher order elements

Course Articulation Matrix

	1	Gr	1991 1991	1600	ABR		S					
)	PO	PO	PO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
	4	5	6	7	8	9	10	11	12	1	2	3

PO/PSO	PO	РО	РО	PO	PO	РО	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	M	Η	М				М					М		М	
CO2	М	М	L	М			L		1	М		L		М	
CO3	М		М	М	1	8	M			М		L		Н	
CO4	М	М		Μ	Ja	Y				Н		М		Н	
CO5	М	М	L	6		9	<	1	19	L		L		М	
16PPEX03	М	М	L	М	AL		Μ	D.C.B.	3	M		L		М	

16PPEX04 PRODUCTION OF AUTOMOTIVE COMPONENTS Category: PE

Pre-Requisites:	LTPC
1. 16PPC305 – Foundry and Welding Technology	3 0 0 3

- 2. 16PPC306 Engineering Metallurgy
- 3. 16PPC406 Machine Tools and Processes

Course Objectives:

• To familiarize the students in functional requirements, need based materials and suitable manufacturing processes to produce the automobile components.

UNIT - I	CYLINDER BLOCK	(09)						
Structure and	l functions - types - materials - sand casting of cast iron cylinder block- mod	lification						
and machinin	ng - sand, gravity and low pressure casting methods of aluminium cylinder	blocks –						
cylinder liners. Cylinder head - material - construction - heat treatment. Oil pan - function and								
materials.Gaskets – functions - materials and types.								
UNIT - II	ENGINE PARTS	(09)						
modification	Piston parts - Functions – materials – casting of piston by gravity casting and squeeze casting – modification and heat treatment – machining. Piston rings – Types - materials – functions –piston ring manufacturing. Piston pin types - materials. Forgings of crankshaft, connecting rod and gudgeon pins							
UNIT - III	VALVES AND ACCESSORIES	(09)						
Valve - types - Mechanisms - Materials - production methods - production of push rod, rocker arm								
and tappets.	Camshaft- function and materials - chilled cast iron casting process -	finishing						
operations -	production of assembled camshaft - production of propeller shaft.							
UNIT - IV	CLUTCH, GEARBOX AND BRAKES	(09)						
precision for	n, friction lining materials, requirements and manufacturing. Casting of gear bo ging of gears, gear hobbing, shaping, powder metallurgy, orbital forming of ge I finishing.Braking system - Types- manufacturing methods.							
UNIT - V	BODY PANELS, SUSPENSION AND MISCELLANEOUS	(09)						
Principles of	hydroforming - press forming - welding of body panels - resistance welding.Fo	orging of						
front and re	ar axles, casting of rear axle casing- leaf spring materials and manufac	cturing -						
	ng details - Construction details of wheel mounting -tyres and tube manufa							
	s in automobile - Use of plastics in automobile components -Application of ser	nsors and						
actuators - A	utomotive quality management system – ISO / TS 16949.							

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication		
Kirpal Singh	Automobile Engineering, Vol I	Standard Publishers., 12 th edition,		
	and II	2011.		
William H.Crouse and	Automotive Mechanics	McGraw Hill Book Co., 10 th edition,		
Anglin		2008		
Helt P.M.	High speed combustion engines	Oxford and IBM Publishers Co. 1990		

Reference Books:

- 1. Newton and Steels, .The motor vehicle. ELBS, 12th edition, 1998.
- 2. Narang G.B.S, Automobile Engineering, Khanna Publishers, 1991.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** describe the major casting methods of cast iron and aluminium cylinder block.
- **CO2:** describe the manufacturing methods of engine parts.
- CO3: select the suitable material with respect to the functional requirement.
- CO4: explain the fuel and transmission system.
- CO5: explain the brakes, suspension and engine management systems.
- CO6: identify suitable processes for the automobile parts according to the functional requirement.

Course Articulation Matrix

PO/PSO	PO	РО	РО	PO	РО	PO	РО	PO	РО	РО	РО	P0	PSO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	Η	Η	Н	М	Η	Η			М	М	Η	Н	Н	L
CO2	Н	Η	Η	Н	М	H	H	32		М	М	Η	Н	Н	L
CO3	Н	Η	Η	Н	М	H	\mathbf{H}_{0}	100	3	М	М	Η	Н	Н	L
CO4	Н	Η	Η	Η	М	Η	Η		R	Μ	М	Η	Н	Н	L
CO5	Η	Η	Η	Η	М	Н	Η	μ	1	М	М	Η	Н	Н	L
CO6	Н	Η	Η	Н	М	Η	H			М	М	Н	Н	Н	L
16PPEX04	Η	Η	Η	Η	М	Η	Η		1	М	М	Η	Н	Н	L

16PPEX05 UNCONVENTIONAL MANUFACTURING PROCESSES

Pre-Requisites: Nil

Course Objectives:

• To understand the working principles of various non-traditional machining processes, applications, advantages and limitations.

UNIT- I	MECHANICAL ENERGYMETAL REMOVAL PROCESSES	(09)							
Need of modern	n machining processes - classification and selection of technology. N	Mechanical							
processes - Ab	rasive jet machining (AJM), water jet machining (WJM), Abrasive	e water jet							
machining (AW	/JM), Ultrasonic machining (USM) - working principles, equipment	, effect of							
process paramet	ers, applications, advantages and limitations.								
UNIT- II	ELECTROCHEMICAL AND CHEMICAL METAL	(09)							
	REMOVAL PROCESSES								
Electrochemical machining (ECM), electrochemical grinding (ECG), electrochemical deburring									
and honing - chemical machining (CHM) - working principles, equipment, effect of process									
parameters, applications, advantages and limitations.									
UNIT- III	THERMAL METAL REMOVAL PROCESSES	(09)							
Electric dischar	ge machining (EDM), wire cut electric discharge machining (WEDM	A), Plasma							
arc machining	(PAM), Electron beam machining (EBM), Laser beam machining (I	LBM), Ion							
beam machinin	ng (IBM) - working principles, equipment, effect of process p	arameters,							
applications, adv	vantages and limitations.								
UNIT- IV	FORMING PROCESSES AND FOUNDRY TECHNIQUES	(09)							
Explosive formi	ng, Electro – hydraulic forming, electro – magnetic forming. Dynapak	machine -							
high pressure m	oulding, squeeze casting, vacuum castings.								
UNIT- V	RAPID PROTOTYPING	(09)							
Introduction - advantages - limitations - principle. Rapid prototyping systems - stereo-									
lithography(SLA), selective laser sintering(SLS), fused deposition modeling(FDM), laminated									
object manufacturing (LOM), solid ground curing (SGC), three dimensional printing.									
Application of r	everse engineering in rapid prototyping.								

Contact Periods:

Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication					
P.C.Pandey	Modern machining processes	Tata McGraw Hill publishing company Ltd. 2008.					
P.C.Sharma,	A text book of Production Technology	S.Chand& Company Ltd. 2009.					

- 1. Bhattacharya, "New Technology", Institution of Engineers, 1997.
- 2. Gary.F.Benedict, "Nontraditional machining Processes", Marcell Dekker Inc, 2001
- 3. HMT, "Production Technology", Tata McGraw Hill Publishers, 2001.
- 4. V.K.Jain, "Advanced Machining Process", Allied Publishers PVT Ltd 2007

On completion of this course, students will be able to

CO1: describe the mechanical energy based newer production processes.

CO2: describe the electrochemical energy based newer production processes.

CO3: describe the thermal energy based newer production processes.

CO4: explain the explosive forming and high pressure casting processes.

CO5: describe various Rapid Prototyping techniques

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	M	Н		M	М				М	L	L	L	Н		L
CO2	M	Н		M	М				M	L	L	М	Н		L
CO3	M	Н		M	L				M	L	L	М	Н		L
CO4	M	H		M	L				M	L	L	М	Н		L
CO5	L	Н		M	L				L	L	L	М	Н		L
16PPEX05	М	Н		Μ	L				Μ	L	L	М	Н		L

16PPEX06

ADDITIVE MANUFACTURING

(Common to Production and Mechanical Engineering)

Pre-Requisites:

Category: PE L T P C 3 0 0 3

- 1. 16PPC405 Metal Forming Processes
- 2. 16PPC406 Machine Tools and Processes
- 3. 16PPC602 CAD/CAM

Course Objectives:

• To educate students with fundamental and advanced knowledge in the field of Additive Manufacturing technology and the associated Aerospace, Architecture, Art, Medical and Industrial applications.

UNIT- I	INTRODUCTION	(09)
Need - Develop	ment of AM systems – AM process chain - Impact of AM on Product Dev	velopment
- Virtual Prototy	ping- Rapid Tooling – RP to AM - Classification of AM processes – Ben	efits –
Applications. So	oftware for AM- Case studies.	
UNIT- II	REVERSE ENGINEERING AND CAD MODELING	(09)
Basic concept- I	Digitization techniques – Model reconstruction – Data Processing for Rap	id
Prototyping: CA	AD model preparation, Data requirements – Geometric modeling techniqu	es:
Wireframe, surf	ace and solid modeling - data formats - Data interfacing, Part orientation	and
support generati	on, Support structure design, Model Slicing, Tool path generation.	
UNIT- III	LIQUID BASED AND SOLID BASED ADDITIVE	(09)
	MANUFACTURING SYSTEMS	
Stereo lithograp	hy Apparatus (SLA): Principle, pre-build process, part-building and post-	build
processes, photo	polymerization of SL resins, part quality and process planning, recoating	g issues,
materials, advan	tages, limitations and applications. Solid Ground Curing (SGC): working	principle,
process, strengtl	ns, weaknesses and applications. Fused deposition Modeling (FDM): Prin	ciple,
details of proces	sses, process variables, types, products, materials and application. Lamina	ted Object
Manufacturing ((LOM): Working Principles, details of processes, products, materials, adv	antages,
limitations and a	applications.	
UNIT- IV	POWDER BASED ADDITIVE MANUFACTURING SYSTEMS	(09)
Selective Laser	Sintering (SLS): Principle, process, indirect and direct SLS- powder	structures,
materials, post	processing, surface deviation and accuracy, Applications. Laser Engin	neered Net
Shaping (LENS): Processes, materials, products, advantages, limitations and application	ons – case
Studies, Selectiv	ve Laser Melting and Electron Beam Melting	
UNIT- V	OTHER ADDITIVE MANUFACTURING SYSTEMS	(09)
Three dimension	nal Printing (3DP): Principle, basic process, Physics of 3DP, types of prin	ting,
process capabili	ties, material system. Solid based, Liquid based and powder based 3DP s	ystems,
Demerits, Appli	cations and case studies. Shape Deposition Manufacturing (SDM), Ballas	tic
Particle Manufa	cturing (BPM), Bio Additive Manufacturing.	
C 4 4 - D 4 d		

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Chua Chee Kai and	Rapid Prototyping: Principles and	John Wiley AND Sons, 1997
Leong Kah Fai	Applications in Manufacturing	
Paul F. Jacobs	Stereo-lithography and other RP &	from Rapid Prototyping to Rapid
	M Technologies	Tooling, SME/ASME,1996

Reference Books:

- 1. Gibson, I., Rosen, D.W. and Stucker, B., "Additive Manufacturing Methodologies: Rapid Prototyping to Direct Digital Manufacturing", Springer, 2010.
- 2. Chua, C.K., Leong K.F. and Lim C.S., "Rapid prototyping: Principles and applications", second edition, World Scientific Publishers, 2010.
- 3. Gebhardt, A., "Rapid prototyping", Hanser Gardener Publications, 2003.
- 4. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2011.
- 5. Hilton, P.D. and Jacobs, P.F., Rapid Tooling: Technologies and Industrial Applications, CRC press, 2005.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** appreciate the importance of computers and modern tools in manufacturing to reduce cost and matching the societal needs.
- **CO2:** create and analyze 2D and 3D models using CAD modeling software and integrating with manufacturing systems.
- **CO3:** understand the variety of Additive Manufacturing (AM) technologies apply to their potential to support design and manufacturing, case studies relevant to mass customized manufacturing.
- CO4: apply knowledge on latest techniques of manufacturing in their field of career
- CO5: to monitor and control shop floor with the aid of computers

PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1			L		1	8	M						L	L	
CO2			М		JA.	X	9		V.	3				М	L
CO3			L		a	C		1	10	5			М	L	
CO4			Μ		H	М	L.C	STR.	NL'UM				М	Н	L
CO5		Μ			1	P		10	Ì		М		L	Н	
16PPEX06		М	М		М	L	L				L		М	М	L

Course Articulation Matrix

POWER PLANT ENGINEERING

(Common to Production and Mechanical Engineering)

Cate	ego	ry:	PE
L	Т	Р	С
3	0	0	3

Pre-Requisites:

16PES304 - Thermal Sciences

Course Objectives:

- To learn the economics of power generation.
- To understand the working of power plants and its comparative analysis.

Load and load duration curves. Electricity billing – costing of electrical energy – Tariff structures. Economics of power plant – Fixed and variable cost. Payback period. Net Present Value, Internal Rate of Return. Emission calculation and carbon credit. UNIT- II HYDRO POWER PLANTS (09) Energy scenario – Global and National. Essential elements and classification of hydro power plants. Typical Layout and associated components. Selection of turbines. Pumped storage plants. (09) Cycle analysis - Layout of modern coal based power plant. Super Critical Boilers - FBC Boilers. Subsystems – Water and Steam, Fuel and ash handling, Air and Gas, Draught system. Diesel and Gas Turbine power plants- Layout and Functioning. Environmental impact and Control. (09) Layout and subsystems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressurized Water Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – working and Comparison. Safety measures. Environmental aspects. (09) Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal Energy plants. Geothermal plants. Fuel cell – Types. Hybrid power plants. Total and Ocean Thermal Energy plants.	UNIT- I	ECONOMICS OF POWER GENERATION	(09)						
of Return. Emission calculation and carbon credit.UNIT- IIHYDRO POWER PLANTS(09)Energy scenario – Global and National. Essential elements and classification of hydro power plants. Typical Layout and associated components. Selection of turbines. Pumped storage plants.(09)UNIT- IIITHERMAL AND GAS TURBINE POWER PLANTS(09)Cycle analysis - Layout of modern coal based power plant. Super Critical Boilers - FBC Boilers. Subsystems – Water and Steam, Fuel and ash handling, Air and Gas, Draught system. Diesel and Gas Turbine power plants- Layout and Functioning. Environmental impact and Control.(09)UNIT- IVNUCLEAR POWER PLANTS(09)Layout and subsystems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressured Water Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – working and Comparison. Safety measures. Environmental aspects.(09)Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal109	Load and load	duration curves. Electricity billing - costing of electrical energy - Tariff	structures.						
UNIT- IIHYDRO POWER PLANTS(09)Energy scenario – Global and National. Essential elements and classification of hydro power plants. Typical Layout and associated components. Selection of turbines. Pumped storage plants.Wirther plants.UNIT- IIITHERMAL AND GAS TURBINE POWER PLANTS(09)Cycle analysis - Layout of modern coal based power plant. Super Critical Boilers - FBC Boilers. Subsystems – Water and Steam, Fuel and ash handling, Air and Gas, Draught system. Diesel and Gas Turbine power plants- Layout and Functioning. Environmental impact and Control.(09)UNIT- IVNUCLEAR POWER PLANTS(09)Layout and subsystems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressurized Water Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – working and Comparison. Safety measures. Environmental aspects.(09)Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal(09)	Economics of p	ower plant - Fixed and variable cost. Payback period. Net Present Value, Ir	nternal Rate						
Energy scenario – Global and National. Essential elements and classification of hydro power plants. Typical Layout and associated components. Selection of turbines. Pumped storage plants.UNIT-IIITHERMAL AND GAS TURBINE POWER PLANTS(09)Cycle analysis - Layout of modern coal based power plant. Super Critical Boilers - FBC Boilers. Subsystems – Water and Steam, Fuel and ash handling, Air and Gas, Draught system. Diesel and Gas Turbine power plants- Layout and Functioning. Environmental impact and Control.(09)UNIT- IVNUCLEAR POWER PLANTS(09)Layout and subsystems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressurized Water Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – working and Comparison. Safety measures. Environmental aspects.(09)Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal(09)	of Return. Emis	sion calculation and carbon credit.							
Typical Layout and associated components. Selection of turbines. Pumped storage plants.UNIT- IIITHERMAL AND GAS TURBINE POWER PLANTS(09)Cycle analysis - Layout of modern coal based power plant. Super Critical Boilers - FBC Boilers. Subsystems – Water and Steam, Fuel and ash handling, Air and Gas, Draught system. Diesel and Gas Turbine power plants- Layout and Functioning. Environmental impact and Control.(09)UNIT- IVNUCLEAR POWER PLANTS(09)Layout and subsystems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressurized Water Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – wrking and Comparison. Safety measures. Environmental aspects.(09)UNIT- VRENEWABLE ENERGY POWER PLANTS(09)Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal	UNIT- II	HYDRO POWER PLANTS	(09)						
UNIT- IIITHERMAL AND GAS TURBINE POWER PLANTS(09)Cycle analysis - Layout of modern coal based power plant. Super Critical Boilers - FBC Boilers. Subsystems – Water and Steam, Fuel and ash handling, Air and Gas, Draught system. Diesel and Gas Turbine power plants- Layout and Functioning. Environmental impact and Control.Image: Diese and Gas UNIT- IVUNIT- IVNUCLEAR POWER PLANTS(09)Layout and subsystems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressurized Water Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – working and Comparison. Safety measures. Environmental aspects.(09)UNIT- VRENEWABLE ENERGY POWER PLANTS(09)Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal	Energy scenario – Global and National. Essential elements and classification of hydro power plants.								
Cycle analysis - Layout of modern coal based power plant. Super Critical Boilers - FBC Boilers. Subsystems – Water and Steam, Fuel and ash handling, Air and Gas, Draught system. Diesel and Gas Turbine power plants- Layout and Functioning. Environmental impact and Control.UNIT- IVNUCLEAR POWER PLANTS(09)Layout and subsystems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressurized Water Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – working and Comparison. Safety measures. Environmental aspects.(09)UNIT- VRENEWABLE ENERGY POWER PLANTS(09)Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal									
Subsystems – Water and Steam, Fuel and ash handling, Air and Gas, Draught system. Diesel and GasTurbine power plants- Layout and Functioning. Environmental impact and Control.(09)UNIT- IVNUCLEAR POWER PLANTS(09)Layout and subsystems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressured Water Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – working and Comparison. Safety measures. Environmental aspects.(09)UNIT- VRENEWABLE ENERGY POWER PLANTS(09)Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal	UNIT- III	THERMAL AND GAS TURBINE POWER PLANTS	(09)						
Turbine power plants- Layout and Functioning. Environmental impact and Control.UNIT- IVNUCLEAR POWER PLANTS(09)Layout and subsystems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressurized Water Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – working and Comparison. Safety measures. Environmental aspects.(09)UNIT- VRENEWABLE ENERGY POWER PLANTS(09)Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal	Cycle analysis - Layout of modern coal based power plant. Super Critical Boilers - FBC Boilers.								
UNIT- IVNUCLEAR POWER PLANTS(09)Layout and subsystems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressurized Water Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – working and Comparison. Safety measures. Environmental aspects.(09)UNIT- VRENEWABLE ENERGY POWER PLANTS(09)Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal	Subsystems – W	/ater and Steam, Fuel and ash handling, Air and Gas, Draught system. Die	sel and Gas						
Layout and subsystems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressurized Water Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – working and Comparison. Safety measures. Environmental aspects.UNIT-VRENEWABLE ENERGY POWER PLANTS(09)Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal	Turbine power p	plants- Layout and Functioning. Environmental impact and Control.							
Reactor, Fast Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors – working and Comparison. Safety measures. Environmental aspects. UNIT- V RENEWABLE ENERGY POWER PLANTS (09) Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal	UNIT- IV	NUCLEAR POWER PLANTS	(09)						
Comparison. Safety measures. Environmental aspects. UNIT- V RENEWABLE ENERGY POWER PLANTS (09) Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal	Layout and sub	systems. Fuels and Nuclear reactions. Boiling Water Reactor, Pressur	ized Water						
UNIT- VRENEWABLE ENERGY POWER PLANTS(09)Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axesWind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal	Reactor, Fast H	Breeder Reactor, Gas Cooled and Liquid Metal Cooled Reactors - w	orking and						
Solar power plants – Photovoltaic and Thermal. Wind power plants – Vertical and Horizontal axes Wind Turbines. Biomass power plants – Gasification and combustion. Tidal and Ocean Thermal	Comparison. Sa	fety measures. Environmental aspects.							
Wind Turbines. Biomass power plants - Gasification and combustion. Tidal and Ocean Thermal	UNIT- V	RENEWABLE ENERGY POWER PLANTS	(09)						
	Solar power pla	nts - Photovoltaic and Thermal. Wind power plants - Vertical and Hori	zontal axes						
Energy plants. Geothermal plants. Fuel cell – Types. Hybrid power plants.	Wind Turbines. Biomass power plants - Gasification and combustion. Tidal and Ocean Thermal								
The second second second	Energy plants. Geothermal plants. Fuel cell – Types. Hybrid power plants.								
		The second second second							

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods

Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
G.R. Nagpal	Power Plant Engineering	Khanna publishers, 2012
S.C. Arora and	A Course in Power Plant	Dhanpat Rai and sons, 2014.
S. Domkundwar	Engineering	

- 1. P.K.Nag, "Power Plant Engineering", Tata McGraw Hill, 2014.
- 2. Paul Breeze, "Power Generation Technologies", Elsevier Ltd., 2014.
- 3. M.M.El.Wakil, "Power Plant Technology", Tata McGraw Hill, 2010.
- 4. R.K. Rajput, "A Textbook of Power Plant Engineering", Laxmi Publications pvt ltd, 2016.
- 5. James Momoh, Smart Grids Fundamentals of Design and analysis, Wiley Press, 2012.

On completion of this course, students will be able to

CO1: arrive at cost of power generation, electricity billing and rate of return on power plant investments.

CO2: understand the working of Hydro-electric power plants.

CO3: analyze the working of Conventional power plants such as Thermal and Gas Turbines.

CO4: understand the working of nuclear power plants and its functional components.

CO5: understand the different types of renewable energy systems and its functional components.

Course Articulation Matrix

PO/PSO	PO	PO	PO	РО	PO	РО	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	М	L	Н	М	Н	L	Μ	L	L	L	Μ	Н	М		М
CO 2	L	Μ	Н	L	М	L	Н	М	Μ	L	Н	L	L		М
CO 3	М	Μ	Н	М	М	Η	Μ	L	L	Η	Μ	Μ	М		L
CO 4	Н	Μ	L	М	Н	М	L	М	L	Н	Н	М	М		М
CO 5	М	L	L	Н	М	Μ	mbm	H	Н	М	Н	Н	М		М
16PPEX07	М	М	М	М	М	М	М	М	М	М	Н	М	М		М

16PPEX08

ROBUST DESIGN

(Common to Production and Mechanical Engineering)

Category:PE L T P C 3 0 0 3

Pre-Requisites:

1. 16PES206 -Engineering Mechanics

Course Objectives:

• To impart knowledge to design experiments to a problem situation using traditional experimental designs as well as Taguchi Methods.

UNIT- I	EXPERIMENTAL DESIGN FUNDAMENTALS	(09)								
Importance of	Importance of experiments, experimental strategies, basic principles of design, terminology,									
ANOVA, steps	in experimentation, sample size, normal probability plot and line	ear regression								
models.										
UNIT- II	SINGLE FACTOR EXPERIMENTS	(09)								
Completely randomized design, Randomized block design, Latin square design - Statistical analysis,										
estimation of model parameters, model adequacy checking, pair wise comparison tests										
UNIT- III	I-III MULTIFACTOR EXPERIMENTS									
Two and three	factor full factorial experiments, Randomized block factorial design	, Experiments								
with random f	actors, rules for expected mean squares, approximate F - tests.	2K factorial								
Experiments	19 HOLE C									
UNIT- IV	SPECIAL EXPERIMENTAL DESIGNS	(09)								
Blocking and co	nfounding in 2k designs. Two level Fractional factorial design, nested	designs, Split								
plot design, Res	ponse Surface Methods									
UNIT- V TAGUCHI METHODS (09)										
Steps in experin	nentation, design using Orthogonal Arrays, data analysis, Robust desig	n- control and								
noise factors, S/	N ratios, parameter design, Multi-level experiments, Multi - response of	optimization								
Carreta de Darria da										

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
A. Mitra	Fundamentals of Quality Control and Improvement	Pearson Publication, 1998
Phillip J.Rose	Taguchi techniques for quality engineering	McGraw Hill, 1996

- 1. Montgomery, D.C., Design and Analysis of experiments, John Wiley and Sons, Eighth edition, 2012.
- 2. Krishnaiah, K. and Shahabudeen, P. Applied Design of Experiments and Taguchi Methods, PHI learning private Ltd., 2012.
- 3. NicoloBelavendram, Quality by Design; Taguchi techniques for industrial experimentation, Prentice Hall, 1995.
- 4. J. Krottmaier, Optimizing Engineering Design, McGraw Hill Ltd, 1993
- 5. MadhavShridharPhadke, Quality Engineering Using Robust Design, Prentice Hall, 1985

On completion of this course, students will be able to

CO1: select appropriate tools for robust design.

CO2: identify and implement single factor experiments

CO3: identify and implement multi factor experiments

CO4: apply the concepts of .special experiment designs

CO5: apply the concepts of Taguchi experiment design for practical problems.

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	L	M	Н		L				L		L		L	L	L
CO 2	L	M	Н		L				L		L		L	L	L
CO 3	L	M	H		L				L		L		L	L	L
CO 4	L	M	Н		L				L		L		L	L	L
CO 5	L	M	Н		L				L		L		L	L	L
16PPEX08	L	Μ	Н		L				L		L		L	L	L

16PPEX09 STATISTICAL QUALITY CONTROL AND RELIABILITY ENGINEERING

	Category: PE
Pre-Requisites:	LTPC
1. 16PPC702 Production Planning and Control	3 0 0 3

Course Objectives:

• To introduce the concept of SQC, understand process control, acceptance sampling procedure and to learn the concept of reliability.

UNIT- I	INTRODUCTION AND PROCESS CONTROL FOR (09)									
	VARIABLES									
Introduction, definition of quality, basic concept of quality, definition of SQC, benefits and										
limitation of S	limitation of SQC, Quality assurance, Quality cost-Variation in process- factors - process									
capability – pro	cess capability studies and simple problems - Theory of control cha	art- uses of								
control chart – C	Control chart for variables – X chart, R chart and σ chart.									
UNIT- II	PROCESS CONTROL FOR ATTRIBUTES	(09)								
Control chart fo	Control chart for attributes -control chart for proportion or fraction defectives - p chart and np									
chart – control	chart for defects - C and U charts, State of control and process out	t of control								
identification in	charts.									
UNIT- III	ACCEPTANCE SAMPLING	(09)								
Lot by lot sam	pling - types - probability of acceptance in single, double, multipl	e sampling								
techniques – O.	C. curves - producer's Risk and consumer's Risk. AQL, LTPD, AOQ	L concepts-								
standard samplin	ng plans for AQL and LTPD- uses of standard sampling plans.									
UNIT- IV	LIFE TESTING - RELIABILITY	(09)								
Life testing – O	bjective – failure data analysis, Mean failure rate, mean time to failure	, mean time								
between failure,	hazard rate, system reliability, series, parallel and mixed configuration	on – simple								
problems. Main	tainability and availability - simple problems. Acceptance sampling	g based on								
reliability test – O.C Curves.										
UNIT- V QUALITY AND RELIABILITY (09)										
Reliability imp	Reliability improvements - techniques- use of Pareto analysis - design for reliability -									
redundancy unit and standby redundancy – Optimization in reliability – Product design – Product										
analysis – Product development – Product life cycles.										

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication				
Grant, Eugene.L	Statistical Quality Control	McGraw-Hill, 7 th edition, 2008				
L.S.Srinath	Reliability Engineering	Affiliated East west press, 1991				

- 1. Monohar Mahajan, "Statistical Quality Control", Dhanpat Rai and Sons, 2001.
- 2. R.C.Gupta, "Statistical Quality control", Khanna Publishers, 1997.
- 3. Besterfield D.H., "Quality Control", Prentice Hall, 1993.
- 4. Sharma S.C., "Inspection Quality Control and Reliability", Khanna Publishers, 1998.
- 5. Danny Samson, "Manufacturing and Operations Strategy", Prentice Hall, 1991
- 6. Connor, P.D.T.O., "Practical Reliability Engineering", John Wiley, 1993.

On completion of this course, students will be able to

CO1: describe the basic concepts involved in manufacturing process control for variables.

CO2: describe various process control charts for attributes.

CO3: explain the concepts of acceptance sampling.

CO4: explain the life testing techniques, failure data analysis and mean failure rate.

CO5: describe Pareto analysis and product design, development and life cycle concepts.

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	М	L	L									М		М
CO2	M	М	L	L									М		М
CO3	M	L	L	L									М		М
CO4	M	L	M	М									М		М
CO5	M	М	M	М									М		М
16PPEX09	Μ	М	М	М									М		М

Pre-Requisites:

16PPEX10

1. 16PBS2Z3 – Materials Science

Category: PE

L T P C 3 0 0 3

- 2. 16PPC305 Foundry and Welding Technology
- 3. 16PPC306 Engineering Metallurgy

Course Objectives:

• To impart knowledge of basic concepts, principle, procedure, applications and advances in welding processes.

UNIT- I	SOLID STATE WELDING PROCESSES	(09)							
Review of the	various pressure welding processes and their applications. Friction,	explosive,							
diffusion, and Ultrasonic welding - principles of operation, process characteristics and									
application.									
UNIT- II	HIGH ENERGY BEAM WELDING	(09)							
Electron Beam	welding and Laser Welding: Principles of operation, Heat gener	ation and							
regulation - Equ	regulation - Equipment details in typical setup - advantages, disadvantages and applications.								
UNIT- III	ELECTRO SLAG WELDING								
Heat generation	, principles of operations, wire and consumables, guide techniques, see	election of							
current, voltage	and other process variables, nature of fluxes and their selection. E	lectro-gas							
welding Princip	le of operation and applications, Narrow gap welding.								
UNIT- IV	PLASMA ARC WELDING	(09)							
Special features	of plasma arc- transferred and non transferred arc, key hole and puddl	e mode of							
operation, micro	o, low and high current plasma arc welding and their applications. Plasm	na cutting							
and surfacing ar	and surfacing and their applications.								
UNIT- V	SPECIAL WELDING PROCESSES	(09)							
Adhesive bondi	ng and Welding of plastics, Cold pressure welding, High frequency	Welding,							
Stud welding, U	Stud welding, Under Water welding, Welding automation.								

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Parmer R.S	Welding Engineering and	Khanna Publishers, New
	Technology	Delhi,2 nd edition, 2010
Parmer R.S.	Welding Processes and Technology	Khanna Publishers, New Delhi, 3 rd edition, 2003
Little R.L	Welding and welding Technology	<i>Tata McGraw Hill Publishing Co., Ltd.,</i> <i>New Delhi, 34th reprint, 2008.</i>

- 1. Schwartz M.M. "Metals Joining Manual". McGraw Hill Books, 1979.
- 2. Tylecote R.F. "The Solid Phase Welding of Metals". New York, St. Martin's Press, 1968.
- 3. AWS- Welding Hand Book. 9th Edition. Vol- 2. "Welding Process"
- 4. Nadkarni S.V. "Modern Arc Welding Technology", Oxford IBH Publishers, 2nd edition, 2005.
- 5. Christopher Davis. "Laser Welding- Practical Guide". Jaico Publishing House, 1994.
- 6. Davis A.C., "The Science and Practice of Welding", Cambridge University Press, Cambridge, 10th edition 1993.

On completion of this course, students will be able to

CO1: Describe the solid state welding processes

CO2: Describe the high energy beam welding processes

CO3: Describe the Elctro-slag and Elctro-gas welding processes

CO4: Describe the plasma arc welding processes

CO5: Describe the special welding techniques for plastics and underwater welding processes

Course Articulation Matrix

PO/PSO	РО	PO	РО	PSO	PSO	PSO									
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М				М		Н		L			М	М		
CO2	Н		Н		L		М		L	М	L		М		М
CO3	М	L	М		М		М				М	М	L		
CO4	М				L		М		L	М					
CO5	М	L	M		L		L					L			М
16PPEX10	М	L	М		L	0	М	n	L	М	L	М	М		М

16PPEX11 PRODUCT DESIGN AND PROCESS ENGINEERING

Pre-Requisites:

- 1. 16PPC305 Foundry and Welding Technology
- 2. 16PPC306 Engineering Metallurgy
- 3. 16PPC405 Metal Forming Processes
- 4. 16PPC406 Machine Tools and Processes
- 5. 16PPC504 Metrology and Computer Aided Inspection

Course Objectives:

• To train the students to design the product and to develop the feasible processing technique for specific need.

PRODUCT ENGINEERING (09)							
e of product engineering; creative and organizing for product innova	tion criteria						
ess in life cycle of a product; maintainability engineering.							
MODELING AND SIMULATION (09)							
mulation; the role of models in product design mathematical modelin	g similitude						
ted property index.							
MATERIAL SELECTION	(09)						
n; Problems of material selection; Performance characteristics of m	aterials; the						
on process; economics of materials; Cost versus performance relation	s; Weighted						
DESIGN CONSIDERATIONS	(09)						
production design; form design; influence of basis design - mechan	ical loading						
form design - form design of gray castings, malleable iron castings	s, aluminum						
e die castings, plastic mounding, welded fabrications, forging and man	nufacture by						
ods.							
AESTHETIC AND ERGONOMIC CONSIDERATIONS	(09)						
ce, size, weight, etc. on form design; aesthetic and ergonomic cor	nsiderations;						
asioning and tolerance of product; functional production and inspec	tion datum;						
s.							
	e of product engineering; creative and organizing for product innova ess in life cycle of a product; maintainability engineering. MODELING AND SIMULATION mulation; the role of models in product design mathematical modelin ted property index. MATERIAL SELECTION on; Problems of material selection; Performance characteristics of m on process; economics of materials; Cost versus performance relation DESIGN CONSIDERATIONS production design; form design; influence of basis design - mechan form design - form design of gray castings, malleable iron castings e die castings, plastic mounding, welded fabrications, forging and man ods. AESTHETIC AND ERGONOMIC CONSIDERATIONS ce, size, weight, etc. on form design; aesthetic and ergonomic cor asioning and tolerance of product; functional production and inspec						

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication
George E.DieterandLinda	Engineering design	McGraw HillEducation, 5 th edition,
C. Schmidt		2012
Robert Matousek	Engineering Design	Blacke and Sons Ltd, 1972

- 1. Jones J., "Design Methods", Wiley, 2ndedition, 1992.
- 2. Buhl H.R, "Creative Engineering design", Iowa state university press, 1960.
- 3. Benjamin W.Niebel and Alan B.Draper, "Product Design and process Engineering", McGraw HillInc., US, 1st edition, 1974.
- 4. Harry peck, "Designing for Manufacturing", Sir Issac Pitman and Sons Ltd, 1973.
- 5. Gladman C.A., "Manual for Geometric Analysis of Engineering Designs", Australian Trade publications Ltd, 1966.
- 6. Oliver R. Wade, "Tolerance Control in Design and Manufacturing", Industrial Press, New York publications, 1967.

On completion of this course, students will be able to

CO1: Describe the product innovation

CO2: Describe the analytical evaluation of the products

CO3: Select the appropriate material for the product

CO4: Develop the appropriate processing technique for the product

CO5: Incorporate the aesthetic and ergonomic values

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	M	М	Η			Н	L		Н	L		M	Н		
CO2	М	Н	Μ			М	Μ		М				М		
CO3	L	М	М	М		М	M		М			M	М		
CO4	М		L	М		Н	L		Н				М		
CO5		L	L			L	Μ		М				L		
16PPEX11	М	М	М	М		Μ	Μ	5	М	L		М	М		

16PPEX12DESIGN FOR MANUFACTURE AND ASSEMBLYCate	gory: PE
---	----------

Pre-Requisites:

L T P C 3 0 0 3

1. 16PPE018 Production Management

Course Objectives:

- To acquire knowledge of the general design principles of Manufacturing.
- To familiarize various assembly methods and processes and design for assembly guidelines.

UNIT- I	DESIGN PRINCIPLE	(09)								
Economics of p	rocess selection - general design principles of manufacturability - pro-	oper material								
selections - stre	ength and mechanical factors - Geometric tolerances - Design for ser	rviceability –								
Tolerance Chart	ting Techniques. General aspects of the designers work - design factors	- systematic								
working plan – basic design.										
UNIT- II	FORM DESIGN	(09)								
Factors affectin	g casting design - Grey iron castings, steel castings, malleable iron ca	stings – Non								
ferrous alloys: Aluminium castings - Pressure die castings - factors affecting weldment design - Gas										
and Arc welding.										
UNIT- III	FORMED METAL COMPONENTS AND NON-METALLIC	(09)								
	PARTS DESIGN									
Metal extrusion	- cold headed pats - fine blanking - Tube and section bends - powder	metal parts –								
thermo setting p	lastic parts – reinforced - plastic/composite parts.									
UNIT- IV	MACHINED COMPONENTS DESIGN	(09)								
Design for mac	hinability – design for economy – design for clampability – design for	accessibility.								
Turned parts -	drilled parts – milled parts, planned, shaped and slotted parts – Ground	parts – parts								
produced by ED	M.									
UNIT- V	TECHNOLOGY REQUIREMENT AND ASSEMBLY	(09)								
Product design	requirements for group technology concepts and CNC machining -	- part family								
concept – mec	hanical assemblies - general recommendations - design rules for	rivets, screw								
fasteners, gaskets and seals. Press and snap fits.										
	Com Co									

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication					
James G.Bralla	Hand book of product design	Mc Graw Hill Book Co., Second					
	for manufacture	edition, 1999.					
Robert Matousek	Engineering Design – A	Blackie and Son Ltd, London					
	systematic approach						
Geoffrey Boothroy	l, Product design for	Taylor and Francis group,					
PeterDewhurst, Winston	. manufacture and assembly	2011.					
Knight							

- 1. Harry Peck, Design for manufacture, Pitman publications, 1983.
- 2. Trucks H.E., Design for Economic Production, Society of Manufacturing engineers, Michigan 2nd Edition1987.
- 3. Karl T.Ulrich and Steven D Eppinger, Product Design and Development, Tata McGraw Hill, 3rd edition, 2008.
- 4. Oliver R. Wade, Tolerance Control in design and Manufacturing, Industrial Press Inc., New York Publications, 1967.

On completion of this course, students will be able to

- CO1: explain the basic design principles and use of tolerances in manufacturing.
- **CO2:** describe the concepts of form design for various metals and alloys involving in casting process.
- CO3: describe the design concepts of formed metals and plastic components.
- CO4: explain the concepts of various machined parts design for manufacturing.
- CO5: explain the assembly concepts for manufacturing and its technology requirements.

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	М	Μ	L									L		
CO2	М	L	М	L									L		
CO3	М	L	М	L									L		
CO4	М	L	М	L									L		
CO5	М	L	М	L									L		
16PPEX12	М	L	М	L			There	mo					L		

16PPEX13 HUMAN VALUES AND PROFESSIONAL ETHICS-II

Category: PE L T P C 3 0 0 3

Course Objectives:

• To develop the capacity of making value judgments in real life situations and to overcome the crisis of values encountered in professional life.

CHSI	s of values encountered in professional file.									
UNIT - I	HUMAN VALUES AND INTRODUCTION TO ETHICS	(09)								
Morals, Valu	ies and Ethics - Integrity - Work Ethic - Respect for Others - Living Peacefull	y – caring								
– Sharing –	Honesty - Courage - Valuing Time - Co-operation - Commitment - Empat	hy – Self-								
Confidence -	- Character - Spirituality - Senses of 'Engineering Ethics' - variety of moral issu	ies - types								
of inquiry.										
UNIT - II	ETHICAL THEORIES AND PROFESSIONALISM	(09)								
Moral dilem	mas - moral autonomy - Kohlberg's theory - consensus and controversy - 1	Models of								
Professional	Roles - theories about right action - Self-interest - customs and religion - uses	of ethical								
theories.										
UNIT - III	ENGINEERING AS SOCIAL EXPERIMENTATION	(09)								
Engineering	as experimentation - engineers as responsible experimenters - codes of ethics - a	i balanced								
outlook on la	w - the challenger case study.									
UNIT - IV	SAFETY, RESPONSIBILITY AND RIGHTS	(09)								
Safety and ri	isk - assessment of safety and risk - risk benefit analysis and reducing risk -	three mile								
island and ch	ernobyl case studies.									
Collegiality a	and loyalty - respect for authority - collective bargaining - confidentiality - co	onflicts of								
interest - occ	upational crime - professional rights - employee rights - Intellectual Property Ri	ghts (IPR)								
- discriminati	ion.									
UNIT - V	GLOBAL ISSUES	(09)								
	l corporations - Environmental ethics - computer ethics - weapons devel	-								
-	managers-consulting engineers-engineers as expert witnesses and adviso									
	mple code of Ethics like ASME, SAE India, Institution of Engineers (Indi									
Institute of Materials Management, Institution of electronics and telecommunication engineers										
(IETE),India	G									

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication
Mike Martin and Roland	Ethics in Engineering	McGraw-Hill, New York, 3 rd edition,
Schinzinger		reprint 2007
Govindarajan M, Natarajan S,	Engineering Ethics	Prentice Hall of India, New Delhi,
Senthil Kumar V. S		2004
Tripathi A N	Human values	New Age international Pvt. Ltd., New
-		Delhi, 2002

- 1. Charles D. Fleddermann, "Engineering Ethics", Pearson Education / Prentice Hall, New Jersey, 2004
- 2. Charles E Harris, Michael S. Protchard and Michael J Rabins, "Engineering Ethics Concepts and Cases", Wadsworth Thompson Learning, United States, 2000.
- 3. John R Boatright, "Ethics and the Conduct of Business", Pearson Education, New Delhi, 2003.
- 4. Edmund G Seebauer and Robert L Barry, "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2001.

On completion of this course, students will be able to

CO1: recognize the basic concepts of Human values and ethics.

CO2: express the ethical theories.

CO3: identify the concept of professionalism

CO4: identify and implement the safety aspects in social experimentation

CO5: understand the impact of technical development in environmental and societal context.

Course Articulation Matrix

PO/PSO	PO	P0	PSO	PSO	PSO										
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L	L	Н			Н	H	Н	Н			Μ	Н		
CO2	L	L	Н			H	H	Н	Н			Μ	Н		
CO3	L	L	Н			H	H	Н	Н	Н	Н	Μ	Н		
CO4	L	L	H			H	H	Н	Н	Н		Μ	Н	Н	
CO5	L	L	H			Н	H	Н	Н	Н		Μ	Н	Н	
16PPEX13	L	L	Η			Η	Η	Н	Н			М	Н		
							mm								1

Course Objectives:

• To understand basic layout and the usage of material handling equipments for industries and gain knowledge on industrial buildings and utilities

UNIT- I	INTRODUCTION	(09)							
Factors to be o	considered for plant layout - physical facilities - equipments requir	red for plant							
operation. Capa	city, serviceability and flexibility and analysis in selection of equip	oments space							
requirements, m	an power requirements								
UNIT- II	PLANT LAYOUT	(09)							
Plant layout - ne	eed for layout, factors influencing product, process, fixed and combination	ation layout -							
tools and techniques for developing layout, process chart, flow diagram, string diagram, template									
and scale models machine data. Layout planning procedure. Visualization of layout revision and									
improving existing layout, balancing of fabricating and assembly lines.									
UNIT- III	MATERIAL HANDLING	(09)							
Principles, impo	ortance and scope of material handling. Planning, operation and costi	ng principles							
types of materia	l handling systems, factors influencing their choice.								
UNIT- IV	UTILITIES	(09)							
Industrial build	ings and utilities - centralized electrical pneumatic water line system	ns. Types of							
building, lightir	g heating, ventilation and air-conditioning utilities. Planning and ma	aintenance of							
waste handling	g statutory requirements. Packing and storage of materials	- layout for							
packaging -pack	aging machinery - wrapping and packing of materials, cushion materia	ls							
UNIT- V	ANALYSIS OF MATERIAL HANDLING	(09)							
Analysis of ma	terial handling - factors involved, motion analysis, flow analysis, sat	fety analysis,							
and equipment cost analysis, analysis of operation and material handling surveys.									

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
James, M. Apple	Plant Layout and Material Handling	Kreiger Publishing Company,
		1991
Rudenko. N	Materials handling equipment	Mir Publishers, 1969

- 1. James, M. Moore, 'Plant Layout and Design', Macmillan Company, NY, 1963
- 2. Muther, R., 'Practical Plant Layout', McGraw Hill Book Company, NY, 1955
- 3. Colin Hardie, "Material Handling in Machine Shops". Machinery Publication Co. Ltd., London, 1970
- 4. Alexandrov, M., "Materials Handling Equipments", MIR Publishers, 1981.
- 5. Boltzharol, A., "Materials Handling Handbook", The Ronald Press Company, 1958.

On completion of this course, students will be able to

CO1: design plant layout for any type of industries.

CO2: perform effective selection and utilization of buildings and utilities.

CO3: select and utilize suitable material handling equipment.

CO4: plan appropriate HVAC system for industrial buildings.

CO5: analyze the usage of material handling equipments.

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO						
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1	Μ	L	Μ		L	L		L	L		L		L	L	L
CO 2	Μ	L	Μ			L		L	L		L		L	М	L
CO 3	Μ	L	Μ			L		L	L		L		L	L	L
CO 4	Н	L	Μ			L		L	L		L		L	L	L
CO 5	Μ	L	Μ		Μ	L		L	L		L		L	L	L
16PPEX14	М	L	М		L	L	hum	L	L		L		L	L	L

MANAGERIAL ECONOMICS

Pre-Requisites: Nil

Course Objectives:

• To introduce the fundamental economic principles necessary for production managers.

UNIT- I	FUNDAMENTALS OF MANAGERIAL ECONOMICS	(09)					
Goals and Con	straints - The Nature and Importance of Profits - Understanding I	ncentives -					
Economic ration	Economic rationality, Scarcity and opportunity cost -Marginal and Incremental Analysis.						
UNIT- II	DEMAND ANALYSIS	(09)					
Demand and Su	pply -Market Equilibrium - Price Elasticity of Demand - Price Elast	ticity, Total					
Revenue, and M	Aarginal Revenue - Factors Affecting Price Elasticity - Cross Price	Elasticity -					
Income Elasticit	ty of Demand - Other Elasticities, Elasticities for Nonlinear Demand	Functions -					
Elasticity of Sup	pply.						
UNIT- III DEMAND THEORIES							
Choice and Uti	lity Theory - Law of Diminishing marginal utility - Consumer Eq	uilibrium -					
Consumer Surpl	us - Price effect, Substitution Effect and Income Effect.						
UNIT- IV	THEORY OF PRODUCTION AND COST	(09)					
The Production	Function - Profit-Maximizing Input Usage - Isoquants and Isoco	osts - Cost					
Minimization a	nd Optimal Input Substitution - The Cost Function - Breakeve	n analysis,					
Contribution an	alysis - Long-run Costs and Economies of Scale - Multiple Cost Fu	nctions and					
Economies of S	cope - Learning curve.						
UNIT- V THEORY OF MARKET AND PRICING (09)							
The Nature of Industry - Perfect Competition - Monopoly - Monopolistic Competition -							
Oligopoly - Product pricing.							
Contact Pariods:							

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication
Thomas and Maurice	Managerial Economics: Concept	McGraw- Hill, 2005
	and Applications	
Maheshwari.Y	Managerial Economics	Prentice Hall of India, 2012

Reference Books:

1. D.N. Dwivedi, 'Managerial Economics' – Vikas Publishing house, 2015

2. Christopher R Thomas, S Charles Maurice, 'Managerial economics'-Mcgraw Hill, 2014

Course Outcomes:

On completion of this course, students will be able to

CO1: explain fundamentals of managerial economics.

CO2: discuss the dynamics of market forces.

CO3: explain about various theories of demand.

CO4: discuss about the cost concepts related to production.

CO5: describe about the theory of market and pricing method.

	PO/PSO	PO	PSO	PSO	PSO											
	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	L	L							L	Μ	Μ	L			L
	CO2	L	L	L							Μ	Μ	L			L
	CO3	L									L	М	L			L
	CO4	L									L	L	L			L
	CO5	L	M	M	L						L	Μ	L			L
Ī	16PPEX15	L	L	L	L						L	Μ	L			L

Course Articulation Matrix

NON DESTRUCTIVE TESTING TECHNIQUES

ES Category: PE LTPC

3 0 0 3

Pre-Requisites:

16PPEX16

1. 16PPC305 - Foundry and Welding Technology

Course Objectives:

- To understand principle behind various NDT techniques.
- To study about NDT equipments and accessories.
- To learn working procedures of various NDT techniques.

UNIT- I	INTRODUCTION	(09)					
NDT Versus Mechanical testing, Overview of the Non-Destructive Testing Methods for the detection							
of manufacturing defects as well as material characterization. Relative merits and limitations, Visual							
methods: Optical aids, In-situ metallography, Optical holographic methods, Dynamic inspection.							
UNIT- IILIQUID PENETRANT & MAGNETIC INSPECTION(09)							
Penetrant system	ms: Principles – Process - Liquid penetrant materials – Emulsifi	ers - cleaners					
developers – ser	nsitivity - Advantages, Limitations and Applications. Magnetic method	s: Advantages,					
Limitations -	Methods of generating fields: magnetic particles and suspen	nding liquids.					
Magnetography	Magnetography - field sensitive probes: applications. Measurement of metal properties.						
UNIT- III	RADIOGRAPHIC METHODS	(09)					
Principles of rad	diography - sources of radiation - Ionising radiation - sources - X-ray	s, gamma rays					
Recording of	radiation-Radiographic sensitivity - Fluoroscopic methods - speci	al techniques.					
Radiation safety	y. Advantages, Limitations and Applications.						
UNIT- IV	ULTRASONIC TESTING OF MATERIALS	(09)					
Ultrasonic testin	ng: Principle - Advantages, Disadvantages, Applications - Generation	of Ultrasonic					
waves - general	characteristics of ultrasonic waves: methods and instruments for ultras	sonic materials					
testing: special t	techniques.						
UNIT- V	ELECTRICAL AND SPECIAL METHODS	(09)					
Electrical methods: Eddy current methods: potential - drop methods, applications - Other methods:							
Acoustic Emission methods, Acoustic methods: Leak detection: Thermal inspection.							
Contact Periods:							

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication		
Baldev Raj, T.Jayakumar,	Practical Non-Destructive	Narosa Publishing House, 2009.		
M.Thavasimuthu	Testing			
Ravi Prakash	Non-Destructive Testing	New Age International Publishers,		
	Techniques	2010		

- 1. ASM Metals Handbook, "Non-Destructive Evaluation and Quality Control", American Society of Metals, Metals Park, Ohio, USA, 200, Volume-17.
- 2. Paul E Mix, "Introduction to Non-destructive testing: a training guide", Wiley, 2nd Edition New Jersey, 2005
- 3. Charles, J. Hellier, "Handbook of Nondestructive evaluation", McGraw Hill, New York 2001.
- 4. ASNT, American Society for Non Destructive Testing, Columbus, Ohio, NDT Handbook, Vol. 1, Leak Testing, Vol. 2, Liquid Penetrant Testing, Vol. 3, Infrared and Thermal Testing Vol. 4, Radiographic Testing,

On completion of this course, students will be able to

- **CO1:** classify various non-destructive testing and choose the right method of testing for detection of defects on various materials.
- CO2: check different metals and alloys by visual inspection method.
- **CO3:** explain and perform non-destructive tests like: Liquid penetrant test, Magnetic particle test, Ultrasonic test, X-ray and Gamma ray radiography, Leak Test, Eddy current test.
- CO4: describe the safety procedures of operating the NDT equipments and follow them.

CO5: detect the flow and other defects using NDT procedure for industrial component.

Course Artic	uiati		atiix												
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		Μ											L		М
CO2		Μ													М
CO3		Μ	Μ	Н	М							М			
CO4						М									Н
CO5			Μ		a for	La		R		Ph					М
16PPEX16		М	Μ	Η	Μ	Μ	160 Q	- A	う	5		М	L		М

Course Articulation Matrix

SUPPLY CHAIN MANAGEMENT

Pre-Requisites: Nil

Course Objectives:

• To develop the students in the dynamics of inter-organizational collaboration and coordination towards building supply chains.

UNIT- I	INTRODUCTION TO SUPPLY CHAIN MANAGEMENT	(09)					
Meaning and de	finition of supply chain management, Difficulties of managing supp	ly chains, the					
0	development chain, global optimization, Key issues in of supply chain management.						
UNIT- II	INVENTORY MANAGEMENT AND RISK POOLING	(09)					
Introduction, si	ngle stage Inventory control, The economic lot size model, effect	ct of demand					
uncertainty. Ris	k pooling, centralized and decentralized system, managing inventory	in the supply					
chain, forecastir	ng.						
UNIT- III	VALUE OF INFORMATION	(09)					
Introduction, B	ullwhip effect-Quantifying the bullwhip effect-impact of centralized	d information					
on the bullwhi	p effect-supply chain with centralized demand information and	decentralized					
demand inform	ation=managerial insights in the value of centralized information.	Methods for					
coping with the	e bullwhip effect. Supply chain integration - push, pull and push	-pull system.					
Demand driven	strategies.						
UNIT- IV	GLOBALISATION OF SCM	(09)					
	obal market forces, Technological forces, global cost forces,	-					
	es. Managing global risks-speculative strategies, hedge strateg						
	irements for global strategy implementation. Issues in international						
•	nternational versus regional products, region-specific products,	•					
products. Supplies integration into to new product development- spectrum of supplier integration,							
keys to effective supplier integration, bookshelf of technologies and suppliers. Mass							
customization-Meaning, making mass customization work, mass customization and supply chain							
management.							
UNIT- V	INFORMATION TECHNOLOGY FOR SCM	(09)					
Goals of supply chain IT, IT standards, It infrastructure, IT for supply chain excellence.							

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Perio	Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods
--	---------------------	----------------------------	----------------------	-------------------

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Simchi-Levi David,	Designing and Managing the	Third Edition, Tata McGraw
Kaminsky Philip, Simchi-	Supply Chain: Concepts,	Hill Education Private Limited,
Levi Edith and Ravi	Strategies and Case Studies	New Delhi, Tenth reprint, 2012.
Shankar.		
Chopra S and Meindl P	Supply Chain Management:	Second Edition, Prentice Hall
	Strategy, Planning and	India Private Limited, 2005.
	Operation	

Reference Books:

- 1. Robert Jacobs F, William Berry and Clay Whybark D, "Manufacturing Planning and Control for Supply Chain Management", Tata McGraw Hill, New Delhi, 2011.
- 2. Christopher, "Logistics and Supply Chain Management", Pearson Education Asia, NewDelhi
- 3. Taylor and Brunt, "Manufacturing Operations and Supply Chain Management (TheLean Approach)", Business Press Thomson Learning, NY

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** describe the objectives of supply chain management.
- **CO2:** describe the inventory management and risk pooling.
- **CO3:** describe about value of information.
- **CO4:** describe about globalization of SCM.

CO5: describe about information technology for SCM.

Course Articulation Matrix

PO/PSO	PO	РО	PO	РО	РО	РО	PO	PO	РО	РО	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6		8	9	10	11	12	1	2	3
CO1	М				GON	М	-	106 8 545	Jun Co	51		L		L	
CO 2	Н	L			L	Μ	URR	Red	Ľ				М	М	
CO 3					1	V			P	М		М			М
CO4	Н	L			10	L		K	1				L		
CO 5		Н			L		SW/	KIZ	L			М		М	
16PPEX17	М	М			L	М		L	L	L		М	L	М	L

PRODUCTION MANAGEMENT

Category: PE

L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

• To introduce various management methods in production industries.

UNIT- I	I BASICS OF MANAGEMENT (09)						
Evolution of management - General principles of management - management functions -							
organization -ty	pes - comparison - functions of personnel management - recruitment	– training –					
leadership - motivation - communication - conflict - Industrial relations - trade union.							
UNIT- II	OPERATIONS MANAGEMENT	(09)					
Plant Location	- Layout - Materials Handling - Method study - Time study - Erg	gonomics –					
Aggregate Planning – Value Analysis.							
UNIT- III	T- III MATERIALS MANAGEMENT						
Materials management - Purchasing - Objectives - parameters - procedure. Supplier selection -							
Stores manager	nent - codification - Waste management - Reasons for waste ge	eneration –					
identification an	d control of waste – scrap disposal.						
UNIT- IV	INVENTORY MANAGEMENT	(09)					
Purpose of inver	ntory – Cost related to inventory – Basic EOQ model – variations in EC)Q model –					
Finite Productio	n, quantity discounts - ABC Analysis - MRP - Introduction to MRP II	and ERP.					
UNIT- V MARKETING MANAGEMENT							
Functions of marketing – Sales promotion methods – advertising – product packaging – marketing							
variables – distribution channels – organization – market research – market research techniques.							

Contact Periods:

Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods
Text Books:			

Author Name	Titl	e of Book	Publisher, Year Of Publication
R. Panneerselvam	Production	and Operations	Prentice Hall of India, 2012.
	Management		

Reference Books:

- 1. Koontz and Weihrich-Essentials of Management, McGraw Hill 2015.
- 2. Philips Kotler Marketing management, Pearson, 2015
- 3. Martand T. Telesang Production Management S. Chand& Co., 2007

Course Outcomes:

On completion of this course, students will be able to

- CO1: illustrate the functions of management and personnel management.
- CO2: explain various ways of managing operations in engineering industries.
- CO3: identify the methods for managing materials in engineering industries.
- **CO4:** describe the importance of inventory and the ways of managing inventory.
- **CO5:** explain the various processes involved in marketing.

PO/PSO	PO	РО	PSO	PSO	PSO										
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L								M	Μ	Н	М			
CO2	M	M		M	L					L	Н	L	L		Н
CO3	L	M	L	L	L					L	М	L			L
CO4	M	L	L	L	L					L	Н	L			М
CO5		L								Н	М	L			
16PPEX18	L	Μ	L	L	L				L	L	Η	L	L		М
			~												

Course Articulation Matrix

16PPEX19

LEAN MANUFACTURING

(Common to Production and Mechanical Engineering)

Category: PE L T P C 3 0 0 3

Pre-Requisites:

- 1. 16PPC405 Metal Forming Processes
- 2. 16PPC406 Machine Tools and Processes

Course Objectives:

• To craft the students to acquire knowledge in lean manufacturing tools, understand various phases involved and methodology in implementing lean in manufacturing scenario.

UNIT- I	ORIGIN AND FOUNDATION OF LEAN PRODUCTION	(09)					
Craft Production	Craft Production – Mass Production – Ford System – Growing Dysfunction – Origin and History						
of Lean Production. Necessity of Lean Production - Systems and Systems thinking - Construction							
of Lean Product	of Lean Production: Lean image and Lean Activities – Muda and its types – Mura – Muri.						
UNIT- II	JNIT- II STABILITY						
Standards in Le	Standards in Lean System - Visual Management - 5S - Total Productive Maintenance: Key						
measures; Six Big Losses; Hidden Losses; Machine Loss Pyramid; Small group activity.							
Standardized w	Standardized work: Comparison of Methods Engineering and Lean thinking - Elements to be						
managed - Nece	managed - Necessity and prerequisites of Standardized work - Elements of Standardized work -						
Charts: Product	Charts: Production capacity chart; Standardized combination table; Standardized work analysis						
chart - Man power reduction - Comparison of overall efficiency with individual efficiency -							
Kaizen – Common Layouts.							
UNIT- III JUST IN TIME (JIT)							
Definition - Principles of JIT: Continuous Flow; Pull - JIT system - Kanban - Six Kanban rules -							
Expanded role of conveyance - Production leveling - Three types of Pull Systems - Value Stream							
Mapping: Symbols; Current state VSM and Future state VSM.							
UNIT- IV	JIDOKA	(09)					
Development and necessity - Poke Yoke: Common errors - Inspection system and Zone control -							
Using Poke Yokes – Jidoka implementation.							
UNIT- V LEAN INVOLVEMENT AND CULTURE							
Necessity of involvement - Waste of Humanity - Activities supporting involvement - Kaizen							
Circle Activity - Practical Kaizen Training - Key factors in Practical Kaizen Training - Lean							
Culture – Standa	Culture - Standardization - Standards and abnormality control - 'Five Why' analysis.						

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication				
Dennis P	Lean Production Simplified: A Plain	Productivity Press, New York,				
	Language Guide to the World's Most	2007				
	Powerful Production System					

Reference Books:

- 1. Devadasan S R, Mohan Sivakumar V, Murugesh R and Shalij P R, "Lean and Agile Manufacturing: Theoretical, Practical and Research Futurities", Prentice Hall of India Learning Limited, New Delhi, 2012.
- 2. Gopalakrishnan N, "Simplified Lean Manufacture: Elements, Rules, Tools and Implementation", Prentice Hall of India Learning Private Limited, India, 2010.
- 3. Bill Carreira, "Lean Manufacturing that Works: Powerful Tools for Dramatically Reducing Wastes and Maximizing Profits", Prentice Hall of India Learning Private Limited, India, 2007.
- 4. Don Tapping, Tom Luyster and Tom Shuker, "Value Stream Management: Eight Steps to Planning, Mapping and Sustaining Lean Improvements", Productivity Press, New York, USA, 2002.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** Describe about the origin and foundation of lean production.
- CO2: Describe about stability and standards in lean system.
- **CO3:** Describe about Just In Time (JIT) and its application in lean.
- CO4: Describe about Jidoka and Poke Yoke.
- CO5: Describe about lean involvement and culture.

CO 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 CO1 L M L H M L M L L M L L M L M L M L L M L M L M L M L M L M L M L M L M L M L </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1.000</th> <th>PAT In</th> <th>14010</th> <th>COM-S</th> <th>167</th> <th>W/</th> <th></th> <th></th> <th></th> <th></th> <th></th>							1.000	PAT In	14010	COM-S	167	W/					
CO1 L M L H M L N L L N L L N L N L N L N L N L N	PO/PSO	PO	O P	PO	PO	РО	PO	PO	РО	РО	PO	PO	РО	РО	PSO	PSO	PSO
CO2 M L M L M L M M M CO3 H L L M L N L N	СО	1	1 1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO3 H L M L M	CO1	L	L		М		L	Н	М	1			L	L		L	
	CO2	M	M 1	L		М	L	Μ	P/I		L			М	М	М	
	CO3				Н	L	//	Ŕ			L	М				L	М
CO4 H L M M L M L H	CO4	Н	H I	L		М		Μ	1	L				М	L	Н	
CO5 M H L L L	CO5		1	M	Н		E	X	⊾ L		L	A					
16PPEX19 M L M M L M L L L M L M L M L M L	16PPEX19	Μ	M	L	М	М	L	Μ	L	L	$\mathbf{L}^{<}$	М	L	М	L	М	L

Densio gr

16PPEX20

MICRO MANUFACTURING PROCESSES

Category: PE

LTPC

3 0 0 3

Pre-Requisites:

- 1. 16PPC305 Foundry and Welding Technology
- 2. 16PPC405 Metal Forming Processes
- 3. 16PPC406 Machine Tools and Processes

Course Objectives:

• To be familiar with the principles, basic machine tools, and developments in the micro manufacturing process and research trends in the area of micro manufacturing process.

UNIT- I	MICRO MACHINING I	(09)								
Mechanical Mic	cro machining - Ultra Sonic Micro Machining - Abrasive Jet Micro	Machining –								
Water Jet Micro	Water Jet Micro Machining - Abrasive Water Jet Micro Machining - Micro turning - Chemical									
and Electro Che	and Electro Chemical Micro Machining – Electric discharge micro machining.									
UNIT- II	MICRO MACHINING II	(09)								
Beam Energy based micro machining - Electron Beam Micro Machining - Laser Beam Micro										
Machining - Electric Discharge Micro Machining - Ion Beam Micro Machining -Plasma Beam										
Micro Machining – Electro Discharge Grinding – Electro Chemical spark micro machining.										
UNIT- III	NANO POLISHING	(09)								
Abrasive Flow finishing - Magnetic Abrasive Finishing - Magneto rheological finishing - Magneto										
Rheological abrasive flow finishing - Magnetic Float polishing - Elastic Emission Machining -										
chemo-mechani	cal Polishing.									
UNIT- IV	MICRO FORMING AND WELDING	(09)								
Micro extrusion	n - Micro and Nano structured surface development by Nano plastic	forming and								
Roller Imprintin	ng - Micro bending with LASER - LASER micro welding - Electr	on beam for								
micro welding.										
UNIT- V RECENT TRENDS AND APPLICATIONS										
Metrology for	micro machined components - Ductile regime machining- AE base	ed tool wear								
compensation-Machining of Micro gear, micro nozzle, micro pins - Applications.										
	and a second and a									

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods

Practical: 0 Periods To

Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Jain V. K.	Micro Manufacturing Processes	CRC Press, Taylor & Francis
		Group, 2012

Reference Books:

1. Jain V.K., Introduction to Micro machining' Narosa Publishing House, 2011

2. Bharat Bhushan, Handbook of nanotechnology, springer, Germany, 2010.

3. Jain V.K., Advanced Machining Processes, Allied Publishers, Delhi, 2002

4. Mcgeough.J.A., Micromachining of Engineering Materials, CRC press 2001.

5. http://www.cmxr.com/Education/Introduction.html

Course Outcomes:

On completion of this course, students will be able to

CO1: describe various mechanical micro machining processes

CO2: describe various beam energy based micro machining processes.

CO3: explain various methods of nano polishing techniques.

CO4: understand and explain the micro forming and welding processes.

CO5: use the knowledge of micro manufacturing processes into engineering applications.

Course Articulation Matrix

PO/PSO	PO	РО	PSO	PSO	PSO										
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М				Н			М	L	М		М	М		
CO2	M				Н			M	M	М		М	М		
CO3	M				Н				M	М		М	М		
CO4					М				L	М		М	М		
CO5	H				Н	М		Μ	M	Μ			М		
16PPEX20	М				Н	М		М	М	М		М	М		

16PPEX21

THEORY OF METAL CUTTING

Category: PE

(Use of approved data book is permitted)

(Common to Production and Mechanical Engineering)

L T P C 3 0 0 3

Pre-Requisites:

- 1. 16PES206 Engineering Mechanics
- 2. 16PES304 Thermal Sciences
- 3. 16PBS3Z1 -Engineering Mathematics III

Course Objectives:

• To familiarize students about the basic mechanics, thermal, wear and chatter mechanisms in metal cutting processes.

UNIT- I	ORTHOGONAL CUTTING	(09)							
Basic mechanist	n of chip formation – Techniques for study of chip formation, types of	chips - Chip							
breaker - Orthogonal Vs Oblique cutting - Shear plane angle - Cutting force and velocity									
relationship in orthogonal cutting - Modern theories in Mechanics of cutting - Review of Merchant									
and Lee Shaffer	Theories.								
UNIT- II	OBLIQUE CUTTING	(09)							
Direction of Chip flow - Normal Velocity and Effective Rake angles - Relationship between rake									
angles - Cutting ratios in oblique cutting - Shear angle and Velocity relationship - Stabler's rule									
UNIT- III	THERMAL ASPECTS OF MACHINING	(09)							
Heat distributions in machining - Experimental determination and Analytical calculation of cutting									
tool temperature -Heat in primary shear Zone, Heat in Tool / Work Interface, Heat in Areas of									
Sliding - effects of various parameters on temperature -Cutting fluids - Effects of cutting fluid -									
Functions - Requirements - Types and Selection of Cutting Fluids.									
UNIT- IV	CUTTING TOOL MATERIALS, TOOL LIFE AND TOOL	(09)							
	WEAR								
Essential requir	rements of tool materials - Structure and properties of High spee	d steel and							
Cemented carbi	des - development in tool materials - ISO specification for inserts and	tool holders							
- tool life - co	onventional and accelerated tool life tests - concept of machinabil	lity index -							
economics of m	achining - Reasons for failure of cutting tools and forms of wear-me	chanisms of							
wear									
UNIT- V	DESIGN OF CUTTING TOOLS	(09)							
Nomenclature of	f Single point and Multi point cutting tools - Design of Turning tool, D	rills,							
Milling cutters a	nd tool holders.								

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Boothroid D.G. &	Fundamentals of machining and	Marcel Dekker, Newyork, 1989
Knight W.A.	machine tools	

Reference Books:

- 1. Shaw.M.C. Metal cutting principles, oxford Clare don press, 1984.
- 2. Bhattacharya.A. Metal Cutting Theory and practice, Central Book Publishers, India, 1984.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** elaborate the mechanisms of chip formation in different types of metal cutting processes.
- **CO2:** predict the magnitude of cutting forces for a tool at the given operating conditions.
- **CO3:** realize the thermal effect of cutting process in and around the cutting region.
- **CO4:** predict the effect of cutting parameters on life of different cutting tools.
- **CO5:** design a cutting tool for metal cutting process.

Course Articulation Matrix

PO/PSO	РО	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	L	M	L		M	L		L		L		L	М	L
CO2	Н	Н	Н	Н		M	L		L		L		М	М	L
CO3	Н	Н	Н	Н		M	L		L		L		М	М	L
CO4	Н	Н	Н	Н		M	L		L		L		М	М	L
CO5	Н	Н	Н	L		H	(Lm	no-	L		L		Н	М	L
16PPEX21	Н	Н	Н	М	10	Μ	L.	116 80	()	9	L		М	М	L

Pre-Requisites: Nil

Course Objectives:

• To impart knowledge on various advanced casting techniques.

UNIT- I	CASTING OF METALS	(09)									
Factors influence	Factors influencing casting of cast iron, steel, aluminium, magnesium, copper - factors influencing										
the casting practice - casting quality control. X-ray, sand control method - control of casting and											
casting defects.											
UNIT- II	ROBOTICS IN METAL CASTING	(09)									
Structure and classification of Industrial Robots, Terminology of robot motion, Die cast Robots and											
Foundry Robots- advantages, applications. Robotic automation in permanent mold foundries.											
UNIT- III	NIT- III ADVANCES IN METAL CASTING										
Hcasting, shell moulding, investment casting, foam casting, centrifugal casting, Die casting,											
continuous casti	ng, squeeze casting - processes and parameters.										
UNIT- IV	CASTING METALLURGY	(09)									
Solidification of	pure metals, alloys, dendritic growth, homogeneous and heterogeneou	s nucleation,									
constitutional ur	nder cooling, defects in casting causes and remedies. Long range and sh	ort range									
solidifying alloy	s.										
UNIT- V	COMPUTER AIDED METAL CASTING	(09)									
Use of compute	r in runner and riser design, solidification front monitoring, expert syste	m in casting									
defects, software mine-spectroscopy and chemical analysis.											

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Jain P.L	Principles of Foundry Technology	<i>Tata McGraw-Hill Publishers, 4th edition 2008.</i>
Heineloper& Rosenthal	Principles of Metal Casting	Tata McGraw Hill Publishers,2 nd edition, 2000.

Reference Books:

1. ASM Handbook, Vol 15, Casting, 2004

2. Jain R.K. and Gupta S.C., "Production Technology", Khanna Publishers, New Delhi, 17th edition, 2004.

3. Rao, P. N., Manufacturing Technology, McGraw Hill Publishers, 3rd edition, 2010.

Course Outcomes:

On completion of this course, students will be able to

CO1: explain the factors influencing casting of metals.

CO2: explain the robots in metal casting.

CO3: explain various advanced casting processes.

CO4: describe the thermal, metallurgical aspects during solidification in casting.

CO 5: explain the applications of computer in metal casting.

PO/PSO	PO	PSO	PSO	PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	M	М		L		L	L	L	L	L		L	Н		L
CO2	L	М	Н			М	М	L	L	L		L	Н		L
CO3	Μ	М	L	L	L	М	L	L	L	L		L	Н		L
CO4	L	Н	M	L	L	М	L			L		L	Н		L
CO5	L	M	M	Μ	M	L	L	L	L	L		L	Н		L
16PPEX22	L	М	М	L	L	М	L	L	L	L		L	Н		L

TOTAL PRODUCTIVE MAINTENANCE

Pre-Requisites: Nil

Course Objectives:

- To enable the students to understand basic concepts of Total Productive Maintenance.
- Expose the students to the objectives, maintenance models, group activities, logistics, condition monitoring and implementation of Total Productive Maintenance.

UNIT- I	MAINTENANCE CONCEPTS	(09)								
Introduction -	Introduction - Objectives and functions - Productivity, Quality, Reliability and Maintainability									
(PQRM) - Terotechnology - Reliability Centered Maintenance - Predictive Maintenance - Condition										
Based Maintenance - maintainability prediction - availability and system effectiveness- maintenance										
costs - maintenance organization.										
UNIT- II	UNIT- II MAINTENANCE MODELS (09)									
Minimal repair - As Good As New policy - maintenance types - balancing Preventive Maintenance										
and breakdown	and breakdown maintenance – Preventive Maintenance schedules: deviations on both sides of target									
values - PM schedules: functional characteristics - replacement models.										
UNIT- III	FUNDAMENTALS OF TPM	(09)								
Zero breakdown	ns - Zero Defects and TPM - maximizing equipment effectiveness -	– Autonomous								
maintenance pr	ogram - five pillars of TPM - TPM small group activities - TPM	organization -								
Management De	ecision - Educational campaign - Creation of Organizations - Establish	hment of basic								
policies and goa	ls - Formation of master plan - TPM implementation.									
UNIT- IV	MAINTENANCE LOGISTICS	(09)								
Human factors	in maintenance - maintenance manuals - maintenance staffing meth	ods - queuing								
applications - si	mulation - spare parts management - maintenance planning and schedu	ling.								
UNIT- V ONLINE MONITORING (09)										
Condition mon	Condition monitoring - Infrared Thermography, Oil Analysis, acoustic emissions testing, Motor									
Current Analys	Current Analysis, Vibration Measurement and Analysis, Wear Debris Monitoring, Visual checks -									
corrosion contro	ol - Maintenance Management Information System - Expert system app	lications.								
<u>.</u>		J								

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Nakajima S.	Introduction to TPM	Productivity Press, Chennai, 1992
Srivastava S.K.	Maintenance Engineering	S. Chand Group, 2011
	(Pri.Practices & Management)	

Reference Books:

1. Wireman T., "Total Productive Maintenance", Industrial Press Inc., New york, 2004.

- 2. Goto F., "Equipment planning for TPM Maintenance Prevention Design", Productivity Press, 1992
- 3. Shirose K., "Total Productive Maintenance for Workshop Leaders", Productivity Press, 1992.

4. Shirose K., "TPM for Operators", Productivity Press, 1996.

5. Suzuki T., "New Directions for TPM", Productivity Press, 1993.

6. Kelly A., "Maintenance planning and control", Butterworths, London, 1991.

Course Outcomes:

On completion of this course, students will be able to

- CO1: describe the concept of total productive maintenance used in the industries.
- **CO2:** describe how TPM improves operations by preventing equipment breakdowns and prevention of product defects and rejects.
- **CO3:** understand the usage of tools for TPM implementation and able to identify and eliminate loss through TPM implementation.
- **CO4:** describe the logistics involved in Total productive Maintenance..
- **CO5:** effectively use the total productive maintenance for online monitoring of processes.

Course Art	iculat		14111	•											
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1								M	M	Н		М			
CO2	М	Н				М		М	М	М	М	Μ			L
CO3	L				М			М	Μ	М		М	M		M
CO4								Μ	Μ			Н			
CO5					L		2 million	M	M			М			L
16PPEX23	L	L			L	Μ	கோதல்	Μ	Μ	Μ	М	Μ	М		L
TT M	3.6	1 4		1.) TT	TT* 1	No CIT	TIME	Upt 1	SUF /					

Course Articulation Matrix

16PPEX24	GREEN MANUFACTURING	Category: PE
Pre-Requisites:		LTPC
1. 16PHS2Z4 – Environm	nental Science and Engineering	3 0 0 3

Course Objectives:

• To introduce the basic concepts needed to proceed green manufacturing

UNIT- I	OUR ENVIRONMENT	(09)								
The human	The human population and the environment, the human population's effects on the earth, the									
ecosystem,	ecosystem, chemical cycling and succession, the biogeochemical cycles, major global									
biogeochemi	cal cycles - carbon, carbon-silicate, nitrogen and phosphorus cycles, global	warming,								
greenhouse e	ffect, major greenhouse gases.									
UNIT- II	MANUFACTURING SYSTEMS	(09)								
Levels of ma	nufacturing systems, environmentally conscious manufacturing- componen	ts, system								
effects and as	ssessment									
UNIT- III	WATER POLLUTION IN MANUFACTURING SYSTEMS	(09)								
Metalworking	g fluids- environmental and health impact, Heavy metals in water, MWF	pollution								
prevention th	rough process planning, process modification and in process recycling, wate	r footprint								
analysis.										
UNIT- IV	AIR AND SOLID POLLUTION IN MANUFACTURING SYSTEMS	(09)								
Origin of	airborne particles in manufacturing, traditional and modern p	articulates								
mitigation/eli	imination techniques. Industrial solid and hazardous waste managemen	t, Carbon								
footprint anal	lysis.									
UNIT- V	ENVIRONMENTAL MANAGEMENT SYSTEMS	(09)								
Eco-labeling	- Design for the Environment, Concepts of ISO 14001 - requirements of ISO	D 14001 -								
Environment	al Management System – frame work and benefits.									
~ ~ ~ ~ ~										
Contact Perio										
Lecture: 45 P	eriods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Period	8								
Toyt Doolson	G									

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication				
Daniel B Botkin and	Environmental Science	John Wiley & Sons, Chichester,				
Edward A Keller		2010				
Madu. C.N	Handbook of Environmentally	Kluwer Academic Publisher,				
	Conscious Manufacturing	2001.				

Reference Books:

1. Swamidass, P.M., "Encyclopedia of Production and Manufacturing Management", Kluwer Academic Publisher, 2000.

2. Kutz, M., "Environmentally Conscious Mechanical Design", John Wiley & Sons, 2007.

3. Davim, J.P., "Sustainable Manufacturing", John Wiley & Sons, 2010.Koontz and Odonnel-Essentials of Management, McGraw Hill 1992.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** explain about the effect of humans on ecosystems and various phenomenon of ecosystems.
- CO2: explain about the environmentally conscious manufacturing systems.
- **CO3:** Evaluate the effects of water pollution by manufacturing systems and their prevention.
- CO4: discuss the effects of air and solid pollution in manufacturing systems.
- **CO5:** explain about environmental management systems.

Course mine	and														
PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L					Н	Н	М	L	М	L	Η			L
CO2	L	L	M	L		Н	Н	М	L	М	L	Η			L
CO3	L	L	L	L		Н	Н	М	L	М	L	Η			L
CO4	L	L	Μ	L		Н	Н	М	L	М	L	Н			L
CO5	L	М	M	L		H	H	Μ	L	М	L	Η			L
16PPEX24	L	L	М	L	4.81	(H)	Н	Μ	\mathbf{L}	Μ	L	Η			L

Course Articulation Matrix

16AOEX01

NANOSCIENCE AND TECHNOLOGY

(Common to All Branches)

Category: OE

L	Т	Р	С
3	0	0	3

Pre-Requisites: Nil

Course Objectives:

- To Understand and analyze the concepts of Quantum confinement, Dimensional structures and Properties of nano systems
- To be familiar with various methods of synthesis of nano materials
- To analyze and understand the mechanical and electrical properties of nonmaterial and its applications
- To realize the importance of Nonporous materials and its applications
- To make the students to understand the fundamental aspects of properties leading to technology

UNIT- I	NANO SYSTEMS	(9 Periods)							
point, surface t	properties of nanoparticles - particle size - particle shape - particle d ension, wettability - specific surface area and pore size - Propertie	es of Individual							
	Quantum confinement in 3D, 2D, 1D and zero dimensional structures nostructures- Top down and Bottom up approach.	-Size effect and							
UNIT- II	SYNTHESIS OF NANOMATERIALS	(9 Periods)							
Sol-Gel Process - Self assembly – Electrode position - Spray Pyrolysis - Flame Pyrolysis – Metal Nanocrystals by Reduction - Solvothermal Synthesis - Chemical Vapor Deposition (CVD) – Metal Orgonic Chemical Vapor Deposition (MOCVD).Ball Milling - Inert Gas Condensation Technique (IGCT) – Thermal evaporation – Pulsed Laser Deposition (PLD) – DC/RF Magnetron Sputtering - Molecular Beam Epitaxy (MBE) – Melt Spinning process.									
UNIT- III	PARTIAL DIFFERENTIAL EQUATIONS	(9 Periods)							
Property – The of Nanomateri Crystal Plasticit Introduction – Devices and Ir Nanoscale Mat	hanics - Introduction – Mechanical properties – Density Considered Elasticity of Nanomaterials – Elasticity of Bulk Nanomaterials –Plastic als - The Physical Basis of Yield Strength – Crystals and Crystal Pla y to Polycrystal Plasticity. Energy Storage Basics - General Information: Electrical E npact of Nanomaterials – Batteries – Capacitors - Electrochemical erials - Aerogels and Structure-Directed Mesoporous and Macropo Nanotubes, Nanowires, and Nanorolls	c Deformation sticity – From nergy Storage Properties of							
UNIT- IV	NANOPOROUS MATERIALS	(9 Periods)							
nanotubes - Ag	Nanoporous Materials – Silicon - Zeolites, mesoporous materials – nano membranes and carbon nanotubes - AgX photography, smart sunglasses and transparent conducting oxides- Hydrophobic & Hydrophilic materials – molecular sieves – nanosponges.								
UNIT- V	NANOTECHNOLOGY APPLICATIONS	(9 Periods)							
Single electron nanoparticles b	nanoparticles, quantum dots, Nanotubes and nanowires for nanodevi transistors, coulomb blockade effects in ultra-small metallic tun ased solar cells and quantum dots based white LEDs – CNT bas Pen Lithography.	nel junctions -							

Contact Periods:

Lecture, 45 remous	Lecture:	45	Periods
--------------------	----------	----	---------

Tutorial:0 Periods

Practical:0 Periods

Total: 45 Periods

Reference books:

- 1. G. Timp. Editor, "Nanotechnology" AIP press, Springer-Verlag, New York, 1999
- 2. Hari Singh Nalwa, Editor, "Nanostructured materials and Nanotechnology", Concise Edition, Academic Press, USA (2002).
- 3. Guozhong Gao, "Nanostructures & Nanomaterials: Synthesis, Properties & Applications", Imperial College Press (2004).
- 4. K. T. Ramesh, "Nanomaterials : Mechanics and Mechanisms", Springer 2009.
- 5. Kenneth J. Klabunde, "Nanoscale materials in chemistry", John Wiley & Sons, 2001.
- 6. Hari Singh Nalwa, Editor, "Hand book of Nanostructured Materials and Technology", Vol.1-5, Academic Press, USA (2000).
- 7. "Hand book of Nanoscience, Engineering and Technology" (The Electrical Engineering handbook series), Kluwer Publishers, 2002
- 8. N John Dinardo, Weinheim, "Nanoscale characterization of surfaces & interfaces", Cambridge: Wiley-VCH, 2nd ed., 2000
- 9. G. Cao, "Nanostructures & Nanomaterials: Synthesis, Properties & Applications", Imperial College Press, 2004.
- 10. J.George, "Preparation of Thin Films", Marcel Dekker, Inc., New York. 2005.

Course Outcomes:

- CO1: Analyze the particle size, particle shape, particle density, Size effect and properties of nanostructures. [Familiarity]
- CO2: Acquire knowledge in various methods of synthesis of Nano materials. [Application]
- CO3: Analyze the Elasticity of Nanomaterials, Electrical Energy Storage Devices and Aerogels. [Assessment]
- **CO4:** Acquire knowledge in Zeolites, mesoporous materials, nano membranes and carbon nanotubes. **[Familiarity]**
- CO5: Apply various nano materials to the LED, Transistor Applications. [Usage and Assessment]

PO PO PO PO PO PO PSO PSO PO PO PO PO PO PO PSO PO/CO 2 3 4 5 7 8 9 10 11 12 1 2 1 6 3 CO1 Η Μ L CO2 М L Η L CO3 Η Μ CO4 Η L Μ CO5 L Η Μ Μ 16AOE L L L L L L L L X01

Course Articulation Matrix

16AOEX02

MATERIAL CHARACTERIZATIONS

Category: OE

(Common to All Branches)

Pre-Requisites: Nil

Course Objectives:

- To Understand and analyze the concepts of Thermo gravimetric analysis, Differential thermal analysis.
- To be familiar with various methods of microscope.
- To analyze and understand the working principle of SEM, FESEM, EDAX and HRTEM.
- To realize the importance of Electrical methods and its limitations.
- To understand the fundamental aspects and properties of spectroscopy techniques.

UNIT- I	THERMAL ANALYSIS	(9 Periods)								
Introduction – thermo gravimetric analysis (TGA) – instrumentation – determination of weight loss and decomposition products – differential thermal analysis (DTA)- cooling curves - differential scanning calorimetry (DSC) – instrumentation – specific heat capacity measurements – determination of thermo mechanical parameters .										
UNIT- II	MICROSCOPIC METHODS	(9 Periods)								
Optical Microscopy: optical microscopy techniques – Bright field optical microscopy – Dark field optical microscopy - phase contrast microscopy - fluorescence microscopy - confocal microscopy - digital holographic microscopy - oil immersion objectives - quantitative metallography - image analyzer.										
UNIT- III ELECTRON MICROSCOPY AND OPTICAL (9 Periods) CHARACTERISATION										
Photoluminesce	SEM- FESEM- EDAX,- HRTEM: working principle and Instrumentation – sample preparation – Photoluminescence – light – matter interaction – instrumentation – electroluminescence – instrumentation – Applications.									
UNIT- IV	ELECTRICAL METHODS	(9 Periods)								
Two probe and four probe methods- van der Pauw method – Hall probe and measurement – scattering mechanism – C-V, I-V characteristics – Schottky barrier capacitance – impurity concentration – electrochemical C-V profiling – limitations.										
UNIT- V	SPECTROSCOPY	(9 Periods)								
	instrumentation for UV-Vis-IR, FTIR spectroscopy, Raman spec CA and SIMS- proton induced X-ray Emission spectroscopy (PIXE py.									

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

Reference books:

- 1. Stradling, R.A; Klipstain, P.C; "Growth and Characterization of semiconductors", Adam Hilger, Bristol, 1990.
- 2. Belk, J.A; "Electron microscopy and microanalysis of crystalline materials", Applied Science Publishers, London, 1979.
- 3. Lawrence E.Murr, "Electron and Ion microscopy and Microanalysis principles and Applications", Marcel Dekker Inc., New York, 1991
- 4. D.Kealey & P.J.Haines, "Analytical Chemistry", Viva Books Private Limited, New Delhi, 2002.
- 5. G. Gao, "Nanostructures and Nanomaterials", Imperial College Press, London, 2006
- 6. Y. Gogotsi, "Nanomaterials Handbook", CRC Taylor and Francis, New York, 2006
- 7. Banwell, "Fundamentals of Molecular Spectroscopy", Tata McGraw-Hill, 1994.

Course Outcomes:

CO1: Analyze the properties of TGA, DTA and DSC. [Assessment]

CO2: Acquire knowledge in various types of microscopes. [Familiarity]

CO3: Analyze the working principle and Instrumentation of SEM, FESEM, EDAX, and HRTEM

[Familiarity]

CO4: Acquire knowledge in I-V and C-V characteristics. [Application]

CO5: Analyze the Principles and instrumentation of Spectroscopy methods. [Familiarity]

Course Articulation Matrix

					11				11						
PO/CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
F0/C0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1		Η			Μ	Μ	L			3					
CO2	Н	Μ	M		10g	100	L		10			L			
CO3		Н	M	Μ	P.	000	3	10	AL UM						
CO4	Μ	Н		L	M	20	000	10	Ð						
CO5		Μ	H		L	M						L			
16AOEX02	L	Н	L	L	L	L	L					L			

16AOEX03

ELECTROCHEMICAL TECHNOLOGY

Category: OE

(Common to All Branches)

Pre-Requisites	Nil	L 3	Т 0	Р 0	(
Course Objecti	ves:	3	0	0	
	urse aims at making Mechanical Engineers know about Electrocher	nical	l pri	ncip	ole
applied	in manufacturing of Chemical products, fabrication of metals,	meta	llurg	gy a	ar
••	on studies.				
UNIT- I			(0	9)	
in electrode rea	ncepts, electron transfer, mass transfer, adsorption, electro-catalysis, p ction, assessment of cell voltage, costing of electrolytic process, perfor Typical cell designs. Laboratory data and scale-up.				01
UNIT- II			(0	9)	
	sis, sodium chlorate, hydrogen peroxide, ozone, cuprous oxide, and syr dissolution, Organic electro synthesis-dimerization of acrylonitrile, indi				
			(0	0)	
UNIT- III	Byserin Danisła gyr vib a rzegini		(0	<i>.</i>	
UNIT- III The extraction, Electro-deposit corrosion reacti	refining and production of metal-electro-winning, cementation, electro- tion of metal powders. Corrosion and its control-thermodynamics and k ons, corrosion problems in practice, corrosion prevention and control, o ctrolytic processing, corrosion measurement and monitoring.	ineti	ning cs of		
UNIT- III The extraction, Electro-deposit corrosion reacti	ion of metal powders. Corrosion and its control-thermodynamics and k ons, corrosion problems in practice, corrosion prevention and control,	ineti	ning cs of		
UNIT- III The extraction, Electro-deposit corrosion reacti problems in ele UNIT- IV Metal finishing electrochemical	ion of metal powders. Corrosion and its control-thermodynamics and k ons, corrosion problems in practice, corrosion prevention and control,		ining cs of osion		
UNIT- III The extraction, Electro-deposit corrosion reacti problems in ele UNIT- IV Metal finishing electrochemical	ion of metal powders. Corrosion and its control-thermodynamics and k ons, corrosion problems in practice, corrosion prevention and control, o ctrolytic processing, corrosion measurement and monitoring. -electroplating, electroless plating, conversion coatings, electroforming etching. Batteries and fuel cells-battery characteristics, battery specific		ining cs of osion	9)	

Contact Periods:

Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods
Eccourter to remous	i acorran o i crious	i incucani o i ci ious	I of all it it it of to a s

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Derek Pletcher and Frank C Walsh	Industrial Electrochemistry	2 nd edition, Chapman & Hall, UK, 1990
A.T.Kuhn,	Industrial Electrochemistry	Elsevier Publishers, 1972

Reference books:

 C.L. Mantell, "Chemical Engineering Series – Industrial Electrochemistry", McGraw Hill Co., Inc. London, 1958.
 Ullmann's "Encyclopedia of Industrial Chemistry", John Wiley & Sons, Vol.6, pp: 399 - 481, 2003.
 Krik–"Othmer Encyclopedia of Chemical Technology", 4thedition, Vol: I., Pp938 –1025 (1991).
 N.M.Proutand J.S.Moorhouse, "Modern Chlo-Alkali Technology", Vol. IV, Elsevier Applied Science, London, 1990.

Course Outcomes:

Students after the completion of this course:

CO1: Students will be able to understand the electrodic processes and design cell requirements

CO2: Students can apply the electrolysis principle in manufacture of materials required for regular use.

CO3: Students will be able to apply their technical skill in metallurgy.

CO4: Students will be able to acquire knowledge in all metal finishing techniques.

CO5: Students will gain knowledge in solving the problems of corrosion of equipment and

battery systems.

Course Articulation Matrix

						1000	7	>//		1					
PO/CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
PO/CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L	Η	М	M	Η	L	Can be	~		1					
CO2	L	М	Н	L	H	L				B					
CO3	Н	L	Н	M	М	H	2			55					
CO4	M	L	L	L	Μ	Η	2	6	2						
CO5	L	М	Н	L	Η	Μ	5/5	SPACE	57	The second secon					
16AOE X03	М	М	М	L	Н	М	(

16AOEX04

POLYMER TECHNOLOGY

Category: OE

(Common to All Branches)

L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

• This course is aimed to make Mechanical Engineers apply their skills in identifying the types

of polymers and their properties applicable to plastics and rubber processing.

UNIT- I	CHEMISTRY OF HIGH POLYMERS	(09)							
melting transiti metallocene pol	Monomers, functionality, degree of polymerizations, classification of polymers, glass transition, melting transition, criteria for rubberiness, polymerization methods: addition and condensation; metallocene polymers and other newer techniques of polymerization, copolymerization, block and graft copolymers, techniques for copolymerization-bulk, solution, suspension and emulsion.								
UNIT- II	SYNTHESIS AND PROPERTIES	(09)							
Engineering Pla Unsaturated pol	Commodity and general purpose thermoplastics: PE, PP, PS, PVC, Polyesters, Acrylic, PU polymers. Engineering Plastics: Nylon, PC, ABS, Fluoropolymers - Thermosetting polymers: PF, MF, UF, Epoxy, Unsaturated polyester. Natural and synthetic rubbers: Recovery of NR hydrocarbon from latex, SBR, Nitrile, CR, CSM, EPDM, IIR, BR, Silicone, TPE.								
UNIT- III	POLYMER TECHNOLOGY								
plastics, cross-li blow molding, r	ounding-need and significance, different compounding ingredients for inking and vulcanization, Compression molding, transfer molding, injecti- eaction, extrusion, pultrusion, calendaring, rotational molding, thermoforr ro-roll mill, internal mixer.	on molding,							
UNIT- IV	POLYMER BLENDS AND COMPOSITES	(09)							
	een blends and composites, their significance, choice of polymers for blen ible and immiscible blends, FRP, particulate, long and short fibre								
UNIT- V	POLYMER TESTING	(09)							
tear, resilience, factor, power	Mechanical-static and dynamic tensile, flexural, compressive, abrasion, endurance, fatigue, hardness, tear, resilience, impact, toughness. Conductivity-thermal and electrical, dielectric constant, dissipation factor, power factor, electric resistance, surface resistivity, volume resistivity, swelling, ageing resistance, environmental stress cracking resistance.								

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Reference Books:

1. F.W. Billmeyer, Jr., "Textbook of polymer science", Wiley - Interscience, N.Y.(1971)

- 2. G.Odian, "Principles of polymerization", Wiley Interscience (1981)
- 3. Gowarikar V.R. and others, "Polymer science", Wiley Eastern (1986).

4. Fenner R.T., "Principles of polymer processing", Chemical publishing N.Y. (1979)

Course Outcomes:

Students after the completion of this course:

CO1: Will be able to identify different types of polymers by structure and behaviour, properties and their method of polymerisation.

CO2: Will be able to apply various processes of fabrication of plastics and rubber.

CO3: Will be able to distinguish polymer blends and composites and understand their specific applications.

CO4: Will be able to test the polymer specimens for mechanical properties applicable for various end uses.

CO5: Will be able to test the polymer specimens for electrical properties applicable for various end uses.

Course Articulation Matrix

PO/CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
P0/C0	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	03
CO1	M	Н	L	L	М	Н									
CO2	L	L	Н	М	Н	L	Marrie	m							
CO3	M	Μ	L	L	M	$\mathbf{L}_{\mathbf{r}}$	2	32	210107	0					
CO4	L	L	M	Μ	Μ	Н	2160	120	av-	3					
CO5		Н	L	L	H	M		212	N.						
16AOE X04	L	М	М	L	М	М		-	57	7					

16COEX05

DISASTER MANAGEMENT AND MITIGATION

(Common to All Branches)

Category: OE

L	Т	Р	С
3	0	0	3

Pre-Requisites: Nil

Course Objectives:

- To give knowledge about basics of Disaster Management.
- To impart knowledge about Hazards and Vulnerability.
- To give knowledge about mitigation and preparedness.
- To teach about Response and Recovery.
- To impart knowledge about the participants involved in the disaster management activity.

UNIT- I	INTRODUCTION	(08)						
	out history, History of disaster management, Capacity by demand, UN Inter							
strategy for disa	ster reduction, the Hyogo framework for action, Post 2015 framework, Disa	ster trends.						
UNIT- II	HAZARDS AND RISK VULNERABILITY	(10)						
Hazard Identification and Hazard Profiling, hazard analysis, Types of hazards- Natural and technological Components of Risk- likelihood and Consequence, Trends and Computation of likelihood and Consequence. Risk Evaluation – purpose, Risk Acceptability, Alternatives, Personnel. Political/social, Economic. Vulnerability - Physical Profile, Social Profile, Environmental Profile, Economic Profile. Factors Influencing Vulnerability, risk Perception.								
UNIT- III	MITIGATION AND PREPAREDNESS	(08)						
Mitigation - types of mitigation, Obstacles in mitigation, Assessment and selection of Mitigation options, Emergency response capacity as, Incorporating Mitigation into development and relief projects Prepareness- Government Preparedness, Public Preparedness, Media as a public educator. Obstacles to public education and preparedness.								
UNIT- IV	RESPONSE AND RECOVERY	(09)						
management, co recovery .compo of relief funds, p processing, envi	nergency- Pre disaster, post disaster, Provision of water, food and shelter, vo ommand, control and coordination Recovery- short term and long term onents of recovery- planning, coordination, information, money and supplies personnel. Types of recovery- Government, Infrastructure, Debris removal d ronment, housing, economic and livelihood, individual, family and social re ations in recovery.	s, allocation isposal and						
UNIT- V	PARTICIPANTS	(10)						
service, Military types. Types of r of bilateral assis Non Governmer role of Private se	ntal Organisations – operations, NGO/ Military coordination, standard of con ector and academia. Multilateral organisations - UN agencies and progamme organisations. International Financial Institutions- the world bank, IMF, ADF	ce and its nplications nduct. The es, Regional						

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

Text Books:

Author Name	Title of Book			Publisher, Year Of Publication
Damon P. Coppola	Introduction	to	International	Elsevier publication, 2015
	Disaster manag	gemen	t	

Reference Books:

1. Brassard, Caroline, Giles, David W., Howitt, Arnold M., "Natural Disaster Management in the Asia-Pacific", Policy and Governance.

2. "Disaster Management", Global Challenges and Local Solutions, Universities Press, 2009.

3. Jack Pinkowski, "Disaster Management Handbook", CRC Press, January 22, 2008.

4. Disaster Management Guidelines, GOI-UNDP Disaster Risk Reduction Programme (2009-2012).

Course Outcomes:

Upon completion of this course the students will be able to,

CO1: Able to get knowledge about basics of Disaster management.

CO2: Able to impact knowledge about Hazards and vulnerability

CO3: Able to know about Mitigation and preparedness.

CO4: Able to attain knowledge about response and recovery.

CO5: Able to learn about the participants involved in the disaster management activity.

Course Articulation Matrix

					- 11	- 00			1000	1					
PO/CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
PO/CO	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO1		L			L	L		L	2						
CO2	L	Н		М	L	Μ	20	2 18	ALUM			L			
CO3	L	L			Η	Μ		0	S			L			
CO4	L	М		L	L	M	М								
CO5		М		L	L	M									
16COE X05	L	М		L	L	М	L					L			

ENVIRONMENTAL MANAGEMENT

Category: OE

(Common to All Branches)

L	Т	Р	С
3	0	0	3

Pre-Requisites:

16PHS2Z4 Environmental Science and Engineering

Course Objectives:

• To understand the importance of nature and study about the water, air and soil pollution control as well as solid waste management.

UNIT- I	NATURE AND SCOPE OF ENVIRONMENTAL PROBLEMS	(09)						
Environment an	Environment and sustainable development – Natural and human environmental disturbances – Global							
warming -acid rain - ozone depletion - effects and control - climate change conventions - Kyoto								
protocol – India's efforts for Environmental protection – Public policy and role of NGO's.								
UNIT- II	WATER POLLUTION AND CONTROL	(09)						
Fresh water and	its pollution - Natural processes - sources and pollutants - pollution due to	industrial,						
agricultural and	municipal wastes - effects on streams - limitations of disposal by dilution -	BOD						
consideration in	streams - Oxygen Sag Curve - Strategies for sustainable water management	t – Marine						
environment and	1 its management – Water acts.							
UNIT- III	AIR AND NOISE POLLUTION	(09)						
Pollutant emissi	ons - sources and sink - effects of air pollution on human health, vegetation	and						
climate– Global	effects - prevention and control of air pollution - Control of particulates - A	Air pollution						
surveys and sam	pling – Air quality monitoring - Air Act – Management of air pollution – Sc	ound level –						
Effect of noise of	on people – Environmental noise control- noise pollution rules, 2000							
UNIT- IV	SOLID WASTE MANAGEMENT AND SOIL POLLUTION	(09)						
Sources - Chara	cteristics - Quantities - Collection methods - Processing and disposal techn	iques –						
Onsite Handling	s, storage and processing - sanitary landfill - Incineration and pyrolysis - Co	omposting –						
aerobic and ana	erobic of compositing - Recycling and reuse of solid wastes - Hazardous wa	istes —						
Definition – Sou	arces & types only – Integrated system for waste management – The Basel c	onvention						
Land use and de	gradation – Management problems – strategies for sustainable land manager	ment – soil						
pollution -wetla	nd conservation.							
UNIT- V	ENVIRONMENTAL MANAGEMENT SYSTEM	(09)						
Terminology – i	nstallation and common motives of EMS – Environmental standards – ISO	14000						
(Series) – basic	(Series) - basic principles - Environmental Audit - Environmental Impact assessment - Trade rules and							
environmental p	environmental protection- Practices for Waste Minimisation and Cleaner Production.							

Contact Periods:

Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods
---------------------	----------------------------	----------------------	--------------------------

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
N.K.Uberoi	Environmental Management	Excel Books, New Delhi (2006).
Rao	Air Pollution	Tata Mc Graw-Hill Education, 01-Jun-1988

Reference Books:

 S.Vigneahwaran, M.Sundaravadivel and D.S.Chaudhary "Environmental Management", SCITECH Publications (India) Pvt. Ltd, Chennai & Hyderabad (2004).
 Technobanoglous, "Environmental Management", McGraw Hill Book Company (2006).

Course Outcomes:

Upon completion of this course the students will be able to,

CO1: Students exposed to know common issues related with environment.

CO2: Students able to know the sources, causes and effects of water pollution.

CO3: Able to attain knowledge related with air and noise pollution.

CO4: Able to understand the various management techniques of solid waste and soil Pollution.

CO5: Able to aquire knowledge on Environmental Management Systems.

Course Articulation Matrix

PO/CO	РО	PO	РО	Р	Р	P	Р	P	Р	PO	PO	PO	PS	PS	PS
PO/CO	1	2	3	O4	05	06	07	08	09	10	11	12	01	02	03
CO1	М	L			C	\mathcal{Q}_2	М	CAL.	Carl	U.					
CO2	L	М			Ľ	1	Η	_	-	57		L			
CO3	L	М			L	1	Н	Lat	ĩ /	1		L			
CO4	L	М			L		H		1			L			
CO5	М	L			1		М	S)		1					
16COE X06	L	М			Ľ	100 Block	H	义		3		L			

16COEX07

TOWN PLANNING AND ARCHITECTURE

Category: OE

(Common to All Branches)

L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

• Students are introduced the basics of Town Planning and Architecture.

UNIT- I	TOWN PLANNING	(09)										
History of evolu	tion of towns - Town and environment - Planning acts - land use class	sification –										
Transportation r	network - Climate, humidity, wind and radiation - Surveys and Data	collection -										
Residential neig	hborhoods - Industrial areas - Public Buildings - Housing and Slum cle	earance.										
UNIT- II	BUILDING RULES AND GUIDELINES	(09)										
General – Zon	ing regulations - Regulations regarding layouts or subdivisions	- Building										
regulations - Rules for special types of buildings - Floor space index - minimum plot size and												
building front a	building front age – Open spaces – Minimum standard dimensions of building elements –											
Provision for li	ghting and ventilation - Provision for means of access - Provision	n for urban										
growth.	Service Briter											
UNIT- III	BASIC ELEMENTS OF ARCHITECTURE	(09)										
Introduction of	Architecture - Definition - Mass and space visual emotional effects o	f geometric										
forms and their	derivatives- The sphere, the cube, the pyramid, the cylinder and o	cone – The										
aesthetic qualiti	es of Architecture - Proportion, scale, balance, symmetry, rhythm	and axis –										
contrast in form	n - Harmony - Consideration of comfort factors acoustics, lighting,	ventilation										
and thermal asp												
UNIT- IV	PRINCIPLES OF ORIENTATION AND PLANNING OF	(09)										
	BUILDINGS											
General – facto	rs affecting orientation - sun - Wind - Rain - Orientation criteria	for Indian										
conditions - Pr	inciples governing the theory of Planning - General requirements	of site and										
building – Funct	tional planning of buildings.											
UNIT- V	ELEMENTS OF INTERIOR DESIGN	(09)										
General – Deco	rative Materials - Cement Bonded Board (BISON PANEL), Water pr	oof cement										
paint, Industrial	glazing and Roofing, unit masonry, plaster and dry wall, Wall surface	e materials,										
Effect of colour	on architecture – Home furnishing– plans in rooms.											

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
S.C.Rangwala	Elements of Town Planning	McGraw Hill, London, 2006.
Biswas Hiranmay	Principles of Town Planning and Architecture	VAYU Education of India, 2012

Reference Books:

- 1. V.S. Pramar, "Design fundamentals and architecture" Lakshmi Publishers, 2003.
- 2. Hiraskar, "Fundamentals in town planning" Khanna Publishers, 2005.

Course Outcomes:

Upon completion of this course the students will be able to,

- **CO1:** Students will be able to know about the basics of town planning and building rules.
- CO2: Students will be able to gain knowledge on building rules & regulations.
- CO3: Students able to apply the architectural principles in the area of Civil Engineering.
- **CO4:** Students will be able to do planning of various buildings.
- **CO5:** Students will be able to understand about interior design of buildings.

Course Articulation Matrix

PO/CO	PO1	DO3	DO3		DO5	DOG		DOS	DOO	РО	РО	PO	PSO	PSO	PSO
10/00	FUI	FO2	105	r04	r05	105 100		100	r09	10	11	12	1	2	3
CO1				M								L			
CO2							Μ	mo			L	L			
CO3		L		L	960	gelera (JIL ILS	62.62111	М					
CO4		L		L	S	99	RDA	U.L.	20	М					
CO5		M			1		-	L		2		H			
16COE		T		L		1	М	L	1	М	L	T			
X07				Ľ			IVI .	Ľ/		141	Ľ	Ľ			

16MOEX09

COMPOSITE MATERIALS

Category: OE

(Common to all Branches)

L T P C 3 0 0 3

Pre-Requisites:

16PBS2Z3 Material Science

Course Objectives:

• To impart the fundamentals of composite materials with different reinforcement, matrix materials and comprehend the types of manufacturing methods for advance composite materials to meet various engineering requirements.

UNIT-I **INTRODUCTION TO COMPOSITE MATERIALS** (09) Types and characteristics of composite materials - Mechanical behavior - Basic terminology and Manufacture of laminated fiber - Reinforced composite materials - Current and potential advantages -Applications of composite materials. UNIT-II **REINFORCEMENT AND MATRICES** (09) Different types of fibers - Properties and applications of fibers - Roll of matrix - Matrix materials, Selection of matrix -Thermoset matrix -Thermoplastic matrix, Fiber architecture - Natural Fibers. UNIT-III **DESIGN OF COMPOSITE STRUCTURES** (09) Elements of Design - Steps in design process - Elements of analysis in design - Analysis iterations -Design analysis stages - Material selection - Configuration selection - Laminate joints - Design requirements and design failure criteria. **UNIT-IV MANUFACTURING OF ADVANCED COMPOSITES** (09) Bag-Molding process-Compression molding-Pultrusion-Filament winding-Liquid composite molding processes-Resin film infusion-Elastic reservoir molding-Tube rolling-Forming methods for thermoplastic matrix composites. **UNIT-V** METAL, CERAMIC AND CARBON MATRIX COMPOSITES (09) Metal matrix composites - Manufacturing processes - Ceramic matrix composites- Mechanical properties - Manufacturing processes - Carbon matrix composites - Fabrication methods - Applications.

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Krishnan K., Chawla	Composite Materials Science and	Springer(India) Private Limited,
	Engineering	2011.
P.K. Mallick	Fiber Reinforced Composite	CRC Press, Taylor and Francis
	materials, Manufacturing and	Group, Boca Raton, London,
	Design	Newyork 2010.

Reference Books:

1. A.K.Bhargava, "Engineering Materials: Polymers, ceramics and composites", Pentice Hall of India Limited, 2010.

2. Hyer M., Stress Analysis of Fiber – "Reinforced Composite Materials", Tata McGraw Hill, 1998.

3. Madhujit Mukhopadhyay, "Mechanics of Composite Materials and Structures", Universities Press (India) Private Limited, 2009.

4. Robert M.Jones, "Mechanics of Composite Materials", Taylor & Francis Group, 2010.

5. Web Portal: Composite Materials {Nptel .Mechanical Engineering}

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** understand the mechanics and behaviour of reinforced composite materials for specific applications and developing composite materials for sustainability
- **CO2:** formulate different types of reinforcement and matrices to develop new composite material for the various application
- **CO3:** design and manufacture post processing methods of composite structures and capable to perform various analysis
- **CO4:** execute different methods of manufacturing advanced composites to meet the innovate demand in engineering.
- **CO5:** fabricate metal matrix, ceramic matrix and carbon matrix composite for various engineering application to meet the societal demand.

PO/CO	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Н	Μ	Н		1	Μ	Μ	<		1	L				
CO2	Н	Μ	Μ	М	М	X	L			B.	М				
CO3	M	Μ	Μ	М	(A)	L	Μ	_	X	16	L				
CO4	M	Μ	Μ	L	0	H	L	522	Low	Į.	М				
CO5	L	L		L	1	M	L.	91010	Ì			L			
16MOE X09	М	М	М	L	L	М	L		L		L	L			

Course Articulation Matrix

16MOEX10

AUTOMOBILE ENGINEERING

Category: OE

(Common to all Branches)

L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

• The learners are able to visualize the scope of Automobile Engineering.

UNIT- I	INTRODUCTON TO AUTOMOTIVES	(09)							
An overview	of different types of automobiles and their power sources. Spe	cifications							
Performance Pa	rameters, Quality standards, Trends in automobile design								
UNIT- II	POWER SOURCE FEATURES	(09)							
Reciprocating I	Engine systems, Rotary Engine systems, Gas Turbine systems, Hybrid	systems							
Pollutant emissi	ons and their control; Catalytic converter systems, Electronic Engine m	anagemen							
systems.									
UNIT- III TRANSMISSION, SUSPENSION AND BRAKING SYSTEMS									
Clutch system,	Gear box system, propeller shafting, differential, axles, wheels and tyres a	and							
Preliminaries of	suspension systems.								
UNIT- IV	AUXILIARY SYSTEMS	(09)							
Electrical and el	ectronic systems, safety systems, Heating, Ventilation, and Air Condition	ning							
(HVAC) system	s, Vehicle Thermal Management System and vehicle body design feature	es.							
UNIT- V	TESTS, SERVICE AND MAINTENANCE	(09)							
	TESTS, SERVICE AND MAINTENANCE vehicle maintenance, engine and Chassis Dynamometry Pollutants and en								
Engine Tuning,									

Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods
Text Books:			

Author Name	Title of Book	Publisher, Year Of Publication
Dr. Kirpal Singh	Automobile Engineering Vol. I & II	Standard Distributors
		Publishers, 2012.
R.B.Gupta	Automobile Engineering	Sathya Prakashan, New Delhi,
		2006

Reference Books:

1. William H.Crouse, "Automotive Mechanics", McGraw Hill Book Co. 2004.

2. K.K. Ramalingam, "Automobile Engineering – theory and Practice" SciTech Publications, 2001.

3. Joseph Heinter "Automobile Mechanics Principles and Practice" Affiliated East West Press, 1997.

4. Jain K.K. and Asthana. R.B, "Automobile Engineering" Tata McGraw Hill Publishers, New Delhi, 2002.

5. Heinz Heisler, "Advanced Engine Technology" SAE International Publications USA, 1998.

Course Outcomes:

On completion of this course, learners will be able to

- **CO1:** Identify the different components in an automobile.
- **CO2:** Clearly understand different auxiliary and transmission systems.
- CO3: Explain the working of various parts like engine, transmission, clutch, brakes
- CO4: Understand the environmental implications of automobile emissions
- CO5: Develop a strong base for understanding future developments in the automobile industry

Course Articulation Matrix

PO/CO	PO	PO	PO	Р	Р	Р	Р	Р	Р	PO	РО	РО	PS	PS	PS
PO/CO	1	2	3	O4	05	06	07	08	09	10	11	12	01	O2	O3
CO1	M	M	М	L	Н	M	М	M	L	L	L	Η			
CO2	Н	М	Н	Н	M	Н	L	L	L	М	М	L			
CO3	M	M	М	L	M	Н	М	L	L	М	Н	L			
CO4	Н	M	Н	М	H	M	Н	H	M	М	Н	L			
CO5	M	L	L	L	M	Н	М		L	Н	Н	Н			
16MOE X10	М	М	М	М	Н	H	М	PLP D	L. S. C. Mar	М	М	М			

L-Low, M – Moderate	(Medium), H -	High
---------------------	---------------	------

RENEWABLE ENERGY SOURCES AND TECHNOLOGY Category: OE 16EOEX11

(Common to all Branches)

	Υ.	,	L	Т	Р	С
Pre-Requisites: Nil			3	0	0	3

Course Objective:

To elucidate the technologies used for generation and utilization of power from renewable • energy resources.

UNIT- I	SOLAR ENERGY	(09)
seasonal variation Photo voltaic: p of solar therma	solar spectra-latitude and longitude, Declination angle, solar window, ons, hour angle, calculation of angle of incidence, angstroms equation an -n junctions. Solar cells, PV systems, Standalone, Grid connected solar po al collectors – Flat and concentrating collectors, solar thermal applicat stills, refrigeration, air-conditioning, solar pond, central receiver power gene	d constants, wer - Types ions -water
UNIT- II	WIND ENERGY	(09)
selection, comp	Basic principle of wind energy conversion system, wind data and energy esti- onents of wind energy conversion systems, design consideration of horizont limitations- application.	
UNIT- III	BIOMASS ENERGY	(09)
gasification, con	es of biomass, thermo-chemical and bio-chemical conversion of biomass nbustion and fermentation. Gasifiers – Up draft, downdraft and fluidized l d and floating digester biogas plants, economics of biomass power generation	bed gasifier.
UNIT- IV	OCEAN AND GEOTHERMAL ENERGY	(09)
power plants - between tidal of Geothermal	esources - Principles of ocean thermal energy conversion systems - oce Principles of ocean wave energy conversion and tidal energy conversion - and wave power generation, Economics of OTEC. Definition and c resources, Utilization for electricity generation and direct heating, Well . Overview of micro and mini hydel power generation.	Difference
UNIT- V	RENEWABLE ENERGY POLICIES	(09)
biofuels mandat and comparison	gy policies - Feed-in tariffs, portfolio standards, policy targets, tax inco es. International policies for climate change and energy security. Econor s, Life cycle analysis, financial analysis, cost of conserved energy, and e of supply technologies versus energy - Efficiency.	nic analysis

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication					
Rao. S. and Dr. Pamlekar B.B,	Energy Technology	Khanna Publishers, Second Ed. 1997					
Pai and Ramaprasad	Power Generation through Renewal sources	Tata McGraw Hill – 1991					

Reference Books:

1. Rai, G.D., "NonConventional sources of Energy", Khanna Publishers, IV Ed., 2009

2. Bansal NK, Kleeman and Meliss, M "Renewable Energy Sources and Conversion Techniques", Tata McGraw Hill, 1996

3. Roland Wengenmayr, Thomas Buhrke, "Renewable energy: Sustainable energy concepts for the future", Wiley-VCH, 1st edition, 2008.

Course Outcomes:

Upon completion of this course the students will be able to,

- **CO1:** Realize the need for utilizing the energy from clean and Sustainable energy resources.
- **CO2:** Describe the principles of operation of the broad spectrum of renewable energy Technologies
- **CO3:** Analyze energy technologies from a systems perspective.
- CO4: Articulate the technical challenges for each of the renewable sources
- CO5: Create solutions for alternate energy issues
- **CO6:** Discuss economic, technical and sustainability issues involved in the integration of renewable energy systems

Course Articulation Matrix

PO/CO	PO	РО	РО	PO	PO	PO	PSO	PSO	PSO						
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	Μ	М	Μ	М	Μ	Μ	1	1	L	L	L			
CO2	Η	Н	М	М	М	Μ	M	L		L	L	L			
CO3	Н	М	М	M	М	Μ	Μ	Μ	V.	-10 -10	L	L			
CO4	М	Н	М	L	М	Η	М	М		L	L	L			
CO5	М	Н	Н	Н	М	М	М	М	T	L	L	L			
CO6	Н	М	М	М	М	М	М		Н	Н	L	L			
16EOEX11	Н	Н	М	М	М	М	М	L	L	L	L	L			

SMART GRID TECHNOLOGY

(Common to all Branches)

Pre-Requisites: Nil

Course Objective:

• To gain knowledge on the fundamentals of smart grid technologies, its architecture and its managements. Also the students should learn many of the challenges facing the smart grid as part of its evolution.

UNIT- I	SMARTGRIDS: MOTIVATION, STAKES AND PERSPECTIVES	(09)						
Introduction –	Information and Communication technologies serving the electrical	system –						
Integration of a	advanced technologies - Definitions of SmartGrids - Objectives address	sed by the						
SmartGrid cond	SmartGrid concept - Socio-economic and environmental objectives - Stakeholders involved the							
implementation	of the Smart Grid concept - Research and scientific aspects of the Sm	nart Grid –						
SmartGrids from	n the customer's point of view.							
UNIT- II	INFORMATION AND COMMUNICATION TECHNOLOGY	(09)						
Data Communi	cation, Dedicated and shared communication channels, Layered archit	ecture and						
protocols, Con	munication technology for smart grids, standards for information	Exchange,						
Information sec	urity for the smart grid - Cyber Security Standards - IEEE1686 - IEC62351.							
UNIT- III	SENSING AND MEASUREMENT	(09)						
Synchro Phasor	Technology - Phasor Measurement Unit, Smart metering and demand side	integration						
- Communication	on infrastructure and protocol for smart metering - Data Concentrator, M	Meter Data						
Management Sy	stem. Demand side Integration - Services, Implementation and Hardware	Support of						
DSI.								
UNIT- IV	CONTROL AND AUTOMATION	(09)						
	CONTROL AND AUTOMATION omation equipment – Substation automation equipments: current transforme	. ,						
Distribution aut	Star Show Arve	er, potential						
Distribution autor transformer, Int	omation equipment – Substation automation equipments: current transforme	er, potential						
Distribution autor transformer, Int	omation equipment – Substation automation equipments: current transforme telligent Electronic Devices, Bay controller, Remote Terminal Unit. I	er, potential						
Distribution aut transformer, Int management sys	omation equipment – Substation automation equipments: current transforme telligent Electronic Devices, Bay controller, Remote Terminal Unit. I stems – SCADA: modeling and analysis tools, applications	er, potential Distribution						
Distribution autors former, Intransformer, Intranagement system UNIT-V	omation equipment – Substation automation equipments: current transforme telligent Electronic Devices, Bay controller, Remote Terminal Unit. I stems – SCADA: modeling and analysis tools, applications REGULATION OF SMARTGRIDS AND ENERGY STORAGE	r, potential Distribution (09)						
Distribution aut transformer, Int management sys UNIT- V Regulation and	omation equipment – Substation automation equipments: current transforme telligent Electronic Devices, Bay controller, Remote Terminal Unit. I stems – SCADA: modeling and analysis tools, applications REGULATION OF SMARTGRIDS AND ENERGY STORAGE SYSTEMS	(09) (09) ness model						
Distribution autors for smart grids	omation equipment – Substation automation equipments: current transforme telligent Electronic Devices, Bay controller, Remote Terminal Unit. I stems – SCADA: modeling and analysis tools, applications REGULATION OF SMARTGRIDS AND ENERGY STORAGE SYSTEMS Economic models – Evolution of the value chain – The emergence of a busi	(09) (09) ness model dization of						
Distribution aut transformer, Int management sys UNIT- V Regulation and for smart grids SmartGrids - H	omation equipment – Substation automation equipments: current transforme telligent Electronic Devices, Bay controller, Remote Terminal Unit. I stems – SCADA: modeling and analysis tools, applications REGULATION OF SMARTGRIDS AND ENERGY STORAGE SYSTEMS Economic models – Evolution of the value chain – The emergence of a busi – Regulation can assist in the emergence of SmartGrids – The standar	(09) (09) ness model dization of l Cell and						

Contact Periods:

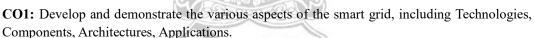
Lecture: 45 Periods

s Tutorial: 0 Periods

Practical: 0 Periods

Total: 45 Periods

Text Books:


Author Name	Title of Book	Publisher, Year Of Publication
Janaka Ekanayake, Nick	Smart Grid Technologies and	John Wiley Publishers Ltd.,
Jenkins, Kithsiri Liyanage	applications	2012.
Nouredine Hadjsaid,	Smart Grids	Wiley Publishers Ltd., 2012
JeanClaude Sabonnadiere		
Lars T. Berger, Krzysztof	Smart Grid applications,	John Wiley Publishers Ltd.,
Iniewski	Communications and Security	2012.

Reference Books:

1. Yang Xiao, "Communication and Networking in Smart Grids", CRC Press Taylor and Francis Group, 2012.

2. Caitlin G. Elsworth, "The Smart Grid and Electric Power Transmission", Nova Science Publishers Inc, 2010

Course Outcomes:

CO2: Design a smart grid and to meet the needs of a utility, including Meeting a utility's objectives, helping to adopt new technologies into the grid.

CO3: Creating a framework for knowledgeable power engineers to operate the grid more effectively.

CO4: Transfer the available information from any part of the power system to centralized control centre.

CO5: Handle the smart meter, sensors and intelligent devices to measure the electrical quantity. **CO6:** Control the Electrical quantity from remote place.

PO/CO	PO	РО	PO	РО	PS	PS	PS								
	1	2	3	4	5	6	7	8	9	10	11	12	01	02	03
CO1				L	L	М	Н	L	Μ	М	М	Н			
CO2	L	L	М	М	М	М	М	L	М	М	М	М			
CO3				М	М	М	М	М	М	М	М	Н			
CO4	L			М	М	М	Н		М	М	М	Н			
CO5	М		L	М	М	М	М		М	М	М	М			
CO6	L	L	М	L	М	М	L		М	М	М	М			
16EOE X12	L	L	L	М	М	М	М	L	М	М	М	Н			

Course Articulation Matrix

16LOEX13

PRINCIPLES OF COMMUNICATION

(Common to all Branches)

Category: OE L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

- To understand the concepts of analog communication
- To gain the fundamental knowledge of digital communication
- To be familiar with the fundamentals of satellite and optical communication

UNIT- I	AMPLITUDE MODULATION	(09)						
Introduction	to communication systems- Electromagnetic	spectrum-						
Principle of am	plitude modulation - AM envelope - frequency spectrum and ba	ndwidth -						
modulation index and percentage of modulation -AM power distribution-AM generation and-								
detection – squa	are law modulator- envelope detector.							
UNIT- II	ANGLE MODULATION	(09)						
Frequency	modulation and phase modulation- FM and PM	1 waveforms						
– phase devia	tion and modulation index – frequency deviation and percentage of	modulation						
-Frequency	analysis of angle modu	lated waves-						
Bandwidth req	uirements for Angle modulated waves - generation and detection of FM -	- Armstrong						
modulator- Fost	ter Seely Discriminator.							
UNIT- III	PULSE MODULATION	(09)						
Sampling and Q	Quantization - Pulse Amplitude modulation- Pulse width modulation -Pu	alse position						
modulation- P	ulse code modulation- PCM transmitter and receiver - Signal to Quanti	zation noise						
ratio – Differen	tial Pulse Code Modulation – Delta modulation – Adaptive Delta modulat	tion						
UNIT- IV	DIGITAL COMMUNICATION	(09)						
Introduction -	ASK, FSK, PSK- transmitter and receiver - QPSK transmitter and receiver	ver – M ary						
PSK – Error pr	obability in PSK, FSK.							
UNIT- V	SATELLITE AND OPTICAL COMMUNICATION	(09)						
Satellite Comm	unication Systems-Transmitter and receiver- Kepler's Law -LEO and G	EO Orbits –						
GEO Stationa	ry orbitOptical Communication Systems- Transmitter and receiver	-Sources and						
Detectors- Type	s of Optical Fiber – Losses							

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication				
Wayne Tomasi	Advanced Electronic Communication Systems	6/e,Pearson Education, 2007.				
Simon Haykin	Communication Systems	4 th Edition, John Wiley & Sons., 2008.				

Reference Books:

1. H.Taub, D L Schilling, G Saha, "Principles of Communication" 3/e, 2007.

2. B.P.Lathi, "Modern Analog and Digital Communication systems", 3/e, Oxford University Press, 2007.

3. Blake, "Electronic Communication Systems", Thomson Delmar Publications, 2002.

4. B.Sklar, "Digital Communication Fundamentals and Applications", 2/e Pearson Education 2007.

Course Outcomes:

Upon completion of this course, the students will have the

CO1: Basic knowledge of amplitude modulation systems.

CO2: Basic knowledge of angle modulation systems.

CO3: Fundamental knowledge of digital communication systems.

CO4: Understanding of digital transmission techniques.

CO5: Fundamental knowledge of satellite communication system.

CO6: Fundamental knowledge of optical communication system.

Course Articulation Matrix

_				-												
	PO/CO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
		1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	М	Μ	Μ									L			
	CO2	М	Μ	Μ									L			
	CO3	М	Μ	Μ									L			
	CO4	М	М	Μ									L			
	CO5	М	Μ	Μ		V.	G	ture	3				L			
	CO6	М	М	М		1(81	Serie ()	Interio I	1100 0	62.6UM	3		L			
	16LOE X13	М	М	М		N.C.	No.	NOR	SR .	MR.			L			

16LOEX14

(Common to all Branches)

Pre-Requisites: Nil

Course Objectives:

- To gain knowledge on basics of microcontrollers
- To get exposure to programming of microcontroller 8051
- To acquire knowledge on interfacing of peripherals with 8051 and PIC microcontrollers
- To get exposure on applications of microcontrollers

UNIT- I	INTRODUCTION TO MICROCONTROLLER	(09)						
Microprocessors	s and Microcontrollers - CISC and RISC - Fundamentals of Assembly	y language						
Programming – Instruction to Assembler – C Programming for Microcontrollers – Compiler and								
IDE – Introduction to Embedded systems - Architecture 8051 family - PIC 18FXXX – family –								
Memory organiz	zation							
UNIT- II	PROGRAMMING OF 8051 MICROCONTROLLER	(09)						
Instruction set	- Addressing modes - I/O Programming-Timer/Counter - Interrupt	ts – Serial						
communication of 8051.								
UNIT- III	PROGRAMMING OF PIC18FXXX MICROCONTROLLER	(09)						
	 Addressing modes – I/O Programming-Timer/Counter - Interrupt, CCP, ECCP PWM programming of PIC18FXXX. 	ts – Serial						
UNIT- IV	PERIPHERAL INTERFACING	(09)						
Interfacing of R	Relays, Memory, key board, Displays – Alphanumeric and Graphic, I	RTC, ADC						
and DAC, Stepp	per motors and DC Motors, I ² C, SPI with 8051 and PIC family.							
UNIT- V	MICROCONTROLLER APPLICATIONS	(09)						
Pulse measurer	Pulse measurement-measuring frequency, pulse width measurement -Speed control of DC							
Motor-Speed co	ntrol of Stepper Motor-Traffic Light Controller and Washing Machine	Controller.						

Contact Periods:

Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods
Eccure is remous	i acorran o i crious	I fuction of citous	i otani ilo i ci ilo as

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication	
Kenneth J.Ayala	The 8051 Microcontroller	3 rd Edition, Thompson Delmar Learning, 2007, New Delhi.	
JohnB. Peatman	PIC programming	<i>McGraw Hill International, USA, 2005.</i>	

Reference Books:

1.Muhammad Ali Mazidi and Janice GillispicMazdi, "The 8051 Microcontroller and Embedded Systems" Pearson Education, Inc 2006.

2. John B. Peatman, "Design with Micro controllers", McGraw Hill International, USA, 2005

3.James W. Stewart, "The 8051 Micro controller hardware, software and interfacing", regents Prentice Hall, 2003.

4.David Calcutt, Fred Cowan, Hassan Parchizadeh, "8051 Microcontroller An Application Based Introduction", Elsevier Publication, 1st edition, 2004.

5.Krishna Kant, "Microprocessor and Microcontrollers" Eastern company edition, Prentice Hall of India, New Delhi, 2007.

Course Outcomes:

Upon completion of this course the student will:

CO1: Acquire knowledge on the basics of microcontroller

CO2: Exposure to 8051 microcontroller Programming

CO3: Exposure to PIC microcontroller Programming

CO4: Able to interface peripherals with microcontrollers

CO5: Get exposure to the applications of microcontrollers

CO6: Able to design microcontroller based systems

Course Articulation Matrix

PO/CO	PO	PO	PO	PO	РО	РО	PO	PO	PO	PO	PO	РО	PSO	PSO	PSO
	1	2	3	4	5	6	370	8	9	10	11	12	1	2	3
CO1	М	Н	М		1	18	The second	三人	6			L			
CO2	М	Η	М			8	1					М			
CO3	Μ	Н	М		14	X	2			6		М			
CO4	М	Н	М		Ŭ	10	1	1	1	3		М			
CO5	М	Η	М		de	60	E C	S CIE	AL UK	2		М			
CO6	Н	Н	Η		0	200	(E	0	Ľ			М			
16LOE X14	М	Η	М									М			

16NOEX15

INDUSTRIAL AUTOMATION SYSTEMS

Category: OE

(Common to all Branches)

L	Т	Р	С
3	0	0	3

Pre-Requisites: Nil

Course Objectives:

- To elaborate the basic concept of automation and the components required for automation.
- To introduce the concept and programming of programmable logic controllers and distributed control system which is used for process automation.
- To outline the basic concepts of SCADA technology.

UNIT- I	INTRODUCTION TO AUTOMATION	(09)								
Automation over	rview - requirement of automation systems - architecture of industrial	automation								
system – power	supplies and isolators -relays - switches -transducers - sensors -seal-i	n circuits –								
industrial bus systems : modbus and profibus.										
UNIT- II	AUTOMATION COMPONENTS	(09)								
Sensors for temperature - pressure - force - displacement - speed - flow- level - humidity and pH										
measurement. Actuators – process control valves – power electronic drives DIAC- TRIAC – power										
MOSFET – IGBT. Introduction to DC and AC servo drives for motion control										
UNIT- IIIPROGRAMMABLE LOGIC CONTROLLERS(09)										
PLC Hardware	– PLC programming – ladder diagram – sequential flow cha	urt – PLC								
	and networking - PLC selection - PLC installation - Advantages - Ap									
PLC to process	control industries and Robotics.									
UNIT- IV	DISTRIBUTED CONTROL SYSTEM (DCS)	(09)								
Overview of DC	CS – DCS hardware – DCS software configuration – DCS communication	n – DCS								
supervisory com	puter tasks – DCS integration with PLC and Computers									
UNIT- V	UNIT-V SCADA (09)									
Introduction -	Supervisory Control and Data Acquisition Systems (SCADA) - SC	ADA HMI								
Essentials – SC software.	Essentials - SCADA Components - SCADA Configuration and Software - HMI hardware and									

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication						
John.W. Webb Ronald A Reis	Programmable Logic Controllers - Principles and Applications	Prentice Hall Inc., 5 th Edition, 2003						
M. P. Lukcas,	Distributed Control Systems	Van Nostrand Reinhold Co., 1986.						

Reference Books:

- 1. Bela G Liptak, "Process software and digital networks Volume 3", 4th Edition, CRC press, 2012.
- 2. Frank D. Petruzella, "Programmable Logic Controllers", 5th Edition, McGraw Hill, 2016.
- 3. Huges T, "Programmable Logic Controllers", ISA press, 1994
- 4. Romily Bowden, "HART application guide and the OSI communication foundation", 1999
- 5. Krishna Kant, "Computer Based Industrial Control" Second edition, Prentice Hall of India, New Delhi, 2010

Course Outcomes:

On completion of this course, the students will be able to

- **CO1:** Elaborate the basic architecture of automation systems
- CO2: Describe the various sensors and actuators involved in industrial automation
- **CO3:** Construct ladder logic diagram using PLC basic functions, timer and counter functions for simple applications
- **CO4:** Illustrate the functionary components and supervisory control of DCS with relevant diagrams.
- CO5: Describe the basics of SCADA technology

Course Articulation Matrix

PO/CO	PO	PS	PS	PSO											
F0/C0	1	2	3	4	5	6	7	8	9	10	11	12	01	02	3
CO1	Η	Η	M	М	L	L	L	H	L	М	L	L			
CO2	Н	Н	Н	Н	L	L	L	H	L	М	L	L			
CO3	Н	Н	М	М	L	L	M	Н	L	М	L	L			
CO4	Н	Н	Н	Η	L	L	L	Η	L	М	L	L			
CO5	Н	Н	М	М	М	L	L	Н	L	М	L	L			
16NOE X15	Н	Н	М	М	P.	L	L	Н	Ŀ	М	L	L			

16NOEX16

MEASUREMENTS AND INSTRUMENTATION

(Common to all Branches)

Category: OE

L	Т	Р	С
3	0	0	3

Pre-Requisites: Nil

Course Objectives:

- To study about the electrical parameter measuring instruments.
- To familiarize about the measurement techniques for power and energy.
- To gain knowledge about potentiometer and instrument transformers.
- To learn about the working of different analog and digital instruments.
- To study about display and recording devices.

UNIT- I	MEASUREMENT OF ELECTRICAL PARAMETERS	(09)							
Types of amme	ters and voltmeters: PMMC Instruments, Moving Iron Instruments, Dyna	mometer							
type Instruments - Resistance measurement: Wheatstone bridge, Kelvin double bridge and Direct									
deflection methods. Measurement of Inductance: Maxwell-Wien Bridge, Hay's bridge and Anderson									
Bridge - Measurement of Capacitance: Schering Bridge.									
UNIT- II	POWER AND ENERGY MEASUREMENTS	(09)							
Electro-dynamic type wattmeter: Theory and its errors - LPF wattmeter - Phantom loading - Single									
phase Induction	type energy meter - 3 phase induction energy meter and phase measured	irement-							
Calibration of wattmeter and Energy meters – Synchroscope.									
UNIT- III POTENTIOMETERS AND INSTRUMENT TRANSFORMERS (09)									
D.C. Potentiom	eters: Student type potentiometer, Precision potentiometer - A.C. Potenti	ometers:							
Polar and Coord	dinate types - Applications - Instrument Transformer: Construction and t	heory of							
Current Transfor	rmers and Potential Transformers.								
UNIT- IV	ANALOG AND DIGITAL INSTRUMENTS	(09)							
Wave analyzers	- Signal and function generators - Distortion factor meter - Q meter - Digit	tal							
voltmeter and m	ulti-meter - Microprocessor based DMM with auto ranging and self diagnos	stic							
features - Frequ	ency measurement.								
UNIT- VDISPLAY AND RECORDING DEVICES(09)									
Cathode ray osc	illoscope: Classification, Sampling and storage scopes - LED, LCD and dot	matrix							
displays – X-Y recorders – Magnetic tape recorders –Digital Data Recording –Digital memory									
waveform recorder – Data loggers.									

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Kalsi. H.S	Electronic Instrumentation	Tata McGraw-Hill, New Delhi, 2010
Sawhney.A.K,	<i>A</i> Course in Electrical & Electronic <i>Measurements & Instrumentation</i>	Dhanpat Rai and Co., New Delhi, 2010

Reference Books:

- 1. Northrop. R.B, "Introduction to Instrumentation and Measurements", Taylor & Francis, New Delhi, 2008.
- 2. 2.Carr.J.J, "Elements of Electronic Instrumentation and Measurement", Pearson Education India, New Delhi, 2011.
- 3. David A.Bell, "Electronic Instrumentation and Measurements", PHI, New Delhi.
- 4. Copper. W.D and Hlefrick..A.D, "Modern Electronic Instrumentation and Measurement Technique" 5th Edition, Prentice Hall of India, 2002.

Course Outcomes:

On completion of this course, the students will be able to

CO1: Compare the working principles, merits and demerits of different types of electrical

instruments and can understand about different instruments that are used for Measurement purpose.

CO2: Understand how different bridge networks are constructed and balanced for finding the values of resistance, capacitance and inductance.

CO3: Apply knowledge of electronic instrumentation for measurement of electrical quantities.

CO4: Apply the principles and practices for instrument design and development to real world problems.

CO5: Select a suitable measuring instrument for a given application.

CO6: Pursue higher studies and do research activities in the field of measurement and

instrumentation.

PO/CO	PO	PSO	PSO	PSO											
	1	2	3	4	-5	6	7	8	9	10	11	12	1	2	3
CO1	Н	Н	M	H	Μ	H	M	L	Н	Μ	Η	Н			
CO2	Н	Μ	M	M	Н	Η	H	Μ	Η	L	Н	Н			
CO3	Н	Н	M	Н	Μ	Н	М	L	Η	Μ	Н	Н			
CO4	Н	Н	M	Н	М	Н	М	L	Η	М	Η	Н			
CO5	Н	Н	Μ	Н	М	Н	Μ	L	Η	М	Η	Н			
CO6	Н	Н	М	Н	М	Н	М	L	Н	М	Н	Н			
16NOEX16	Н	Н	М	Н	М	Н	М	L	Н	М	Н	Н			

Course Articulation Matrix

16SOEX17

ENTERPRISE JAVA

Category: OE

(Common to all Branches)

L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

Upon completion of this course, the students will be familiar with

- Basic programming constructs in java to develop simple object oriented programs
- Enterprise Architecture types and features of Java EE platform
- JEE foundation concepts like Enterprise java bean, JSP and JSF
- Distributed Programs and methods to connect with database.
- Java Web services

UNIT- I	INTRODUCTION TO JAVA	(09)								
Operators – Co Exception Hand	object oriented programming-Features of Java – Data types, variables ontrol statements – Classes and Methods – Inheritance. Packages and lling – Multithreaded Programming – Input/Output – Files – Utility Clas vorking –Applet class – Event Handling.	Interfaces –								
UNIT- II	INTRODUCTION TO ENTERPRISE JAVA	(09)								
Challenges of Enterprise application Development - Platform for enterprise Solutions – J2EE Application Scenario - J2EE Platform Technologies –J2EE Multi-Tier Architecture - J2EE Architecture Approaches - Model-View-Controller Architecture - J2EE Design Patterns - Designing the Sample Application - Choosing Application Tiers - Choosing Local or Distributed Architecture - Architecture of the Sample Application										
UNIT-III ENTERPRISE JAVA FOUNDATION (09)										
Enterprise Java Beans -Business Logic and Business Objects Enterprise Beans as J2EE Business Objects - Entity Beans - Session Beans - Message-Driven Beans - Transaction support in EJB- Security support in EJB –Java Server Pages - Directive Elements - Scripting Elements - Action Elements-Expression Language-JSP Standard Tag Library - Java Server Page Online Store –JavaServer Faces - Life Cycle - Resource Management.										
UNIT- IV	INTERCONNECTIVITY	(09)								
database – State -Java Mail API Message Service	3C – JDBC Driver types- Database Connection – Associating JDBC Bri ment Objects –Resultset – Transaction Processing – RMI- Network File-Lo and Java Activation Framework – send ,receive, retrieve and delete email m e – JMS Fundamentals –Components of a JMS program -JMS architecture JNDI – Naming and Directories – Naming Operations	ocking Server lessage - Java								
UNIT- V	WEB SERVICES	(09)								
UNIT- VWEB SERVICES(09)SOAP Basics – Java API for XML Messaging – Creating a SOAP Attachment – Accessing a SOAP Attachment – Universal Description, Discovery and Integration (UDDI)- UDDI Architecture – UDDI Application Programming Interface – Inquiry Application Programming Interface – Publishing Application Programming Interface –JAXR – JAXR client – Publishing a service to an XML Registry – Removing a published service from an XML Registry- WSDL – Inside WSDL- WSDL and SOAP - RESTFul Web services – REST Approach - Java API for RESTful Web service										

Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication						
Herbert Schildt	Java The Complete Reference	9th Edition. Tata McGraw- Hill						
		Edition. 2014.						
Stephen Asbury and Scott	Developing Java Enterprise	second edition Wiley						
R. Weiner	Applications	Publishing.1999.						
Antonio Goncalves	Beginning Java [™] EE 6 Platform	Apress 2009						
	with GlassFish TM 3From Novice							
Jim Keogh	The Complete Reference J2EE	Tata McGraw –Hill 2002						

Reference Books:

- 1. John Brock, Arun Gupta, GeertjanWielenga "Java Server Programming Java EE 7 (J2EE 1.7) -Black Book" McGraw Hill, 2015.
- 2.Inderjeet Singh, Beth Stearns, Mark Johnson, and the Enterprise Team "Designing Enterprise Applications with the J2EETM Platform", Second Edition Addison Wesley, 2002.

Course Outcomes:

Upon completion of this course, the students will be able to

- **CO1:** Write simple java programs using fundamental concepts of java like control structures, inheritance, packages, interfaces, multithreaded programming and exception handling. **[Usage]**
- **CO2:** Write java program for Networking using applets. **[Usage]**
- **CO3:** Describe and use the client/server and distributed architectures in a programming Environment. **[Usage]**
- CO4: Use EJB, JSP and JFC technology in developing enterprise applications [Usage]
- **CO5:** Apply Java interconnectivity techniques like JDBC, RMI, Java Mail, JMS, JNDI in developing enterprise applications[Usage]
- **CO6:** Explain the roles XML, JAXR, SOAP, WSDL and UDDI in the architecture of Web services. **[Familiarity]**
- **CO7:** Develop java program to use RESTful web services [Assessment]

Course Articulation Matrix

Course an incuration matting															
PO/CO	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	L	Н	L	Н		L					Μ			
CO2	Н	М	Н	М	Н		L					М			
CO3	Н	L	Н	L	Н		L					М			
CO4	Μ	L	М	L	Н		L					М			
CO5	Н	L	Н	L	Н		М					М			
CO6	Μ	L	М	L	Н		L					L			
CO7	Н	L	Н	L	Н		М					М			
16SOE X17	Н	L	Н	L	Н		L					М			

16SOEX18

CYBER SECURITY

Category: OE

(Common to all Branches)

L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

Upon completion of this course, the students will be familiar with:

- Cybercrime and cyber offenses.
- Cybercrime using mobile devices.
- Tools and methods used in cybercrime.
- Legal perspectives of cybercrime.
- Fundamentals of computer forensics.

UNIT- I	INTRODUCTION TO CYBERCRIME AND CYBEROFFENSES	(09)
	Information Security - Classifications of Cybercrimes - The Legal Perspect the Indian ITA 2000 - A Global Perspective on Cybercrimes - Plan of Atta	
	yberstalking - Cybercafe and Cybercrimes – Botnets - Attack Vector.	eks -Sociai
UNIT- II	CYBERCRIME: MOBILE AND WIRELESS DEVICES	(09)
Wireless Compu	Mobile and Wireless Devices - Trends in Mobility - Credit Card Frauds in M ating Era – Security challenges posed by mobile devices – registry setting for atication service security – attacks on mobile/cell phones – Organizational m es.	r mobile
UNIT- III	TOOLS AND METHODS USED IN CYBERCRIME	(09)
	nd Anonymizers – Phishing - Password Cracking – Keyloggers – Spywares Horses and Backdoors – Steganography - DoS and DDoS Attacks - SQL Inj less Networks.	
UNIT- IV	CYBERCRIMES AND CYBERSECURITY: THE LEGAL PERSPECTIVES	(09)
Scenario in Indi	Indian Context - The Indian IT Act - Challenges to Indian Law and Cybercr a - Consequences of Not Addressing the Weakness in Information Technolo es and the Indian IT Act - Amendments to the Indian IT Act - Cybercrime a	ogy Act -
UNIT- V	UNDERSTANDING COMPUTER FORENSICS	(09)
Forensics and S	s - Forensics Analysis of E-Mail - Network Forensics - Forensics and Stegar ocial Networking Sites - Challenges in Computer Forensics - Data Privacy I ing – Antiforensics	

Contact Periods:

Lecture:	45 Periods	
----------	------------	--

Tutorial: 0 Periods Practical: 0 Periods

Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Nina Godbole and Sunit	Cyber Security Understanding Cyber	Wiley India Publications,
Belapur;	Crimes, Computer Forensics and Legal	April, 2011
	Perspectives	

Reference Books:

- 1.Robert Jones, "Internet Forensics: Using Digital Evidence to Solve Computer Crime", O'Reilly Media, October, 2005.
- 2. Chad Steel, "Windows Forensics: The field guide for conducting corporate computer investigations", Wiley India Publications, December, 2006.

Course Outcomes:

Upon completion of this course, the students will be able to:

- CO1: Explain the fundamental concepts of cybercrime and cyber offenses. [Familiarity]
- CO2: Describe the cybercrimes occurred in mobile and wireless devices. [Familiarity]
- CO3: Elaborate the methods used in cybercrime. [Familiarity]
- CO4: Explain the laws for cybercrime and its respective punishments. [Familiarity]
- **CO5:** Explain the forensics Analysis of E-Mail, Network and Social Networking Sites [Familiarity]

Course Articulation Matrix

PO/CO	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	M	M	M	M	L	H	La	Μ	3	0		Η			
CO2	M	M	M	Μ	Μ	Η	М	М	~	2		Μ			
CO3	Н	L	L	L	L	Н	Н	L		1		Н			
CO4	Н	M	M	M	M	H	H	H				M			
CO5	Н	M	M	М	M	L	Н	L				Н			
16SOE	Н	М	М	М	М	H	H	М				Н			
X18					12	A	-			54					

16SOEX19

NETWORK ESSENTIALS

(Common to all Branches)

Category: OE L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

Upon completion of this course, the students will be familiar with:

- Basic taxonomy and terminology of the computer networking
- Wireless networking
- Addressing and Routing
- Routing protocols
- Troubleshooting and security issues.

UNIT- I	INTRODUCTION	(09)
Introduction to	Computer Networks - Goals and advantages of Computer Networks	s - Network
Topologies – B	asic networking devices - Protocols - the need for a layered architecture	e - The OSI
Model and the	TCP/IP reference model - the Ethernet LAN - Home Networking - As	sembling an
office LAN – 7	Sesting and Troubleshooting a LAN – Physical layer cabling: Twisted pa	ir and Fiber
optics		
UNIT- II	WIRELESS NETWORKING	(09)
Importance of V	Wireless Networking – IEEE 802.11 Wireless LANs – Bluetooth- WIMAX	K – RFIDs –
Securing the W	Vireless LANs - Configuring a Point to Multipoint Wireless LAN - International Configuring a	erconnecting
network LANs	- Switch, Bridges and Routers. Interconnecting LANs with the router, Cor	figuring the
network interfac	e-Auto negotiation.	
UNIT- III	ADDRESSING AND ROUTING FUNDAMENTALS	(09)
IPv4 and IPv6 a	addressing – Subnet masks – CIDR blocks – configuration of a router – C	Console port
connection - us	ser EXEC mode - Privileged EXEC mode - Configuration of a switch - S	static VLAN
configuration - S	Spanning Tree protocol – Network Management – Power over Ethernet.	
UNIT- IV	ROUTING PROTOCOLS	(09)
Static Vs Dyna	umic Routing Protocols – Distance vector Routing – Link State Routin	ig – Hybrid
Routing – Confi	iguring RIP - Network Services – DHCP, DNS - Analyzing Internet Traffic	2.
UNIT- V	TROUBLESHOOTING AND NETWORK SECURITY	(09)
Analyzing Com	nputer Networks – FTP data packets – Analyzing Campus Network da	ata traffic –
Troubleshooting	g the router and switch interface, Troubleshooting fiber optics - Intrusic	on – DOS –
Security softwar	re and hardware.	

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Jeffrey S.Beasley Piyasat Nilkaew	Network Essentials	3 rd Edition, Pearson, 2012
Larry L. Peterson and Bruce S. Davie	Computer Networks, A Systems Approach	Morgan Kaufmann Publishers Inc, 5 th edition 2011

Reference Books:

1. Behrouz A.Ferouzan, "Data Communications and Networking", 5th edition, Tata McGraw-Hill, 2012.

2. Andrew S. Tanenbaum, "Computer networks's, PHI, 5th edition 2011.

Course Outcomes:

Upon completion of this course, the students will be able to

- CO1: Identify topologies and types of Computer Networks [Familiarity]
- **CO2:** Enumerate the layers of the OSI model and TCP/IP and Explain the functions of each layer **[Familiarity]**
- CO3: Identify and Compare types of cabling for data communication [Usage]
- CO4: Explain the significance of wireless networks [Familiarity]
- CO5: Configure a Wireless LAN [Assessment]
- **CO6:** Configure router and a switch [Assessment]
- CO7: Describe basic routing algorithms and network services [Usage]
- **CO8:** Troubleshoot the router and switch interface [Usage]
- CO9: Analyze Campus Network data traffic [Usage]

Course Articulation Matrix

2.	P	-	In
Panéro D	116.81	1900	7.
9 Sharon	FR	V E	1

PO/CO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO						
P0/C0	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Μ	Μ	Н	Н	Η	L	L	Н	Н	Н	Н	Н			
CO2	Н	Н	Н	Н	Η	L	$\mathbf{L}_{\mathbb{T}}$	H	H	Н	Н	Н			
CO3	L	L	L	L	H	LA	\mathbf{L}_{0}	Н	L	L	L	Н			
CO4	L	Н	М	M	Н	Ŀ	L	Н	Н	M	L	Н			
CO5	Н	Н	Н	M	H	L	L	Η	H	Н	M	Н			
CO6	Н	Н	Н	M	H	L	L	Η	Н	М	L	Н			
CO7	Н	Н	Н	Н	H	L	L	H	H	Н	M	Н			
CO8	Н	Н	Н	Н	Н	L	L	Η	Н	М	L	Н			
CO9	Н	Н	Н	Н	Н	L	L	Н	Н	Н	M	Н			
16SOE X19	М	Н	Н	М	Н	L	L	Н	Н	L	М	Н			

L- Low, M – Moderate (Medium), H - High

16IOEX20

PROGRAMMING IN PYTHON

(Common to all Branches)

Category: OE L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

Upon completion of this course the students will be Familiar with:

- Data types and variables declaration
- Control statements, Functions and the use of basic programming.
- List, dictionary and functions used in python.
- File and Exception handling.
- Object oriented programming and GUI development.

UNIT- I	INTRODUCTION	(09)
	Python - Setting up Python in OS – Python IDLE(write- edit- run- and sav bers – Variables – simple I/O - Getting user input– Using String metho	
UNIT- II	CONTROL STATEMENTS AND FUNCTIONS	(09)
	nts – Random number generator- Branching and loops – Range functions netions- passing parameters- return function- working withglobal variables a	
UNIT- III	LISTS AND DICTIONARIES	(09)
	ndex- slice a list- Add and delete elements from a list- Append- Sort and s- Dictionaries – Create- add- delete from a Dictionary- Operations associa	
UNIT- IV	FILES AND EXCEPTIONS	(09)
	rom text files- Write to text files- Read and write more complex data- ndle errors during program's execution.	Exceptions –
UNIT- V	OBJECT ORIENTED PROGRAMMING AND GUI	(09)
communication- GUI – GUI tool	programming – Create objects of different classes in the same pro- complex object creation- derive new classes- existing class extension- over kit- create and fill frames- create buttons- text entries and text boxes- create as - case study – create a web page using GUI functionality	erride method-

Contact Periods: Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Y. Daniel Liang	Introduction to Programming Using Python	Pearson, 2013.
Charles Dierbach	Introduction to Computer Science Using Python: A Computational Problem- Solving Focus	Wiley Publications, 2012.

Reference Books:

1. Michael Dawson "Python Programming for the Absolute Beginner", Premier Press, 2003.

Course Outcomes:

Upon completion of this course the students will be able to:

CO1: Use various data types [Understand]

CO2: Handle the arrangement of data elements in Lists and Dictionary structures [Analyze]

CO3: Use control statements and functions [Understand]

CO4: Handle exceptions and perform file operations [Understand]

CO5: Develop application using object oriented programming and GUI [Analyze]

Course Articulation Matrix

PO/CO	PO	PO	PO	PO	PO	PSO	PSO	PSO							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	L		L	L		L	L			L				
CO2	М	L		L	L		L	L	82 GUM/C	9	L				
CO3	Μ	M	L	M	L	15	L,	\mathbf{L}	3		L				
CO4	М	M	L	M	L		М	М	1	le	L				
CO5	М	M	L	M	L		М	М	E /	1	М	L			
16IOE X20	М	М	L	М	L		L	I			L	L			

Big Data and its characteristics ٠

16IOEX21

Pre-Requisites: Nil

Course Objectives:

- Technologies used for Big Data Storage and Analysis •
- Mining larger data streams •
- Concepts related to Link analysis and handle frequent data sets •

UNIT- I	THE FUNDAMENTALS OF BIG DATA	(09)
Understanding	Big Data-Concepts and Technology-Big Data Characteristics-Types	of data-Case
Study-Business	Motivation and Drivers for Big Data Adoption- Planning Consideration	ns-Enterprise
Technologies a	nd Big Data Business Intelligence- OLTP-OLAP-Extract Transform	n Load-Data
Warehouses-Dat	a Mart-Traditional and Big Data BI-Case Study	
UNIT- II	BIG DATA STORAGE AND PROCESSING	(09)
Replication -Sh Concepts- Para Cluster-Processi	ge Concepts- Clusters-File systems and Distributed File Systems-NoSQI arding and Replication-CAP Theorem-ACID-BASE-Case Study- Big Dat llel Data Processing-Distributed Data Processing-Hadoop-Processing ng in Batch mode-Processing in RealTime mode-Case study	ta Processing
UNIT-III	BIG DATA STORAGE AND ANALYSIS TECHNOLOGY	(09)
Big Data Stora	age Technology: On-Disk Storage devices-NoSQL Databases-In-Men	nory Storage
Devices-Case st	udy, Big Data Analysis Techniques: Quantitative Analysis-Qualitative A	Analysis-Data
Mining-Statistic	al Analysis-Machine Learning-Semantic Analysis-Visual Analysis-Case S	tudy
UNIT- IV	MINING DATA STREAMS	(09)
	model - Sampling data streams - counting distinct elements in a stream	D
	ng similar items – Applications of nearest neighbor search – shingling of vation – locality sensitive hashing- dis tance measures – methods for	documents -
similarity preser	ng similar items - Applications of nearest neighbor search - shingling of	documents -
similarity preser similarity. UNIT- V	ng similar items – Applications of nearest neighbor search – shingling of vation – locality sensitive hashing- dis tance measures – methods for	documents - high degree (09)
similarity preser similarity. UNIT- V Link analysis –	ng similar items – Applications of nearest neighbor search – shingling of vation – locality sensitive hashing- dis tance measures – methods for LINK ANALYSIS AND FREQUENT ITEMSETS	documents - high degree (09) e rank – link

Contact Periods:

Lecture: 45 Periods

Tutorial: 0 Periods Practical: 0 Periods

Total: 45 Periods

L Т Р 0 0 3

С

3

BIG DATA SCIENCE (Common to all Branches)

189

Category: OE

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication					
Thomas Erl, WajidKhattak, and Paul Buhler	BigDataFundamentalsConcepts, Drivers & Techniques	Prentice Hall,2015					
AnandRajaraman and Jeffrey David Ullman	Mining of Massive Datasets	Cambridge University Press, 2012.					

Reference Books:

1. Paul Zikopoulos, Chris Eaton, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGraw Hill, 2011.

2.Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.

Course Outcomes:

Upon completion of this course, the students will be able to,

CO1: Understand the Big Data and usage in Enterprise Technologies. [Understand]

CO2: Store and Process Big Data using suitable Processing Methods [Understand]

CO3: Handle Big Data using appropriate analysis Techniques. [Analyse]

CO4: Mine larger data streams using suitable algorithms. [Understand]

CO5: Rank pages and handle large data sets efficiently [Analyse]

Course Articulation Matrix

PO/CO	PO	PO	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5 0	6	7	8	9	10	11	12	1	2	3
CO1	Н	L	М	L	Н	L	4.400 6	1000	T						
CO2	М				Н			L							
CO3		Н			Н										
CO4	М	Н	М		М										
CO5	L	М	Н												
16IOE X21	М	М	L	L	М	L		L							

16IOEX22 OBJECT ORIENTED PROGRAMMING USING C++ C

(Common to all Branches)

Category: OE

	(continent to all Branches)			
	L	Т	Р	С
usites: Nil	3	0	0	3

Pre-Requisites: Nil

Course Objectives:

.Upon completion of this course, the students will be familiar with,

- Fundamentals of object oriented programming .
- Classes and objects.
- Concepts of overloading and type conversions.
- Inheritance and Polymorphisms.
- Files, templates and exception handling.

UNIT- I	PRINCIPLES OF OBJECT ORIENTED PROGRAMMING	(09)							
Basic concepts-	benefits - applications of object oriented programming - beginning	with C++ -							
tokens – express	sions and control structures - C++ stream classes - Formatted and Unfo	ormatted I/O							
operations. Man	aging output with manipulators.								
UNIT- II	CLASSES AND OBJECTS	(09)							
Introduction – specifying class – defining member functions – memory allocation constructors and									
destructors:- parameterized- copy - default -dynamic and multiple constructors - destructors									
UNIT- III	FUNCTIONS AND TYPE CONVERSIONS	(09)							
Introduction -	Introduction – function prototyping call by reference – return by reference – inline function –								
recursion - frier	nd function – function overloading – operator overloading – manipulation	on of strings							
using operators	- type conversions								
UNIT- IV	INHERITANCE AND POLYMORPHISM	(09)							
Defining derive	d classes - single, multiple, multilevel, hierarchical and hybrid inheritar	nce – virtual							
base classes - a	abstract base classes - nesting of classes - pointers - pointers to ob	ojects – this							
pointer – pointe	rs to derived classes – virtual functions – pure virtual functions virtual	constructors							
and destructors.	94100 C (2) (2) T (0) V								
UNIT- V	FILES AND TEMPLATES	(09)							
Classes for file	stream operations – opening and closing a file – detecting EOF – open	file modes –							
file pointers and	their manipulations - sequential I/O operations - updating and error	handling of							
file. Class and	function template - template with multiple parameters - overloading	ng, member							
function and not	n-type template arguments-Exception handling.								

Contact Periods:

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication			
E.Balagurusamy	Object oriented Programming with	<i>McGraw Hill Education Ltd</i> , 6 th			
	<i>C</i> ++	Edition 2013.			

Reference Books:

1.R.Rajaram "Object Oriented Programming and C++" New Age International 2nd edition, 2013

- 2.K.R. Venugopal, Rajkumar, T. Ravishankar "Mastering C++", Tata McGraw Hill Education, 2nd edition, 2013
- 3. Yashavant P. Kanetkar "Let us C++" BPB Publications, 2nd edition 2003.

Course Outcomes:

Upon completion of this course, the students will be able to,

- CO1: Understand the principles of object oriented programming [Understand]
- CO2: Develop programs using classes and objects.[Analyze]
- **CO3:** Use functions and type conversions in programs. [Understand]
- CO4: Apply inheritance and polymorphism to develop applications. [Analyze]
- CO5: Use files, templates and handle exceptions. [Understand]

Course Articulation Matrix

PO/CO	PO	PO	PO	РО	PO	PO	PO	PO	РО	PO	PO	PO	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	Н	Η	М	Μ		М	М			М				
CO2	М	Н	Η	Η	Μ		М	М			М				
CO3	М	Н	Н	Н	М		М	М			М				
CO4	М	Н	Η	Н	М	L	М	М			М				
CO5	М	Н	Η	Н	М		М	М			М				
16IOE X22	М	Н	Η	Н	М		М	М	1957	9	М				

COMPUTATIONAL BIOLOGY

Category: OE

(Common to all Branches)

L T P C 3 0 0 3

Pre-Requisites: Nil

Course Objectives:

- Understand the basic concepts and role of computation in biological analysis.
- Familiarize with sequence alignment methods.
- Understand the machine learning tools used for biological analysis.

UNIT- I	BASICS OF BIOLOGY	(09)								
Biomolecules o	f life:Structure and Composition of DNA, RNA & Protein. Protein Structur	e basics-								
Primary, Second	dary and tertiary Structure of protein.									
UNIT- II	BIOLOGICAL DATABASES	(09)								
Concept of Rel	ational database, Data archiving, Data mining, Primary databases-NCBI,	EMBL,								
DDBJ; Structure databases-PDB.										
UNIT- III	SEQUENCE ANALYSIS	(09)								
Pairwise alignment tools-Dot matrix analysis, Dynamic programming-Smith waterman and										
Needleman wur	nsch algorithm, Heuristic methods- BLAST, FASTA; Multiple sequence a	lignment								
methods-Progre	ssive alignment (Clustal).									
UNIT- IV	STRUCTURE ANALYSIS AND DRUG DESIGN	(09)								
Protein seconda	ary prediction-Chou fasman method, GOR method; Tertiary structure pr	ediction-								
Homology mod	elling, Introduction to Computer aided drug design.									
UNIT- V	MACHINE LEARNING	(09)								
Genetic Algorit	hm, Neural networks, Artificial Intelligence, Hidden markov model - appli	cation in								
bioinformatics.										
Contact Periods										

Lecture: 45 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
David W. Mount	Bioinformatics: Sequence and	Cold Spring Harbor Laboratory
	Genome Analysis	Press,
		Second Edition, 2004.
Arthur M. Lesk,	Introduction to Bioinformatics	Oxford University Press, 2008.
Pierre Baldi, Soren	Bioinformatics: The machine	MIT Press, 2001
Brunak	learning approach	

Reference Books:

1. Andrew R. Leach, "Molecular Modeling Principles And Applications", Second Edition, Prentice Hall, 2001.

2.Baxevanis A.D. and Oullette, B.F.F, "A Practical Guide to the Analysis of Genes and Proteins", 2nd ed., John Wiley, 2002

3.David L. Nelson, Michael M. Cox, "Lehninger Principles of Biochemistry", Sixth edition, Freeman, W. H. &Co. Publisher, 2012.

Course Outcomes:

Upon completion of the Computational Biology course, the students will be able to

CO1: Understand basic structure of Biological macromolecules

CO2: Acquire the knowledge of biological databases

CO3: Ability to perform pair wise and multiple sequence alignment

CO4: Ability to predict the secondary and tertiary structure of proteins.

CO5: Understand the machine learning approaches in computational biology

Course Articulation Matrix

PO/CO	PO	PO	PO	PO	РО	PO	PO	PO	PO	РО	РО	РО	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М	М	L	L		L			М						
CO2	Μ	L	L	L					L			L			
CO3	L		L			М			L			L			
CO4	М	М	L	М	М										
CO5		М		Н	Н	М	mLm	MO	М						
16BOE X23	L	L	L	L		Ŀ		512	立	5		L			

16BOEX24

BIOLOGY FOR ENGINEERS

Category: OE

(Common to all Branches)

Pre-Requisites: Nil

L T P С 3 0 0 3

Course Objectives:

To enable the students

- To understand the basic functions of the cell and their mechanisms in transport process •
- To get familiarize human anatomy and physiology •
- To learn about microbes, immune system and biomolecules •
- To know the concepts of applied biology

UNIT- I	BASICS OF CELL BIOLOGY	(09)									
An Overview of	F cells – Origin and evolution of cells. Cell theory, Classification of cells – p	orokaryotic									
cells and euka	ryotic cells. Structure of prokaryotic and eukaryotic cells and their	organelles.									
	prokaryotic and eukaryotic cells, Transport across membranes - diffusion -	active and									
passive diffusion.											
UNIT- II	BASICS OF MICROBIOLOGY	(09)									
Classification of microorganism, Microscopic examination of microorganisms, Structural organization											
and multiplication of bacteria, viruses, algae and fungi, Microorganism used for the production of											
penicillin, alcoh	penicillin, alcohol and vitamin B-12.										
UNIT- III HUMAN ANATOMY AND PHYSIOLOGY (09)											
Basics of huma	n anatomy, tissues of the human body: epithelial, connective, nervous and	muscular,									
Nervous system	, Respiratory System, Circulatory system and Digestive system.										
UNIT- IV	BIO MOLECULES AND IMMUNE SYSTEM	(09)									
Introduction to 1	Biochemistry, Classification, structure and properties of carbohydrates, prot	eins, lipids									
and nucleic acid	s. Innate and acquired immunity, Types of immune responses.										
UNIT- V	UNIT- V APPLIED BIOLOGY FOR ENGINEERS (09)										
	Overview of biosensors- glucometer applications-medicine, Microarray analysis to diagnose the cancer, Microbial production of biofuels, Applications of stem cells.										

Contact Periods:

Lecture: 45 Periods Practical: 0 Periods **Total: 45 Periods Tutorial: 0 Periods**

Text Books:

ICAT DOORS:		
Author Name	Title of Book	Publisher, Year Of Publication
Darnell J, Lodish H, Baltimore D	Molecular Cell Biology	<i>W.H.Freeman;</i> 8 th edition,2016
Pelczar MJ, Chan ECS and KreinNR,	Microbiology	Tata McGraw Hill, 5th edition, New Delhi.2001.
WulfCruger and AnnelieseCruger	A Textbook of Industrial Microbiology	Panima Publishing Corporation, 2 nd Edition, 2000.

Reference Books:

- 1.David L. Nelson and Michael M Cox, "Lehninger's Principles of Biochemistry", Macmillan Worth Publisher, 4th edition, 2004.
- 2.Brain R.Eggins, "Chemical Sensors and Biosensors", John Wiley & Sons, 2002
- 3. Anton Moser, "Bioprocess Technology, Kinetics and Reactors" Springer, Berlin (Verlag), 1998
- 4.Kuby J, "Immunology", WH Freeman & Co., 2000.

Course Outcomes:

Upon completion of the course, the students will be able to

- CO1: Understand the functions of cell and their structural organization
- CO2: Describe the mechanisms and role of cell in immune system
- CO3: Get familiarized biomolecules and human anatomy system
- CO4: Illustrate the applications of microbes in industrial process

CO5: Apply the engineering concepts in biology

Course Articulation Matrix

PO/CO	PO	PO	PO	PO	PO	PSO	PSO	PSO							
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L	L	L			М		1 Co	5	∫L	Μ	L			
CO2	L		L	L	L	Μ	М		T	L	L	L			
CO3	L	L			L	L	L	L	L		L	L			
CO4	L		L		L		SW	L	11	L	L	L			
CO5						1		汄							
16BOE X24	L	L	L	L	L	R.	L	L	L	L	L	L			

16BOEX25

FUNDAMENTALS OF BIOENGINEERING

Category: OE

(Common to all Branches)

L	Т	Р	С
3	0	0	3

Pre-Requisites: Nil

Course Objectives:

To make the students aware of the overall industrial bioprocess.

- To understand the basic configuration and parts of a fermentor.
- To study the production of primary and secondary metabolites.
- To understand the production of modern biotechnology products.

UNIT- I	INTRODUCTION TO INDUSTRIAL BIOPROCESS	(09)				
Fermentation - Bacterial, Fungal and Yeast, Biochemistry of fermentation. Traditional and						
Modern Biotech	nology - A brief survey of organisms, processes, products. Basic concepts	of				
Upstream and D	Downstream processing in Bioprocess.					
UNIT- II	FERMENTATION INDUSTRY	(09)				
Overview of fer	mentation industry, Basic configuration of Fermentor and ancillaries, main	1				
parameters to be	e monitored and controlled in fermentation processes. Types of fermentation	on –				
Solid state, subr	nerged, batch, continuous, fed batch fermentation methods.					
UNIT- III	PRODUCTION OF PRIMARY METABOLITES (09)					
A brief outline of processes for the production of some commercially important organic acids -						
Citric acid, lacti	c acid ,acetic acid; amino acids - glutamic acid, phenylalanine; ethanol.					
UNIT- IV	PRODUCTION OF SECONDARY METABOLITES	(09)				
Study of produc	tion processes for various classes of secondary metabolites: Antibiotics: b	eta				
lactams - penici	illin and cephalosporin; aminoglycosides – streptomycin; macrolides -					
erythromycin, vitamin - B9, B12						
UNIT- V	PRODUCTS THROUGH MODERN BIOTECHNIQUES	(09)				
Production of in	idustrial enzymes - proteases, amylases, lipases; Production of single cell p	orotein				
from wastes; bio	opreservatives - Bacterosin; biopolymers - xanthan gum and PHA. Industr	ial uses				
of enzymes in detergents, beverage and food.						

Contact Periods:

Lecture: 45 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 45 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Peter F. Stanbury, Stephen J. Hall & A. Whitaker	Principles of Fermentation Technology	Science & Technology Books. 1995.
Presscott, S.C. and Cecil G. Dunn	Industrial Microbiology	Agrobios (India), 2005
Casida, L.E	Industrial Microbiology	New Age International (P) Ltd, 1968.

Reference Books:

1. Crueger, W and AnnelieseCrueger, Biotechnology: "A Textbook of Industrial Microbiology", Panima Publishing Corporation, Edition 2, 2003

2.Sathyanarayana, U., "Biotechnology", Books and Allied (P) Ltd. Kolkata, 2005

3.Ratledge C and Kristiansen B. "Basic Biotechnology", Cambridge University Press, second Edition, 2001.

4. Michael J. Waites. "Industrial Microbiology: An Introduction", Blackwell Publishing, 2001.

Course Outcomes:

- **CO1:** Upon completion of the course in Bioprocess Principles graduates will be able to understand the basics of industrial bioprocess.
- **CO2:** Explain the principle of a fermentation process and the chronological development of fermentation industry.
- CO3: Understand the basic configuration of a fermentor and its ancillaries.

CO4: Learn the production of various primary and secondary metabolites.

CO5: Understand the production of biotechnological products.

Course Articulation Matrix

PO/CO	PO	PO	PO3	PO	PO	PO	PO	PO	PO	PO	PO1	PO1	PSO1	PSO2	PSO3
	1	2		4	5	6	7	8	9	10	1	2			
CO1	M	H	H			1		\sim							
CO2	H	M			1		S	2Y.							
CO3	Н	Η	Η	M	Μ	M		L	Н	1					
CO4	Н	L	L		d	Ŀ		L		J.					
CO5	Н	M	Н	L	M	120	-	L							
16BOE X25	Н	М	М	L	L	L	12	L	L	Ð					

16POC1Z1

HUMAN VALUES I

Category: OC

(Common to all branches)

L T P C 1 0 0 1

Pre-Requisites: Nil

Course Objectives:

- Essential complementarily between 'values' and 'skills' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- The development of a Holistic perspective among students towards life, profession and happiness based on a correct understanding of the Human reality and the rest of existence, which forms the basis of Value based living in a natural way.
- The plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually satisfying human behaviour and mutually enriching interaction with nature.

UNIT- I	INTRODUCTION TO VALUE EDUCATION	(05)				
Introduction- No	Introduction- Need, Basic Guidance, Content and Process for Value Education- Basic human					
Aspirations – Pr	osperity and happiness - Methods to fullfill human aspirations - Under	rstanding				
and living in ha	mony at various levels.					
UNIT- II	HARMONY IN THE HUMAN BEING	(05)				
Coexistence – H	appiness and convenience - Appraisal of Physical needs - Mental and	Physical				
health – Human	relationship – Mutual Trust and Respect.					
UNIT-III ETHICS (05)						
Morals, Values	Morals, Values and Ethics - Integrity - Work Ethics - Service Learning - Civic Virtue - Caring -					
Sharing - honesty- Courage - Empathy - Self Confidence -Ethical Human Conduct- Basis for						
humanistic Education, Constitution and universal order - Competence in professional ethics -						
Strategy for tran	sition from the present state to Universal human order.					

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

Text Books:

AUTHOR NAME	TITLE OF BOOK	PUBLISHER,
		YEAR OF PUBLICATION
R.R. Gaur, R. Singal,	"Foundation Course in	Excel Book Private Ltd., New Delhi.
G.P. Bangaria	Human Values and	
	Professional Ethics", 2009	

Reference Books:

AUTHOR NAME	TITLE OF BOOK	PUBLISHER,
		YEAR OF PUBLICATION
S. K. Chakraborty and	Human Values and Ethics:	ICFAI University Press, 2006.
Dabangshu Chakraborty	Achieving Holistic Excellence	
A.N. Tripathy	Human Values	New Age International publishers,
		2003.
M. Govindarajan, S.	Engineering Ethics(including	Eastern Economy Edition, Printice
Natarajan and V.S.	human values)	Hall of India Ltd., 2004.
Senthil kumar		
E.G. Seebauer and	Fundamentals of Ethics for	Oxford University Press, 2000.
Rober. L. Berry	Scientists and Engineers	

Course Outcomes:

Upon completion of this course the students will be able to

- **CO1:** Start exploring themselves, get comfortable to each other and to the teacher and start finding the need and relevance for the course.
- **CO2:** See that their practice in living is not in harmony with their natural acceptance most of the time and able to refer to their natural acceptance to remove this disharmony.
- **CO3:** Aware of their activities like understanding, desire,thought and selection and start finding their focus of attention at different moments.
- **CO4:** Able to see that respect is right evaluation and only right evaluation leads to fulfillment in relationship.
- **CO5:** Develop an understanding of the whole existence and interconnectedness in nature.

PO/PSO PO PSO PSO PSO CO 2 3 8 9 10 2 1 4 5 6 7 11 12 1 3 CO1 L L Η Η Η L L Μ CO2 М Η Η Η L L L L CO3 Μ Н H Н L L L L CO4 L Н Η Η L L М L CO5 L Μ Η Η Н L L L 16POC1Z1 М H Н Η Ľ L L L

Course Articulation Matrix

HUMAN VALUES AND PROFESSIONAL ETHICS

(Common to all branches)

Category: OC L T P C 1 0 0 1

Pre-Requisites: Nil

Course Objectives:

- Engineering Ethics and Human Values
- Social responsibility of an Engineer
- Ethical dilemma while discharging duties in Professional life.

UNIT- I	ENGINEERING ETHICS (05)						
Senses of Engineering Ethics -variety of moral issues – types of inquiry – moral dilemmas – moral autonomy – Kohlberg's Theory – Gilligen's Theory – Consensus and contraversy – Models of Professional roles – theories about right actions – Self interest – customs and religion – uses of ethical theories – Valuing time-cooperation-commitment.							
UNIT- II	ENGINEERING AS SOCIAL EXPERIMENTATION(05)						
Engineering as a	experimentation – engineers as responsible experimenters – codes of ethics	– a					
balanced outloo	k on law – the challenger case study - engineers as managers – consulting						
engineers - Mor	al leadership						
UNIT- IIISAFETY, RESPONSIBLITIES, RIGHTS AND GLOBAL ISSUES(05)							
mile island and	Safety and risk – assessment of safety and risk – risk benefit analysisand reducing risk – the three mile island and chernobyl case studies.– Environmental ethics – computer ethics – weapons development- Multinational corporations - engineers as expert witnesses and advisors.						

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

Text Books:

AUTHOR NAME	TITLE OF BOOK	PUBLISHER,
		YEAR OF PUBLICATION
Mike Martin and Roland	Ethics in Engineering	McGraw Hill, New York, 1996.
Schinzinger		
M. Govindarajan,S. Natarajan	Engineering Ethics	Eastern Economy Edition, Printice
and V.S. Senthil kumar	(including human values)	Hall of India Ltd., 2004.

Reference Books:

AUTHOR NAME	TITLE OF BOOK	PUBLISHER,
		YEAR OF PUBLICATION
Charles D.Fleddermann	Engineering Ethics	Pearson Education, 2004.
Edmund G Seebauer and Robert	Fundamentals of Ethics	Oxford University Press
L. Berry	for Scientists and	
	Engineers, 2001	
Charles E. Harris, Michael S.	Engineering Ethics –	Thomson Learning, 2000.
Protchard and Michael J.	Concepts and Cases	
Rabins		
John R. Boatright	Ethics and Conduct of	Pearson Education, 2003.
	Business	

Course Outcomes:

Upon completion of this course the students will be able to

- **CO1:** Understand and appreciate Human values, exhibit self confidence and develop good character
- **CO2:** Sense engineering ethics, professional roles and valuing time, co-operation and commitment
- **CO3:** Uunderstand and practise code of ethics.
- **CO4:** Assess safety and risk and capable of doing risk benefit analysis.
- **CO5:** Develop and exhibit moral leadership qualities in exercising Engineering Consultations without compromising envionmental, legal and ethical issues

PO/PSO	PO	PO	РО	РО	PO	PO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1			М			Η	Н	Н	L				L	L	L
CO2			М			Н	Н	Н	L				L	L	L
CO3			М	1		H	Н	H	L	6			L	L	L
CO4			М		S	H	H	He	Ľ				L	L	L
CO5			М	b		Н	Н	Η	E				L	L	L
16POCX02			М			Н	H	Ħ	L				L	L	L

YOGA FOR YOUTH EMPOWERMENT

Category: OC

(Common to Production and Mechanical)

L T P C 1 0 0 1

Pre-Requisites: Nil

Course Objectives:

- To create awareness and the benefits of yoga and meditation.
- To study and analyze the influential factors, which affect the engineering students' healthy life.

UNIT- I	PHYSICAL STRUCTURE AND ITS FUNCTIONS (05)									
Yoga - Purpose of life, philosophy of life, Physical structure, Importance of physical exercise,										
Rules and regulation of simplified physical exercises, hand exercise, leg exercise, breathing										
exercise, eye exercise, kapalapathy, maharasana, body massage, acupressure, body relaxation										
UNIT- II	YOGASANAS	(05)								
Rules & Regula	tions – asana, pranayama, mudra, bandha									
UNIT- III	MIND	(05)								
Bio magnetism&	& mind - imprinting & magnifying - eight essential factors of living be	ings, Mental								
frequency and ten stages of mind, benefits of meditation, such as perspicacity, magnanimity,										
receptivity, ad	aptability, creativity, Simplified Kundalini yoga: Agna, Santl	ni, thuriam,								

Contact Periods:

thuriyatheetham.

Lecture: 15 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 15 Periods
		AND A CONTRACT OF A CONTRACT O	

Text Books:

Author Name	Title of Book
VethathiriMaharashi	Yoga for Modern Age
VethathiriMaharashi	Mind

Course Outcomes:

On completion of the course, student will be able to

- CO 1: YOGA which gives healthy & better living, Physical, Mental mood, Intellectual & spiritual.
- CO 2: Work skillfully and perfectly towards the excellence.
- **CO 3:** achieve meditation practices, which strengthen the mind and increases the will power, Concentration, creativity and ultimately to transform the mind to achieve self-realization

Course Articulation Matrix

PO/PSO	PO	РО	РО	PO	РО	PO	РО	РО	РО	PO	РО	РО	PSO	PSO	PSO
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO 1						Н							L		
CO 2									М					L	
CO 3							L				L		L		L
16POC						T	L		М		T		T	T	T
X03						L	L		111		L		L	L	L

BASICS OF CIVIL ENGINEERING

(Common to Production and Mechanical)

Category: OC L T P C 1 0 0 1

New Age International Publishers, 2010

Pre-Requisites: Nil

Course Objectives:

• To make the students aware of basic concepts of Civil Engineering by exposing the students about the building materials and construction methods followed.

UNIT- I	BUILDING N	BUILDING MATERIALS (07)												
Qualities of goo	l building stone - Qualities of good	brick - Cement composition, type	es and uses -											
Properties and u	ses of tor steel, structural steel secti	ons, timber - Concrete - Grade of	concrete -											
Properties of rei	nforced concrete.													
UNIT- II	BUILDING CO	NSTRUCTION	(08)											
Foundation functions – Failures - Bearing capacity of soil - Different types of foundation.														
Masonry - Point	to be observed in construction - B													
Random rubble	und Ashlar masonry. Flooring - Var	ious types of floor finishing for R	Residential,											
Industrial buildi	igs.	mp												
Contact Periods Lecture: 15 Peri		ctical: 0 Periods Total: 15 Pe	eriods											
Text Books:														
Author Nat	ne Title of Book	Publisher, Year Of P	ublication											
	Basic Civil Engineering Lakshmi Publications, 2003													

Reference Books:

Bhavikatti S. S

1. Rangwala S.C., "Engineering Materials", Charotar Publishing House, 2014.

Basic Civil Engineering

2. Punmia B.C., "Building Construction", Lakshmi Publications, 2008.

Course Outcomes

On completion of this course, students will be able to

CO1: Know the qualities and properties for building materials used in the field

CO2: Apply the knowledge of construction practices in real life situation in the societal context.

PO/PSO	PO	РО	PO	PO	PO	PSO	PSO	PSO							
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	L		L						L					
CO2						L		L	М	М	Н	L	L		L
16POCX04	Н	L		L		L		L	М	М	Η	L	L		L

16POCX05	METALLOGRAPHY	Category: OC					
Pre-Requisites:		LTPC					
1. 16PPC306 – Engineering m	etallurgy	$1 \ 0 \ 0 \ 1$					
Course Objectives:							

• To familiarize the students in advanced knowledge of metallographic analysis of the content of the subject material science.

UNIT-I	MICROSCOPY	(5)							
Metallographic techniques - specimen preparation - resolution - phase contrast - quantitative									
techniques									
UNIT-II	RADIOGRAPHY ANALYSIS	(10)							
X – Ray o	liffraction techniques - stereographic projection - determination of crys	stal structure,							
lattice para	meter, phase diagram and residual stress - quantitative phase estimation	- application							
of Scannin	ng electron microscope, EDX. Electron probe micro analysis, scannir	g Tunneling							
Microscop	e (STM) and Atomic Force Microscope.								

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication				
Culity B.D., Stock S.R. & Stock S	Elements of X-ray diffraction	РНІ, 2005.				
Goldsten I.J., Dale E., Echin N.P & Joy D.C.	Scanning Electron Microscopy and X-ray micro analysis	ISBN-0306441756, Plenum Publishing Co., 2000.				

Course Outcomes:

On completion of this course, students will be able to

CO 1: employ the metallographic techniques for specimen preparation

CO 2: describe various radiographic techniques in metallography.

Course Articulation Matrix

PO/PSO	PO	РО	PO	PSO	PSO	PSO									
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
C01	Н	М	М	Н	М	L			М	М	М	Н	М	М	М
CO2	Н	М	Н	Η	М	L			M	M	М	M	М	М	М
16POCX05	Н	М	Η	Η	М	L			М	М	М	М	М	М	М

16POCX06 DESIGN OF EXPERIMENTS USING TAGUCHI CONCEPT Category: OC

Pre-Requisites:

L T P C 1 0 0 1

- 1. 16PBS401 Probability and Statistics
- 2. 16PPC504 Metrology and Computer Aided Inspection
- 3. 16PHS501 Total Quality Management

Course Objectives:

• To achieve optimized results by approaching various special Experimental Techniques for various design problems.

UNIT- I	INTRODUCTION TO QUALITY BY DESIGN	(03)							
-	Introduction - goal post philosophy - Taguchi's definition of quality - Taguchi loss function -								
quality character	ristics.								
UNIT- II	DESIGN PROCESS	(03)							
	gineering design - variability due to noise factors - prediction of ptimum condition.	the process							
UNIT- III	ORTHOGONAL ARRAYS AND MATRIX EXPERIMENTS	(03)							
-	ents - orthogonal arrays – degrees of freedom of orthogonal arrays – ion of the process.	- interaction							
UNIT- IV	SIGNAL-TO-NOISE RATIO	(03)							
	(SN) ratio for static problems - Relation ship between SN ratio and	quality loss,							
and its application	ons.								
UNIT- V	CONDUCTING AN EXPERIMENT	(03)							
Randomized block design – completely randomized design – two level factorial experiments - analysis of experiments.									

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication			
Philip J Rose	Taguchi techniques for quality	Prentice Hall, 2005.			
	engineering				
NicoloBelavendram	Quality by Design, Taguchi techniques for	Prentice Hall, 1995.			
	Industrial experimentation				
Montgomery D.C	Design and Analysis of Experiments	5th Edition, John Wiley and			
		Sons, NewYork., 2001			

Reference Books:

- 1. Sung H Park, Robust Design and Analysis for Quality Engineering, Chapman and Hall, London, 1996.
- 2. Giani Taguchi, Elssayed A. Elsayed, Thomas C. Hsiang, Quality Engineering in Production Systems, Mc Graw Hill Book Company, 1989.
- 3. Genichi Taguchi, Subir Chowdhury and Shin Taguchi, Robust Engineering, McGraw Hill, New York, 2000.

Course Outcomes:

On completion of this course, students will be able to

CO1: understand the quality concepts in engineering.

CO2: describe the influences of design process related with quality.

CO3: explain the concept of orthogonal array and its interaction effects.

CO4: explain about signal to noise ratio and quality loss function..

CO5: conduct experiments on randomized block and completely randomized block for optimization

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO						
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	М	M	M	L								L	М	М
CO2	M	М	M	M	L								L	M	М
CO3	M	М	M	M	L								L	M	М
CO4	M	М	M	M	L								L	M	М
CO5	M	М	М	M	L								L	М	М
16POCX06	М	Μ	М	М	L		Gerry	1					L	М	М

Category: OC

L	Т	Р	С
1	0	0	1

Pre-Requisites: Nil

Course Objectives:

• To familiarise the students in entrepreneurship concepts and processes.

UNIT- I	CONCEPT OF ENTREPRENEURSHIP	(05)						
Definition and concept of enterprising –Types and of entrepreneur –Factors Affecting Entrepreneur Growth. Project Identification-Methodology of project identification - short listing and zeroing product/service - problems in project evaluation								
UNIT- II	FINANCE AND MARKETING	(05)						
- balance sheet	Capital Structure, and TermLoans. Accounting principles - conventions an - profit and loss account - accounting rate of return, payback period, S actice. Marketing - Sales strategies.							
UNIT- III	ASSISTANCE TO ENTREPRENEUR	(05)						
	s development in India and its concept - ancillary industries - starting a ion Benefits to Small Scale Industry: Need, Depreciation, Rehabil							
Contact Period	s:							

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

Text Books:

10110 2001151		
Author Name	Title of Book	Publisher, Year Of Publication
Robert D Hisrich, Michael	Entrepreneurship	Tata McGraw Hill, 2007.
P Peters & Dean Shepherd		
Donald F Kuratko and	Entrepreneurship	South-Western.
Richard M Hodgetts	and a second	

Reference Books

- 1. Vasant Desai, "The Dynamics of Entrepreneurial Development and Management", Himalaya Publishing House, 2010.
- 2. Sudha G S, "Management and Entrepreneurship Development", Indus Valley Publication, 2009.
- 3. Thomas W Zimmerer and Norman M Scarborough, "Essential of Entrepreneurship and Small Business Management", Prentice Hall of India, 2009.
- 4. Marc J Dollinger, "Entrepreneurship-Strategies and Resources", Pearson Education, 2003.

Course Outcomes:

On completion of this course, students will be able to

- **CO1:** Describe the basic concept of entrepreneurship.
- **CO2:** Describe the financial concepts and marketing.

CO3: Describe the assistance to entrepreneur.

Course Articulation Matrix

PO/PSO	РО	PO	PO	PO	PO	PO	PO	РО	PO	PO	PO	РО	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Μ					M		Μ	L		L	М			L
CO2	М		М						М	Н	Н				
CO3	М	М	L			L		М	М	М		М			
16POCX07	М	М	L			L		М	М	М	М	М			L

Category: OC

LTPC

0 0 1

1

Pre-Requ	isites: Nil
----------	-------------

Course Objectives:

• To familiarise the students in patent systems and processes.

UNIT- I	INTRODUCTION TO IPR & PATENTS	(05)					
Understanding of	Understanding of Intellectual Property Rights - IPR Regime - Legislations and Salient Features of						
Patent Act - Con	ntent of Indian Patent System.						
UNIT- II	PATENT SEARCH, DRAFTING & FILING PROCEDURE IN	(05)					
	INDIA						
Patent Search -	Patent Drafting - Patent Filing Procedure in India - Patent Prosecution in I	India.					
UNIT- III	PATENT ENFORCEMENT IN INDIA AND INTERNATIONAL	(05)					
	PATENT SYSTEMS						
Enforcement of Patents - Infringement of Patents - International Patent Systems - International							
Treaties for Patent - Multilateral Agreements.							

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

Text Books

	AND	
Author Name	Title of Book	Publisher, Year Of Publication
Neeraj Pandey, KhushdeepDharni	Intellectual Property Rights	PHI Learning pvt. Ltd - New Delhi
S.R.A. Rosedar	Intellectual Property Rights	LexisNexis, 1 st edition, 2014.

Course Outcomes

On completion of this course, students will be able to

CO1: Describe the basic concept of Intellectual Property Rights.

CO2: Describe the IPR filing procedure in india.

CO3: Describe the patent enforcement and international patent systems.

Course Articulation Matrix

PO/PSO	РО	PSO	PSO	PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М					М		М	L		L	М			L
CO2	М		Μ						М	Н	Н				
CO3	М	М	L			L		М	М	М		М			
16POCX08	М	М	L			L		М	М	М	М	М			L

16POCX09	INDUSTRIAL CASE STUDIES	Category: OC
		ГТРС
Pre-Requisites: Nil		0 0 2 1

Course Objectives:

The main objective of the Industrial Training is to experience and understand real life • situations in industrial organizations and their related environments and accelerating the learning process of how student's knowledge could be used in a realistic way.

The students have to undergo practical industrial training for four weeks (During Sixth Semester holidays) in recognized industrial establishments.

At the end of the training they have to submit a report with following information:

- 1. Profile of the Industry,
- 2. Product range,
- 3. Organization structure,
- 4. Plant layout,
- 5. Processes/Machines/Equipment/devices,
- 6. Personnel welfare schemes,
- 7. Details of the training undergone,
- 8. Projects undertaken during the training, if any
- 9. Learning points.

End Semester examination will be a Viva-Voce Examination during Seventh Semester. The assessments will be based equally on the report in the prescribed format and viva- voce examination by a committee nominated by the Head of the Department.

Contact Periods:

Lecture: 0 Periods

Tutorial: 0 Periods Practical: 30 Periods Total: 30 Periods

Course Outcomes

On completion of this course, students will be able to

CO1: understand the different forms of organization, functions of management, organizational behavior, group dynamics and modern concepts in industrial management.

PO/PSO CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	М	М	Н	L	М	L		L	М	L	М	L	М	М	М
16POCX09	М	М	Н	L	М	L		L	М	L	М	L	М	М	М

Course Articulation Matrix

PROJECT MANAGEMENT

Category: OC L T P C

1 0 0 1

Pre-Requisites: Nil

Course Objectives:

• To study about project integration management, project time & project cost management, project quality and risk management and project procurement.

UNIT- I	PROJECT INTEGRATION MANAGEMENT	(03)
Project Manag	ement Framework - Project Management Processes and Proces	s Groups -
Implementing P	roject Integration Management - Developing Project Plan.	
UNIT- II	PROJECT TIME AND PROJECT COST MANAGEMENT	(03)
Project Time M	Ianagement: Mapping the activities – Project Network Diagrams (PN	D) - PERT
GERT, CPM. I	Project Cost Management: Estimating and analyzing of the Project	Cost - Cos
Control.		
UNIT- III	PROJECT QUALITY MANAGEMENT	(03)
Quality Vs Gra	de - Kaizen technology - Quality Policy - Cost / Benefit Analysis	- Cause and
	de - Kaizen technology - Quality Policy - Cost / Benefit Analysis - Quality Assurance.	- Cause and
		- Cause and (03)
Effect Diagram UNIT- IV	- Quality Assurance.	(03)
Effect Diagram UNIT- IV Creating Risk	- Quality Assurance. PROJECT RISK MANAGEMENT	(03) OT Analysis
Effect Diagram UNIT- IV Creating Risk	- Quality Assurance. PROJECT RISK MANAGEMENT Management Plan - Identifying Risks - Delphi Technique - SWC	(03) OT Analysis.
Effect Diagram UNIT- IV Creating Risk Qualitative Risk	- Quality Assurance. PROJECT RISK MANAGEMENT Management Plan - Identifying Risks - Delphi Technique - SWC	(03) OT Analysis
Effect Diagram UNIT- IV Creating Risk Qualitative Risk Analysis. UNIT- V	- Quality Assurance. PROJECT RISK MANAGEMENT Management Plan - Identifying Risks - Delphi Technique - SWC Analysis - Probability Impact matrix. Quantitative Risk Analysis - I	(03) DT Analysis Decision tree (03)
Effect Diagram UNIT- IV Creating Risk Qualitative Risk Analysis. UNIT- V Maslow's hierar	- Quality Assurance. PROJECT RISK MANAGEMENT Management Plan - Identifying Risks - Delphi Technique - SWC Analysis - Probability Impact matrix. Quantitative Risk Analysis - I PROJECT PROCUREMENT	(03) DT Analysis Decision tree (03) Y - Ouchi's

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

Text Books:

Author Name	Title of Book		Publisher, Year of	Publicat	ion
Joseph Phillips	Project	Management	McGraw-Hill,	USA,	3rd
	Professional Study	Guide	edition, 2010.		
Claudia Baca, Patti Jansen	Project	Management	Shreff Publishers		
	Professional Work	book			

Reference Books

- 1. Ralph L. Kleim and Irwin S. Ludin, "Project Management Practitioners Handbook".
- 2. Prasanna Chandra, .Projects., Tata McGraw Hill., 4th edition, 1997.
- 3. Choudry S., . Project Management., Tata McGraw Hill., 27th edition, 2006.
- 4. Tim Pyron, .Special Edition Using Microsoft Office Project 2007", Que.
- 5. Carl Chatfield and Timothy Johnson, "Microsoft Office Project 2007 Step by Step", Microsoft Press.
- 6. Website: http://www.pmi.org

Course Outcomes

On completion of this course, students will be able to

CO1: discuss on the framework of project management and its integration

CO2: understand the tools used in project time and cost management

CO3: discuss about various tools and techniques used in project quality and risk management

CO4: describe theories on HR management, Communication management and Project procurement

CO5: demonstrate various tasks involving in project management using Software.

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO						
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Н	L	Μ	L						Μ	М		L		L
CO2	Μ	L	Μ	L						Μ	М		L		L
CO3	M	М	Μ	L						Μ	М		L		L
CO4	Μ	Μ	Μ	L						Μ	М		L		L
CO5	Μ	Μ	Μ	L						Μ	М		L		L
16POCX10	Μ	Μ	Μ	L		P.	- min	B		Μ	М		L		L

INDUSTRIAL SAFETY

Category: OC LTPC

1 0 0 1

Pre-Requisites: Nil

Course Objectives:

• To introduce the safety awareness among the students.

UNIT- I	INTRODUCTION (0								
The importance of safety and health for engineers – Safety and Health professions – Fundamental concepts and terms.									
UNIT- II	HAZARDS AND CONTROL	(05)							
General princip	es – Structural failures, Slipping, Electrical hazards, Tools, transportati	on – Modes,							
causes and Prev	ention.								
UNIT- III	SAFETY MANAGEMENT	(05)							
Fundamentals –	Risk management and Assessment – safety plans and programs.								

Contact Periods:

Contact Periods:		MATTER	
Lecture: 15 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 15 Periods
Text Books:	Y59	THE PARTY	

Text Books:

Author Name	Title of Book	Publisher, Year Of
	× (Publication
Roger.L. Brauer	Safety And Health For Engineers	Wiley Interscience, 2006

Course Outcomes:

On completion of this course, students will be able to

CO1: explain about the importance of safety.

CO2: describe the types of hazards and their prevention methods

CO3: explain about the guidelines for safety management

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO															
CO1						Η	Н	Η	М		L		L	L	L
CO2						Η	Н	Η	М		L		L	L	L
CO3						Η	Н	Н	М		L		L	L	L
16POCX11						Η	Η	Н	М		L		L	L	L

SIX SIGMA

Category: OC L T P C 1 0 0 1

(Common to Production and Mechanical)

Pre-Requisites:

1. 16PPE009 – Statistical Quality Control and Reliability Engineering

Course Objectives:

• To impart knowledge on six sigma tools on projects and successful completion of projects that drive meaningful business results.

UNIT - I	SIX SIGMA QUALITY AND STANDARDS	(5)
Meaning and	use of the Six Sigma approach- the underlying concept of variation- the relati	onships to
related Quali	ty Management approaches – Basic six sigma tools – Nature of six sigma impr	rovements
projects.		
UNIT – II	DEFINING THE PROJECT MISSION	(5)
Focus on crea	ativity and creativity tools used in coming up with creative formulations and so	olutions in
Six Sigma im	provement projectsReview and management of Six Sigma projects	
UNIT – III	INTRODUCTION TO STATISTICS AND EXCEL	(5)
Statistical tec	chniques for summarizing data and extensive use of Microsoft Excel-Statistic	al Process
control.		

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Joseph A De Feo, William W	Six Sigma Break Through and	Tata McGraw Hill, New Delhi,
BearnardJuran Institute	Beyond	2004
Richard B Chase F Robert	Operations Management for	McGraw Hill Inc., New York,
Jacobs and Nicholas J Aquilano	Competitive Advantage	Tenth Edition, 2003
Poka - Yoke	Improving Product Quality by	Productivity Press, Portland,
	Preventing Defects	Oregon, 1993

Reference Books:

- 1. George Eckes "Six Sigma for Everyone, John Wiley & Sons", 2003.
- 2. J M Juran ,F.M.Gyna&R.S.Bingham , "Quality control Hand book , McGraw Hill book co,1979.
- 3. Rath, Strong Staff "Six Sigma Leadership Handbook, John Wiley & sons", 2003.
- 4. Mikel J Harry "Six Simga: The Break through Management Strategy Revolutionizing the World's top Corporations", 2000.
- 5. Robert O Slater "Management Insights and Leadership Secrets of the Legendary CEO", ,

Course Outcomes:

On completion of this course, students will be able to

CO1: describe the six sigma approach and basic six sigma tools.

CO2: use the creativity tools.

CO3: employ the statistical techniques for summarizing datas.

~	ui se i li ticulu															
	PO/PSO	PO	РО	PO	PO	PO	PO	PSO	PSO	PSO						
-	СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
	CO1	Η	Н	М	Н	М	L			L	М	М	L	М	М	М
	CO2	Η	М	М	Н	М	L			L	М	М	М	М	М	М
	CO3	Η	Н	М	Н	М	L			L	М	М	L	М	М	М
L	16POCX12	Η	Н	М	Η	Μ	L			L	М	М	L	М	М	М

Course Articulation Matrix

PROFESSIONAL SKILLS

Category: OC

L	Т	Р	С
1	0	0	1

Pre-Requisites: Nil

Course Objectives:

• To introduce the fundamental economic principles necessary for production managers

UNIT- I	SELF MANAGEMENT AND ATTITUDES (
Self Concept, Stress management, Positive attitude, Influential Skills, Initiative, Empathy, Social								
Etiquette								
UNIT- II	IT-II LEADERSHIP SKILLS (05)							
Empowerment,	Planning, Establishing Credibility, Vision & direction, Supervision,	Mentoring,						
Decision making	g, Creativity, Flexibility, Team problem solving							
UNIT- III	TEAM WORK	(05)						
Inter team coop	eration, Intra team cooperation, Diversity, Productivity, Goal Setting an	d action						

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

Text Books:

Author Name	Title of Book	Publisher, Year Of Publication
Rao M S	Soft Skills – Enhancing Employability-	IK International Publishing
	Connecting Campus with Corporate	House, New Delhi, 2010

Reference Books:

1.Simon Sweeney, "English for Business Communication", Cambridge University Press, New Delhi, 2012

Course Outcomes:

On completion of this course, students will be able to

CO1: manage themselves and improve their attitude.

CO2: develop the leadership skills.

CO3: work in a team environment.

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
									м	TT	TT	TT	T	т	T
CO1									M	H	H	H			
CO2									M	H	H	H			
CO3									M	H	H	H		L	L
16POEX13									М	Н	Н	Н	L	L	L

SOLAR ENERGY SYSTEMS

Category: OC L T P C

1 0 0 1

Pre-Requisites: Nil

Course Objectives:

• To familiarize the importance of solar energy and methods of harnessing solar energy.

UNIT- I	SOLAR THERMAL ENERGY COLLECTORS AND	(07)					
	STORAGE DEVICES						
A review of er	nergy related environmental problems, introduction to solar energy,	Devices for					
thermal collection	ions - Liquid flat plate collector - Solar Air heater - Parabolic of	concentrating					
collector - Fres	nel reflector - Power tower system - Thermal Storage devices - Lat	tent heat and					
sensible heat sto	orage.						
UNIT- II	THERMAL APPLICATIONS	(05)					
Water heating -	Space heating – Space cooling and refrigeration – Distillation Drying	g – Cooking -					
Solar thermal p	ower plant-Low temperature - medium temperature and high tempe	rature power					
plant.							
UNIT- III SOLAR PHOTO VOLTAIC SYSTEM (03)							
Solar cell – basic principle - Solar Photo voltaic system for power generation – off – grid and grid							
connected system – other PV application.							

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

Text Books:

Author Name	Title of Book	Publisher, Year of Publication
S.P. Sukhatme	Solar Energy: Principles of Thermal	Tata McGraw Hill Publishing
	Collection and Storage	Company Ltd., New Delhi, 2006.

Reference Books:

1. G.D. Rai, Non Conventional Energy Sources, Khanna Publishers, New Delhi, 1999.

2. G.N. Tiwari, solar Energy – Fundamentals Design, Modelling and applications, Narosa Publishing House, New Delhi, 2002.

Course Outcomes:

On completion of this course, students will be able to

CO1: describe the characteristics of Solar thermal and Solar Photovoltaic Systems.

CO2: explain various solar thermal and Photo voltaic applications.

Course Articulation Matrix

PO/PSO	PO	PSO	PSO	PSO											
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	L	L					Н					М	М		
CO2	L	L					Н					М	М		
16POCX14	L	L					Н					М	М		

WIND ENERGY SYSTEMS

Category: OC L T P C 1 0 0 1

Pre-Requisites: Nil

Course Objectives:

• To develop adequate knowledge about wind energy conversion systems.

UNIT- I	WIND ENERGY PRINCIPLES	(04)						
Principles of wi	Principles of wind Energy Conversion- Nature of wind – Power in the wind – Forces on the wind							
- wind energy	v conversion – wind data and wind energy estimation - S	ite Selection						
Considerations.								
UNIT- II	WIND ENERGY CONVERSION SYSTEM	(06)						
Wind Energy C	onversion system- Basic components of WECS - Classification - Ad	lvantages and						
Disadvantages of	of WECS- Types of wind energy collectors - horizontal axis mach	ines – design						
considerations -	vertical axis machines – performance of wind machines.							
UNIT- III	WIND ENERGY APPLICATIONS	(05)						
Applications of WECS - Pumping - wind assisted gas turbine generators - direct heat								
applications - Electricity generation - Interconnected System-Environmental Aspects.								
	Varing Rev)							

Contact Periods:

Lecture: 15 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 15 Periods
---------------------	---------------------	----------------------	-------------------

Text Books:

I CAU DOURS!		
Author Name	Title of Book	Publisher, Year of Publication
G.D. Rai	Non Conventional Energy Sources	Khanna Publishers, New Delhi, 1999.
		AD:

Reference Books:

- 1. Godfrey Boyle, Renewable Energy, Power for a Sustainable Future, Oxford University Press, U.K., 1996.
- 2. L.L. Freris, Wind Energy Conversion systems, Prentice Hall, UK, 1990.

Course Outcomes:

On completion of this course, students will be able to

- CO1: Describe the various types of Wind Energy Conversion System (WECS) and its components.
- **CO2:** Select suitable site for erecting Wind Energy Conversion System considering environmental aspects.
- **CO3:** Explain various applications of wind energy conversion system.

Course Articulation Matrix

PO/PSO	PO	РО	PO	PO	PO	PSO	PSO	PSO							
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	Μ												М		
CO2	L	Н	Μ	М		Μ	Η								Н
CO3	Μ						М								М
16POCX15	Μ	Η	М	М		М	М						М		М

REFRIGERATION SYSTEMS

Category: OC LTPC 1 0 0 1

Pre-Requisites: Nil

Course Objectives:

• To develop adequate knowledge about refrigeration systems.

UNIT- I	REFRIGERATION CYCLES AND REFRIGERANTS (08)						
Air refrigeration cycles – reversed Carnot cycle, Bell Coleman cycle, simple vapour compression							
refrigeration cyc	refrigeration cycle, compound compression refrigeration cycles, and cascade refrigeration cycles.						
UNIT- II	VAPOUR ABSORPTION AND OTHER SYSTEMS	(07)					
Ammonia – wa	ter system, Lithium Bromide - water system - Electrolux refrigera	ation system,					
Steam jet refrigeration and solar refrigeration systems. Refrigerants – properties and classification-							
eco friendly refr	eco friendly refrigerants.						

Contact Periods:

Lecture: 15 Periods	Tutorial: 0 Periods	Practical: 0 Periods	Total: 15 Periods
Taxt Doolyge	a allowing	mp	

Text Books:

Text Books:		Cont.	a	
Author Name	Title of	Book	20	Publisher, Year of Publication
Arora C.P	Refrigeration Conditioning	and	Air	Tata McGraw Hill Publishing Company Limited, 3 rd Edition, NewDelhi, 2009

Reference Books:

1. Roy J Dossat, Principle of Refrigeration, Wiley Eastern Limited, Fifth Edition 2001.

Course Outcomes:

On completion of this course, students will be able to

CO1: describe various refrigeration cycles.

CO2: explain various refrigeration systems operated using heat energy.

Course Articulation Matrix

PO/PSO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PSO	PSO	PSO
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	М		L									L	М		
CO2	L		L										M		
16POCX16	5 M		L									L	Μ		

AIR CONDITIONING SYSTEMS

Category: OC L T P C 1 0 0 1

Pre-Requisites: Nil

Course Objectives:

• To develop adequate knowledge about air conditioning systems.

UNIT- I	AIR DISTRIBUTION SYSTEMS (07)									
Air distribution systems – study of different types of duct systems, duct insulation, air purity – air										
cleaning methods.										
UNIT- II	CONDITIONING AND COOLING LOAD (08)									
Psychrometry, psychrometer, psychometric processes, moist air behaviour, effective temperatures,										
sensible heat fac	tor ratio and cooling load estimation for an air conditioned space.									

Contact Periods:

Lecture: 15 Periods Tutorial: 0 Periods Practical: 0 Periods Total: 15 Periods

Text Books:

_			7		and and a second							
	Author Name	Title of	Book		Publisher, Year of Publication							
	Arora C.P	Refrigeration	and Ai		Tata	McGraw	Hill	Publishing	Company			
		Conditioning			Limited, 3 rd Edition, NewDelhi, 2009							

Reference Books:

1. Manohar Prasad, Refrigeration and Air Conditioning, Wiley Eastern Limited, 2004.

Course Outcomes:

On completion of this course, students will be able to

CO1: explain the air distribution systems and components.

CO2: estimate cooling load for air conditioning.

Course Articulation Matrix

PO/PSO	PO	РО	PO	PSO	PSO	PSO									
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	M											L	М		
CO2	L		L			L									
16POCX17	М		L			L						L	М		